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Abstract: We study string loop corrections to the gravity kinetic terms in type IIB com-

pactifications on Calabi-Yau threefolds or their orbifold limits, in the presence of D7-branes

and orientifold planes. We show that they exhibit in general a logarithmic behaviour in

the large volume limit transverse to the D7-branes, induced by a localised four-dimensional

Einstein-Hilbert action that appears at a lower order in the closed string sector, found in

the past. Here, we compute the coefficient of the logarithmic corrections and use them

to provide an explicit realisation of a mechanism for Kähler moduli stabilisation that we

have proposed recently, which does not rely on non-perturbative effects and lead to de Sit-

ter vacua. Our result avoids no-go theorems of perturbative stabilisation due to runaway

potentials, in a way similar to the Coleman-Weinberg mechanism, and provides a counter

example to one of the swampland conjectures concerning de Sitter vacua in quantum grav-

ity, once string loop effects are taken into account; it thus paves the way for embedding

the Standard Model of particle physics and cosmology in string theory.
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1 Introduction

One of the main challenges in constructing successful particle physics and cosmology models

of string theory origin, is the requirement for a stable vacuum with a positive -albeit tiny

today- cosmological constant. Despite the theoretical advances in this topic, there is no

conclusive argument that this goal has been unequivocally achieved. A generic feature

of the effective field theories resulting after compactification, is the appearance of a large

number of moduli fields in the massless spectrum. A primary purpose is thus to obtain

a (meta)-stable vacuum where all moduli are fixed and acquire masses in order to avoid

long range forces and other undesirable phenomenological features. It has been realised,

however, that after moduli stabilisation de Sitter (dS) vacua are scarce, if at all. Focusing on

type IIB string in particular, the scalar potential of the corresponding effective supergravity

constructed from the Kähler potential and superpotential exhibits a no scale structure at

the classical level [1, 2]. Thus, while the complex structure moduli and the dilaton field

are fixed in the presence of 3-form fluxes from supersymmetry conditions imposed via the

superpotential [3, 4], Kähler moduli fields are not stabilised unless quantum corrections

are taken into account [5–8]. Moreover, in general the scalar potential displays often an

anti-de Sitter (AdS) minimum, and therefore, a suitable mechanism is required to provide

an appropriate uplifting term which ensures a vacuum with positive energy [6, 7].

Motivated by these facts, in a previous work [9], we studied the quantum corrections

arising from a geometric configuration of three intersecting 7-branes in the framework of

type IIB/F-theory. The corrections break the no-scale structure of the Kähler potential and

generate a non-zero F-term potential for the Kähler moduli. In addition, Fayet-Iliopoulos

D-terms associated with anomalous U(1) symmetries of the intersecting D7 branes, are

generated. These are sufficient to uplift the potential, and generate a dS minimum with

all the Kähler moduli stabilised to their minima. This result is obtained thanks to the
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fact that the aforementioned quantum corrections have a logarithmic dependence on the

moduli associated with the co-dimension two volume [10] transverse to the D7 brane.

Although this type of dependence can be deduced from a simple dimensional analysis, yet

the strength and sign of these contributions plays a decisive role and should be derived

from a direct string calculation. Therefore, the main objective of the present work is

the precise estimate of these corrections leading to the most dominant modifications of

the Kähler potential in the large volume limit. Actually, in type II (and type I) string

compactifications, these contributions are induced by the corrections to the Einstein gravity

kinetic terms renormalising the effective four-dimensional (4d) Planck mass [11, 12].

In a compactified theory, the large volume limit is expected to give back the higher

dimensional theory. In the presence of branes though (or in general localised defects)

the limit is more subtle and one has to break up the total volume into pieces along and

transverse to the various world-volumes. Still, in the large transverse volume limit, one

would expect brane decoupling. However, this is not true in the case of co-dimension two

(or one) if the theory has local tadpoles of (effectively) massless bulk states. Indeed, their

emission to the bulk from the localised defect leads to infrared divergences due to the

effective propagation in two (or one) dimensions. They behave logarithmically with the

size of the bulk in the two-dimensional case and linearly in one dimension. Examples of

this property are the threshold corrections to gauge couplings of D7 brane gauge kinetic

terms [10] and the linear dilaton dependence on the size of the eleventh dimension in

heterotic M-theory [13]. This is not the case for graviton kinetic terms, which are in

principle higher dimensional, associated with closed strings that live in ten dimensions.

It was found however that type II strings compactified on a non-trivial 6d Calabi-Yau

(CY) manifold lead to a 4d Einstein action localised at points where the Euler number is

concentrated when taking the large volume limit [14]. This correction arises at the string

tree-level for smooth manifolds [5] (corresponding to a perturbative correction in α′ [15])

and at one-loop level in orbifolds [12, 14].

It is now clear that these localised graviton kinetic terms can receive to the next order

logarithmic corrections on the size of the volume transverse to 7-brane (or orientifold)

sources localised at distant points from the graviton kinetic terms, due to the emission of

closed strings on non-vanishing local tadpoles. Note that consistency of the theory implies

only global tadpole cancellation while local tadpoles are generally present except in special

configurations of D7 branes on top of orientifold planes [10]. In this work, we compute

these corrections and we show that they are adequate to stabilise the Kähler moduli and in

particular the total internal volume, obtaining a de Sitter minimum when suitable D-terms

from the D7-branes are also taken into account.

The layout of the paper is as follows. In section 2, we present a short description

of the runaway problem for stabilising the string moduli at weak coupling, related to the

generic behaviour of the scalar potential for the volume modulus (or for the string dilaton)

in string theory and discuss possible solutions through quantum corrections. In section 3,

we discuss the appearance of the induced Einstein-Hilbert (EH) term in four dimensions

and the derivation of the one-loop corrections through graviton scattering. The logarithmic

contributions associated with the exchange of Kaluza-Klein (KK) excitations between the
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induced graviton vertices and 7-brane sources are computed in section 3.2 and are translated

in corrections to the Kähler potential. In section 4, we include D-term contributions and

describe the minimisation of the scalar potential and the conditions for a dS vacuum.

Section 5 contains a summary of our results and some concluding remarks.

