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Abstract Production efficiency is a key determinant of

economic growth and demonstrates how a country uses its

resources by relating the quantity of its inputs to its out-

puts. When a natural hazard-induced disaster strikes, it has

a devastating impact on capital and labor, but at the same

time provides an opportunity to upgrade capital and

increase labor demand and training opportunities, thereby

potentially boosting production efficiency. We studied the

impact of natural hazard-induced disasters on countries’

production efficiency, using the case study of hurricanes in

the Caribbean. To this end we built a country-specific,

time-varying data set of hurricane damage and national

output and input indicators for 17 Caribbean countries for

the period 1940–2014. Our results, using a stochastic

frontier approach, show that there is a short-lived produc-

tion efficiency boost, and that this can be large for very

damaging storms.

Keywords Caribbean � Hurricanes � Production
efficiency

1 Introduction

Natural hazard-induced disasters bring about widespread

destruction and disruption to economic production and

even considerable loss of life. Disaster-stricken countries

dedicate a lot of resources to addressing the impacts of

these hazardous events in order to design and implement

policies to combat and mitigate their damaging effects.

While these disasters by definition bring about severe

losses, some studies have actually found that economic

growth increases in their aftermath (Albala-Bertrand 1993;

Skidmore and Toya 2002), while other studies have con-

cluded that growth decreases (Noy and Nualsri 2007;

Raddatz 2007; Noy 2009). Notwithstanding the destruction

of physical and human capital involved, the increase in

growth may not be unexpected. The destruction following a

natural catastrophe may stimulate a more accelerated

adoption of capital, which could yield positive growth in

productivity through embodied technological change, the

adoption of new technology, and the replacement of old

and outdated infrastructure. Studies on natural hazard-in-

duced disasters nevertheless tend to quantify their impact

on production output and input (Bluedorn 2005; Belasen

and Polachek 2008; Spencer and Polachek 2015; Mohan

2016) and have suggested that disasters may temporarily

disrupt production (Strobl 2011). Few studies have looked

at the production efficiency effects of natural hazard-in-

duced disasters, which may be of even more importance

because production efficiency demonstrates how a country

uses its resources by relating the quantity of its inputs to its

outputs and is a key determinant of economic growth.

When a natural hazard-induced disaster strikes, it dam-

ages physical capital including factories, power plants,

bridges, roads, and buildings. The devastated capital may

not only be replaced, but upgraded using the most up-to-
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date technologies. Older infrastructure and buildings are

more prone to damage from disasters, and the reinvestment

and replacement of such facilities will have a positive

effect on productivity and economic growth in the long

run. But there is also the risk that capital would immedi-

ately be replaced by older, out-of-date technology, espe-

cially where it is more easily available. The benefits of

investing in more technologically advanced capital may be

offset by the short-run productivity losses following a

disaster occurrence as time is needed to incorporate new

technology and equipment and to train workers. Disaster

strikes also affect a country’s human capital. The demand

for labor in disaster-affected areas could increase as

workers are needed for clean-up and recovery and recon-

struction operations. Alternatively, the labor supply in

affected areas may decrease as loss of life occurs, and

persons may migrate to seek better living conditions. The

loss of capital and labor following a disaster may be

compensated by increased production efficiency and

increased opportunities for new industries and workers.

The few empirical studies that have investigated the

production efficiency effects of natural hazard-induced

disasters provide ambiguous results on the matter. Albala-

Bertand (1993) looked at 28 natural hazard-induced dis-

asters in 26 countries for the period 1960–1979 and con-

cluded that destroyed capital was replaced by more

efficient capital after a disaster, causing Gross Domestic

Product (GDP) growth to increase. Skidmore and Toya

(2002) studied 89 countries and found that disasters pro-

vide the impetus to update the capital stock and adopt new,

more productive technologies for post-disaster reconstruc-

tion, leading to improvements in total factor productivity,

thereby promoting economic growth. They also found that

disaster risk reduces the expected rate of return to physical

capital as investment in physical capital falls, but increases

the relative return to human capital as there is a substitution

toward human capital investment, thereby promoting

growth.

In a study of Oklahoma City after the 3 May 1999 tor-

nado, Ewing et al. (2009) found that the reconstruction of

housing and infrastructure stimulated the labor market and

increased the average employment rate. Banerjee (2007)

also provided evidence that flooding in Bangladesh can

have a positive effect on long-term agricultural wages

because it increased crop yield in the dry season. Leiter

et al. (2009), in a study of European firms, concluded that

in the short run companies in regions hit by a flood showed

on average higher growth of total assets and employment

than firms in regions unaffected by flooding. Belasen and

Polachek (2008) studied the impact of hurricanes in Florida

and found a decrease in the labor supply and a simulta-

neous increase in post-hurricane labor demand, particularly

in construction in directly versus indirectly affected

counties, causing income to rise by 4.35%. Neighboring

counties suffered from the inflow of labor and experienced

a decrease in earnings of 4.51%.

Benson and Clay (2004) attributed GDP increases fol-

lowing a natural hazard-induced disaster event to a catch-

up effect and reconstruction activities rather than produc-

tivity increases. They also highlighted the challenge of

implementing new technologies after a natural catastrophe

because of time and financial constraints that make pro-

ductivity increases difficult to achieve. Hallegatte and

Dumas (2009) similarly stated that long-run productivity

remains unchanged compared with pre-disaster levels in

the aftermath of disasters. This is especially the case in

low-income countries that suffer from frequent disasters

and are at risk of becoming stuck in a poverty trap. These

countries continually replace damaged capital with capital

similar to what existed before the disaster in order to

resume prior levels of productivity as quickly as possible,

and this limits the possibility of future productivity growth.

