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1 Introduction 

1.1 Polymers in modern production processes and the need of 

surface modification 

From simple products like cutlery or cases, to highly complex products such as aircraft 

and cars, a variety of materials are utilized. Polymers often represent the main compo-

nent, becoming indispensable during the last decades.[1,2] In regards to global warming 

and eco-friendly lifestyles in recent years, special emphasis has been placed on sustain-

able development of novel polymers from renewable resources.[3] The selection of the 

particular polymer in the production process of an object is mainly influenced by its prop-

erties, such as thermal stability, tensile strength, elastic modulus, resistance to solvents 

or acids as well as transparency. Yet, the surface properties of the product after pro-

cessing rarely fit the applications’ needs. To overcome this deficit, surface modification is 

employed to facilitate desired properties, such as reduced friction or sensibility to chemi-

cals and surfactants, improved wettability or adhesion and special optical features.[4-6] 

Surface modification techniques differ, depending on the product. For soft and moldable 

materials, physical methods affecting the surface structure are preferred. Those methods 

comprise embossing, impulsive peening, rolling, fretting and stressing amongst many 

others.[7] The main disadvantage of those treatments is the destructive nature with plastic 

deformation and ablation of the products’ material. Hence, to provide a certain level of 

protection against mechanical stress or degradation, protective layers have to be add-

ed.[8] Such protective coating layers are mainly obtained via chemical treatments using 

additional substances.[9]  

By definition of O. S. Parmaj and Prof. Dr. M. D. Teli, both experts on the subject of fiber 

and textile processing from the Institute of Chemical Technology in Mumbai: “Coating is 

an application of an appropriate chemical system to form a layer of coating compound on 

the substrate”.[10] The proper application of a coating onto a subject is a crucial proce-

dure, with either solid phases (lining/ lamination, melt extrusion, calendaring) or liquid 

phases (dimethylformamide (DMF) coagulation/ wet processing, roller coating, doctor 

blading, dip coating/ Foulard-process, pressure-/ spray coating) typically being em-
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ployed. Solid phase coatings mainly affect the template surface. In contrast to that, wet 

coatings are more homogeneous throughout the total material at the expense of exten-

sive amounts of coating solution required. Remaining solvents and excessive coating 

substance have to be removed mechanically, increased drying temperatures are re-

quired and additionally they are comparably time consuming.[11-14] Such highly effective, 

but costly coating methods are most frequently utilized for efficient treatment of highly 

porous and voluminous mass-produced articles like textiles.[15,16] 

Manufacturing of yarn and fabric for furniture has been optimized over several centuries. 

Especially, high quality furniture fabrics, which are mainly built from polymer filaments, 

processed into yarns and subsequently arranged to fabrics, need an extraordinary quali-

ty and long lifetime.[12] For such mass-product articles with several structural levels 

commonly combinations of mechanical treatment with subsequent chemical coatings are 

utilized. In terms of textile processing O. S. Parmaj and Prof. Dr. M. D. Teli refine the 

definition of coatings to: “…a process in which a polymeric layer is applied directly on 

one or both the surface of a fabric.”[10] Fabrics are exposed to high extends of mechani-

cal stress but are supposed to remain their appearance as long as possible besides spe-

cial requirements, such as dirt repellency or flame resistance. In that regard, mechanical 

treatment is stretched to its limits, emphasizing the need of protective coatings.[13,14,17] 

Unfortunately, those basic coating substances providing flame retardancy usually com-

prise harmful substances, such as fluorochlorinated hydrocarbons amongst others. This 

factor strongly contrasts with sustainable development goals.[18,19] Therefore, the need 

for novel green coatings, derived from ecologically friendly materials and solvents is ob-

vious and research on this topic, steadily gains importance.[20-23] 
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1.2 Filtration 

Wherever mechanical processes are carried out and two different media are in contact, 

interactive motions between the media generate friction. Consequentially, particles and 

fragments are extracted from the materials’ surfaces, which distribute in the surrounding 

medium. In case of air, light particles either occur in the form of an aerosol or, if a certain 

particle weight is overcome, build sediment. Such particles commonly are called dust. 

Additionally, this term comprises all kinds of mineral dirt and sand particles, biological 

remains, such as hair, skin scales, pollen or mite feces, as well as, ashes in conse-

quence of combustion process. It is well known, that inhaling such particles carries an 

enormous risk to the human body.[24] Hence, it is crucial to extract them from the sur-

rounding matter to clean the living environment - this process is called filtration. By defi-

nition of the Encyclopedia Britannica: “Filtration is the process in which solid particles in 

a liquid or gaseous fluid are removed by the use of a filter medium that permits the fluid 

to pass through but retains the solid particles. Either the clarified fluid or the solid parti-

cles removed from the fluid may be the desired product.”[25] Focusing the cleaning of the 

gaseous media, such as air or combustion gases in industrial processes, often cyclones 

and settling chambers are employed. In human daily routine still predominantly vacuum 

cleaners, using vacuum cleaner bags are used. Also in medical surroundings and places 

where clinical purity is demanded, high-efficiency particulate air (HEPA) or ultra-low pen-

etration air (ULPA) filter media are employed. Those filter bags and media are composed 

of polymer fibers, assembled in the form of woven or nonwovens. Depending on the pro-

cess requirements, the production conditions, the processing and in particular the mate-

rial itself are precisely chosen.[26] 

In the following chapters polymer types and their typical representatives are introduced. 

Those examples are relevant either regarding the production volume and therefor im-

portance for the human daily life or concerning the polymers’ suitability for fiber produc-

tion. 
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1.3 Synthetic polymers 

Well known over centuries for their versatility, as well as, cost- and weight-efficiency, 

crude oil based synthetic polymers are found most prominently in almost all production 

processes. From astro- and aeronautics to home- and textile industries, synthetic poly-

mers are omnipresent in the human life and gain even more importance in modern tech-

nical development.[27,28] After immense oil field discovery during the conquest of the 

North American continent in the late 19th century, crude oil became abundant. Petroleum, 

which was initially used as lamp oil since the antiquity, subsequently accelerated the 

industrial revolution in the form of production machinery fuel. After the First World War, 

construction materials and metals were consumed for the manufacture of war machinery, 

and above all had become very rare and expensive for daily products. Hence, the search 

for new materials, meeting the requirements of the citizens’ convenience goods, was 

accelerated. From this demand, a manifold of petroleum-based polymers were devel-

oped and molded to all kinds of elements, vessels, cases and surfaces.[1,29] 

From a chemical point of view, polymers are long repetitive molecules, comparable to 

chains, built up from several thousands of repeating single units of macromolecules that 

comprise structural basic units. Defined by Mark, for synthetic polymers made from 

crude oil, those core units consist of carbohydrates either in basic form, modified by 

functional groups or alternating with characteristic molecules, such as aromatics.[30] The 

main chain, forming the backbone, exemplarily consists of repeating carbon units (in 

vinyl-derived polymers) or carbon combined with non-carbon units (other condensation 

derived polymers).[31,32] One of the polymers’ main benefits might be located in inter- and 

intra-chain bonding, which alternate with the nature of the backbone, the chain size and 

geometry, molecular weight and additives amongst others and enables the versatility in 

appearance and mechanical properties.[33,34] The major drawback of synthetic polymers 

is the limited residual amount of their raw material. Crude oil originates from ancient bi-

omass, which has been chemically converted in a millions-of-years-long process and still 

cannot be produced artificially in the required amounts. Since human life and industrial 

processes now depend considerably on synthetic polymers, the artificial production of 

crude oil is researched intensely. 
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The Norwegian company Nordic Blue Crude AS in cooperation with Sunfire GmbH and 

others, have announced the development of an industrial scale plant for the synthesis of 

this valuable raw material from water, carbon dioxide and eco electricity starting in 

2020.[35]  

Some of the best known and most employed synthetic polymers in the textile industry, 

hygiene products and healthcare are presented in the following. Amongst the industrial 

polymers especially polyesters are highly prominent due to their extensive usage in the 

textile industry. Chemically the main premise for Polyesters is the presence of an ester 

group in their main molecule (see Figure 1.1). 

 

Figure 1.1: Characteristic ester group (monomer) in polyester molecules, derived from poly-

condensation reactions between acids and alcohols or phenols. 

Even though Polyesters are a whole subcategory of synthetic polymers, labels of textiles 

contain this term, as well as, the abbreviation PES in the material composition section, 

mostly without further specifications. Consequently, in the textile industry two types of 

polyester fibers are used, the more prominent poly(ethylene terephthalate) (PET) and the 

rarely used Poly(-1, 4-cyclohexylene-dimethyle terephthalate) (PCDT). Whilst PET is 

more durable and strong, and therefore is used alone, as well as, in blends, PCDT has a 

higher elasticity and resilience and is processed in blends only.[36-38]  

 

1.3.1 Poly(ethylene terephthalate) 

Poly(ethylene terephthalate) (PET) is a thermoplastic, produced via poly-condensation 

reaction between ethylene glycol and dimethyl terephthalate or terephthalic acid. Indus-

trial applications range from plastic bottles, foils, food and household containers to textile 

fibers, which were developed in 1941 by J. R. Whinfield and J. T. Dickson in Great Brit-

ain.[39,40] In a first step, ethylene is synthesized from petroleum and oxidized to glycol 

monomers.  
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Those are then combined with monomeric terephthalic acid in vacuum, and at high tem-

peratures in the second step in a catalytic reaction to obtain the final polymer (see Figure 

1.2).[41] 

 

Figure 1.2: Monomer of PET, derived from poly-condensation reaction between ethylene 

glycol and dimethyl terephthalate or terephthalic acid. 

Fibers made from PET feature high mechanical strength, which is based on the mole-

cules polar character and the resulting intermolecular interaction. Additionally, the linear 

structure of the chains yields semi-crystalline regions, without preliminary cross-linking. 

Therefore, the fibers feature an increased fracture strength and shape stability perfectly 

suited for fibrous or planar applications.[42] New attempts of PET, modified with glycol 

(PETG), use its low viscosity for advanced fused deposition molding in 3D-printing appli-

cations.[41]  

The major drawback of PET is its low resistance against strong mineral acids, especially 

sulfuric, nitric and hydrochloric acid. Due to the intensive industrial production of PET, 

the total production volume still increased steadily to 56 million tons in 2016 alone and 

therefore the importance of recycling has been steadily growing during the first decades 

of the 21st century.[43]  

 

1.3.2 Poly(acrylonitrile) 

Another polymer that is well-known in textile industry and additionally for serving as a 

precursor in carbon fiber production is poly(acrylonitrile) (PAN). The semi-crystalline 

molecule is derived from polymerization of polar acrylonitrile (see Figure 1.3) and fea-

tures a high young’s modulus (stiffness) and tensile strength due to strong intermolecular 

interactions, mainly brought forth by the attached nitrile group.[44] 
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Figure 1.3: Characteristic acrylonitrile monomer in PAN molecules.  

Furthermore, PAN is resistant to most solvents and chemicals, burns slowly and has a 

low permeability to gases. Therefore, PAN fibers are for example used in industrial hot 

gas filtration systems.[45] Fibers made from PAN feature a smooth touch and a shiny sur-

face. The main amount of the world’s annual output is employed in the production of 

highly stressed outdoor textiles like sails for yachts or tents, as well as, in knitted cloth-

ing- and furniture textiles acting as wool replacements. Most prominent textile fibers 

made from PAN are sold using trademarks such as Dralon and Dolan and many more.[46]  

1.3.3 Poly(ethylene oxide) 

Chemically, Poly(ethylene oxide) (PEO) belongs to the group of polyethers in the form of  

-R1-O-R2-O-R3- and might be considered as their representative build from the simplest 

monomeric unit (see Figure 1.4).[47] 

 

Figure 1.4: Monomeric unit (ethylene oxide) of PEO.
[47]

 

This polymer is also referred to as poly(ethylene glycol) (PEG). Both names are treated 

synonymously, whereas historically PEG was used for molecules up to a molecular 

weight of 20 kg/ mol and PEO for larger molecules. Depending on the chain length PEO 

is available as liquids or low-melting solids. The latter are highly soluble in water and are 

hygroscopic and therefore used as thickener or dispersant in numerous cosmetic prod-

ucts such as lotions, creams or as anti-foaming agent in food.[48,49] PEO is generally con-

sidered to be biologically inert, highly biocompatible and safe. Hence, in medical industry 

it is applied as a biomaterial for the production of hydrogels or building blocks in copoly-

mers, as non-degradable polymeric carrier materials in drug delivery or as enhancer of 
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the osmotic pressure in gastrointestinal cleaning fluids.[50-52] Also in industrial scale PEO 

is used, exemplarily as binder in precursor for production of ceramics.[53] Because of its 

versatility PEO is one of the most prominent and common polymers and, in addition to its 

comparatively safe and easy handling and preparation, often employed as a demonstra-

tive model for the processing of water-soluble polymers. 

1.4 Biopolymers 

Polymers from natural origin, plants and animals as well, in the first place are widely im-

portant for human daily nutrition. In form of carbohydrates and proteins, such as gelatin 

or silks of arthropods, polymers are ingredients in most foods. Additionally, polyesters 

such as cutin and suberin, both found as insoluble epidermal cell wall components in 

higher plants also are subsumed under the term biopolymer.[54] 

Since the components of those materials may be metabolized and completely degraded 

after the internal application, many studies focused on broad medical approaches and 

therefore their employment as Biomaterial. Especially polysaccharides are well known, 

and easy to modify for different purposes offering a wide field of applications.[55] One of 

those polysaccharides, cellulose, is called rayon in one of its regenerated form and is 

also widely used in industrial scale textile production and even as bio-textile in medical 

implants.[56-58] 

Biopolymer applications were made in the field of drug delivery for example with orally 

applied chondroitin sulfate for treatment of articular pathology.[59] Here, the degradation 

of the carrier and therefore the consumption dynamic is mainly influenced by the degree 

of sulfation.[60,61] Other studies focused on the cross-linking of chitosan to create loadable 

microparticles or liposomes and granules to benefit from low density cholesterol-lowering 

and weight-loss supporting effects of chitosan.[62-64] Definitions of biopolymers differ in 

terms of the origin of the raw material and their application. The technical report 15932 

(CEN/TR 15932) for bio-based products, which was published from the technical com-

mittee 249 of the European Communications, Entertainment & Technology Law commit-

tee (CEN/TC 249) included a recommendation for the terminology and characterization 

of biopolymers and bioplastics as depicted in Figure 1.5.  
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Figure 1.5: Definition of biopolymers modified after CEN/TR 15932.
[65]

 

Regarding this definition, biotechnologically derived polymers such as poly(lactic acid) 

(PLA), for the production of bioplastics in food packaging, belong to category 1B. On the 

other hand, natural polymers, such as collagen, as well as, polysaccharides like cellulose 

and starch, used in cosmetics, belong to category 1A. [65-68] Despite their versatility, the 

main drawbacks of the latter polysaccharides are source-related variations in material 

properties, microbial contaminations, poor mechanical properties on top of both water 

uptake and uncontrolled degradation.[69]  

One of the most prominent examples for bioplastics based on renewable resources is 

biodegradable thermoplastic poly(lactic acid) (PLA) (Figure 1.6), also referred to as “pol-

ylactide”, made from renewable resources, such as starch from corn, sugarcane, tapioca 

roots or yeast. It cannot be harvested in nature directly. The aliphatic molecule is mostly 

prepared industrially in a step-wise polymeric growth from renewable resources.[70,71] 

This can either be done by direct polycondensation in high boiling solvents or direct 

polymerization in bulk followed by chain extension with reactive additives.[72] Despite of 

its name PLA belongs into the category of polyesters rather than polyelectrolytes (poly-

acid). 

Biopolymers 

Based on renewable resources Polymers with bio-functionality 

Bio-mass 
based natural 

polymers 

Bio-mass 
based synthetic 

polymers 

Biodegradable 
polymers  

Polymers for 
medical 

applications 

1 2 

A B A B 
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Figure 1.6: Monomeric unit (lactic acid) of PLA.
[73]

 

PLA might be employed as mulch-films in ecological friendly farming or as cups, bags or 

similar, acting as degradable plastics replacements.[73] Because of the mostly autocata-

lytic degradation poly(lactic acid) is mainly applied in medical products. Whilst degrading, 

the material induces an acidic milieu, harmful in some tissues. PLA is often applied in 

bone plugs, screws or fracture fixation plates. Yet, the applications are limited because 

of a rapidly reducing material strength in vivo.[74] 

Silks, another well-known example for biopolymers, in scientific terms are fibrous pro-

teins, containing repetitive amino acid sequences, which are spun or pulled under shear 

forces. According to Craig (2003), some male myriapoda produce fibrous proteins from 

accessory glands, which could be called silk, for mating purposes (sperm stalks, sperm 

webs, mating threads).[75] The coiling millipede (Glomeris marginata), or the chilipod cen-

tipede (Orphnaeus brasilianus) produce sticky and toxic secretions, but the main silk 

producing organisms are found amongst the arthropoda-classes of insecta (insects) and 

arachnida (arachnids).  

 

1.4.1 Natural Polymers 

1.4.1.1 Spider silks 

In the subphylum of chelicerates, only the all-terrestrial class of arachnida, comprising 

the silk producing orders true spiders or araneae (web-building spiders, tarantulas and 

wolf spiders), acari (mites and ticks), as well as, pseudoscorpiones (false scorpions), are 

able to secrete silks.[76] Whilst acari and pseudoscorpiones are using glands in their tro-

phi attached to their head, spiders are in particular specialized on silk production through 

glands placed at the end of their abdomen. These spiders are capable of producing up to 
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seven different types of silk.[75] To produce fibers, these spiders developed unique spe-

cialized protrusions, called spinnerets as depicted in Figure 1.7.[77,78] 

True spiders use silk in a manifold of 

ways to catch prey by building highly 

structured webs (web weaving spiders), 

to enhance their tactile sense and to pro-

tect their offspring.[79] Orb-weaving spi-

ders may produce up to seven different 

types of silk from which araneidae use 

tubiliform silk for the deposition of their 

eggs and the sheathing in a protective 

cocoon (Figure 1.8, white, 1/2). The re-

maining five types are used for the con-

struction of their webs, one of the most 

effective and economical methods of 

catching prey in the animal kingdom.[80-82] 

The proteins of each silk are produced in 

their individual gland inside the spider’s 

abdomen and pulled out of the storage by 

attaching the end of the thread to a fixed 

point and dragging the thread while walk-

ing in the desired direction.[83,84] The main 

frame of the web, as well as, the stabiliz-

ing outer construction (Figure 1.8, 3.1) 

and the spider’s dragline (Figure 1.8, 3.2), used for self-protection while rappelling, is 

composed of major ampulate silk. It is characterized by exceptional tensile strength and 

mechanical toughness.[85] During the web construction the spider builds an assistant-

spiral (Figure 1.8, 4) using minor ampulate silk, to facilitate the following buildup of the 

catching spiral (Figure 1.8, 5), composed of flagelliform silk. The extraordinary extensibil-

ity of this silk type is necessary for the intake of the kinetic energy of an impinging flying 

insect without ripping and its subsequent dissipation into the web structure. To prevent 

the repulsion from the web and to fix the prey on the impact spot, the threads of the 

catching spiral are covered with sticky droplets of aggregate silk (Figure 1.8, 6).  

 

Figure 1.7: European garden cross spider 

(A. diadematus) while rappelling 

using its dragline with highlighted 

spinneret. 
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Figure 1.8: Web construction of orb-weaving spiders from different silk types with outer and 

inner shell of their cocoon (white, 1/2), the framework of the web (bold black, 3.1), 

the spiders dragline (bold black/red, 3.2), the supporting spiral (light grey, 4) 

which is used by the spider to build up the catching spiral (black, 5) covered with 

sticky silk droplets (brown, 6); the whole web constructions are fixed on surfaces 

via the frame construction using cement silk dots (grey, 7).  

 

The last silk-type used for the web construction is named piriform silk and acts as ce-

ment, attached to the ends of the web’s frame structure and connects it to the environ-

mental fix points (Figure 1.8, 7). Many spider families have developed two identical spin-

nerets placed next to each other, which enable them to spin double threads in case of 

emergency to reinforce their dragline even more or while wrapping of their prey with 

aciniform silk.[86]  

 

1.4.1.2 Recombinant production of silk proteins 

Due to the desirable mechanical properties of silks numerous applications in human 

healthcare and industrial purposes have been published.[87-91] Those properties comprise 

2 
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extraordinary toughness (spider silk) or high bending stiffness (egg stalk silk of lace-

wings). One major drawback is the limited access to naturally sourced spider silks, due 

to their cannibalistic and territorial behavior, hampering their large-scale farming.[92] To 

overcome this hurdle, recombinant production of silk proteins has been auspiciously es-

tablished in the past.[90,93-95] For recombinant production spider silk proteins (spidroins) 

consensus sequences, based on repetitive motives of the core sequences of dragline 

silk-spidroins were created. In a following step the genetic information was adapted to 

the codon usage of the host organism, e.g. Escherichia coli (E. coli). Furthermore, mul-

timerization via cloning steps was performed, and the transfer of the genetic information 

into a vector resulted in a plasmid.[96]  

Recombinant production of insect silk proteins is comparable to that of spider silk. In this 

process the lacewing Chrysoperla carnea (C. carnea) served as model organism. In a 

first approach consensus sequences were created as well. Yet, for the following produc-

tion of recombinant egg stalk protein consensus sequences were not needed anymore, 

since the usage of natural sequences was facilitated.[97,98]  

 

1.4.1.3 Insect silks 

Within the class of insecta, in the subphylum hexapoda amongst arthropods the larvae of 

the silkworm Bombyx mori (B. mori) is the best-known producer of silk. Because of its 

touch, shine and good availability, it is used for textile production by men since millen-

nia.[99] Similar to other silk secreting organisms, B. mori - silk proteins are produced in 

glands, placed in the prosoma, the front part of the body, and secreted by their differently 

shaped mandibles.[100] Other insects like lacewings and most spiders use secretion pro-

trusions or spinnerets connected to their specialized glands at the end of their opistho-

soma, the abdomen.[77,78] To generate a fiber out of the highly concentrated silk dope, 

most organisms use pultrusion rather than extrusion to apply the necessary tension. Re-

garded separately, B. mori silkworms attach their silk to a prior produced layer of ran-

domly spun silk threats between sticks and then pultrude the silk out of their storage us-

ing a lying-eight-movement to enwrap themselves in a final cocoon.[84] Less known, hon-

ey bees like Apis mellifera (A. mellifera), or wasps (apocrita) include silky threads in the 

highly hydrophobic waxen structure of combs inside their hives to reinforce the structure. 
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Underwater insects are also able to produce sticky silks such as caddisflies (trychoptera) 

whose larvae collect debris and stick it to their abdomen using their silk as cement to 

yield an underwater shelter.[101] The lacewing Chrysoperla carnea (C. carnea) places a 

silky droplet on leafs and lifts its abdomen to pultrude an extraordinary bending stiff 

thread. On its lower end it is attached to an egg, hanging from the leaf to be protected 

from predators. Especially the notable mechanical properties of lacewing silk, induced by 

cross-beta structures, were extensively studied.[89,97,98,102,103] 

  



Introduction 

 
 

 

   

15 
 

1.5 Properties of synthetic and natural polymers 

Due to the multitude of conversion and synthesis possibilities of petroleum into all kinds 

of industrially utilized polymers, they are highly used for a variety of convenience goods. 

Yet the source material is limited, which is the greatest drawback of synthetic polymers. 