2 Corrections to the Kähler potential and runaway moduli behaviour

The Dine-Seiberg problem [16] is a long-standing question in moduli stabilisation. It con-

cerns the modulus that controls the perturbative expansion, either in α′ (the internal

volume), or in string loops (the dilaton). In both cases, the assumption is that in the weak

coupled limit, the potential at a certain order of the expansion has a monotonic behaviour

towards a vanishing value at inifinity corresponding to the free theory. Thus in order to

generate a minimum, there should be at least two terms compensating each other, which

in general requires the expansion parameter to be of order 1 and the theory is no longer

weakly coupled. This argument points out that the vacuum is either strongly coupled or

it needs two sectors compensating each other, somehow at weak coupling. For example,

in the KKLT model [6], non-perturbative effects in the superpotential [17, 18] fix all the

Kähler moduli. In the large volume scenario [7, 8] on the other hand, one only uses non-

perturbative effects for small volumes which behave like the holes in Swiss cheese. The

back-reaction of the small volume together with α′-corrections [5, 12, 19] fix the whole

volume at exponentially large size.

Here, we want to check this assumption from the bottom-up point of view. One starts

with a general form of the Kähler potential for a single Kähler modulus with perturbative

corrections (in supergravity units):

K = −2 log
(
τ

3
2 + ηf [τ ]

)
, (2.1)

where η is the expansion parameter and f [τ ] is a general function of the Kähler modulus τ

which breaks the no-scale structure. The term ηf [τ ] is assumed to be much smaller than

the volume τ
3
2 . The corresponding F-term potential for constant superpotential W0 is

VF (τ) =
ηW2

0

2τ9/2
(3f [τ ]− 4τf ′[τ ] + 4τ2f ′′[τ ]) +O(η2), (2.2)

where we omit the higher order terms in the η-expansion. We see from eq. (2.2) that the

F-term potential naturally splits into three parts. However, if the correction is a power-like

function f [τ ] = τk, the three terms above acquire the same form VF ∝ ητk−9/2 + O(η2),

thus always being monotonic in the leading order. In the past, all radiative corrections

calculated in terms of either the string coupling gs (at one-loop level) or α′ had this form,

such as in [5, 11, 12, 14, 19–28].

The observation in [10] suggests however that in addition to power behaving functions,

one could also have corrections with logarithmic dependence on the moduli

f [τ ] = log(τ). (2.3)

– 3 –
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The interesting fact now is that the F-term potential has two distinct parts, both with the

same power dependence but one of the two proportional to log(τ) [9, 29]:

VF =
ηW2

0

2τ9/2
(3 log(τ)− 8) +O(η2) . (2.4)

The two terms could compensate each other and lead to a minimum provided that the co-

efficient η is negative. This mechanism is reminiscent of the one with a Coleman-Weinberg

potential [30], offering an alternative solution to the runaway moduli problem, consistent

with perturbation theory in the large volume expansion.

The next step is to study whether we could get an exponentially large volume. One

trivial solution is to insert an extremely small compactification scale parameter µ inside the

correction f [τ ] = log(µ4τ). This is equivalent to adding a constant ξ inside the logarithm of

the Kähler potential. Indeed, assuming that the volume upon stabilisation is exponentially

large, one can expand the Kähler potential in terms of the total volume V = τ
3
2 of the

six-dimensional compactification manifold X6 in the large volume limit:

K = −2 log

(
V + ξ + η log(V) +O

(
1

V

))
= −2 log

(
V + η log(µ6V) +O

(
1

V

))
, (2.5)

where µ ≡ eξ/6η. In the case of η < 0, one can show that there is a minimum of the effective

potential (2.4) in terms of V, which in the large volume limit is:

Vmin = e13/3/µ6 ; V min
F =

ηW2
0

3V3min

. (2.6)

It follows that in order to make this solution large enough, as required in the large volume

expansion, we assumed a priori that µ has to be exponentially small, which corresponds to

the condition

ξ � −η > 0 . (2.7)

This is again similar to the situation in the Coleman-Weinberg potential, where η and ξ

correspond to two different parameters/couplings, such as a quartic scalar interaction and

a gauge coupling [30]. In the following sections, we shall present an explicit string theory

example, realising the above proposal.

3 Quantum corrections from graviton scattering

In the type II superstring action, in addition to the Einstein-Hilbert (EH) term, there

are fourth order corrections in Riemann curvature, generated by multi-graviton scattering.

Those which are relevant to our discussion, that generate a localised EH action in four

dimensions, are of the form [5, 12, 19, 31, 32]:∫
M10

εµ1µ2...µ8εν1ν2...ν8R
ν1ν2
µ1µ2R

ν3ν4
µ3µ4R

ν5ν6
µ5µ6R

ν7ν8
µ7µ8 ≡

∫
M10

ε8ε8R
4 =

∫
M10

R∧R∧R∧R∧e∧e, (3.1)

where the last expression is in differential forms notation,
∫
M10

R4∧e2 in short. The reduc-

tion of this term in four dimensions has implications in the effective field theory. Among

– 4 –
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others, there is an induced localised EH term in four dimensions [14] which generates the

universal correction to the Planck mass appearing in eq. (2.5). In the following subsections,

we first review the result of [14] which shows that the constant ξ is proportional to the

Euler characteristic χ of the CY manifold X6. Then, we calculate the exchange of closed

strings between these localised EH terms and extended object sources (7-branes) located

at distant points in the bulk. Such local tadpoles lead to logarithmic corrections in the

size of the two-dimensional space transverse to the 7-branes.

