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1. INTRODUCTION 

1.1. Importance of earthworms 

1.1.1. History of earthworms  

Intestinal microbes are important to the performance and health of their animal hosts 

(Shreiner et al., 2015; Blake and Suchodolski, 2016; Fouhse et al., 2016; Liang et al., 2018).  

Based on fossil records, worm-like triploblastic metazoans and annelids existed 0.5 to 1.1 billion 

years ago (Seilacher, 1998; Morris and Peel, 2008).  Aristotle (384 to 322 B.C.) was one of the 

first historically famous persons understanding the importance of earthworms in soil formation 

and maintenance of soil structure and fertility.  He suitably called them “The Intestine of the Earth” 

(Yadav, 2017).  Approximately three hundred years later Cleopatra VII (69 to 30 B.C.), one of the 

most famous female rulers in history, was fascinated by these inconspicuous soil creatures and 

declared them to be sacred after she recognized the strong contribution of earthworms to the 

Egyptian agriculture (Abul-Soud et al., 2009; Yadav, 2017).  At this time, the removal of 

earthworms from Egypt carried the death penalty (Abul-Soud et al., 2009).  However, until the 

late 1800s, when Charles Darwin published 1881 his book “The Formation of Vegetable Mould 

through the Action of Worms” (Darwin, 1881), earthworms were commonly underappreciated and 

considered as garden pest (Brown et al., 2004).  Darwin and his work brought finally widespread 

public attention to the central importance of earthworms in the maintenance of soil structure, 

aeration, drainage and fertility, including the decomposition of dead plant material and animal 

matter (Darwin, 1881; Brown et al., 2004). 

Soil fertility is defined as the capacity of soil to supply essential nutrients to crops and is 

strongly associated with the productivity of soils (Stockdale et al., 2002), which is one of the most 

important aspects regarding the nutrition of 7.7 billion people on the planet, a number which 

increases year to year (https://www.worldometers.info).  More than 98% of the world nutrition 

originates from terrestrial ecosystems (Schinner and Sonnleitner, 1996), demonstrating the 

importance of these ecosystems and the need for understanding the factors that influence their 

functions.  An ecosystem can be defined as “a unit of interaction among organisms and between 

organisms and their physical environments, including all living things within a defined area” 

(Lewis, 1992).  In this regard, the earthworm is one such factor that influence the functions of the 

terrestrial ecosystem.  With up to 2,000 individuals per square meter, earthworms represent the 

most dominant marcrofauna in many soils (Figure 1; Edwards and Bohlen, 1996), and their 

feeding habits result in substantial physical, chemical, and biological alterations of the terrestrial 

biosphere, including the turnover of elements and diverse effects on plant growth (Tomati et al., 

1988; Lavelle et al., 1998; Brown et al., 2000; Bastardie et al., 2003).  Since it is known that 

earthworms lead to alterations in physical structure, nutrient fluxes, and energetic status, 

earthworms are aptly called soil ecosystem engineers (Jones et al., 1994; Lavelle et al., 1998).  
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Figure 1.  Abundance of earthworms in different pastures.  A country listed twice represents two different 
samplings in that country.  Figure based on numbers obtained from Edwards and Bohlen, 1996. 

1.1.2. Earthworms and the turnover of elements 

The important role of earthworms in the breakdown of complex organic matter, for example 

dead plant biomass and animal material, is attributable to their high abundance in many soils and 

their propensity to consume high amounts of their habitat (Edwards and Bohlen, 1996).  

Therefore, earthworms influence organic matter and nutrient cycles on four different levels: (a) 

during the gut passage, (b) in fresh earthworm cast, (c) in aging cast , and (d) during the long-

term genesis of the soil profile (Lavelle and Martin, 1992).  In this regard, ingested organic matter 

that passes through the earthworm gut is broken down into much smaller particles, resulting in a 

greater surface area of organic matter exposed to further microbial decomposition (Martin, 1991).  

Previous experiments demonstrated that a 90% decreased earthworm population results in a 

43%, 30% and 32% increase of fine, coarse, and total particulate organic matter, respectively 

(Parmelee et al., 1990).  These findings indicate the positive correlation between the annelid 

biomass and the amount of decomposed organic matter, and furthermore illustrates the high 

importance of earthworms in the fragmentation and breakdown of complex organic material 

incorporated in the terrestrial biosphere.  The effectivity of organic matter fragmentation and 

incorporation into soil is dependent on the different feeding habits of earthworms (Section 1.1.4).  

Anecic earthworms (e.g., Lumbricus terrestris) incorporate large amounts of organic matter into 

soil and are able to ingest large litter fragments by pickling off smaller pieces (Edwards and 

Bohlen, 1996).  In contrast, epigeic and endogeic earthworms either do not incorporate organic 

matter into soil or feed only on already fragmented material (Ferriére, 1980; Judas, 1992).  

However, the concomitant occurrence of anecic and endogeic earthworms in many soils, 

suggesting a synergistic effect on the reallocation of organic matter in the soil profile (Shaw and 

Pawluk, 1986a, 1986b).  Especially in the renewal of forests ecosystems, the mixing and 
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fragmentation of the litterfall by the activity of earthworms turned out as fundamentally important 

(Bernier and Ponge, 1994).  Beyond that, by the repeated ingestion and turnover of soil and 

organic matter, earthworms (a) facilitate the rate of mineralization (a process defined as the 

conversion of organic forms from organic material to plant utilizable inorganic forms) (Edwards 

and Bohlen, 1996) and (b) enhance nitrogenous gas emission of soil and the nitrogen uptake by 

plants (Karsten and Drake, 1997; Matthies et al., 1999; Borken et al., 2000; Bertora et al., 2007; 

Rizhiya et al., 2007; Lubbers et al., 2011).  

1.1.3. Earthworms and the effect on plant growth 

Earthworms share the soil environment with roots and the impact on plant growth and 

productivity is therefore unavoidable (Figure 2).  These impacts on plant growth including root 

development and productivity can occur on three levels: physically, biologically, and chemically 

(Figure 2; Edwards, 2004).  While the physical and chemical impact on plants is mostly indirect, 

the biological effect can be either direct or indirect.  

 

Figure 2.  Simplified model connecting the physical, chemical, and biological effects of earthworms on plant 
growth and nutrition.  Figure modified from Edwards, 2004. 

In more detail, earthworms have an indirect biological effect on plants when they (a) 

disperse or change the populations and activity of plant-beneficial microbes (e.g., plant promoting 

rhizobacteria or nitrogen fixing root symbionts), plant pests, parasites and pathogens (Dash et al., 

1980; Brown, 1995; Nakamura et al., 1995 Brown, 1995; Anderson and Bohlen, 1998; Lavelle et 
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al., 1998; Maraun et al., 1999; Brown et al., 2000), or (b) produce plant promoting or regulating 

substances (e.g., hormones and vitamins) (Gavrilov, 1963; Nielson, 1965; Harti et al., 2001b, 

2001a).  In contrast, root abrasion, ingestion of living plant material or seeds, and burial of seeds 

by earthworms are examples of direct biological effects (Chen and Lui, 1963; Hameed and 

Bouchè, 1993; Barrion and Litsinger, 1997; Brown, 1999).  Furthermore, earthworm casts lead to 

aggregation and crust formation, whereas macropores (larger than 30 µm) caused by earthworm 

burrows, (a) enhance the aeration and erosion of soil, (b) facilitate the root infiltration and 

elongation, and (c) optimize the water retention (Figure 2; Blanchart et al., 1997; Hirth et al., 1997; 

Kretzschmar, 1998; Jiménez, 1999; Decaëns and Rossi, 2001).  These are physical changes in 

soil structure that influence indirectly the plant growth, root development and productivity.  The 

release or immobilization of plant nutrients, denitrification, and mineralization (processes that 

influence nutrient availability) can be enhanced by earthworm activities, and result in indirect 

chemical effects on plants (Barois et al., 1999; Brussaard, 1999; Rangel et al., 1999; Cortez and 

Hameed, 2001).  Although earthworms has diverse positive effects on plant growth, and are of 

value for vermicomposting (Suthar and Singh, 2008; Domínguez et al., 2010), the invasiveness 

of this invertebrate may have negative environmental consequences (Migge-Kleian et al., 2006; 

Addison, 2009). 

1.1.4. Morphological features and feeding habits of earthworms 

Earthworms (a) belong to the class Oligochaeta, consisting of approximately 800 genera 

and 8000 species, and (b) constitute up to 90% of invertebrate biomass in soil (Edwards, 2004).  

Dependent on the morphological features, habitats and feeding skills the burrows of earthworm 

can vary in volume, orientation, tortuosity, stability, and connectivity (Capowiez et al., 2003; 

Bastardie et al., 2005).  Considering the different earthworm lifestyles, earthworms can be divided 

into three ecotypes, termed as epigeic, endogeic or anecic earthworms (Bouché, 1977).  

The epigeic earthworms decomposing litter on the soil surface, whereby only small amounts 

of soil or no soil is ingested (Palm et al., 2013).  Epigeic earthworms are characteristic for their 

relative small size and heavy ventrally and dorsally pigmentation.  Because these worms (a) feed 

mainly on fresh or partially decomposed litter in the upper organic layer (Figure 3) and (b) form 

only some horizontally burrow in the upper few centimeters of the top soil (Palm et al., 2013), 

epigeic earthworms also called litter-dwellers and humus formers (Bouché, 1977; Perel, 1977). 

Furthermore, they are short lived, grow rapidly and exhibit relatively high reproduction rates 

(Edwards and Bohlen, 1996).  

In contrast, anecic earthworms form humus while feeding on litter and soil (Perel, 1977).  

They are characteristic for pulling organic plant material into their large permanent and semi-

permanent vertical burrow system.  In this regard, the anecic earthworm L. terrestris is well known 

for removing significant quantities of litter from forest floors (Curry and Schmidt, 2007).  Deduced 

from the fact that anecic earthworm burrows can extend several meters into the mineral subsoil 
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(Figure 3), they are called as deep-burrowers. Furthermore, they are relative large, and medium 

to heavy dorsally pigmented (Perel, 1977).  

Endogeic earthworms consume, in contrast to anecic and epigeic earthworms, large 

amounts of mineral soil with preference for material rich in organic matter (e.g., dead roots) (Curry 

and Schmidt, 2007). Their activity leads to extensive sub-horizontal highly branched and less 

stable burrows in the upper 10 to 15 cm of top soil (Figure 3, Palm et al., 2013).  Endogeic 

earthworms are unpigmented or lightly pigmented, exhibit a medium size, and termed soil-

dwellers or humus feeders (Perel, 1977; Edwards and Bohlen, 1996). 

 

Figure 3.  Burrow profile of the different earthworm ecotypes demonstrated 
at a cross section of soil.  Figure based on information obtained from Fraser 
and Boag, 1998; Schelfhout et al., 2017; Channarayappa and Biradar, 2019.   

1.2. Alimentary canal of earthworms 

The structure of the alimentary canal of earthworms can be considered to be relatively 

simple. Nonetheless, these primitive invertebrates (Seilacher, 1998) have survived several 

extinction events (Barnosky et al., 2011), illustrating in part the durable functionality of their gut 

ecosystem.   

1.2.1. Sections of the alimentary canal, related functions, and 
conditions 

The alimentary canal of L. terrestris is one of the best described earthworm alimentary 

canals (Laverack, 1963; Edwards and Fletcher, 1988; Edwards and Bohlen, 1996; Breidenbach, 

2002; Doube and Brown, 2004; Storch et al., 2009).  Although the gut ecosystem of earthworms 
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can be considered primitive and less compartmented it can be divided into mouth, cavity, pharynx, 

esophagus, crop, gizzard, intestine and anus, whereby the simple intestine represent the largest 

proportion of the alimentary canal (Figure 4 A).   

The alimentary passage begins with the ingestion of dietary material that is usually a mixture 

of plant material, microbes and soil, and ends with the excretion of casts (Edwards and Bohlen, 

1996).  The time for this passage varies from 8 to 24 h depending on the species of the earthworm 

and its feeding behavior (Parle, 1963a; Satchell, 1967; Wüst et al., 2011).  In more detail, the food 

enters the alimentary canal via the mouth and is transferred to the buccal cavity and pharynx, 

both located directly behind the mouth (Edwards and Bohlen, 1996).  The pharynx operates as 

suction pump and facilitate the ingestion of food, whereas pharyngeal glands excrete protease-, 

glycoprotein-, amylase-, glycoside- and amino acids-containing mucus with several functions 

(Laverack, 1963; Martin et al., 1987; Trigo et al., 1999).  Thus, the mucus (a) facilitates the 

transport of the relative dry ingested material through the gut system, (b) initiates the hydrolysis 

of several biopolymers (Urbášek and Pilž, 1991) and (c) activates ingested soil fermenters 

(Section 1.2.2; Brown et al., 2000; Edwards, 2004; Huang and Xia, 2018).   

 

Figure 4.  Sections of the earthworm alimentary canal and their functions (A), and in vivo microsensor-
derived O2 profile of the midgut of Lumbricus rubellus (B).  Panel A: Figure based on information obtained 
from Edwards and Bohlen, 1996.  Panel B: The right axis identifies the anatomical regions of a cross section 
of the earthworm.  The absence of detectable O2 in the gut core of the alimentary canal (crop/gizzard, 
foregut, midgut, and hindgut) was confirmed with Apporectoedea caliginosa and L. terrestris (Horn et al., 
2003; Wüst et al., 2009b).  Figure modified from Horn et al., 2003. 

Behind the pharynx is the esophagus with calciferous glands which produce calcium 

carbonate that is presumed to regulate (a) the pH and carbon dioxide (CO2) concentrations, and 

(b) potentially toxic cations (Dotterweich and Franke, 1936; Robertson, 1936; Crang et al., 1968; 

Piearce, 1972; Bal, 1977).  The crop, situated behind the esophagus and in front of the gizzard, 

is a thin-walled storage chamber transferring the material successively into the gizzard (Edwards 

and Bohlen, 1996).  Before the ingested material enters the intestine it passes the gizzard, a hard 

muscular organ that abrasively mixes, grinds, and disrupts ingested material including plant 

material and large microbial cells (e.g., fungal hyphae [Kristůfek et al., 1994; Schönholzer et al., 

1999]).  Most of the digestion in the alimentary canal of earthworms occur in the oxygen (O2)-free 

intestine (Figure 4 B), an organ described as mutualistic system in which additional exoenzymes 
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are produced by ingested intact bacteria (Urbášek and Pilž, 1991; Drake and Horn, 2007).  It is 

assumed, that the activity of the anaerobic gut microbiota (a) strongly enhance the degradation 

of ingested complex organic material during the gut passage, and (b) increase the capacity of the 

worm to absorb nutrients (Sampedro et al., 2006; Drake and Horn, 2007).  The gut passage ends 

with the re-absorption of the mucus and associated water, a process followed by the defecation 

of casts by the anus (Edwards and Bohlen, 1996). 

1.2.2. The earthworm gut microbiota 

Soil contain one of the largest known microbial diversities, with a gram dry weight of soil 

containing approximately 1010 microbial cells (Torsvik et al., 1990; Whitman et al., 1998), a 

number that illustrates a tremendous phylogenic and physiologic diversity.  Furthermore, the 

cultivable number of soil-related facultative aerobes and anaerobes range from 107 to 109 per 

gram dry weight soil (Karsten and Drake, 1997; Küsel et al., 1999), illustrating the large potential 

of earthworm-ingested microorganisms to facilitate anaerobic processes in the anoxic alimentary 

canal of the earthworm.  In this regard, several molecular methods revealed similar bacteria in 

soil, the earthworm gut, and earthworm casts (Bassalik, 1913; Brown, 1995; Furlong et al., 2002; 

Egert et al., 2004).  Although these findings about the nature of the gut microbiota suggest that 

most microbes in the earthworm are likely ingested and transient, the non-responsiveness of soil 

microbes to a specific high value gut nutrient and anoxia has made it difficult to demonstrate that 

responsive gut fermenters are derived from soil.  However, other studies demonstrated that 

earthworms can also harbor potential bacterial symbionts that are strongly associated to this 

invertebrate and not detected in the earthworm-surrounding material (Pinel et al., 2008; 

Nechitaylo et al., 2010).  Until today, only three such symbionts are recorded, including the 

Mycoplasmataceae-affiliated uncultured Candidatus Lumbricincola (Nechitaylo et al., 2009).  

Ingested aerated soil is relatively dry, nutrient-poor and exhibit high fluctuations in pH (e.g., 

pH 4.6 to 7.1; Drake and Horn, 2007).  These conditions result in a low activity or a state of 

dormancy of prokaryotic cells (e.g., as cysts, starving cells or endospores) (Drake and Horn, 

2007).  In marked contrast, the gut content of earthworms, an anoxic microzone in soils, can reach 

a water content up to 80%, and is rich on diverse nutrients (Horn et al., 2003; Drake and Horn, 

2007).  For example, total amino acids can be 170-fold greater in the gut than in soil, and the 

aqueous phase of the gut contains millimolar concentrations of diverse saccharides, whereas 

saccharide levels in soil are negligible (Figure 5; Horn et al., 2003; Wüst et al., 2009b).  The 

detectable various water-soluble organic matter can be derived from (a) the breakdown of plant 

and microbial cells, or (b) the earthworm-produced mucus (Section 1.2.1).   

Inactive facultative aerobes and anaerobes (e.g., bacilli and clostridia) are common in 

nutrient-poor soil (Slepecky and Leadbetter, 1984; Ovreås and Torsvik, 1998; da Silva et al., 

2003; Garbeva et al., 2003) and their activation is induced by their ingestion and exposure to the 

nutrient richness in the anoxic earthworm gut ecosystem (Edwards and Bohlen, 1996; Brown et 
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al., 2000; Drake and Horn, 2007).  The maximum recorded densities of earthworms in soil 

theoretically yield up to 500 ml gut content per square meter of soil (Edwards and Bohlen, 1996; 

Schulz et al., 2015), indicating the enormous capacity of this anoxic microzone to potentially 

stimulate high numbers of these soil microbes.  In this regard, several anaerobic activities in the 

gut are related to the emission of nitrous oxide (N2O), dinitrogen (N2), and hydrogen (H2) by 

earthworms (Horn et al., 2006a; Wüst et al., 2009a; Depkat-Jakob et al., 2012; Schulz et al., 

2015).  However, fermentation is presumed to be the dominant anaerobic process in the gut, with 

the in situ amount of reducing equivalents (i.e., electrons) in fermentation-derived fatty acids being 

over one thousand-fold greater than the in situ amount of reducing equivalents in the 

denitrification-produced gases N2O and N2 (Horn et al., 2006b; Wüst et al., 2009b).  Especially 

the fermentative families Aeromonadaceae, Enterobacteriaceae, Bacillaceae, Clostridiaceae, 

Lachnospiraceae and Peptostreptococcaceae (a) play a central role in earthworm gut 

fermentation, and (b) produce a complex fermentation profile, including CO2, H2, acetate, lactate, 

butyrate, formate, succinate, propionate, and ethanol (Wüst et al., 2011; Meier et al., 2018).  

Fermentation-derived fatty acids in the aqueous phase of the gut can exceed 30 mM (Wüst et al., 

2009b) and are, like in other animals, absorbed and utilized by the earthworm (Bergman, 1990; 

Drake and Horn, 2007; Wüst et al., 2009b; Sampedro et al., 2006), illustrating the trophic link 

between microbial gut fermentation and the earthworm.  In this regard, the flow of electrons 

towards fermentation is essential for these invertebrates since microbial respiration would lead to 

the fully oxidation of the available organic carbon to CO2 and thus be disadvantageous for 

earthworm nutrition.   

 

Figure 5.  Hypothetical model illustrating the ingestion and activation of soil fermenters in the anoxic gut of 
earthworms.  The relative concentration of compounds is indicated by the font sizes, and the relative effect 
of each compound on the production of H2 in the gut and its subsequent emission (Wüst et al., 2009b) is 
indicated by the thickness of the arrow.  Figure modified from Horn et al., 2003.
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1.3. Dietary biopolymers and their hydrolysis 

Gut mucus is produced by the earthworm to aid passage of ingested material and can drive 

fermentation in the alimentary canal (Section 1.2.1) that is linked to the fermentative production 

of fatty acids that can be absorbed by the earthworm (Drake and Horn, 2007; Wüst et al., 2009b; 

Sampedro et al., 2006).  Although reusage of mucus-derived organic carbon by the earthworm is 

advantageous, earthworms cannot self-perpetuate by this process.  Thus, the sustenance and 

growth of earthworms is ultimately dependent on the ability of the animal to obtain nutrients from 

the environment.  In this regard, the survival of the earthworm is linked to its consumption of 

diverse biomass, a feeding activity that affects plant growth and the turnover of organic matter in 

soil habitats (Section 1.1.2 and Section 1.1.3).  These considerations are reinforced by L. 

terrestris that (a) ingests plant-derived biomass (e.g., roots, shoots, and litter) and soil that 

contains high amounts of microbial cells and (b) has the capacity to consume nearly the entire 

yearly litter fall; approximately 80 mg of leaves per gram fresh body weight can be incorporated 

on a daily basis (Needham, 1957; Raw, 1962; Satchell, 1967; Knollenberg et al., 1985; Baylis et 

al., 1986; Gunn and Cherrett, 1993, 1993).  Thus, ingested biomass is subject to disruption during 

the passage through the crop/gizzard at the anterior portion of the alimentary canal (Section 1.2.1) 

(Kristůfek et al., 1994; Schönholzer et al., 1999).  Furthermore, the potential occurrence of 

proteases, chitinases, cellulases and many other glycosidic enzymes in the gut (Tracey, 1951; 

Laverack, 1963; Mishra and Dash, 1980; Loquet and Vinceslas, 1987; Edwards and Fletcher, 

1988; Urbášek and Pilž, 1991; Lattaud et al., 1997, 1998, 1999; Nozaki et al., 2009) suggests a 

hydrolysis and utilization of ingested and ruptured plant- and microbial-derived biopolymers.  

However, little is known about the capacity of fermentative microbes in the earthworm gut to 

hydrolyze and utilize ingested biopolymers. 

1.3.1. Polysaccharides  

Many polysaccharides ingested by the earthworm, like cellulose, pectin, and xylan, are 

produced as structural components of plant cell walls (Table 1).  Cellulose and xylan constitute 

the hemicellulose which is embedded in amorphous pectin polymers and stabilized by structural 

proteins and phenolic compounds (Figure 7; Ochoa-Villarreal et al., 2012).  The main functions of 

the plant cell wall include (a) the conferment of stabilization, resistance, rigidity and protection of 

the cell, but also (b) the mediation of nutrients, gases and various intercellular signals to reach 

the plasma membrane (Ochoa-Villarreal et al., 2012).   

In addition, earthworms prefer to feed on microbe-rich material (Cooke and Luxton, 1980; 

Bonkowski et al., 2000; Jayasinghe and Parkinson, 2009), and fungal hyphae as well as larger 

bacterial cells are subject to digestion in the earthworm gut (Kristůfek et al., 1994; Schönholzer 

et al., 1999), indicating that chitin and peptidoglycan are other potential dietary structural 

polysaccharides.  Plant biomass and microbial cells can also contain non-structural energy 

storage polysaccharides (e.g., starch and glycogen) that could constitute an additional source of 
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fermentable carbohydrates in the gut after disruption.  Furthermore, all microbial and plant cells 

are surrounded by a phospholipid-bilayer membrane that introduces lipids to the alimentary canal.  

Table 1.  Potentially ingested polysaccharides and the most abundant backbone subunits (Figure 6) from 
which they are composed. 

Polysaccharide  Dry Weight (%) Subunit Bondd 
Refer-
encee 

Structurala     

Cellulose  50 Glucose beta-1,4-glycosidic 1 

Peptidoglycan 70 NAGc, NAMc  beta-1,4-glycosidic 2 

Chitin 20 NAGc beta-1,4-glycosidic 3 

Pectin 35 Galacturonic Acid alpha-1,4-glycosidic 1 

Xylan 30 Xylose beta-1,4-glycosidic 1 

Non-structuralb    

Starch  30 Glucose  alpha-1,4-glycosidic 4 

Dextran - Glucose alpha-1,6-glycosidic 5 

Glycogen 50 Glucose alpha-1,4-glycosidic 6 

aValues of dry weight reflect the maximum amount of the respective structural polysaccharide that was 
detected in plant or microbial cell walls. 

bValues of dry weight reflect the maximum amount of the respective non-structural polysaccharide that was 
detected in plant or microbial cell biomass.  Dextran is an extracellular polysaccharide and therefore not 
quantified. 

cNAG, N-acetylglucosamine; NAM, N-acetylmuramic acid. 

dOnly the most abundant and characteristically bonds were prioritized.  

eTable based on information obtained from: 1, Fry, 1988;  2, Schleifer and Kandler, 1972; 3, Bowman and 
Free, 2006;  4,Gravatt and Kirby, 1998;  5, Khalikova et al., 2005;  6, Iglesias and Preiss, 1992. 

 

Figure 6.  Chair conformations of the dominant backbone-forming subunits in polysaccharides (Table 1).  
Modified from Dewick, 2006; Langan et al., 2014; Yuzwa and Vocadlo, 2014; Rautiainen et al., 2015. 

 

Figure 7.  Simplified model of the primary plant cell wall. Figure modified from Xing et al., 2018. 
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1.3.1.1. Structural polysaccharides  

Cellulose 

Cellulose, the most abundant organic biopolymer on earth, is the primary cell wall polymer 

of plants (Klemm et al., 2005).  Chemically, cellulose is a linear beta-1,4-glycosidic linked D-

glucan and insoluble (Moon et al., 2011).  Whereas glucose is known as the chemical repeating 

unit, the disaccharide cellobiose is determined as the structural repeating unit of cellulose.  The 

remarkably stability of cellulose attest to the high tendency to form intra- and intermolecular 

hydrogen bonds between the glucose subunits (Pinkert et al., 2009).  These chemical interactions 

between the individual glucose subunits result in chain formation and aggregation into microfibrils 

that contain crystalline and amorphous regions (Figure 8; Flint et al., 2008).  Dependent on the 

kind of plant (e.g., hardwood or softwood) and the part of the plant (e.g., leaf, root or stem), the 

cellulose content can be highly variable (Sjörström, 1993; Smole et al., 2005).  For example, the 

leaves of the model plant Arabidopsis thaliana contain a cellulose content of 15%, whereas stem 

walls of the same plant species contain twice as much cellulose (Smole et al., 2005).  