Additionally, oil production will become more difficult due to depleted easy accessible 

resources.[104] Hence, replacements must be found, which may be derived from renewa-

ble resources. Even though scientific research and technical development offer the us-

age of renewable polymers, most of them are produced with the need to care for distinct 

production methods, conditions and treatments. Hence, the costs are much higher com-

pared to their synthetic counterparts. The second major drawback dulling the enthusiasm 

for polymers from renewable resources, is the still much lower mechanical resilience.[105] 

These facts represent the greatest disadvantages compared to synthetic polymers. Syn-

thetic ones furthermore might be “grafted”, modified chemically on a molecular level by 

substitution or insertion of molecules and thereby altering the polymer backbone to ad-

just their properties as desired in respect of the distinct application.[106,107] The develop-

ment of synthetic polymers culminated in a multifold assortment providing various chem-

ical and mechanical properties, as well as, geometric shapes as displayed in Table 1.1 

that comprises a selection of synthetic polymers with high production volumes and their 

typical morphologies, properties, features and potential application. 

Most prominent materials are deployed in all fields of daily life from medical therapies 

and pharmacy to industrial textiles.[108-110] Important factors regarding fiber applications 

are the lateral contraction, elasticity, young’s modulus, the total appearance, including 

touch, look and surface morphology, in addition to durability, and abrasion resistance. 

Polyamide (PA) fibers for example provide low density and thereof produced lightweight 

products featuring a low water uptake and reduced swelling.[111] A nature-like optic at the 

expense of moderate mechanical stability might be obtained by employing 

Poly(acrylonitrile) (PAN) fibers with a woolen soft and warm touch, as well as, Cellulose 

Acetate (CA) fibers with a silky shine and minor wrinkle propensity.[112] Yet, if water repel-

lency is demanded for production of woven outdoor textiles, shoes or electrical insula-

tions Poly(vinyl chloride) (PVC) is the raw material of choice. Altogether, polymeric mate-

rials are most prominent for their versatility due to thermoplastic behavior amongst oth-

ers. In that context Polycarbonate (PC) is a well-known example used in planar applica-

tions such as lenses for sun glasses or disks.[113] 
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Table 1.1: Overview of a selection of the most common and best known synthetic 

polymers used for industrial scale applications. 

Material Application Features Properties  Morphology 

Poly(acrylonitrile) 
(PAN) 

Yarns in textile in-
dustry/ carbon fiber 

precursor 

Wool like aes-
thetics (warm 

and soft touch) 

Moderate abrasion 
resistance, well  

colorable 

Filaments/ 
Fibers, Yarns 

Polyacrylate  
sodium salt (PA) 

Super-absorber 
(diapers) 

High porosity 
May take up water of 
more than 300 times 

the bulk mass 

Highly porous 
particles 

Polycarbonate 
(PC) 

Sunglasses, eye 
lenses, disks 

High fracture 
strength 

Two benzene rings 
stabilize monomer 

Planar  
objects 

Poly(ethylene 
oxide) (PEO) 

Medical 
formulations, 

lubricant 

Highly hydro-
philic, well solv-

able in water 

Different molecular 
weights, solutions up 

to gels obtainable 

Particle pow-
ders, pellets 

Poly(ethylene 
terephthalate) 

(PET) 

Packaging, plastic 
bags, plastic bottles 

Flexibility, highly 
(re)formable 

Thermoplastic, 
therefore highly  

versatile 
Films and foils 

Poly(p-phenylen 
theraphthalamid) 

(PPTA) 

“Kevlar” in bullet  
resistant vests, 

immensely stress 
resistant fibers 

High tensile 
strength and 
toughness 

Two benzene rings 
and nitrile group 

strengthen monomer 
Fibers 

Poly(vinyl chlo-
ride) (PVC) 

Pipes, outdoor tex-
tiles, sport shoes, 
electric insulation 

Water repellen-
cy, pressure 
resistance 

Chloride ion in  
monomer raises 

stability 

Planar objects, 
Filaments/ 

fibers 

Yet, the certainly most widely used polymeric material in everyday life are Poly(ethylene 

terephthalate) (PET) due to its processability into tear-resistant and tenacious foils and 

films for the manufacturing of all kinds of bags, as well as, for (food) packaging purposes 

and plastic containers and bottles.[114] 

Polymers from natural resources on the other hand are increasingly utilized in applica-

tions due to improved processing methods and the increasing production rate. The most 

prominent naturally derived polymers, as well as, their origin, possible application, prop-

erties and typical product morphology are displayed in Table 1.2. The use of some of 

those naturally derived polymers are not recent inventions, but known for decades such 

as rubber, which became one of the most important resources in the production of tires 
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induced by the discovery of the vulcanization reaction of natural rubber and sulfur by 

Charles Goodyear in 1839. The reaction, also called curing, is used to crosslink the natu-

ral rubber molecules with sulfur resulting in a remarkable tenacity and flexibility.[115-117]  

Wood has been used as strong construction material for thousands of years, and the 

strength of plant fibers has been known for long. Hence, the highly robust cellulose fi-

bers, derived from herbal cell walls, as the most prominent representative of polysaccha-

rides, is utilized in textile production, and as a solid fuel. Lately, this material is also gain-

ing more importance in modern medical research, drug delivery, as well as, tissue engi-

neering. In the field of polysaccharides also chitin, derived from marine crustacean 

shells, and its more water-soluble derivate chitosan, are candidate materials in this field 

of research. For bone replacement applications also mammal collagen is promising.[55,118-

120] Moreover, another aspect of modern research is the development of genetic engi-

neering and biotechnological manufacturing methods, which enable the large scale pro-

duction of natural derived polymers, such as PLA for textile industry or spider silk pro-

teins. Yet, PLA is barely used in medical application, due to its acidic metabolites.[70,121] 

Spider silk is a multifaceted material with various desirable properties. Those range from 

fibrosis reducing effects when used as a component or coating in medicine and prosthet-

ics, embodying an efficient water vapor and oxygen shield utilized in food packaging, to 

providing high toughness and elasticity when employed as fiber.[122-125] The development 

of biotechnological production methods overcomes the lack of natural availability further 

pushing investigation of possible applications.[90,93-95] Additionally, the material might be 

metabolized completely into harmless amino acids by most living creatures.[87,88,126] 

Hence, silk proteins might be considered as one of the most promising bio-derived mate-

rials when it comes to sustainability in combination with extraordinary mechanical proper-

ties. But also other highly specialized animal proteins besides spider silks serve as tem-

plates for research and biotechnological production, such as the mechanically gradually 

altering mussel byssus or other insect silks, for example from honey bees.[90,127-130] As 

soon as research and implementation of multiple technical applications overcomes the 

hurdle of mass production, biologically derived recombinant proteins, headed by spider 

silk protein, might guide the way into a new industrial revolution of materials.[131] 
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Table 1.2: Overview of the renewable polymers under research and their properties as well 

as possible applications. 

Material Derived from (Possible) Application Properties  Morphology 

Cellulose 
Plants (Wood), 

biosynthetic  
synthesis 

Wooden constructions, 
textiles (lyocell), tissue 

engineering, drug delivery  

Highly stable 
molecule 

Raw material 
(wood), fibers 
and textiles, 

films, capsules 

Chitin/ 
Chitosan 

Crustacean shells 
Outdoor clothing, food 
packaging, cosmetics  

Solvable in acidic 
aqueous media, 

resistant  

Films and foils, 
particles 

Collagen 
Mammal corpses 

(human, pig) 

Tissue engineering,  
regenerative medicine, 

cosmetics 

Elasticity, adapt-
able mechanical 

properties 

Particle pow-
ders, fibers, 
hydrogels 

Pectin 
Protopectin from 
plant cells/ fruits 

Hydrogels in industry  
and medicine 

High molecular 
weight - viscosifi-
er, high natural 

presence 

Particles/ pow-
ders to form gels 

Poly(lactic 
acid) 

Lactic acid from 
plants (e.g. corn) 

Textile industry, food 
packaging, implants 

Versatile, UV- 
and flame re-
sistance, low 

moisture regain 

Fibers, films, 
foils, medical 

implant connec-
tion elements 

Rubber 
Natural rubber as 

latex (milky colloid) 
from rubber tree 

Tires, sealing gaskets, 
Control interfaces, 

Anti-shock elements 

Large stretch 
ratio, flexibility, 
elasticity and 

resilience 

Volume bodies, 
blocks, sleeves 

Silk 
 proteins 

Recombinant  
production 

Fibers for textiles/  
industrial purposes, drug 
delivery, protective and  
biocompatible coatings 

High tensile 
strength,  

toughness,  
versatility 

Fibrils, fibers, 
films, foils,  
particles 

 

1.6 Fiber production methods 

Fibrous materials from natural resources have been long utilized by mankind to create 

textiles for protection, warming, camouflage or fashion purposes. Prominent examples 

are the fur or wool of mammals, as well as, silk from arachnids and insects - from animal 

origin - on one hand, or fibers from herbal origin (linen (Li) made of flax, cotton, hemp, 

bamboo) on the other. Technological development has allowed mimicking these by using 

basic materials from alternative resources, available in larger scale, such as synthetic 

polymers made of crude oil. Through modern research and technology, many artificial 

fibrous products even surpassed the natural ones, in terms of mechanical or optical 
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properties. To customize fiber parameters, such as surface morphology, fiber strength, 

diameter and appearance, different processes were invented. The herein used categori-

zation is based on a combination of the solvent or physical solvating force of the raw 

material respectively, as well as, the driving force of the spinning process. Earth and 

reddish colors are displaying spinning methods based on polymer melts; yellow and 

greenish colors stand for electrically driven spinning processes and blue colors decrypt 

solution spinning methods (Figure 1.9).[132] 

 

Figure 1.9:  Overview of the mainly industrially employed spinning methods and the respec-

tive fiber diameter range.
[128-143]
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1.6.1 Melt spinning 

The name of these spinning methods refers to the preparation of fibers from the melt. 

Heat is used to melt the employed thermoplastics. In its most basic form, the melt extru-

sion spinning, the highly viscous liquefied polymer-melt is extruded and further trans-

ported via a gear pump (Figure 1.10 A). Subsequently, the viscous melt is led into a dye 

block to further supply a subsequent (multifilament) spinneret. In the simplest form, the 

emerging filaments of the molten polymer that are extruded from the spinneret, enter a 

hardening zone, which is composed of a space cooled by quenching air (Figure 1.10 A). 

The filaments thereby cool down and solidify. 

Following this, the emerging fibers are led through stretching pipes and either taken up 

to be post-stretched in a second step (two step continuous filament spinning, Figure 1.10 

B) and finally collected on a bobbin, or deflected to create randomly oriented nonwovens, 

directly being deposited upon a receiver mat using suction-air (spunbonded fabric pro-

cess, Figure 1.10 C). Both methods are versions of classical melt extrusion spinning.[133]  

 

1.6.1.1 Melt-blown spinning 

The most common and most frequently employed spinning method to produce synthetic 

fiber nonwovens for textile industry is melt-blowing (Figure 1.10 D). The basic form of 

this subcategory of melt spinning processes is carried out by feeding the polymer melt to 

a nozzle structure instead of a multifilament spinneret. Cooling air is then streamed in 

high velocities at the nozzle tip, resulting in a spray-like jet of multiple fibers. Deposition 

on a rotating drum results in nonwoven fiber mats.[133] 
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Figure 1.10: Basic scheme of melt spinning method; a polymer is led into a heated extruder 

screw where the material is molten and then extruded with a constant flow 

through a multifilament spinneret with the help of a metering pump (A). In classi-

cal melt spinning, the fibers are cooled and hardened by quenching air and let in-

to a stretching pipe. Subsequently, the filament bundles are either collected to be 

post-stretched with altering rotational velocities, followed by a yarn take-up (B) or 

deflected to be randomly deposited on receiver mat using suction-air via a spun-

bonded process (C). For melt blow processes the polymer melt is directly pumped 

into a blowing nozzle, here hot air is used to accelerate multiple fiber jets. These 

fly towards a collection unit and solidify due to cooling by the quenching air 

(D).
[133-135]

 

 

 

Rotating melt  

extruder screw 

Polymer supply 

Metering pump 

Quenching air Solidifying  
filaments 

Multi-hole  
spinneret 

Fiber bundle 
poststretching  
unit  

Collection godet 

Block dye 

Hot blowing 
air 

Suction 

air 

Nonwoven 

Yarn take-up  

Stretching 

pipe 

Receiver 

mat 

Deflector 

Transport 

unit 

Molten polymer 

Collection 

unit 



Introduction 

 
 

 

 

22 
 

 

 
 

 

1.6.1.2 Special melt spinning methods 

Due to their special behavior, melt spinning of liquid crystals with thermoplastic character 

is regarded as special subcategory. Furthermore, the careful choice of working parame-

ters provides a controlled spinning of uniform fibers. For example, researchers were able 

to produce melt spun single fibers in a one-digit micrometer range from liquid crystalline 

carbon.[135]  

 

1.6.2 Solution spinning methods 

In contrast to melt spinning methods, in solution spinning methods, the utilized polymeric 

raw materials are dissolved in the organic or inorganic solvents. Most preferably aque-

ous solutions are employed to maintain a stable dope concentration by reduced evapora-

tion at room temperature. Though, often polymers require aggressive and highly volatile 

solvents which demand a considerably increased amount of precaution, as well, as at-

tention during handling and processing. Low viscous dope solutions are stored in tanks 

and transported using liquid pumps (Figure 1.11 A), while high viscous polymers are 

prepared using extruder screws and transported via gear pumps (Figure 1.11 B).[133,136-

139] 

 

1.6.2.1 Dry spinning 

In its simplest version, solution spinning is performed by extruding the polymer solution 

through a multi-hole spinneret, and solidification of the emerging polymer is forced by the 

employment of hot drying air, in a special chamber. This method is called dry spinning 

(Figure 1.11 C). Provided, that the used solvent is highly volatile, this method is preferred 

due to its simplified fiber curing. The fiber production is relatively slow compared to other 

spinning methods. Typically fiber diameters obtained from dry spinning are in the range 

from 1 µm to several micrometers. 
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The take-up has to be performed in reduced velocities due to the risk of a fiber break. A 

poststretching step can subsequently be added to produce high performance fibers 

(Figure 1.11 E).[133,140] 

 

Figure 1.11: Basic scheme of solution spinning methods; a polymer is dissolved in a proper 

solvent; either a low viscous polymer solution is pumped, using a liquid pump (A), 

or a highly viscous high molecular weight polymer solution is extruded, using a ro-

tating extruder (B), into multi-hole spinnerets. Hot drying air is directly streamed at 

the emerging filaments, which solidify and are subsequently collected, using go-

dets regarding dry spinning (C). Emerging fibers might be led into a coagulation 

bath, either sub-liquid level (C1, classical wet spinning), or using an air gap (C2) 

and collected upon solidification. The fiber bundles from dry or wet spinning may 

be poststretched, using godets with slightly increasing rotational velocities, if de-

sired (E). Regarding ultra-high molecular polyethylene poststretching is performed 

in a heated drying chamber with fibers in a gel state to create high modulus poly-

ethylene filaments (F).
[133,136-138,140-147]

 

 

 

Polymer supply 

Dope solution   
preparation 

Rotating extruder screw 

  

Hot drying air 
Fiber bundle 
poststretching unit  
 

Drying chamber 

Multi-hole 
spinneret 

Polymer 
solution 

Fiber collection 

godet 

Liquid 
pump 

Air gap 

Coagulation bath 

Metering 
Pump 



Introduction 

 
 

 

 

24 
 

 

 
 

 

1.6.2.2 Coagulation bath (wet) spinning 

The most common and widely known wet spinning method is the basic coagulation bath 

spinning, also commonly referred to as “wet” spinning (Figure 1.11 D). Herein, the dope 

material is dissolved using a proper solvent and extruded through a nozzle or spinneret 

directly into the coagulation bath (Figure 1.11 D, left). This bath is filled with a liquid in 

which the dope material shows a lower solubility compared to the solvent. The solidifying 

filaments are extracted from the bath and subsequently dried using hot air, infrared ra-

diation or similar, and poststretched, if desired (Figure 1.11 E). 

 

Dry-jet / air gap wet spinning 

In some processes it is beneficial to provide a short stretching phase after the fibers 

emerge from the spinneret. The filaments first dry in air and then subsequently pass the 

coagulation or quenching bath. Therefore, the fibers are led through an air gap before 

coagulation (Figure 1.11 D, right). Thus, the molecular chains are less separated by hy-

dration spheres, and intermolecular attraction is increased. The fiber bundles are usually 

pre-stretched in the bath and post-stretched until finally cured during drying (Figure 1.11 

E). 

 

Gel spinning  

To produce strong fibers from polyethylene (PE), which is one of the most important 

commercial polymers, gel spinning is performed. Ultra-high molecular weight polyeth-

ylene (UHMW PE, MW > 106 g /mol) is dissolved in proper solvents such as decalin (bi-

cyclo[4,4,0]decane) and extruded by a (twin) screw (Figure 1.11 B). A metering pump 

further squeezes the highly viscous suspension through a multi-filament spinneret. After 

passing an air gap and a subsequent quenching, or extraction bath filled with water, the 

filaments remain in a gel-like state, with a low entanglement of polymer chains, rendering 

them highly drawable (Figure 1.11 D right). Subsequently, the fibers are led through a 



Introduction 

 
 

 

   

25 
 

heated chamber and cure during solid-state drawing (Figure 1.11 F). The inherent crys-

tals are thereby aligned to obtain high modulus fibers that further are collected on a bob-

bin.[142,143] 

 

Lyotropic liquid crystal spinning 

One prominent product made by dry-jet wet spinning is Kevlar, processed from aromatic 

polyaramid. This lyotropic liquid crystal material is processed using sulfuric acid as sol-

vent and a cold water coagulation bath. After extrusion, the emerging filaments are dried 

at the surrounding or hot drying air. The subsequent employment of an air gap contrib-

utes to the orientation of the liquid crystals. Parallel oriented crystals stabilize the fiber 

noticeably, and therefore the dry-jet directly influences the tensile strength and perfor-

mance of the fibers. The filaments pass a coagulation bath, where solidification occurs. 

To further improve the product, a subsequent post-stretching step at temperatures rang-

ing from T = 300 °C – 400 °C is added. The obtained fibers are finally collected and exhibit 

strong inter-chain forces due to the inherit hydrogen bonds aligned alongside the fiber 

axis, contributing to an extraordinary degree of orientation and strength.[144,145] 

 

1.6.2.3 Special solution spinning methods 

One special subcategory of coagulation bath spinning is matrix-spinning, which is per-

formed during the production of PTFE-Fibers. Neither melt spinning, nor standard coagu-

lation bath wet spinning methods are suited to process PTFE due to its resistance to 

most solvents and its high melt-viscosity. To overcome these hurdles, an aqueous 

PTFE-dispersion is mixed with a rayon matrix dope in a ratio of 3:1 - 24:1 and extruded 

into a highly acidic coagulation bath.  

Subsequently, the emerging mixed fibers, containing PTFE and rayon, are sintered in 

order to thermally decompose the rayon and mechanically improve the fibers. Neverthe-

less, the residues of the sintering process lead to a brownish coloring of the fibers.[147] 
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1.6.3 Centrifugal spinning methods 

The method of centrifugal spinning is a spinning method to generate fibers with small 

diameters in the lower micrometer range by a rotating orifice and subsequently occurring 

centrifugal forces. The utilized dope material is either dissolved by a proper solvent and 

transported via a liquid pump or molten and extruded by a gear pump, when using ther-

moplastics, as described before. This method is rarely used in industrial applications due 

to difficult fiber collection in its basic form. In laboratory experiments, polyamide 6 (Nylon 

6) fibers were obtained with diameters below 1 µm, using centrifugal solution 

spinning.[146] With polypropylene melts also fibers in the lower micrometer range could be 

produced in laboratory experiments.[134] 

The setup includes a container for dope storage, as well as, a pump for the extrusion of 

the dope through a nozzle. The latter is situated in or on a device capable of rotating 

around its axis of symmetry with the rotational speed ωr [m/ s]. The droplet of the mass m 

[kg] emerging at the nozzle tip is thereby accelerated with a centrifugal force F [N], which 

can be expressed by Equation 1.1, and stretched due to its inherent inertia. During the 

flight time of the polymer jet either the solvent evaporates or the melt cools down and the 

jet solidifies, resulting in a fiber. Due to the centrifugal force, the fiber then is tossed to-

wards a planar collector surface, mounted perpendicular to the axis of the nozzle in the 

distance r [m] and collected thereon. 

 

𝐹 = 𝑚 ∗
𝜔𝑟

2

𝑟
 

 

 
(1.1) 
 

Depending on the molecular weight of the dope material and the dope concentration, the 

degree of molecular entanglements shifts. Likewise, the fiber diameters, as well as, the 

degree of stretching alter.  

The biggest disadvantage of centrifugal spinning is the limited length of the collector, 

with a maximum deposition length of its circumference. Due to a mostly necessary open-

ing of the collector-ring the filaments have to be cut open, representing a severe handi-

cap regarding the production of endless fibers. So far, limited studies focused on the 

improvement of the method itself, as well as, the large-scale production of nanofibers or 

thin submicron fibers of outstanding porosity.[148-151] 
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1.6.4 Electrospinning methods 

Even though these methods use the surrounding air or atmosphere as solidification forc-

es, and therefore belong to dry spin, the usage of an electric potential difference as the 

driving force for fiber formation enforces an exclusive categorization. The first require-

ment for these production methods was the description of the electric field by Charles-

Augustine de Coulomb in 1784 in its scalar form, where 𝐸⃗  is the electric field strength 

[V/ m], ke is the Coulomb’s constant (ke = 8.99*109 [N m2/ C2]), q1 and q2 [V] are the direc-

tional magnitudes of the charges and dx [m] is the distance between these charges, as 

depicted in Equation 1.2.[152,153] This equation is valid for electrostatic fields that remain 

constant over time. 

 

𝐸⃗ = 𝑘𝑒

|𝑞1𝑞2|

𝑑𝑥
2  

 

(1.2) 

 

1.6.4.1 Electrostatic (dry) spinning 

The production of fibers with the smallest diameters down to the nanometer scale using 

an electric field as a driving force has been performed since 1902. The first observation 

of the movement of a liquid droplet due to a charged object was described by William 

Gilbert in the late 16thcentury.[154] It took several hundred years until the process of elec-

trospinning (ES) was published in 1902 by John F. Cooley.[155] The basic setup is orient-

ed vertically or horizontally.  

The latter is beneficial if larger droplets are built during the spinning process, which here 

cannot fall on collected fibers and dissolve them, but are drawn to the ground by gravity. 

A standard vertical setup is displayed in Figure 1.12. High electric voltage is applied to a 

flattened capillary tip, which is attached to a container - mostly a syringe, filled with a 

spinning dope.  
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Figure 1.12: Schematic of a standard electrospinning device; a high electric potential is applied 

to a capillary tip acting as an electrode and a collector plate acting as a counter 

electrode. The latter is placed in a distance of 1 - 40 cm, using high electric voltage 

(0 - 45 kV) which leads to a strong electrostatic field. Dope solution is extruded 

through the capillary tip. The electrostatic field induces repulsive forces inside of 

the emerging droplet forming a Taylor cone. If the attractive forces of the electro-

static field overcome the surface tension of the solvent, then a thin jet erupts from 

the cone, which is affected by bending instabilities causing loops and turbulences, 

and therefore stretching the fiber while traveling to the collector plate and solidify-

ing them. Multiple chaotically deposited fibers form a nonwoven mesh.  

