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Abstract

We study the minimum number of minimal codewords in linear codes from the point of view
of projective geometry. We derive bounds and in some cases determine the exact values. We
also present an extension to minimal subcode supports.

1 Introduction

The support of a vector is the set of its nonzero coordinate positions. In a linear code, a nonzero
codeword is said to be minimal if its support is minimal (with respect to set inclusion). Minimal
codewords were first studied in connection with decoding [16, 1, 2]. They were reintroduced by
Massey in the context of secret sharing [21] and they were used in a protocol for secure two-party
computation [10]. Minimal codewords can be viewed as circuits in matroids and also as cycles in
graphs.

In general, it is difficult to determine the set of minimal codewords of a given linear code. This was
only done for some classes of codes, for instance see [1, 7, 8, 11, 26, 22]. The authors in [5, 4, 3]
investigated the maximum and minimum number of minimal codewords in binary linear codes.
Given the length and dimension, bounds and some exact values were presented. This can be seen
as a coding-theoretic analogue of problems considered in the setting of matroids [13] and graphs
[14].

In this work, we continue the study of the minimal codewords using techniques from projective
geometry. First, we present a geometric characterization of minimal (and non-minimal) codewords.
Then we use this characterization to derive a lower bound on the number of minimal codewords
of a linear code. As a consequence, we obtain exact values of the minimum number of minimal
codewords of linear codes of certain length and dimension. Our result applies to both binary
and non-binary linear codes. The geometric approach can also be extended to minimal subcode
supports.

2 Theoretical background

Let F, be the finite field with ¢ elements where ¢ is a power of a prime. A g-ary [n, k], linear
code C'is a k-dimensional subspace of the n-dimensional vector space Fy. Elements ¢ € C' are
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called codewords and n is called the length of the code. The support of a codeword c is the set of
coordinates with a non-zero entry, i.e., supp(c) = {i € {1,...,n} : ¢; # 0}. The Hamming weight
wt(c) of a codeword is the cardinality | supp(c)| of its support. We define supp(C') = Ucec supp(c)
and call | supp(C)| the effective length of C. We call a code C' non-trivial if its dimension dim(C') =
k is at least 1. Here we assume that all codes are non-trivial and that the effective length equals
the length n (or n(C') to be more precise). A matrix G with the property that the linear span of
its rows generate the code C, is a generator matriz of C.

Consider the projective space PG(IE";) and recall that its points are the 1-dimensional subspaces,
its lines are the 2-dimensional subspaces and its hyperplanes are the (k — 1)-dimensional subspaces

of IE";. We use the abbreviation mq = % for the number of points in PG(F’;). The number of

hyperplanes is also given by mq.

Let Gj, 1 <i < n, be the ith column of a generator matrix G of C. To each [n, k], code C, we can
assign a multiset P of points in PG(F’;) by considering (G;), the span of G;. For convenience of
notation, we let P = {(G1), (G2), ..., (Gyn)}. Technically, a multiset of points can be described by
a characteristic function xy mapping each point of PG (IF’; ) to a non-negative integer. With this, the
cardinality |P| is just the sum over x(P) for all points P. By construction, |P| equals the effective
length of C.

Each non-zero codeword ¢ € C corresponds to a hyperplane H in PG(IF’;) such that the set of
zero coordinates of ¢ corresponds to P N H. In other words, i € supp(c) if and only if G; €
PG(F%)\ (PN H). Hence, wt(c) = [P| — [P N H|. We call two codewords equivalent if they arise
by a multiplication with a nonzero field element, so that equivalent codewords correspond to the
same hyperplane.

A codeword of C\{0} is called minimal if its support does not properly contain the support of
another nonzero codeword. General properties of minimal codewords are discussed in [7]. We
denote by M (C) the number of non-equivalent minimal codewords in C, so that M (C) < mq. If
G is a generator matrix of C' and C’ is the code that arises if we remove all zero-columns and all
duplicated columns from G, then M (C) = M(C’). A code without zero- and duplicated columns
in a generator matrix is called projective. In geometric terms this means that the multiset P is
indeed a set.

We denote by mg(n, k) the minimum of M (C') for all projective [n, k], codes C' so that my(n, k)
is undefined if 7 < k or n > [}] . Obviously, we have mq(k, k) = k, mq ([}],,k) = [{],, and
mg(n, k) <mg(n' k) for k <n <n'< mq.

Similarly, we define M;(n, k) to be the maximum of M (C) for all projective [n, k], codes C. This
quantity was studied in [5, 4] for the case of binary codes. The focus of this work is on mg(n, k)
and it is interesting to note that finding the minimum of M (C) is one of the problems raised in
[16], the paper that introduced the concept of minimal codewords.