The microbial degradation of cellulose requires the production of different hydrolytic 

cellulases which belong to the broad superfamily of glycosidases.  Cellulases, divided into endo- 

and exo-glucanases, are specialized to hydrolyze the beta-1,4-glycosidic bonds in cellulose 

(Bayer et al., 2013).  Especially amorphous regions and defects in the crystalline structure were 

preferred to initiate the process of hydrolysis, reflecting the dependence on accessibility.  Based 

on the structure of endo- and exo-glucanases, endo-acting cellulases are able to produce a new 

end in the internal proportion of the cellulose chain (Figure 8 A).  These ends are than accessible 

for exo-acting cellulases which cleaving activity leads to the release of the disaccharide 

cellobiose.  The beta-1,4-glycosidic linkage of cellobiose molecules is hydrolyzed by beta-

glucosidases, a process resulting in two single glucose molecules (Figure 8 A).  Cellulases are 

typical for cellulose depolymerizing aerobic fungi that are environmentally important to the 

recycling of plant biomass (Green III and Highley, 1997).  For example, the brown-rot fungi (lignin 

left behind) Fomitopsis palustris, Laetiporus sulphreus, and Wolfiporia cocos are even able to 

degrade the difficult to access crystalline regions of cellulose (Machuca and Ferraz, 2001; Yoon 

and Kim, 2005). 

In anaerobic microorganisms, the necessary enzymes for cellulose degradation can be 

cohered and anchored to the microbial membrane as cellulosome, a multienzyme complex first 

described for Clostridium thermocellum (Bayer et al., 1983).  This arrangement may have evolved 

to ensure a more efficient and economic degradation of insoluble polymers and to decrease the 

competition with other microorganisms for the soluble products of hydrolysis.  Cellulosomes can 

be diverse, but generally consist of a polymer attachment domain, several scaffoldins, and a 

cohesion-dockerin system that includes the enzymatic active biopolymer hydrolyzing enzymes 

(Figure 8 B; Flint et al., 2008; Bayer et al., 2013).   
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Figure 8.  Simplified model of cellulose-degrading enzymes with different activities (A) and exemplary 
arrangement of these enzymes in cellulosomes of anaerobic bacteria (B).  CBM, cellulose-binding module.  
Figure based on information obtained from Flint et al., 2008; Bayer et al., 2013. 
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The interactions of these different compounds guarantee the attachment and anchoring of the 

hydrolyzing enzymes to the microbial cell wall that prevents the loss of these enzymes. 

Cellulosomes are widespread within the group of anaerobic microorganism and can additionally 

contain other glycoside hydrolases than cellulases (e.g., xylanases and mannanases) that 

optimizes the degradation of other plant-derived polymers (e.g., hemicellulose and pectin) (Flint 

et al., 2008; Bayer et al., 2013).    

Pectin 

Pectin can consist of 17 different monosaccharides linked with more than 20 different bonds 

and is therefore likely the most complex macromolecule in nature (Voragen et al., 2009) .  It 

belongs to the most abundant plant polysaccharides and is localized in the middle lamella which 

is situated between the primary and secondary plant cell wall (Figure 7; Xing et al., 2018).  Like 

other plant polysaccharides, the pectin content show high variations between different plant 

species and parts of the plant.  Thus, grasses and wood tissues exhibit approximately 2 to 10% 

of pectin, whereas in dicotyledonous, the pectin content can be up to 35% (Fry, 1988).  Pectin is 

insoluble and consists of approximately 70% of galacturonic acid molecules (Figure 6), that are 

connected via alpha-1,4-glycosidic bonds and form the pectin backbone (Sundar Raj et al., 2012).  

In recent years, several repeating structural elements of pectin have been characterized.  

Although these structural elements can vary slightly, it is assumed that all pectins are composed 

of these elements (Voragen et al., 2009).  For example, homogalacturonan can constitute 

approximately 60% of pectin and is therefore the most dominant structural element (Mohnen, 

2008).  Based on the order of frequency (highest to lowest), Xylogalacturonan, 

Rhamnogalacturonan I, Rhamnogalacturonan II, Arabinan, Arabinogalactan I, and 

Arabinogalactan II are additional structural elements (Mohnen, 2008).  The alpha-1,4-galacturonic 

acid backbone of homogalacturonan can be methyl esterified or acetylated (Gee et al., 1959; Mort 

et al., 1993).  Non-esterified galacturonic residues are sensitive to calcium ion cross linkages 

(Garnier et al., 1994) that are, among other linkages, responsible for the stability of pectin.  

Arabinose, rhammnose, and xylose are examples of other structural repeating elements that can 

exhibit a large number of different site groups (e.g., methanol, acetyl or ferulic acid), bonds, and 

cross linkages (Voragen et al., 2009).   

The complex structure of pectin affects the number of different enzymes that are necessary 

for an efficient hydrolysis.  The cleavage of the alpha-1,4-linked galacturonic acids backbone 

requires endo- and exo-polygalacturonase.  The activity of these enzymes is influenced by the 

diverse aforementioned site groups.  For example, (a) increasing amounts of methyl-

esterifications can lead to a concomitant decrease of endo-polygalacturonase activity (Pařenicová 

et al., 2000) , and (b) rhamnogalacturonan hydrolase that cleaves alpha-1,4-galacturnoic acid / 

alpha-1,2-rhamnose linkages exhibits a intolerance for acetyl-esterifications (Kauppinen et al., 

1995).   
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Xylan 

Xylan is a primary component in the hemicellulose of plant cell walls.  The basic structure 

of xylan is a backbone of beta-1,4-linked xylose subunits (Figure 6; Timell, 1967; Saha, 2003; 

Smith et al., 2017).  This structural polysaccharide is insoluble and can be, like pectin, highly 

acetylated or extended by diverse glyosidic bonds with several polymeric side chains of 

arabinose, mannose, galactose, or ferulic acid (Timell, 1967; Saha, 2003; Smith et al., 2017).  

The efficient degradation requires a complex subset of different enzymes with contrasting 

activities.  Whereas endo-xylanases hydrolyze the beta-1,4 bonds inside the xylose backbone, 

exo-xylanases cleave glycosidic bonds at the end of the chain and ensure the availability of the 

disaccharide xylobiose, that can be converted to single xylose molecules via the beta-xylosidase 

(Saha, 2003).  Furthermore, enzymes like alpha-arabinofuranosidase, alpha-glucoronidase, 

ferulic acid eaterase or acetylxylan esterase are necessary to cleave the variable glycosidic bonds 

between the saccharides of the diverse side chains (Saha, 2003).  

Chitin 

Chitin, a insoluble polymer of N-acetylglucosamine chains with beta-1,4-glycosidic bonds 

and inter-chain hydrogen bondings, is the second most dominant polymerized carbon in nature 

and chemical similar to cellulose (Einbu, 2007; Zargar et al., 2015).  This structural polysaccharide 

is (a) produced by molluscs, crustaceans, insects, algae, and fungi, and (b) comply the same 

functions that are known for cellulose in plants (Neville and Luke, 1969; Peters, 1972; Childress 

and Nygaard, 1974; Kapaun and Reisser, 1995; Fesel and Zuccaro, 2016).  The cell walls of 

filamentous fungi, in which chitin is situated directly on the cell membrane, can contain 10 to 20% 

of chitin (Bartnicki-Garcia, 1968; de Nobel et al., 2000).   

Several studies demonstrated that earthworms, including L. terrestris, exhibit a feeding 

preference for certain filamentous fungi (Cooke and Luxton, 1980; Bonkowski et al., 2000; 

Jayasinghe and Parkinson, 2009).  The detection of disrupted soil fungi in cast and gut contents 

(Domsch and Banse, 1972; Dash et al., 1986; Tiwari et al., 1990; Kristůfek et al., 1994; 

Schönholzer et al., 1999; Wolter and Scheu, 1999) is consistent with this assumption and suggest 

the occurrence of fungi-derived chitin in the earthworm gut.   

Chitinases are produced by a wide range of organisms (e.g, bacteria, fungi, insects, higher 

plants, animals), but also in biological agents like viruses (Aam et al., 2010; Hartl et al., 2012).  

The degradation of chitin is strongly related to that of cellulose (Yan and Fong, 2015).  Thus, 

whereas endo-chitinase cleave the glycosidic bonds within an N-acetylglucoseamine chain, the 

exo-chitinases (e.g., N-acetyl-beta-glucosaminidase and chitobiosidase) cleave the chitin 

molecule at a terminal position (Yan and Fong, 2015).  The released N-acetylglucosamine 

molecules (Figure 6) are then deacetylated and phosphorylated to glucosamine-6-phosphate that 

is deaminated and converted to fructose-6-phosphate, a metabolic intermediate of the glycolysis 

(Yan and Fong, 2015; Section 1.4.1).  The occurrence of anaerobic microbial degradation of chitin 

in soil slurry (Wieczorek et al., 2014), the detection of chitinases in the earthworm gut (Tracey, 



INTRODUCTION 15 

 
1951; Laverack, 1963; Edwards and Fletcher, 1988; Tiwari et al., 1990), and the expression of an 

chitinase encoding gene in the gut tissue of earthworms (Kim et al., 2016), suggest a potential 

chitin hydrolysis in the alimentary canal of earthworms.   

1.3.1.2. Non-structural polysaccharides  

Starch 

Starch, a non-structural polysaccharide, serves in plants as energy storage polymer and is 

produced in the leaves, seeds, fruits, stems, and roots (Fraser-Reid et al., 2008; Bertoft, 2017).  

It consist of glucose subunits that are connected via alpha-1,4-glycosidic bonds, forming 

approximately 25 % linear amylose and approximately 75% alpha-1,6-branched amylopectin 

(Fraser-Reid et al., 2008; Bertoft, 2017).   

Although starch is a non-structural polysaccharide, the degradation is similar to that of 

cellulose and chitin, and starch-hydrolyzing amylases can be classified in endo-enzymes, exo-

enzymes, and dimer cleaving glucosidases (Figure 9; Fraser-Reid et al., 2008; Horstmann et al., 

2017).  However, in contrast to the linear chains of structural polysaccharides cellulose and chitin, 

the efficient hydrolysis of the branched amylopectin requires pullulanases that cleave the alpha-

1,6-branches (Fraser-Reid et al., 2008; Horstmann et al., 2017).  The hydrolysis of starch leads 

to a mix of oligomers, also known as maltodextrin (Wang and Wang, 2000). 

 
Figure 9.  Model of starch degrading enzymes and their activities.  Figure based on information obtained 
from Horstmann et al., 2017. 

In nature, amylose and amylopectin form intermolecular and intramolecular hydrogen bonds 

as well as hydrophobic bonds that hold the molecules together, a process resulting in water-
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be highly variable between different plants and their parts.  For example, starch can constitute 

approximately 30% of the dry weight of roots obtained from seedling of hardwood trees (Gravatt 

and Kirby, 1998), whereas the leaves of clover exhibit only a maximum starch content of 

approximately 5% (Cave et al., 1981).  However, especially the occurrence of fine roots in the 

digestion tract of earthworms (Baylis et al., 1986; Gunn and Cherrett, 1993) reinforce the 

likelihood that starch might occur in the gut and is therefore subject to hydrolysis and fermentation 

during the gut passage.  Detected amylases in the gut of earthworms (Laverack, 1963; Edwards 

and Fletcher, 1988; Tiwari et al., 1990), corroborate the assumption that starch is a potential 

substrate for gut-associated fermenters.  

Glycogen 

Several bacteria and fungi can produce substantial amounts of intracellular glycogen, a 

polymer of glucose subunits with alpha-1,4-glycosidic bonds (Table 1;  Holme et al., 1956; Iglesias 

and Preiss, 1992).  Although glycogen is similar to amylopectin it exhibit twice as much alpha-

1,6-branches and no intermolecular bonds (Fraser-Reid et al., 2008).  The lack of the 

intermolecular bond results in the absence of crystallinity, that enable the high water solubility of 

glycogen (Fraser-Reid et al., 2008).  That the degradation of glycogen requires the same enzymes 

as in the starch hydrolysis reflects the structural similarity of these both non-structural 

polysaccharides.  In this regard, pullulanases cleave the alpha-1,6-branches, whereas amylases 

degrade the chain of alpha-1,4-linked glucose molecules (Djekrif et al., 2016).  The resulting 

disaccharide maltose is hydrolyzed to two glucose molecules by alpha-glycosidases (Djekrif et 

al., 2016).  Glycogen can constitute approximately 20% of the dry weight of microbial cells (Table 

1; Roach et al., 2012), and is therefore a potential earthworm-ingested substrate that is released 

by the activity of the gizzard (Section1.1.2), and might be therefore subsequently hydrolyzed and 

fermented by the gut microbiota.  

Dextran 

Earthworm-ingested polysaccharides could also include microbial dextran, a polymer of 

glucose subunits mainly linked by alpha-1,6-glycosidic bonds (Naessens et al., 2005) that has 

multiple functions including adhesion, protection, and extracellular energy storage (Khalikova et 

al., 2005).  Several strains of Leuconostoc mesenteroides (Jeanes et al., 1954), Streptococcus 

mutans, Streptococcus sobrinus, and Streptococcus salivarius use dextransucrases to synthesize 

dextrans from sucrose (Robyt, 1995).  These non-structural polysaccharides are mainly branched 

by alpha-1,3-glycosidic linkages.  In certain L. mesenteroides strains, these branches are formed 

by alpha-1,2- and alpha-1,4-glycosidic linkages (Fraser-Reid et al., 2008).   

The efficient degradation of dextran requires diverse dextranases that can be divided, like 

the other polysaccharide degrading enzymes, into endo- and exo-enzymes.  These dextranases 

causing the release of different hydrolysis products, like glucose, isomaltose, or isomaltotriose 

(Khalikova et al., 2005).  The isomaltose-forming exo-dextranase cleaves alpha-1,6- linkages, but 
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also alpha-1,2- and alpha1,3- and alpha-1.4-linkages.  However, dextranase activities can be also 

specific, for example, the alpha-1,2-glucosidase found in Flavobacterium sp. is strictly specific for 

alpha-1,2- glycosidic branches (Khalikova et al., 2005).  

1.3.2. Proteins 

The ingestion of plant and microbial cells is linked to the abrasive action of the gizzard that 

ensures the disruption of larger cells (Section 1.2.1) and thus the release of diverse biopolymers 

into the earthworm gut.  Protein is the primary component of microbial cells and can constitute up 

to 50% of microbial biomass on a dry weight basis (Table 2; Babel and Müller, 1985; Lange and 

Heijnen, 2001; Delgado et al., 2013).   

Table 2.  Potentially ingested plant- and microbial-derived biopolymers and the most abundant subunits 
from which they are composed.  Table excludes polysaccharides (see Table 1). 

Biopolymer 
Dry Weighta 

(%) 
Subunit Bondb Refer-

enced 

Plant-derived 
    

Proteins 25 Amino Acids peptide 1 

Lipidsc  5 Glycerol, LCFA ester  2 

Nucleic Acids 2 
Ribose/Deoxyribose, 
Nucleobases 

phosphodiester- and 
glycosidic  

2 

Lignin  36 Phenylpropane  beta-O,4-ether 3, 4 

Microbial-derived     

Proteins 50 Amino Acids peptide 5, 6, 7 

RNA  20 Ribose, Nucleobases phosphodiester- and 
glycosidic 

6, 7 

Lipidsc 10 Glycerol, LCFA ester and 
phosphodiester 

6, 7 

DNA 3 Deoxyribose, 
Nucleobases 

phosphodiester and 
glycosidic 

6, 7 

aValues of dry weight reflect the maximum amount of the respective biopolymer that was detected in cell 
biomass.  The maximum amount of lignin is based on cell wall analysis. 

bOnly the most abundant and characteristically bonds were prioritized.  

cSubunits and bonds concerning glycerophospholipids.  LCFA, long chain fatty acids.  

dTable based on information obtained from: 1, Andrews et al., 2006;  2, Schink, 1999;  3, Campbell and 
Sederoff, 1996;  4, Dolgonosov and Gubernatorova, 2010;  5, Lange and Heijnen, 2001;  6, Delgado et al., 
2013;  7, Neidhardt et al., 1996. 

Indeed, nearly 2 mM amino acids may occur in the aqueous phase of the earthworm gut 

(Horn et al., 2003) reinforcing the likelihood that protein hydrolysis in the gut yields amino acids 

that are subject to consumption during gut passage.  In this regard and on the assumption that 

(a) the cytoplasm of a microbial cell is 80% water and on a dry weight basis contains 50% protein, 
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and (b) the average molecular weight of a representative amino acid in protein is 100, this amount 

of protein would theoretically yield 1 M polymeric amino acids in the cytoplasm of a gizzard-

disrupted cell.  As such, a microbial cell in this location of the alimentary canal (i.e., in the 

immediate vicinity of a ruptured cell) could experience a short-lived ‘tidal wave’ of peptides (Figure 

10 A).   

The detection of protein and proteases in the anterior part of the alimentary canal and the 

decrease of protein during the gut passage reinforce the likelihood of protein breakdown to 

peptides and single amino acids in the alimentary canal of earthworms (Laverack, 1963; Mishra 

and Dash, 1980; Edwards and Fletcher, 1988; Tillinghast et al., 2001).  The earthworm-produced 

gut mucus also contains proteins that additionally enhances the availability of these components.   

Although proteases exhibit a huge diversity in action and structure, they can be classified, 

like other biopolymer degrading enzymes, into exo- and endo-acting, two subdivisions depending 

on the cleaving position which appears either at the terminal end (exo-) or within (endo-) the 

amino acid chain (Rao et al., 1998).  Furthermore, proteases can categorized by their functional 

group at the active site.  For example, serine proteases harbor a serine group in their active site, 

whereas metalloproteases are dependent on a metal ion for their activity.   

 

Figure 10.  Exemplary structure and bonds of peptides (A), RNA (B), and glycerophospholipids (C).  Panel 
A: Amino acid sequence from left to right: Thr-Gly-Asp-Glu-Val-Ala.  Based on the amino acid conformations 
in Dewick, 2006.  Panel B: A, adenine; G, guanine; C, cytosine; U, uracil.  Modified from Gonzlez-Ruiz et 
al., 2011.  Panel C: Arachidonic acid and oleic acid as attached long chain fatty acids.  Modified from 
Timberlake, 2003.   
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consideration of the abundance of DNA and RNA in plant and microbial cells, RNA proves as the 

more dominant component, constituting up to 20% of microbial biomass on a dry weight basis 

(Babel and Müller, 1985; Delgado et al., 2013), whereas DNA constitute less than 3% (Table 2; 

(Neidhardt et al., 1996; Delgado et al., 2013; Schink, 1999).  The relative high abundance of RNA 

in microbial cells, the disruption of larger microbial cells by the gizzard (Section 1.2.1; Kristůfek et 

al., 1994; Schönholzer et al., 1999), and the production of extracellular RNases by soil microbes 

(Greaves and Wilson, 1970; Mishra et al., 2017) reinforce the likelihood that RNA is subject to 

hydrolysis and fermentation during gut passage.   

RNA, a biopolymer of an ribose-phosphate backbone and attached purines and pyrimidines 

(Figure 10 B), differ from double-stranded DNA in the three following points: (a) RNA is single 

stranded, (b) the ribose of the backbone contains a hydroxyl group that is attached to the second 

carbon atom, and (c) thymine is replaced by uracil (Lehninger et al., 2008; Madigan et al., 2015).  

The fermentation of RNA is dependent on its initial degradation by hydrolytic or phosphorolytic 

RNases that yield monophosphorylated or diphosphorylated nucleotides, respectively, which can 

be further metabolized and yield ribose (in either a phosphorylated or non-phosphorylated form), 

purines, and pyrimidines (Deutscher, 2006).   

1.3.4. Additional  

1.3.4.1. Lignin 

Lignin is an aromatic polymer, located in the primary cell wall and constituting up to 36% of 

hardwood (Table 2; Campbell and Sederoff, 1996).  It is highly branched and consist of aromatic 

phenylpropane subunits that are randomly linked via carbon-carbon and ether bonds (Dolgonosov 

and Gubernatorova, 2010).  The bond energy of an ether bond is 360 kJ/mol and the microbial 

cleavage is therefore a difficult barrier for biodegradation that effects the biological mineralization 

(White et al., 1996; Blanksby and Ellison, 2003).  In this regard, the microbial degradation of lignin 

and aromatic compounds was thought, for a long time, to be strictly aerobic (Evans, 1963; Ornston 

and Stanier, 1964), whereby O2 is required as terminal electron acceptor and for hydroxylation 

and ring fission (Sugumaran and Vaidyanathan, 1978; Colberg, 1988).  In this regard, aerobic 

basidiomycetes (fungi in the division Basidiomycota) are efficient degraders of lignin and 

environmentally very important to the overall turnover of plant biomass (Eggert et al., 1997).  For 

example, the white-rot fungi (cellulose left behind) Dichomitus squalens, Phanerochaete 

chrysosporium, Pycnoporus cinnabarinus, and Sporotrichum pulverulentum are able to degrade 

lignin and its aromatic constituents by producing laccases, phenol oxidases, and peroxidases 

(Ander and Eriksson, 1976; Gold et al., 1989; Périé and Gold, 1991; Eggert et al., 1997; Arora 

and Gill, 2000).   

Nonetheless, the anaerobic degradation of lignin-derived aromatic compounds was first 

described in 1934, when lignin was converted after 600 days to CO2 and methane (CH4) (Boruff 

and Buswell, 1934).  Subsequent studies confirmed that the anaerobic decomposition of 
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monoaromatic lignin can yield CO2 and CH4, and that the overall decomposition is dependent on 

methanogens (Kaiser and Hanselmann, 1982; Colberg, 1988).  Additionally, lignin-derived 

monoaromatic compounds can also be utilized by nitrate- and sulfate reducers (Widdel, 1980; 

Colberg, 1988; Oshima, 2007; Philipp and Schink, 2012).  Gut-associated lignin degradation 

appears to be dependent on specialized compartmented highly evolved gut ecosystems (e.g., 

from ruminants and termites) (Akin and Benner, 1988; Brune, 2013).  In this regard, the primitive 

earthworm gut and the relative short gut passage time (Section 1.2.1) most likely complicate the 

microbial-derived degradation and utilization of earthworm-ingested lignin.   

1.3.4.2.  Lipids  

Lipids are hydrophobic, water insoluble and extremely diverse (Subramaniam et al., 2011).  

Biopolymers are defined as organic macromolecules that are composed of repeating monomers 

and produced by living organisms (Stal, 2011).  However, lipids are in general esters of fatty acids 

(Figure 10 C) and, per the aforementioned definition, not biopolymers (Fahy et al., 2009; 

Subramaniam et al., 2011).  However, these macromolecules are important for energy storage 

as well as cell membrane structure and function (Subramaniam et al., 2011).  Lipids are present 

in all living cells and can constitute up to 10% of a microorganism (Neidhardt et al., 1996; Delgado 

et al., 2013; Valenzuela and Valenzuela, 2013).  The degradation is ensured by lipases, a 

subclass of esterases (Jaeger et al., 1994).  The high amounts of ingested soil-derived 

microorganism (Torsvik et al., 1990; Whitman et al., 1998) and the detection of lipases in the 

earthworm gut (Laverack, 1963) suggest a lipid breakdown during the earthworm gut passage.  

The available components of the lipids, for example glycerol of glycerophospholipids, can be 

potentially used by the fermentative microbiota.  

1.3.4.3. Peptidoglycan 

Peptidoglycan, also known as murein, forms the cell wall of almost all bacteria.  Although 

the amount of peptidoglycan varies between gram negative (up to 10% of the total cell wall) and 

gram positive bacteria (up to 70% of the total cell wall) (Schleifer and Kandler, 1972), the structure, 

including a saccharide backbone with attached peptides, is identical.  The peptidoglycan 

backbone consist of beta-1,4-linked N-acetylglucosamine and N-acetylmuramic acid residues and 

peptides that are attached via their N terminus and the carboxyl group of the muramic acid 

(Schleifer and Kandler, 1972).  The linear chains of the two different saccharides and the attached 

peptides are cross-linked via inter peptide bridges that ensures the stability of peptidoglycan 

(Schleifer and Kandler, 1972; Meroueh et al., 2006).  During the bacterial growth and division, 

several peptidoglycan-degrading hydrolases are involved in the assembly and disassembly of the 

cell wall (Humann and Lenz, 2009).  The ingestion of soil bacteria by the earthworm (Section 

1.2.2) is linked to the grinding gizzard that introduces disrupted cell walls to the alimentary canal 

and the associated gut microbiota.
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1.4. Potential fermentations in the earthworm gut 

Fermentation is a microbial redox reaction to gain energy under O2-limited conditions, a 

process dependent on substrate level phosphorylation (Decker et al., 1970; Buckel, 1999; Müller, 

2008).  As already stated, fermentation is most likely the dominant microbial process in the anoxic 

alimentary canal of the earthworm, leading to the emission of H2 and the formation of CO2, fatty 

acids and alcohols (Figure 11 and Section 1.2.2; Wüst et al., 2009b, 2011).  Produced fatty acids, 

as in other animals, constitute dietary absorbable substrates for the earthworm (Section 1.2.2) 

that illustrates the importance of the electron flow towards fermentation (Figure 11 and Section 

1.2.2).  Figure 11 summarizes and links the ingestion of plant and microbial biomass to the gut 

fermentative processes and microbe-host interactions (Figure 11).  

 
Figure 11.  Hypothetical model illustrating the trophic interactions between the earthworm and ingested 
soil microorganisms, that are potentially able to hydrolyze and ferment ingested complex organic matter to 
CO2, H2, ethanol and diverse fatty acids.  

1.4.1. Saccharide-derived fermentations  

The relatively high amounts of non-polymeric saccharides in the earthworm gut (Wüst et 

al., 2009b) are not exclusively derived from the hydrolysis of polysaccharides (Section 1.3).  In 

this regard, plant material can also be rich in non-polymeric saccharides.  For example, phloem 

sap can contain 200-700 mM sucrose (Nadwodnik and Lohaus, 2008), leaf compartments can 

contain a combined glucose and fructose concentration of over 50 mM (Nadwodnik and Lohaus, 

2008), and glucose can approximate 2% of the fresh weight of shoots (Kromer and Gamian, 
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2000), a value that would yield approximately 100 mM glucose-equivalents in the immediate 

vicinity of a disrupted shoot (this approximation is based on a gram of shoot being equivalent to 

1 ml).   

The fermentation of saccharides involves activation and subsequent oxidation reactions.  