 

Mostly polymer dispersions are employed due to simplified handling, but also melt-

electrospinning is performed using thermoplastic polymers. A counter electrode is placed 

in a certain distance, regularly in between a range of 0 - 20 cm.[156-160] This set-up yields a 

strong triangular shaped electrostatic field. Whilst the polymer solution is extruded from 

the capillary, the potential applied to the capillary induces repulsive forces within the 

charged solution. The created droplet deforms into a cone shape (Taylor cone) due to 
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the repulsive forces and the attraction of the counter electrode on the molecules, which 

assemble at the tip of that cone.[161-166] If the surface tension is exceeded, a thin jet of 

enchained polymer molecules erupts from the cone surface. Depending on the raw ma-

terial used, the solvent and the setup itself, multiple jets may erupt from the cone or the 

jet, which also might split up during their flight leading to a variety of side-jets. After for-

mation, induced by electrostatic interactions, bending instabilities (Rayleigh-

Plateau/ Weber instabilities) occur within the jet, causing whipping and further stretching 

as the solvent evaporates, and a solid fiber is formed.[167-169] Finally, the fiber is randomly 

deposited on the counter electrode in the form of a nonwoven mesh. This might be col-

lected by a proper substrate placed on the counter electrode, as long as it is not disturb-

ing the electrostatic field. 

Theoretic Background 

The basic set-up can be considered as a two plate capacitors, with a constant total sur-

face of A [mm2], and placed in a certain distance dx [mm] building up the capacity C 

[F].The material-specific dielectric constant εR [-], the electric constant ε0 [A s/ V m], and 

the electric charge Q [A s] are given and constant. The resulting capacity, influenced by a 

variable potential difference and therefore voltage ΔU [kV] is calculated by Equation 1.3. 

 

𝐶 =
(𝜀0 ∗ 𝜀𝑅 ∗ 𝐴)

𝑑𝑥

=
𝑄

∆𝑈
 

 

(1.3) 

Furthermore, the present surface charge density σ [A s/ m2] on the capacitor plates can 

be expressed as in Equation 1.4. 

 

𝜎 =
𝑄

𝐴
 

 

(1.4) 

Subsequently, the strength of the electric field which develops between those charged 

capacitors is in direct dependency of the surface charge density and therefore of the 

electric charge divided by capacitor surface area and the electric constant (Equation 

1.5). 
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𝐸⃗ =
𝜎

𝜀0

=
𝑄

𝐴 ∗ 𝜀0

 

 

(1.5) 

Considering the constants, and combining Equations 1.3 to 1.5 leads to the simplified 

Equation 1.6 for calculation of the electric field strength, which only has to be enhanced 

by a form factor k [-], since these equations are valid for two ideal plate capacitors, which 

are infrequent for standard electrospinning setups. The standard set-ups presented and 

used in this work build up a pyramid shaped electric field, due to a point-like electrode 

and a plate capacitor as collector plate electrode, placed from each other in a certain 

distance dx [mm]. Such an electrostatic field in a pyramid shape is associated with a form 

factor of k = 1 and a constant voltage U.[170] 

 

𝐸⃗ =
∆𝑈

𝑑𝑥

∗ 𝑘 
 

(1.6) 

 

Influencing parameters 

Many parameters have a massive impact on the resulting fiber quality. The most obvious 

ones comprise the molecular weight (MW [g/ mol]) of the raw material itself, the dope 

concentration c [g/ l] of the spinning dope, and its resulting viscosity η [Pa s], as well as, 

the solvent, and its volatility expressed by the vapor pressure e [bar]. Also the surround-

ing conditions, like temperature T [°C] or relative humidity rH [%] directly influence the 

vapor pressure, and therefore the fiber solidification process.  

The higher the local temperature, and the lower the relative humidity, the faster the sol-

vent evaporates, which can cause a drying out of the ideal Taylor cone (Figure 1.13 A) 

and may interrupt the spinning process.  

The electric field strength 𝐸⃗  [kV/ mm] impacts the spinning process the most and results 

from the potential difference between the spinning electrode and the counter electrode 

that acts as collector plate. The underlying applied electric voltage has to be adjusted 

thoroughly in respect to the distance between the electrodes as displayed in Equation 



Introduction 

 
 

 

   

31 
 

1.6. Excessive electric field strengths in the first place lead to inconsistent spinning pro-

cess and a stretched and elongated Taylor cone, representing the uncontrolled material 

removal if the dope extrusion remains constant. A further increase of the electric field 

strength leads to a retraction of the solution droplet into the cannula, resulting in a nega-

tive meniscus and the subsequent drying of the local solvent, as well as, the clogging of 

the cannula and the interruption of the spinning process (Figure 1.13 C). In contrast to 

that, insufficient electric field strength, as well as, a massive extrusion volume stream 

𝑣̇𝑒 [µl/ s], may cause an overflow of the Taylor cone. The additional amount of material 

then cannot be carried away by the emerging jets, and whole droplets are tossed onto 

the collector plate, dissolving the produced nonwovens through the spilled solvent 

(Figure 1.13 B). 

 

 

Figure 1.13: Schematic of a Taylor cone in proper form (A), an overflowing Taylor cone with 
emerging droplet (B), and the cannula electrode with retracted and dried out Tay-
lor cone (C). 

 

1.6.4.2 Centrifugal electrospinning (CE) 

Since this processing method represents a special modification of electrospinning, their 

basic setups are alike. Mainly the upper electrode in the form of a capillary tip is ex-

changed for a rotating bell shape (centerbell, Figure 1.14). Due to a high number of revo-

lutions (0 - 50 krpm) the extruded spinning dope is distributed in the inner bell wall and 

gathered at the lower edge. The repulsive forces in between the dope molecules, affect-

A B C

B 
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ed by the applied potential, and the subsequent accumulation of charges, as well as, the 

strong attraction to the counter electrode in the electrostatic field, yield a ring-like torus 

shape with multiple emerging Taylor cones (Figure 1.14, magnification). Once the elec-

tric field strength, as well as, the attractional forces exceed the surface tension of the 

solvent, numerous jets erupt from these cones along the torus. Their exact number de-

pends on the repulsive forces, and therefore on the amount of accumulated charges.[171] 

The massive amount of evolving fibers and electrostatic interactions combined with the 

centrifugal force, due to the rotary movement, result in a radial acceleration of the fibers. 

To reduce a widespread fiber deposition, guiding air is led through a slit opening be-

tween the centerbell and the casing, building up a surrounding barrier and an additional 

force towards the deposition electrode.[172-177] 

Influencing parameters 

In addition to the influencing parameters already described in 1.6.4.1, the method of cen-

trifugal electrospinning (CES) comprises additional forces, and therefore additional influ-

encing parameters. Mainly the revolutions per minute rpm [n] influence the lateral or cen-

trifugal forces on the emerging jets. For highly viscous dope solutions a too slow rota-

tional velocity can lead to an inhomogeneous distribution of dope solution in the center-

bell and subsequently to inhomogeneous spinning results. Also, a local solution overflow 

in the centerbell and liquid drops on the resulting nonwoven meshes are possible risks 

for low viscous dope solutions. Maximal rotational speeds on the other hand, can cause 

drying out during the extrusion of high viscous dope solutions, whereas for lower viscosi-

ties, the emerging fibers are distributed over a broad area and the chance of receiving 

entangled fibers is increased, impairing the overall spinning result. Another parameter 

present for the described standard centrifugal spinning device is the guiding air pressure 

pair [bar]. This air curtain reduces the spreading of emerging fibers by forcing them into 

the direction of the collector. Additionally, this air contributes to the solidification process 

of the fibers by accelerating the solvent evaporation. 
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Figure 1.14:  Schematic of a centrifugal electrospinning device where a high electric voltage (0-

90 kV) is applied to a rotating center bell, a syringe filled with a spinning dope so-

lution, and a grounded collector plate electrode is placed in a distance (spinning 

height dx) of 20-100 cm. This setup leads to a strong electrostatic field, inducing 

attractive and repulsive forces to the dope solution, which forms a torus that 

emerges at the inner wall edge of the center bell. If the surface tension is exceed-

ed, thin jets erupt from the highest points of the torus which are affected by rota-

tional forces and bending instabilities, causing further stretching as the solvent 

evaporates. Numerous solid fibers are formed, which are finally randomly depos-

ited on the counter electrode in the form of a nonwoven mesh. 
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1.7 Mechanical textile processing 

After production of fabrics via weaving, knitting or other methods, the product usually 

does not fully fit the customer’s expectation. Physical or chemical post-processing modi-

fication is utilized to adjust the textiles’ properties. Another approach would be the pre-

production treatment of the used yarns, but in that case the possibilities are limited, and 

the processing proves to be difficult and expensive with incalculable outcome. Additional-

ly, the treatment has a high risk of being harmed during any mechanical production step. 

[132,178]  

The first approach in post manufacturing textile processing regularly is represented by 

mechanical treatment methods, which are necessary to provide the fabric with typical 

features, such as improved optical features, compactness or soft and fleecy touch.[132]  

 

1.7.1 Compacting 

Compacting, as well as, heat setting or steaming (polyester and nylon), or fulling (wool), 

is used to densify the fabrics structure by shrinking the total volume and increasing the 

mechanical stability. This is commonly performed using heat, such as hot steam in com-

bination with compression and friction (wool). Additionally, the treatment influences the 

surface structure and morphology, yielding a crepy and raw look or altering the color-

shade.[179]  

 

1.7.2 Calendering  

Calendering is sometimes also referred to as a wet finishing method, but herein calen-

dering is presented as a compacting-related mechanical finishing method for textiles 

using two cylindrical rollers, which are passed by the textile under carefully controlled 

temperature and pressure to adjust the textiles surface texture. The gap width in be-

tween the rollers, as well as, their surface structure, and its profile enable specific effects 

in the fabric such as smoothness, suppleness or luster. Generally, the calendering rolls 

regularly consist of a plain highly polished surface heated metal drum, sometimes pro-

vided with small and numerous exaltations. Three and four-roll calender set-ups are the 
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most popular types. The rolls rotate in the opposite direction and are individually driven 

at different speeds, which provide a flexibility of the applied friction ratio, which is defined 

as the ratio of the peripheral speed of the faster roll in respect to the slower one and is 

normally set from 1.5 - 3. The weaving process results in heterogenic yarn interlacing 

heights and diverging intersections and cavities. Calendering flattens the fabric structure 

and fibers are pressed into a cylindrical shape yielding a flat and compact fabric. A spe-

cial sub-process of letting the textile pass specialized heated metal rolls, which feature a 

certain relief or an elevated pattern to integrate this pattern on the fabric surface, is also 

known as embossing.[180-182]  

 

1.7.3 Raising or napping 

In contrast to compacting purposes, the raising of fibers at the surface of the cloth to 

increase wearing comfort, induce a fleecy feeling on the skin and warmth of the wearer, 

is done via raising/ napping. The textiles are led over cylindrical rollers, whereby the sur-

faces are modified by card clothing of about 10 - 15 cm long steel wires. The protrusive 

fibers on the fabrics surface are cut and elevated, resulting in an increased surface area 

and expanded gap area between the upper fiber-interlacings.[179,183]  

 

1.7.4 Sueding 

Similar to raising/ napping this mechanical treatment method is carried out using modified 

cylindrical rollers coated with abrasive material on produced fabrics. The brushing of the 

textile’s surface lifts the exposed fibers and yields loops and pills. These generate a soft 

and fluffy touch and improve insulating capacities of the fabric due to the enlarged, en-

trapped, inner air volume.[182-184]  
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1.8 Coating methods 

Mechanical treatment is followed by textile-finishing using special substances and chem-

icals to add desired properties. Amongst those, flame inhibition (public service offices), 

dirt repellency, anti-crease (often for cotton, linen or rayon), anti-pilling, anti-static, water- 

and oil-repellent finishes, colorfastness and antibacterial finishes are the most prominent. 

The application methods for these chemicals still offer a variety of modifications to adjust 

the finishing process, as well as, the overall result.[185]  

 

1.8.1 Protective planar coatings in form of closed layers 

Industrial goods, in the form of solid materials, mostly feature closed surfaces and cas-

ings to improve handling and cleaning, as well as, protection of inner elements. There-

fore, these surfaces are perfectly suited for the application of protective coatings. The 

greatest difficulty hereby is in the infiltration of cavities and pockets in complex three-

dimensional objects, as well as, pores or roughly structured surfaces. Hence, layered 

coatings based on highly fluid dopes or aerosols are employed.[186]  

 

1.8.1.1 Dip coating/ Foulard process 

Dip coating, also known as impregnation, saturation or Foulard process (named after a 

thin type of fine, mostly silken, cloth) is the standard method for finishing of textiles, due 

to its simple setup.[187] The textile is led into a tank and immersed in the coating sub-

stance for a defined period of dwell time. Subsequently, flexible doctor blades or nip rolls 

are used to squeeze out excess substrate from the passing textile. The rolls are either 

perforated or placed in certain distances to yield a distinct gap width and enable a prede-

fined net pickup of the liquid. In a final step, the improved textile is dried. The transporta-

tion velocity, the drying temperature, as well as, the drying time have to be adjusted 

carefully in dependence of the thickness and structure, and therefore of the absorbing 

capacity of the textile.  
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The setup itself requires a comparable high amount of provided substrate and resultantly 

increased drying energy due to a soaking of the complete textile.[12]  

 

1.8.1.2 Kiss-roll coating 

One possible modification of the dip coating process is the passive application of the 

substrate using a transport roll covered with an absorptive material, being in contact to a 

liquid bath on one side, and the fabric to coat on the other. Because of the peripheral 

movement, the roll confers the substrate on the fabric at the point of contact, which is 

called the kiss. Subsequent drying requires less energy, because of a decreased wetting 

of the fabric and stabilizes the coating.[188,189] 

 

1.8.1.3 Spray coating 

A more energy friendly and efficient method for liquid coating of fabrics is spray coating. 

Here the cloth is led through one or more sprinkling showers of substrate, which is 

sprayed through nozzles from above in a certain distance (typically 5 - 60 cm).[190] Less 

material is needed to cover a larger surface area of textile, and soaking is additionally 

reduced at the expense of a less homogenous coating. For textile drying, the energy 

consumption is noticeably lower in comparison to dip coating methods, since required 

temperature and exposure time can be reduced.[191]  

 

1.8.1.4 Foam coating 

One of the most efficient textile coating, yet also highly difficult methods regarding the 

applicative setup is the foam coating process. The substrate has to fulfill distinct re-

quirements in terms of viscosity, shear resistance and chemical stability, since the dope 

has to be prepared thoroughly and foaming agents have to be added. The ideal mixture 

of both, yielding the dope, is purged by foaming gas followed by the application of high 

shear forces to generate stable foam with small volume bubbles, high surface area and 

highest foam to liquid ratio possible. The foam is further transferred onto the fabric sur-
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face, distributed equally and cut to a certain height by a doctor blade, comparable to the 

Foulard process. Subsequently, the foam is sucked through the textile by vacuum ap-

plied from underneath the fabric, for example by using a perforated drum roller. The 

foam collapses and a liquid film is built on the fabrics surface. Excessive and removed 

liquid is recycled. Finally, the fabric has to be dried. Compared to other coating methods 

the required drying energy after foam coating is minimized, since the residual moisture in 

the textile is lowered drastically at the benefit of optimized coating homogeneity.[192]  

 

1.8.2 Special coatings in form of nonwoven meshes 

Besides of the already named examples of classic coating methods, modern processing 

techniques offer a variety of unusual coatings. Advanced electrospinning processes al-

low the production of submicron nonwoven meshes from a variety of materials and the 

direct deposition on different surfaces. In comparison to protective planar coatings, multi-

layered submicron fiber meshes, based on tubular shaped electro-spun fibrils, offer an 

excessive increase in specific surface area, due to their small diameter and very low vol-

ume-to-surface area ratio. Nonwoven meshes additionally offer a virtually endless char-

acter of the basic threat at low material deployment.[193] These characteristics lead to 

potential applications as a carrier for pharmaceutical, chemical and other goal-driven 

reactants in active coating, as well as, applications being in need of extensive adhesive 

or separating surfaces - for example to purify oily industrial waste water or polluted oce-

anic water.[194,195]  

In medical research nonwoven coatings are analyzed to prevent attachment of microbes 

to implants and others by the usage of antibacterial dope material and blends thereof. 

Other approaches analyze the loading of the fibers with medically active substances by 

mixing those into the dope solution in order to obtain anti-infective material surface coat-

ings capable of releasing.[196,197] Recently increasing numbers of studies focus on submi-

cron nonwoven fibers as scaffolds in tissue engineering. For the production of ultra-thin 

and flexible cell sheets, fibroblasts are first seeded on chitin nonwoven meshes, which 

were subsequently combined to complex tissue replacements. Micro-pores and connect-

ed channels in the fiber network reassemble the topography of extracellular matrix, 

which facilitates cellular growth by supporting cell proliferation and differentiation.[198,199]  
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Other approaches utilized nanofiber nonwoven coatings from cellulose to reduce the air 

permeability and raised heat resistance of textiles, desired factors for functional sports 

and outdoor clothing.[200] Wool and jute cloths coated with electrospun PAN nano-fibrous 

membranes featured increased sound absorbency proving useful for the development of 

lightweight noise canceling cloths and curtains.[201] Due to their minimal diameter-to-

length ratio and the chaotic deposition during standard electrospinning processes, sub-

micron nonwoven meshes also exhibit smallest gaps and complex pores, when multiple 

meshes are stacked, perfectly suited for particle filtration purposes. Though, the me-

chanical stability of submicron nonwoven meshes barely allow their unattached employ-

ment. Acting as a fine dust filtration layer, in combination with supportive layers, nonwo-

ven meshes are a promising enhancement for high performance filter elements.[11,202] 
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1.9 Motivation and aim of the thesis 

Numerous studies have focused on the properties of recombinant spider silk proteins in 

regards to their applications in daily care, healthcare, and drug delivery.[11,125,202-214] Yet, 

technical applications are barely found in large-scale realizations, due to the complex 

transition of promising scientific discoveries to industrial scale. Hence, the investigation 

of the applicability of recombinant spider silk proteins for the improvement of everyday 

products and to reinforce their weak-spots is standing to reason. 

The aim of the work was the comparison and evaluation of the upscaling potential of two 

technical processes to improve two existing types of characteristic mass products. In a 

first approach a spider silk protein foam coating of furniture textiles was performed. The 

second project focused on the processing and comparison of fine dust filter materials 

using green polymers in comparison to synthetic ones. Therefore, precisely fabricated 

nonwoven meshes made of poly(ethylene oxide) (PEO), poly(lactic acid) (PLA), 

eADF4(C16) (engineered recombinant spider silk protein) and ChryC1 (recombinant 

lacewing silk protein) were used in a submicron regime using electrospinning. 

The scope of this work is divided into three consecutive main parts as displayed in Fig-

ure 1.15. 

1 Preliminary studies: Production and characterization of spider silk protein dope 

solutions adjusted for foam coating and electrospinning processes. 

In the beginning of this work, two different types of spider silk protein dope solutions 

should be developed, produced and characterized, meeting the requirements of foam 

production, as well as, electrospinning. Therefore, a low concentrated aqueous spider 

silk protein solution with low viscosity, low vapor pressure and foaming agent for foam 

production was necessary. On the other part higher concentrated electrospinning dopes 

containing different crude oil-derived, as well as, green polymers (spider and lacewing 

silk protein), should be analyzed using highly volatile organic solvents. 
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2 Small-scale experiments with basic elements: Foam coating of single yarns, elec-

trospinning of nonwoven fiber meshes and analysis of beneficial effects. 

In the subsequent step, the solutions should be used to perform laboratory scale experi-

ments. Concerning furniture textile improvement, spider silk protein foam coating on sin-

gle yarns of different raw materials should be performed, followed by process optimiza-

tion to enhance homogeneity. In addition, characterizations regarding coating stability 

and protective effects in the presence of abrasive strain should be carried out. Submi-

cron nonwoven meshes for filtration applications should preliminary be produced by elec-

trospinning on polyamide supports and analyzed in terms of particle deposition and air 

permeability. 

3 Upscaling experiments: Processing of foam coated textiles and centrifugal elec-

trospun nonwoven fiber meshes and evaluation of results and practicability. 

In a final step, the preliminary gathered results should be used to perform upscaling ex-

periments. Regarding the finishing of textiles, the foam coating of complete furniture tex-

tile fabrics should be performed in various numbers of cycles and analyzed in respect of 

the protective effects and durability. The production of spider silk protein nonwoven 

meshes, limited by the batch operating electro spinning process, should be initially trans-

ferred to a novel centrifugal electrospinning method, capable of producing large amounts 

of nonwoven meshes continuously. Then, all working parameters should be transferred 

and adjusted accordingly, followed by the characterization of their interaction and the 

impact of additional inherent parameters, such as rotational speed. 
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Figure 1.15: Flowchart of the outline of the work of this thesis. 
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2 Materials and Methods 

2.1 Materials and instruments 

2.1.1 Chemicals and Consumables 

Table 2.1: Overview of all used chemicals and consumables. 

Name 
Modell/ Type/ Molecular 

weight 
Producer/ Company 

1,1,1,3,3,3-hexafluoro-2-
propanol (HFIP) 

- 
Alfa Aesar (Karlsruhe,  
Germany) 

5/6-carboxyfluorescein 
succinimidyl ester (NHS-
fluorescein) 

46410 
Thermo Fischer Scientific 
(Waltham, USA) 

2-propanol ≥ 99,5 %, p.A. 
Carl Roth (Karlsruhe,  
Germany) 

Arizona fine dust A2 0.2 – 8.9 µm, ISO 12103-1 
PTI Powder Technology  
(Arden Hills, USA) 

Cannula flattened (electrode) Sterican (19Gx2”, 30 mm) 
B. Braun Melsungen 
(Melsungen, Germany) 

Dust Bag (commercial) AEG/ AE120 
MicrofiltPlus (Frankfurt am 
Main, Germany) 

Ethanol (EtOH) 96 % 
Carl Roth (Karlsruhe,  
Germany) 

Poly(lactic acid) (PLA) 39 kDa Toray (Düsseldorf, Germany) 

Poly(ethylene oxide) (PEO) 400 kDa 
Sigma-Aldrich (St. Louis, 
USA) 

Conductive adhesive carbon 
dots (∅: 12 mm) 

G3347 

PLANO (Marburg, Germany) 

Conductive adhesive alumi-
num tape 
(25 mm x 5 m) 

G3350C 

Conductive adhesive alumi-
num tape 
(12 mm x 5 m) 

G3349C 

Foaming agent Ultravon JUN, non-ionic 
Huntsman Textile Effects 
GmbH, (Langweid, Germa-
ny) 

Guanidinium-thiocyanate - 
Carl Roth (Karlsruhe, Ger-
many) 
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Hydrochloric acid - 
Carl Roth (Karlsruhe, Ger-
many) 

Methanol ultra-pure 
VWR International (Radnor, 
USA) 

Pin sample holder 
(∅: 12.5 mm) 

G301 PLANO (Marburg, Germany) 

Recombinant lacewing silk 
protein (ChryC1) 

82 kDa 

Martin Neuenfeldt, Lehrstuhl 
Biomaterialien, Universität 
Bayreuth (Bayreuth,  
Germany) 

Recombinant spider silk  
protein (eADF4(C16)) 

48 kDa AMSilk (Planegg, Germany) 

Sodium Chloride - Merck (Darmstadt, Germany) 

Standard cotton testing fabric SM25 
Rohleder (Konradsreuth, 
Germany) 

Syringe (dope storage) Inkjet (0.01 mL - 1 mL) 
B. Braun Melsungen 
(Melsungen, Germany) 

Trichloromethan 
(TCM, chloroform) 

- Merck (Darmstadt, Germany) 

Tris(hydroxyl-methyl)-amino-
methane (TRIS) 

- 
Carl Roth (Karlsruhe,  
Germany) 

Ultra-pure water (H2O) MilliQ 
Merck Millipore (Darmstadt, 
Germany) 

Urea - 
BDH Prolabo (Darmstadt, 
Germany) 

Spider silk enhanced dust bag - Filter layer and support Material 

Name Pore size [µm] Producer/ Company 

Polyamide woven  
(PA-80/105) 

80 
Schwegmann Filtrations-
Technik (Grafschaft-
Gelsdorf, Germany). 

Polypropylene fleece  
(spun bond) 

500 
Sandler AG (Schwarzbach  
a.  d. Saale, Germany) Polyester fleece  

(staple fibers) 
2000 

 

2.1.2 Textiles and yarns 

Textile fabrics and yarns in different fineness (1 tex = 1 g/ km) were acquired from Rohle-

der GmbH, (Konradsreuth, Germany). The used materials contained a rayon-linen mix-

ture (CV/Li, 70/30, staple fiber yarn, Art. 69, 111 tex), pure linen (Li, staple fiber yarn, Art. 
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927, 71 tex), poly(acrylonitrile) (PAN, staple fiber yarn, Art. 355, Nm 31 tex) and 

poly(ethylene terephthalate) (PET, filament yarn, Art. 66, Nm 48 tex).[215,216] 

 

2.1.3 Instruments and devices 

Table 2.2: Overview of used devices for analytics and material processing. 

