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1. INTRODUCTION

During the last couple of years the theory of why and
when Model Predictive Control (MPC) generates stable,
feasible and near optimal closed-loop solutions has sig-
nificantly matured. In this talk we give a survey about
the contribution of the dissipativity concept in this line of
research.

2. PROBLEM FORMULATION

We present our results for discrete-time nonlinear control
systems of the form

x(k + 1) = f(x(k), u(k)), x(0) = x0 (1)

with x(k) ∈ X and u(k) ∈ U for normed vector spaces X
and U . Most of the results in this talk hold in an analogous
way for continuous time systems.

MPC then computes a control input uMPC(·) by solving a
sequence of optimal control problems on finite, overlapping
time horizons. Here, the finite horizon optimal control
problem is given as follows. For a given constraint set
Y ⊂ X × U , a terminal constraints set Xf , a stage cost
` : Y → R, a terminal cost F : Xf → R, and a time
horizon N ∈ N we define the finite horizon functional

JN (x0, u(·)) :=

N−1∑
k=0

`(x(k), u(k)) + F (x(N)), (2)

where x(·) solves (1). Then we solve

minimizeu(·)JN (x0, u(·)) (3)

subject to the constraints (x(k), u(k)) ∈ Y for all k =
0, . . . , N−1 and x(N) ∈ Xf . We call a control u(·) admissi-
ble (for x0) when these constraints are satisfied. Moreover,
we set X := {x ∈ X | there is u ∈ U with (x, u) ∈ Y}.

The pair (Xf , F ) is referred to as terminal condition and
in the trivial case Xf = X and F ≡ 0 we refer to (2) as a
problem without terminal conditions.

Associated to the optimal control problems (3) we define
the optimal value function

VN (x0) := inf
u(·) admissible

JN (x0, u(·))

and we call an admissible control u∗(·) optimal (for x0), if
JN (x0, u

∗(·)) = VN (x0).

The corresponding MPC scheme then reads as follows (for
much more detailed expositions we refer to Rawlings et al.
(2017); Grüne and Pannek (2017)):

Given an initial condition xMPC(0) := x̂0 ∈ X and an
optimisation horizon N ∈ N, for n = 0, 1, 2, . . . we perform
the following steps:

(1) Let x0 := xMPC(n) denote the current state of the
system.

(2) Solve the finite horizon optimal control problem (3)
in order to obtain the optimal control sequence u∗(·).

(3) Apply the first element of the optimal control se-
quence u∗(·) as a feedback control value until the
next time instant, i.e., set uMPC(n) := u∗(0) and
xMPC(n+ 1) := f(xMPC(n), u∗(0)).

(4) Set n := n+ 1 and go to Step 1.

Here, we consider general cost functions ` that do not need
to have any a priori structure. This setting is typically
termed economic MPC in the literature, although general
MPC might be a more appropriate name.

When dealing with MPC, some of the central questions
are:

• Stability: Does the MPC closed-loop solution exhibit
stable behaviour?

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EPub Bayreuth

https://core.ac.uk/display/287792393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


• Optimality: Does the MPC closed-loop solution en-
joy (approximate) optimality properties?

• Feasibility: Does the MPC closed-loop solution
maintain the constraints?

As we will explain in the next section, a suitable dissipativ-
ity concept helps to give positive answers to all questions.

3. STRICT DISSIPATIVITY

The appropriate dissipativity concept is the following
strict dissipativity notion. In this extended abstract we
limit ourselves to strict dissipativity at an equilibrium
(xe, ue) ∈ Y (i.e., f(xe, ue) = xe). Extensions to periodic
and general time-varying trajectories are possible and will
be briefly explained in the talk.

Definition 3.1. The optimal control problem is called
strictly dissipative at an equilibrium (xe, ue), if there exists
a storage function λ : X→ R, bounded from below, and a
function 1 α ∈ K∞ such that the inequality

λ(f(x, u)) ≤ λ(x) + `(x, u)− `(xe, ue)− α(‖x− xe‖)
holds for all (x, u) ∈ Y with f(x, u) ∈ X. Here, the function
s(x, u) = `(x, u)− `(xe, ue) is called the supply rate.