For these fermentative processes, microorganism can use (a) the Embden-Meyerhof-Parnas 

pathway also known as glycolysis (Figure 12), (b) the phosphoketolase pathway (Figure 13), (c) 

the Entner-Doudoroff pathway (Figure 14), or (d) the Bifidobacterium bifidum pathway (Figure 14) 

that is a combination of the first and the second pathway (Romano et al., 1979; Buckel, 1999; 

Hogg, 2013; Prasanna et al., 2014).  All four pathways generate intermediates, including pyruvate, 

acetyl-phosphate or acetyl-CoA that subsequently function as terminal acceptor for electrons from 

the oxidation step (Figure 12, Figure 13, and Figure 14).  The reduction process results in the 

production of one (e.g., homolactic acid fermentation [Figure 12 and Table 3]) or diverse 

fermentation products (e.g., mixed acid fermentation [Figure 15 and Table 3]).  In this regard, the 

homolactic acid fermenters ensure energy conservation via the exclusive production of lactate, 

whereas mixed acid fermenters produce divers products (e.g., formate, acetate and ethanol) 

(Figure 15 and Table 3) (Buckel, 1999; Moat et al., 2002); both processes can start with the 

Embden-Meyerhof-Parnas pathway (Figure 12).  The propionate fermentation is an example for 

another fermentation that is based on the sugar oxidation via the Embden-Meyerhof-Parnas 

pathway (Figure 16 and Table 3) (Buckel, 1999; Zhuge et al., 2013).  

 

Figure 12.  Embden-Meyerhof-Parnas pathway linked to the production of lactate by homolactic acid 
bacteria.  Abbreviations: NAD+, oxidized nicotinamide adenine dinucleotide;  NADH, reduced nicotinamide 
adenine dinucleotide; ATP, adenosine triphosphate; P, phosphate.  Enzymes:  1, Glucokinase;  2, 
Isomerase;  3, Phosphofructokinase;  4, Aldolase;  5, Triosephosphate isomerase;  6, Glyceraldehyde-3-
dehydrogenase;  7, Phosphoglycerokinase;  8, Phosphoglyceromutase;  9, Enolase;  10, Pyruvate kinase;  
11, Lactate dehydrogenase.  Figure modified from Moat et al., 2002; Engelkirk et al., 2011; Hogg, 2013; 
Madigan et al., 2015. 
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Figure 13.  Phosphoketolase pathway linked to the production of ethanol, lactate, and acetate by 
heterolactic acid bacteria.   Abbreviations: EDP, Entner-Doudoroff pathway; EMP, Embden-Meyerhof-
Parnas pathway; NAD+, oxidized nicotinamide adenine dinucleotide;  NADH, reduced nicotinamide 
adenine dinucleotide; ATP, adenosine triphosphate; P, phosphate.  Enzymes:  1, 6-Phosphogluconate 
dehydrogenase;  2, Ribokinase;  3, Ribose-5-phosphate isomerase;  4, Ribulose-5-phosphate epimerase;  
5, Phosphoketolase-2;  6, Acetate kinase;  7, Phosphate acetyltransferace and alcohol dehydrogenase.  
Figure based on information obtained from Buckel, 1999; Årsköld et al., 2008; Papagianni, 2012. 

 

Figure 14.  Enter-Doudoroff pathway and B. bifidum pathway.  Abbreviations: EMP, Embden-Meyerhof-
Parnas pathway; NAD+, oxidized nicotinamide adenine dinucleotide; NADH, reduced nicotinamide adenine 
dinucleotide;  ATP, adenosine triphosphate; P, phosphate.  Panel A: Enzymes:  1, Glucokinase;  2, 
Glucose-6-phosphate dehydrogenase;  3, Lactonase; 4, 6-Phosphogluconate dehydro-genase;  5, 2-
Dehydro-3-deoxy-6-phosphogluconate aldolase.  Based on information obtained from Buckel, 1999; Hogg, 
2013.  Panel B: Enzymes:  1, Glucokinase;  2, Isomerase;  3, Phosphoketolase-1;  4, Acetate kinase;  5, 
Transaldolase;  6, Transketolase;  7, Ribose-5-phosphate isomerase;  8, Ribulose-5-phosphate-3 
epimerase;  9, Phosphoketolase-2.  Based on information obtained from Buckel, 1999; Prasanna et al., 
2014. 
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Table 3.  Overall stoichiometries of potential saccharide fermentations in the gut of L. terrestris. 

Fermentation Equation  ΔG0’ 
(kJ/mol)a 

Model Organismb 
Refer- 
encee 

Butyrate Glucose  → Butyrate- + H+ + 2 CO2 + 2 H2 -255 Clostridium pasteurianum 1 

Ethanol Glucose  → 2 Ethanol + 2 CO2 -239 Zymomonas mobilis 2, 3 

Lactate Glucose  → 2 Lactate- + 2 H+ -198 Lactococcus lactis 1, 4 

 Glucose  → Lactate- + H+ + Ethanol + CO2 -211 L. mesenteroides 1, 5 

 Ribose    → Lactate- + Acetate- + 2 H+ -210 Lactobacillus pentosus 1, 6 

Mixed acid Glucose  → Lactate- + 0.4 Ethanol + 0.3 Acetate- + 0.02 Formate- + 
0.2 Succinate2- + 0.5 H2 + 0.5 CO2 + 1.8 H+ 

-336c Escherichia coli 7 

 Glucose  →   Acetate-+ H+ + Ethanol + H2 + CO2 -255 E. coli 8 

 Xylose + 0.9 H2O  →   0.9 Acetate- + 0.8 Ethanol + 1.6 CO2 + 1.72 H2  
+ 0.1 Formate- + 0.96 H+ 

-181 Bacteroides xylanolyticus 9 

Propionate Glucose  → 1.3 Propionate- + 0.6 Acetate- + 2 H+ + 0.6 CO2 -311 Clostridium propionicum 1 

Acetogenesis Xylose → 2.5 Acetate- + 2.5 H+ -355c Clostridium thermoaceticum 10 

 Glucose → 3 Acetate- + 3 H+ -427 c C. thermoaceticum 10 

 Cellobiose + H2O → 6 Acetate- + 6 H+ -611c,d Peptostreptococcus productus 10 

aGibbs free energy (pH 7, 25 °C) yield per mol substrate. 

bRepresentative model organisms for the respective fermentation. 

cCalculated for this dissertation according to Thauer et al., 1977. 

dGibbs free energy of formation for cellobiose was obtained by the sum of the gibbs free energy of formation of two glucose molecules and the gibbs free energy required 
for cellobiose hydrolysis (12.5 kJ/mol; Ha et al., 2013). 

eTable based on information obtained from:  1, Buckel, 1999;  2, Madigan et al., 2015;  3, Ingram et al., 1999;  4, Ishizaki and Ueda, 1995, 1959;  5, Gunsalus and Gibbs, 
1951;  6, Bernstein, 1953;  7, Moat et al., 2002  8, Metzler and Metzler, 2003;  9, Biesterveld et al., 1994;  10; Drake, 1994. 
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Figure 15.  Mixed acid fermentation and butyrate fermentation.  Panel A does not include the formation of 
all possible end products (e.g., succinate).  Abbreviations:  EMP, Embden-Meyerhof-Parnas pathway;  CoA, 
coenzyme A; NAD+, oxidized nicotinamide adenine dinucleotide;  NADH, reduced nicotinamide adenine 
dinucleotide; ATP, adenosine triphosphate; P, phosphate.  Panel A:  Pathway observed in Streptococcus.  
Enzymes:  1, Pyruvate formate lysase;  2, Phosphoacetyl transferase;  3, Acetaldehyde dehydrogenase;  
4, Acetate kinase;  5, Alcohol dehydrogenase.  Based on information obtained from Buckel, 1999.  Panel 
B:  Pathway observed in Clostridium butyricum.  Enzymes:  1, Pyruvat:ferredoxin oxidoreduktase;  2, 
Thiolase;  3, 3-Hydroxybutyryl-CoA dehydrogenase;  4, Crotonase; 5, Butyryl-CoA dehydrogenase;  6, 
Phosphotransbutyrylase;  7, Butyrat kinase;  8, Ferredoxin-dependent hydrogenase.  Based on information 
obtained from Buckel, 1999; Hackmann and Firkins, 2015.  

Whereas common saccharide fermentations start with hexoses, bacteria performing the 

phosphoketolase pathway or the pentose phosphate cycle are able to utilize pentoses as 

substrate molecule (Rosenberg, 1980; McMillan, 1993; Buckel, 1999; Årsköld et al., 2008; Liu et 

al., 2012).  The phosphoketolase pathway (Figure 13 and Table 3) was observed, among others, 

for heterolactic acid bacteria, of which a specialized subgroup is also able to gain energy via the 

B. bifidum pathway by producing acetate and lactate (Figure 14; Buckel, 2001; Prasanna et al., 

2014).   

Saccharides and fermentation-derived CO2 and H2 can potentially consumed by acetogens, 

a physiologically defined group of anaerobic prokaryotes, that conserves energy via the Wood-

Ljungdahl-Pathway, also known as reductive acetyl-CoA pathway, and produce acetate as sole 

product (Figure 17; Ljungdahl and Wood, 1969; Wood et al., 1986; Drake, 1994; Drake et al., 

2008, 2013).  The pathway consist of a carbonyl branch and a methyl branch, both ensure the re-
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(e.g., glucose) by organothrophic acetogens, or (b) hydrogen by hydrogen-dependent acetogens 
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Glucose

2 CoA

2 Formate

2 ATP

2 Pyruvate

2 Acetyl-CoA

1

EMP2 NAD+

2 NADH

32

AcetaldehydeAcetyl-P

CoA

NADH

NAD+ 

+ CoA

ATP

NADH

NAD+

EthanolAcetate

4 5

Mixed Acid
Fermentation

Butyrate Fermentation

Glucose

2 ATP

2 Pyruvate

EMP2 NAD+

2 NADH

2 Fd

2 Fd-

2 CoA

2 CO2

2 Acetyl-CoA

CoA

Acetoacetyl-CoA

3-Hydroxy-
butyryl-CoA

NADH

1

2

3

Crotonyl-CoA

NAD+
H2O

Butyryl-CoA

Butyryl-P

CoA

NADH

NAD+

Butyrate

ATP

2 Fd

2 Fd-

4 H+

2 H2

4

5

6

7

8

2 H2 2 CO2



26 INTRODUCTION 

 

 

acceptor in both branches is the inorganic gas CO2, and acetogenesis is therefore not a classic 

fermentation which uses organic intermediates as terminal electron acceptors.  In addition to H2 

and CO2 or glucose, acetogens can utilize other substrate like xylose, ethanol, formate, and 

lactate (Table 3 and Table 6; Drake, 1994; Weghoff et al., 2015; Bertsch et al., 2016).  The key 

enzyme of the acetogenesis is the CO dehydrogenase/acetyl-CoA synthase.  It catalyzes the 

reaction of enzyme-bound CO and a tetrahydrofolate (THF)-derived methyl group to acetyl-CoA 

(Figure 17; Ljungdahl and Wood, 1969; Wood et al., 1986; Drake, 1994; Drake et al., 2008, 2013; 

Schuchmann and Müller, 2014).  The energy generation differs between the organotrophic and 

hydrogen dependent growth of acetogens.  Thus, the organotrophic growth on glucose yield at 

least four ATP, whereas the hydrogen-dependent acetogenesis is fully conditional on the 

membrane-associated Rnf (Rhodobacter nitrogen fixation)- or Ech (energy converting 

hydrogenases)-complex (Figure 17; Schuchmann and Müller, 2014).  Both enzyme complexes 

re-oxidize reduced ferredoxin and pump cations into the environment.  The resulting proton motive 

force is coupled to membrane-bound ATPases which generate ATP by the relocalization of the 

external cations (Schuchmann and Müller, 2014).  However, it is noteworthy that acetogens are 

capable of diverse dissimilatory processes including fermentation (Drake et al., 2006, 2008). 

 

Figure 16.  Methylmalonyl pathway observed in Propionibacterium.  Abbreviations: EMP, Embden-
Meyerhof-Parnas pathway;  CoA, coenzyme A;  Fd, oxidized ferredoxin,  Fd2-, reduced ferredoxin;  NAD+, 
oxidized nicotinamide adenine dinucleotide;  NADH, reduced nicotinamide adenine dinucleotide;  ATP, 
adenosine triphosphate;  H+; hydrogen ion;  MQ, menaquinone.  Enzymes:  1, Pyruvate:ferredoxin oxidase;  
2, Phosphoacetyl transferase;  3, Acetate kinase;  4, Transcarboxylase (contains biotin);  5, Malate 
dehydrogenase;  6, Fumarase;  7, Ferredoxin: NAD+ oxidoreductase (Rnf-complex);  8, NADH:quinone 
oxireductase;  9, Fumarat reductase;  10, ATPase;  11, Propionate CoA-transferase;  12, Methylmalonyl-
CoA mutase (vitamin B12 as coenzyme);  13, Methylmalonyl-CoA epimerase.  Figure based on information 
obtained from Buckel, 1999; Buckel and Thauer, 2012; Zhuge et al., 2013; Guan et al., 2014.  
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Figure 17.  Acetogenesis observed in Acetobacterium woodii.   Reactions in yellow zone are used by both 
organotrophic (green zone) and hydrogen-dependent (blue zone) acetogens.  Abbreviations: EMP, 
Embden-Meyerhof-Parnas pathway;  CoA, coenzyme A;  CoFeSP, corrinoid-iron/sulfur-protein;  THF, 
tetrahydrofolate;  Fd, oxidized ferredoxin,  Fd2-, reduced ferredoxin;  NAD+, oxidized nicotinamide adenine 
dinucleotide;  NADH, reduced nicotinamide adenine dinucleotide;  ATP, adenosine triphosphate;  Na+; 
sodium ion.  Enzymes:  1, Pyruvate:ferredoxin oxidase;  2, Phosphoacetyl transferase;  3, Acetate kinase;  
4, Bifurcating hydrogenase;  5, Formate dehydrogenase;  6, Formyl-THF synthetase;  7, Formyl-THF 
cyclohydrolase;  8, Methylene-THF dehydrogenase;  9, Methylene-THF reductase;  10, Methyltransferase;  
11, CO dehydrogenase/acetyl-CoA synthase;  12, Ferredoxin:NAD+ oxidoreductase (Rnf-complex);  13, 
ATPase.  Figure based on information obtained from Ljungdahl and Wood, 1969; Wood et al., 1986; Drake 
et al., 2008; Schuchmann and Müller, 2014. 

1.4.2. Amino acid-derived fermentations 

Approximately 2 mM amino acids may occur in the aqueous phase of the earthworm gut 

(Horn et al., 2003; Section 1.3.2), indicating amino acids, with an average redox state similar to 

that of saccharides, as potential subjects to fermentation during the earthworm gut passage.  In 

this regard, especially members of Clostridiales (e.g., Paraclostridium bifermentans) and 

Fusobacteriales (e.g., Fusobacterium nucleatum), occurring in soil, marine and freshwater, and 

intestines of animals including earthworms (Wiegel, 2009; James and Whitman, 2011; Wüst et 

al., 2011; Meier et al., 2018), are able to ferment amino acids (Barker, 1981).   

Similar to the high diversity of possible saccharide fermentation pathways, the anaerobic 

utilization processes of amino acid are diverse and complex.  Thus, at least five different pathways 

can be used for the microbial fermentation of glutamate (Buckel, 2001), whereby the 

methylaspartate pathway and the hydroxyglutarate pathway (Figure 18) are likely the most 

important processes for glutamate fermentation (Buckel, 2001).  Both pathways lead to the 

production of ammonium, CO2, acetate, butyrate and H2, whereas the methylaspartate pathway 
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can be also used to generate propionate instead of butyrate and H2 (Figure 18 and Table 4; 

Buckel, 2001).  C. propionicum is able to ferment alanine via the acrylate pathway, a pathway 

also involved in producing propionate from lactate (Schweiger and Buckel, 1984) (Table 6).  

Alanine is also a amino acids that can be utilized during the Stickland reaction, a process in which 

one amino acid serves as an electron donor and another amino acid serves as an electron 

acceptor (Figure 19 and Table 4) (Nisman, 1954; Buckel, 1999).  In addition to the amino acid 

alanine, cysteine, glycine, leucine, serine, threonine, methionine, phenylalanine, tyrosine, and 

tryptophan can be used in both, the oxidative and reductive branch of the Stickland reaction, 

whereas isoleucine and valine or proline serve exclusively as electron donors or acceptor, 

respectively (Buckel, 1999).  Similar to the parallel utilization of glycine and alanine (Figure 19), 

the exclusive fermentation of glycine terminates in the production of ammonium, CO2, and acetate 

(Table 4; Buckel, 1999).  Furthermore and dependent on the organism, threonine can be utilized 

by at least three different pathways, yielding different fermentation products.  Thus, C. 

propionicum produce ammonium, CO2, propionate and butyrate, whereas C. pasteurianum 

ferments threonine to ammonium and acetate (Table 4; Elsden and Hilton, 1978; Buckel, 1999).  

The fermentation of the branched chain amino acids isoleucine and valine by Spirochaeta 

isovalerica lead to the formation of methylbutyrate and isobutyrate, respectively (McInerny, 1988).  

 

Figure 18.  Glutamate fermentation via hydroxyglutarate pathway.  Abbreviations:  CoA, coenzyme A;  Fd, 
oxidized ferredoxin;  Fd2-, reduced ferredoxin;  NAD+, oxidized nicotinamide adenine dinucleotide;  NADH, 
reduced nicotinamide adenine dinucleotide;  ATP, adenosine triphosphate;  Na+; sodium ion;  NH4

+, 
ammonium.  Enzymes:  1, Glutamate dehydrogenase;  2, 2-Hydroxyglutarat dehydrogenase;  3, CoA-
transferase;  4, Hydroxyglutaryl-CoA fehydratase;  5, Glutaconyl decarboxylase;  6, Crotonyl-CoA 
hydratase;  7, 3-Hydroxybutyryl-CoA dehydrogenase;  8, Thiolase;  9, Phosphoacetyl transferase;  10, 
Acetate kinase;  11, Bcd (Butyryl-CoA dehydrogenase)/Etf-(Electron-transferring flavoprotein) complex;  12; 
Ferredoxin hydrogenase,  13, Ferredoxin:NAD+ oxidoreductase (Rnf-complex);  14, ATPase;  15, 
Phosphotransbutyrylase;  16, Butyrate kinase.  Figure based on information obtained from Buckel, 1999; 
Herrmann et al., 2008.  
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Table 4.  Overall stoichiometries of potential amino acid fermentations in the gut of L. terrestris. 

Amino Acid Equation 
 ΔG0’ 

(kJ/mol)a Model Organismb Refer-
enced 

Glutamate 5 Glu- + 6 H2O + 2 H+ →  6 Acetate- + 2 Butyrate- + H2 + 5 CO2 + 5 NH4
+ -314 Acidaminococcus fermentans 1 

 3 Glu- + 4 H2O →  5 Acetate- + Propionate- + 2 CO2 + 3 NH4
+ -187 Selenomonas acidaminophila 2 

Aspartate 3 Asp- + 0.9 H+ + 1.8 H2O→  2.4 Succinate2- + 0.3 Acetate- + 1.8 CO2 + 3 NH4
+ -250c Camphylobacter sp. 3 

Threonine 3 Thr + H2O →  2 Propionate- + Butyrate- + 2 CO2 + 3 NH4
+ -321c C. propionicum 2 

 Thr + H2O →  2 Acetate- + H+ + NH4
+ -146c C. pasteurianum 2, 4 

Glycine 4 Gly + 2 H2O + H+  →  3 Acetate- + 2 CO2 + 4 NH4
+ -217 Eubacterium acidaminophilum 2 

Alanine 3 Ala + 2 H2O → Acetate- + 2 Propionate- + CO2 + 3 NH4
+ -135 C. propionicum 1 

Stickland Reaction    5 

Alanine and  Ala +  2 H2O →  Acetate- + CO2 + NH4
+ + 4 [H]  Clostridium sticklandii and   

Glycine 2 Gly + 4 [H] →  2 Acetate- + 2 NH4
+  P. bifermentans  

Sum: Ala + 2 Gly + 2 H2O →  3 Acetate- + 3 NH4
+ + CO2 -153c   

aGibbs free energy (pH 7, 25 °C) yield per equation. 

bRepresentative model organisms for the respective fermentation. 

cCalculated for this dissertation according to Thauer et al., 1977. 

dTable based on information obtained from:  1, Buckel and Thauer, 2012;  2, Buckel, 1999;  3, Laanbroek et al., 1978;  4, Elsden and Hilton, 1978;  5, McInerny, 1988. 
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Figure 19.  Fermentation of alanine and glycine by Stickland reaction.  Abbreviations:  CoA, coenzyme A;  
Fd, oxidized ferredoxin;  Fd2-, reduced ferredoxin;  NAD+, oxidized nicotinamide adenine dinucleotide;  
NADH, reduced nicotinamide adenine dinucleotide;  ATP, adenosine triphosphate;  H+; hydrogen ion;  NH4

+, 
ammonium; P, phosphate.  Enzymes:  1, Transaminase;  2, Glutamate dehydrogenase;  3, Pyruvate: 
ferredoxin oxidase;  4, Phospho-acetyl transferase;  5, Acetate kinase;  6, Glycerin reductase;  7, 
Ferredoxin:NAD+ oxidoreductase (Rnf-complex).  Figure based on information obtained from Andreesen, 
1994; Madigan et al., 2015. 

1.4.3. Other fermentations 

1.4.3.1. Purines and pyrimidines 

A efficient hydrolysis of RNA leads to the availability of the backbone saccharide ribose and 

attached purines (i.e., adenine and guanine) and pyrimidines (i.e., uracil and cytosine) (1.3.3; 

Figure 10 B).  Only a specialized subgroup of anaerobic microorganisms (e.g., Clostridium 

acidiurici and Clostridium purinolyticum) is able to ferment purines, a process yielding acetate, 

CO2, and ammonium, whereby formate is only produces when adenine serves as substrate (Table 

5; Gariboldi and Drake, 1984; Buckel, 1999).  The ability to ferment RNA-derived pyrimidines is, 

until today, only described for Clostridium uracilium, an bacterium converting uracil and cytosine 

to alanine, ammonium, and CO2 (Table 5; Campbell, 1957; Vogels and Van der Drift, 1976).  

1.4.3.2. Glycerol and long chain fatty acids 

In oxic and anoxic ecosystems, lipids are first hydrolyzed by lipases that derives the release 

of long chain fatty acids and other non-fatty acid compounds, like glycerol (Garton et al., 1958, 

1961; Dawson et al., 1974).  Non-fatty acid compounds are mainly fermented to short chain fatty 

acids (Bryant, 1979; McInerney et al., 1979).  In this regard, Propionibacteria utilize glycerol to 

gain energy by producing propionate (Table 5; Buckel, 1999).  In oxygen-limited ecosystems (e.g., 
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intestines), fermentative bacteria do not further degrade the remaining long chain fatty acids 

(McInerny, 1988).  However, in ecosystems with higher retention times (e.g., anoxic sediments) 

long and short chain fatty acids are utilized by syntrophic bacteria (e.g., Syntrophomonas wolfei) 

to form acetate and H2, a process dependent on methanogens (Table 5; McInerney et al., 1981; 

McInerny, 1988; Dong et al., 2009).  However, the relatively short gut passage time of L. terrestris 

(Section 1.2.1), and the absence of methanogenesis (Meier et al. 2018) suggesting that lipid-

derived long chain fatty acids are not utilized by the gut microbiota.  However, long chain fatty 

acids can be absorbed as energy source by the gut tissue of the earthworm (Sampedro et al., 

2006).  In contrast, the fermentation of available glycerol is not dependent on the occurrence of 

methanogens and can be therefore a potential substrate for the earthworm gut microbes.  

Table 5.  Fermentation of purines, pyrimidines and lipids.a 

Substrate and Equation Model Organismb 

Purines  

 Adenine + 8 H2O + 3 H+ → Acetate- + Formate- + 2 CO2 + 5 NH4
+ C. acidiurici 

 Guanine + 7 H2O + 4 H+ → Acetate- + 3 CO2 + 5 NH4
+ P. asaccharolyticus 

Pyrimidines  

 Uracil + 2 H2O + 3 H+ + 2 e- → NH4
+ + CO2 + beta-Alanine  C. uracilium 

Lipids  

 Glycerol → Propionate- + H+ + H2O Propionibacterium 

 𝑛-LCFA → (𝑛 − 2)-LCFA + 2 Acetate- + 2 H+ + 2 H2  S. wolfei 

bTable based on information obtained from McInerney et al., 1981; Buckel, 1999; Dong et al., 2009. 

bRepresentative model organisms for the respective fermentation. 

1.4.4. Secondary processes in the earthworm gut 

Products from primary fermentations can be subjects to anaerobic secondary processes.  

In this regard, formate can be converted to H2 and CO2 by an enzyme complex that (a) contains 

a formate dehydrogenases and a hydrogenase, (b) is common in many enteric bacteria, and (c) 

is most likely used for the maintenance of the pH (Table 6; Sawers, 1994; McDowall et al., 2014).  

Another example for a secondary process is the decarboxylation of succinate to propionate by 

Fusobacteriaceae-affiliated species (Table 6; Schink and Pfennig, 1982).  Fermentation-derived 

ethanol and lactate can be used to gain energy by propionate fermenters (e.g., Pelobacter 

propionicus) that produce via acrylate-pathway or methylmalonyl-pathway (Figure 16) propionate 

and acetate from ethanol, or propionate and CO2 if lactate is the substrate molecule (Figure 16; 

Schink et al., 1987; Tholozan et al., 1992).  Furthermore, ethanol and acetate can be converted 

by Clostridium kluyveri to butyrate (Table 6; Thauer et al., 1968; Buckel, 1999).  Fermentation 

products (e.g., H2, CO2, ethanol, lactate, and formate) can also be used by acetogens via the 

acetyl-CoA pathway (Table 3 and Table 6; Drake, 1994; Weghoff et al., 2015; Bertsch et al., 2016; 

Schuchmann and Müller, 2016). 
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Table 6.  Overall stoichiometries of potential secondary processes in the gut of L. terrestris. 