Type of device Modell Producer 

Akustron air permeability 

tester 
ALD-150 

rycobel group (Uffenheim, 

Germany) 

Balance ALC-3100.2 
Acculab (Göttingen,  

Germany) 

Cell disruption device 
Sonopuls HD3200 with KE76 

ultrasonicator 

Bandelin GmbH (Berlin, 

Germany) 

Centrifuges 

Haereus Pico 17 

Thermo Fischer Scientific 

Inc. (Waltham, USA) 

Haereus Pico 17 

Haereus Multifuge 3SR+ 

Haereus Multifuge 1S-R+ 

Sorvall RC6+ 

Dip coating device WPTL5-0.01 MTI (Richmond, USA) 

Fermenter BIOSTAT B plus 5 L 
Sartorius (Göttingen,  

Germany) 

Foil-spraying / Foam-

coating-device 
V1 

Central Workshop (Univer-

sität Bayreuth, Germany) 

Fourier-transformation 

infrared spectrometer 

Tensor I with IR Microscope 

Hyperion 3000 

Bruker Corporation  

(Billerica, USA) 

Freeze dryer Alpha 1-2 LDplus 
Christ GmbH (Osterode im 

Harz) 

Heating chamber 

OV-SS-00AB MTI (Richmond, USA) 

Haereus Function Line 
Thermo Fischer Scientific 

Inc. (Waltham, USA) 

Light and fluorescence 

microscope 

DMI3000B 

Leica Microsystems GmbH 

(Wetzlar, Germany) 

DMI1 

DMI8 

HXR-R 120W/45C VIS lamp 
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Magnetic stirrer  

(with heating) 
RCT basic 

IKA GmbH (Staufen,  

Germany) 

Martindale testing device 
NU-Martindale 864 with  

SM25 (standard cotton textile) 

James H. Heal & Co. Ltd., 

(Halifax, Great Britain) 

Microbalance Discovery 
Ohaus Inc. (Pine Brook, 

USA) 

Particle counter/ analyz-

er 
Palas MFP 2000 

PTI Powder Technology 

Inc. (Arden Hills, USA) 

Rheometer ARG2 

TA Instruments Waters 

GmbH (Eschborn,  

Germany) 

Scanning electron mi-

croscope (SEM) 

Gemini, Sigma 

300 VP/ 1540 ESB Cross 

Beam, 

Carl Zeiss Microscopy 

GmbH 

(Jena, Germany) 
LEO1530 

Sputtering device 208HR 
Cressington Scientific  

(Watford, GB) 

Stirrer (laboratory) RZR 2020 

Heidolph Instruments 

GmbH & Co. KG  

(Schwabach, Germany) 

Tensile testing device ElectroForce 3220 
Bose Corporation (Eden 

Prairie, USA) 

Ultracentrifuge Optima MAX-XP 
Beckman Coulter Inc. 

(Brea, USA) 

UV-Vis Spectrophotome-

ter 

NanoPhotometer P330 
Implen Inc. (La Baya Drive, 

USA). 

Nanophotometer NanoDrop 

1000  

Thermo Fischer Scientific 

Inc. (Waltham, USA) 

Varian Cary 50 
Agilent Inc. (Santa Clara, 

USA) 
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2.1.4 Software 

Table 2.3: Overview of used software for device operation, analysis, and graphic processing. 

Name Specification Developer/ distributor 

Acrobat 9Pro 
Adobe Systems Inc.  
(San Jose, USA) 

Endnote  X4 
Thomson Reuters  
(New York City, USA) 

Illustrator 
Creative Suite (CS)5 

Adobe Systems Inc.  
(San Jose, USA) Photoshop 

ImageJ 1.47v 
Wayne Rasband, 
(Bathesda, MD, USA) 

Leica Application Suite V4.3 Leica (Wetzlar, Germany) 

Mathematica 10.3 
Wolfram Research  
Inc. (Champaign, USA) 

Office  Professional Plus 2010 
Microsoft Corporation  
(Albuquerque, USA) 

Opus Quant, V 6.5 
Bruker AXS Inc.  
(Madison, USA) 

Paint V6.1 SP1 
Microsoft Corporation  
(Albuquerque, USA) 

Particle Analyzer Palas MFP 2000 
PTI Powder Technology 
Inc. (Arden Hills, USA) 

ProtParam - 
Swiss Institute of Bioinfor-
matics (Lausanne, Swiss) 

PVC application 5.11.1.3 
Implen Inc.  
(La Baya Drive, USA). 

Rheology Advantage 
Data Analysis V.5.8.2 TA Instruments  

(New Castle, USA) Instrument Control V.5.8.2 

Varian UV Scan 3.00(339) 
Agilent Inc.  
(Santa Clara, USA) 

Wintest 4.1 Bose (Eden Prairie, USA) 
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2.2 Recombinant production of ChryC1 lacewing and eADF4(C16) 

spider silk proteins 

Recombinantly engineered Araneus diadematus fibroin 4 (eADF4(C16), Figure S1) was 

purchased from AMSilk GmbH (Munich, Germany).[217] Chrysoperla carnea (C. Carnea) 

(ChryC1, Figure S2) lacewing silk protein was recombinantly produced in Escherichia 

coli (E. coli) BL21-Gold (DE3) pLysS from Novagen (Madison, WI, USA), and gene ex-

pression was induced by adding 0.5 mM isopropyl-β-D-thiogalactopyranoside (IPTG) at 

an optical density (600 nm) between 3.0 and 3.5. Cells were harvested after expression 

for 4 h at 30 °C. After cell disruption, the lysate was treated with heat (80 °C for 20 min), 

acetic acid (pH 4.2 for 2 h) and (NH4)2SO4 (fractional precipitation by using 0.8 M and 

1.5 M final concentration). The obtained pellets were washed with 1.6 M (NH4)2SO4, 

25 mM sodium phosphate, pH 8.0, solubilized in 6 M guanidinium thiocyanate (GdmSCN), 

dialyzed against 10 mM NH4HCO3 and lyophilized. Incubating eADF4(C16) silk protein 

with NHS-fluorescein (ßNHS = 1 µg/ mL) for 2 h, followed by dialyzes against aqueous 

50 mM Tris/HCl (pH 8) dissolved in ultra-pure water yielded fluorescently labeled silk pro-

tein. The labeling efficiency was 0.6 mol/ molsilk.  

 

2.3 Foam processing from spider silk solutions 

In a first step eADF4(C16) silk protein was dissolved in in 6 M guanidinium thiocyanate 

(GdmSCN, ßsilk = 75 g/ L), and dialyzed against aqueous 50 mM Tris/HCl (pH 7.5, 100 mM 

NaCl) dissolved in ultra-pure water (MilliQ, Merck Millipore, Darmstadt. Germany), fol-

lowed by a centrifugation step (20k rpm, 30 min). In a beaker (1000 mL) combined with 

four tubes (d = 3 mm) for aeration, the aqueous protein solutions were placed and purged 

at a pressure of 1 bar (g) and a flow rate of v̇ = 3000 mL/ h. Foaming agent (Ultravon Jun) 

was added at a concentration of 30 g/ L. Foaming of the solutions was further induced by 

mixing the air bubbles and solutions using a Heidolph RZR 2020 (Heidolph Instruments 

GmbH & Co. KG, Schwabach, Germany) with a three bladed propeller stirrer (PR 30) and 

a diameter of 58 mm, a shaft diameter of 8 mm, and a length of 400 mm at 1000 rpm for 

5 min each. Subsequently, the resulting foam was transferred into the foam application 

chamber. To perform fluorescent coatings, labeled foams were produced. Therefore, a 
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dope solution was prepared by mixing non labeled and labeled silk protein solutions at a 

ratio of (200:1). 

 

Figure 2.1: Foam production; A: aeration of coating solution, B: shearing of silk solution with 

mixing rotor, C: combination leads to foam creation with air flow rate v̇ [L/ h], air 

pressure pair [bar (g)] and number of revolutions ω [rpm]. 

 

2.4 Foam coating of fibers and fabrics 

Foam coatings were performed in a closed chamber. Initially, textile fabrics and single 

fiber yarns were placed and fixed on a transportation foil with a width of 150 mm. The 

coating was performed using a transportation velocity of 0.1 m/ min. A doctor blade was 

adjusted to cut the foam at a height of 3 mm above the sample. Due to the linear motion 

and a sufficient amount of silk foam, all samples were coated homogeneously and ran 

over a perforated cylinder. A vacuum was applied to cause the collapse of the foam and 

enabled the suction of remaining foaming dope through the textile, which could be col-

lected and upcycled. Drying of the coated samples was performed using heat radiation 

by infrared lamps at a distance of 100 mm and a temperature of 40 °C for 30 min. 

 

Air Air 

A B C 
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2.5 Processing of spider silk protein and polymer solutions for 

production of nonwoven meshes 

2.5.1 Electrospinning 

The electrospinning device was equipped with an x-y-axis movable spinning head to 

provide a homogeneous and widespread surface coating of up to 1.5 m2. Three equal 

filters (100 cm2) were made from each material to produce improved fine dust filtration 

layers on PA support and measured thereafter to determine one particle deposition data 

set. Both silk materials were dissolved in HFIP; PEO was dissolved in ultra-pure water, 

and PLA in TCM to achieve dope solutions. Before transferring into 1 mL syringes, serv-

ing as a dope reservoir and connected to blunt grinded cannulas used as spinning elec-

trode, all solutions were shaken for 48 hours. Spinning of submicron fiber meshes onto 

the poly-amide support mesh with a gap-width of 80 µm was carried out on a rectangular 

table (1100 mm x 600 mm), which acted both as counter electrode and collector table. 

Submicron fiber nonwovens were electro-spun using a constant flow rate of 4.4 µL/ min 

for all dope solutions. The electric field strength combining the voltage difference be-

tween both electrodes and the spinning height were both set individually for each materi-

al and dope concentration (see 3.2).  

 

2.5.2 Centrifuge electrospinning 

As a new application of electrospinning methods, centrifuge electrospinning combines 

centrifugal forces and electrostatic fiber production in one method, which is described in 

detail under 1.6.4.2. All spinning experiments were carried out at 20 °C and relative hu-

midity from 30 % to 60 %. Spinning dopes and solvents (PLA and TCM; PEO and water) 

were filled into respective storage containers and transported using a micro annular gear 

pump with 0.6 cm3 per revolution and 1.5 - 15 mL/ min. Spinning dopes from eADF4(C16) 

in HFIP were induced using a syringe pump modification with 25 mL filling volume and 

0.1 - 10 mL/ min at 8 mL/ min for 1 min. Spinning tests were performed at a preset combi-

nation of rotational velocity/ number of revolutions [krpm], spinning voltage [kV], and elec-

trode distances from 200 nm to 600 mm, for 60 s on polyamide mesh supports (100 cm2). 
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2.6 Processing of nonwoven meshes for filter production 

Submicron fibers from silk protein with increased α-helical and random coil structures are 

more fragile and dissolved by air humidity over time.[202] Ethanol, as well as, water vapor 

posttreatments were carried out to induce and maximize crucial β-sheet secondary struc-

ture as previously published.[122,202] Additionally, partial melting of fiber crossings at their 

surface and subsequent re-solidification is a side effect of the posttreatment, strengthen-

ing the fiber-networks and enhancing filtration capability since fiber slipping is minimized, 

and pores remain constant in size. Spider silk protein (eADF4(C16)) nonwoven samples 

were placed hanging freely inside a sealable vessel (Figure 2.2, Step 1). Employing a 

syringe attached to a tubing system, the vessel was filled from the bottom with 50 mL of 

ethanol and placed on a heater to induce 60 °C for 120 min. After 10 min of cooling time, 

the collected liquid was extracted using the respective syringe. The procedure was then 

repeated with a water-filled syringe attached to a second tubing system (Figure 2.2, Step 

2). 

 

Step 1: vapor treatment with EtOH 
 Step 2: vapor treatment with H2O 

(humidification) 

 

 

 

Figure 2.2: Schematic procedure of post-treatment of electro-spun eADF4(C16) and ChryC1 

nonwoven meshes. Regarding eADF4(C16), the chamber was preliminary filled 

with ethanol and the sample was steamed at 60 °C for 120 min. In order to soften 

the nonwoven meshes for subsequent handling, ethanol was removed in a sec-

ond step, and the fibers were treated with water vapor according to step 1. For 

ChryC1, the post-processing is carried out with water vapor (Step 2) only, modi-

fied from.
[202]

 

60 °C 60 °C 
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2.7 Analytical methods 

2.7.1 Spectroscopic methods 

2.7.1.1 UV-Vis spectroscopy (foam coating efficiency) 

Analysis of textile foam coating efficiency, and therefore the analysis of the amount of 

spider silk protein on yarn material, was carried out using a Varian Cary 50 UV-Vis-

spectrometer by initially washing five samples (5 cm2) of each coated textile in a saturat-

ed urea solution (8 M, 25 mL) for 48 h. The solution was subsequently centrifuged at 

20k rpm for 30 min to remove fiber residues. A drop of the solution was transferred to a 

cuvette with integrated dilution of factor 50. All textile samples were tested in triplicates 

at 280 nm and concentrations were calculated by Equation 2.1, with absorbance, E [AU]; 

path length, d = 1 cm; ε = 47680 L/ (mol cm). 

 
𝐸 = 𝜀 ∗ 𝑐 ∗ 𝑑 

 

(2.1) 

 

2.7.1.2 Fourier transform infrared spectroscopy (FTIR) 

Secondary structural properties, as well as, structural changes upon posttreatment of silk 

protein nonwoven meshes were detected using FT-IR and subsequent Fourier self-

deconvolution (FSD). For each spectrum, accumulations of 60 scans were measured 

and averaged in transmittance-mode at wavenumbers ranging from 800 to 4000 1/ cm. 

One reference per spectrum was measured at surrounding conditions with dried air. For 

quantitative analysis of the data, FSD of amid I bands (between 1590 and 1705 1/ cm) 

was performed. The process includes baseline correction and a local least square fit to 

analyze single contribution peaks according to the corresponding peak positions previ-

ously published (1611, 1619, 1624, 1630, 1640, 1650, 1659, 1666, 1680, 1691, 

1698 1/ cm).[218] 
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2.7.2 Microscopy 

2.7.2.1 Polarized light or bright field microscopy 

Polarized light (PLM), as well as, bright field (LMBF) microscopy were both carried out 

using a stereoscopic microscope with light sources in the visible spectrum (halogen 

lamp, 100 W, 2900 K). To obtain bright field images, the samples were illuminated and 

observed from beneath, yielding images of the samples built-up from light reduced are-

as.  

Regarding PLM, the light was primarily polarized by 90 ° using a first polarizing lens be-

fore being led on the samples, subsequently passing a second polarizing filter (analyzer). 

The polarized light is unable to pass the analyzer and the field of view therefore appears 

dark. Highly ordered crystalline structures offer the feature of double refraction due to 

birefringence. Therefore, these structures are able to split light in a parallel and perpen-

dicular polarized component.[98] When passing samples containing such highly ordered 

crystalline structures, the already polarized light is again refracted, and the double polar-

ized fraction is now able to pass the analyzer. Hence, the structures of interest, and as a 

result the image of the analyzed sample, now appear bright in contrast to the shaded 

image in standard bright field microscopy.  

 

2.7.2.2 Fluorescence microscopy 

The distribution of spider silk on textile fabrics and yarn materials was studied by fluores-

cence microscopy. Therefore, samples of coated textiles and yarns before washing, as 

well as, after washing (see 2.7.4), were illuminated at an excitation wavelength of 494 nm 

using a mercury lamp. Subsequently, the reflected light was analyzed at an emission 

wavelength of 518 nm.  
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2.7.2.3 Scanning electron microscopy (SEM) 

The prepared samples were attached to aluminum sample holders using double sided, 

adhesive carbon dots, wrapped laterally using aluminum tape and subsequently 

sputtered with a 2 nm thick platinum layer by vacuum evaporation for 2 min.  

The morphology of the coated yarn or textile surfaces, as well as, all fiber meshes were 

characterized using scanning electron microscopy at a voltage of 3 kV.  

 

2.7.3 Rheological characterization of foaming and spinning dopes 

Silk protein solutions were rheologically characterized using a rotational rheometer, a 

cone-plate system (d = 40 mm, 0.5 °), and a sample volume of 180 µL. A flow procedure 

with a logarithmic shear ramp at shear rates (𝛾 ̇ [1/ 𝑠]) ranging from 2.86 1/ s to 286.4 1/ s 

was set up and ten points were collected and averaged per decade (100 points). All 

samples were pre-heated to 25 °C. 

 

Figure 2.3: Schematic illustration of the cone-plate system implemented in the rheological 

characterization set-up with a truncation gap between cone and heating plate, a 

sample placed between both components with a sample volume of V = 180 µL, a 

cone diameter of d = 40 mm and a cone angle of 0.5 °. 

 

M 

d =40 mm  

Cone angle: 0.5° 

Heating plate 

Truncation gap  

Cone  

Sample  
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2.7.4 Analysis of coating stability and efficiency 

To evaluate the stability and efficiency of the coating process, tests were performed us-

ing fluorescently labeled silk protein coated yarn or fabric. In the first step, all coated tex-

tile samples were flushed with 1 mL ultra-pure water or ethanol with subsequent drying 

step at 40 °C for 30 min. This procedure was repeated three times. The amount of silk 

protein applied to the textile fabric was further washed off the samples by incubating 5 

pieces of 25 cm2 surface area per textile in 8 M urea for 48 h. The solution was centri-

fuged at 20 krpm for 30 min to remove textile residues. The amount of dissolved protein 

was finally analyzed using UV-Vis spectroscopy at a wavelength of 280 nm. 

 

2.7.5 Mechanical analytical methods for foam coated yarns and textiles 

In reference to furniture textile improvement, the resistance to mechanical stress repre-

sents the most important factor. Since the single yarns, as well as, the complex woven 

textiles were foam coated in this work, both types were analyzed in regards to their 

stress behavior in the form of friction, using standard testing textiles. 

 

2.7.5.1 Characterization of yarn to fabric friction (capstan test) 

A testing standard for analyzing the friction coefficient after capstan was modified to 

characterize coated yarns.[219-221] Briefly, a wooden cylinder with a diameter of 22 mm 

was fixed in a traverse and covered with a stripe of standardized cotton fabric (SM25). 

The yarn was connected to a weight (10 mN/ tex) on one end and fixed on the other. The 

yarn was then wrapped around the standard fabric on the wooden cylinder perpendicu-

larly. Vertically reciprocating movements (6 mm, 0.33 mm/ s, n = 10) were generated by a 

movable framework of a tensile testing device inducing pills and knots on the yarn sur-

face. Subsequently, profile plots were made by computational transferring visual images, 

created by light microscopy, into black and white pictures. The hairiness index (H 

[µm2 cmyarn
2]) was implemented and used to describe the total black pixel surface area 
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regarding the strained yarn [µmblack pixel / cmyarn]. This allows the numerical comparison of 

fraying reduction.[222] 

 

 

Figure 2.4: Schematic illustration of yarn to fabric characterization modified after Capstan test 

with a standard cotton textile SM25 attached to a cylinder, the fiber is connected 

to a weight on one end and to a force sensor on the other; a vertically reciprocat-

ing movement of the construction caused a scrubbing and the induction of nod-

ules on the yarn indicating its destruction; modified after sources 
[219]

 and 
[220]

. 

 

2.7.5.2 Fabric to fabric characterization - abrasion resistance (pilling) 

Pilling was tested for coated textile fabrics modified after a Martindale abrasion re-

sistance test according to norm EN ISO 12945-2, using a NU-Martindale testing device 

as depicted in Figure 2.5.[223] A standard cotton textile (SM25) was attached to a stamp 

and pressed onto the textile sample (d = 140 mm) with a contact force of 3.8 N. Pilling of 

the fabric was visually evaluated after defined revolutions (500, 1000, 2000, 5000) in 5 

main and 8 sub quality categories.[224] 

v [mm/s] 

Strained yarn region 

with nodule buildup 

Standard cotton 

fabric SM25 

Fixation 
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Figure 2.5: Schematic abrasion resistance (pilling) test module after Martindale in accord-

ance with EN ISO 12945-2 with a SM 25 cotton standard textile attached to a 

stamp-like mounting which is pressed onto the textile sample and rotated; the 

suspension is moving in x and y direction to cover the whole surface; the rotation-

al movement destroys the textile surface integrity by the build-up of pills and nod-

ules. 

 

2.7.6 Filtration efficiency tests 

2.7.6.1 Air permeability measurements 

All filter-set-ups were tested in triplicate and ten points per sample. Air permeability of 

the filter layers was determined using an Akustron air permeability tester at a pressure 

drop of 200 Pa in a range of 30 - 3000 L/ m2 volumetric air stream. Values of ten different 

spots per filter layer were used to determine the arithmetic mean of air permeability. 
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Sample with arising pills 

and nodules on strained 
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textile SM25 with applied 

compression force 
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2.7.6.2 Particle deposition measurements 

Particle deposition was evaluated in triplicates using a Palas particle analyzer. Fine dust 

(A2 - Arizona fine test dust), according to ISO 12103-1, was used with particle sizes rang-

ing from 0.2 - 8.9 µm. Filters of 28.3 cm2 circular testing surface were analyzed using 

300 mg/ m3 of dust. The inflow velocity was set to 0.025 m/ s for 30 s leading to a total 

dust volume of 42.5 L/ min. The pressure drop was determined automatically between 

clean and dust-filled filter layers to maintain the constant inflow velocity. 

Initially, single filter layers (electro-spun nonwoven on PA support) were tested and com-

pared. Their applicability as fine particle layers was tested in a dust-filled air stream. Best 

performing fine particle filter layers were implemented in a stacked setup of three filter 

layers for raw, intermediate, and fine dust particle filtration (see 3.2.2.3), representing a 

filter bag set-up and subsequently characterized in a dust filled air stream, as well. 