Kashyap showed that mg(n, k) > n and that the only binary codes that meet this bound are the
direct sum of Simplex codes [18]. An alternative proof of the aforementioned lower bound was
given in [3]. The authors in [3] also showed that ma(n,n — 1) = n,ma(n,n —2) = n for n > 6, and
computed bounds or exact values of ma(n, k) for 1 <k <n < 15. They also determined the exact
values of ma(n, k) restricted to the cycle codes from graphs for 1 < k <n < 15.



3 A geometric approach to minimal codewords

Let C be a projective [n, k], code and let P be the corresponding set of points in PG(F’;). For
a codeword ¢ € C, we denote by H. the corresponding hyperplane in PG(IF’;). Suppose c¢ is not
minimal. Then there exists a non-zero codeword ¢’ such that supp(¢’) C supp(c). Equivalently,
(PNH.) C (PNHy). Thus, we have the following geometric characterization of minimal codewords:

Lemma 3.1. A non-zero codeword c in an [n, k|, code C' is minimal if and only if (PN H.) = H.
or, equivalently, dim((P N H,.)) =k — 1.

We note that an equivalent characterization in terms of the generator matrix was obtained by Agrell
[2]. We can deduce from Lemma 3.1 that if ¢ € C' is a minimal codeword then d < wt(c) < n—k+1
where d is the minimum Hamming weight of C'. This is a known property of minimal codewords,
see [16].

Another well-known result that can be obtained from Lemma 3.1 concerns M,(n, k). Since a
(k—1)-subset of P spans a hyperplane then we have M,(n, k) < (kfl) This result was first proved
in [13] for matroids, and an alternative proof was given in [4] for binary codes. We have equality
if and only if each (k — 1)-subset of P spans a distinct hyperplane. This means that P is an n-arc
in PG(F’;) or, equivalently, C' is an MDS code.

It follows that for each non-zero non-minimal codeword ¢, there exists a subspace U. < H. of
dimension k — 2, i.e., co-dimension 2, with ({z : x € PN H.}) < U.. Note that there may be
several such subspaces U, and the existence of at least one such subspace U, implies that c is a
non-minimal codeword.

We now present a lower bound on M(C'), the number of non-equivalent minimal codewords in
C. We recall that M(C) < mq. Let a4(k,r) denote the minimum cardinality of a point set

S C PG(]FZ) such that there exist r different hyperplanes Hy,..., H, and r subspaces Uy, ..., U,
of co-dimension 2 with U; < H; for all 1 < i < r and U]_, (H;\U;) C S. For k = 2, we define
a4(2,7) =r and for r = 0, we define ay(k,0) = 0.

Proposition 3.2. Let C' be a projective [n,k]; code and 1 < r < mq be an integer. If n >

[, — ulkr) then () > [i], =7

Proof. It M(C) < mq —r, then C contains at least » non-minimal codewords. These imply the
existence of r different hyperplanes Hy, ..., H, and r subspaces Uy, ..., U, of co-dimension 2 with
Ui <H,foralll1 <i<rand PN (U_, (H\U;)) =0. Thus, n = |P| < mq — ay(k, 7). O
The values of o, (k,7) are easy to determine analytically if 7 is small. First, we have o (k, 1) = ¢*~2
since |[H\U| = ¢*~2 for any hyperplane H and subspace U < H of co-dimension 2.

Proposition 3.3. a,(k,2) = 2¢¥"2 — ¢*=3 for k > 3.

Proof. We consider § = (H1\U;y) U (H2\Us) for two distinct hyperplanes H; and Hj, so that
dim(H1 N HQ) = k — 2. We have ’S| = 2qk_2 — |(H1\U1) N (HQ\U2)| If HH N Hy = U; or
Hy, N Hy = Uy then |S| = 2¢72. Otherwise, we have |(H\Uy) N (H2\Us)| = ¢*~3 or ¢"=3 — ¢
(if k > 4). Therefore, a,(k,2) = 2¢¥"2 — ¢*=3 for k > 3. O



A k-arc in PG(F}) is a set of « points in PG(F2) no three of which are collinear. A dual k-arc
in PG(FE) is a set of k lines in PG(IFZ) no three of which have a common point. The maximum
possible k such that a k-arc in PG(FS) exists is well known. It is ¢ + 2 if the field size ¢ is even
and g + 1 otherwise, see e.g. [15].

Proposition 3.4. Let r > 3 and k > 3. We have ay(k,r) =1 -¢"* 72 — (;) "3 if ¢ is odd and
r<gqorifqisevenandr <q+1.

Proof. First we note that aq(k,7) > r - g2 — (;) ¢* =3 for k > 3 and r > 1, see the analysis in the
proof of Proposition 3.3. We will show that this lower bound is also tight if r is not too large.