3.1 Localised Einstein-Hilbert terms

The implications of R4 terms in the effective theory obtained after compactifying on a CY

manifold, have been studied by several authors [5, 12, 14, 19]. The term of interest to us

arising from (3.1) after integration on CY, is proportional to the Euler characteristic of

the manifold χ [12]. Hence, including the tree-level and the one-loop generated Einstein-

Hilbert terms, after compactification on M4 × X6 with M4 the 4d Minkowski spacetime,

the ten-dimensional action reduces to [5, 12, 14, 19]

S ⊃ 1

(2π)7α′4

∫
M10

e−2φR(10) −
6

(2π)7α′

∫
M10

(
−2ζ(3)e−2φ ± 4ζ(2)

)
R4 ∧ e2 (3.2)

≡ Sgrav =
1

(2π)7α′4

∫
M4×X6

e−2φR(10) −
χ

(2π)4α′

∫
M4

(
−2ζ(3)e−2φ ± 2π2

3

)
R(4) , (3.3)

where φ is the string dilaton whose vacuum expectation value (VEV) defines the string

coupling gs = 〈eφ〉,R(d) is the d-dimensional Ricci scalar, the ± sign corresponds to the type

IIA/B theory, and in the second line, ζ(2) = π2/6 has been substituted. We also used [12]:

1

(2π)6

∫
X6

R ∧R ∧R =
χ

3!(2π)3
. (3.4)

Note that the action (3.3) is universal for smooth manifolds (for orbifolds the tree-level

contribution proportional to ζ(3) vanishes — see below) and the 4d term proportional to

χ corresponds to the large volume limit of the internal compactification space, associated

with the localised contributions that remain finite in the non-compact limit. In general,

there are extra model dependent terms that vanish at large volume, either perturbatively

(power suppressed), or non-perturbatively (exponentially suppressed). The localisation

points are arbitrary, corresponding to the singularities supporting the Euler number of the

CY manifold in the non-compact limit; thus, in general χ =
∑

i χi, where the summation

index i runs over all different points of localised gravity. In the following, we consider for

simplicity that there is just one singularity at the origin supporting the total Euler number.

In the orbifold limit, the first term in the bracket involving ζ(3) vanishes and the localised

R(4) term arises at one loop, proportional to ζ(2).

From the above reduction it is readily inferred that an induced term linear in the

Ricci scalar is only possible in four dimensions.1 In supersymmetric type II string com-

1Actually, in M-theory gravity localisation arises in five dimensions which is the strongly coupled limit

of type IIA.
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pactifications, the Euler characteristic counts the difference between the number of N = 2

hypermultiplets and vector multiplets,

χ = ±4(nV − nH) , (3.5)

for type IIA/B, respectively. It is remarkable that the emergence of a lower dimensional

Einstein-Hilbert term R(d), with the whole internal space in the non-compact limit, is

only possible in four dimensions (in the weakly coupled regime) and leads to interesting

cosmological consequences that we shall discuss at the end.

To simplify the expression of the action, we choose the mass conventions 2πα′ = 1 [5],

leading to:

Sgrav =
1

(2π)3

∫
M4×X6

e−2φR(10) −
χ

(2π)3

∫
M4

(
−2ζ(3)e−2φ ± 2π2

3

)
R(4)

=
1

(2π)3

∫
M4

[
Ve−2φ + χ

(
2ζ(3)e−2φ ∓ 2π2

3

)]
R(4) . (3.6)

In order to deduce the physical corrections to the moduli metric, one has to take into

account also the corrections to the moduli kinetic terms and perform an appropriate Weyl

rescaling of the spacetime metric from the string to the Einstein frame where gravity

kinetic terms are correctly normalised. It turns out that the corrections to the moduli

metric read [12]:

Ve−2φ
[
(∂V )2 + (∂H)2

]
∓ χ

(
2ζ(3)e−2φ +

2π2

3

)[
(∂V )2 − (∂H)2

]
, (3.7)

where V and H denote collectively the N = 2 vector and hypermultiplet moduli, respec-

tively (orthogonal to the volume and dilaton directions).2 As a result in type IIA, upon a

Weyl rescaling to the Einstein frame, the correction proportional to ζ(3) renormalises the

metric of vector moduli and the dilaton dependence drops, whilst the correction propor-

tional to π2/3 = 2ζ(2) renormalises the metric of the hypermultiplet moduli and acquires

a dilaton dependence. Thus, the vector and hyper metrics decouple, in agreement with the

N = 2 supergravity.

In type IIB on the other hand, which is our case of interest, it is easy to see that

in the Einstein frame the vector moduli space is not corrected while the hypermultiplet

moduli obtain tree-level as well as one-loop corrections. The latter can be read off from

the corrections to R up to a factor of (−2) due to the Weyl rescaling. Note that now

the internal volume, as well as all Kähler class moduli, are in N = 2 hypermultiplets,

together with the dilaton. After the orientifold projection and turning on 3-form fluxes,

supersymmetry is broken to N = 1 keeping only the Kähler class and complex structure

moduli (and the dilaton) in chiral multiplets. The latter together with the dilaton are

stabilised in a supersymmetric way via the 3-form flux generated superpotential, leaving

2For the volume and universal dilaton hypermultiplet, special care is needed to take care of the mix-

ing [33].
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Figure 1. Three graviton scattering with two massless gravitons with momentum k1, k2 and a KK

state carrying momentum k3.

the Kähler moduli unfixed as flat directions when the corrections proportional to χ are

ignored. These corrections modify the tree-level Kähler potential by shifting the volume

according to eq. (2.5) by a constant ξ that can be read off from eq. (3.6) and taking care

of the dilaton fixing following for instance the procedure of [5]: ξ = −χ
4 [ζ(3) + π3/3].3

Next, we turn to the localisation width of the wavefunction of R(4) in the internal

manifold X6 when χ 6= 0. In order to render the computations tractable, we work in the

context of type IIB string theory compactified on the T 6/ZN orbifold limit of CY space [14].

Note that, in the non-compact limit, N can be an arbitrary integer. The non-vanishing

contribution to the localised EH action comes from one-loop, since the tree-level correction

(proportional to ζ(3)) vanishes in the orbifold limit [12]. Moreover, the one-loop correction

receives non-vanishing contributions only from the odd-odd spin structure and from the

N = 1 + 1 supersymmetric sectors with all internal coordinates twisted by the orbifold.

In the odd-odd spin structure, one has to take one vertex in the (−1,−1)-ghost picture,

the two others in (0, 0)-ghost picture, and add a world-sheet supercurrent insertion in both

left- and right-moving sectors.