  



Results 

 
 

 

   

59 
 

3 Results 

3.1 Protective effects of spider silk foam coatings on furniture 

textiles 

The first aim of this work was to evaluate the benefit of a spider silk protein foam coating 

on textiles and therefore analyze the capability of strain reduction. The foaming dope 

was characterized using a rotary viscometer, followed by the screening of optimal foam-

ing parameters, the coating of sample textiles, and strain experiments. 

 

3.1.1 Textiles and yarns for coating 

The textiles, which were aimed to be coated and improved, are displayed subsequently 

in Table 3.1. The textiles were supplied by the Rohleder GmbH (Konradsreuth, Germa-

ny) and contained different combinations of the basic materials rayon (CV) and linen (Li) 

(CV/Li, 70/ 30, staple fiber yarn, Art. 69, 111 tex), poly(acrylonitrile) (PAN, staple fiber 

yarn, Art. 355, 31 tex), and poly(ethylene terephthalate) (PET, filament yarn, Art. 66, Nm 

48 tex).[215,216] 
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Table 3.1: Overview of used fabrics; fabric (N) containing 2/ 3 of natural material based LI 

and CV as well as 1/ 3 PET yarn with intermediate surface roughness, polymeric 

material fabrics based on PAN and PET yarns with high (P1) and low (P2) surface 

roughness, modified from.
[216]

 

 

3.1.2 Rheological analysis of spider silk foaming dopes 

Since viscosity is one of the most important inherent parameters and has a major impact 

on the foamability of a solution, the shear dependent dynamic viscosity of the foaming 

solutions was initially measured. The analysis of foaming dopes using a rotational rhe-

ometer revealed a similar curve shape of the tested solutions. At low shear rates 

(< 50 1/ s), viscosities appear to be about one magnitude higher than water (see Figure 

3.1). With increasing shear rates above 100 1/ s, an asymptotic approximation to con-

stant viscosity values, slightly higher than that of water, can be observed for all solutions.  

 Natural Polymeric 

Textile index N P1 P2 

Material 

composition [ wt %] 

LI / PET / CV 

47 / 34 / 19 

PAN / PET 

56 / 44 

PAN / PET 

56 / 44 

Textile mass mA  

[g/ m2] 
346 299 299 

Yarn fineness  

[g/ km] 
2.4 3.3 1.3 

Manufacturing technique Ring yarn Combed yarn Ring yarn 

Fabric treatment Steam pressed Wet stretched Steam pressed 

Resulting surface 

texturization 
Intermediate High Low 

SEM 

   

Resulting surface texturization picto-

graph 
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The relation between the shear rate γ̇ [1/ s] and the number of revolutions n [rpm] in a 

cone-plate rheometer system with a cone pitch angle α [rad] is described by Equation 

3.1.[225,226] For the given rheometer parameters (see Chapter 2.2) and propeller revolu-

tions of 600 - 800 rpm, the calculative shear rates were about 6200 1/ s (800 rpm) -

 10500 1/ s (1000 rpm). Since these values are higher than the operating range of the 

used rheometer, the maximum shear rate of 300 1/ s was applied and the resulting vis-

cosities were measured. The resulting number of revolutions of 24.2 rpm was also taken 

into consideration. 

 

𝛾̇ =
2 ∗ 𝜋 ∗ 𝑛

60 ∗ tan 𝛼
 

 

(3.1) 

 

 

Figure 3.1: Dynamic rheology of foaming dopes with different silk protein concentrations, 

10 g/ L (A), 2 g/ L (B), 0.1 g/ L (C), each solution contains the foaming agent Ul-

travon Jun (3 g/ L). 

 

The highest silk protein concentration resulted in the highest viscosity (0.002 Pa/ s) for all 

tested solutions. The overall low values that were tested led to the assumption that foam 

dope concentrations are not likely to have a significant impact on foaming results. 

Hence, for all following tests, the highest tested concentrated foam dope (A) was cho-

sen. 

1.E-03

1.E-02

1.E-01

0 50 100 150 200 250 300

D
yn

am
ic

 v
is

co
si

ty
 η

[P
a 

s]

Shear rate     [1/s]

10 g/L

2 g/L

0.1 g/L

Water

𝜸̇ 

10-3

10-2

10-1



Results 

 
 

 

 

62 
 

 

 
 

 

3.1.3 Analysis of foam coating parameters 

To find the best foaming parameters at laboratory conditions, 10 g/ L silk solution was 

foamed (see Chapter 2.3) at different air pressures and at altering numbers of revolu-

tions. To describe the quality of the foaming process, the blow ratio, which describes the 

ratio of the dope solution mass to the mass of the generated foam displayed in Equation 

3.2, was used.[227] 

 

𝑏𝑙𝑜𝑤 𝑟𝑎𝑡𝑖𝑜 =
𝑚𝑑𝑜𝑝𝑒

𝑚𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑓𝑜𝑎𝑚

 (3.2) 

 

The air pressure (𝑝𝑎  [𝑏𝑎𝑟 (𝑔)]) had a specific influence on the foamed medium (Figure 

3.2 A). Lowest (0.5 bar (g) and highest (2 bar (g)) air pressures resulted in similar amounts 

of foamed medium, while an air pressure of 1 bar (g) resulted in the maximum amount of 

foam with about 38 % at 3.5 L/ h air flow rate (𝑉̇𝑎 [L/ h] ). Subsequently, the amount of 

foamed medium was tested at different rotational speeds (n [rpm]) and at the optimum 

air pressure of 1 bar (g), regarding the air flow rate. The amount of foam clearly increased 

with higher numbers or revolutions and had a distinct peak at 3.5 L/ h air flow rate in all 

tests (Figure 3.2 B). Since 1000 rpm was the highest possible number of revolutions in 

the given setup, this value was chosen for all further laboratory scale tests. The air flow 

rate of 3.5 L/ h, which lead to the highest amounts of foam in both tests, was fixed for all 

further steps. 
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Figure 3.2: Foamed spider silk media (10 g/ L) amount and the blow ratio at 800 rpm (A); and 

at 1 bar (g) (B). 
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3.1.4 Distribution of spider silk foams on furniture textiles 

A textile mostly composed of natural components (N, linen and rayon) with intermediate 

roughness was coated with aqueous spider silk protein foams and compared to a 

smooth (P2), as well as rough (P1), polymeric textile, treated likewise. The coating re-

sulted in a smoothening of the surface roughness on all tested fabrics (Figure 3.3 A1-A3 

and B2). 

Fabric 

Fluorescence 
Microscopy 

SEM 

1x coated 1x coated 2x coated 

Natural (N) 

   

Polymeric 
rough (P1) 

   

Polymeric 
smooth (P2) 

   

Figure 3.3: Overview of fluorescence and scanning electron microscopy images of coated 

natural (N, A1-A3), rough polymeric (P1, B1-B3) and smooth polymeric (P2, C1-

C3) yarns after single and double coating. Fluorescence images indicating homo-

geneous coverage of all tested textiles (A1, B1 and C1) not providing inherent flu-

orescence. Film-like coatings cover single fibers of the yarn (A2, C3) and fiber-

interconnecting bridges (A3, C2) are depicted. Increasing film thickness is 

reached upon a second coating step (B2, B3), modified from.
[216]
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Coating efficiency differed according to the surface roughness of the fabric (Figure 3.4). 

Whilst the rough polymeric fabric took up 87 % (w/ w) of the total amount of silk included 

in the coating foam, the smoothest fabric (P2) only took up 29 % (w/ w) in the first coating 

step. A second coating step resulted in a decreased absorbance of silk on the surfaces. 

 

Figure 3.4: Analysis of the protein amount in the used foam vs. the adsorbed protein amount 

on the fabric for single-coated and double-coated (repeated first coating step) tex-

tiles. 

 

3.1.5 Coating stability and protective effects of spider silk on single yarns 

Yarn fraying tests were carried out to investigate the impact of silk foam coating on sin-

gle yarns. Silk coated yarns showed a reduced fraying behavior compared to uncoated 

ones as depicted for linen yarn in Figure 3.5 and in Table 3.2. Compared to uncoated 

yarn (Figure 3.5 A), fewer fibers were ripped out of the matrix (Figure 3.5 B). A conver-

sion into black/ white pixel with subsequent ratio analysis revealed a wider peak after 

fraying in case of the uncoated samples, compared to silk coated yarns (Figure 3.5 C-E). 

The numerical comparison of fraying reduction upon silk coating was achieved by deter-

mining the hairiness index H [µm2/ cm2
yarn]. This ratio describes the total black pixel area 

in square-µm per square-centimeter of yarn (Table 3.2).[222]  
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The reduction of fraying differed in dependence of the surface roughness of the used 

textile fibers. It was less for smooth fibers like PET (6 %) or CV (13 %), compared to the 

highest values for structured fiber materials like LI (36 %) or PAN (51 %). 

 

Figure 3.5: Fraying test of a LI fiber yarn, Art. 927 (textile N), uncoated yarn after fraying test 

(A), spider silk coated yarn after fraying test (B); Examples of yarn fraying test 

analysis using black/white pixel ratio analysis of uncoated yarn volume after fray-

ing (C), silk coated yarn volume after fraying (D) and overlay of C and D for direct 

comparison (E), modified from.
[216]

  

 

Table 3.2: Single fiber fraying test and reduced single fiber fraying upon coating, modified 

from.
[216]

 

Yarn material 

Hairiness index H 

[µm
2
/ cm

2
yarn] 

Reduction of 

fraying [%] 

Uncoated Coated Coated 

Linen (LI) 279 206 36 ± 13 

Rayon (CV) 339 301 13 ± 3 

Poly(acrylonitrile) (PAN) 503 333 51 ± 21 

Poly(ethylene terephthalate) (PET) 268 253 6 ± 1 
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The coating stability was tested by washing with water and ethanol (Table 3.3). The wa-

ter washing test and ethanol washing test led to no destruction of the coating on the indi-

vidual fibers. Only connecting points between single fibers were diminished in yarn mate-

rials with smooth surfaces like polyester (with water, as well as, with ethanol) and rayon 

(ethanol).  

 

Table 3.3: Coating stability, tested by washing with water and ethanol; ten independent 

samples were tested (ns = 10), modified from.
[216]

. 

Yarn material 

Water washing test  Ethanol washing test 

Film 
Fibrous 
Bridges 

 Film 
Fibrous 
Bridges 

Linen (LI) + +  + + 

Rayon (CV) + +  + - 

Poly(acrylonitrile) (PAN) + +  + + 

Poly(ethylene terephthalate) 
(PET) 

+ -  + - 

 

3.1.6 Abrasion tests of spider silk coated fabrics 

The textile quality was measured by the application of strain and the subsequent ap-

pearance of pilling for untreated textiles compared to the reduction of pilling after silk 

coating. In all cases, natural textile fabrics showed a low tendency of pilling (Figure 3.6 

A). Spider silk coating slightly improved the textile integrity regarding intermediate strain. 

An additional coating step (i.e. double coating) led to a further improvement of the long-

term resistance by 17 %. The polymeric fabrics, both comprising PAN-filaments and 

PET-staple yarn fibers arranged in combed yarn matrix, showed increased basic rough-

ness. Upswelling stress led to a direct drop of integrity in the case of uncoated fabrics. 

Regarding the spider silk coating, the fabric quality was significantly increased after 

strain by up to 200 % (see Figure 3.6 B (P1), 5000 rounds uncoated vs. double coated) 

throughout all numbers of revolutions. Especially at long-term abrasion (5000 rounds) 

the tendency to pill was significantly reduced. An additional second coating step had no 

additive effect. 
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Regarding the smooth polymeric textile P2, the initial strain on uncoated textile had a 

similar destructive effect compared to that on P1 in the case of short-term strain (Figure 

3.6 C (P2)). Upon silk coating, the abrasion resistance was significantly improved by 

more than one quality category throughout the complete range of strain (revolutions). For 

long-term strain the quality was seen to nearly doubled. In addition, for coated textile P2, 

an initial gradual decrease in remaining textile quality could be recorded. As seen previ-

ously, the second coating step showed no further effects on the textile integrity.  
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             Not coated     Single coated     Double coated     

Figure 3.6: Pilling abrasion test; A: rough partially natural fiber textile (N); B: rough polymeric 

textile (P1); C: smooth polymeric textile (P2). Three independent samples were 

tested for each material and level of strain/ number of revolutions (n = 3), modi-

fied from.
[216]

 

1

2

3

4

5

6

7

8

9

10

11

12

13

not coated single coated double coated

ca
te

go
ry

500 rounds 1000 rounds
2000 rounds 5000 rounds

1

3 -

5

4

1+

3

2 -

2 +

3 +

4  -

5  -

2

4 +

1

3 -

5

4

1+

3

2 -

2 +

3 +

4  -

5  -

2

4 +

1

3 -

5

4

1+

3

2 -

2 +

3 +

4  -

5  -

2

4 +

1

3 -

5

4

1+

3

2 -

2 +

3 +

4 -

5 -

2

4 +

very high
pilling

high pilling

very low pilling

low pilling

1

2

3

4

5

6

7

8

9

10

11

12

13

not coated single coated double coated

ca
te

go
ry

500 rounds 1000 rounds
2000 rounds 5000 rounds

1

3 -

5

4

1+

3

2 -

2 +

3 +

4  -

5  -

2

4 +

1

3 -

5

4

1+

3

2 -

2 +

3 +

4  -

5  -

2

4 +

very high
pilling

high pilling

very low pilling

low pilling

1

3 -

5

4

1+

3

2 -

2 +

3 +

4  -

5  -

2

4 +

1

3 -

5

4

1+

3

2 -

2 +

3 +

4 -

5 -

2

4 +

1

2

3

4

5

6

7

8

9

10

11

12

13

not coated single coated double coated

ca
te

go
ry

500 rounds 1000 rounds
2000 rounds 5000 rounds

1

3 -

5

4

1+

3

2 -

2 +

3 +

4  -

5  -

2

4 +

1

3 -

5

4

1+

3

2 -

2 +

3 +

4  -

5  -

2

4 +

1

3 -

5

4

1+

3

2 -

2 +

3 +

4  -

5  -

2

4 +

1

3 -

5

4

1+

3

2 -

2 +

3 +

4 -

5 -

2

4 +

very high
pilling

high pilling

very low pilling

low pilling

A (N) 

B (P1) 

C (P2) 



Results 

 
 

 

 

68 
 

 

 
 

 

3.2 Electrospun nonwoven mesh for the improvement of a 

filtration surface 

The second aim of this work was processing of nonwoven fiber meshes for the produc-

tion of filter materials using electro spinning. One intention was the establishment of an 

upscaling process for standard electrospinning.  

 

3.2.1 Preliminary analyzes  

The analysis of spinning dopes, including their viscosities and the resulting fiber diame-

ters (see Table 3.6), were preliminarily focused.  

 

3.2.1.1 Rheological characterization of spinning dopes 

The rheological analysis of the used polymeric and biomaterial spinning dopes revealed 

three regimes. The solvents with lower viscosities (about 1 mPa s), the biopolymers 

ChryC1 and eADF4(C16) with a constant viscosity at 0.1 Pa s and the PLA and PEO 

polymer dopes with the highest final viscosities at 1 Pa s (Figure 3.7). 

 

Figure 3.7: Mean viscosity of spinning dopes under increasing shear forces from 0 to 286 

1/ s. 
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In electrospinning processes, the dope solutions are extruded through cannula acting as 

an electrode and build droplets. Due to the electrostatic field strength those droplets are 

conically deformed (Taylor cone). Thereon polymer jets are emerging from the extruded 

droplet and solidify during their flight towards the collector plate. The shear rate of fluids 

in a cylindrical system is expressed by Equation 3.3. Lang described a required linear 

velocity of v = 33 m/ s for an accelerated cylinder roll to enable aligned collection of elec-

trospun silk protein submicron fibers.[228] For an inner cannula diameter, d = 0.8 mm, and 

the given speed of the polymer jets, v = 33 m/ s, a resulting shear rate of 𝛾̇ = 330.000 1/ s 

might be assumed. As a consequence, the tested viscosities after asymptotic approxima-

tion were set for each dope, in steady state at the highest shear rates (286 Pa s).  

 

𝛾̇ =
8 ∙ 𝑣

𝑑
 (3.3) 

 

Table 3.4: Asymptotic approximation values of rheological analysis of electrospinning dopes 

with dynamic viscosities of all used spinning dopes at highest tested shear rate. 

 Steady state dynamic viscosity η [Pa s] 

Shear rate 

𝜸̇ [1/ s] 
TCM Water HFIP 

PLA 
60 g/ L 

PEO 
35 g/ L 

ChryC1 
70 g/ L 

eADF4(C16) 
100 g/ L 

286 7.0•10
-4

 1.1•10
-3

 1.8•10
-3

 1.3•10
-1

 6.1•10
-1

 0.9•10
-1

 1.1•10
-2

 

 

3.2.1.2 Comparison of the dynamic dope viscosities and E-spun fiber 

diameters 

The comparison of the dope viscosities in relation to the employed dope concentrations 

revealed three different tendencies (Figure 3.8). For aqueous PEO solutions, a steep 

linear increase could be observed, whereas the dynamic viscosity of PLA showed a flat 

part and a steeper increase above 140 g/ L. 

In contrast to that, both recombinant proteins showed a similar increase over a broad 

range of dope concentrations not exceeding 1 Pa s. 
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Figure 3.8: Overview of resulting dynamic viscosities after rheological characterization of the 

used synthetic polymer (PEO, 400 kg/ mol and PLA, 39 kg/ mol) and the recombi-

nant proteins (eADF4(C16), 48 kg/ mol and ChryC1, 82 kg/ mol) at different dope 

concentrations. 

The analysis of the fiber diameter in relation to the dope viscosities revealed two different 

regimes. Dopes of synthetic polymers yielded a linear diameter increase with a maxi-

mum at 450 nm for PEO and more than 5 µm for PLA. Spinning of the recombinant pro-

teins resulted in overall smaller fiber diameters with a flat increase (Figure 3.9). 

 

Figure 3.9: Overview of resulting fiber diameters after electrospinning of the synthetic poly-

mer (PEO, 400 kg/ mol and PLA, 39 kg/ mol) and the recombinant proteins 

(eADF4(C16), 48 kg/ mol and ChryC1, 82 kg/ mol). 
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3.2.2 Electrospun nonwoven fiber meshes for filtration purposes 

To obtain fiber meshes of constant quality regarding fiber diameter and mesh thickness, 

optimal processing parameter setups were investigated for electrospinning fiber meshes, 

to include voltage and electrode distance. In a second step, the electrostatic field 

strength was calculated and analyzed. The parameters yielding best results were ana-

lyzed, and the fabricated fiber meshes were tested regarding their applicability for filtra-

tion purposes. 

 

3.2.2.1 Processing parameters for electrospinning 

The most effective electrode distance was analyzed by producing fiber mats from each 

dope, exhibiting the same deposition area. Therefore, the electrode distance and voltage 

difference had to be adjusted accordingly for each spinning dope. The mesh diameter of 

125 mm, obtained from the best spinning of eADF4(C16) dissolved in HFIP, 100 g/ L at 

15 kV, 50 % rH and a spinning distance of 125 mm (Figure 3.10 A), was set as reference.  

To meet similar mesh diameters for other spinning dopes, the ideal spinning distance for 

each dope concentration was evaluated by alternating the collector electrode distance 

until a nonwoven diameter of 125 mm was gained within 5 s of spinning. The ideal volt-

ages (see Chapter 3.2.2.2) and spinning heights (see Figure 3.10 B-D) were then taken 

as standard parameters for spinning fiber meshes (Figure 3.10). The relative humidity 

was set to 50 % (rH) in case of PLA, PEO and recombinant spider silk protein 

eADF4(C16), and 30 % (rH) for recombinant lacewing silk protein (ChryC1). 
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Figure 3.10: Electrode distance comparison for electrospinning of different polymer solutions; 

eADF4(C16) 100 g/ L (A), ChryC1 70 g/ L (B), PLA 60 g/ L (C), PEO 35 g/ L (D) at 

voltages 15 kV (A), 12.5 kV (B), 12.5 kV (C) and 27.5 kV (D). 

  

A 
 

B 
 

C 
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3.2.2.2 Relation between voltage and spinning distance (electrostatic field 

strength) 

The electrostatic field strength is defined as the voltage difference per electrode distance 

(Equation 3.4). It is one of the main parameters that influence the spinning processes. 

 

𝐸⃗  =
𝑈

𝑑𝑥

 [
𝑘𝑉

𝑚𝑚
] 

 

(3.4) 

The range of applicable spinning parameters (electrode distance and voltage difference), 

and the resulting electric field strength for all materials used in electrospinning processes 

at different dope concentrations in this work are depicted in Table 3.5. Highlighted values 

were used to generate the best fiber meshes. Additionally, the highlighted fields repre-

sent spinning experiments at spinning dope concentrations that yielded similar fiber di-

ameters. Electrospinning of those dopes was possible over a broad range of electric field 

strengths, but best results were obtained at 0.13 kV/ mm for ChryC1, 0.12 kV/ mm for 

eADF4(C16) and 0.10 kV/ mm for PLA (all dissolved in high volatile organic solvents), as 

well as, 0.08 kV/ mm for PEO (dissolved in water). The resulting electric field strength 

was dropping relative to the materials molecular weight and was dependent on the type 

of solvent. For those dissolved in organic solvents, the voltage difference remained al-

most identical and the necessary collector distances increased in an inversely propor-

tional fashion. Considering each material separately, the required electric field strength 

for electrospinning of the dopes was also directly proportional to the dope concentration. 

Regarding electrospinning, the possible operating parameters for each polymer and 

dope concentration were displayed in a matrix and were adjusted accordingly. After opti-

cal evaluation of the processed nonwoven meshes, the electric field strength yielding 

best nonwoven fiber meshes were collected and highlighted for each set (Table 3.5). The 

necessary electric field strengths were: 0.13 kV/ mm for ChryC1, 0.12 kV/ mm for 

eADF4(C16), 0.10 kV/ mm for PLA and 0.08 kV/ mm for PEO. 
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Table 3.5: Comparison of required electric field strengths for electrospinning of the tested 

materials, highlighted values depict dope concentrations, voltage differences, col-

lector distances and resulting electric field strengths to obtain best results and 

similar fiber diameters. 

 

  

Collector distance,  
dx  [mm] 

50 75 100 125 150 175 200 250 300 350 400 

Dope concentration  
c  [g/ L ] 

ΔU 
[kV] 

Electrostatic field strength 
[kV/ mm] 

C
ry

C
1

 50 10   0.10   

  

70 12.5 0.25 0.17 0.13 0.10 0.08 0.07 0.06 

90 15   0.15   

e
A

D
F

4
(C

1
6
) 60 10   0.08   

100 15 0.30 0.20 0.15 0.12 0.10 0.09 0.08 

140 25 
  

0.16 
  

180 20 0.20 

P
L

A
 

20 10.0   0.08   

60 12.5 0.25 0.17 0.13 0.10 0.08 0.10 0.06 

100 15.0 

  

0.12 

  
140 17.5 0.14 

180 20.0 0.16 

210 22.5 0.18 

P
E

O
 

25 22.5 
  

0.06 
  

30 25.0 0.07 

35 27.5   0.18   0.14 0.11 0.09 0.08 0.07 

40 30.0 

  

0.09 

  45 32.5 0.09 

50 35.0 0.10 

 

 ⃗⃗  
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3.2.2.3 Assembly and analysis of filter systems based on polymer and silk 

nonwoven mesh fibers 

Electro-spun fiber mats were deposited on polyamide mesh support (Figure 3.11 A) to 

cover the gaps and obtain an uniform fine dust filter layer on the support, as depicted in 

Figure 3.11 B. The amounts of fiber meshes, laid down per time interval, and hence the 

fiber mesh thickness, were adjusted by the spinning time, as well as, the dope concen-

tration. 