Fix a subspace X of co-dimension 3. All subspaces H; and U;, i = 1,2, 3, to be constructed will
contain X, thus we can describe the setting in the quotient space V := F ]; /X = Fg, which may
be considered geometrically as a projective plane. In V we choose dual (r + 1)-arc Ly, ..., Ly41,
which is possible due to the assumed upper bound on r. By construction, the intersections of the
L; are pairwise disjoint. For 1 <i <rlet P, = L;N Ly41, i.e., the intersection point of the lines L;

and L,y1. With this, we set H; = (L;, X) and U; = (P;, X) for 1 <i <.

Let S = Ul_; (H;\U;). Since |H\U;| = ¢*72 for 1 < i < r, |(H:\U;) N (H;\U;)| = ¢*=3 for
1<i<j<r,and Nier (H;\U;) = 0 (note that N;erH; = NiegU; = X) for all T C {1,...,r} with
[I] > 3, we have S| =r-¢F2 — (}) - ¢*3. O

To turn the bound of Proposition 3.2 into a statement on exact values for my(n, k) is slightly more
technical:

Proposition 3.5. For a given field size q, let n and k be positive integers with 2 < k <n < mq.

Let 1 < r < mq be an integer with n > mq — ag(k,r) and n < mq — og(k,r —1). Then
k

mq(n, k) = mq —r+1.

Proof. From Proposition 3.2 we directly conclude mgy(n, k) > mq —r+1. Let S be a set of points

in PG(IF’;) attaining oy (k,r — 1) and C be the linear code corresponding to the complement of S.

Then, C has effective length n’ = m . aq(k,r—1) > n and at least r — 1 non-minimal codewords.

If C has at least r non-minimal codewords, then oy (k,7) < ay(k,r—1), i.e., aq(k,7) = og(k,r—1),

which is impossible due to our assumption on n. Thus, C' has exactly » — 1 non-minimal codewords.

Since n’ > n we have mg(n, k) < mg(n', k) < mq —r+1. O

Setting r = 1 in Proposition 3.5, we obtain the following: for k£ > 2, if mq —¢"? <n< mq
then my(n, k) = mq . Next we show that m, ([’ﬂq —¢"2, k:) < mq. Let H be a hyperplane and
U < H a subspace of co-dimension 2. Consider the code C' whose point set P = PG(F’;)\(H\U).
Note that |P| = mq — ¢*2. Then C has at least one non-minimal codeword (the one associated
with H).

Since mgy(n, k) attains the maximum possible value for M (C') then all codes in this range have
the property that all non-zero codewords are minimal. These codes are called minimal codes and
were first studied in [7, 12]. Minimal codes were also used in the protocol for secure two-party
computation proposed in [10]. If C' is an [n, k], minimal code then it was shown in [20, 23, 6]
that the length satisfies n > (k — 1)g + 1. The case of r = 1 above gives a tight lower bound for

projective [n, k], minimal codes as n > [lﬂq — g2 41
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When r = 2 in Proposition 3.5, we get: for k& > 3, if mq —2¢" 24+ ¢ 3 <n< mq — ¢"2 then

mqg(n, k) = mq — 1. For this range of k and n, the value of my(n, k) is the maximum possible

value. Hence, we can say that each code C in this range has M(C) = m 0 1, i.e. has exactly one
non-minimal codeword.

We can apply the above discussion to update the tables given in [3]. For example, we have
ma(6,3) = 7 and ma(n,4) = 15 for n = 12,13,14,15. For the remaining entries of Table 1 we
consider an exhaustive enumeration of linear codes. First note that if a linear code C' contains a
codeword of weight 1 then removing the corresponding coordinate yields a code C’ with n(C") =
n(C)—1and M(C') = M(C) — 1. Thus it is sufficient to consider all projective [n, k]o codes with
minimum distance at least 2. These can be generated easily and for each code we can simply count
the number of minimal codewords. To this end we have applied the algorithm from [19].

n/k {23456 |7 |89 [10]11]12]13|14]| 15
3 313

4 41 4

) 6|5 |5

6 716 |6 |6

7 T8 T | T|T

8 819 | 81| 8] 8

9 121919191919

10 14 | 10 | 10 | 10 | 10 | 10 | 10

11 14 15 | 11 | 11 | 11 | 11 | 11 | 11

12 15116 |13 |12 | 12 | 12 | 12 | 12 | 12

13 15116 |14 | 13|13 |13 |13 |13 |13 | 13

14 15116 | 14 | 15|14 | 14 |14 | 14 | 14 | 14 | 14
15 15116 | 17 | 15|16 | 15 | 15 | 15 | 15 | 15| 15 | 15

Table 1: ma(n, k) for 3<n <151<k<9

4 Minimal subcode supports

The geometric approach used in the previous section can be extended to subcode supports. Let C
be a projective [n, k], code and let D be an [-dimensional subcode of C'. The support of D, denoted
by supp(D), is the union of the supports of all the codewords in D and the weight of D, denoted
by wt(D), is the cardinality of its support. The [-th generalized Hamming weight d; of C' is the
minimum among the weights of the r-dimensional subcodes of C' [25]. In short,

supp(D) ={i € {1,...,n} : v € D with v; # 0}
wt(D) = [supp(D)
d; = min{wt(D) : D < C,dim(D) =1}.