Equation  ΔG0’ (kJ/mol)a Model Organismb Referenced 

Formate- + H+ →  H2 + CO2   -3.0 E. coli 1, 2 

Ethanol + Acetate- →  Butyrate- + H2O  -39 C. kluyveri 3 

3 Ethanol + 2 CO2 → 2 Propionate- + Acetate- + 3 H+ + 2 H2O  -126 P. propionicus 4 

3 Lactate-  →  2 Propionate- + Acetate- + CO2 + H2O    -170 P. propionicus 4 

Succinate2- + H+  → Propionate- + CO2
-   -25c Propionigenium modestum 5 

Acetogenesis     

4 H2 + 2 CO2 → Acetate- + H+ + 2 H2O  -95 C. thermoaceticum 6 

2 Ethanol + 2 CO2 → 3 Acetate- + 3 H+  -75 Clostridium formicoaceticum 6, 7 

4 Formate- → Acetate- + 2 CO2 + 2 H2O  -309c C. thermoaceticum 6 

2 Lactate- → 3 Acetate-  -61 Acetobacterium woodii 8, 9 

aGibbs free energy (pH 7, 25 °C) yield per equation. 

bRepresentative model organisms for the respective fermentation. 

cCalculated for this dissertation according to Thauer et al., 1977. 

dTable based on information obtained from:  1, Lim et al., 2012;  2, da Silva et al., 2013;  3, Buckel, 1999;  4, Schink et al., 1987;  5, Schink and Pfennig, 1982;  6, Drake, 
1994;  7, Bertsch et al., 2016;  8 Weghoff et al., 2015;  9, Schuchmann and Müller, 2016. 
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1.5. Hypotheses and objectives 

The lifestyle of earthworms in the underground make them an inconspicuous marcofauna 

in soil ecosystems.  However, the tendency of these invertebrates to consume their home, i.e., 

soil, roots, litter, and associated microbes has sustainable effects on soil fertility, plant growth, 

and the cycling of elements (Section 1.1.2 and Section 1.1.3).  The ingestion of diverse plant- and 

microbial-derived materials introduces diverse biopolymers (e.g., polysaccharides, protein, 

nucleic acids) to the alimentary canal (Section 1.3).  Thus, the fermentative gut microbiota is (a) 

challenged with complex biomass and (b) potentially capable of degrading associated 

biopolymers.  This process might (a) increase the earthworm-derived turnover dynamics of soil 

organic matter and (b) supply fermentation products as a source of nutrition for the earthworm 

(Section 1.2.2).  Although several observations indicate that the earthworm gut is rich in anaerobic 

microbial activities (Section 1.2.2), how these activities are potentially linked to the utilization of 

diverse ingested biopolymers in the gut is, like the nature of the fermentative gut microorganisms, 

largely unresolved. 

Thus, the hypotheses of the present dissertation were: 

I. The fermentative gut microbiota of L. terrestris can hydrolyze diverse plant- and microbial-

derived polysaccharides and utilize saccharides from which they are composed.  

(discussed in Section 4.1) 

II. The fermentative gut microbiota of L. terrestris has the capacity to respond anaerobically 

to nutrient availability derived from disrupted microbial cells.  (discussed in Section 4.2) 

III. Protein and RNA, as primary biopolymers of disrupted microbial biomass, trigger 

earthworm gut fermentations.  (discussed in Section 4.2) 

IV. Amino acids (protein-derived) and ribose (RNA-derived) are subject to fermentation by 

contrasting earthworm gut taxa.  (discussed in Section 4.2) 

V. The responsive and fermentative gut microbiota of L. terrestris is phylogenetically affiliated 

to common soil bacteria.  (discussed in Section 4.3) 

VI. In contrast to the stimulatory effects of microbial- and plant-derived biopolymers, 

increasing water content has a minor impact on the gut fermentative microbiota.  

(discussed in Section 4.4) 

VII. The occurrence of the earthworm symbiont Can. Lumbricincola is effected by the ingested 

environmental substrate.  (discussed in Section 4.5) 
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The objectives of this dissertation were to determine (a) if microbial- and plant-derived 

biopolymers, including monomers from which they are composed, enhance fermentation by gut-

associated microbes of the model earthworm L. terrestris, and (b) which microbial taxa are 

responsible for the enhanced fermentations.  To address these objectives, anoxic gut content or 

soil microcosms were supplemented with diverse dietary substrates (e.g., cell lysate, protein, 

RNA, cellulose, saccharides, amino acids) to quantitatively and qualitatively evaluate their 

fermentative capacities and responsive fermentative taxa.  The experimental analysis required a 

1:10 dilution of the extracted gut contents for obtaining adequate samples for chemical and 

molecular analyses.  This potential disturbance of the fermentative gut content system was 

evaluated by a comparative analysis of the fermentative activities and associated taxa in diluted 

and undiluted gut contents.  An additional objective of this dissertation was to examine the 

potential effect of different ingested materials on the earthworm symbiont Can. Lumbricincola.  

This objective was addressed by analyzing the relative 16S rRNA sequence abundances of Can. 

Lumbricincola in gut contents of earthworms maintained on different dietary substrates. 
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2. MATERIALS AND METHODS 

2.1. Gut content and soil microcosms 

2.1.1. Earthworms and soil 

L. terrestris individuals from Fischerkönig Angelgeräte (Neustadt/Orla, Germany) were 

purchased from ANZO or Fisherman’s World (Bayreuth, Germany).  The earthworms were 

removed from the commercial worm bedding, washed with water, and maintained in a 50 l barrel 

filled with loamy soil from the meadow Trafo Wiese in Bayreuth (49°55′39″N, 11°31′46″E; 

Bayreuth, Germany).  The worms were kept in the barrel at 20°C for approximately ten days prior 

to use.  Turf at the top of the soil (which contained soil, roots, grass and leaves) served as 

feedstock.  The effect of different environmental substrates on the earthworm symbiont Can. 

Lumbicincola was evaluated by using two 10 l buckets filled with soil or turf, whereby each bucket 

contained approximately 20 earthworms.  The earthworms were stored in the buckets as 

mentioned above.  The gut contents from earthworms maintained on worm bedding were 

extracted immediately after purchasing.  

2.1.2. Anoxic microcosms 

A microcosm can be defined as “a simplified, physical model of an ecosystem that enables 

controlled experiments to be conducted in the laboratory” (Fath, 2019).  The microcosms in this 

dissertation contained gut contents of L. terrestris or soil (Section 2.1.1).  In more detail, 

earthworms from the barrel were washed with water and dried with paper towels.  Afterwards, the 

earthworms were anesthetized on ice with CO2 (100%) for 20 min.  The extraction of gut content 

was conducted in an anoxic chamber (Mecaplex, Grenchen, Switzerland, gas phase: 100% 

dinitrogen) as described previously (Wüst et al., 2011).  In this regard, the squeeze-out procedure 

of the gut content was facilitated by cutting 2 mm of the posterior end of the worm by a scissor.  

The collected gut content (approximately 0.4 to 0.8 g gut content per worm) was then pooled, 

conscientious mixed, and divided into 27 ml sterile glass tubes.  If not otherwise indicated, one 

gram fresh weight of gut content was supplemented with 1 ml substrate (Section 2.2), and anoxic 

sodium phosphate buffer (Section 2.3.3) was added to a total volume of 10 ml for each microcosm 

(Figure 20 A).  Control treatments contained only gut content and sodium phosphate buffer.  For 

undiluted gut content microcosms (Section 3.3), 15 ml glass tubes were carefully filled with 1 g 

gut content; no sodium phosphate buffer was added.  All glass tubes were closed with sterile 

rubber stoppers (Glasgerätebau Ochs Laborfachhandel e.K., Bovenden, Germany), crimp sealed, 

and then flushed and pressurized (600 mbar) with sterile N2 (100%). 

The preparation of soil microcosms was identical to the preparation of gut content 

microcosms but instead of one gram gut content, one gram fresh weight of soil was used.  The 
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incubation of the microcosms was in the dark at room temperature (approximately 21-24°C).  

Sampling of gas and liquid phases for gas chromatography (GC), high performance liquid 

chromatography (HPLC), and 16S rRNA gene and 16S rRNA analyses was under anoxic 

conditions with sterile syringes (BD, Heidelberg, Germany) (Figure 20 B and Section 2.5.2).  All 

experiments were conducted with triplicated microcosms (three replicates per treatment).  

Destructive sampling was used for the analyses of undiluted gut content microcosms.  In this 

regard, the incubation was stopped on ice and 9 ml ice-cold sodium phosphate buffer was added 

to ensure an adequate sampling for HPLC, 16S rRNA gene and 16S rRNA analyses.  

 

2.2. Substrates 

2.2.1. Plant- and microbial-derived lysates  

2.2.1.1. Leaf litter and root lysates 

Leaf litter was collected in October at the bottom of beech and maple trees.  Fine roots from 

turf (Section 2.1.1.) were washed with water and dried with paper towels.  20 g leaves and 30 g 

roots were mixed with 200 ml and 120 ml anoxic ice-cold sodium phosphate buffer (Section 2.3.3), 

respectively.  In approximately 5 g steps and with cooling on ice, leaves and roots were separately 

cut and homogenized using a commercial blender (Model 32BLB0; Waring, Stamford, CT, USA).  

Resulting viscous slurries were centrifuged at 4 °C, for 30 min, at 10,000 rpm (J2-HS-centrifuge, 

JA20-rotor; Beckmann, IN, USA).  Supernatant was sequentially filter-sterilized with 0.45 µm and 

0.22 µm pore size cellulose-acetate filters (Sartorius, Göttingen, Germany), transferred into sterile 

anoxic 100 ml serum vials, and flushed 10 min with sterile argon (Ar, 100%).   

2.2.1.2. Yeast and bacterial cell lysates  

Saccharomyces cerevisiae Sa-07140 (DSMZ, Braunschweig, Germany) and E. coli K12 

(DSMZ) were cultivated at 30°C and 37°C in 4 × 500 ml sterile medium (pH 7; Section 2.3.1 and 
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8 ml Buffer
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Figure 20.  Simplified overview 
of the experimental setup (A) 
and methods (B) that were used 
to evaluate the fermentations 
and associated taxa of earth-
worm gut contents.   GC, gas 
chromatography; HPLC, high 
performance liquide chroma-
tography.  
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Section 2.3.2), respectively.  Cells were harvested after 3 days by centrifugation for 20 min at 

7,500 rpm (approximately 10,000 × g [J2-HS-centrifuge, JA10-rotor, Beckmann]).  Resulting cell 

pellets were washed three times with sodium phosphate buffer (Section 2.3.3).  Afterwards, 

twenty grams fresh weight (FW) of pelleted cells were suspended in 20 ml sodium phosphate 

buffer; 400 μl DNase I (10,000 U/ml [Sigma-Aldrich, Taufkirchen, Germany]) was added to 

prevent the agglomeration of genomic DNA after cell lysis.  The cell suspension was then inserted 

to three consecutive runs of a French press (95,000 to 110,000 kPa [FA-032-40K pressure cell, 

SLM Aminco, Urbana, IL, USA]).  The ruptured cells were centrifuged for 20 min at 15,000 rpm 

(approximately 27,000 × g [J2-HS-centrifuge, JA20-rotor, Beckmann]) and the pellet containing 

the cell wall fragments, associated phospholipid membranes, and undisrupted cells was 

discarded.  The supernatant fluid was centrifuged again and approximately 27 ml of the 

supernatant fluid was diluted with 13 ml sodium phosphate buffer. The dilution was filter sterilized 

(0.2 μm pore size, cellulose-acetate membrane [Sartorius]), and transferred to sterile anoxic 100 

ml serum vials that were crimp sealed with sterile rubber stoppers; the vials were then flushed 

with sterile Ar (100%).   

2.2.2. Stock suspensions and solutions 

2.2.2.1. Polysaccharides  

For polysaccharide experiment A, microcrystalline cellulose (Merck, Darmstadt, Germany), 

chitin from shrimp shells (Sigma-Aldrich), pectin from citrus fruits (Sigma-Aldrich), maltodextrin 

from potato starch (Sigma-Aldrich), and xylan from birchwood (Sigma-Aldrich) were prepared as 

stock suspensions.  Chitin was ground to powder with a mixer mill prior to use (MM400, Retsch, 

Haan, Germany).  Dextran from Leuconostoc spp. with the relative molecular mass of 

approximatively 70,000 (Sigma-Aldrich) was prepared as a stock solution.  For polysaccharide 

experiment B, a stock solution of glycogen from bovine liver (Fluka, Schwerte, Germany) and a 

stock suspension of starch from wheat (Merck) were utilized.  All polysaccharide stock 

suspensions or solutions containing 2 mmol/ml of carbon were prepared in 20 ml anoxic sodium 

phosphate buffer (Section 2.3.3) and transferred to sterile anoxic 100 ml serum vials that were 

crimp sealed with sterile rubber stoppers; the vials were then flushed 10 min with sterile Ar 

(100%).  Sterility of non-soluble and non-filter-sterilized polysaccharides suspensions were 

checked by negative controls, containing 1 ml of suspension and 9 ml of sodium phosphate buffer.  

2.2.2.2. Protein and RNA 

The 10-fold concentrated stock solutions of protein consist of 22.5 mg/ml; bovine serum 

albumin (Merck) and sterile anoxic sodium phosphate buffer (Section 2.3.3) added to the amount 

of 10 ml.  RNA (from the yeast Cyberlindnera jadinii; Sigma) was less soluble than protein, and 

thus less concentrated stock solutions (8.8 mg/ml) were prepared.  The pH was adjusted to pH 7 
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with 1 M NaOH.  Stock solutions of protein and RNA were filter sterilized (0.2 m pore size, 

cellulose-acetate membrane [Sartorius]), transferred to sterile anoxic 100-ml serum vials, and 

crimp sealed with sterile rubber stoppers.  The vials were then flushed with sterile Ar (100%).  

According to the manufacturer’s specifications, the RNA contained 10% water, which was 

neglected for all calculations.  The theoretical chemical formulas were used to calculate the 

amount of carbon provided in a given treatment: for protein [CH1.57N0.27O0.30S0.013]n and for RNA 

[C9.5H11.75N3.75O7P]n (based on 50% GC content and deprotonated phosphate).  

2.2.2.3. Yeast extract 

Stock solutions of yeast extract were prepared by dissolving 0.52 g yeast extract (Carl Roth 

GmbH, Karlsruhe, Germany) in 10 ml anoxic sodium phosphate buffer (Section 2.3.3).  The 

solution was filter sterilized and transferred to sterile 100 ml serum vials that were crimp sealed 

with sterile rubber stoppers; the vials were then flushed with sterile Ar (100%). 

2.2.2.4. Saccharides, amino acids, transient intermediates, and others 

N-acetylglucosamine (AppliChem, Darmstadt, Germany), cellobiose (Sigma-Aldrich,), 

glucose (AppliChem), ribose (Sigma-Aldrich), galacturonic acid monohydrate (Sigma-Aldrich), 

and xylose (Merck) were prepared as 50 mM stock solutions.  All saccharides were dissolved in 

20 ml anoxic sodium phosphate buffer, filter sterilized (0.22 μm pore size, cellulose-acetate 

membrane), and transferred to sterile anoxic 100 ml serum vials that were crimp sealed with 

sterile rubber stoppers; the vials were then flushed 10 min with sterile Ar (100%). 

Stock solutions of casamino acids (Difco Laboratories, Detroit, MI), alanine (Merck), 

aspartate (Merck), glutamate (Merck), glycine (Sigma-Aldrich), leucine (AppliChem), threonine 

(Merck), tyrosine (Merck), valine (Merck), ribose (Sigma-Aldrich), ethanol (VWR Chemicals, 

Darmstadt, Germany), lactate (Sigma-Aldrich), formate (Sigma-Aldrich), succinate (Sigma-

Aldrich), glucose (AppliChem), adenine (Carl Roth), uracil (Carl Roth), and glycerol (Grüssing, 

Filsum, Germany) were prepared with anoxic sodium phosphate buffer (Section 2.3.3 [pH was 

adjusted to pH 7 with NaOH]).  Solutions were filter sterilized (0.22 μm pore size, cellulose-acetate 

membrane [Sartorius]) into sterile anoxic 100 ml serum vials that were crimp sealed with sterile 

rubber stoppers; the vials were then flushed 10 min with sterile Ar (100%). 

2.3. Growth media, buffers, and solutions 

The sterilization of growth media, buffers or solutions was ensured by autoclaving 

(Sanoclav, Wolf, Geislingen, Germany).  Deionized double distilled water (ddH2O) was produced 

with a Seral Pro 90 CN ultrapure water purification system (Seral, Ransbach-Baumbach, 
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Germany).  For nucleic acid extraction, ddH2O was filter sterilized (0.22 μm pore size, cellulose-

acetate membrane [Sartorius]) and autoclaved. 

2.3.1. Oxic S. cerevisiae growth medium 

Yeast extract (Carl Roth)  7 g 

Tryptic soy broth (Fluka)  7 g 

Glucose (AppliChem)  10 g 

ddH2O  to 1 l  (pH 7) 

2.3.2. Oxic E. coli growth medium 

Yeast extract (Carl Roth)  8 g 

Tryptone (AppliChem)  8 g 

Glucose (AppliChem)  5 g 

NaCl (Carl Roth)  5 g 

ddH2O  to 1 l  (pH 7) 

2.3.3. Anoxic sodium phosphate buffer 

NaH2PO4·H2O (Merck)  1.9 g 

Na2HPO4·2H2O (Merck)  3.4 g 

ddH2O   to 1 l  (pH 7) 

The sodium phosphate buffer was boiled for 30 min in a Erlenmeyer flask and continuously 

flushed with N2.  Afterwards, the buffer was transferred to a 1 l serum flask which was closed with 

a rubber stopper and a screw cap and flushed again for 10 min with sterile N2 (100%). 

2.3.4. Extraction buffer 

The extraction buffer consisted of 200 ml potassium phosphate buffer and 400 ml CTAB/ 

NaCl solution.  

2.3.4.1. Potassium phosphate buffer 

K2HPO4 (Merck)  7.8 g 

KH2PO4 (Merck)  0.4 g 

ddH2O  to 200 ml (pH 8) 

2.3.4.2. CTAB/ NaCl solution 

CTAB (Carl Roth)  40 g 

NaCl (Carl Roth)  20 g 
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ddH2O  to 400 ml 

2.3.5. Precipitation buffer 

PEG (average Mn 6.000; Sigma-Aldrich)  60 g 

NaCl (Carl Roth)  19 g 

ddH2O  to 200 ml  

2.4. Nucleic acid extraction 

Time-dependent shifts in the microbial community were evaluated by 16S rRNA and 16S 

rRNA gene analysis (Figure 20 B).  The nucleic acid extraction of ice-cooled gut content and soil 

samples was conducted as described (Griffiths et al., 2000).  In detail, 0.2 ml filter sterilized ddH2O 

(Section 2.3), 0.3 g of Ø 0.1 mm and 0.3 g of Ø 0.5 mm zirconia beads (Carl Roth) were added 

to approximately 0.3 g of gut content or soil in a 2 ml screw cup (A. Hartenstein GmbH, Würzburg, 

Germany).  After the addition of 0.5 ml extraction buffer (Section 2.3.4) and 0.5 ml phenol 

chloroform:isoamyl alcohol (24:25:1; equilibrated and stabilized; AppliChem) the samples were 

inserted to two consecutive runs of a FastPrep FP120 bead beater (Thermo Savant, Holbrook, 

NY, USA) for 30 s at 5.5 m/s. The samples were centrifuged (5 min, 4°C, 15,000 × g; 1-15K 

microcentrifuge, Sartorius) and the supernatant was transferred into a new sterile vessel before 

chloroform:isoamyl alcohol (24:1, AppliChem, Darmstadt, Germany) was added.  Sample were 

again centrifuged (5 min, 4°C, 15,000 × g) and the upper phase was transferred into a new sterile 

vessel.  Twice as much precipitation buffer were added and the samples were mixed until a clear 

solution.  After the incubation of the nucleic acids on ice for 2 h, the samples were centrifuged (10 

min, 4°C, 18,000 × g) and the supernatant were discarded.  The pellets were washed with 0.4 ml 

ice-cold RNase-free sterile ethanol (70%, VWR Chemicals) followed by another centrifugation 

step (5 min, 4°C, 15,000 × g).  The ethanol was removed, pellets were dried at room temperature, 

and resuspended in 30 µl DNase/ RNase- free ddH2O (Gibco by Life Technologies, Darmstadt, 

Germany).  

2.4.1. Enzymatic digestion of DNA or RNA 

To obtain pure DNA or RNA, the nucleic acid samples were treated for 45 min at room 

temperature with 10 μg/μl RNase A (from bovine pancreas [Merck]) or for 45 min at 37°C with 1 

U/μl DNase I (Thermo Fisher Scientific, Waltham, MA, USA), respectively.  The enzymatic 

digestion of DNA or RNA was stopped by adding 0.7 volume of ice-cold isopropanol (100%, VWR 

Chemicals) and 0.1 volume of 5 M NaCl (Green and Sambrook, 2012).  The precipitation of DNA 

or RNA was at -20°C for at least 12 h.  After this incubation, the samples were centrifuged (60 

min at 18000 × g, 4°C) and washed three times with 400 µl ice-cold ethanol (RNase free, 70%, 
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VWR Chemicals) and repeated centrifugation steps (5 min at 15,000 × g at 4°C).  The resulting 

pellets were dried at room temperature and resuspended in 30 µl DNase/ RNase-free ddH2O. 

2.4.2. Nucleic acid quantification 

2.4.2.1. Photospectrometrically analysis 

A 260/280 nm absorbance ratio was used to determine the concentration and purity of the 

extracted nucleic acids.  A ratio of approximately 1.8 is generally accepted as pure DNA, whereas 

a ratio of approximately 2.0 reflects pure RNA (Wang and Fujii, 2011; Green and Sambrook, 

2012).  In this regard, ratios lower than 1.8 or 2.0 indicating contaminations with protein, phenol 

or huminic acid that absorbance is at or near to 280 nm (Wang and Fujii, 2011; Green and 

Sambrook, 2012). 

2.4.2.2. Fluorescence-based analysis 

Additional to the photospectrometrically quantification a fluorescence-based method that is 

less sensitive to contaminations was used to determine the RNA concentrations.  Therefore, the 

fluorescent regent of Quant-iT-RiboGreen (Invitrogen, Carlsbad, CA, USA) was added, as 

described in the manufacturer's protocol, to 1 µl of the resuspended RNA samples.  The 

fluorescence in the samples was quantified with a FLx800 microplate fluorimeter (BioTek, Bad 

Friedrichshall, Germany) and the software Gen5 (BioTek, Winooski, VT, USA).   

2.4.3. Polymerase chain reaction  

Three different polymerase chain reaction (PCR) protocols were used to ensure reliable DNA 

and cDNA samples.  For example, the ‘control’ PCR (Table 7A) was conducted to amplify DNA 

fragments and therefore to visualize (a) a successful nucleic acid extraction, (b) a sufficient 

enzymatic digestion of DNA in RNA samples, and (c) the efficient reverse transcription of RNA to 

complementary DNA (cDNA).  

2.4.3.1. Reverse transcription PCR 

The SuperScript III RT kit (Invitrogen, Carlsbad, CA, USA) and the manufacturer's protocol 

were used for the reverse transcription of RNA into cDNA.  10 ng to 1 µg of RNA was added to 1 

µl of 100 µM random hexamer primers (Microsynth, Balgach, Switzerland) and 1 µl of 10 mM 

dNTP mix (Invitrogen, Carlsbad, CA, USA).  This reaction mixture was filled up to 14 µl with 

RNase/DNase-free ddH2O and incubated for 5 min at 65°C.  The reverse transcription PCR was 

started after the addition of 4 µl 5 × First-Strand Buffer, 1 µl 0.1 M DTT and 1 µl SuperScript IV 

RT enzyme (200 U/µl).  In the PCR cycler (SensoQuest GmbH, Göttingen, Germany) the PCR 

started with 5 min at 25°C, followed by 120 min at 50°C, and was stopped with 70 °C for 15 min. 



MATERIALS AND METHODS 42 

 

 

Table 7.  Reagents and cycler protocols of the control PCR (A) and first strand bacterial 16S rRNA PCR (B). 

(A)  Control PCR      

Reaction Mix         Cycler protocol 

Reagent Volume  Conc. Final conc. 
 

Step Temp. Duration Description Cycles 

Master Mixa 10 µl variable variable 
 

1 95 °C 5 min Initial Denaturation 1 

27F Primer 1 µl 10 µM 0.4 µM 
 

2 95 °C 1 min Denaturation  

907R Primer 1 µl 10 µM 0.4 µM 
 

3 50 °C 30 s Annealing 25 

MgCl2 1 µl 25 mM 1 mM 
 

4 72 °C 90 min Extension  

Template 1 µl as available as available 
 

5 72 °C 5 min Final Extension 1 

ddH2O to 25 µl - -   6   4 °C ∞ Storage  - 

 
(B)  First Step Bacterial 16S rRNA PCR 

Reaction Mix   Cycler protocol 

Reagentb Volume  Conc. Final conc.  Step Temp. Duration Description Cycles 

KAPA Buffer 5 µl 5 x 1x 
 

1 95 °C 3 min Initial Denaturation 1 

10 mM KAPA dNTP Mix 0.75 µl 10 µM 0.3 µM each  2 98 °C 20 s Denaturation  

KAPA DNA Polymerase 0.5 µl 1 U/μL 1 U  3 65 °C 30 s Annealing 20 

Primer 0.75 µl 10 µM 0.3 µM  4 72 °C 30 s Extension  

Primer 0.75 µl 10 µM 0.3 µM  5 72 °C 5 min Final Extension 1 

Template - - 0.5 ng/µl  6   4 °C ∞ Storage - 

ddH2O to 25 µl - -             

aTwo different master mixes were used over the years.  The master mix purchased from 5PRIME (Hamburg, Germany) had a final concentration of 1.5 mM, 
whereas the master mix purchased from GenOn (Ludwigshafen am Rhein, Germany) had a final concentration of 1.8 mM.
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2.4.3.2. Illumina sequencing: Bacterial 16S rRNA PCR  

Bacterial 16S rRNA gene and 16S rRNA amplification were performed by Microsynth AG 

(Balgach, Switzerland).  Some treatments were pooled and others were analyzed on a per 

replicate basis in order to evaluate reproducibility.  In this regard, it is noteworthy that due to the 

limitations of Illumina sequencing, analyzing all replicates would have decreased the number of 

sequences obtained per sample, and obtaining a greater number of sequences for each of the 

treatments was therefore favored.  First step PCR amplification of the 16S rRNA V3-V4 region 

from either cDNA (16S rRNA [RNA]) or genomic DNA (16S rRNA gene) was performed with the 

primers Bakt 341F (5 -CCTACGGGNGGCWGCAG- 3) and Bakt 805R (5 –GACTACHV 

GGGTATCTAATCC- 3) (Herlemann et al., 2011) using a KAPA HiFi HotStart PCR Kit 

(KAPABiosystems, Wilmington, USA) per manufacturer’s two-step PCR protocol (Table 7B).  The 

same chemicals and thermoprotocols were used for the second step but 1 μl of purified PCR 

product (derived from the first step of the two-step PCR) per 50 μl reaction volume was used as 

template, primers Bakt 341F and Bakt 805R were extended with sample-specific multiplex 

identifiers, and the number of cycles was 12 instead of 20. 