In order to compute the localisation width, the corresponding graviton scattering am-

plitude involves two massless gravitons and one Kaluza-Klein (KK) excited state with zero

winding in the ZN orbifold background (see figure 1). Their 4d momenta satisfy momentum

conservation and mass-shell conditions∑
i

ki = 0, k21 = k22 = 0, k23 = −q2 ,

with q being the KK momentum. We take the zero modes of the fermions along the

non-compact directions from V(0,0)(z1) and V(−1,−1)(z2) and the zero mode parts from the

contractions between the supercurrents and the vertex operator V(0,0)(z3). After some

manipulations the amplitude takes the form [14]

〈V 2
(0,0)V(−1,−1)〉 = CR

1

N2

∑
f=0,...,nf
k=0,...,N−1

eiγ
kq·xf

∫
F

d2τ

τ22

∫ ∏
i=1,2,3

d2zi
τ2

∑
(h,g)

′
eα

′q2F(h,g)(τ,zi) , (3.8)

where CR contains the linearised tensorial structure of the three gravitons which comes from

the expansion of the scalar curvature R(4), whilst xf are the fixed points of the orbifold

3Note that our ξ differs from the one of [5] by a factor of 2.
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and γk is the representation of the action of the orbifold group. The pairs (h, g) label the

orbifold sectors corresponding to the boundary conditions h and g around the two cycles

of the world-sheet torus, while the prime in the sum excludes the untwisted sector (0, 0)

which does not contribute to the amplitude because of the fermion zero-modes integration.

For simplicity, we consider N prime, so that there are no N = 2+2 supersymmetric sectors

that give also vanishing contribution. The factor 1/N2 takes into account the two orbifold

projections around the 2 cycles. As usually, the integration over the 2d torus modulus τ

is restricted in the fundamental domain F of the SL(2,Z) modular group. The function

F(h,g)(τ, zi) is computed in [14] in terms of the twisted 2-point function and the coupling

between two twisted and one untwisted states on the torus.

Obviously, the localisation occurs at the orbifold fixed points. Focusing on one of

them, say the origin xf = 0, all the others go to infinity in the non-compact limit, while

the summation over k gives a factor of N . We now take the Fourier transform with respect

to the KK momentum q in all six internal dimensions, in the non-compact limit, using

Euclidean signature q2 < 0. This gives the coefficient of R(4) as an integral over the 6d

internal position space y of a localisation function δ(y):

δ(y) =
1

N

∫
F

d2τ

τ22

∫ ∏
i=1,2,3

d2zi
τ2

∑
(h,g)

′ 1

8α′3F(h,g)(τ, zi)3
e
− y2

4α′F(h,g)(τ,zi)

∼ N 1

w6
e−

y2

2w2 , (3.9)

where we restored α′ ≡ l2s , with ls the string length. It is now clear that δ(y) exhibits a

Gaussian profile with respect to the ratio y
w where the origin of the coordinate y is identified

with the fixed point and w is an effective width associated with it. The width can be

computed in the large N limit by a saddle point analysis, extremising F(h,g). Evaluating

the stationary point of F(h,g)(τ, zi) the effective width is found to be [14]

w2 ' α′F(h,g)(τ, zi)|min ∼
l2s
N
. (3.10)

The summation over (h, g) in eq. (3.9) leads then to a factor of N2, taken into account

in the second line. Notice that the effective width corresponds to the 4d Planck mass in

accordance with the field theory arguments of localised gravity [34, 35].

Looking back at eq. (3.3), we conclude that the one-loop correction can be written as

4ζ(2)χ

(2π)4α′

∫
M4×X6

1

(2π)3
e−y

2/(2w2)

w6
R(4), (3.11)

where |χ| ∼ N (see eq. (3.5)) and the effective width w provides the effective ultraviolet

cutoff for the graviton KK modes propagating in the bulk.

3.2 7-branes and logarithmic corrections

We have seen above that one loop corrections in N = 1 + 1 orbifold compactifications of

type II strings generate localised gravity kinetic terms associated with a 4d EH action pro-

portional to the Euler characteristic of the manifold. We are now ready to show that next

– 8 –
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Figure 2. Genus-3/2 amplitude leading to logarithmic correction to the induced 4d Planck mass.

order corrections in general display a logarithmic dependence on the size of two dimensional

bulk subspaces transverse to distant 7-brane sources. Indeed, localised graviton vertices

can emit gravitons and other closed string states in the bulk towards these sources, gen-

erating local tadpoles whose existence can be consistent with global tadpole cancellation.

The relevant string diagram is genus-3/2, as shown in figure 2, where the disk corresponds

to a boundary (brane) or a crosscap (orientifold) and we considered the insertion of two

4d graviton zero-mode vertices.4 The presence of the handle is needed to produce the

localised correction in orbifolds, described in the previous subsection, while the presence

of the boundary/crosscap is necessary to produce the desired logarithmic correction in the

codimension-two case.

The exact computation of this diagram is quite involved. However, the contribution

of the local closed string tadpole that gives rise to the logarithmic correction can be done

easily in the degeneration limit where the diagram factorises into a 3-point function on a

torus (one loop) of two 4d gravitons and a massless ten-dimensional closed string, and a

one-point function on a disk describing the propagation of the closed string in the tube

ending on the boundary/crosscap. The massless 10d closed string state can be decomposed

in four dimensions into a 4d massless mode and a series of KK excitations for the graviton,

dilaton, volume modulus and possibly other (model dependent) untwisted moduli (the

2-index antisymmetric tensor cannot go into the vacuum by Lorentz invariance).

Here, for simplicity, we will use the same one-loop 3-point function given in eq. (3.8),

with a KK mode of the graviton-dilaton (corresponding to the same vertex operator with

a different polarisation factor) propagating towards a tadpole ending on a 7-brane source,

see figure 3. Obviously, the KK-state must be off-shell with mass q⊥; its 4d momentum

is zero by momentum conservation. Similarly, all internal momenta vanish along the 7-

brane world-volume directions. Thus, q⊥ corresponds to the KK-momentum along the

two directions transverse to the 7-brane. Going back to the momentum space, the 3-point

function (3.9) becomes:

δ̃(q⊥) ∼ CRNe−w
2q2⊥/2 , (3.12)

where CR contains the linearised tensorial structure as in eq. (3.8).

4As usually, we assume an appropriate off-shell regularisation to prevent on-shell vanishing of the 2-

point function. Alternatively, one should consider the 3-pont function by adding an extra 4d graviton

vertex insertion.
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Figure 3. Degeneration limit genus-3/2 amplitude with two massless gravitons and a KK excitation

transmitted towards a D7 brane.