 

Manufacturing process of a spider silk protein enhanced dust bag 

  

 
 

 
 

Figure 3.11: Spider silk protein fiber mesh fine particle layer and complete dust bag production 

process with A: polyamide support material with 90 µm gap width, B: deposited 

nonwoven mesh on the support layer and C: exemplary particle deposition filtra-

tion test of fine particle filter layer as well as D: scheme of the complete spider silk 

protein based filter setup and E: scheme of a complete dust bag (double mirrored 

stack of D) and F: photograph of E, modified from.
[11]
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The electro-spun uniform fiber mats were tested regarding their filtration efficiency 

(particle deposition, air permeability and pressure drop) as a single layered fine particle 

filter (Figure 3.11 C), as well as, combined with intermediate-sized dust and raw dust 

filter layers acting as a complete dust filter (Figure 3.11 D). Filtration efficiency tests were 

performed for a complete dust bag. The raw particle filter layer (> 2 mm, polyester 

stacked fleece), combined with an intermediate filter layer (> 0.5 mm, polypropylene spun 

bond fleece) and the final layer based on eADF4(C16) spider silk nonwoven mesh 

enhanced PA support of 625 cm2 at a surface coverage of 100 mg/ m2 (Figure 3.11 D, 

top to bottom). The nonwoven mesh was oriented towards the inside of the stack, 

maintaining its mechanical integrity throughout the filtration process.  

In a commercial standard vacuum cleaner equipped with filter bags, the dust particle 

stream is led into the core of the filter bag and further passes the upper and lower filter 

stacks (Figure 3.11 E). To build a novel spider silk protein mesh enhanced filter bag 

prototype, two identical filtration stacks were combined by orienting the raw particle filter 

layers towards each other. The fine particle filter layers formed the outer layer of the final 

setup with the nonwoven coated sides facing to the inside. Thus, placed in a vacuum 

cleaner with a proper dust bag socket, the air stream reached the bags core, passing 

first the raw particle filter, then through the intermediate particle filter, and finally through 

the spider silk covered PA woven mat (Figure 3.11 E). A hole was cut through the center 

of the upper stack, to act as the inlet and enabling air guidance to the core of the double 

stack. The edges of the layer stack were fixed using pulsed ultrasound welding and cut 

to a final size of 400 cm2. A paper-filter adaptor was attached to the inlet hole enabling 

the deployment in a conventional vacuum cleaner, as shown in the photograph (Figure 

3.11 F).  

 

  



Results 

 
 

 

   

77 
 

Fiber mesh comparison 

Based on the two biopolymers, recombinant ChryC1 and eADF4(C16), and the synthetic 

polymers PEO and PLA, four different submicron fiber mats were produced and tested 

regarding their applicability as fine dust particle filters. Nonwoven meshes were spun 

from different dope concentrations (see 2.5), yielding fiber diameters from 80 nm to about 

400 nm in the case of ChryC1, 95 nm to about 400 nm using eADF4(C16), about 250 nm 

for PLA and about 220 nm for PEO. Filtration efficiency measurements revealed a clear 

dependency of the particle deposition on material, fiber diameter, and coating thickness. 

The recombinant lacewing silk protein ChryC1, as well as, eADF4(C16) were both solved 

in HFIP and electrostatically spun using the optimal parameters to yield negatively 

charged spider silk protein (PI: 3.48) and moderately negatively charged lacewing silk 

protein (PI: 5.8) fiber meshes (Table 3.6). In contrast, polymeric PLA was dissolved in 

TCM and PEO was dissolved in water since HFIP was not dissolving these materials. 

Dope concentrations comprised 60 (A), 100 (B) and 140 g/ L (C) of eADF4(C16) spider 

silk protein, as well as, 50 (A), 70 (B), and 90 g/ L (C) in case of ChryC1 lacewing silk 

protein, 60 g/ L of PLA and 35 g/ L of PEO. 

 

Table 3.6: Basic information of electro-spun nonwoven mats including materials, molecular 

weight, main fiber diameter, average pore size, surface charge at neutral pH and 

exemplary SEM images, modified from.
[11]

 

Material PLA PEO ChryC1 eADF4(C16) 

Molecular Weight 
M [kDa] 

39 400 84 48 

Fiber Diameter 
ØF [nm] 

245 +/- 53 221 +/- 52 

A 80 ± 24 A 95 ± 24 

B 205 ± 59 B 239 ± 49 

C 401 ± 91 C 402 ± 61 

Pore Size 
ØP [µm] 

7.3 +/- 2.2 4.7+/- 2.2 

A 2.9 ± 0.9 A 3.7 ± 1.4 

B 2.8 ± 0.8 B 2.3 ± 0.9 

C 1.8 ± 0.7 C 1.2 ± 0.6 
Surface charge at 

neutral pH 
neutral neutral negative negative 
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The produced fiber meshes from polymeric materials both exposed neutral surface net 

charges at neutral pH, whereas fiber mats spun from biopolymers exposed negative sur-

face net charges.[202,229-231] In addition, fiber diameters in all meshes were found to be 

dependent on both the molecular weight of the used polymers and the dope concentra-

tion. The higher the molecular weight, the larger the fiber diameter becomes and hence 

the dope concentration had to be lowered to yield fibers with equal diameters. Whipping 

effects and repulsive forces during electrospinning affected polymer jets and lead to a 

chaotic fiber deposition resulting in coherent pores with inhomogeneous but distinct di-

ameter distribution per layer and spinning set-up (PLA: ØP: 7.3 +/- 2.2 µm, pore fraction: 

97 %; PEO: ØP : 4.7 +/- 2.2 µm, pore fraction: 95.4 %; ChryC1 A: ØP: 2.9 +/- 0.9 µm, pore 

fraction: 96.7 %, B: ØP: 2.8 +/- 0.8 µm, pore fraction: 92,5%, C: ØP 1.8 +/- 0.7 µm, pore 

fraction: 80.8 %; eADF4(C16) A: ØP: 3.7 +/- 1.4 µm, pore fraction: 97.4 %, B: ØP: 2.3 +/-

 0.9 µm, pore fraction: 91.5 %, C: ØP: 1.2 +/- 0.6 µm, pore fraction: 73.2 %). Higher con-

centrated spinning dopes resulted in smaller pore sizes due to the decrease in viscosity. 

Whipping effects were consequently reduced. 

 

Deposition rates of electrospun fiber meshes on PA support 

a) Fiber meshes made from PEO & PLA  

In case of PLA, the particle deposition rate reached sufficient values, approaching those 

of the standard dust bag, only at a surface coverage of 210 mg m 2 (Figure 3.12 and Ta-

ble 3.7). Pressure drop rates were intermediate with 116 - 193 Pa (see 2.7.6.2) and in-

creasing with growing surface coverage values. In contrast, PEO nonwoven mats yielded 

reasonable particle deposition rates only at the highest tested surface coverage 

(210 mg/ m2), but especially for lower particle diameters deposition rates are considera-

bly below the reference value (standard dust bag). Yet, PEO fiber meshes also yielded 

the lowest pressure drop rates in all tested materials. 
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Particle deposition - PEO & PLA 
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Figure 3.12: Deposition rates of poly(lactic acid) (PLA) and poly(ethylene oxide) (PEO) mesh-

es with different grammage each on PA supports and of standard dust bag re-

spectively using a A2 - Arizona fine test dust.  

 

 

Table 3.7: Filter parameters and deposition rates of poly(lactic acid) (PLA) and poly(ethylene 

oxide) (PEO) meshes on PA supports using a A2 - Arizona fine test dust. Pressure 

drop differences Δp were determined between that of clean and dust filled filter 

layers. 

Parameter PLA PEO 

Mean fiber diameter  

d [nm] 
200 < x < 250 

Amount of layer material  

[mg/ m
2
] 

40 100 150 210 40 100 150 210 

Layer thickness LT [µm] 99 247 371 519 63 158 237 332 

Number of fiber mesh layers 440 1100 1649 2308 281 703 1054 1475 

Air permeability  

[L/ m
2

 s] 
2761 2486 1671 1091 2790 2455 2077 1430 

D
e
p

o
s
it

io
n

 R
a
te

 /
 

R
e
te

n
ti

o
n

 

Ret0.2 [%] 28 43 51 86 13 16 51 22 

Ret0.8 [%] 25 45 51 92 14 15 21 29 

Ret3.2 [%] 41 62 73 98 17 32 36 48 

Ret8.9 [%] 65 78 88 100 45 54 55 74 

 Δp [Pa] 

 116 127 129 193 23 30 34 40 
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b) Fiber meshes made from ChryC1 

Filter layers based on Lacewing-silk (ChryC1) showed good deposition rates but higher 

pressure drop rates compared to that of the two synthetic polymers. The correlation be-

tween fiber diameter and particle deposition was tested by ES dopes with different mate-

rial concentrations yielding different fiber diameters. Small fiber diameters (50 - 150 nm) 

lead to low particle deposition rates, while large fiber diameters (400 - 450 nm), yielded 

higher deposition rates at the cost of an increasing pressure drop. The combined best 

performance was achieved at intermediate fiber diameter and a surface coverage of 

210 mg/ m2 with intermediate fiber diameters (150 - 250 nm, 70 g/ L) exceeding that of a 

standard dust bag at eminent pressure drop rate (Figure 3.13 and Table 3.8). 

 

 Particle deposition - ChryC1 
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Figure 3.13: Deposition rates of lacewing silk protein (ChryC1) meshes (different grammage, 

as well as, dope concentrations) on PA supports in comparison to standard dust 

bags using A2 - Arizona fine test dust. 
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Table 3.8: Filter parameters and deposition rates of lacewing silk (ChryC1) meshes on PA 

supports using A2 - Arizona fine test dust. Pressure drop differences Δp were de-

termined between that of clean and dust filled filter layers, modified from.
[11]

 

Parameter ChryC1 

Mean fiber diameter 

d  [nm] 
A 50 < x < 150 B 150 < x < 250 C 350 < x < 450 

Amount of layer 

material  [mg/ m
2
] 

40 100 150 210 40 100 150 210 40 100 150 210 

Layer thickness LT  [µm] 90 224 337 471 38 94 142 198 13 32 48 68 

Number of fiber mesh 

layers 
898 2244 3366 4713 168 419 629 880 30 75 113 159 

Air permeability  

[L/ m
2

 s] 
2583 1919 1742 1428 1710 1326 1107 877 1579 867 783 645 

D
e
p

o
s
it

io
n

 

R
a
te

 /
 R

e
te

n
ti

o
n

 

Ret0.2 [%] 17 33 38 60 53 66 78 88 74 75 78 78 

Ret0.8 [%] 24 57 63 88 68 87 94 98 90 92 95 95 

Ret3.2 [%] 57 84 88 98 89 95 98 99 98 99 99 99 

Ret8.9 [%] 77 96 97 99 96 96 98 99 99 100 100 100 

 Δp [Pa] 

  26 82 89 123 96 196 227 320 183 186 200 306 

 

c) Fiber meshes made from eADF4(C16) 

Nonwoven meshes of spider silk eADF4(C16) showed an improved particle deposition at 

larger fiber diameters, but the pressure drop was seen to exceed the limit at those condi-

tions.[29] Similar to the other tested materials, thin fibers (50 - 150 nm, 60 g/ L) were not 

capable of sufficiently capturing the dust particles. Nonwoven fiber meshes made from 

eADF4(C16) showed the highest overall particle deposition of all materials tested at the 

cost of the highest pressure drop rates. Best combination of both parameters with good 

particle deposition rates, outcompeting that of standard dust bags, and acceptable pres-

sure drop rates were detected using fiber diameters between 200 nm and 250 nm for 

intermediate (100 g/ L) and highest (140 g/ L) tested dope material concentration, as 

shown in Figure 3.14 and Table 3.9. This is consistent with previously reported 

results.[202]  
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Particle deposition - eADF4(C16) 
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Figure 3.14: Deposition rates of spider silk protein eADF4(C16) meshes with different gram-

mage, as well as, dope concentrations each on PA supports and of standard dust 

bag respectively using A2 - Arizona fine test dust. 
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Table 3.9: Filter parameters and deposition rates of spider silk (eADF4(C16)) fiber meshes 

on PA supports using a A2 - Arizona fine test dust. Pressure drop differences Δp 

were determined between that of clean and dust filled filter layers, modified 

from.
[11]

 

Parameter eADF4(C16) 

Mean fiber diameter 

d [nm] 
A 50 < x < 150 B 150 < x < 250 C 350 < x < 450 

Amount of layer 

material  [mg/ m
2
] 

40 100 150 210 40 100 150 210 40 100 150 210 

Layer thickness LT  [µm] 113 282 424 593 31 78 117 163 8 21 31 44 

Number of fiber mesh 

layers 
311 776 1165 1632 138 345 518 725 73 183 274 384 

Air permeability  

[L/ m
2

 s]
 1396 757 492 352 1274 579 349 238 639 425 213 130 

D
e
p

o
s
it

io
n

 

R
a
te

 /
 R

e
te

n
ti

o
n

 

Ret0.2 [%] 83 89 96 69 69 92 99 100 78 98 97 100 

Ret0.8 [%] 84 90 96 86 86 99 100 100 92 98 98 100 

Ret3.2 [%] 86 92 97 97 97 100 100 100 98 99 99 99 

Ret8.9 [%] 88 92 98 99 99 100 100 100 99 100 100 100 

Δp [Pa] 

 109 163 198 295 128 241 286 453 239 370 535 869 

 

d) Particle deposition tests using a complete dust bag equipped with a spider 

silk protein based fine particle filter layer 

The best performing setup (eADF4(C16), 100 g/ L, 150 - 250 nm, 100 g/ m2) on PA mesh 

support was selected and implemented in a filter bag acting as a fine dust filter layer (see 

above). Particle deposition measurements revealed an outstanding filtration capability in 

this set-up, outperforming a standard dust bag (Figure 3.15). 
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Figure 3.15: Deposition rates of spider silk protein of spider silk (eADF4(C16)) fiber meshes on 

PA support implemented in a prototype dust bag in comparison of a prototype 

dust bag with PA support and without silk protein mesh fine dust filtration layer, as 

well as, a standard dust bag respectively using an A2 - Arizona fine test dust. 

 

This set-up yielded a decreased pressure drop, as well as, a better particle deposition 

throughout the whole particle range when compared to the commercial dust bag (Table 

3.10). The silk protein nonwoven layer clearly is the most important part of this set-up 

regarding particle deposition, as depicted in Figure 3.15. 
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Table 3.10: Filter parameters and deposition rates of spider silk (eADF4(C16)) fiber meshes 

on PA support implemented in a test dust bag (Figure 3 A) compared to that of 

the conventional filter using a A2 - Arizona fine dust test. Pressure drop differ-

ences Δp were determined between that of clean and dust filled filter layers. 

Parameter 
Conventional 

dust bag 

eADF4(C16) spider silk 

protein dust bag 

Mean fiber diameter d [nm] 

 

150 < x < 250 

Amount of layer material  [mg/ m
2
] 100 

Layer thickness LT [µm] 78 

Number of fiber mesh layers 345 

Air permeability  

[L / m
2

 s] 
250 503 

D
e
p

o
s
it

io
n

 r
a
te

 /
 

re
te

n
ti

o
n

 

Ret0.2 [%] 89 90 

Ret0.8 [%] 95 96 

Ret3.2 [%] 98 98 

Ret8.9 [%] 99 100 

Δp [Pa] 

 193 115 

 

Air permeability tests of electrospun nonwoven fiber meshes on PA support 

At fiber diameters of 200 nm - 250 nm, nonwoven PEO fiber mats showed good air per-

meability up to highest polymer surface coverage (Table 3.11). A similar result is ob-

tained for PLA nonwoven meshes. Though, for higher nonwoven mesh grammages air 

permeability was below that of PEO meshes. Spider silk fiber meshes extended spinning 

duration, and thus a higher surface material coverage, resulted in an exponential de-

crease of air permeability, whereas largest fiber diameters showed the upmost decreas-

ing influence. For the setup with 100 - 250 nm diameter of eADF4(C16) fibers, a minimal 

air permeability of 500 L/ m2s was reached at 100 mg/ m2 surface fiber mesh coating. Re-

garding lacewing silk protein ChryC1, fiber mesh diameters of 50 - 150 nm yielded a line-

ar decrease in air permeability at increasing amount of layer material.  
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Compared to spider silk protein, intermediate (100 - 250 nm) and large (350 - 450 nm) 

fiber diameters led to exponentially dropping air permeability rates at equal surface fiber 

mesh coverage. Though, higher values could be analyzed. The dust bag prototype 

showed rather high air permeability (about 1500 L/ m2 s) without a nonwoven fiber mesh 

layer and good air permeability (about 500 L/ m2 s) compared to single fine dust filter layer 

(250 L/ m2s). 

Table 3.11: Air permeability of different dust filter systems on PA mesh support, modified 

from.
[11]
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Quality factor analysis of a complete dust bag equipped with a spider silk 

protein based fine particle filter layer in comparison to a commercial dust 

bag 

The quality factor (QF) represents an important parameter for evaluation of filter materi-

als by describing the particle filtration efficiency in relation to the pressure loss, and 
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therefore the energy uptake. This factor was first introduced by Hinds, 1998.[232] Since 

the original formula contains the penetration value of dust particles not determined here-

in, the equation was modified according to the used set-up. The quality factor QF of a 

filter was determined from ten independent efficiency values for the conventional, as well 

as, the spider silk filter set-up and calculated by Equation 3.5 with particle deposition 

efficiency PD and pressure drop Δp.[233] 

 

𝑄𝐹 = ln[(𝑃𝐷)−1] ∆𝑝−1 
 

(3.5) 

The particle filtration QF of a conventional dust bag with x representing the particle di-

ameter and a linear regression was lower than the respective quality factor of the filter 

with a spider silk coated PA support layer (Figure 3.16) and showed a linear regression 

according to Equation 3.6. 

 

𝑅𝑄𝐹,𝑐𝑜𝑚𝑚.𝑏𝑎𝑔 = 0.003𝑥 + 0.008 

 

(3.6) 

 

Figure 3.16: Quality factor of a spider silk-containing filter set-up in comparison to that of a 

conventional one at different particle size and the pressure drop, modified from.
[11]
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The total filter quality of the spider silk enhanced filter was nearly doubled over the whole 

particle size range and increased exponentially. The regression of the silk dust bag QF 

was approximated by Equation 3.7. 

 

𝑅𝑄𝐹,𝑠𝑖𝑙𝑘 𝑑𝑢𝑠𝑡 𝑏𝑎𝑔 =  0.02𝑒0.13𝑥 

 

 
(3.7) 
 

 

3.2.3 Centrifuge electrospinning parameter analysis for large scale 

nonwoven mesh production 

Since the centrifuge electrospinning method and setup used in this work were novel and 

specialized for this task, the parameters for each dope had to be identified. Starting from 

the preliminarily discovered ideal electric field strengths for electrospinning, the addition-

al parameters were analyzed to complete the set-up. 

3.2.3.1 Characterization of voltage and rotational speed 

In centrifugal electrospinning the driving force is a combination of the electrostatic field 

and the centrifugal force, induced by the rotational speed of the center bell. Hence, 

three-dimensional graphs were used to compare the fiber mesh quality at different spin-

ning parameters. The evaluation of best fitting spinning parameters comprised data sets 

with an optically judged fiber mesh quality (1: worst to 7: best), see Figure 3.17) and 

combination of rotational speed and voltage (Figure 3.18). 
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Figure 3.17: Explanation and exemplary images of evaluation (quality) classes of centrifuge 

electro-spun fiber mats. 
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Aqueous PEO spinning dopes could be spun well at both high rotational speed and volt-

age, whereas lower combinations thereof yielded insufficient results (50 krpm, 90 kV). In 

contrast, PLA dope solutions were sufficiently spun under the whole range of applicable 

parameter combinations with best results obtained at low rotational speed and the high-

est voltage (20 krpm, 90 kV). The fiber meshes spun from spider silk protein 

(eADF4(C16)) showed optimal quality at low rotational speed and intermediate voltage. 

Consequently, for further tests the combination of 10 krpm and 50 kV was applied. 

 PEO 50 g/ l PLA 75 g/ l eADF4(C16) 60 g/ l 

 

 

 

 

 

 

 

 
Rotational speed ω [krpm] 

Figure 3.18: Three dimensional quality plots of centrifuge electro-spun nonwoven meshes 

using the materials PEO, PLA and eADF4(C16) at a voltage difference ΔU [kV] 

and rotational speed ω [krpm]; quality is rated from 1 (red, worst result, no fibers) 

to 7 (bright green, best result, dense and closed homogeneous fiber mesh). 

 

3.2.3.2 Electrode distance for centrifugal electrospinning of nonwoven 

meshes (Spinning height) 

In case of centrifugal electrospinning, the electrostatic field strength was tested similarly 

to that of electrospinning. Since the rotational motion of the spinning head creates a con-

stant nonwoven deposition area independent of the collector distance from the center 

bell, the deposition radius could not be taken into consideration as a parameter. The 

spinning quality was set as a measure in dependence of the axial distance from the dep-

osition area-center on the collector plate (Figure 3.19).  

Voltage difference  
ΔU [kV] 

Voltage difference  
ΔU [kV] 

Voltage difference  
ΔU [kV] 
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Therefore, 5 samples each were placed on the collector electrode at the center point 

(0, 0), (r/ 2, 0) and (r, 0) to evaluate the vertical spinning direction and (0, r/ 2) and (0, r) 

to evaluate the horizontal one. To reduce the dataset, it was assumed that the horizontal 

and vertical results could be considered as alike at same distances (r, r/ 2) starting from 

the center point, and therefore could be mirrored. 

 

Figure 3.19: Schematic collection of centrifugal electrospinning samples for disk extrapolation 

and electrode distance evaluation, three samples were placed into vertical, as 

well as, horizontal direction starting from the center of the deposition area. 
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As shown for PLA in Figure 3.20 A, the resulting spots on one plane (electrode distance) 

were extrapolated to sectors of rings and autocompleted to colored discs. Here, the re-

sulting mesh quality is directly displayed in the disks by gradually changing colors from 

7 (bright green, best mesh results) to 1 (red, no fibers obtained, worst results). The col-

ored stacked disc plot in case of PLA, centrifuge electrospun by using a dope solution 

with a material concentration of 75 g/ L, displays an ideal collector distance of 200 mm 

and rapidly dropping fiber mesh qualities at increasing collector distances. Herein, the 

ideal collector distance was focused in a small range. The resulting electric field strength 

of 0.45 kV/ mm represented the highest values in all tests. In contrast to that, the aque-

ous PEO spinning dope (50 g/ L) was spun with satisfying results over the whole range of 

applicable collector distances (Figure 3.20 B). Despite this, best results were obtained at 

about 500 mm and resulting electric field strength of 0.18 kV/ mm. Centrifugal electro-

spinning of recombinant spider silk protein eADF4(C16) resulted in a narrow range of 

applicable field strengths to produce a fiber mesh (Figure 3.20 C-E). Results obtained 

from centrifuge electrospinning dope with consistent parameters, but different voltage 

differences clearly illustrated the ideal electric field strength of 0.2 kV/ mm for 

eADF4(C16) dopes. 
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Figure 3.20: Colored disk stack height comparison of centrifuge electrospun PLA (A) and 

PEO (B) at optimal spinning parameters, as well as, of eADF4(C16) (60 g/ L) at 

voltage differences 50 kV (C), 70 kV (D) and 90 kV (C) and resulting electric field 

strengths at constant rotating velocities of 20 krpm.  