According to Horwich (2000) there is no established rela-

tionship between the 1995 Kobe Earthquake in Japan and

its capital stock. Sarmiento (2007) showed that on average,

aggregate local employment in the United States fell by

3.4% following floods as workers left the affected area.

The literature also provides evidence that improvements

in productivity are only possible when disaster events are

relatively small as the recovery process is more easily

managed, compared to when large areas are affected, since

there might be less time for efficient decision making.

Halkos et al. (2015) in a study of 137 countries for the

period 1980–2011 analyzed the effect of man-made and

natural hazard-induced disaster occurrences on countries’

technological change and technological catch-up. The

study uncovered a ‘‘U’’ shaped relationship between

countries’ technological change and technological catch-up

with disaster events, suggesting that the effect on countries’

production efficiency is positive for a smaller number of

disaster events; however, after a specific threshold value,

the effect becomes negative. There is the possibility that

for a small number of disaster occurrences and small dis-

aster impacts, productivity might decrease since there will

be no change in industrial composition. The results also

reveal that low-income countries are negatively affected

much quicker, compared to high-income countries. The

study suggests that the negative effects of disaster occur-

rences impact countries’ technological catch-up first and

then their technological change.

In this article we add to the limited literature on natural

hazard-induced disaster impacts on production efficiency

by explicitly modeling the technical efficiency effect of

disasters using a stochastic frontier analysis approach on

hurricanes in Caribbean Small Island Developing States

(SIDS). To undertake our investigation, we used a panel
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data set that included 17 Caribbean countries1 for the

period 1940–2014. Caribbean SIDS are an especially apt

case study since the islands are located in the Atlantic

Hurricane belt, and are particularly vulnerable to hurricane

strikes. Hurricane damage equivalent to more than 2% of

GDP can be expected every two and a half years, and as

such it is argued that the region is the most disaster-prone

globally on account of the large number of hurricane events

experienced (Rasmussen 2004). The economic and geo-

graphic characteristics of Caribbean island economies,

including their small size and location, and their highly

specialized economic structures and openness to external

shocks also make them especially vulnerable to natural

hazard-induced disasters (Pelling and Uitto 2001; Ras-

mussen 2004).

To our knowledge the only other study that provides

empirical evidence on the technical efficiency effect of

natural hazard-induced disasters is Halkos et al. (2015). In

contrast to Halkos et al. (2015), we examine the specific

case of hurricanes in the Caribbean and thereby advance

the literature in a number of ways. It is well established that

different disasters have different production effects

(Loayza et al. 2012), and that country-specific character-

istics can affect the impacts of disasters (Noy 2009). Halko

et al. (2015) used the Emergency Events Database

(EMDAT) to measure and identify natural hazard-induced

disasters, which has been shown to be affected by mea-

surement error bias due to its ex post nature (Felbermayr

and Gröschl 2014). In contrast, the hurricane destruction

index employed in our study is built on the physical fea-

tures of storms and the ex ante population exposure,

thereby minimizing measurement errors. Finally, Halkos

et al. (2015) used data envelopment analysis that, while

nonparametric, cannot, in contrast to stochastic frontier

analysis, identify the difference between technical ineffi-

ciency and random errors, and does not allow random

shocks to affect output.

In the following, Sect. 2 introduces the data sources and

summary statistics, Sect. 3 outlines the econometric

methodology, and Sects. 4 and 5 provide the results and

their discussion.

2 Data and Summary Statistics

To investigate the impact of hurricanes on production

efficiency we require data on hurricane strikes to create a

measure of potential hurricane destruction and climate data

as well as data on production output, and inputs into the

production function namely labor and capital.

2.1 The Production Function Data

We took information on output, capital, and labor data for

the Caribbean nations from the World Penn (Version 9.0)

database.2 Overall, this gives an unbalanced panel of pro-

duction function data for the 17 Caribbean countries for the

period 1940–2014.

2.2 The Hurricane Destruction Index

Hurricane destruction depends mainly on three related

aspects: destruction from wind speed, flooding/excess

rainfall, and storm surge. A simplifying assumption, com-

monly adopted in the literature, is that the latter two

effects, which would be much more difficult to model, are

highly correlated with wind speed, and that wind speed can

be used as a proxy for the potential damage due to a hur-

ricane strike.3 To capture the potential destruction due to

hurricanes we thus used an index adapted from Strobl

(2012) that measures wind speed experienced at points

within countries and then uses exposure weights to arrive at

a country-specific proxy. More specifically, for a set of

hurricanes, k = 1,…, K, and a set of locations, i = 1,…I, in

island j we define tropical cyclone destruction during

month t as:

Hj;t ¼
XI

i¼1

wi;t�1

XK

k¼1

Wmax
j;i;k;t

� �3

Wmax � 119 km/hr ð1Þ

where Wmax is the maximum measured wind speed at point

i during a storm k, and w are exposure weights in the

previous month t - 1 of locations, i = 1,…I, which

aggregate to 1 at the island j level.4 We set the minimum

speed at which hurricane wind speeds are damaging at

119 km/hr, at the threshold above which hurricanes gen-

erate damage. In order to calculate the wind speed expe-

rienced due to a tropical cyclone, W, in Eq. 1 we employed

Boose et al.’s (2004) version of the well-known Holland

(1980) wind field model and the tropical storm track data

from the National Hurricane Center HURDAT Best Track

Data.5 To derive local exposure weights, wi, we used the

1 Anguilla, Antigua and Barbuda, Aruba, Bahamas, Barbados, British

Virgin Islands, Cayman Islands, Dominica, Dominican Republic,

Grenada, Haiti, Jamaica, Montserrat, Saint Lucia, St. Vincent and the

Grenadines, Trinidad and Tobago, and Turks and Caicos Islands.