The amplitude can now be written as the product of the above vertex, the two-

dimensional propagator, and the contribution from a D7-brane/O7-plane. In the string

frame, the result is:

AS = −CR
∑
q⊥ 6=0

g2sTNe
−w2q2⊥/2

1

q2⊥R
2
⊥
, (3.13)

where T is the brane tension, R⊥ is the size of the two-dimensional space transverse to the

7-brane, and the zero mode is omitted from the summation over the KK modes due to the

global tadpole cancellation condition.

In the large R⊥ limit, we can go to the continuum by replacing the sum with the

appropriate integral. Thus, including also the Jacobian determinant, we obtain

AS = −CR
∫ ∞
1/R⊥

g2sTNe
−w2p2/2 1

p2
2πp

N sin 2π
N

dp

= −CRg2sT
2π

sin 2π
N

1

2
Γ

(
0,

w2

2R2
⊥

)
= −CRg2sT

2π

sin 2π
N

{
−γ/2 + log

(
R⊥
√

2

w

)
+O

(
w2

R2
⊥

)}
, (3.14)

where 2π/(N sin 2π
N ) is the result of the angular integration corresponding to the volume

of ZN fundamental cell (valid for N > 2) [36]. Focusing on the R⊥ dependent part, we

observe that in the large transverse volume limit, the dominant contribution comes from

the logarithmic factor,

∼ −Ng2sT log
R⊥
w

, (3.15)

where we considered also the large N (or χ) limit. The above computation can also be done

in the position space in a straightforward way, using the localised form factor (3.9). The

result is ∼ Ng2sT log(yB/w), with yB the distance of the 7-brane probe from the origin.

Remarkably, the logarithmic contributions found above, have the opposite sign com-

pared to the one of the constant correction (3.9) or (3.11). This relative negative sign

arises due to the fact that, using for instance Euclidean signature, the propagator 1/q2⊥
changes sign. Furthermore, the tension T is positive for a D7-brane probe and negative

for an O7-plane. Thus, the negative value of the parameter η (relative to ξ) introduced in

eq. (2.5), required to ensure large volume expansion (see eq. (2.6)), is associated with the
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existence of local tadpoles through D7-branes. This implies that the configuration should

involve a surplus of branes relative to orientifold planes. For instance, in the absence of any

fluxes, this condition can be satisfied if one places all branes away from the origin (where

4d gravity is localised), at the boundary of the internal space. In the presence of fluxes,

this condition can also be satisfied in several ways. Actually, the whole six-dimensional

internal space allows at most three different directions of local tadpoles associated with the

three possible orthogonal sets of 7-branes, through the exchange of KK excitations along

the corresponding codimension-two transverse dimensions.

In general, consistent string models should satisfy global tadpole cancellation con-

ditions. Supersymmetric constructions have 3- and 7-brane sources (orientifold O-planes

and D-branes) that are subject to global cancellation requirement, where 3-form fluxes con-

tribute to 3-form charges. Magnetised D7-branes generate also in principle 3-form charges

that should be taken into account [37]. Note, however, that 3-brane sources do not lead

to logarithmic corrections, since the corresponding local closed string tadpoles are in a

six-dimensional bulk. Thus, only 7-brane sources give rise to logarithmic corrections with

closed strings propagating towards local tadpoles in two dimensions. As an example, their

contribution in the Z2-case reads [10]:

F (q⊥) ∼ −16
∏
I=1,2

1 + (−)nI

2
+

16∑
a=1

cos(q⊥ · ya) , (3.16)

where the first term corresponds to the contribution of the O7-planes located at the four

corners of a square of size R⊥, describing the compactification of the two bulk dimensions,

and ya denote the positions of the D7-branes. The function F (q⊥) normally should multiply

the terms in the sum of eq. (3.13) which was done for one 7-brane source in the bulk at

a position of distance ∼ O(R⊥) from the origin. The parameter T in (3.13) stands for

the total tension of coincident D7-branes at this location, as well as of an orientifold if

the position is chosen to be at one of the corners of the square away from the origin.

The complete computation should include instead the function F (q⊥). Global tadpole

cancellation implies that there are 16 D7-branes, cancelling the divergence at q⊥ = 0 when

summing over transverse momenta q⊥. It is then easy to see that for generic positions

of the branes away from the origin ya = caπR⊥ with ca < 1 but fixed as R⊥ → ∞, the

sum in eq. (3.13) approximated by the integral in eq. (3.14) behaves logarithmically in R⊥
with a coefficient T given by the tension of a single D7-brane corresponding to the sum

of the positive tensions of 16 D7-banes and the negative tensions of 15 O7-planes (since

one of them is located at the origin). The only possibility to cancel the coefficient of the

logarithm is to place one D7-brane at the origin, where 4d gravity is localised. When more

7-branes are at the origin the coefficient of the logarithm changes sign. It is then clear

that the logarithmic corrections we consider are generic to any globally consistent type IIB

compactification with D7-branes.

We can now substitute both the one-loop correction ξ and the three genus-3/2 correc-

tions proportional to η logR⊥ in the induced action to obtain

1

(2π)3

∫
M4×X6

e−2φR(10) +
4ζ(2)χ

(2π)3

∫
M4

1−
∑

i=1,2,3

e2φTi log
Ri⊥
w

R(4) , (3.17)
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where i labels the three transverse directions for each one of the three D7-branes, and we

restored the Euler number χ from N . We also fixed the normalisation factor CR in the pre-

vious equations by the correct coefficient of the one-loop correction to the localised gravity

kinetic term R(4). From eqs. (3.17) and (3.3) (for the smooth CY case), by comparing the

10d and 4d gravity kinetic terms, one obtains in the weak coupling limit:

ξ = −1

4
χf(gs) ; f(gs) =

ζ(3) ' 1.2 for smooth CY

π2

3 g
2
s for orbifolds

(3.18)

implying a negative Euler number χ < 0, in order to satisfy the condition (2.7).