2.4.4. Agarose gel electrophoresis 

The visualization of PCR-amplified DNA fragments was performed with agarose gel 

electrophoresis.  0.8% standard agarose (AppliChem) gels were prepared by heating up a mixture 

of agarose and TAE buffer (a mixture of tris base, acetic acid and EDTA; Millipore, Temecula, 

CA, USA) using a microwave.  After the complete dissolution of the agarose in the buffer and a 

cooling down to approximately 50 °C, ethidium bromide (3,8-diamino-5-ethyl-6-phenyl-

phenenthridium bromide; BioRad, Hercules, CA, USA) at a final concentration of 0.08 mg/ml was 

added.  The solution was then transferred into a gel electrophoresis chamber (Mini- or Maxi-Sub 

cell, BioRad) filled with TAE buffer.   

The samples for the gel wells consist of 5 µl PCR product plus 1 µl 6 × Blue Orange loading 

dye (Promega, Madison, WI, USA).  For fragment size allocation a volume of 2 µl molecular-

weight size marker (MWM 1, Bilatec, Viernheim, Germany) were transferred into at least one of 

remained gel wells.  The electrophoresis ran for 50 min at 70 V (Power-Pak 3000, BioRad).  The 

visualization of amplified DNA fragments were ensured with a UV light (302 nm; Transilluminator 

UVT-20M, Herolab GmbH, Wiesloch, Germany) and a self-made light-protecting chamber.  The 

gel with the illuminating DNA bands was captured with a Canon PowerShot G5 camera (Canon, 

Krefeld, Germany). 
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2.5. Chemical analyses 

2.5.1. Dry weight of gut content, dietary materials, and lysates  

The dry weights (DW) of earthworm gut content, soil, turf, worm bedding, and cell lysates 

were determined by weighing before and after drying at 60°C for 7 days (Horn et al., 2003; Wüst 

et al., 2011).   

Table 8.  Dry weights of earthworm gut content, different dietary materials, and lysates.  

Sample 
Number of 
Replicates 

Dry Weight (%)  
± Standard Deviation 

Section 

Gut Content 10 45 ± 2.2 

2.1.1and 3.3 SoilA 10 76 ± 4.8 

SoilB 3 87 ± 1.2 
2.1.1 and 3.5 

Turf 3 87 ± 0.8 

Worm Bedding 3 37 ± 12  

S. cerevisiae LysateA 3 5.1 ± 0.1 2.2.1.2 and 3.2 

E. coli Lysate 3 5.3 ± 0.1 
 

S. cerevisiae LysateB 3 5.3 ± 0.1  2.2.1.2 and 3.3.1 

Root Lysate 3 1.3 ± 0.1 
2.2.1.1 and 3.1.6 

Leaf Litter Lysate 3 0.9 ± 0.1 

2.5.2. Gases, soluble organic compounds, and pH 

Gases and soluble organic compounds were measured by GC or HPLC, respectively (Table 

9).  Calculated amounts of H2 and CO2 in the gas and liquid phases of microcosms are based on 

the ideal gas law and standard solubility tables (Blachnik, 1998; Equation 1-7).  For CO2, amounts 

of bicarbonate, calculated from dissolved CO2, pH, and the dissociation constant, were taken into 

consideration.  A WTW pH 323 pH-meter (Zeller, Hohenems, Austria) was used to measure pH.  

Final amounts of gases and organic compounds were normalized to the fresh weight or dry weight 

of gut content or soil.  For converting amounts of a product from µmol per g fresh weight to mM 

or µmol per g dry weight, multiply by 0.1 (e.g., 100 µmol per g fresh weight equals 10 mM) or 

divide by 0.45 (e.g., 100 µmol per g fresh weight equals 222 µmol per g dry weight), respectively.  

Presented amounts of gases where cumulative and mostly in µmol/gFW.  The theoretically 

production of gases in the removed liquid phase for sampling were considered and added to the 

cumulative amounts.
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Table 9.  Instrumentation utilized for analyses of soluble organic compounds and gases. 

 Chromatograph 

Parameter 
Hewlett Packard 1090 Series II  Agilent 1200 Series  

Hp Hewlett 5890 Packard 
Series II  

Schambeck SRI 
8610C  

Detected compounds Organic acids Organic acids Hydrogen Carbon dioxide 

Column Rezex ROA-Organic Acids (300 x 7,8 
mm; Phenomenex, Torrance, CA, 
USA) 

Rezex ROA-Organic Acids 
(300 x 7,8 mm; Phenomenex, 
Torrance, CA, USA) 

Molecular sieve13X, 2 m x 
1/8’’ (Restek, Bellefonte, PA, 
USA) 

Hayesep-D 2 m x 1/8’’ 
(SRI Instruments, Earl St. 
Torrance, CA, USA) 

Oven temperature 60°C 60°C 60°C 80°C 

Detector G1362A  refractive index detector 
(RID) 

G1362A  refractive index 
detector (RID) 

Thermal conductivity detector 
(TCD) 

Thermal conductivity 
detector (TCD) 

Detector temperature 40°C 40°C 175°C 175°C 

Flow rate 0.8 ml/min 0.8 ml/min 20 ml/min 20 ml/min 

Injections volume 20 µl 50 µl 0.1 ml 0.1 ml 

Software 

 

ChemStation (Agilent Technologies, 
Böblingen, Germany) 

ChemStation (Agilent 
Technologies, Böblingen, 
Germany) 

EuroChrom Software for 
Windows (Ver: Basic Edition 
V3. 05, Wissenschaftliche 
Gerätebau, Berlin, Germany) 

Peak simple Software 
(Ver: 4.20, SRI 
Instruments) 

Mobile phase/ Carrier 
gas 

4 mM H3PO4 4 mM H3PO4 Argon Helium 
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Equation 1.  Slope intercept form 

𝑦 = 𝑚 ∗ 𝑥 + 𝑏;     𝑥 =  
𝑦 − 𝑏

𝑚
  

𝑦, peak area of H2 or CO2 in the gas chromatogram;   𝑚, slope of the calibration curve;  𝑥, gas 

concentration (%);   𝑏, point of intersection with 𝑦-axis (was set to zero).  For equation 2, 𝑥 was divided by 

one hundred. 

Equation 2.  Concentration of CO2 or H2 in the gas phase (𝑪𝒈 𝐢𝐧 𝒎𝒎𝒐𝒍/𝒎𝒍) 

𝐶𝑔 =
𝑥 ∗ 𝑃𝑎𝑚𝑏 + 𝑃𝑚𝑐

𝑅 ∗ 𝑇𝑎𝑚𝑏
 

𝐶𝑔, was calculated using the ideal gas law;  𝑃𝑎𝑚𝑏, ambient pressure (𝑚𝑏𝑎𝑟);   𝑃𝑚𝑐, pressure in microcosm 

(𝑚𝑏𝑎𝑟);   𝑅, universal gas constant (83.145 
𝑚𝑏𝑎𝑟 ∗ 𝑚𝑙

𝑚𝑚𝑜𝑙 ∗ 𝐾
);  𝑇𝑎𝑚𝑏, ambient temperature (𝑘𝑒𝑙𝑣𝑖𝑛; 𝐾). 

Equation 3.  Amount of CO2 or H2 in the gas phase (𝒏𝒈 𝐢𝐧 𝒎𝒎𝒐𝒍) 

𝑛𝑔 = 𝐶𝑔 ∗  𝑉𝑔 

𝑉𝑔, volume of gas phase in microcosm (𝑚𝑙). 

Equation 4.  Amount of physically dissolved CO2 or H2 in the liquid phase (𝒏𝒍𝒑 𝐢𝐧 𝒎𝒎𝒐𝒍) 

𝑛𝑙𝑝 =  𝐶𝑔 ∗  𝑉𝑙 ∗ 𝛼 

𝑉𝑙, volume of liquid phase in microcosm (𝑚𝑙);   𝛼, Bunsen solubility coefficients of CO2 or H2 in water 

(0.74 or 0.02 at 25°C; Blachnik, 1998). 

Equation 5.  Amount of chemically dissolved CO2 in the liquid phase (𝒏𝒍𝒄 𝐢𝐧 𝒎𝒎𝒐𝒍) 

𝑛𝑙𝑝 =  𝐶𝑔 ∗ 𝑉𝑙 ∗ 𝛼 ∗ 10−𝑝𝐾𝑎+𝑝𝐻 

𝑛𝑐𝑙, was considered for the total CO2 that reacts at pH 7 chemically with the liquid phase mostly to 

hydrogen bicarbonate;   𝑝𝐾𝑎, the negative (base 10) logarithm of the acid dissociation constant of 

carbonic acid (6.37 at 25°C; Blachnik, 1998). 

Equation 6.  Amount of CO2 or H2 in the liquid phase (𝒏𝒍 𝐢𝐧 𝒎𝒎𝒐𝒍) 

𝑛𝑙 = 𝑛𝑐𝑙 +  𝑛𝑝𝑙 

Equation 7.  Total amount of CO2 or H2 in microcosm (𝒏𝒕 𝐢𝐧 𝒎𝒎𝒐𝒍) 

𝑛𝑡 = 𝑛𝑙 +  𝑛𝑔 
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2.5.3. Organic carbon quantification 

Organic carbon content of leaf litter lysate, root lysate, turf, worm bedding, and soil were 

analyzed by the Keylab Experimental Biogeochemistry (Bayreuth Center of Ecological and 

Environmental Research, University of Bayreuth, Germany) (Table 10).  Lysates, turf, worm 

bedding, and soil samples were dried for 7 days at 65 °C.  Turf, worm bedding, and soil samples 

were then grounded to powder with a mixer mill (MM200, Retsch, Haan, Germany).  0.6 to 1.2 

mg of dried lysate and 1 to 2 mg of dried turf, worm bedding, and soil were transferred in silver 

weighing boats (6 × 6 × 12 mm; Elemental Microanalysis, Okehampton, UK).  Inorganic carbon 

(i.e., carbonates) was eliminated as CO2 by the addition of 2 to 3 drops of 8 % (v/v) hydrochloric 

acid (Merck) and an overnight incubation, followed by another drying step for at least 2 h at 80°C.  

Silver boats with samples were placed in tin boats (6 × 6 × 12 mm; Lab Need, Nidderau, 

Germany), folded tightly, and combust with an O2 inflow in a cobalt-chromium combustion column 

at 900 °C in a CHN element analyzer (Flash-EA 112; Thermo Fisher Scientific [formerly 

ThermoQuest]).  With helium as carrier gas, free O2 and H2O were eliminated from the resulting 

CO2 by a copper reduction column and a water trap containing magnesium perchlorate (Mg[Cl4]2, 

Thermo Fisher Scientific), respectively.  The amount of CO2 was detected by a thermal 

conductivity detector (TDC).   

Table 10.  Organic carbon content of different dietary materials and plants lysates.   

Substrate 
Number of 
Replicates 

Organic carbon 
content (%) 

Sections 

Root Lysate 8 30 ± 1.8 

2.2.1.1 and 3.1.6  Leaf Litter Lysate 8 24 ± 0.6 

Soil 4 2.3 ± 0.0 

2.1.1 and 3.5 Turf 4 4.9 ± 0.7 

Worm Bedding 4 48 ± 0.6 

2.5.4. Determination of ammonia 

The production of ammonium in amino acids-supplemented microcosms was determined 

by using a modified protocol (Weatherburn, 1967).  In this regard, 50 µl of 2% sodium phenolate 

(Merck), 25 µl of 0.005% sodium nitroprusside (Merck), and 25 µl of sodium hypochlorite working 

solution were mixed with 100 µl microcosms sample obtained from the respective microcosm in 

a 96-well multi test plate (neoLab, Heidelberg, Germany).  The sodium hypochlorite working 

solution consisted of 25 ml sodium hypochlorite containing 12% Cl (Carl Roth) and 1.13 g NaOH 

(Carl Roth), and was filled up to 250 ml with ddH2O.  The absorbance spectrum was measured 

at 630 nm with a µQuant spectrophotometer (BioTek Instruments GmbH, Bad Friedrichshall, 

Germany), after a 30 min incubation in the dark at 30 °C. 
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2.6. Sequence analyses  

2.6.1. Data obtained by Illumina sequencing 

Illumina sequencing, and clustering of sequences into operational taxonomic units (OTUs) 

was performed by Microsynth. In this regard, the Illumina MiSeq platform and a v2 500 cycles kit 

were used to sequence PCR libraries.  The paired-end reads that passed Illumina’s chastity filter 

were subject to de-multiplexing and trimming of adaptor residuals using Illumina’s Real Time 

Analysis software.  The quality of the reads was checked with FastQC 0.11.5 (https://www.bio-

informatics.babraham.ac.uk/projects/ fastqc/).  The locus specific V3-V4 primers were trimmed 

from the reads with Cutadaptv1.14 (Martin, 2011).  Paired-end reads were discarded if the primer 

could not be trimmed.  Trimmed forward and reverse reads of each paired-end read were stitched 

in-silico employing a minimum overlap of 15 bases with USEARCH 8.1.1861 (Edgar, 2010; Edgar 

and Flyvbjerg, 2015).  Stitched sequences were quality filtered allowing a maximum of one 

expected error per stitched read; ambiguous bases were discarded (Edgar and Flyvbjerg, 2015).  

Remaining reads were clustered at a 97% similarity level (if not otherwise indicated) using 

USEARCH to form OTUs.  Singletons and chimeras were discarded (Edgar, 2013).  OTUs were 

aligned against the reference sequences of the Silva v128 database (Pruesse et al., 2007), and 

taxonomies were predicted by employing a minimum confidence threshold of 0.6 using 

USEARCH.  

2.6.2. Diversity analysis 

2.6.2.1. Rarefaction analysis 

Rarefaction curves represent the diversity as a function of sequencing depth.  These curves 

were generate to evaluate the richness of the different samples.  The analysis based on the 

Hurlbert method (Hurlbert, 1971), and the calculations were conducted with aRarefact software 

(http://www.uga.edu/strata/software/).  Flattening curves indicate a sufficient sampling and that 

most of the expected diversity was covered by the sampling effort.  Weakly increasing curves 

reflect a lower diversity and are caused by either an insufficient sampling or a high prevalence of 

stimulated subgroups after the incubation.   

2.6.2.2. Alpha and beta diversity 

Alpha diversity was analyzed by the calculation of Chao and Shannon indices.  Chao1 

indices are based on the ratio of expected phylotypes versus detected phylotypes (Equation 8) 

and reflect therefore the species richness.  In contrast, the Shannon indices are based on both 

richness and evenness (Equation 9; Magurran, 2004; Lemos et al., 2011).  Typical values are 

generally between 1.5 and 3.5, and indices are rarely greater than 4.  The Shannon index 

increases when both the richness and the evenness of the community increase.  
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Equation 8.  Chao1 index  (𝑺𝑪𝒉𝒂𝒐𝟏) 

𝑆𝐶ℎ𝑎𝑜1 =  𝑃𝑜𝑏𝑠 +  (
(𝑓1)2

2𝑓2
)  

𝑃𝑜𝑏𝑠, overserved phylotypes per sample;  𝑓1, overserved singletons per sample;  𝑓1, overserved 

doubletons per sample. 

Equation 9.  Shannon index  (𝑯′) 

𝐻′ =  − ∑ 𝑝𝑖 ln 𝑝𝑖   ;  𝑝𝑖 =  
𝑛𝑖

𝑁
 

𝑛𝑖, reads per phylotype;  𝑁, number of all reads per sample. 

Two-dimensional non-metric multidimensional scaling (NMDS) was used to illustrate shifts 

in the microbial communities during incubation.  This beta diversity analysis was based on the 

abundance of all detected phylotypes (clustered at a 97% similarity level) and the Bray-Curtis 

distance, a method not affected by the frequency of null values.  The matrices was calculated and 

depicted with the Past 3 software (Hammer et al., 2001).  Proximity of points represent the degree 

of similarity between the different treatments. 

2.6.3. Phylogenetic trees 

Phylogenetic trees are based on the maximum parsimony, neighbor joining, or maximum 

likelihood algorithm and were generated using the ARB software (Ludwig, 2004).  The trees 

consist of representative sequences of the most abundant OTUs (phylotypes; clustered at a 97% 

similarity level) and closely affiliated reference sequences.  Branch length and bootstrap values 

(1,000 resamplings) are derived from the maximum parsimony tree, and Thermotoga maritima 

(AE000512) was used as outgroup.  Accession numbers (Section 2.6.5.) occur at the end of each 

branch.  Representative sequences of the most abundant or responsive phylotypes were aligned 

to public sequences of BLAST (Basic Local Alignment Search Tool; Zhang et al., 2000) to 

determine the closest cultured microorganism and corresponding sequence identity.  

2.6.4. Sequence abundances 

The relative sequence abundances of detected phylotypes, including less abundant once 

not considered in the results section, are provided in the appendix (Table A1-A11).  

2.6.5. Accession numbers  

Representative sequences of phylotypes with ≥ 0.1% relative abundance were deposited 

at the European Nucleotide Archive (ENA; Table 11).  
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Table 11.  Accession numbers of deposited sequences and associated experiments. 

Experiment 
Phylotype 
Descriptor 

Study 
Number 

Accession 
Numbers 

Section  

Yeast Cell Lysate  CL PRJEB15377 LT626667-823 3.2.5 

Protein and RNA PR PRJEB15410 LT626824-940 3.2.5 

Yeast Extract E PRJEB25179 LT986012-173 3.3.3 

Polysaccharide A PA PRJEB29296 LR027604-703 3.1.5 

Saccharide S PRJEB29312 LR027704-803 3.1.5 

Polysaccharide B PB PRJEB29747 LR129845-947 3.1.5 

Amino Acid A PRJEB32428 LR588706-802 3.2.10 

Transient Intermediate T PRJEB32429 LT588628-705 3.2.10 

Ribose  R PRJEB32430 LR588803-886 3.2.10 

Dilution D PRJEB32458 LR589684-794 3.4.2 

Symbiont OC PRJEB32464 LR589795-898 3.5 

2.7. Further calculations and statistics  

2.7.1. Theoretical carbon content of yeast extract and microbial- 
and plant-derived lysates  

The amount of carbon per ml yeast cell lysate and commercial yeast extract was calculated 

based on the dry weight (Table 8) and a molar mass of 26.2 g/mol for S. cerevisiae-derived 

biomass; according to the chemical formula [CH1.613O0.557N0.158P0.012S0.003K0.022 Mg0.003Ca0.001]n 

(Von Stockar and Liu, 1999).  The amount of carbon per ml E. coli lysate based also on the dry 

weight (Table 8) but on a different chemical formula ([CH1.59O0.374N0.263P0.0234S0.006]n; Von Stockar 

and Liu, 1999) that yielded a molar mass of 24.2 g/mol for E. coli-derived biomass.  Both chemical 

formulas consider the total microbial biomass including cell walls and membranes rather than the 

pure cytoplasmic fraction which was used in this work.  The amount of carbon per ml fresh plant 

lysate was calculated based on the dry weight (overnight at 80°C) and a molar mass of 30 g/mol; 

according to the chemical formula [CH2O]n.  The amount of salt in the sodium phosphate buffer 

(4.3 mg/ml; used for preparations of the lysates [Section 2.2.1]) was taken into account. 

2.7.2. Recoveries of carbon and reducing equivalents 

For recoveries derived from different substrates, amounts of gases or organic compounds 

formed in unsupplemented controls were subtracted from those of supplemented treatments to 

obtain net amounts of a certain fermentation product X (nnetX).  nnetX was multiplied with the 

number of carbon atoms (nc) and the number of reducing equivalents (nr) to calculate the amount 
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of carbon (ncX; Equation 10) and the amount of reducing equivalents (nrX, , Equation 11) 

recovered in the fermentation product X, respectively (Table 12A).  ncX was devided by the total 

amount of carbon atoms supplemented as substrate (ncS) to obtain final carbon recoveries (RcX; 

Equation 12).  Final recoveries of reducing equivalents (RrX) were calculated by dividing nrX by 

the total amount of reducing equivalents supplemented as substrate (nrS) (Equation 13).  nrS was 

obtained by the multiplication of ncS with the number of reducing equivalents per carbon atom of 

the substrate (nrC, Table 12B) (Equation 14).  

Equation 10.  Amount of carbon per fermentation product (𝒏𝒄𝑿) 

𝑛𝑐𝑋 = 𝑛𝑛𝑒𝑡𝑋 ∗ 𝑛𝑐 

𝑛𝑛𝑒𝑡𝑋, net amounts of a certain fermentation product 𝑋;  𝑛𝑐𝑋, number of carbon atoms recovered in the 

fermentation product 𝑋 (Table 12A). 

Equation 11.  Amount of reducing equivalents per fermentation product (𝒏𝒓𝑿) 

𝑛𝑟𝑋 = 𝑛𝑛𝑒𝑡𝑋 ∗ 𝑛𝑟 

𝑛𝑟𝑋, number of electrons obtained by complete oxidation of fermentation product 𝑋 to CO2 (Table 12A). 

Equation 12.  Carbon recovery per fermentation product (𝑹𝒄𝐗 𝐢𝐧 %) 

𝑅𝑐𝑋 =
𝑛𝑐𝑋

𝑛𝑐𝑆
∗ 100 

𝑛𝑐𝑆, total amount of substrate-derived carbon. 

Equation 13.  Reducing equivalent recovery per fermentation product (𝑹𝒓𝐗 𝐢𝐧 %) 

𝑅𝑟𝑋 =
𝑛𝑟𝑋

𝑛𝑟𝑆
∗ 100 

Equation 14.  Total amount of substrate-derived reducing equivalents (𝒏𝒓𝑺): 

𝑛𝑟𝑆 = 𝑛𝑟𝐶 ∗ 𝑛𝑐𝑆 

𝑛𝑟𝐶, reducing equivalents per substrate carbon atom.  
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Table 12.  Reducing equivalents in fermentation products (A) and supplemented substrates (B). 

(A) Fermentation Productsa  

Product Chemical Formula displaying nc nrX 

Hydrogen H2 2 

Carbon dioxide CO2 - 

Acetate C2H3O2
- 8 

Butyrate C4H7O2
- 20 

Formate CHO2
- 2 

Isobutyrate C4H7O2
- 20 

Lactate C3H5O3
- 12 

Methylbutyrate C5H9O2
- 26 

Propionate C3H5O2
- 14 

Succinate C4H4O4
2- 14 

Ethanol C2H5OH 12 

(B) Supplemented Substratesb 

Substrate Chemical Formula displaying nc nrC 

Lysates and Extracts:   

Leaf Litter Lysate [CH2O]n 4.00 

Root Lysate [CH2O]n 4.00 

S. cerevisiae Lysatec [CH1.613O0.557N0.158P0.012S0.003K0.022 Mg0.003Ca0.001]n 4.02 

E. Coli Lysatec [CH1.59O0.374N0.263P0.0234S0.006]n 4.02 

Yeast Extractc [CH1.613O0.557N0.158P0.012S0.003K0.022 Mg0.003Ca0.001]n 4.02 

Biopolymers:   

Cellulose [C12H20O10]n 4.00 

Chitin [C8H13NO5]n 4.00 

Dextran [C6H10O5]n 4.00 

Glycogen [C6H10O5]n 4.00 

Maltodextrin [C6H10O5]n 4.00 

Pectin [C6H8O6]n 3.33 

Protein (BSA) [CH1.57N0.27O0.30S0.013]n  4.15 

RNA [CH1.237N0.395O0.737]n  3.10 

Starch [C6H10O5]n 4.00 

Xylan [C5H8O4]n 4.00 

Saccharides and Nucleobases:  

Adenine C5H5N5 2.00 

Cellobiose C12H22O11 4.00 

Galacturonic Acid C6H10O7 3.33 

Glucose C6H12O6 4.00 

Glycerol C3H8O3 4.67 

N-acetylglucosamine C8H15NO6 4.00 

Ribose C5H10O5 4.00 
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Substrate Chemical Formula displaying nc nrC 

Uracil C4H4N2O2 2.50 

Xylose C5H10O5 4.00 

Amino Acids:   

Alanine C3H7NO2 4.00 

Aspartate C4H7NO4 3.00 

Casamino Acids CH1.942O0.481N0.250S0.005 4.20 

Glutamate C5H9NO4 3.60 

Glycine C2H5NO2 3.00 

Threonine C4H9NO3 4.00 

Valine C5H11NO2 4.80 

anrX, number of reduction equivalents recovered in a certain detected fermentation product.  Numbers 
based on the redox states of the carbon atoms, and the assumption that the compound is completely 
oxidized to CO2. 

bChemical formula of the biopolymers is based on the most abundant backbone subunit.  Chemical formula 
of the microbial cell lysates obtained from Von Stockar and Liu, 1999.  nrC, reduction equivalents per carbon 
atom of substrate.  Numbers based on the average redox state of the carbon atoms in a respective 
substrate, and the assumption that the compound is completely oxidized to CO2. 

2.7.3. Arithmetic average, standard deviation, and variance 

The fermentation product profiles based on a three replicate analysis.  Likewise, 16S rRNA 

sequence analysis was performed individually for the three replicates, if not otherwise indicated. 

Thus, arithmetic average (arithmetic mean) and standard deviation calculations based on the 

concentrations of fermentation products or the relative 16S rRNA gene or 16S rRNA abundances 

detected in the three replicates (Equation 15-17).   

Equation 15.  Arithmetic average (𝒙) 

𝑥 =  
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 

𝑛, number of replicates;  𝑖, variable number that starts at 1 and run to 𝑛;  𝑥𝑖, concentration of a certain 
fermentation product or relative abundance of a certain taxa in a respective replicate. 