2 https://www.rug.nl/ggdc/productivity/pwt/.
3 See Emanuel (2011) for a more detailed discussion on the

relationship between wind speed and flooding/storm surge.
4 Note that local destruction is allowed to vary with wind speed in a

cubic manner, since, as noted by Emanuel (2011), kinetic energy from

a storm dissipates roughly to the cubic power with respect to wind

speed, and this energy release scales with the wind pressure that acts

on a structure.
5 https://www.nhc.noaa.gov/data/.
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decadal Latin American and Caribbean Population data-

base6 and linearly interpolated the cell level values to

obtain annual values of population shares. These cells, i,

also determine the set of spatial units at which we esti-

mated local hurricane wind speed measures.

2.3 Other Climate Control Data

In order to ensure that our estimation does not capture other

climatic phenomena that may be correlated with hurri-

canes7 and affect technical efficiency, we also calculated

average annual population weighted rainfall and tempera-

ture per island using the gridded CRU TS v. 4.01 database.8

More specifically, we used aggregated population values

given in the Latin American and Caribbean Population

database to the 0.5 degree level of the CRU data. We then

created yearly interpolated population shares at this spatial

level and calculated population weighted countrywide

annual measures of precipitation and temperature.

2.4 Summary Statistics

Table 1 shows the statistics for all the variables used in our

estimation process, including the number of observations,

and the mean and standard deviations for each variable.

Since employment has the lowest number of observations,

our regression analysis is restricted to 538 observations

despite a higher number for the other variables. Data for

employment is not available consistently for all countries

over the time period of study. Output as measured by real

GDP in millions of 2011 US dollars averages 10,385, while

the average real capital stock measured in millions of 2011

US dollars amounts to around 47,784. The mean number of

employed persons in millions is 0.62. Out of our total 538

observations our hurricane index takes on 37.36% non-zero

values, with a large standard deviation of the index when

this is the case. Annual rainfall averages 153 mm, while

the average annual temperature is around 26 �C.

3 Econometric Methodology

This section describes the two-stage methodological

approach taken in estimating the relationship between

hurricanes and efficiency. First, we detail the stochastic

frontier approach, which is the first stage of the estimation.

Second, we set up and discuss the hurricane-inefficiency

model.

3.1 The Stochastic Frontier Approach

There are two commonly used frontier techniques for

estimating the production efficiency frontier and technical

efficiency: the stochastic frontier approach (SFA) and the

data envelopment analysis (DEA), a nonparametric

approach that does not require a priori assumptions and

involves the use of linear programming to construct the

production efficiency frontier to measure technical ineffi-

ciency (Coelli 1996; Coelli et al. 2005; Lee and Lee 2014).

The shortcoming of the latter model is that it does not

identify the difference between technical inefficiency and

random errors, and does not allow for random shocks

(Admassie and Matambalya 2002; Coelli et al. 2005;

Arunsawadiwong 2007; Lee and Lee 2014). In contrast, the

SFA model is a parametric approach where the form of the

production function is assumed to be known and allows

other parameters of the production technology to be esti-

mated. The technique allows for the measurement of

inefficiency and random shocks outside the control of

economic actors to affect output level (Coelli 1996; Wadud

2003; Coelli et al. 2005). The error term can be decom-

posed into two components. The first error component is

assumed to follow a symmetric distribution and is the

standard error, and the other component captures ineffi-

ciency. The SFA model obtains technical efficiency scores

free from distortion and statistical noise inherent in the

deterministic DEA model. The disadvantage of the SFA

model, however, is that because it is a parametric approach

it is necessary to impose an a priori functional form and to

specify distributional assumptions in order to separate the

two components of the error term.

To study the impact of hurricanes on technical efficiency

this study followed a two-stage approach. Technical

Table 1 Descriptive statistics for the 17 Caribbean countries in the

case study

Variable Observations Mean SD

Output 538 10,384.99 17,682.28

Capital 538 47,784.38 68,503.75

Employment 538 0.62 0.97

Hurricane Index 538 5.65 9 107 1.51 9 108

Rainfall 538 153.12 55.87

Temperature 538 26.03 1.17

(i) Output is real GDP at chained purchasing power parities (PPPs) in

millions of 2011 US dollars. (ii) Capital is capital stock at constant

2011 national prices in millions of 2011 US dollars. (iii) Employment

is the number of persons engaged in millions. (iv) Hurricane Index is

the cubic wind speed for 119 km/hr and above. (v) Rainfall and

temperature are annual averages measured in millimeters and degrees

Celsius respectively

6 http://www.grid.unep.ch/index.php?option=com_content&view=

article&id=90&Itemid=871&lang=en.
7 See Auffhammer et al. (2013) for the importance of doing so.
8 https://crudata.uea.ac.uk/cru/data/hrg/.
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inefficiency scores were estimated using the SFA model,