 

3.3 Influences of E- and CE-spinning on the resulting fiber mesh 

quality 

Fiber quality, in terms of fiber dimension and mechanics, are the utmost important quality 

indices for the evaluation of the used parameter set-up. Fiber diameter, morphology and 

secondary structure of the spun nonwoven fiber mesh coatings were analyzed and eval-

uated in this context.  
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3.3.1 Comparison of resulting fiber diameter in classical and centrifuge 

electrospinning 

Alternating dope concentrations in classical (ES) and centrifugal (CES) electrospinning 

yielded varying fiber diameters and differently shaped fiber mats. The fiber diameter ob-

tained from both classical and centrifuge electrospinning processes were influenced dif-

ferently by the spinning dope concentration. The different materials were each spun at 

optimized conditions for ES (see Table 3.5) and CES (PLA: 0.75 g/ L, 0.45 kV/ mm, 

20 krpm; PEO: 0.5 g/ L, 0.18 kV/ mm, 50 krpm; eADF4(C16): 60 g/ L, 0.2 kV/ mm, 20 krpm). 

For electrospun PEO, a maximal fiber diameter of about 500 nm at 50 g/ L dope concen-

tration was found. The diameter decreased about 50 - 100 nm with a dope concentration 

reduction of 5 g/ L. Yet, the minimal achievable fiber diameter was found to be 100 -

 200 nm at 25 g/ L (Figure 3.21 PLA). In contrast to that, CES of PEO was possible with 

dope concentrations of 50 and 75 g/ L only, resulting in fiber diameter between 

100 and 200 nm (Figure 3.21 PEO). A severe impact of dope concentration was ob-

served on the resulting fiber diameter for highly volatile solutions of PLA in TCM using 

ES. A broad range of applicable dope concentrations from 60 to 220 g/ L led to a linear 

increase of fiber diameter from 200 nm to 5 µm. Only the lowest spinnable PLA dope 

concentration led to satisfying fiber diameter (about 200 nm). Moreover, CES of lowest 

concentrated dope solutions (25 g/ L) led to fiber diameters below 100 nm (nano-fibers), 

whereas a linear increase in dope concentrations up to 75 g/ L both lead to maximal fiber 

diameters of about 200 nm. In the case of CES eADF4(C16) the average fiber diameter 

of about 150 nm was independent of the applied dope concentration (60 - 140 g/ L). In 

comparison, ES of eADF4(C16) lead to fiber diameters of 100 - 1000 nm exponentially 

increasing with dope concentrations between 60 - 180 g/ L. The lacewing protein ChryC1 

was spun only using ES in the concentration range of 50 - 90 g/ L resulting in linearly in-

creasing fiber diameters from 100 to 400 nm, compared to ES of eADF4(C16) (Figure 

3.21 and Figure 3.9) using the lowest possible dope concentration. 
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Figure 3.21: Fiber diameter comparison for classical and centrifuge electrospinning of all mate-

rials at all tested different dope concentrations, spun at best obtained conditions 

for ES (see Table 3.5) and CES (see Figure 3.20). 

 

Both classical and centrifuge electrospinning methods could be used for successful pro-

duction of submicron nonwoven meshes from PEO, PLA, ChryC1 and eADF4(C16) 

(Figure 3.22). 

0

100

200

300

400

500

600

0

100

200

300

400

500

600

0

1000

2000

3000

4000

5000

6000

0

100

200

300

400

500

600

0

200

400

600

800

1000

1200

0

100

200

300

400

500

600

0

100

200

300

400

500

600



Results 

 
 

 

   

97 
 

 ES CES 
P

E
O

 

βM: 35 g/ L, mA: 210 mg/ m
2
 βM: 50 g/ L, mA: 210 mg/ m

2
 

  

P
L

A
 

βM: 60 g/ L, mA: 210 mg/ m
2 βM: 25 g/ L, mA: 210 mg/ m

2 

  

e
A

D
F

4
(C

1
6
) 

βM: 60 g/ L, mA: 100 mg/ m
2 βM: 60 g/ L, mA: 210 mg/ m

2 

  

C
h

ry
C

1
 

βM: 60 g/ L, mA: 100 mg/ m
2  

 

 

Figure 3.22: SEM pictures of fiber meshes of all tested raw materials and dope concentrations 

yielding comparable nonwoven fiber meshes with same diameters for each mate-

rial processed with ES and CES. 

Electrospinning of PEO resulted in a beaded fiber morphology, whereas centrifugal elec-

trospinning led to fibers with a smooth surface and broad diameter distribution. In case of 

PLA, both methods yielded smooth fibers, but E-spun fibers appeared more homogene-

ous in regards to fiber diameters. Electrospinning of recombinant proteins yielded 
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smooth homogeneous fibers with small diameters, which were randomly, but insignifi-

cantly beaded in terms of eADF4(C16). Centrifuge electrospinning was carried out with 

eADF4(C16) only and yielded smooth and multifold fibers with increased diameter, but 

less heterogeneously when compared to centrifuge electrospun synthetic polymers.  

 

3.3.2 Influence of ES and CES on the secondary structure of spider silk 

fibers 

Transformation of a protein’s random coils or α-helices into more compact β-sheets, 

strengthens the protein fiber integrity and raises resistance in a humid environment.[234] 

Posttreatment by ethanol vapor was analyzed using FTIR, followed by subsequent Fou-

rier self-deconvolution (FSD).[235] The influence of this treatment could be quantified by 

analysis of the amide I band (Figure 3.23).  
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Figure 3.23: Fourier self-deconvoluted amide I band of an untreated (A) and a post-treated (B) 

spider silk nonwoven mesh. The solid line displays the absorbance band resulting 

from the single contribution peaks (dotted lines) as derived after deconvolution. 

The assignment of the respective curves was based on the published values from 

Hu et al.
[218]
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In as-spun fibers, this band was mainly composed of peaks related to turns, as well as, 

α-helical and unstructured regions resulting in a maximum at 1660 1/ cm. After posttreat-

ment, the maximum shifted to 1620 1/ cm with increased β-sheet content as analyzed by 

FSD. 

The structural content is displayed in Figure 3.24. As-spun silk protein nonwoven fibers 

exhibited a high content of alpha helical and random coil structures. This was determined 

to be about 50 % in total after ES. The low amount of β-sheet structures (about 12 %) 

increased to over 30 % by posttreatment at the expense of alpha helical (about 12 %) 

and random coil structures (about 18 %). Side chains and turns remained similar in both 

steps. In contrast, nonwoven meshes produced via CES revealed 20 % of β-sheet struc-

tures directly after spinning and comprised about 12 % of alpha helical structures. The β-

sheet structures were increased to over 30 % after posttreatment, which might be con-

sidered to be the achievable maximum. 

 

Figure 3.24: Secondary structure content of classical and centrifuge electrospun eADF4(C16) 

fiber meshes as spun and after ethanol vapor treatment, n = 3.  

 

The percentage of fibers, containing aligned structures, was additionally analyzed using 

birefringence in polarized light microscopy (Figure 3.25). Bright field microscopy revealed 

fiber meshes of comparable structure and morphology.  

0

10

20

30

40

50

alpha helix beta sheets side chains turns random coils

Se
co

n
d

ar
y 

st
ru

ct
u

re
 c

o
n

te
n

t 
[%

]

Secondary structure

ES as spun ES posttreated

CESD as spun CESD posttreated



Results 

 
 

 

 

100 
 

 

 
 

 

In polarized light, electrospun fiber meshes show a low degree of reflection, indicating 

reduced amount of anisotropy, whereas as-spun fiber meshes produced via CES, as well 

as, post treated ES and CES fiber meshes exhibited a high degree of birefringence. Cen-

trifugal electrospinning induced the build-up of anisotropic structures even before post-

treatment. 
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Figure 3.25: Optical images of ES and CES-spun eADF4(C16) fiber meshes as-spun and after 

ethanol vapor treatment with bright field (left) and polarized light microscopy 

(right). 
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4 Discussion 

Silk proteins are extraordinarily versatile and may be processed into different morpholo-

gies, encouraging researchers and engineers to experiment with different material com-

binations, shapes and processes to make use of the known mechanical and physico-

chemical properties for novel approaches. 

In this work two entirely different processing methods were used, a foam coating for pro-

tective purposes and a submicron fiber nonwoven mesh coating for the implementation 

in dust particle filter bags. Both methods and applications were investigated concerning 

their main processing parameters.  

 

4.1 Coating of industrially produced fibers using spider silk 

proteins 

The products to be coated were standard natural and polymeric fibers and their ad-

vanced form, provided as woven and fabrics. Although low concentration aqueous solu-

tions are standard in research and industry, standard coating procedures, such as fou-

lard processes and spray coating had to be discarded for aqueous spider silk protein 

solutions, since the high amount of required silk solutions showed high material and en-

ergy costs. Therefore, a foam coating approach was investigated.  

First, the stability of the foaming solution was investigated.[236] Furthermore, the foaming 

of low concentrated aqueous silk solutions, possible beneficial additives and the pro-

cessing parameters, such as air volume stream, air pressure and rotational shear forces 

was analyzed. The parameter set-up yielded a maximum amount of temporarily stable 

foam, which could be soaked into the fibers and fabrics and then be collapsed in a con-

trolled manner under slight vacuum. 

It was found that the surface roughness of the underlying single fibers had a strong im-

pact on the percentage of absorbed silk protein. The rub fastness behavior was analyzed 

using a specially designed test which was inspired by the known capstan test.[236,237] 
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Coating stability was subsequently investigated with water and ethanol, revealing stable 

coatings. Finally, the rub fastness of coated complete furniture textiles was analyzed 

using the pilling abrasion test with different material mixtures, as well as, coating steps 

under increasing numbers of revolutions. It was found that all textiles showed improved 

behavior at low strain (small number of revolutions), as well as, high strain (large number 

of revolutions) dependent on the fiber material. Whereas, natural material yarns showed 

a large strain resistance even without coating, pilling tendency of coated polymer yarn 

fabrics could be reduced by up to 3 categories (about 200%) rendering the coating highly 

efficient. 

 

4.1.1 Influence of shear forces and surfactant deployment on foam 

production 

To achieve stable foams it was crucial to obtain small bubble diameters as described by 

Cooke and Hirt.[238] The main processing parameters were adequately adjusted at room 

temperature, such as the aeration in form of the utilized air flow rate and air pressure, as 

well as, the shear stress in the applied form of the propeller’s rotations per minute. 

Smaller bubbles with larger specific surface-area-to-volume ratios showed reduced 

tendencies to collapse.[239] 

As described by Wenzel et al., foam bubble diameters decreased under high shear in 

motion.[240] Similar results were published by Parikh.[241] Since a propelling unit was used 

in this work and no tubular set-up, increased shearing was applied by rotational forces. It 

could be confirmed that maximized shear rates and therefore revolutions per minute in-

crease the blow ratio. It is likely that this effect continues for even higher shear rates, but 

in the presented setup 1000 rpm was the highest applicable rotational speed. In terms of 

the aeration, both intermediate flow rate and pressure were beneficial. This effect seems 

antithetic to common sense, since foam generation in simple devices, such as syphons, 

depends mainly on high pressure. The set-up is not closed, and therefore, the pressure 

is not maintained inside the liquid volume. Created air bubbles pass through the medium 

and accumulate at the surface. Trapping these new bubbles in the foamed medium high-

ly depends on the shear rate as shown by Drenckhan and Saint Jalmes.[242] Politova et 

al. described the bubble size in a foam created in a planetary mixer.[243] 
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The air entrapment in the foam is limited, and therefore its volume-growth is limited. Al-

so, the air entrapment and air volume ratio is relative to the gained bubble sizes. 

Transferred to the presented setup, these findings clearly affirmed the results. The em-

ployed propeller construction and maximal applied rotational speed result in a limited 

shear force. When more air is taken into the system and the velocity bubble creation is 

larger than that of bubbles bursting on the surface (Figure 4.1 A), the bubbles accumu-

late inside the foam or at the surface. As soon as the inner pressure of these bubbles 

exceeds the membrane surface tension, these bubbles burst. The emerging pressure 

force may even destroy fractions of the desired foam as a result (Figure 4.1 B). Reducing 

this effect by using special foaming agents and detergents in combination with setting up 

optimal working parameters is of utmost importance to yield a homogeneous silk protein 

coating distribution in stable foam with high integrity as well as a small bubble structure 

(Figure 4.1 C).  

 

 

Figure 4.1: Schematic illustration of laboratory scale foaming process with an air flow rate, 

yielding no foam (A), exceeding air flow, air bubble aggregation and collapsing 

foam (B) and ideal air flow rate and accumulating foam (C). 

 

The surfactant fulfills two main purposes. First, it enables the foamability itself by reduc-

ing the aqueous surface tension. On the surface of water-based liquids, water molecules 
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and the molecule cluster (Figure 4.3 A) arrange in a way that attractive forces are orient-

ed to the inside. Therefore, the molecules on the surface are excessively contracted. 

Surfactant molecules may accumulate on the liquid’s surface and envelop the water 

molecules, reducing this tension significantly. Subsequently, air bubbles also might be 

entrapped in such agglomerated water-surfactant conjunctions, increasing essentially the 

systems foamability. 

The second important effect of the surfactant is the stabilization of the silk protein mole-

cules. Aqueous solutions of spider silk proteins are produced via dialysis. Dissolved in 

solution eADF4(C16) molecules are unfolded. Disturbing factors such as shear forces or 

the thermal energy by stirring friction enforce misfolding and aggregation. As reported by 

Gleuwitz, the surfactant also stabilizes the silk protein molecules in solution and prevents 

agglomeration.[236] The produced surfactant concentration herein displays a minimum 

value attuned to the utilized protein concentration. Below this value, precipitation of silk 

protein molecules is reported. Even though, a higher surfactant concentration is not 

aimed for, since a well-distributed silk protein concentration in the created foam is de-

sired and an exceeding amount of surfactant molecules would block the silk. An exceed-

ing employment of surfactant also increases the likelihood of producing silk protein free 

bubbles (Figure 4.3 B) and a subsequent inhomogeneous foam coating. The employed 

surfactant is a branched non-ionic iso-tridecyl-alcohol, displayed in Figure 4.2.[244] The 

hydrophilic negatively charged hydroxyl group likely interacts with the positively charged 

amino terminal group of eADF4(C16) silk protein, as well as, with the polar H-Groups of 

the water molecules. The hydrophobic carbohydrate chains of the surfactant molecule 

might either interact with the hydrophobic parts of the silk molecule chains, which are not 

protected, or stick to the outside, yielding a micelle-like structure.  

 

 

Figure 4.2: Ultravon Jun surfactant main ingredient, Iso-tridecyl-alcohol. 

 

The ideal foam bubble (Figure 4.3 C) carries a membrane of surfactant enveloped silk 

protein - water conjugations on its surface. Ideally a wet silk protein film with surfactant is 
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deposited on the textile fiber surface when the bubble collapses. Consequently, by the 

applied vacuum the flexible wet film is still able to penetrate deeper into the yarn struc-

ture. After drying, the film hardens and acts as protective layer. 

A

 

Figure 4.3: Schematic illustration of a water (6) molecule cluster (A), a foam bubble with wa-

ter cluster-surfactant (iso-tridecyl-alcohol) conjugations (B), and an ideal bubble 

(C) carrying a membrane of surfactant enveloped silk protein - water conjugations 

on its surface. 

 

4.1.2 Adhesion behavior of spider silk proteins on different yarn fiber 

materials 

Protective layers around any material strongly depend on the adhesion of the layer mate-

rials on the surface. Since the utilized template materials show no exposed surface 

charges, ionic interactions, as well as, cohesion effects can be discarded.  

Since no other chemical linker or coupling agents are used, physical adhesion is the pri-

mary stabilizing effect of silk molecules on the fiber surface morphology. In this context, 

the surface roughness of the underlying yarn materials has the highest impact.  

A B C 
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As optically analyzed, the natural fibers show inherent surface imperfections. The silk 

protein film on the natural (N) fabric was uniform, homogeneous and covered cavities, as 

well as, voids in the surface. The rayon fibers feature OH-groups, which support the ad-

sorption of polar molecules in the presence of aqueous solutions. In this context the 

smoothening effect is higher than in case of poly(ethylene terephthalate). The latter in-

herits a negative surface charge, likely to develop electrostatic repulsion of the also neg-

atively charged eADF4(C16) molecules. In contrast to that, the coating was good on pol-

ymeric textile P2. Most polymeric fibers are produced via melt spinning, yielding a very 

smooth surface. PAN fibers on the contrary, which are present in the polymeric fabrics at 

over 56 %, are produced via either dry-jet wet spinning or classic wet spinning. The latter 

is often preferred in industry because of the significantly higher production efficiency, but 

results in filaments with longitudinal grooves as reported by Wang et al.[245] Morris et al., 

reduced this effect by thorough adjustment of spinning parameters, such as the coagula-

tion bath temperature.[246] Although these grooves are undesirable in some applications, 

the grooved surface morphology of the employed PAN fibers significantly facilitated the 

foam coating in this work. The smooth surface of PET enforced faster delamination sub-

sequent to initial fractures and abrasion due to friction. 

 

4.1.3 Stabilizing and protective effects of spider silk protein foam 

coatings 

The vulnerability to abrasive friction and the resulting yarn fraying, as well as, pilling be-

havior of furniture textiles was determined to be significantly reduced on three different 

fabrics by a newly established spider silk protein foam coating method. Pilling of fabrics 

is based on single yarns torn out of their matrix. This can either happen due to ripping or 

when individual fibers slip over each other, as described by Hearl.[247] Since the standard 

testing counterpart material reassembles everyday cotton cloth with a structured fiber 

surface and textile woven roughness, the basic friction level is already increased. The 

protective coating had two effects on the textiles. First, the protein foam coating led to 

fibrous bridges between the yarn filaments. That reduced the ripping out of those fila-

ments and prevented the consequent pilling. These contact points were found on all 

three fabrics. The second protective effect was the presence of homogeneous films, 

which covered the fibers and filled the gaps between them, to protect entire yarns. 
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Voids and imperfections were filled and smoothed on the fiber surface. Subsequently, 

the friction was reduced between test fabric and coated textile. Both effects decelerated 

the destruction for all fabrics considerably. A second coating cycle raised the absorbed 

amount of silk, and therefore, the film thickness on all samples. Yet, no significant addi-

tional improvement of the textiles abrasion resistance could be found. 

Mainly, the fiber surface roughness and the adhesion of the film on the fiber surface, as 

well as, the fabric texturization influenced the protective effect. Structured fiber materials 

show more friction, and the silk coating has a stronger impact thereon. The better the 

adhesion between film and fiber, the more of the protective coating is ablated before 

delamination occurs. Therefore, the initial ripping out of single fibers from the surround-

ing matrix is reduced. The partially natural textile fabric showed a low tendency to pill 

throughout all revolutions in the uncoated state. The linen fabric consists to 53 % of 

smooth rayon and PET fibers. Therefore, pilling is reduced by a severe reduction of fric-

tion. The ring yarn weaving technology additionally stabilizes the yarn integrity and offers 

higher resistance to mechanical stress.[247] 

Both polymeric fabrics featured rather smoothly PAN and PET fibers. Yet, Polymeric fab-

ric P1 showed a high initial texturization. Additionally, it is produced by combed yarn 

weaving and a simple wet-stretching posttreatment. Altogether, these characteristics 

lead to an increased pilling abrasion without coating. These processing steps ensure a 

higher amount of exposed textile fibers on the fabric surface in order to feature a soft and 

warm touch.[248,249] The tendency to pill therefore is increased as well. The amount of pills 

was undesirably high. Upon silk coating, the pilling was remarkably reduced, in case of 

fabric P1 at long-term strain (5000 rounds) up to about 200 %. Specifically, the fibrous 

contact points stabilized the total fabric integrity, prevented single fibers from ripping out 

of their matrix, and therefore delayed the abrasion induced pilling. Additionally, the film-

like coating temporarily reduced the attacking surface of the testing standard cloth and 

consequently the emerging friction. Evidently, the initial destruction of the fabric P1 was 

caused by pilling of PET fibers. A similar behavior was found in the case of the second 

polymeric fabric P2. This fabric was produced using a ring yarn weaving and a final 

steam pressing treatment, yielding a compact fabric morphology and reduced surface 

texturization. Thus, this fabric is more compact and stable by default. Even without a 

protective coating, the initial destruction requires higher strain, and therefore, this fabric 

shows less destruction throughout all numbers of revolutions, compared to fabric P1. 
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Though, the abrasion resistance increased in equal measure regarding short-, interme-

diate- and especially on long-term resistance, supporting the made assumptions as a 

result of the silk protein foam coating. It is highly probable that the protective effects are 

even increasable by improvement of the adhesion of silk coating on PET fibers, since 

these PET fibers are present in all three tested fabric types in substantial amounts. This 

can either be achieved by texturizing the fiber surface during production or chemically 

modifying the PET and silk molecules with linking groups. The employment of a PET-

subversion with positive or neutral surface net charge could also significantly increase 

the coating efficiency, and its impact upon abrasion induced yarn fraying and fiber pilling. 

Transfer of foam production and textile coatings from laboratory to industrial-scale. 

The successful development of a protective spider silk protein foam coating, consisting 

of a foaming solution, as well as, the foaming parameters and the application immediate-

ly suggests the transfer to industrial scales. Since wet processing methods are standard-

ized in furniture textile production, the same is true for conveyer belts, means of stretch-

ing and treatment, as well as, drying chambers and collection methods. Mainly foam 

production and application have to be adapted to large-scale processes.  

Foaming devices for the production of increased volumes of foam are barely commer-

cially available. Only a few devices were patented as generic foaming devices.[250] Cus-

tomized approaches are prominent because of the manifold foam ingredients and their 

required production parameters, as well as, the application forms in combination with the 

comparably rare employment of such devices. The diverse foaming methods (stirring, 

gas purging, whipping, shaking, etc.) require a concrete adaption of the foam-producing 

device to the distinct process.[242] In this context, industrial applications with mechanical 

foam creation appear potentially achievable upon stirring basis, higher possible numbers 

of revolution and therefore higher amounts of foamed medium. The found optimum of 

agitation versus fumigation should be satisfied to yield maximum foam percentages. Yet, 

it is highly advisable to intensely investigate the foaming behavior and durability of spider 

silk protein foaming solutions, in the presence of higher numbers of propelling revolu-

tions, and therefore, stirring than the maximal applicable numbers of the laboratory set-

up in this work. 

The foam application was performed using a rotating vacuum drum. Such applications 

are technically used for the cleaning of slurry (rotary vacuum drum filter) or the transpor-
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tation of fragile elements.[185,251] Since the pores in the mantel of such hollow vacuum 

drums are smaller than the minimum diameter of the bulk material, they are perfectly 

suited for the coating of textiles. The implementation into a textile process line requires 

not much effort, since the single elements only comprise of a doctor blade with a collect-

ing tank with the length of the vacuum drum, the drum itself, which should be supported 

by two axially mounted bearings and connected to a vacuum generating device, and a 

supportive structure. The textile is transported by conveyer rolls and led over the drum 

with the inner side on the drum surface, describing a parabolic form in cross section. At 

the lowest point of this parabola a doctor blade is situated in a close distance to the tex-

tile and loaded with foam towards the textile transport direction. The foam is cut in a de-

sired height, applied to the textile surface and disrupted by the applied vacuum. Thereby, 

the foam is absorbed by the textile volume. Excessing fluid is carried further into the 

drum and led into the foaming device to be recycled. Yet, the positive aspects of fluid 

recycling and re-foaming are not indefinitely applicable as reported by Gleuwitz.[236] The 

induced shear stress upon foaming and vacuum application combined with pumping pro-

cesses lead to aggregation on one hand, and to the destruction and fragmentation of 

spider silk proteins in the foam solution on the other hand, after more than two cycles. 