Equation 16.  Standard deviation (𝑺𝑫) 

𝑆𝐷 = √
∑ (𝑥𝑖 − 𝑥)2𝑛

𝑖=1

𝑛 − 1
    

Equation 17.  Variance (𝑺𝑫𝟐) 

𝑆𝐷2 =  
∑ (𝑥𝑖 − 𝑥)2𝑛

𝑖=1

𝑛 − 1
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2.7.4. Statistical analyses 

2.7.4.1. t-test 

The unequal variance t-test was used to identify statistically significant differences in the 

replicated fermentation product profiles of either (a) supplemented treatments versus 

unsupplemented controls or (b) supplemented gut content treatments versus supplemented soil 

treatments.  Unless otherwise stated, P values are based on the net amount of products at the 

end of the incubation.  The unequal variance t-test was also used to evaluate (a) the response of 

abundant families or phylotypes and (b) the differences in the alpha diversities obtained from gut 

content or soil treatments (Section 2.6.2.2).  The analysis were based on three replicates, and a 

t-test-derived P value of ≤0.05 indicates a statistically significant difference.  

2.7.4.2. Linear discriminant analysis effect size analysis 

Linear discriminant analysis (LDA) effect size (LEfSe) (Segata et al., 2011) method was 

used to (a) evaluate the significant (Kruskal-Wallis test) response of abundant taxa (i.e., abundant 

families and phylotypes) derived from the 16S rRNA gene and 16S rRNA analysis, and (b) rank 

significant taxa according to the effect sizes.  The LEfSe analysis was based on three replicates, 

and a Kruskal-Wallis test-derived alpha value of ≤0.05 indicates a statistically significant 

difference. 

2.8. Contributions of coworkers 

This dissertation was initiated based on preliminary work of my master study, and 

experiments were conceptualized by Prof. Dr. Harold L. Drake, Dr. Oliver Schmidt, and myself.  

Franziska Bär conducted preliminary experiments on polymers.  Jennifer Guhl conducted 

practical work for the dilution experiment, microcosms supplemented with starch, glycogen, and 

ribose, and the RNA extraction of the symbiont experiment.  Maraike Staege conducted practical 

work for the amino acid and transient intermediate experiments.  Ammonia quantification was 

conducted by Julia Schmidt.   
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3. RESULTS 

3.1. Impact of dietary polysaccharides and saccharides on 
the fermentative gut microbiota of L. terrestris 

Earthworm-excreted gut mucus is subject to fermentative utilization by gut bacteria (Section 

1.2.2).  Although a reusage of mucus-derived organic carbon is advantageous for this 

invertebrate, a self-perpetuation is impossible.  Therefore, the maintenance and growth of 

earthworms being ultimately dependent on the incorporation of nutrients from the environment.  

In this regard, the gizzard-linked disruption of ingested environmental materials introduces plant- 

and microbial-derived polysaccharides to the alimentary canal (Section 1.3), and fermentative gut 

microbiota capable of degrading polysaccharides might (a) enhances the earthworm-facilitated 

turnover dynamics of soil organic matter and (b) produces fermentation products as a source of 

nutrition for the earthworm (Section 1.2.2).  However, relatively little is known about the capacity 

of fermentative microbes in the earthworm gut to utilize ingested polysaccharides.  These 

considerations prompted the evaluation of the effects of model polysaccharides, as well as the 

saccharides from which they are constructed, on the gut content fermentation and associated 

microbiota of L. terrestris. 

3.1.1. Effect of polysaccharides on gut content fermentation 

Diverse fermentations yield H2 and CO2, and the simultaneous anaerobic production of 

these gases is an indicator of fermentation (Buckel, 1999).  The formation of H2 and CO2 was 

slightly higher in anoxic cellulose-, pectin-, and xylan-supplemented treatments than in the 

unsupplemented control treatment (Figure 21 A and Table 13).  Although the stimulation by 

cellulose was marginal, the production of CO2 and H2 was statistically significant (Table 14), and 

increasing amounts of cellulose triggered small increases in the production of these gases (Figure 

21B and Figure 22), indicating a marginal usage of cellulose.  The differences between products 

formed in the control treatment and structural polysaccharide treatments (e.g., chitin treatment) 

were relatively small (Figure 22 A and Table 13), and an apparent increase in a fermentation 

product was sometimes not significant (e.g., the apparent increase of acetate production in the 

cellulose treatment was not statistically significant [Table 14]).  Likewise, no significant difference 

was observed between the collective amounts of fermentation products formed in these 

biopolymer treatments compared to the unsupplemented control (Figure 22), demonstrating that 

gut-associated fermenters were poised to respond weakly to these structural polysaccharides.  In 

marked contrast to these results, the non-structural energy-storage polysaccharides maltodextrin 

and dextran yielded an enhanced production of H2 and CO2 (Figure 21), with a concomitant 

production of fatty acids (e.g., acetate and lactate) and ethanol (Figure 22 A).  These observations 
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demonstrated that the fermentative gut microbiota of L. terrestris had a high capacity to use non-

structural biopolymers, and this potential was consistent with the strongly stimulated fermentation 

in glycogen and starch treatments.  In this regard, the production of glycogen- and starch-derived 

CO2, H2, acetate, lactate, and ethanol was significant compared to the unsupplemented control 

(Figure 22 B; Table 13 and Table 14).  In contrast to the negligible amounts of carbon theoretically 

recovered in the detected fermentation products derived from the structural polysaccharide 

treatments (0.5 to 2.6%), approximately 45%, 15%, 42%, and 28% of maltodextrin-, dextran-, 

glycogen-, and starch-derived carbon, respectively, were theoretically recovered in these 

treatments (Table 15), indicating that the amount of these supplemental non-structural 

polysaccharides was adequate for the observed fermentations.  The low recoveries of cellulose-

, pectin-, xylan-, and chitin-derived carbon in fermentation products (Table 15), confirmed that 

these polysaccharides had only a minimal impact on fermentation. 

 
Figure 21.  Effect of polysaccharides on the formation of H2 and CO2 in anoxic microcosms of L. terrestris 
gut contents.   Controls lacked supplemental polysaccharides. Polysaccharides alone did not display any 
fermentation activity.  Values are the arithmetic average of three replicate analyses, and error bars indicate 
the standard deviations.  Some standard deviations are smaller than the size of the symbol and therefore 
not apparent.  FW, fresh weight.  Panel A: The amount of polysaccharide-derived carbon added per 
microcosm approximated 2 mmol.  Panel B:  Effect of increasing amounts of cellulose on the formation of 
CO2 or H2.  The amount of carbon derived from cellulose added per microcosm approximated 0, 0.2, 0.5, 
1.0, and 2.0 mmol.  Figure modified and used with permission from Zeibich et al., 2019a.



 

RESULTS 57 

Table 13.  Effect of polysaccharides on the fermentation product profiles of anoxic microcosms of L. terrestris gut contents.a 

Treatment 

    Products (µmol/gFW)   

Time 
(h) 

Glucose 
(µmol/gFW) 

CO2 H2 Acetate Succinate Formate 
Prop-
ionate 

Butyrate Ethanol 
Methyl-
butyrate 

Iso- 
butyrate 

Lactate pH 

ControlA 0 0.6 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 3.1 ± 0.1 1.2 ± 0.1 3.1 ± 1.8 0.0 ± 0.0 0.6 ± 0.1 0.7 ± 0.0 0.0 ± 0.0 0.9 ± 0.1 0.8 ± 0.1 7.0 ± 0.0 

  30 0.0 ± 0.0 17 ± 1.7 0.8 ± 0.4 31 ± 11 3.6 ± 0.5 4.5 ± 4.6 4.2 ± 1.6 2.4 ± 0.5 2.9 ± 0.3 4.0 ± 1.2 3.7 ± 0.9 1.0 ± 0.1 7.1 ± 0.0 

Cellulose 0 2.4 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 3.1 ± 0.4 1.1 ± 0.1 3.2 ± 2.1 0.0 ± 0.0 0.5 ± 0.1 0.8 ± 0.1 0.0 ± 0.0 0.8 ± 0.0 0.7 ± 0.0 7.0 ± 0.0 

  30 0.0 ± 0.0 22 ± 1.1 5.5 ± 1.0 32 ± 1.2 6.0 ± 0.3 3.4 ± 5.2 3.1 ± 0.1 2.8 ± 0.3 9.3 ± 0.8 3.4 ± 0.4 3.1 ± 0.1 1.1 ± 0.1 7.0 ± 0.0 

Chitin 0 0.7 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 3.3 ± 0.3 1.4 ± 0.3 3.4 ± 2.0 0.0 ± 0.0 0.5 ± 0.0 0.9 ± 0.0 0.0 ± 0.0 0.6 ± 0.0 0.6 ± 0.0 7.0 ± 0.0 

  30 0.0 ± 0.0 16 ± 0.6 1.8 ± 0.3 27 ± 4.4 4.3 ± 0.4 3.5 ± 5.6 3.2 ± 0.5 2.9 ± 0.3 5.4 ± 0.4 3.3 ± 0.5 3.1 ± 0.3 1.1 ± 0.1 7.0 ± 0.0 

Pectin 0 0.9 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 5.8 ± 1.0 0.7 ± 0.1 4.0 ± 1.6 0.0 ± 0.0 0.6 ± 0.1 0.9 ± 0.1 0.0 ± 0.0 0.3 ± 0.0 0.6 ± 0.1 6.8 ± 0.0 

  30 0.0 ± 0.0 31 ± 2.1 6.8 ± 0.4 40 ± 3.2 3.6 ± 0.2 6.8 ± 5.7 3.8 ± 0.3 0.0 ± 0.0 13 ± 0.6 4.2 ± 0.1 1.8 ± 0.3 1.7 ± 0.1 6.8 ± 0.0 

Xylan 0 2.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 6.6 ± 0.6 1.3 ± 0.2 4.5 ± 1.4 0.0 ± 0.0 0.6 ± 0.0 0.9 ± 0.1 0.0 ± 0.0 0.6 ± 0.1 0.7 ± 0.0 7.0 ± 0.0 

  30 0.0 ± 0.0 19 ± 0.9 4.3 ± 0.1 39 ± 3.6 4.7 ± 0.3 4.2 ± 5.1 3.6 ± 0.3 3.1 ± 0.4 6.1 ± 1.4 3.9 ± 0.4 3.3 ± 0.3 1.2 ± 0.1 7.0 ± 0.0 

Maltodextrin 0 173 ± 14 0.0 ± 0.0 0.0 ± 0.0 3.1 ± 0.5 0.8 ± 0.0 3.2 ± 2.2 0.0 ± 0.0 0.7 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.5 ± 0.1 0.8 ± 0.1 7.0 ± 0.0 

  30 77 ± 2.1 147 ± 2.4 121 ± 0.8 80 ± 4.3 22 ± 1.0 4.0 ± 0.6 2.4 ± 0.2 0.0 ± 0.0 108 ± 11 0.0 ± 0.0 2.6 ± 0.1 128 ± 5.6 5.3 ± 0.0 

Dextran 0 38 ± 1.0 0.0 ± 0.0 0.0 ± 0.0 3.5 ± 0.2 1.2 ± 0.3 3.6 ± 2.4 0.0 ± 0.0 0.6 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.1 0.6 ± 0.0 7.0 ± 0.0 

  30 52 ± 0.6 65 ± 9.2 49 ± 1.6 67 ± 6.3 22 ± 1.6 8.8 ± 5.1 3.2 ± 0.4 0.0 ± 0.0 50 ± 8.0 2.2 ± 0.4 3.4 ± 0.1 3.4 ± 1.9 6.6 ± 0.0 

ControlB 0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 6.4 ± 0.1 1.1 ± 0.0 2.1 ± 0.1 0.7 ± 0.0 0.5 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 0.9 ± 0.0 7.0 ± 0.0 

  30 0.0 ± 0.0 11 ± 2.7 0.0 ± 0.3 14 ± 0.5 0.4 ± 0.1 3.6 ± 0.4 2.9 ± 0.1 1.1 ± 0.2 3.0 ± 0.8 0.9 ± 0.1 0.0 ± 0.0 1.0 ± 0.0 7.0 ± 0.0 

Glycogen 0 105 ± 8.4 0.0 ± 0.0 0.0 ± 0.0 6.9 ± 0.2 1.1 ± 0.1 3.0 ± 0.1 0.7 ± 0.0 0.6 ± 0.0 1.8 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.8 ± 0.0 7.0 ± 0.0 

  30 175 ± 19 136 ± 8.6 100 ± 1.8 80 ± 3.7 23 ± 0.9 4.6 ± 0.2 3.0 ± 0.5 2.6 ± 0.6 89 ± 8.0 0.2 ± 0.0 0.0 ± 0.0 107 ± 4.0 5.6 ± 0.0 

Starch 0 18 ± 1.0 0.0 ± 0.0 0.0 ± 0.0 7.5 ± 0.8 1.1± 0.1 3.4 ± 0.4 0.7 ± 0.0 0.5 ± 0.0 1.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.9 ± 0.1 7.0 ± 0.0 

  30 15 ± 5.3 66 ± 0.9 54 ± 9.1 65 ± 3.1 14 ± 1.2 18 ± 0.5 5.4 ± 0.3 2.2 ± 0.3 64 ± 3.5 0.3 ± 0.2 0.0 ± 0.0 68 ± 4.9 6.1 ± 0.0 

aThe amount of polysaccharide-derived carbon added per microcosm approximated 2 mmol.  Controls lacked supplemental polysaccharides.  Polysaccharides alone did not 

display any fermentation activity. Values are the arithmetic average of three replicate analyses (± standard deviation).  FW, fresh weight. Table modified and used with 

permission from Zeibich et al., 2019a.  
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Figure 22.  Collective amounts of fermentation products in polysaccharide-supplemented anoxic 
microcosms of L. terrestris gut contents.  The amount of polysaccharide-derived carbon added per 
microcosm approximated 2 mmol.  Polysaccharides alone did not display any fermentation activity.  
Abbreviations: CA and CB, unsupplemented controls of polysaccharide experiments A and B, respectively; 
Cel, cellulose; Ch, chitin; Pe, pectin; Xy, xylan; Md, maltodextrin; Da, dextran; Gl, glycogen; St; starch.  
Values are the average of triplicates and represent the net amounts of products at the end of the 30 h 
incubation (control values were substracted).  Data are provided in Table 13.  The asterisks indicate 
significant differences between the collective amount of products formed in control and polysaccharide 
treatments (**, P ≤ 0.01; ***, P ≤ 0.001; t-test with unequal variances).  FW, fresh weight.  Figure modified 
and used with permission from Zeibich et al., 2019a. 

Table 14.  P values of fermentation products in polysaccharide-supplemented gut content microcosms.a  

Product CO2 

Treatment CA Cel Ch Pe Xy Md Da CB Gl St 

Mean valueb 17 22 16 31 19 148 65 11 136 66 

Variance 3.0 1.1 0.3 4.5 0.8 5.8 84 7.5 73 0.8 

P value   0.013 0.542 0.001 0.147 0.000 0.000   0.000 0.009 

Product H2 

Treatment CA Cel Ch Pe Xy Md Da CB Gl St 

Mean valueb 0.8 5.5 1.8 6.8 4.3 121 49 0.0 100 54 

Variance 0.2 1.0 0.1 0.1 0.0 0.6 2.5 0.0 3.2 84 

P value   0.006 0.036 0.000 0.004 0.000 0.000   0.000 0.009 

Product Acetate 

Treatment CA Cel Ch Pe Xy Md Da CB Gl St 

Mean valueb 28 29 24 40 32 77 64 7.1 74 57 

Variance 124 0.8 17 5.7 11 15 40 0.3 12 6.1 

P value   0.881 0.569 0.471 0.616 0.010 0.015   0.001 0.001 
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Product Succinate 

Treatment CA Cel Ch Pe Xy Md Da CB Gl St 

Mean valueb 2.5 4.9 2.9 2.9 3.5 21 21 -0.7 21 13 

Variance 0.2 0.1 0.1 0.0 0.2 1.0 2.1 0.0 0.9 1.3 

P value   0.002 0.176 0.195 0.047 0.000 0.001   0.001 0.002 

Product Formate 

Treatment CA Cel Ch Pe Xy Md Da CB Gl St 

Mean valueb 1.4 0.2 0.1 2.8 -0.3 0.8 5.1 1.5 1.5 14 

Variance 7.9 9.7 13 25 14 8.2 43 0.3 0.0 0.8 

P value   0.644 0.658 0.699 0.562 0.805 0.436   0.931 0.000 

Product Propionate 

Treatment CA Cel Ch Pe Xy Md Da CB Gl St 

Mean valueb 4.2 3.1 3.2 3.8 3.6 2.4 3.2 2.3 2.2 4.7 

Variance 2.7 0.0 0.2 0.1 0.1 0.0 0.1 0.0 0.2 0.1 

P value  0.351 0.393 0.677 0.589 0.195 0.393  0.899 0.005 

Product Butyrate 

Treatment CA Cel Ch Pe Xy Md Da CB Gl St 

Mean valueb 1.8 2.2 2.4 -0.6 2.5 -0.7 -0.6 0.6 2.0 1.7 

Variance 0.4 0.1 0.1 0.0 0.2 0.0 0.0 0.0 0.3 0.1 

P value   0.398 0.252 0.021 0.199 0.019 0.020   0.043 0.011 

Product Ethanol 

Treatment CA Cel Ch Pe Xy Md Da CB Gl St 

Mean valueb 2.1 8.4 4.5 12 5.1 108 50 3.0 88 63 

Variance 0.1 0.5 0.2 0.4 1.8 110 64 0.6 62 12 

P value   0.002 0.003 0.000 0.052 0.003 0.009   0.003 0.001 

Product Lactate 

Treatment CA Cel Ch Pe Xy Md Da CB Gl St 

Mean valueb 0.3 0.4 0.5 1.1 0.5 127 2.8 0.1 106 67 

Variance 0.0 0.0 0.0 0.0 0.0 30 3.7 0.0 16 24 

P value   0.051 0.048 0.005 0.041 0.001 0.147   0.000 0.002 

Product Isobutyrate 

Treatment CA Cel Ch Pe Xy Md Da CB Gl St 

Mean valueb 2.8 2.3 2.5 1.4 2.7 2.1 3.0 0.0 0.0 0.0 

Variance 0.6 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 

P value   0.375 0.515 0.083 0.760 0.238 0.809   - - 

Product Methylbutyrate 

Treatment CA Cel Ch Pe Xy Md Da CB Gl St 

Mean valueb 4.0 3.4 3.3 4.2 3.9 0.0 2.2 0.9 0.1 0.2 

Variance 1.4 0.2 0.3 0.0 0.2 0.0 0.1 0.0 0.0 0.0 

P value   0.502 0.478 0.735 0.928 0.029 0.112   0.002 0.004 

aP values (significant at P ≤ 0.05) were calculated by t-test with unequal variances and are based on the 
difference between the net amount of products in control (CA, CB) and cellulose (Cel), chitin (Ch), pectin 
(Pe), xylan (Xy), maltodextrin (Md), dextran (Da), glycogen (Gl) or starch (St) treatments. To calculate net 
amounts, amounts of products at the beginning of incubation were subtracted from those at the end of 
incubation.  See Table 13 for product profiles.  Table modified and used with permission from Zeibich et 

al., 2019a. 

bMean values (n = 3) are in µmol/gFW. FW, fresh weight. 
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Table 15.  Estimated recoveries of carbon and reducing equivalents (i.e., electrons) in structural (A) and 
non-structural (B) polysaccharide treatments.a 

(A) Structural Polysaccharides 

  Recoveries (%) 

 
 Cellulose  

 
Chitin  

 
Pectin  

 
Xylan  

Main Products   Carbon RE 
 

Carbon RE 
 

Carbon RE 
 

Carbon RE 

CO2  0.3 na 
 

- na 
 

0.7 na 
 

0.1 na 

H2  na 0.1  na 0.0  na 0.2  na 0.1 

Ethanol  0.6 0.9  0.2 0.3  1.0 1.8  0.3 0.5 

Succinate  0.5 0.4  0.1 0.1  0.1 0.1  0.2 0.2 

Acetate  0.1 0.1  - -  0.6 0.8  0.1 0.1 

Lactate  0.0 0.0  0.0 0.0  0.1 0.2  0.0 0.0 

Butyrate  0.1 0.1  0.1 0.2  - -  0.1 0.2 

Methylbutyrate  - -  - -  0.1 0.1  - - 

Total :  1.6 1.8  0.5 0.7  2.6 3.1  0.9 1.0 

(B) Non-structural Polysaccharides 

  Recoveries (%) 

 
 Maltodextrin  

 
Dextran   Glycogen  Starch 

Main Products   Carbon RE 
 

Carbon RE  Carbon RE  Carbon RE 

CO2  6.5 na 
 

2.4 na  6.3 na  2.8 na 

H2  na 3.0  na 1.2  na 2.5  na 1.3 

Ethanol  11 16  4.8 7.2  8.4 13  6.0 9.0 

Succinate  3.8 3.3  3.7 3.2  4.4 3.9  2.7 2.4 

Acetate  4.9 4.9  3.6 3.6  6.6 6.6  5.0 5.0 

Propionate  - -  - -  - -  0.4 0.4 

Formate  - -  0.2 0.1  0.0 0.0  0.6 0.3 

Lactate  19 19  0.4 0.4  16 16  10 10 

Butyrate  - -  - -  0.3 0.4  0.2 0.3 

Total :  45 46  15 16  42 42  28 29 

aSee Table 13 for product profiles.  Net amounts of products formed in the unsupplemented control were 
subtracted from those of supplemented treatments; recoveries are based on the amount of substrate 
provided.  Values are based on the arithmetic average of three replicate analyses.  RE, reducing 
equivalents; -, no net increase of the product during the incubation in supplemented treatments relative to 
the control treatments; na, not applicable.  Table modified and used with permission from Zeibich et al., 

2019a. 
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3.1.2. Effect of polysaccharides on gut fermentative bacterial 
families 

Time-dependent shifts in the microbial community composition were evaluated by 16S 

rRNA and 16S rRNA gene analyses.  A total of 1,230,292 bacterial 16S rRNA gene and 16S 

rRNA sequences were obtained from the polysaccharide treatments, yielding 30 phyla (including 

candidate phyla).  Based on the relative abundances of the detected 16S rRNA sequences in 

polysaccharide experiment A at the end of the incubation, the phylum Proteobacteria was 

stimulated by maltodextrin and dextran and the affiliated families Aeromonadaceae and 

Enterobacteriaceae displayed an increase in relative abundances in response to these two non-

structural polysaccharides (Figure 23 and Figure 24 A).  Indeed, at the end of the incubation, the 

relative 16S rRNA gene abundances of both families were significantly greater in maltodextrin 

and dextran treatments than in controls (Table 16).  With another batch of earthworms maintained 

on a different soil, starch and glycogen also stimulated significantly the Aeromonadaceae and 

Enterobacteriaceae (Figure 23, Figure 24 B, and Table 16).  Rarefaction analyses of both 

polysaccharide experiments indicated that the most abundant taxa were targeted (Figure 25).  

Furthermore, the number of detected phylotypes, the number of expected phylotypes (Chao1), 

and Shannon indices of the maltodextrin treatments at the end of the incubation period were lower 

than those of the controls (Figure 25 A and Table 17). This is consistent with the obvious 

stimulation of Aeromonadaceae and Enterobacteriaceae in maltodextrin treatment (Table 16).   

 
Figure 23.  Net increases in 16S rRNA gene (DNA) and 16S rRNA (RNA) relative abundances of bacterial 
families stimulated by supplemental polysaccharides in L. terrestris gut content microcosms.  The graph is 
limited to families that displayed a net increase in relative abundance of ≥ 4% in at least one treatment and 
the families are color-coded to the respective phyla (see Figure 24 for the complete 16S rRNA gene and 
16S rRNA analyses).  Net increases of relative abundances were calculated as follows: (a) the calculation 
is based either on mean relative abundances when samples from the three replicates were analyzed 
separately (i.e., all RNA and DNA samples of control treatments and RNA samples at 30 h of supplemented 
treatments) or on single relative abundances when samples of the three replicates were pooled for 
sequence analyses (i.e.,  DNA samples at 0 h and 30 h and RNA samples at 0 h of supplemented 
treatments); (b) mean or single relative abundances at the beginning of incubation were subtracted from 
those at the end of incubation for control and supplemented treatments; (c) the resulting time-corrected 
relative abundances of control treatments were subtracted from those of supplemented treatments 
(negative time-corrected relative abundances of control treatments were ignored). Figure modified and 
used with permission from Zeibich et al., 2019a. 
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The same trends of lower number of detected phylotypes, expected phylotypes (Chao1), and 

Shannon indices in maltodextrin treatment were also observed in starch and glycogen treatments 

(Figure 25 B and Table 17).  The increase in the relative abundances of Firmicutes-affiliated 

families in the unsupplemented control treatment and in polysaccharide experiment A (Figure 24 

A), suggesting that these taxa were stimulated by anoxia and involved in the fermentative usage 

of organic carbon endogenous to gut content.  That Firmicutes-affiliated families were less 

responsive in polysaccharide experiment B in which the Fusobacteria were dominant (Figure 24 

B), suggesting a species variability of the earthworm-ingested materials, including soil. 
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Figure 24.  16S rRNA gene (DNA) and 16S rRNA (RNA) analyses of polysaccharide experiments A (A) 
and B (B).  The most abundant families (i.e., families with ≥ 4% relative abundance in at least one sampling 
period) are displayed in the color of the respective phylum.  Process data are shown in Table 13 and Figure 
22.  Information on all detected taxa is provided in Table A1 and Table A2.  Abbreviations: 0 h and 30 h 
indicate the time of sampling in hours; C, unsupplemented control. Panel A: Cel, cellulose; Ch, chitin; Pe, 
pectin; Xy, xylan; Md, maltodextrin; Da, dextran. Panel B: Gl, glycogen; St, starch.  Grouped bars indicate 
that the sequence analysis was performed individually for the three replicates and single bars indicate that 
DNA or RNA samples of the three replicates were pooled for the sequence analysis.  Figure modified and 
used with permission from Zeibich et al., 2019a.  