where a Cobb–Douglas production function (the most

commonly used functional specification) is applied. This

step provides the estimated production function together

with the technical efficiency scores. The estimation of the

frontier rests on the idea that a maximum achievable output

exists, which is constrained by available inputs. Ineffi-

ciency occurs if output lies within the frontier, while effi-

ciency is achieved if output lies on the frontier. The

distance to the frontier can then be calculated via technical

inefficiency scores. The stochastic frontier model is rep-

resented by the following log-linearized equation:

ln yit ¼ aþ b ln xit þ c1t þ c2t
2 þ ci þ dt þ eit ð2Þ

and

eit ¼ lnðxit � vitÞ ð3Þ

where y is output, x is the vector of the log of inputs, c and

d are country and time fixed dummies, respectively, e is an
error term consisting of the usual error term x and t, the
one-sided error term capturing inefficiency. The standard

assumptions apply to Eqs. 2 and 3, that is, x and t are

independent, where the former is also presumed to be

independent of the vector on inputs. To estimate Eq. 2, we

also included a time trend and its value squared to capture

systematic technological changes in countries over time.

We also included non-linear values of the inputs, namely

capital (K) and labor (L), to allow for a flexible functional

form of the production function.

3.2 The Hurricane-Inefficiency Model

To estimate the impact of hurricanes on production effi-

ciency, we utilized the inefficiency scores obtained from

the stochastic analysis and ran the following benchmark

regression equation:

IEit ¼/ þ
X3

l¼0

blHit�1 þ
X3

l¼0

plXit�1 þ ci þ ct þ eit; ð4Þ

where IE are the time-varying, country-specific ineffi-

ciency scores for each country i and year t, Hit is the

country-specific indicator of hurricane damage that is cal-

culated from Eq. 1, and X is a vector of other controls,

specifically rainfall and temperature; l captures our lag

inclusion for hurricanes, rainfall and temperature variables

that go up to 3 years; and c and c represent country and

year dummies. We utilized a panel fixed effects estimator

to account for country fixed effects ci. Finally, we

employed Driscoll and Kraay’s (1998) hetereoskedastic

consistent standard errors to take account of the possibility

of cross-sectional and serial dependence among the error

terms e. It is noteworthy to point out that arguably our

estimates of b will be unbiased, given the inclusion of

country fixed effects and time dummies and the fact that

our index H is built on the physical features of the storms

as well as pre-event population exposure.

4 Results

This section discusses our results in three parts. First, we

discuss the stochastic frontier results. These results show

how key inputs, capital and employment, affect output.

Second, we use the inefficiency scores generated from the

stochastic frontier stage to establish the hurricane-ineffi-

ciency link. The results show how our variable of interest,

hurricane, and other weather variables affect inefficiency.

Third, we estimate and discuss how inefficiency varied

across the Caribbean countries.

4.1 Stochastic Frontier

We first investigated the stationarity of our variables using

the Augmented Dickey Fuller unit root test and could not

reject the existence of a unit root for output, labor, and

capital. However, the Kao (1999) test of cointegration

shows that these variables are cointegrated and we thus

proceeded to estimate Eq. 2 as is. We estimated Eq. 2

using the stochastic frontier approach that allows for

variation over time in inefficiency and elasticities of capital

and employment. Such variation is important to identify

changes in the structure of production (Puig-Junoy 2002).

The results from our stochastic frontier production function

Table 2 Stochastic frontier: production function

Variables Model 1 Model 2

Employment (L) 0.6501*** 3.1372***

(0.1043) (0.4301)

Capital (K) 0.8331*** 0.8181***

(0.0634) (0.1672)

Time trend (t) - 0.0346*** - 0.0233**

(0.0088) (0.0095)

L2 - 1.1137***

(0.1825)

K2 - 0.0052

(0.0077)

t2 1.70 9 10-06

(0.0001)

Observations 538 538

(i) The results are from specifying a time varying decay inefficiency

model for the frontier estimation. (ii) **, *** represent significance at

the 1% and 5% levels respectively
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model are shown in Table 2. Before estimating a more

flexible model, we first estimated a more restrictive form of

Eq. 2 by disregarding the non-linearity of production

inputs. Table 2 shows the elasticities of output with respect

to labor and capital, where unit changes are measured in

millions. We estimated the percent change output for a

percent change in labor and capital. As would be expected,

labor and capital significantly increase output in the Car-

ibbean as can be seen for both models. More specifically,

for Model 2, our preferred specification that allows for non-

linear effects, the estimates show that a 1% increase in

labor and capital, on average, increases output by 3.1% and

0.8%, respectively. The time trend, which captures the rate

of technical change, is negative and significant, implying

that a 1% increase in technology generates a reduction in

output by 0.02%. This may be due to the growth in the

tourism and service industries in many islands since 1950.

As Table 2 shows, the squared value of employment is

negative and significant, indicating that as the number of

workers increases, their impact on production decreases—a

1% increase in the number of workers results in a 1.1%

decline in output. Thus, the marginal product of labor

increases at first, but declines as the labor input increases.

This is not the case for capital as our squared value for

capital is not significant. Our results therefore suggest that

Caribbean countries are more highly labor rather than

capital dependent in their production. The low elasticity of

capital reveals that capital has a low share in Caribbean

countries’ production.