We can now estimate the compactification scale 1/µ introduced in eq. (2.5). Assuming

for simplicity a universal D7 brane tension T = e−φT0, we get

η = −1

2
gsT0ξ ; µ =

1

w
e
ξ
6η =

√
|χ|e−

1
3gsT0 , (3.19)

where the factor |χ| ∼ N comes from the width w in eq. (3.10) entering as an effective ultra-

violet cutoff in the argument of the logarithm (see eq. (3.17)). Thus, by lowering the string

coupling (or the brane tension T0), the volume would go exponentially large as desired. As

seen above, we also need ξ > 0 which implies positive induced Planck mass, requiring a

surplus of vectors from the twisted orbifold sectors [14]. Note that T0 is an effective tension

depending on the complex structure moduli (in principle fixed by 3-form fluxes) and inter-

nal magnetic fields along the four compactified dimensions of the D7-brane world-volume.

We also notice that our result of the logarithmic correction is in principle valid for

the case of a general CY compactification, where localised gravity kinetic terms arise at

string tree-level due to α′-corrections. Indeed, the computation in the degeneration limit

we described above is expected to go through. The logarithmic correction has an extra

factor of the string coupling gs relative to ξ, since it arises at the next order in the presence

of a boundary/crosscap, and has the opposite sign for the same reason explained above.

Thus, equation (3.19) should hold in the general case, in the limit of large size of the volume

transverse to the 7-brane source.

One might also worry whether large back-reaction effects are induced from 7-branes

that are in principle taken into account within F-theory. However such effects are expected

to be important at strong coupling or in the presence of scalar VEVs that take the the-

ory away from the orientifold description. Since we do not consider such VEVs and our

stabilisation mechanism works at weak coupling, we do not expect that back-reaction ef-

fects would be important. Moreover, the emergence of logarithmic corrections is based on

infrared effects due to local tadpoles of (effectively) massless states that propagate in two

dimensions emitted from localised vertices towards 7-brane sources. The latter exist also in

F-theory. One may wonder whether 4d localised gravity kinetic terms arise in F-theory, as

well. Actually, these corrections are present in N = 2 type IIB compactifications already

in the absence of fluxes, orientifolds and 7-branes, where arguments based on S-duality can

be used to establish their presence also in strong coupling [14]. It is therefore plausible

that they are also present in F-theory, although we don’t discuss them here since this work

focuses on perturbative corrections.
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4 D-terms and de Sitter vacua

In the previous section we established that the F-term potential (2.4) has an AdS mini-

mum (2.6) with respect to the total volume at a value which becomes exponentially large in

the weak coupling limit. This vacuum breaks supersymmetry since for constant superpo-

tential the F-auxiliary component of the volume modulus superfield does not vanish, unlike

KKLT [6] but similar to the large volume scenario (although for a different reason) [7, 8].

In [9], we have shown that this minimum can be uplifted to positive energy when appro-

priate D-term contributions from the D7-branes are taken into account. Here, we will

analyse again these contributions and make a quantitative argument for the existence of

perturbative dS vacua at large volume and weak string coupling.

One way to obtain D-term contributions is by introducing magnetic fluxes of U(1)

gauge group factors along the world-volume directions of the D7-branes. The corresponding

Fayet-Iliopoulos (FI) contribution is:

VDi =
di
τi

(
∂K

∂τi

)2

=
di
τ3i

+O(ηj) , (4.1)

where i denotes a D7-brane stack, τi is the corresponding world-volume modulus and the

constant di is positive and proportional to the magnetic flux. The lowest order approxi-

mation on the right hand side of the equation above is valid in the large volume expansion

of the Kähler potential (2.5), i.e., when V �
∑

j |ηj | ln(τ
3/2
j µ6).

Considering now three such orthogonal sets of magnetised D7-branes, one obtains the

total scalar potential as a sum of the F-term (2.4) and all the D-term contributions (4.1):

Vtot =
3ηW2

0

V3
(
ln(Vµ6)− 4

)
+
d1
τ31

+
d2
τ32

+
d3τ

3
1 τ

3
2

V6
, (4.2)

where we used V = (τ1τ2τ3)
1/2 and we considered for simplicity the case of equal ηi ≡ η,

which is not a necessary condition for a global minimum once D-terms are included for all

three mutually orthogonal D7-brane stacks [9]. In deriving the F-term contribution to the

scalar potential, special care is needed for the dilaton dependence of the Kähler potential

that enters non-trivially together with the volume and the other Kähler moduli which, in

type IIB, all descend from N = 2 hypermultiplets. This leads to a mixing in the Kähler

metric between Kähler moduli and the dilaton, bringing an ambiguity in the expression

of the scalar potential depending on whether one treats the dilaton as constant before

or after applying the supergravity formula [5]. However, since the mixing term is either

proportional to ξ or η, the leading order in the large volume expansion used in eq. (4.2) is

not affected from this ambiguity.

Minimising the scalar potential (4.2) with respect to τ1 and τ2, one fixes the ratios:

τi
τj

=

(
di
dj

)1/3

, (4.3)

and the scalar potential becomes:

Vtot =
3ηW2

0

V3
(
ln(Vµ6)− 4

)
+ 3

d

V2
; d = (d1d2d3)

1/3 . (4.4)
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Figure 4. Plot of Veff vs V (in arbitrary units) for three values of the parameter % = d
ηµ6W2

0
. The

lower curve corresponds to AdS vacuum. At large V, Veff vanishes asymptotically after passing from

a maximum.