For a given subcode D with dim(D) = I, we can associate a subspace in PG(F¥) of codimension
[. Let G be a generator matrix for C'. Then there exists an [ x k matrix M such that the rows
of MG form a basis for D. The nullspace W of M is a subspace in PG (IF";) of co-dimension /. In
fact, there is a one-to-one correspondence between the subcodes of C of dimension [ and subspaces
of PG(FI;) of co-dimension [ (for more details, see [24, 17]).



Let P C PG(F{;) be the set of points associated with C'. Let D be an [-dimensional subcode
of C. Then D corresponds to a subspace W in PG(F¥) of co-dimension [. From [17], we have
supp(D) = PG(FE)\(P N W) and wt(D) = n — |P N W|. The l-th generalized Hamming weight
dy = n—min{|P N W| : W subspace of co-dimension [}. We say that D is a support-minimal
subcode if there is no other I-dimensional subcode D’ < C' such that supp(D’) C supp(D).

The following lemma extends the geometric characterization in the previous section to subcodes:

Lemma 4.1. Let C be a projective [n, k], code and P be the corresponding set of points in PG(F’;).
Let D be an l-dimensional subcode of C and consider the associated subspace Wp in PG(IF’;)
of co-dimension l. Then supp(D) is minimal if and only if (P N Wp) = Wp. FEquivalently,
dim((PNWp)) =k — 1.

If D is a support-minimal subcode with dim(D) = [ then d; < wt(D) < n—k—1, where d; is the I-th
generalized Hamming weight of C'. Minimal subcode supports were studied as circuits of certain
matroids in [9]. It was shown that the set of minimal subcode supports determines the multiset
of subcode supports. For 1 < I’ <[ < k, the set of minimal {’-dimensional subcode supports also
determines the set of minimal /-dimensional subcode supports.

Example 4.1. We look at some codes and their support-minimal subcodes.

1. Simplex codes. Let C be the k-th order g-ary Simplex code which has parameters [(¢* —1)/(q—
1),k,q" Y. The columns of the generator matriz for C form a set of non-zero representatives
of the 1-dimensional subspaces of IFI;. This means that the point set associated with C' is
PG(F’;). By Lemma 4.1, for a given 1 <1 < k, all the l-dimensional subcodes of C are
support-minimal and have the same weight.

2. I-MDS codes. Let C be an I-MDS code, i.e. di = n —k +1. It follows that among the
[-dimensional subcodes of C, the only support-minimal subcodes are those with weight equal
to d;. For an I-MDS code, we have dj = n —k + 1 for I > l. Hence, among the l'-
dimensional subcodes of C, the only support-minimal subcodes are those with weight equal to
d). In particular, if C is an MDS code then we can completely determine all the support-
minimal subcodes for 1 <1 < k.

For 1 <1 < k, we define M'(C) to be the number of support-minimal I-dimensional subcodes of C.
When I = 1 we get M'(C) = (¢ — 1)M(C). An upper bound for M!(C) is given by M!(C) < mq

where
m ) [t VR C At )
L, (¢ =gt =1)(¢—1)
is the Gaussian binomial coefficient that gives the number of subspaces in PG(F’;) of co-dimension
l.

From Lemma 4.1, a subcode D is not support-minimal if there exists a subspace Up < Wp of
co-dimension [ + 1 such that (PNWp) < Up. For 1 <l <kand1<r < mq, we define afl(k‘,r) to
be the minimum cardinality of a point set S C PG(F’;) such that there exist r distinct subspaces

Wi, ..., W, of co-dimension [ and r subspaces Uj, ..., U, of co-dimension [ + 1 with U; < W, and
Ul_; (W;\U;) € S. The next proposition extends Proposition 3.2 to subcodes.

Proposition 4.2. Let C' be a projective [n, k|, code and consider integers l,r such that 1 <1 <k
and 1 <r < m Afn > m - afl(kz,r) then M'(C) > m —r.
q q q

Proof. The proof is similar to 3.2. ]
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Concluding remarks

We presented a geometric characterization of minimal codewords in linear codes. We then applied
this characterization to the problem of finding the minimum number of minimal codewords of
projective [n, k], codes. We obtain a new lower bound and in some cases, we were able to determine
exact values that were not known before. We also extended the techniques to the study of subcodes
with minimal supports.
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