4.2 The Hurricane-Inefficiency Link

After estimating Eq. 2 we obtained the efficiency scores

from the production frontier, which we converted into

inefficiency scores by taking their negative log. These are

represented by the distance between the frontier and the

production point. Inefficiency is determined by deviations

from full production. The stochastic frontier approach

decomposes variations from the best practice production

frontier into a random error and a deterministic error,

which is assumed to represent production inefficiency.

Table 3 provides the average inefficiency scores for the

Caribbean and each country in our study. The inefficiency

score varies across the region—Barbados, with an ineffi-

ciency score of 0.061, is the least inefficient, whereas

countries like Jamaica and Haiti, with inefficiency scores of

2.147 and 2.278, respectively, are the most inefficient. In

general, the smaller service-based Caribbean economies

such as Barbados, the Bahamas, and Dominica appear

more efficient than the larger commodity-based economies

such as Trinidad and Tobago and Jamaica.

Our main objective was to estimate the impact of hur-

ricanes on the technical inefficiency score just described.

To do so, we estimated Eq. 4 using a country fixed effects

estimator with the inefficiency scores as our dependent

variable and our hurricane destruction index as our inde-

pendent variable of interest, and temperature and rainfall

variables as controls. When interpreting the inefficiency

effects model, negative coefficients indicate lower country

inefficiency and, thus, increase efficiency. The estimated

results for four models are shown in Table 4. Model 1

gives the results with the basic controls, rainfall and tem-

perature at time t. Accordingly, we see that hurricanes

negatively impact inefficiency—that is, hurricanes have a

positive impact on production efficiency, which we attri-

bute to the activities that take place after a storm, such as

reconstruction activities.9 Average rainfall and tempera-

ture, in contrast, have no effect on inefficiency.

We next progressively increased our lag structure of

H by one for each additional model, using a similar lag

structure also for the climatic controls. From Models 2

through 4 one can see that the estimates again show that

hurricane events in the Caribbean have increased efficiency

through the measures that are taken after events to recon-

struct the economy. However, this efficiency boost is only

short-lived, with no impact beyond the year of the strike, as

is demonstrated by the insignificance of our lagged hurri-

cane variables. One may want to also note that most of the

Table 3 Inefficiency scores by country in the Caribbean

Barbados 0.061

Bahamas 0.465

Dominica 0.501

Aruba 0.512

Saint Lucia 0.562

Cayman Islands 0.953

Antigua and Barbuda 0.979

British Virgin Islands 1.059

Grenada 1.067

St. Vincent and the Grenadines 1.072

Montserrat 1.387

Trinidad and Tobago 1.591

Dominican Republic 1.634

Anguilla 1.809

Turks and Caicos Islands 2.024

Jamaica 2.147

Haiti 2.278

Caribbean (average) 1.182

Note: The table provides the mean inefficiency scores for the coun-

tries in the analysis, based on Model 2, Table 2

9 An increase in efficiency due to hurricanes is facilitated through

various channels. These channels might include any relief activities

such as reconstruction and financial aid.
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weather controls are insignificant with the exception of

temperature, which increases efficiency in the current time

period and two periods after.

To get an indication of the economic impact we used the

coefficient on our hurricane damage variable from Eq. 2

and multiplied this by the non-zero average and maximum

hurricane wind speed strike over our sample period. The

results for all four models for the average (maximum)

storm effect are more or less the same (Table 5). For

example, for Model 4, we observe that hurricanes increase

efficiency by roughly 0.4% for the average storm and 8.5%

for the strongest observed storm over our sample period.

Thus, the impact is on average not very large, but can be

substantial for very damaging storms—although only

short-lived as the economy adjusts back to its equilib-

rium.10 We can conclude that hurricanes play a role in

creative destruction in the Caribbean in the year of a strike

by boosting efficiency, though by a negligible amount, with

no positive long-term effect.

The preceding discussion assumed a linear relationship

between inefficiency and hurricanes. So, we explored the

relationship without any restrictions using a semiparamet-

ric fixed effects regression estimator where the hurricane

variable enters the model nonparametrically. We thus were

able to estimate the net nonparametric relationship (Libois

Table 5 Economic impact of hurricanes on production efficiency in the 17 Caribbean countries in the case study

Model 1 Model 2 Model 3 Model 4

Average Hurricane - 0.0040** - 0.0036** - 0.0032** - 0.0037**

Stronger Hurricane - 0.0937** - 0.0838** - 0.0734** - 0.0852**

(i) The results in the table are calculated by using the estimated hurricane values in Table 4 and multiplying them by the average and maximum

values of the hurricane index, which gives the average and stronger hurricane effects as shown; (ii) ** represents significance at the 5% level

Table 4 Impact of hurricanes on production efficiency in the 17 Caribbean countries in the case study

Variables Model 1 Model 2 Model 3 Model 4

Hurricane (t) - 7.15 9 10-11** - 6.4 9 10-11** - 5.6 9 10-11** - 6.5 9 10-11**

(3.4 9 10-11) (3.3 9 10-11) (2.4 9 10-11) (3.2 9 10-11)

Temperature (t) 0.0001 0.0273** 0.0307** 0.0278**

(0.0001) (0.0116) (0.0130) (0.0133)

Rain (t) 0.0201 0.0001 0.0001 0.0001

(0.0102) (0.0001) (0.0001) (0.0001)

Hurricane (t - 1) 6.66 9 10-12 1.14 9 10-11 1.10 9 10-11

(2.60 9 10-11) (2.72 9 10-11) (2.78 9 10-11)

Temperature (t - 1) - 0.0121 0.0039 0.0057

(0.0122) (0.0124) (0.0124)