Minimising now with respect to the volume, one gets:

ηW2
0 (13− 3ln(Vµ6)) = 2dV . (4.5)

Following the steps of the analysis of ref. [9], one finds that the potential Vtot has a dS

minimum provided the following inequality is satisfied:

− 0.007242 <
d

ηW2
0µ

6
≡ % < −0.006738 . (4.6)

The inequality on the left implies that eq. (4.5) has two solutions with the smaller one

being a minimum and the larger one a maximum, so that the potential vanishes asymp-

totically from positive values. The inequality on the right implies that the minimum has

positive energy, see figure 4. Within this range, the value of the volume at the minimum

is approximately given by:

ln(µ6Vmin) ' 5 , (4.7)

and the potential at the minimum reads

V min
tot =

3ηW2
0

V3min

+
3d

V2min

> 0 . (4.8)

Let us now examine what conditions must be imposed on the parameter space in order

to satisfy the inequality (4.6) at weak string coupling and large volume. We have seen

already from eq. (3.19) that in the limit gs → 0, µ becomes exponentially suppressed and

Vmin becomes exponentially large. This makes the condition (4.6) difficult to satisfy, unless

d/(ηW2
0µ

6) also vanishes, compensating the vanishing of µ. Note that d is proportional to
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the square of the U(1) gauge coupling, and thus to gs, as well as to the magnetic flux. On

the other hand, the brane tension T0 is also proportional to the magnetic flux. It follows

from the expression (3.19) of η, that the ratio % defined in (4.6) becomes

% =
d

ηW2
0µ

6
∝ − 1

ξW2
0µ

6
. (4.9)

Note that W0 has been redefined appropriately to be invariant under Kähler transforma-

tions, taking into account various dilaton dependent and constant factors. In particular,

W2
0 contains an implicit proportionality factor of g

−1/2
s [5].

The parameter ξ is given in eq. (3.18) and is of order g2s for orbifolds and gs-independent

for smooth CY manifolds, but in both cases is proportional to the Euler number χ. Thus,

in order to satisfy (4.6) at weak coupling, one has to consider either large χ or large W0:

|χ|W2
0µ

6 ' 100 . (4.10)

Large χ enhances the strength of the localised 4d gravity kinetic term, while large W0

implies in general large quantised flux. Both are in principle easy to satisfy.

As an illustration, in figure 4, the potential is plotted for η ≈ −0.4, %µ6 ≈ 7.5× 10−5

and three different values of % larger than the lower bound of eq. (4.6), showing how the

minimum passes from negative to positive energy values. One can also check the validity

of the approximation (4.1), using (4.7) and (4.10):

V � |η| ln(Vµ6) ⇔ e5

µ6
� 5|η| , (4.11)

implying e5 � 50gsT0/W2
0 that can be easily satisfied for weak coupling and large W0.

5 Conclusions

Constructing de Sitter vacua within the framework of the effective supergravity of string

compactifications is one of the most challenging tasks. As it is well known since long time

ago, quantum corrections play a pivotal role in accomplishing this goal. In the present

work we have taken a step forward, by computing higher loop corrections to the Planck

mass (and thus to the Kähler potential) in a type IIB background, assuming a geometric

configuration consisting of three intersecting D7-branes. Our computations rely on previous

studies where the implications of R4 terms of the ten-dimensional action play an important

role. As shown in [14], in particular, compactifying on a CY manifold, a localised Einstein-

Hilbert term is generated in four dimensions (in the non-compact limit) which induces a

universal correction to the Planck mass multiplied by a constant factor proportional to

the Euler characteristic χ. Furthermore, by studying loop corrections, we find that new

non-vanishing contributions are induced by the emission of local tadpoles of closed strings

from the localised gravity vertices, which exhibit a logarithmic dependence on the large co-

dimension two volume transverse to each distant 7-brane probe. Our computation shows

that these corrections, together with the usual D-term contributions from the D7-branes
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world-volume, suffice to consolidate a de Sitter vacuum in type IIB constructions based on

geometric configurations of the aforementioned type.

Recently, there have been several arguments casting doubts on the validity of construct-

ing de Sitter vacua using 4d effective supergravity description starting from the no-scale

structure, for example in [38, 39], which led to the swampland dS conjecture [40]. Most

arguments are related to the validity of the non-perturbative effects, the addition of the

anti-D3 branes and the accuracy of quantum corrections. In this work, only perturba-

tive corrections are invoked based on the structure of the localised 4d Einstein Hilbert

term, which is universal and dependent only on the internal topology. The logarithmic

correction is also a generic consequence of infrared divergences due to local tadpoles of

effectively massless closed strings emitted by the localised vertices and propagating in a

two-dimensional bulk. Its effect in the minimisation of the scalar potential is very impor-

tant for invalidating the assumptions of the previous arguments, allowing for the presence

of locally stable dS vacua in accordance with large volume and weak string coupling, thus

providing an explicit counter example to the dS swampland conjecture.

It is important to emphasise that these corrections exist only in four dimensions thanks

to the presence of the induced localised Einstein-Hilbert term. Thus, based on this observa-

tion, one can also argue that this mechanism could be used to explain why the Universe is

four-dimensional from a new emergent point of view which differs from previous arguments,

see for instance [41]. More precisely, one starts from the ten-dimensional non-compact limit

while each D7 brane can compactify the two dimensions transverse to it. However, the

stabilisation mechanism requires a localised source for the graviton kinetic terms which

only exists in four dimensions. This generates local tadpoles of massless closed strings

emitted to at most three mutually orthogonal sets of D7 branes, which then compactify

all six-dimensions. The three intersecting D7 branes configuration is also the basic ingre-

dient of type IIB and F-theory models providing an interesting framework for realising the

Standard Model of particle physics, see for instance [42, 43].
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[25] M. Berg, M. Haack, J.U. Kang and S. Sjörs, Towards the one-loop Kähler metric of

Calabi-Yau orientifolds, JHEP 12 (2014) 077 [arXiv:1407.0027] [INSPIRE].

[26] M. Haack and J.U. Kang, One-loop Einstein-Hilbert term in minimally supersymmetric type

IIB orientifolds, JHEP 02 (2016) 160 [arXiv:1511.03957] [INSPIRE].

[27] T. Kobayashi, N. Omoto, H. Otsuka and T.H. Tatsuishi, Radiative Kähler moduli

stabilization, Phys. Rev. D 97 (2018) 106006 [arXiv:1711.10274] [INSPIRE].

[28] M. Haack and J.U. Kang, Field redefinitions and Kähler potential in string theory at 1-loop,

JHEP 08 (2018) 019 [arXiv:1805.00817] [INSPIRE].

[29] I. Antoniadis, Y. Chen and G.K. Leontaris, Inflation from the internal volume in type

IIB/F-theory compactification, Int. J. Mod. Phys. A 34 (2019) 1950042 [arXiv:1810.05060]

[INSPIRE].