Those effects may either lead to silk aggregate participation and a subsequent face sep-

aration, rendering the foaming solution useless, or to severely reduced textile pilling re-

sistance upon foam coatings with eADF4(C16).  
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4.2 Fiber production based on spider silk proteins 

The silk protein-based production of submicron fibers was implemented by electrospin-

ning. Dust particle air filters were produced and fiber diameters, as well as, varying 

amounts of coating material, and submicron fiber mesh layer thicknesses were tested 

(Chapter 3.2.2.3). The batch production of submicron filter layers using conventional 

electrospinning hampers the processing time severely. Additionally, the secondary struc-

ture of silk protein fiber meshes requires posttreatment to increase the crystalline sec-

ondary structure content and to prevent the fiber dissolution by moisture.[99,252,253] Centri-

fuge electrospinning led to an increased spinning efficiency by multiplication of spinning 

jets, and therefore, severely decreased the overall time consumption. Due to a fixed and 

static template positioning system, the spinning procedure was still in batch mode. The 

secondary structure of centrifuge electrospun silk fibers showed a significantly increased 

content of crystalline structures (Chapter 3.3.2, Figure 3.24 and Figure 3.25). 

In a final step, the best performing submicron fiber mesh was placed in a complete filter 

set-up and tested concerning its performance. The particle deposition in combination 

with the air permeability resulted in a filtration quality factor, outperforming a standard 

dust bag (Chapter 3.2.2.3). 

 

4.2.1 Differences in the dope materials and their rheological effects and 

concentration ranges 

Electrospinning has been investigated for decades, and even though the underlying pa-

rameters are strongly dependent on many factors, they are well established for each 

system and application. The more complex the production setup, the more parameters 

may influence the spinning process. In consequence, they have to be understood and 

neutralized or muted. Many parameters influence electrospinning and have to be adjust-

ed thoroughly. The molecular weight of the polymer, the solvent, the dope concentration 

and dynamic dope viscosity, the relative humidity, the temperature and the voltage dif-

ference are the most crucial parameters. 
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Especially the solvent should be chosen carefully, since it has an important impact on 

whipping effects of polymer jets during spinning, which lead to a chaotic fiber deposition 

resulting in anisotropic pores with inhomogeneous, but distinct diameters per layer and 

spinning set-up. 

Whilst the relative humidity and the temperature may be kept constant, the dope is pre-

defined and the viscosity and dope concentration have to be analyzed initially. The PEO 

with 400 kg/ mol, exhibits a steep incline concerning the dynamic viscosity at increasing 

concentrations, when dissolved in water with a high surface tension and low vapor pres-

sure. The long-chained molecules reach through several levels of the shear induced 

flowing liquid layers and have an exponential impact on the viscosity at higher concentra-

tions. On the contrary, PLA is dissolved in highly volatile trichloromethan and becomes 

more inviscid. Additionally, the shorter molecules bridge fewer numbers of liquid layers 

and have smaller impact on the viscosity with increasing concentration. The resulting 

fiber diameters from both materials showed a similar progression tendency. Packed in a 

tightest possible way, the diameters of both fiber types are similar. 

Silk fibers have distinct primary and secondary structures. Silk proteins eADF4(C16) and 

ChryC1 have been dissolved in highly volatile HFIP, with lower vapor pressure than 

TCM. During the spinning process, as the fibers are formed, shear forces partially induce 

β-sheets. As the fibers are stretched, those regions provide mechanical resistance, and 

the breaking energy of silk fibers is increased. In case a higher spinning distance is ap-

plied, an increased flight time, fiber stretching and therefore smaller fiber diameters could 

be achieved compared to the employment of polymer spinning dopes. 
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4.2.2 The field strength as guiding spinning parameter for upscaling 

purposes 

The most important dynamic parameters for electrospinning were found to be the poten-

tial difference ∆𝑈 [kV] and the collector distance (spinning height) 𝑑𝑥 [mm]. The correla-

tion of both could be displayed as the quotient  ∆𝑈 𝑑𝑥⁄ , which results in a static form of 

the field strength 𝐸⃗  [kV/mm]. The values were determined for electrospinning as dis-

played in Table 4.1.  

 

Table 4.1: Electrostatic field strength of all tested dope materials at best spinning results for 

classical and centrifuge electrospinning and their factor after transfer. 

 
  Electrostatic field strength, 𝑬⃗⃗  [kV/ mm]    

PEO PLA eADF4(C16) ChryC1 

Electrospinning (ES) 0.08 0.10 0.12 0.13 

Centrifuge Electrospinning (CES) 0.16 0.36 0.20 - 

Factor (ES/CES) 2.00 3.60 1.67 - 

 

The electrostatic field strengths applied to achieve optimal fiber quality are in a close 

range, suggesting a similar spinning behavior due to the same solvent and similar dy-

namic viscosities, as well as, molecular weights. The polymeric dopes show reduced 

values for their electrostatic field strengths. The aqueous dope solution of PEO requires 

an enhanced flight time, and therefore, increased spinning distance to let the fibers 

harden and evaporate the water. Higher values for the voltage do not support spinning 

since the increased attractive forces disrupt the fiber jets from the cone before their suffi-

cient hardening. As a result, the necessary field strength is also low. For PLA, the collec-

tor distance and flight time were reduced but still higher than for PEO, but also the poten-

tial difference had to be reduced. Higher voltages would result in a drying of the Taylor 

cone and subsequent clogging of the cannula, cancelling the spinning process. 
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Direct transfer of the spinning process and parameters to centrifuge electrospinning was 

not possible, since the rotational speed of the centrifuge had an additional influence. 

Three-dimensional screenings revealed the working ranges for each dope. The direct 

adjustment of the collector distances yielded inadequate fiber qualities, recalculated from 

the found electrostatic field strengths. Subsequent height-screenings revealed clear 

tendencies concerning the increase factor. For silk protein in HFIP and aqueous PEO 

dope solution the factor was about 2. The centrifugal force on the emerging fiber jets, as 

well as, the guiding air, both evoke lateral forces. They subsequently require increased 

attractive forces in the collector’s direction. Thereupon, if the acceleration of the fibers 

towards the collector is too low, the rotational movement of the center bell twists the 

emerging jets to yarn-like structures and no nonwoven mesh is deposited. Especially for 

aqueous PEO dope solution the additional shear forces and energy intake have benefi-

cial effects on the spinning result, leading to less beading and more uniform fibers. In the 

case of PLA, dissolved in TCM, the necessary field strength for optimal results in centri-

fuge electrospinning was even higher. The highly volatile solvent is affected by the rota-

tional movement and the shielding air stream. The emerging jets need to be exceedingly 

accelerated before drying out at the center bell. Lowest possible collector distances with 

increased potential differences result in a field strength transfer factor of 3. Additionally, 

the doubled and tripled field strengths had a positive impact on the fiber diameter since, 

increased attractive forces accelerate the fiber stretching and smaller diameters might be 

obtained. 
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4.2.3 Effects of silk protein nanofiber nonwovens on particle deposition 

The most important factors regarding submicron fiber meshes are their diameter for filtra-

tion purposes and particle deposition, the gaps between them and the gap consistency, 

as well as, surface morphology. Wendorff et al. named 3 main molecular processes, pre-

sented by Hinds, contributing to filtering effects: Interception, impaction and particle dif-

fusion as displayed in Figure 4.4.[232,254] An airstream, led through a filtration fiber mesh, 

follows a path around the single fibers. Each of these stream lines (blue arrow in Figure 

4.4 A-D) carries dust particles of different sizes and charges. 

Particles, following the streamlines around the submicron fibers might be caught on the 

surface when passing in a distance below the particle diameter (Interception, Figure 4.4 

A). For very high air flow velocities, impaction might occur if particles are tossed out of 

the streamlines and caught on the fiber surface (Figure 4.4 B). This effect is irrelevant for 

particles below 200 nm. As a third effect, diffusive motion is performed by small particles, 

leaving their stream lines and traveling chaotically until deposition (Figure 4.4 C). 

Nonwoven meshes made from eADF4(C16) feature negative charges.[255] During filtra-

tion electrostatic forces occur, enhancing the deposition of positively charged particles 

(Figure 4.4 D). Furthermore, silk proteins might be chemically modified to feature desired 

properties. This was done in the case of positively charged eADF4(κ16), which might be 

employed to deposit negatively charged dust particles.[256] Co-spinning of both materials 

could severely amplify the overall particle deposition capability.  

 

    

Figure 4.4: Schematic illustration of possible molecular particle deposition effects in air filtra-

tion processes: interception (A), impaction (B), diffusion (C), extended by electro-

static interaction (D), with the illustrated air stream (blue arrow) carrying dust par-

ticles (gray), that are caught on the fiber surface (red), modified from stated 

sources 
[232]

 and 
[254]

. 

 

A B C D 
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In this work, particle deposition measurements were carried out with a dust-stream face-

velocity of 25 cm/ s and particle diameters ranging from 0.2 - 8.9 µm (Figure 4.5, gray 

field). For these parameter combinations the main molecular filtration effects, besides the 

named electrostatic interaction, are interception and particle diffusion for dust particles 

between 200 nm and 2 µm. Particles larger than 1 µm are mainly filtered by interception 

on the fiber surface. Above the particle size of 2 µm, gravity also plays a role in particle 

deposition. 
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Figure 4.5: Schematic overview of molecular particle filtration effects in nonwoven meshes in 

dependence of airflow velocity, 𝑉̇ and particle diameter, 𝑑 featuring diffusive mo-

tions, interception, impaction and gravity effects, modified from sources 
[232]

 and 
[254]

. 
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Small diameter fiber-meshes feature an increased specific surface area. In theory, this 

feature should enhance the deposition capacity of thin fibers, since particles have a 

higher tendency to experience interception.  

Yet, smaller fibers also feature a decreased volume and tend to congregate to larger 

fiber bundles. Provided, that the same surface area is covered with the equal amount of 

material, vacancies occur in between those bundles. The deposited inhomogeneous 

fiber meshes hence exhibit larger gaps in between fiber bundles, unlike the more homo-

geneous meshes from fibers with larger diameters without gaps. Those voids allow small 

particles to pass through more easily due to an increased pressure drop in these areas. 

This theory could be confirmed with the performance of silk-based filters featuring small-

diameter fibers.[11] Yet, the employment of dense nonwoven meshes also enhances the 

formation of a filter cake which blocks the air stream yielding higher pressure drop rates 

thus confirming inefficiency concerning energy consumption. The diffusive filtration of 

nonwoven mesh coatings yielded the highest particle deposition rates in addition to the 

interception capabilities of submicron fibers with intermediate-sized diameters 

(200 nm < x < 250 nm) and a moderate layer thickness (100 mg/ m2). To set up a com-

plete dust bag, standard filtration materials were combined with nonwoven fiber meshes 

on PA support. 

Nonwoven mats of silk proteins as-spun exhibit predominantly α-helical and random coil 

secondary structure rendering the submicron fibers sensitive to moisture. These struc-

tures are dissolved even by air humidity. The posttreatment of the fiber mats with etha-

nol, followed by water vapor, induces and maximizes the β-sheet secondary structure 

content. The well-established initiation of crystalline structures stabilizes the fibers, en-

hancing their mechanical stability and preventing their environmental condition-induced 

destruction, as reported in previous studies.[202,228] A special side effect of the necessary 

posttreatment and also a beneficial feature of silk protein submicron fibers is a partial 

resolving of the protein fibers at their surface. Subsequently, the procedure is causing a 

re-solidification, which strengthens the fiber-networks by physical crosslinks. Additionally, 

this effect enhances filtration capabilities since fiber slipping is minimized and pores re-

main constant in size.[11,202] 
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4.3 Upscaling potential of nonwoven coatings by centrifugal 

electrospinning  

The biggest drawback of electrospinning is the low output of standard devices in the pro-

duction of high performance silk protein submicron fiber nonwoven dust particle filter 

mats. Even modern multi-jet approaches only offer limited acceleration of the process. 

By contrast, the centrifuge spinning device employed in this work features a torus build-

up with a multitude of possible jets, with a clear advantage regarding jet count per area. 

Therefore, the spinning efficiency is higher and the dope throughput is highly increased. 

In applications, the spinning efficiency could be increased by a factor of 600. 

To stabilize the produced spider silk nonwoven fiber mats, posttreatment is crucial.[257-262] 

Centrifuge electrospinning showed increased 𝛽-sheet structure content as spun. In CES, 

the emerging lateral forces, as well as, the counter-measures induce additional shear 

stress on the fibers. As a consequence, those submicron fibers are poststretched. It was 

found in previous studies that shear forces lead to the formation of crystalline 𝛽-sheet 

structures in natural spinning process.[263,264] Other studies reported the induction of such 

structures on spider silk protein fibers upon post stretching.[252,261] It is likely that the addi-

tional shear stress during centrifuge electrospinning acts as in-flight poststretching to 

induce crystalline structures. Yet, the content of about 20 % is insufficient to render the 

fiber mats water stable. Therefore, a shielded inline post-treatment chamber, located 

ahead of a collection system is recommended to further accelerate continuous spider silk 

nonwoven spinning process and therefore enable an upscaling. 
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5 Summary 

Sustainable and environmentally friendly alternatives to crude oil based materials are 

nowadays extensively investigated. Biopolymers, such as spider silk, have been em-

ployed by humans as an alternative ever since, and are additionally known for their good 

mechanical stability. The greatest drawback of spider silk is the lack of availability. Dur-

ing the last decades the reverse decoding of protein structures into designed gene se-

quences enabled the development of recombinant production of silk proteins such as 

Araneus diadematus dragline silk protein (eADF4(C16)) or Chrysoperla carnea egg stalk 

protein (ChryC1). 

The focus of this work was the development of two processing methods for spider silk 

proteins and the evaluation of their upscaling potential. The first application was an envi-

ronmentally friendly and water-based protective spider silk protein foam coating for furni-

ture textiles to reduce abrasive textile destruction derived from pilling. Parameters were 

investigated to achieve stable and uniform aqueous foams, and spider silk foaming 

dopes were analyzed. Subsequently, a novel foam coating was developed. Three differ-

ent fabrics were foam-coated with recombinant spider silk protein (eADF4(C16)) and 

analyzed regarding their vulnerability to friction and resulting yarn fraying, as well as pill-

ing. One fabric mainly contained the natural materials cotton and rayon. The two other 

polymeric fabrics comprised PES and PA. Primarily homogeneous and stable coatings 

were applied to single yarns, which were then analyzed regarding yarn fraying. Subse-

quently, complex fabrics were coated and they revealed an increase in durability and a 

decrease in pilling tendency upon abrasive friction analyzes.[247] A film-like fiber surface 

coating and smoothing in combination with fibrous contact points reduced the friction and 

ripping out of single filaments, preventing the consequent pilling and prolonging the life-

time of the furniture fabric. In the presence of the silk coating a clear correlation between 

lowered yarn fraying and pilling tendency was determined. For all three tested fabrics 

these effects were significantly reduced, and upon silk foam coating the fabric quality 

was doubled in short as well as long-term abrasion tests. 
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The second part of this work aimed at the production of electro-spun submicron nonwo-

ven fiber mats. Four different submicron fiber mats were tested and compared regarding 

their applicability as fine dust particle filter meshes, including the synthetic polymers PEO 

and PLA and two biopolymers, namely recombinant silk protein ChryC1 and 

eADF4(C16). In a first approach, nonwoven fiber meshes with different fiber diameters 

were successfully electro-spun on a commercially available PA support-woven. A clear 

dependency could be determined regarding the filtration efficiency fiber diameter and 

coating thickness. 

Centrifuge electrospinning was employed for the production of submicron nonwoven 

fiber meshes on PA mesh material to test the potential for large-scale production. The 

most critical step was the proper adjustment of the electrospinning process’s spinning 

conditions to the novel method, as well as, the adjustment of its spinning parameters. 

Process-related spinning parameters introduce additional shear forces into the fibers. 

Those yielded fiber diameters below 100 nm and an increased content of crystalline 𝛽-

sheet structures as spun. The inherent random coil secondary structure content ren-

dered centrifuge spun spider silk nonwoven fibers water soluble. Hence, additional post-

treatment was required. Electro-spun spider silk meshes were the best material tested 

concerning particle deposition, air permeability and pressure drop. Additionally, the 

negative surface net charge of eADF4(C16) submicron fibers contributed to the better 

performance of spider silk nonwoven meshes. A new silk-containing filter set-up was 

developed as a prototype providing a significantly higher filtration quality factor than a 

conventional filter bag. As calculated in previous studies, the use of such spider silk-

containing dust bags could save 9 kg of CO2-equivalents per domestic home and per 

year in an industrial country such as Germany.[265] The results of both approaches high-

light the promising upscaling potential of spider silk applications. 
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6 Zusammenfassung 

In der Forschung werden derzeit nachhaltige und umweltfreundliche Ersatzstoffe zu 

Rohöl-basierten Materialien untersucht. Biopolymere werden von der Menschheit seit 

jeher als Alternative verwendet, von denen insbesondere (Spinnen-) Seiden für ihre her-

vorragenden mechanischen Eigenschaften bekannt sind. Der größte Nachteil von Spin-

nenseide ist allerdings ihre geringe Verfügbarkeit. Während der vergangenen Jahrzehnte 

ermöglichte die reverse Translation von Proteinsequenzen in designte Gensequenzen 

die Entwicklung der rekombinanten Produktion von Seidenproteinen, wie das Araneus 

diadematus Abseilfadenprotein (eADF4(C16)) oder das Chrysoperla carnea Eierstielpro-

tein (ChryC1). 

Der Fokus dieser Arbeit lag auf der Entwicklung zweier neuartiger Prozessierungsme-

thoden für Spinnenseidenproteine. Die erste Anwendung bestand aus einer umwelt-

freundlichen und wasserbasierten Schutzbeschichtung aus Spinnenseidenprotein-

Schaum für Möbelbezugsstoffe zur Reduktion von abrasiver Textilzerstörung durch Pil-

ling bzw. Knötchenbildung. Die Parameter zur Herstellung stabiler und gleichmäßiger 

Schäume wurden untersucht. Weiterhin wurden die zur Schaumherstellung benötigten 

Spinnenseidenlösungen analysiert. In der Folge wurde eine neuartige Schaumbeschich-

tungsmethode entwickelt. Drei verschiedene Textilien wurden mit rekombinantem Spin-

nenseidenprotein (eADF4(C16)) beschichtet und bezüglich ihrer Anfälligkeit auf Reibung 

und dem resultierenden Ausfransen von Einzelfasern analysiert. Darunter befand sich 

ein Textil, welches hauptsächlich aus den Materialien Baumwolle und Viskose aufgebaut 

ist, sowie zwei PES und PA enthaltende Polymer-basierte Stoffe. Zunächst wurden ein-

zelne Garnfasern mit homogenen und stabilen Beschichtungen versehen, welche an-

schließend auf die Anfälligkeit bezüglich des Ausfransens hin untersucht wurden. Nach-

folgend wurden komplexe Textilien beschichtet, wodurch ein Anstieg in der Haltbarkeit 

und eine Reduktion der Pilling-Anfälligkeit gegenüber abrasiver Reibung erreicht werden 

konnte. 
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Eine filmartige Beschichtung und Glättung der Textilfaseroberflächen verringerte die 

Reibung und das Herausreißen von Einzelfasern, wodurch das daraus resultierende 

Pilling verhindert und die Lebensdauer des Möbelbezugsstoffs verlängert werden konn-

te. In Kombination mit der Seidenbeschichtung konnte eine klare Abhängigkeit zwischen 

der verringerten Ausfransung der Textilgarne und der Pilling-Anfälligkeit der Textilien 

festgestellt werden. Diese negativen Effekte wurden im Fall aller drei untersuchten Texti-

lien stark reduziert. Aufgrund der Seiden-Schaumbeschichtung konnte letztlich die Tex-

tilqualität bei Kurz- und Langzeitbelastung verdoppelt werden. 

Die zweite Anwendung, welche in dieser Arbeit untersucht wurde, zielte auf die Produk-

tion von elektrogesponnenen Fasermatten für die Feinstaubfiltration ab. Dafür wurden 

vier verschiedene sub-mikro Fasermatten untersucht und bezüglich deren Effizienz im 

Einsatz als Feinstaubfilterauflagen verglichen. Sie basierten auf den synthetischen Po-

lymeren PEO und PLA, sowie den beiden Seidenproteinen ChryC1 und eADF4(C16). 

Zunächst wurden Fasermatten mit unterschiedlichen Faserdurchmessern erfolgreich auf 

kommerziell erhältliches PA-Gewebe, welches als Stabilisationsunterlage und Träger 

verwendet wurde, elektro-gesponnen. Es konnte eine klare Abhängigkeit der Filtrations-

effizienz von den eingesetzten Materialien, der Beschichtungsdicke, sowie den Faser-

durchmessern festgestellt werden. Florfliegen- und Spinnenseidenfasermatten übertra-

fen die Leistungsfähigkeit derer, welche aus polymeren Materialien hergestellt wurden. 

Die Seidenfasermatten wurden mit Wasser- und Ethanoldampf nachbehandelt, um kris-

talline 𝛽-Faltblatt Strukturen zu induzieren und die Wasserlöslichkeit der Fasermatten zu 

reduzieren. Weiterhin verstärkte die Nachbehandlung die mechanische Stabilität und die 

Partikelabscheidung der Filtermatten. 

Ein Zentrifugen-Elektrospinnverfahren mit dem Potenzial zur Hochskalierung wurde zur 

Produktion von sub-mikro Fasermatten auf PA-Gewebe verwendet. Der entscheidendste 

Schritt war hierbei die entsprechende Anpassung und Übertragung der Spinnparameter- 

und Bedingungen vom Elektrospinnprozess auf die neue Methode. Prozessparameter 

tragen während des Spinnvorgangs zusätzliche Scherkräfte in die Fasern ein, wodurch 

Zentrifugen-elektro-gesponnene Fasern mit Durchmessern unter 100 nm und einem ge-

steigerten Anteil an 𝛽-Faltblattstrukturen entstanden. 
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Aufgrund der hervorragenden Partikelabscheidung, der Luftdurchlässigkeit und des ge-

ringen Druckabfalls waren elektrogesponnene Spinnenseidenfasermatten am besten für 

die Verwendung als Filtermaterialien geeignet. Zusätzlich trug die negative Oberflä-

chenladung der eADF4(C16) sub-mikro Fasern zur gesteigerten Filterleistung der Spin-

nenseidenfasermatten bei. Es wurde ein neuartiger Filterbeutelprototyp, mit einer 

Feinstaubfilterlage aus Spinnenseide hergestellt, welcher einen signifikant höheren Fil-

terqualitätsfaktor aufwies als ein konventioneller Filterbeutel. Wie bereits in früheren 

Studien berechnet wurde, könnte die Verwendung solcher Seiden-beinhaltenden Staub-

beutel in Industrieländern wie Deutschland 9 kg von CO2 Äquivalenten pro Haushalt und 

Jahr einsparen.[265] 
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7 Appendix 

Supportive Information 

Fiber diameter histogram analysis 
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