Rain (t - 1) - 0.0001 - 0.0001 - 0.0001

(0.0002) (0.0002) (0.0002)

Hurricane (t - 2) 9.27 9 10-11 9.13 9 10-11

(5.11e10-11) (5.50 9 10-11)

Temperature (t - 2) - 0.0275** - 0.0407**

(0.0116) (0.0161)

Rain (t - 2) 0.0002 0.0002

(0.0001) (0.0001)

Hurricane(t - 3) - 1.12 9 10-10

(6.90 9 10-11)

Temperature(t - 3) 0.0175

(0.0164)

Rain(t - 3) - 0.0001

(0.0002)

Observations 538 530 524 516

(i) **, *** represent significance at the 5% and 1% levels, respectively. (ii) Driscoll and Kraay (1998) standard errors are in parentheses

10 Examining the impact of hurricanes on Caribbean GDP growth

rates, Strobl (2012) also found only a short-lived impact.
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and Verardi 2013) between the dependent variable, ineffi-

ciency, and the hurricane variable. The estimated rela-

tionship is shown in Fig. 1. As the figure shows, we

obtained a more or less downward sloping line except for

the large values of the hurricane index where we notice a

somewhat linear outcome. This leads us to conclude that at

lower levels of wind damage there appears to be a negative

impact on production inefficiency.

4.3 Heterogeneities

Our results above constitute the average effect across the

countries in our sample. We next investigated whether

there are heterogeneities across countries. More specifi-

cally, Eq. 4 above is used to determine the different effects

by allowing the coefficients to vary by country as follows:

IEit ¼

/ þ
XN

c¼1

X3

l¼0

bclHc;it�l þ
XN

c¼1

X3

l¼0

pclXc;it�l þ ci þ ct

þ eit

ð5Þ

where /c, bc, and pc are vectors of coefficients, one for

each country c. Table 6 presents the average and maximum

effects for only the countries whose inefficiencies are sig-

nificantly impacted by hurricanes. Panel A shows the

country estimates, which reveal that hurricanes can nega-

tively impact inefficiency differently across countries.

Panel B presents the economic impact of hurricanes. The

results reveal that the greatest average impact is felt in

Anguilla with a 14.5% increase in efficiency, followed by

the Dominican Republic with a 11.8% boost. Lower effi-

ciency boosts are seen in Aruba (1.1%), the Bahamas

(1.3%), and the Cayman Islands (0.6%). The impact in

each country is significantly greater for stronger storms,

where the impact is 23 times more than the average.

The question as to why the impact is greater in some

countries than in others, or the existence of such general

variation, is important. Perhaps this difference may be

attributed to the income differences across countries,

though this may not always hold for every country

(Spencer and Urquhart 2018). Aruba, the Bahamas, and the

Cayman Islands, for example, are high-income earning

economies (with high GDP per capita) and their efficiency

may be less vulnerable to hurricane strikes. These coun-

tries’ inefficiency scores (see Table 3) demonstrate that

they are already more efficient; thus, there might not be a

significant observed effect on their level of efficiency. In

contrast, Anguilla and the Dominican Republic have lower

GDP per capita, compared to the former three, and may be

less resilient to the effects of hurricanes. The inefficiency

scores for the latter two countries are higher than for the

former; so, there is an opening for a hurricane boost in

productivity to take place in their economies.

We next investigated whether income per capita may

play a role in differences in productive efficiency responses

Fig. 1 Nonparametric estimated relationship between hurricanes and inefficiency
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to hurricanes. More specifically, using the World Bank’s

2017 data on GDP per capita11 for Caribbean countries, we

categorized high-income earners as those with a GDP per

capita above USD 10,000, and low-income earners as those

with a GDP per capita below USD 10,000. High-income

earners include Aruba, the Bahamas, and the Cayman

Islands, while low-income earners include Anguilla, the

Dominican Republic, Haiti, and Jamaica. We re-ran Eq. 4,

but interacted a per capita income dummy variable—takes

on a value of 1 if a country is a high-income earner and 0 if

a country is a low-income earner—with the hurricane wind

damage variable. Table 7 shows the result of this estima-

tion. Consistent with the Table 4 results, there are no lag-

ged hurricane effects, only a negative contemporaneous

impact is observed on inefficiency, which implies an

increase in productive efficiency after a storm. Although

we observe a positive coefficient on the interaction

between hurricane and income per capita, the total hurri-

cane effect is a lowering of inefficiency as shown by the

calculated values in Panel B. For a high-income earning

economy, productive efficiency is increased by 0.02% for

the average hurricane and by 0.52% for a stronger storm.

Panel C demonstrates that lower income economies’ pro-

ductive efficiency is boosted by 1.53% for an average

storm and over 35% for a stronger one. These are out-

standing increases compared to higher-income economies.

Creative destruction is more apparent in economies that are

low-income earners.