The optimal control problem is called dissipative if the
above inequality holds with α ≡ 0.

It follows immediately that if (not necessarily strict)
dissipativity holds, then (xe, ue) is an optimal equilibrium,
in the sense that `(xe, ue) ≤ `(x̃, ũ) for all other equilibria
(x̃, ũ) ∈ Y.

The dissipativity notion for control systems was intro-
duced by Willems (1972) in continuous time, the discrete
time version used here is due to Byrnes and Lin (1994).
It is interesting that strict dissipativity has not played
a significant role in the literature until quite recently.
The reason is that in the past the specific form of the
suppy function often did not play a role. In this case, any
dissipative system is also strictly dissipative; it suffices to
replace s(x, u) by s(x, u) + α(‖x − xe‖). However, if the
supply function s is linked to the cost function of the
optimal control problem as in Definition 1, then it is not
possible to modify it. In this sense, the application to MPC
and optimal control are probably the main motivation for
studying strict dissipativity.

4. STABILITY AND AVERAGED OPTIMALITY

The observation that dissipativity is beneficial for MPC
was first made in Diehl et al. (2011), where it was observed
that strict duality — which is nothing but strict dissipa-
tivity with a linear storage function — implies asymptotic
stability of the optimal equilibrium for the MPC closed-
loop under appropriate terminal conditions. This paper
already contains the key idea of all dissipativity-based
MPC stability results, namely the fact that the optimal
value function of the optimal control problem with rotated
cost

1 As usual, we define K∞ to be the space of continuous functions
α : [0,∞) → [0,∞) with α(0) = 0 and α is strictly increasing to ∞.

˜̀(x, u) = `(x, u)− `(xe, ue) + λ(x)− λ(f(x, u))

can be used as a Lyapunov function for the closed loop.
The observation that this construction can be extended
without additional effort from strict duality to strict dis-
sipativity was then made in Angeli and Rawlings (2010).

The decisive contribution of the terminal condition in
these papers lies in the fact that under this condition the
optimal trajectories of the optimal control problems with
cost ` and ˜̀, respectively, coincide. The properties of the
terminal conditions needed for this were given in Amrit
et al. (2011) and a special case was already used earlier in
Angeli et al. (2009) in order to prove average optimality
of the MPC closed-loop, i.e., that

J∞(x̂0, uMPC(·)) = inf
u admissible

J∞(x̂0, u).

for J∞(x0, u) := limK→∞
1
K

∑K−1
k=0 `(x(k), u(k)). We re-

mark that, in contrast to most other results discussed here,
for this proof strict dissipativity is not needed. However, it
needs optimal operation of the system at the equilibrium
(xe, ue), which under a controllability condition implies
(non strict) dissipativity, see Müller (2014).

The fact that the optimal trajectories with cost ` and ˜̀co-
incide is no longer the case for MPC without terminal con-
ditions. However, as first observed in Grüne (2013), then
refined in Grüne and Stieler (2014) and later streamlined
in Chapter 8 of Grüne and Pannek (2017), the solutions
are still very similar up to a certain time P . The reason for
this is the so-called turnpike property in optimal control,
which demands that the optimal trajectory most of the
time stays near the optimal equilibrium. As noted in Grüne
(2013), this property is implied by strict dissipativity un-
der a reachability condition (conceptually similar results
are much older and can be found, e.g., in Carlson et al.
(1991)). Besides the possibility of building a Lyapunov
function, its implication of the turnpike property is the
second important feature of strict dissipativity.

As a consequence of this similarity, without terminal
conditions we can still conclude near average optimality,
i.e.,

J∞(x̂0, uMPC(·)) = inf
u admissible

J∞(x̂0, u) + ε(N)

with ε(N) → 0 as N → ∞, and practical asymptotic
stability of the closed loop, i.e., asymptotically stable
behaviour outside a small neighbourhood of xe, whose
size also tends to 0 as N tends to infinity. This is due to
the fact that the optimal value function for cost ˜̀ is still
an approximate Lyapunov function for the MPC closed
loop. These two properties hold provided the optimal value
functions for different time horizons satisfy a uniform
continuity condition at the optimal equilibrium xe, which
is needed in order to avoid that the small differences in the
optimal trajectories cause large differences in the closed-
loop behaviour.