These aforementioned findings demonstrated bacterial shifts in the fermentative community 

during the anoxic gut content incubation, and NMDS analysis of all phylotypes (Section 2.6.2.2) 

confirmed the microbial gut community alterations in the control and supplemented treatments 

during the incubation (Figure 26 A and B).  In this regard, the analysis illustrated great bacterial 

shifts in the microbial community of non-structural polysaccharides treatments (i.e., maltodextrin, 

dextran, glycogen, and starch) and marginal shifts in the microbial community of structural 

polysaccharide treatments (i.e., cellulose, chitin, pectin, xylan) compared to the microbial shifts in 

the control treatments (Figure 26).  
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Table 16.  Statistical analyses of main stimulated families in polysaccharide treatments.a 

Family Treatment Mean Standard 
Deviation Median LDA Score 

(log10)b 

Aeromonadaceae ControlA 1.8 0.5 1.8   

 Cellulose 3.3 0.3 3.2 4.5(1) 

 Pectin 3.9 1.3 3.4 4.6(1) 

 Maltodextrin 34 2.0 34 5.5(2) 

 Dextran 16 5.9 13 5.2(1) 

 
ControlB 22 2.3 21 

 

 Glycogen 64 9.8 61 5.8(1) 

 Starch 64 3.9 66 5.8(1) 

Enterobacteriaceae ControlA 1.2 0.3 1.0 
 

 Pectin 3.2 0.2 0.8 4.5(2) 

 Maltodextrin 35 0.4 3.1 5.5(1) 
 

Dextran 12 2.0 37 5.1(2) 
 

ControlB 2.0 0.7 12  
 

Glycogen 5.5 0.1 1.9 4.7(2) 
 

Starch 6.8 0.6 5.2 4.8(2) 

Fusobacteriaceae ControlA 0.7 0.3 0.7 
 

 
Cellulose 2.3 1.2 1.7 4.4(2) 

Mycoplasmataceae ControlA 14 7.4 12 
 

 Chitin 27 1.8 27 5.4(1) 

Clostridiaceae ControlA 12 0.8 12 
 

 

Maltodextrin 14 0.4 14 5.1(3) 
 

ControlB 1.5 0.4 1.5 
 

 

Glycogen 5.4 1.0 4.9 4.7(3) 
 

Starch 4.3 1.4 3.5 4.6(3) 

Bacillaceae ControlA 1.7 0.4 1.7 
 

 

Dextran 3.1 0.3 3.2 4.5(3) 

aFamilies with the four highest ranks in the LEfSe analysis were considered.  LEfSe analysis, mean value, 
standard deviation, and median are based on the relative abundance of 16S rRNA sequences of the three 
replicates per treatment at the end of the incubation.  Table modified and used with permission from Zeibich 
et al., 2019a. 

bLDA scores were calculated using LEfSe.  Numbers in parentheses display the rank in the LDA analysis 

(i.e., higher ranking families exhibited a stronger response to supplement compared to lower ranking ones). 
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Figure 25.  Rarefaction analyses of bacterial 16S rRNA gene and 16S rRNA sequences obtained from 
anoxic L. terrestris gut content microcosms supplemented with polysaccharides.  Phylotypes were based 
on a 97% sequence similarity cutoff.  Samples of the three replicates of the 16S rRNA gene control 
treatment at 0 h and 30 h, 16S rRNA control treatment at 0 h, and all 16S rRNA treatments at 30 h were 
analyzed separately.  Samples of the three replicates were pooled for each of the other treatments at 0 h 
or 30 h.   Abbreviations: 0 h and 30 h indicate the time of sampling in hours; C, unsupplemented control; 
D, 16S rRNA genes; R, 16S rRNA.  Numbers assigned to a treatment (e.g., C1) indicate the respective 
replicate.  Panel A: Polysaccharide experiment A.  Cel, cellulose; Ch, chitin; Pe, pectin; Xy, xylan; Md, 
maltodextrin; Da, dextran.  Panel B: Polysaccharide experiment B.  Gl, glycogen; St, starch.  Figure 
modified and used with permission from Zeibich et al., 2019a. 
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Table 17.  Alpha diversity of the microbial community in control and polysaccharide treatments.a 

Sample 
(Sampling  
Time) 

Treatmentb 
Number of 
sequences 

Observed 
phylotypesc 

(normalized)d 

Chao1 
(normalized)d 

Shannon 
(normalized)d 

DNA ControlA 1 29861 1492 (331) 1860 (331) 5.1 (4.4) 

(0 h) ControlA 2 28283 1470 (331) 1829 (331) 5.2 (4.5) 
 ControlA 3 26454 1453 (330) 1835 (330) 5.1 (4.5) 
 Cellulose 24721 1407 (324) 1727 (324) 5.1 (4.4) 
 Chitin 27694 1478 (331) 1967 (331) 5.2 (4.5) 
 Pectin 28475 1434 (321) 1866 (321) 4.6 (4.0) 
 Xylan 29009 1469 (329) 1864 (329) 5.1 (4.4) 
 Maltodextrin 28127 1436 (326) 1840 (326) 5.0 (4.3) 
 Dextran 26368 1420 (323) 1917 (323) 4.9 (4.2) 

 
ControlB 1 15345 776 (198) 1046 (241) 4.0 (3.5) 

 ControlB 2 10377 681 (199) 984 (234) 4.1 (3.6) 
 ControlB 3 11331 734 (203) 1019 (236) 4.3 (3.7) 
 Glycogen 10157 649 (189) 940 (227) 3.9 (3.4) 
 Starch 8786 571 (177) 1037 (217) 3.7 (3.3) 

DNA  ControlA 1 27753 1204 (318) 1686 (318) 4.6 (4.2) 

(30 h) ControlA 2 27415 1318 (332) 1814 (332) 5.0 (4.5) 
 ControlA 3 23677 1155 (325) 1529 (325) 4.8 (4.4) 
 Cellulose 30509 1148 (294) 1575 (294) 4.4 (4.0) 
 Chitin 28612 1227 (317) 1645 (317) 4.7 (4.3) 
 Pectin 32152 1142 (296) 1526 (296) 4.2 (3.8) 
 Xylan 25600 1031 (291) 1536 (291) 4.3 (3.9) 
 Maltodextrin 28151 898 (239) 1291 (239) 2.9 (2.6) 
 Dextran 25158 1003 (268) 1408 (268) 3.5 (3.1) 

 
ControlB 1 8937 571 (179) 917 (223) 3.5 (3.1) 

 ControlB 2 9669 624 (192) 995 (237) 3.7 (3.3) 
 ControlB 3 9364 597 (190) 958 (232) 3.7 (3.3) 
 Glycogen 7102 291 (112) 519 (161) 2.2 (2.0) 
 Starch 9428 238 (77) 387 (126) 1.8 (1.7) 

RNA  ControlA 1 21091 1180 (294) 1598 (294) 3.8 (3.2) 

(0 h) ControlA 2 15912 1081 (286) 1602 (286) 3.8 (3.2) 
 ControlA 3 28736 1473 (322) 1805 (322) 4.7 (3.9) 
 Cellulose 13766 1029 (293) 1522 (293) 4.0 (3.4) 
 Chitin 21406 1328 (312) 1764 (312) 4.4 (3.7) 
 Pectin 28446 1076 (239) 1456 (239) 3.0 (2.5) 
 Xylane 1621 498 (  -  ) 938 (  -  ) 5.2 (  -  ) 
 Maltodextrin 10991 855 (277) 1282 (277) 3.7 (3.1) 
 Dextran 16795 925 (259) 1318 (259) 3.4 (2.9) 

 
ControlB 1 3684 339 (144) 634 (175) 3.1 (2.7) 

 ControlB 2 2958 307 (152) 581 (183) 3.1 (2.9) 
 ControlB 3 4255 556 (213) 866 (242) 4.0 (3.4) 
 Glycogen 5248 492 (182) 846 (223) 3.5 (3.0) 
 Starch 5635 468 (180) 782 (229) 3.3 (3.0) 
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Sample 
(Sampling  
Time) 

Treatmentb 
Number of 
sequences 

Observed 
phylotypesc 

(normalized)d 

Chao1 
(normalized)d 

Shannon 
(normalized)d 

RNA  ControlA 1 12112 866 (279) 1396 (279) 4.1 (3.6) 

(30 h) ControlA 2 17846 1104 (320) 1520 (320) 4.8 (4.3) 
 ControlA 3 11443 980 (316) 1230 (316) 4.9 (4.3) 

 Cellulose 1 10319 712 (271) 1162 (271) 4.0 (3.7) 

 Cellulose 2 13955 763 (261) 1186 (261) 3.9 (3.6) 
 Cellulose 3 12021 752 (271) 1228 (271) 4.2 (3.8) 
 Chitin 1 10924 772 (276) 1101 (276) 4.1 (3.7) 
 Chitin 2 14879 938 (294) 1492 (294) 4.2 (3.8) 
 Chitin 3 10551 827 (286) 1227 (286) 4.2 (3.7) 
 Pectin 1 31849 992 (231) 1373 (231) 3.9 (3.5) 
 Pectin 2 12784 732 (257) 1082 (257) 3.7 (3.3) 
 Pectin 3 21393 1026 (295) 1424 (295) 4.1 (3.6) 
 Xylan 1 28056 848 (220) 1310 (220) 3.2 (2.9) 
 Xylan 2 28402 1009 (251) 1480 (251) 4.0 (3.6) 
 Xylan 3 33284 882 (209) 1335 (209) 3.6 (3.4) 
 Maltodextrin 1 24839 514 (140) 926 (140) 2.4 (2.3) 
 Maltodextrin 2 20220 417 (118) 767 (118) 2.3 (2.2) 
 Maltodextrin 3 24893 477 (119) 831 (119) 2.3 (2.2) 
 Dextran 1 17719 878 (268) 1371 (268) 4.0 (3.6) 
 Dextran 2 22081 878 (283) 1330 (283) 4.2 (3.8) 
 Dextran 3 10448 702 (251) 1110 (251) 4.0 (3.6) 

 
ControlB 1 4433 333 (146) 634 (196) 2.9 (2.6) 

 ControlB 2 5029 428 (176) 743 (217) 3.4 (3.0) 
 ControlB 3 4226 399 (168) 813 (212) 3.3 (3.0) 
 Glycogen 1 6579 219 (83) 395 (132) 2.0 (1.9) 
 Glycogen 2 7610 238 (85) 659 (133) 2.1 (2.0) 
 Glycogen 3 9627 254 (76) 555 (143) 1.7 (1.6) 
 Starch 1 8739 270 (87) 543 (170) 1.9 (1.8) 
 Starch 2 7268 236 (81) 459 (137) 1.9 (1.8) 

 Starch 3 7704 274 (89) 541 (156) 2.1 (1.9) 

aTable modified and used with permission from Zeibich et al., 2019a.  

bSamples of the three replicates of the 16S rRNA gene control treatment at 0 h and 30 h, 16S rRNA control 
treatment at 0 h, and all 16S rRNA treatments at 30 h were analyzed separately.  Numbers assigned to a 
treatment (e.g., ControlA 1) indicate the respective replicate.  Samples of the three replicates were pooled 
for each of the other treatments at 0 h or 30 h.   

cPhylotypes were clustered based on a sequence similarity cut-off of 97%. 

dFor comparison of amplicon libraries of different sizes, the polysaccharide data sets were normalized to 
5,000 sequences (polysaccharide experiment A) or 2,500 sequences (polysaccharide experiment B). 

e-, normalization was not possible because of the low number of sequences in this sample. 
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Figure 26.  NMDS plot of the microbial community composition in polysaccharide treatments. Distance 
matrices (Bray-Curtis) are based on the relative abundances of all detected phylotypes in the different 
treatments (Table A1 and Table A2).  Samples of the three replicates of the 16S rRNA gene (DNA) control 
treatment at 0 h and 30 h, 16S rRNA (RNA) control treatment at 0 h, and all 16S rRNA treatments at 30 h 
were analyzed separately.  Samples of the three replicates were pooled for each of the other treatments at 
0 h or 30 h.  Proximity of symbols represent the degree of similarity between the different treatments.  Figure 
modified and used with permission from Zeibich et al., 2019a. 
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3.1.3. Effect of non-polymeric saccharides on gut content 
fermentation 

The aforementioned supplemented polysaccharides stimulated the gut content 

fermentations quantitatively different, suggesting the hydrolysis of the structural polysaccharides 

as fermentation limiting process.  Indeed, saccharides from which most of these supplemented 

polysaccharides are composed (i.e., N-acetylglucosamine, cellobiose, glucose, and galacturonic 

acid) were consumed immediately and stimulated robust fermentations (Figure 27).  The rapid 

transient increase of glucose from cellobiose indicated the presence of cellobiase activity, 

whereas the enhanced formation of certain products (e.g., H2, formate, and ethanol) without a 

notable delay in N-acetylglucosamine, cellobiose, and glucose treatments (Figure 27) 

demonstrated that the earthworm gut fermenters were readily to respond immediately to these 

glucose-based saccharides.   

Formate and succinate were transient in certain treatments (Figure 27) and the relative 

amounts of saccharide-dependent products were not uniform.  Thus, the fermentation activities 

varied quantitatively and qualitatively in the saccharide treatments (Figure 28), suggesting certain 

fermentative processes as saccharide-specific.  For example, ethanol was an important end 

product in treatments with N-acetylglucosamine, cellobiose, glucose, and xylose, but not 

produced in the galacturonic acid treatment (Figure 28 and Table 18).  Likewise, lactate 

accumulated in most of the hexose-based treatments but was less abundant in the xylose 

treatment, and H2 was negligible in the control treatment but significantly produced in all 

supplemented treatments (Figure 28 and Table 18).  The substantially higher acetate amounts in 

N-acetylglucosamine treatments than in glucose treatments (Figure 28 and Table 18) were most 

likely derived by the acetyl group of N-acetylglucosamine that was converted to acetate (Vincent 

et al., 2004).  Xylose was only slightly fermented, and the collective amount of products formed 

in this treatment was not significantly higher compared to that of the control treatment (Figure 28).  

This finding plus the weakly stimulation of fermentation by xylan (Figure 21 A) demonstrated that 

gut-associated fermenters had only a marginal capacity to hydrolyze xylan and ferment xylose.   

The recoveries of carbon and reducing equivalents in fermentation products derived from 

supplemented saccharides ranged from 37 to 73% (Table 19), indicating that (a) dissimilation 

might have yielded additional undetected products (e.g., 2,3-butanediol from mixed-acid 

fermentation or acetone from solvent-producing clostridia [Buckel, 1999; Chen and Blaschek, 

1999]) and/or (b) substrate/products were partially assimilated into biomass or chemically 

complexed in gut content.  Furthermore, the recovery of carbon and reducing equivalents was 

nearly identical in a given treatment, indicating that anaerobic respirations that would cause higher 

relative amounts of CO2 compared to the recovered reducing equivalents (e.g., denitrification 

[Drake and Horn, 2007], the reducing equivalents would be in inorganic nitrogen compounds that 

were not examined) were nearly inactive.   



70  RESULTS 

 

 

 



RESULTS 71 

 

 

Figure 27.  Effect of non-polymeric saccharides on the fermentation product profiles of anoxic microcosms 
of L. terrestris gut contents.   The concentration of filter-sterilized non-polymeric saccharides approximated 
5 mM.  Controls lacked supplemental non-polymeric saccharide.  Values are the arithmetic average of three 
replicate analyses, and error bars indicate the standard deviations.  Some standard deviations are smaller 
than the size of the symbol and therefore not apparent.  Succinate and N-acetylglucosamine had nearly 
the same retention time, compromising the accurate measurement of succinate in that treatment; succinate 
was therefore not quantified in the N-acetylglucosamine treatment.  FW, fresh weight.  Figure modified and 
used with permission from Zeibich et al., 2019a.  

 

Figure 28.  Collective amounts of fermentation products in non-polymeric saccharide-supplemented anoxic 
microcosms of L. terrestris gut contents.  The concentration of filter-sterilized non-polymeric saccharides 
approximated 5 mM.  Abbreviations: A, N-acetylglucosamine; G, glucose; Ce, cellobiose; Ga, galacturonic 
acid; X, xylose.  Values are the average of triplicate analyses in Figure 27 and represent the net amounts 
of products at the end of the 30 h incubation (control values were subtracted).  The asterisks indicate 
significant differences between the collective amount of products formed in control and non-polymeric 
saccharide treatments (*, P ≤ 0.05; **, P ≤ 0.01; t-test with unequal variances).  FW, fresh weight.  Figure 
modified and used with permission from Zeibich et al., 2019a.  

Table 18.  P values of fermentation products in non-polymeric saccharide treatments.a  

Product CO2 

Treatment C A Ce G Ga X 

Mean valueb 30 49 83 55 65 33 

Variance 96 54 30 149 3.1 0.6 

P value   0.052 0.004 0.052 0.026 0.648 

Product H2 

Treatment C A Ce G Ga X 

Mean valueb 0.2 27 60 31 17 4.1 

Variance 0.1 36 78 47 1.9 0.2 

P value   0.016 0.007 0.016 0.002 0.001 

Product Acetate 

Treatment C A Ce G Ga X 

Mean valueb 41 106 66 54 93 43 

Variance 377 120 6.1 2.6 228 14 

P value   0.015 0.153 0.358 0.022 0.894 
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Product Succinate 

Treatment C A Ce G(20h) Ga(20h) X 

Mean valueb 0.0 ndc 8.5 5.1 2.7 0.0 

Variance 0.0 - 0.0 0.0 0.0 0.0 

P value   - 0.0 0.0 0.002 - 

Product Formate 

Treatment C A(20h) Ce(20h) G(10h) Ga(20h) X 

Mean valueb 0.3 18 25 23 20 10 

Variance 0.1 0.9 5.9 0.5 0.3 0.4 

P value   0.001 0.003 0.0 0.0 0.0 

Product Propionate 

Treatment C A Ce G Ga X 

Mean valueb 8.1 4.9 1.3 3.6 9.1 6.7 

Variance 13 1.4 0.0 0.1 9.7 0.4 

P value   0.284 0.081 0.16 0.715 0.591 

Product Butyrate 

Treatment C A Ce G Ga X 

Mean valueb 3.1 7.2 3.7 3.1 3.0 3.2 

Variance 0.5 4.3 0.0 0.1 0.6 0.2 

P value   0.084 0.341 0.871 0.888 0.909 

Product Methylbutyrate 

Treatment C A Ce G Ga X 

Mean valueb 5.7 3.3 1.6 2.8 4.3 2.3 

Variance 4.2 1.4 0.0 0.0 4.0 0.3 

P value   0.178 0.073 0.132 0.433 0.105 

Product Isobutyrate 

Treatment C A Ce G Ga X 

Mean valueb 1.0 1.1 0.3 0.3 0.8 0.1 

Variance 0.3 0.3 0.0 0.0 0.1 0.0 

P value   0.771 0.159 0.176 0.65 0.112 

Product Lactate 

Treatment C A Ce G Ga X 

Mean valueb 0.5 12 33 14 3.5 0.7 

Variance 0.0 0.7 1.7 0.1 0.0 0.0 

P value   0.002 0.001 0 0.003 0.068 

Product Ethanol 

Treatment C A Ce G Ga X 

Mean valueb 0.0 25 60 40 0.0 16 

Variance 0.0 3.4 0.1 1.8 0.0 1.2 

P value   0.002 0.0 0.0 - 0.002 

aP values (significant at P ≤ 0.05) were calculated by t-test with unequal variances and are based on the 

difference between the net amount of products in control (C) and N-acetylglucosamine (A), cellobiose (Ce), 

glucose (G), galacturonic acid (Ga) or xylose (X) treatments.  To calculate net amounts, amounts of 

products at the beginning of incubation were subtracted from those at the end of incubation (unless 

otherwise indicated).  For transient products (i.e., formate and succinate), the significance of differences of 

net amounts between control and supplemented treatments were tested for the time point of the highest 

concentration (shown in parentheses).  See Figure 27 for product profiles.  Table modified and used with 

permission from Zeibich et al., 2019a. 

bMean values (n = 3) are in µmol/gFW. FW, fresh weight. 

cnd, not determined.  Succinate and N-acetylglucosamine had nearly the same retention time, 

compromising the accurate measurement of succinate in that treatment; succinate was therefore not 

quantified in the N-acetylglucosamine treatment.
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Table 19.  Estimated recoveries of carbon and reducing equivalents (i.e., electrons) in non-polymeric saccharide treatments.a 

 
 Recoveries (%) 

  N-acetylglucosamine   Cellobiose   Glucose   Galacturonic acid   Xylose  

Main  
Products   Carbon RE 

 
Carbon RE 

 
Carbon RE 

 
Carbon RE 

 
Carbon RE 

CO2  4.8 na  8.8 na  8.3 na  11 na  2.2 na 

H2  na 3.3  na 5.1  na 5.2  na 3.1  na 1.4 

Acetate  32 32  8.4 8.4  8.8 8.8  32 39  2.5 2.5 

Ethanol  13 19  20 31  27 40  -  -   24 37 

Lactate  8.4 8.4  16 16  14 14  2.9 3.4  0.6 0.6 

Succinate  ndb ndb 
 6.2 5.5  4.5 4.0  0.5 0.6  0.4 0.4 

Formate  1.5 0.7  1.1 0.5  1.8 0.9  1.9 1.1  7.1 3.5 

Butyrate  4.0 5.0  0.3 0.4  -  -   -  -   0.2 0.2 

Propionate  -  -   -  -   -  -   1.0 1.4  -  -  

Isobutyrate  0.1 0.2 
 

-  -  
 

-  -  
 

-  -  
 

-  -  

Total:  68 72   62 67   64 73   50 48   37 45 

aSee Figure 27 for product profiles.  Net amounts of products formed in the unsupplemented control were subtracted from those of supplemented treatments; 

recoveries are based on the amount of substrate consumed.  Values are based on the arithmetic average of three replicate analyses.  RE, reducing 

equivalents; -, no net increase of the product during the incubation relative to the control treatment; na, not applicable.  Table modified and used with 

permission from Zeibich et al., 2019a. 

bnd, not determined.  Succinate and N-acetylglucosamine had nearly the same retention time, compromising the accurate measurement of succinate in that 

treatment; succinate was therefore not quantified in the N-acetylglucosamine treatment. 

 



74  RESULTS 

 

 

3.1.4. Effect of non-polymeric saccharides on gut fermentative 
bacterial families 

A total of 1,161,553 bacterial 16S rRNA gene and 16S rRNA sequences were obtained from 

the non-polymeric saccharide treatments, yielding 29 phyla (including candidate phyla).  The 

relative abundances of 16S rRNA gene sequence analysis indicated that Aeromonadaceae, 

Enterobacteriaceae, and Fusobacteriaceae were the most stimulated families in glucose, N-

acetylglucosamine, and cellobiose treatments.  In contrast, Enterobacteriaceae-affiliated 

sequences were most abundant in the galacturonic acid treatment at the end of the anoxic 

incubation (Figure 29; Figure 30 and Table 20).  Furthermore, microcosms supplemented with 

glucose or the glucose-based saccharides N-acetylglucosamine and cellobiose displayed the 

strongest increase in relative abundances of Fusobacteriaceae-affiliated 16S rRNA gene 

sequences at the end of the incubation (Figure 29, Figure 30 and Table 20).  Xylose was less 

stimulatory compared to the other non-polymeric saccharides (Figure 29 and Figure 30), a finding 

consistent with the relatively low fermentation activity in the xylose treatment (Figure 27 and 

Figure 28).  The differences in relative sequence abundances of the saccharide-responding taxa 

obtained from the 16S rRNA gene versus 16S rRNA-based analyses might have been due to 

temporal changes that occurred during the incubation.   

 

Figure 29.  Net increases in 16S rRNA gene (DNA) and 16S rRNA (RNA) relative abundances of bacterial 
families stimulated by supplemental non-polymeric saccharides in L. terrestris gut content microcosms.  
The graph is limited to families that displayed a net increase in relative abundance of ≥ 4% in at least one 
treatment and the families are color-coded to the respective phyla (see Figure 30 for the complete 16S 
gene rRNA and 16S rRNA analyses).  Net increases of relative abundances were calculated as follows: (a) 
the calculation is based either on mean relative abundances when samples from the three replicates were 
analyzed separately (i.e., all RNA and DNA samples of control treatments and RNA samples at 30 h of 
supplemented treatments) or on single relative abundances when samples of the three replicates were 
pooled for sequence analyses (i.e.,  DNA samples at 0 h and 30 h and RNA samples at 0 h of supplemented 
treatments); (b) mean or single relative abundances at the beginning of incubation were subtracted from 
those at the end of incubation for control and supplemented treatments; (c) the resulting time-corrected 
relative abundances of control treatments were subtracted from those of supplemented treatments 
(negative time-corrected relative abundances of control treatments were ignored).  Figure modified and 
used with permission from Zeibich et al., 2019a. 
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Figure 30.  16S rRNA (RNA) and 16S rRNA gene (DNA) analyses of the non-polymeric saccharide 
experiment.  The most abundant families (i.e., families with ≥ 4% relative abundance in at least one 
sampling period) are displayed in the color of the respective phylum. Process data are shown in Figure 
27, and information on all detected taxa is provided in Table A3.  Abbreviations: C, unsupplemented 
control; A, N-acetylglucosamine; Ce, cellobiose; G, glucose; Ga, galacturonic acid; X, xylose. Grouped 
bars indicate that the sequence analysis was performed individually for the three replicates and single 
bars indicate that DNA or RNA samples of the three replicates were pooled for the sequence analysis.  

Figure modified and used with permission from Zeibich et al., 2019a. 
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Table 20.  Statistical analyses of main stimulated families in non-polymeric saccharide treatments.a 

Family Treatment Mean Standard 
Deviation Median 

LDA 
Score 

(log10)b 

Aeromonadaceae Control 0.5 0.3 0.4   
 N-acetylglucosamine 4.7 1.7 5.6 4.7(2) 
 Cellobiose 6.7 1.0 6.7 4.8(1) 
 Glucose 4.1 0.1 4.2 4.6(2) 
 Xylose 1.5 0.5 1.2 4.2(3) 

Enterobacteriaceae Control 0.5 0.3 0.4  

 N-acetylglucosamine 3.0 1.1 2.5 4.5(3) 
 Cellobiose 3.8 0.9 3.5 4.6(3) 
 Glucose 1.4 0.2 1.5 4.4(3) 
 Galacturonic acid 7.8 2.5 7.2 4.9(1) 
 Xylose 2.3 0.2 2.3 4.4(1) 

Fusobacteriaceae Control 1.3 1.2 0.7  
 Cellobiose 4.6 1.0 5.1 4.7(2) 

Bacillaceae Control 1.0 0.3 1.0  
 N-acetylglucosamine 5.8 1.5 6.7 4.8(1) 
 Cellobiose 2.4 0.2 2.4 4.4(4) 
 Glucose 6.0 0.6 6.1 4.8(1)  

Galacturonic acid 3.2 1.4 2.4 4.5(2) 

  Xylose 2.3 0.2 2.3 4.4(2) 

aFamilies with the four highest ranks in the LEfSe analysis were considered. LEfSe analysis, mean value, 
standard deviation, and median are based on the relative abundance of 16S rRNA sequences of the three 
replicates per treatment at the end of the incubation.  Table modified and used with permission from Zeibich 

et al., 2019a. 

bLDA scores were calculated using LEfSe.  Numbers in parentheses display the rank in the LDA analysis 

(i.e., higher ranking families exhibited a stronger response to supplement compared to lower ranking ones). 