Our hurricane destruction index only captures the

impact of winds, which we assume is correlated with other

destructive features. One such feature is storm surge, which

is more likely to occur in low-elevation areas. To very

roughly take account of possible differences in this regard,

we separated the countries into two categories, high ele-

vation and low elevation. Those countries whose highest

point is recorded at 1000 m and above are placed in the

high elevation category, and those whose highest point is

Table 6 Impact of hurricanes on production efficiency by geography in the Caribbean

Panel A

Coefficient SE

Anguilla - 2.56e-09*** (9.20e-10)

Aruba - 1.99e-10*** (6.44e-11)

Bahamas - 2.35e-10* (1.38e-10)

Cayman Islands - 1.10e-10* (6.25e-11)

Dominican Republic - 2.08e-09** (1.02e-09)

Haiti - 1.60e-09** (7.85e-10)

Jamaica - 8.29e-10*** (2.60e-10)

St. Vincent and the Grenadines - 1.32e-09*** (4.26e-10)

Panel B

Economic impact

Average storm Stronger storm

Anguilla - 0.1446*** - 3.3536***

Aruba - 0.0112*** - 0.2607***

Bahamas - 0.0133* - 0.3079*

Cayman Islands - 0.0062* - 0.1441*

Dominican Republic - 0.1175** - 2.7248**

Haiti - 0.0904** - 2.0960**

Jamaica - 0.0468*** - 1.0860***

St. Vincent and the Grenadines - 0.0746*** - 1.7292***

(i) The table shows the islands whose efficiencies are significantly affected by hurricanes. (ii) Panel A shows the estimated coefficients on the

current time period hurricane damage index. (iii) The results in Panel B are obtained by using the specific estimated island coefficients in Panel A

and multiplying them by the average and maximum values of the hurricane index, which gives the average and stronger hurricane effects as

shown in Panel B. (iv) *,**,*** represent significance at the 10, 5, and 1% levels, respectively. (v) The results for the other climatic controls are

available upon request. (vi) Driscoll and Kraay (1998) standard errors are in parentheses

11 For information see: https://data.worldbank.org/indicator/ny.gdp.

pcap.cd.
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recorded at below 1000 m are placed in the low elevation

category. We re-ran Eq. 4, but interacted an elevation

dummy variable with the hurricane wind damage index.

The dummy variable takes on a value of 1 if a country is

highly elevated and 0 if the country is elevated at a low

level. Table 8 shows the result of this estimation. The only

significant variable is the interaction between our con-

temporaneous hurricane variable and the elevation dummy.

So, elevation does play a role in reducing the inefficiency

of countries that are highly elevated, thereby boosting their

productive efficiency. Our estimated coefficient suggests a

1.65% increase in productive efficiency due to an average

hurricane for those countries with geographical points

elevated at 1000 m and above.

5 Discussion

In seeking possible explanations for the positive impact of

hurricanes on efficiency in the Caribbean, potential reasons

include increased government spending and insurance

payments. Mohan et al. (2018) found that immediately

following a hurricane, spending by Caribbean governments

increased by 1.4% in the year of a strike for clean-up

activities, with no further significant impact, leading to

short-term improvements of productive efficiency with no

long-term effect. Other studies contend that Caribbean

government spending is highly volatile and, even in the

event of a disaster, governments may not be able to

increase spending for relief and clean-up (Crowards 2000;

Rasmussen 2004), while others state that government

spending actually decreases (Auffret 2003). Mohan et al.

(2018) also posit that investment in the year of a hurricane

event in the Caribbean is first positive and increases by

4.6% but subsequently becomes negative and declines by

0.3%. According to the study, the magnitude of the

reconstruction effort in the year of a hurricane strike may

be sufficient to cause an initial increase in investment by

drawing on savings, followed by a subsequent decrease to

replenish savings. Rasmussen (2004) similarly found an

increase in investment in the year of a disaster strike for

Eastern Caribbean countries, while Auffret (2003) showed

Table 7 Impact of hurricanes on production efficiency by income per capita in the 17 Caribbean countries in the case study

Panel A

Hurricane coefficient SE

Hurricane (t) - 2.70 9 10-10*** (8.33 9 10-11)

Hurricane (t - 1) 2.10 9 10-11 (5.94 9 10-11)

Hurricane (t - 2) 8.73 9 10-11 (7.65 9 10-11)

Hurricane (t - 3) - 1.32 9 10-10 (7.99 9 10-11)

Hurricane (t)*income per capita 2.66 9 10-10*** (8.57 9 10-11)

Hurricane (t - 1)*income per capita - 9.13 9 10-12 (7.83 9 10-11)

Hurricane (t - 2)*income per capita - 3.70 9 10-11 (1.16 9 10-10)

Hurricane (t - 3)*income per capita 7.40 9 10-11 (9.45 9 10-11)

Panel B

Average hurricane Stronger hurricane

Hurricane (t) - 0.0153*** - 0.3537***

Hurricane (t)*income per capita = 1 0.0150*** 0.3485***

Total hurricane impact: high-income economies - 0.0002*** - 0.0052***

Panel C

Average hurricane Stronger hurricane

Hurricane (t) - 0.0153*** - 0.3537***

Hurricane (t)*income per capita = 0 0 0

Total hurricane impact: low-income economies - 0.0153*** - 0.3537***

(i) Panel A shows the estimated coefficients on the hurricane damage index and interaction with the income per capita dummy variable. (ii) The

results in Panels B and C are obtained by using the significant coefficients in Panel A and multiplying them by the average and maximum values

of the hurricane index, which gives the average and stronger hurricane effects as shown. (iii) *** represents significance at the 1% level. (iv) The

results for the other climatic controls are available upon request. (v) Driscoll and Kraay (1998) standard errors are in parentheses
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that natural hazard-induced disasters resulted in a sub-

stantial decline in investment in the year of a strike for the

region.