5. TRANSIENT OPTIMALITY

While average optimality is a good measure to assess the
performance of trajectories on very long time horizons, it
does not tell much on short horizons. The reason is that a
large cost on a short horizon contributes only very little to
the average over a long horizon. Hence, a low average cost
on a very long horizon does not allow for any conclusions
about the cost on short horizons of the same trajectory. To
this end, the concept of transient optimality is useful. Re-
call that under the strict dissipativity condition the closed-
loop solutions converge to xe (with appropriate terminal
conditions) or to a small neighbourhood thereof (without
terminal conditions). Hence, if we fix a sufficiently large
time K ∈ N (that may be much larger than N), then we
can find a small ε > 0 such that ‖xMPC(n)− xe‖ ≤ ε for
all n ≥ K. We can now compare the cost of this trajectory
up to time K, i.e.,

JK(x̂0, uMPC(·))

with the cost of all other trajectories that also end up in
an ε-neighbourhood of xe, i.e., with V tr

K (x0) :=

inf{JK(x0, u(·)) |u(·) admissible, ‖x(K)− xe‖ ≤ ε}.

It turns out that there exist two functions ε1(N), ε2(K)→
0 as N,K →∞, such that

JK(x̂0, uMPC(·)) ≤ V tr
K (x̂0) + ε1(N) + ε2(K)

in the case with terminal conditions and

JK(x̂0, uMPC(·)) ≤ V tr
K (x̂0) +Kε1(N) + ε2(K)

in the case without terminal conditions. The former was
proved in Grüne and Panin (2015) and the latter in Grüne
and Stieler (2014); a unified treatment of both cases was
later given in (Grüne and Pannek, 2017, Chapter 8).

6. FEASIBILITY

In all statements so far we have tacitly assumed that the
solution xMPC(n) exists for all n ≥ 0. However, this
requires that in each sampling instance in Step (2) of
the MPC scheme there exists an admissible control u(·)
for the initial condition x0 = xMPC(n). In this case,
we call x0 = xMPC(n) feasible and the question is thus
whether xMPC(n) is feasible for all n ≥ 0 In case of
MPC with terminal conditions, feasibility for xMPC(n)
follows if xMPC(n − 1) is feasible — a property called
recursive feasibility — provided the terminal constrained
Xf is viable, i.e., for each x ∈ Xf there is u ∈ U with
(x, u) ∈ Y and f(x, u) ∈ Xf , see, e.g., Mayne et al. (2000).
This procedure and the related proofs are completely
unrelated to dissipativity.

However, in the absence of terminal conditions, strict
dissipativity or, more precisely, the turnpike property
again play an important role. If we assume that the
optimal equilibrium xe lies in the interior of the state
constraint set X, then for all sufficiently large horizons N

the turnpike property implies feasibility for all points that
lies on the part of the optimal trajectory that approaches
the turnpike. From this observation, it is then possible to
conclude recursive feasibility, see Faulwasser and Bonvin
(2015); Faulwasser et al. (2018).

7. CONCLUSION AND RECENT DEVELOPMENTS

Strict dissipativity allows to conclude a variety of desirable
properties for the closed-loop system generated by MPC
schemes with general cost functions. The two decisive
features of strict dissipativity in the context of MPC are (i)
that it allows to build a Lyapunov function for the closed-
loop based on an optimal control problem with cost ˜̀ and
(ii) that it implies the turnpike property.

This has motivated extensive studies about the nature of
strict dissipativity. A very interesting connection for linear
quadratic problems is that strict dissipativity is closely re-
lated to detectability properties, see Grüne and Guglielmi
(2018), which in turn are again closely linked to the
turnpike property in a very general infinite-dimensional
evolution equation setting, see Grüne et al. (2019, 2020).
This relation will also be explained in the talk.
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