[30] S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous

Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

[31] M.B. Green and P. Vanhove, D instantons, strings and M-theory, Phys. Lett. B 408 (1997)

122 [hep-th/9704145] [INSPIRE].

[32] J.G. Russo and A.A. Tseytlin, One loop four graviton amplitude in eleven-dimensional

supergravity, Nucl. Phys. B 508 (1997) 245 [hep-th/9707134] [INSPIRE].

[33] I. Antoniadis, R. Minasian, S. Theisen and P. Vanhove, String loop corrections to the

universal hypermultiplet, Class. Quant. Grav. 20 (2003) 5079 [hep-th/0307268] [INSPIRE].

[34] G.R. Dvali, G. Gabadadze and M. Porrati, 4-D gravity on a brane in 5-D Minkowski space,

Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [INSPIRE].

[35] G.R. Dvali and G. Gabadadze, Gravity on a brane in infinite volume extra space, Phys. Rev.

D 63 (2001) 065007 [hep-th/0008054] [INSPIRE].

[36] I. Antoniadis and K. Benakli, Limits on extra dimensions in orbifold compactifications of

superstrings, Phys. Lett. B 326 (1994) 69 [hep-th/9310151] [INSPIRE].

[37] I. Antoniadis, A. Kumar and T. Maillard, Magnetic fluxes and moduli stabilization, Nucl.

Phys. B 767 (2007) 139 [hep-th/0610246] [INSPIRE].

[38] S. Sethi, Supersymmetry Breaking by Fluxes, JHEP 10 (2018) 022 [arXiv:1709.03554]

[INSPIRE].

– 18 –

https://doi.org/10.1016/S0550-3213(97)00645-7
https://arxiv.org/abs/hep-th/9707018
https://inspirehep.net/search?p=find+EPRINT+hep-th/9707018
https://doi.org/10.1016/j.physletb.2005.08.024
https://arxiv.org/abs/hep-th/0507131
https://inspirehep.net/search?p=find+EPRINT+hep-th/0507131
https://doi.org/10.1088/1126-6708/2005/11/030
https://arxiv.org/abs/hep-th/0508043
https://inspirehep.net/search?p=find+EPRINT+hep-th/0508043
https://doi.org/10.1103/PhysRevLett.96.021601
https://doi.org/10.1103/PhysRevLett.96.021601
https://arxiv.org/abs/hep-th/0508171
https://inspirehep.net/search?p=find+EPRINT+hep-th/0508171
https://doi.org/10.1088/1126-6708/2006/10/079
https://arxiv.org/abs/hep-th/0602253
https://inspirehep.net/search?p=find+EPRINT+hep-th/0602253
https://doi.org/10.1088/1126-6708/2008/01/052
https://arxiv.org/abs/0708.1873
https://inspirehep.net/search?p=find+EPRINT+arXiv:0708.1873
https://doi.org/10.1007/JHEP12(2014)077
https://arxiv.org/abs/1407.0027
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.0027
https://doi.org/10.1007/JHEP02(2016)160
https://arxiv.org/abs/1511.03957
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.03957
https://doi.org/10.1103/PhysRevD.97.106006
https://arxiv.org/abs/1711.10274
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.10274
https://doi.org/10.1007/JHEP08(2018)019
https://arxiv.org/abs/1805.00817
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.00817
https://doi.org/10.1142/S0217751X19500428
https://arxiv.org/abs/1810.05060
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.05060
https://doi.org/10.1103/PhysRevD.7.1888
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D7,1888%22
https://doi.org/10.1016/S0370-2693(97)00785-5
https://doi.org/10.1016/S0370-2693(97)00785-5
https://arxiv.org/abs/hep-th/9704145
https://inspirehep.net/search?p=find+EPRINT+hep-th/9704145
https://doi.org/10.1016/S0550-3213(97)00631-7
https://arxiv.org/abs/hep-th/9707134
https://inspirehep.net/search?p=find+EPRINT+hep-th/9707134
https://doi.org/10.1088/0264-9381/20/23/009
https://arxiv.org/abs/hep-th/0307268
https://inspirehep.net/search?p=find+EPRINT+hep-th/0307268
https://doi.org/10.1016/S0370-2693(00)00669-9
https://arxiv.org/abs/hep-th/0005016
https://inspirehep.net/search?p=find+EPRINT+hep-th/0005016
https://doi.org/10.1103/PhysRevD.63.065007
https://doi.org/10.1103/PhysRevD.63.065007
https://arxiv.org/abs/hep-th/0008054
https://inspirehep.net/search?p=find+EPRINT+hep-th/0008054
https://doi.org/10.1016/0370-2693(94)91194-0
https://arxiv.org/abs/hep-th/9310151
https://inspirehep.net/search?p=find+EPRINT+hep-th/9310151
https://doi.org/10.1016/j.nuclphysb.2007.01.013
https://doi.org/10.1016/j.nuclphysb.2007.01.013
https://arxiv.org/abs/hep-th/0610246
https://inspirehep.net/search?p=find+EPRINT+hep-th/0610246
https://doi.org/10.1007/JHEP10(2018)022
https://arxiv.org/abs/1709.03554
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.03554


J
H
E
P
0
1
(
2
0
2
0
)
1
4
9

[39] U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod.

Phys. D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].

[40] G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland,

arXiv:1806.08362 [INSPIRE].

[41] R.H. Brandenberger and C. Vafa, Superstrings in the Early Universe, Nucl. Phys. B 316

(1989) 391 [INSPIRE].

[42] C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].

[43] C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory — I,

JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].

– 19 –

https://doi.org/10.1142/S0218271818300070
https://doi.org/10.1142/S0218271818300070
https://arxiv.org/abs/1804.01120
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.01120
https://arxiv.org/abs/1806.08362
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.08362
https://doi.org/10.1016/0550-3213(89)90037-0
https://doi.org/10.1016/0550-3213(89)90037-0
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B316,391%22
https://doi.org/10.1016/0550-3213(96)00172-1
https://arxiv.org/abs/hep-th/9602022
https://inspirehep.net/search?p=find+EPRINT+hep-th/9602022
https://doi.org/10.1088/1126-6708/2009/01/058
https://arxiv.org/abs/0802.3391
https://inspirehep.net/search?p=find+EPRINT+arXiv:0802.3391