Foreign aid injections, which are used for disaster relief

and clean-up activities, reconstruction, and the replacement

of capital after hurricanes, could also temporarily boost

production in the short term (Horwich 2000; Skidmore and

Toya 2002; Raddatz 2007; Noy 2009; Strobl 2012;

McDermott et al. 2014). Caribbean SIDS generally receive

considerable external assistance for managing disaster risk

and assisting with disaster relief. In 2009 the Caribbean

Development Bank (CDB) developed the ‘‘Disaster Man-

agement Strategy and Operational Guidelines,’’ which seek

to adopt a multi-hazard approach to disaster and climate

risk management, with a focus on risk reduction, and

provide loan financing, grants, and a combination of loan

and grant funds (Kirton 2013). A range of international

organizations also support disaster risk management in the

region (Kirton 2013). The Caribbean has also established

several agencies to cope with and manage disaster risk. The

Caribbean Disaster Emergency Management Agency

(CDEMA) is a regional intergovernmental agency for

comprehensive disaster management that seeks to reduce

the risk and loss associated with hazards. The Caribbean

Community Climate Change Centre (CCCCC) stores

information on climate-related threats, which is then used

to help governments, the private sector, financial institu-

tions, and nongovernmental organizations develop and

implement various disaster adaptation strategies. The

Caribbean Institute for Meteorology and Hydrology

(CIMH) is a training and research organization that pro-

vides meteorological and hydrological services. The Car-

ibbean Disaster Information Network (CARDIN) provides

linkages with Caribbean disaster organizations. The study

by Kirton (2013) looked at the Caribbean’s regional dis-

aster response and management and showed some evidence

that these institutions are better able to cope with the short-

term impact of disasters and the provision of emergency

assistance, rather than engaging in longer-term

commitments.

The evidence of a short-term positive boost to efficiency

provided by hurricane shocks to developing Caribbean

countries presents important policy implications. The

results suggest that disaster strikes provide governments

with an opportunity to increase production efficiency and

technological development, at least in the short term,

thereby stimulating growth and development, through

government expenditure, insurance payouts, and foreign

aid. Consequently, the way governments distribute spend-

ing after a disaster has implications for production effi-

ciency and economic growth. Moreover, a government’s

management of natural hazard-induced disasters is multi-

staged and involves mitigation, preparation, responding to,

and recovering from disaster strikes. However, govern-

ments are often driven by political motivations and current

budget allocations and spend disproportionately more on

Table 8 Impact of hurricanes on production efficiency by elevation in the 17 Caribbean countries in the case study

Panel A

Hurricane coefficient SE

Hurricane (t) - 7.02 9 10-12 2.21 9 10-11

Hurricane (t - 1) 2.71 9 10-12 3.78 9 10-11

Hurricane (t - 2) 2.65 9 10-11 (5.35 9 10-11)

Hurricane (t - 3) - 6.32 9 10-11 (4.56 9 10-11)

Hurricane (t)*elevation - 2.92 9 10-10** (1.13 9 10-10)

Hurricane (t - 1)*elevation 2.65 9 10-11 (9.14 9 10-11)

Hurricane (t - 2)*elevation 7.85 9 10-11 (8.02 9 10-11)

Hurricane (t - 3)*elevation - 7.14 9 10-11 (7.08 9 10-11)

Panel B

Hurricane impact

Average hurricane Stronger hurricane

Hurricane(t)*elevation = 1 -0.0165** -0.3825**

(i) Panel A shows the estimated coefficients on the hurricane damage index and interaction with the elevation dummy variable. (ii) The results in

Panel B are obtained by using the significant coefficient in Panel A and multiplying it by the average and maximum values of the hurricane index,

which gives the average and stronger hurricane effects as shown. (iii) ** represents significance at the 5% level. (iv) The results for the other

climatic controls are available upon request. (v) Driscoll and Kraay (1998) standard errors are in parentheses
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ex post disaster response, relief, and recovery that provide

a short-term increase in productivity, compared to ex ante

mitigation and preparedness. It is crucial that a strategy for

government ex post disaster spending be articulated and

implemented to achieve maximum benefit.

6 Conclusion

Our study adds to the scarce literature on the production

efficiency effects of disasters. Unlike Halkos et al. (2015),

we examined the specific case of hurricanes in the Car-

ibbean, since different disasters have different production

effects (Loayza et al. 2012) and country-specific charac-

teristics can affect their impact (Noy 2009). Halkos et al.

(2015) used the Emergency Events Database and a count

measure of disaster damage that can result in measurement

errors, while our hurricane destruction index provides an

arguably better measure (Strobl 2011). Halkos et al. (2015)

also used data envelopment analysis that, unlike the SFA,

does not identify the difference between technical ineffi-

ciency and random errors, and does not allow random

shocks to affect output. Nevertheless, our result of a short-

lived efficiency boost, particularly due to stronger storms,

is similar to Halkos et al. (2015).

Possible explanations for the short-term positive impact

of hurricanes on production efficiency in the developing

Caribbean include increased government spending, insur-

ance payments, and foreign aid injection that are used for

disaster relief and clean-up activities, reconstruction, and

the replacement of capital after hurricanes, which could

temporarily boost production in the short term. Govern-

ment spending through government expenditure, insurance

payouts, and aid following a disaster should therefore not

only focus on clean-up and reconstruction expenditure, but

also on restructuring and reinvestment expenditure, which

may be of even greater importance. This is particularly

important given that governments allocate a dispropor-

tionately larger share of expenditure to ex post disaster

recovery, compared to ex ante mitigation strategies.
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