The apparent increase of relative 16S rRNA gene and 16S rRNA sequences abundances 

of Firmicutes in control as well as the other treatments (Figure 30) corroborated previous findings 

that revealed a positive response of Firmicutes-affiliated species to anoxia and endogenous gut 

nutrients (Figure 24 A).  The strong stimulation of certain Firmicutes-, Proteobacteria-, and 

Fusobacteria-affiliated families during the incubation in the non-polymeric saccharide treatments 

(Figure 30) was consistent with the lower numbers of detected phylotypes, expected phylotypes 

(Chao1), and Shannon indices at the end of the incubation compared to values obtained at the 

beginning of the incubation (Table 21).  These findings suggested bacterial shifts in the gut 

content communities during the incubation.  A presumption confirmed by the NMDS analysis 

(Section 2.6.2.2) of all phylotypes that displayed a different microbial community at the end of the 

incubation in the control treatment compared to non-polymeric saccharide treatments (Figure 31).  

The shifts were more pronounced for cellobiose, glucose, and N-acetylglucosamine treatments 

(Figure 31), an observation corroborating the potential of certain non-polymeric saccharides to 

stimulate fermentative gut content taxa.  The rarefaction analyses of non-polymeric saccharide-

supplemented treatments indicated that the most abundant taxa were targeted (Figure 32).   
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Table 21.  Alpha diversity of the microbial community in control and non-polymeric saccharide treatments.a 

Sample 
(Sampling 
Time) 

Treatmentb 
Number of 
sequences 

Observed 
phylotypesc 

(normalized)d 

Chao1 
(normalized)d 

Shannon 
(normalized)d 

DNA Control 1 44009 1895 (894) 2375 (1094) 5.1 (4.9) 
(0 h) Control 2 44620 1878 (894) 2432 (1083) 5.2 (5.0)  

Control 3 44383 1864 (906) 2247 (1101) 5.4 (5.2)  
N-acetylglucosamine 37023 1772 (889) 2271 (1095) 5.3 (5.1)  
Cellobiose 41497 1864 (896) 2321 (1098) 5.2 (5.0)  
Glucose 37614 1778 (901) 2210 (1081) 5.3 (5.1)  
Galacturonic acid 35812 1724 (892) 2135 (1093) 5.3 (5.1)  
Xylose 45239 1866 (903) 2340 (1112) 5.3 (5.1) 

DNA Control 1 29368 1241 (661) 1814 (868) 4.3 (4.1) 
(30 h) Control 2 32909 1443 (756) 1986 (979) 4.7 (4.6) 

 Control 3 31551 1476 (775) 2012 (987) 4.9 (4.8)  
N-acetylglucosamine 33320 1176 (603) 1596 (832) 3.8 (3.7)  
Cellobiose 27626 1158 (614) 1720 (819) 3.7 (3.6)  
Glucose 32524 1265 (652) 1866 (883) 4.1 (4.0)  
Galacturonic acid 34699 1236 (627) 1717 (849) 4.0 (3.9)  
Xylose 29671 1331 (734) 1800 (931) 4.7 (4.6) 

RNA Control 1 14910 1150 (746) 1746 (917) 3.8 (3.7) 
(0 h) Control 2 16121 1126 (719) 1717 (908) 3.6 (3.5) 

 Control 3 25041 1477 (850) 2125 (1062) 4.4 (4.2) 

 N-acetylglucosamine 16279 1150 (744) 1620 (903) 3.8 (3.7)  
Cellobiose 17851 1205 (741) 1751 (917) 3.8 (3.6)  
Glucose 15421 1123 (735) 1607 (902) 3.8 (3.6)  
Galacturonic acid 18955 1186 (729) 1733 (916) 3.8 (3.7)  
Xylose 24808 1290 (742) 1779 (935) 3.9 (3.7) 

RNA Control 1 19781 977 (598) 1480 (773) 3.7 (3.6) 
(30 h) Control 2 16858 1024 (665) 1531 (820) 3.7 (3.6) 

 Control 3 21921 1203 (730) 1660 (894) 4.0 (3.9) 

 N-acetylglucosamine 1 27903 1367 (780) 1836 (978) 4.6 (4.5)  
N-acetylglucosamine 2 38425 1334 (679) 1779 (909) 4.0 (3.9)  
N-acetylglucosamine 3 21830 922 (530) 1551 (732) 3.5 (3.4)  
Cellobiose 1 18536 993 (634) 1430 (802) 3.9 (3.8)  
Cellobiose 2 20605 1010 (615) 1510 (823) 3.6 (3.5)  
Cellobiose 3 23897 1049 (623) 1453 (816) 3.8 (3.7)  
Glucose 1 32774 1380 (757) 1789 (972) 4.4 (4.3)  
Glucose 2 24656 1193 (707) 1662 (886) 4.2 (4.0)  
Glucose 3 28766 1358 (764) 1754 (988) 4.3 (4.2)  
Galacturonic acid 1 25452 1012 (550) 1586 (773) 3.4 (3.3)  
Galacturonic acid 2 19030 1131 (714) 1558 (903) 4.1 (4.0)  
Galacturonic acid 3 21253 1159 (708) 1658 (903) 4.2 (4.0)  
Xylose 1 23990 1275 (751) 1742 (960) 4.2 (4.1)  
Xylose 2 24084 1275 (747) 1653 (924) 4.2 (4.1) 

  Xylose 3 20541 1136 (709) 1584 (881) 4.0 (3.9) 

aTable modified and used with permission from Zeibich et al., 2019a. 

bSamples of the three replicates of the 16S rRNA gene control treatment at 0 h and 30 h, 16S rRNA control 
treatment at 0 h, and all 16S rRNA treatments at 30 h were analyzed separately.  Numbers assigned to a 
treatment (e.g., Control 1) indicate the respective replicate.  Samples of the three replicates were pooled 
for each of the other treatments at 0 h or 30 h.   

cPhylotypes were clustered based on a sequence similarity cut-off of 97%. 

dFor comparison of amplicon libraries of different sizes, the data set were normalized to 10,000 
sequences. 
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Figure 31.  NMDS plot of the microbial community composition in non-polymeric saccharide treatments.  
Distance matrices (Bray-Curtis) are based on the relative abundances of all detected phylotypes in the 
different treatments (Table A3).  Samples of the three replicates of the 16S rRNA gene (DNA) control 
treatment at 0 h and 30 h, 16S rRNA (RNA) control treatment at 0 h, and all 16S rRNA treatments at 30 h 
were analyzed separately.  Samples of the three replicates were pooled for each of the other treatments at 
0 h or 30 h.  Proximity of symbols represent the degree of similarity between the different treatments.  Figure 
modified and used with permission from Zeibich et al., 2019a. 

 

Figure 32.  Rarefaction analyses of bacterial 16S rRNA gene and 16S rRNA sequences obtained from 
anoxic L. terrestris gut content microcosms supplemented with non-polymeric saccharides.  Phylotypes 
were based on a 97% sequence similarity cutoff.  Samples of the three replicates of the 16S rRNA gene 
control treatment at 0 h and 30 h, 16S rRNA control treatment at 0 h, and all 16S rRNA treatments at 30 h 
were analyzed separately.  Samples of the three replicates were pooled for each of the other treatments at 
0 h or 30 h.  Abbreviations: 0 h and 30 h indicate the time of sampling in hours; C, unsupplemented control; 
D, 16S rRNA genes; R, 16S rRNA.  Numbers assigned to a treatment (e.g., C1) indicate the respective 
replicate.  A, N-acetylglucosamine; Ce, cellobiose; G, glucose; Ga, galacturonic acid; X, xylose.  Figure 
modified and used with permission from Zeibich et al., 2019a. 
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3.1.5. Polysaccharide- and saccharide-responsive phylotypes 

The Proteobacteria-affiliated families Aeromonadaceae and Enterobacteriaceae were 

significantly stimulated by almost all polysaccharides and saccharides (Table 16 and Table 20).  

Likewise, Clostridiaceae and Fusobacteriaceae were families significantly stimulated by several 

supplemental polysaccharides and saccharides (Table 16 and Table 20).  These trends extended 

to eight group phylotypes (GPT; a group phylotype consists of identical or nearly identical 

phylotypes based on ≥ 97% nucleic sequence similarity) that displayed ≥ 4% higher relative 

abundance (at either the 16S rRNA gene or 16S rRNA level) in at least one of the treatments 

compared to the control treatment at the end of the incubation (Figure 33).  

GPT-1 and GPT-5 (closely related to Aeromonas hydrophila and Buttiauxella gaviniae, 

respectively) were significantly stimulated at the end of incubation in all non-structural 

polysaccharide treatments and almost all saccharide treatments compared to the 

unsupplemented control (Figure 33 and Table 21).  GPT-4 (closely related to Yokenella 

regensburgei) displayed a significant positive response to maltodextrin, dextran, and galacturonic 

acid, whereas 16S rRNA gene abundances of GPT-7 (closely related to Cetobacterium somerae) 

were mostly enhanced in saccharide treatments (Figure 33).  Furthermore, GPT-2 and GPT-3 

(closely related to P. bifermentans and Can. Lumbricincola respectively) as well as GPT-7 were 

consistently abundant in almost all treatments including the controls, suggesting that these taxa 

utilize non-saccharide-based endogenous gut nutrients. 
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Figure 33.  16S rRNA-based overview of the relative abundances of the main stimulated group phylotypes 
at the end of the incubation (A) and phylogenetic tree of these stimulated group phylotypes (B).  Panel A:  
Each group phylotype (GPT) consists of identical or nearly identical phylotypes based on a ≥97% sequence 
similarity.  Phylotypes are based on a sequence similarity cut-off of 97% and were considered to be 
stimulated when a phylotype in at least one of the supplemented treatments displayed a ≥ 4% higher relative 
abundance than in the control treatment at the end of incubation.  The group phylotypes are derived from 
the analyses of 16S rRNA genes (DNA) or 16S rRNA (RNA), and the bars display the relative abundances 
of each group phylotype at the end of the incubation.  Abbreviations: C, unsupplemented control; Cel, 
cellulose; Ch, chitin; Pe, pectin; Xy, xylan; Md, maltodextrin; Da, dextran; A, N-acetylglucosamine; Ce, 
cellobiose; G, glucose; Ga, galacturonic acid; X, xylose.  Panel B:  The phylogenetic tree was calculated 
using the neighbor-joining, maximum parsimony, and maximum likelihood methods.  Solid circles, 
congruent nodes in three trees; empty circles, congruent nodes in maximum parsimony and maximum 
likelihood trees.  Branch length and bootstrap values (1,000 resamplings) are from the maximum parsimony 
tree.  The bar indicates 0.1 change per nucleotide.  T. maritima (AE000512) was used as outgroup.  
Accession numbers occur at the end of each branch.  Phylotype descriptors:  PA, phylotypes derived from 
polysaccharide experiment A (Figure 22 A); PB phylotypes derived from polysaccharide experiment B 
(Figure 22 B); S, phylotypes derived from the non-polymeric saccharide experiment (Figure 27). Figure 
modified and used with permission from Zeibich et al., 2019a. 
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Table 22.  Statistical analyses of main stimulated phylotypes displayed in Figure 33.a 

Group 
Phylotype 

Phylotypeb Treatment Mean 
Standard 
Deviation Median LDA Score 

(log10)c 

GPT-1 PA3 Control 1.7 0.5 1.6 
 

  Cellulose 2.8 0.2 2.7 4.4(3) 

  Pectin 3.7 1.2 3.2 4.1(4) 

  Maltodextrin 30 1.7 31 5.5(1) 

  Dextran 14 5.0 11 5.1(1) 

 PB3 Control 9.0 1.8 8.5  

  Glycogen 16 3.1 16 5.2(2) 

  Starch 14 1.2 14 5.1(2) 

 PB96 Control 13 0.7 13  

  Glycogen 48 6.9 45 5.7(1) 

  Starch 50 2.8 51 5.7(1) 

 S5 Control 0.5 0.3 0.4  
  N-acetylglucosamine 4.4 1.6 5.2 4.6(1) 

  Cellobiose 6.1 1.0 6.1 4.8(1) 

  Glucose 3.7 0.2 3.8 4.6(1) 

   Xylose 1.3 0.5 1.1 4.1(4) 

GPT-3 PA1 Control 8.1 4.7 6.6  

  Cellulose 15 1.9 16 5.2(1) 

  Chitin 17 1.4 17 5.2(1) 

GPT-4 PA8 Control 0.9 0.3 0.8  

  Pectin 1.9 0.3 2.0 4.3(3) 

  Maltodextrin 26 1.7 27 5.4(2) 

  Dextran 4.6 0.3 4.6 4.7(3) 

 PB1018 Control 0.0d 0.0 0.0  

  Starch 0.0d 0.0 0.0 2.6(9) 

 S19 Control 0.2 0.1 0.1  

  N-acetylglucosamine 0.9 0.3 0.7 3.9(7) 

  Cellobiose 0.7 0.2 0.6 3.9(7) 

  Glucose 0.4 0.0 0.4 3.6(7) 

  Galacturonic Acid 1.9 0.8 1.7 4.3(4) 

GPT-5 PA13 Control 0.3 0.1 0.3  
  Maltodextrin 9.0 0.4 9.0 5.0(4) 

  Dextran 7.0 0.6 7.3 4.8(2) 

 PB5 Control 2.0 0.1 1.6  

  Glycogen 4.2 0.4 4.3 4.6(4) 

  Starch 5.0 0.6 4.9 4.7(3) 

 S10 Control 0.4 0.1 0.3  
  N-acetylglucosamine 2.1 0.7 1.9 4.3(4) 

  Cellobiose 3.1 0.7 2.9 4.5(4) 

  Glucose 1.0 0.2 1.1 4.0(5) 

  Galacturonic Acid 5.8 1.7 5.5 4.8(1) 

   Xylose 2.0 0.1 2.0 4.3(2) 
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Group 
Phylotype 

Phylotypeb Treatment Mean 
Standard 
Deviation Median LDA Score 

(log10)c 

GPT-6 PA6 Control 3.2 0.9 3.7  
  Maltodextrin 9.0 0.9 9.0 5.0(3) 

GPT-7 S4 Control 1.3 1.2 0.7  

  Cellobiose 4.6 1.0 5.1 4.7(2) 

GPT-8 PA26 Control 0.0 0.0 0.1  

  Pectin 0.1 0.1 0.1 3.3(5) 

  Maltodextrin 2.7 0.1 2.7 4.4(6) 

  Dextran 0.1 0.0 0.1 3.1(10) 

 PB11 Control 0.1 0.0 0.1  

  Glycogen 4.7 0.7 4.5 4.7(3) 

  Starch 3.7 1.3 3.0 4.5(4) 

 S51 Control 0.1 0.1 0.1  

  Cellobiose 0.6 0.1 0.6 3.8(8) 

aOnly phylotypes that were significantly stimulated (based on LEfSe analysis) by a given supplement are 
shown. The LEfSe analysis, mean value, standard deviation, and median are based on the relative 
abundance of 16S rRNA sequences of the three replicates per treatment at the end of the incubation.  Table 
modified and used with permission from Zeibich et al., 2019a.    

bPA and PB, phylotypes in polysaccharide treatments; S, phylotypes in non-polymeric saccharide 
treatments. 

cLDA scores were calculated using LEfSe.  Numbers in parentheses display the rank in the LDA analysis 
(i.e., higher ranking phylotypes exhibited a stronger response to supplement compared to lower ranking 
ones). 

3.1.6. Effect of root and leaf litter lysates on gut content 
fermentation 

The aforementioned findings demonstrated that structural plant polysaccharides stimulated 

the gut content fermentations noticeably weaker than the highly stimulatory energy-storage 

polysaccharides starch and maltodextrin as well as glucose, a saccharide common to roots and 

leaves; both dietary substrates for L. terrestris (Section 1.4.1).  These contrasting findings 

prompted the evaluation of roots- and leaf litter-derived fermentations in earthworm gut contents. 

Gut content fermentations were strongly increased by supplemented sterile lysates from 

disrupted roots or leaf litter (Figure 34 and Table 23), and the resulting fermentation profiles were 

similar to those obtained with diverse non-polymeric saccharides (Figure 27 and Figure 28).  For 

example, formate was repeatedly transient (Figure 34) and ethanol, acetate, and succinate were 

the main electron sinks in these lysate treatments (Table 24).  The detection of glucose and 

xylose, as well as unidentified compounds in the ‘sugar region’ of the high performance liquid 

chromatogram at the beginning of incubation, was consistent with the documented occurrence of 

saccharides in plant material. (Von Fircks and Sennerby-Forsse, 1998; Kromer and Gamian, 

2000; Nadwodnik and Lohaus, 2008).  
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Figure 34.  Effect of leaf litter lysate and root lysate on the fermentation product profiles of anoxic 
microcosms of L. terrestris gut contents.  The amount of organic carbon derived from litter lysate and root 
lysate added per microcosm approximated 1.55 mmol and 1.08 mmol, respectively.  Controls lacked 
supplemental lysate.  Values are the arithmetic average of three replicate analyses, and error bars indicate 
the standard deviations.  Some standard deviations are smaller than the size of the symbol and therefore 
not apparent. FW, fresh weight.  Figure modified and used with permission from Zeibich et al., 2019a.    
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Table 23.  P values of fermentation products in leaf litter lysate (A) and root lysate (B) treatments.a 

(A) Leaf Litter Lysate  
               

 
Products 

 
CO2 H2 Succinate Lactate Formate(10h) Acetate Propionate Ethanol 

 
C LL C LL C LL C LL C LL C LL C LL C LL 

Mean valueb 23 69 1.9 41 0.0 11 0.1 1.9 0.6 28 17 65 3.4 4.8 7.5 39 

Variance 1.2 2.1 0.3 22 0.0 0.5 0.5 0.0 0.1 0.0 19 1.0 0.4 0.6 0.3 2.8 

P value 0.000 0.005 0.001 0.003 0.000 0.003 0.069 0.001 

(B) Root Lysate 
               

 
Products 

 
CO2 H2 Succinate Lactate Formate(10h) Acetate Propionate Ethanol 

 
C RL C RL C RL C RL C RL C RL C RL C RL 

Mean valueb 23 83 1.9 63 0.0 28 0.1 20 0.6 31 17 97 3.4 1.9 7.5 101 

Variance 1.2 5.2 0.3 15 0.0 1.4 0.5 0.1 0.1 3.0 19 11 0.4 0.0 0.3 33 

P value 0.000 0.001 0.001 0.000 0.001 0.000 0.055 0.001 

aP values (significant at P ≤ 0.05) were calculated by t-test with unequal variances and are based on the difference between the net amount of products in control (C) 

and leaf litter lysate (LL) or root lysate (RL) treatments.  To calculate net amounts, amounts of products at the beginning of incubation were subtracted from those at 

the end of incubation (unless otherwise indicated).  For transient products (i.e., formate), the significance of differences of net amounts between control and 

supplemented treatments were tested for the time point of the highest concentration (shown in parentheses).  See Figure 34 for product profile. Unsupplemented 

control treatments formed traces of butyrate, methylbutyrate, and isobutyrate, whereas supplemented treatments yielded less of these three products.  Table modified 

and used with permission from Zeibich et al., 2019a.    

bMean values (n = 3) are in µmol/gFW. FW, fresh weight.   
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That the amount of supplemented plant lysates was adequate for the observed 

fermentations, was corroborated by the approximately 55% and 18% carbon recovered in the 

detected fermentation products derived from root lysate and litter lysate, respectively (Table 24).  

The fermentation of lysate-derived glucose and xylose, and the rapid production of formate, 

acetate, ethanol, and lactate (Figure 34), demonstrated, as proof of principle that the fermentative 

earthworm gut microbiota were poised to respond immediately to utilizable plant-derived nutrients 

including saccharides.  

Table 24.  Estimated recoveries of carbon and reducing equivalents (i.e., 
electrons) in leaf litter lysate and root lysate treatments.a 

   Recoveries (%) 

Main 

Products 

 Leaf Litter Lysate  Root Lysate 

 Carbon RE  Carbon RE 

CO2  3.0 na 
 

3.9 na 

H2 
 na 1.3  na 2.0 

Acetate  6.1 6.1  10 10 

Ethanol  4.0 6.0  12 18 

Succinate  3.0 2.7  7.3 6.4 

Propionate  0.3 0.3  - - 

Lactate  0.3 0.3  3.9 3.9 

Formate  0.2 0.1  0.8 0.4 

Isobutyrate  0.2 0.2  - - 

Total:    18 17  55 59 

aSee Figure 34 for product profiles.  Net amounts of products formed in the 
unsupplemented control were subtracted from those of supplemented 
treatments; recoveries are based on the amount of substrate provided.  
Values are based on the arithmetic average of three replicate analyses.  
RE, reducing equivalents; -, no net increase of the product during the 
incubation in supplemented treatments relative to the control treatments; 
na, not applicable.  Table modified and used with permission from Zeibich 
et al., 2019a.    
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3.2. Effect of microbial cell lysate, protein, and RNA on the 
fermentative microbiota of L. terrestris 

The ingestion of dietary material coupled to the abrasive action of the gizzard introduces a 

wide range of nutrients into the alimentary canal.  For example, protein a primary component of 

a disrupted microbial cell (Section1.3.2).  In this regard, approximately 2 mM amino acids can 

occur in the aqueous phase of the alimentary canal (Horn et al., 2003).  This and the decrease of 

protein in the gut from anterior to posterior corroborate the likelihood that protein hydrolysis in the 

gut yields fermentable amino acids.  Thus, the availability of amino acids would be dependent on 

protein hydrolysis, and the secretion of earthworm-proteases into the anterior part of the 

alimentary canal indicates that the earthworm contributes to this process (Section 1.3.2).  RNA is 

likewise a main component of a disrupted microbial cell (Section1.3.3).  These considerations 

indicate that microbes in the earthworm gut are challenged with protein and RNA derived from 

gizzard-disrupted cells, and prompted the evaluation of the effects of fresh cell lysate (used to 

simulate disrupted microbial cells), protein, and RNA on gut content fermentation and associated 

gut content microbiota. 

3.2.1. Effect of cell lysate on gut content fermentation 

In a preliminary experiment, fresh cell-free lysates of either S. cerevisiae or E. coli enhanced 

the production of H2 and CO2 (Table 25), indicating that a fermentative response to lysate was 

independent of the source of lysate.  Yeast-derived lysate was selected for more detailed 

experiments because (a) larger microbial cells such as fungal cells are assumed to be more 

susceptible to rupture by the gizzard than smaller microbial cells (Section 1.2.1) and (b) the 

analysis of prokaryotic 16S rRNA genes and 16S rRNA would not be impaired.   

Table 25.  Effect of cell lysates from S. cerevisiae and E. coli on the formation of CO2 and 
H2 in anoxic microcosms of L. terrestris gut contents.a 

        Gaseous products (µmol/gFW) 

Treatment  pH   CO2   H2 

Replicate 1 2  1 2  1 2 

Control 6.8 6.9  19 22  2.2 2.4 

E. coli   6.6 6.6  60 55  5.9 9.7 

S. cerevisiae 6.6 6.6 
 

64 64 
 

15 16 

aThe amount of carbon derived from filter sterilized E. coli lysate (5.3% dry weight) and S. 
cerevisiae lysate (5.1% dry weight) added per microcosm approximated 2.0 mmol and 2.2 
mmol, respectively.  Filter-sterilized lysate alone did not display any fermentation activity.  
Control lacked supplemental lysate.  Earthworms from were maintained at 15°C, and gut 
content microcosms were incubated at 15°C for 44 h.  FW, fresh weight.  Table modified 
and used with permission from Zeibich et al., 2018. 
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The rapid anaerobic formation of H2, CO2, and different fatty acids in yeast lysate treatments 

was significant compared to the unsupplemented control and indicated that available lysate was 

linked to diverse fermentations (Figure 35 and Table 26).  In contrast to the other fermentation 

products that accumulated, the increase of formate was transient, an observation consistent with 

previous findings (Figure 27 and Figure 34). 

 
Figure 35.  Effect of yeast lysate on the fermentation product profiles of anoxic microcosms of L. terrestris 
gut contents.  The amount of carbon derived from filter-sterilized lysate (6.0% dry weight) added per 
microcosm approximated 2.3 mmol.  Controls lacked supplemental lysate. Lysate alone did not display any 
fermentation activity.  Values are the arithmetic average of three replicate analyses, and error bars indicate 
the standard deviations.  Some standard deviations are smaller than the size of the symbol and therefore 
not apparent.  FW, fresh weight.  Figure modified and used with permission from Zeibich et al., 2018.
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The initial pH approximated 7 and was relatively stable (Figure 35).  The theoretical 

recoveries of carbon and reducing equivalents in fermentation products indicated that (a) 

approximately 55% of the lysate-derived organic carbon was fermented to the detectable products 

(Table 27) and (b) the amount of supplemented lysate was adequate for the observed enhanced 

fermentation.  

Table 26.  P values of fermentation products in yeast lysate treatments.a 

 Products 

 CO2 H2 Succinate Lactate Formate 

 C L C L C L C L C L 

Mean valueb 30 149 0.9 33 4.1 58 1.3 1.5 6.2 48 

Variance 479 1046 0.0 3.8 0.0 142 0.0 0.0 0.9 50 

P value 0.001 0.006 0.016 0.103 0.009 

 Acetate Propionate Butyrate Methylbutyrate Total 

 C L C L C L C L C L 

Mean valueb 29 262 7.7 14 2.0 13 10 96 92 673 

Variance 31 2656 3.2 0.2 0.1 0.1 1.6 88 336 1441 

P value 0.016 0.030 0.000 0.004 0.000 

aP values (significant at P ≤ 0.05) were calculated by t-test with unequal variances and are based on the 

difference between the net amount of products in control (C) and yeast lysate (L) treatments at the end of 

incubation.  See Figure 35 for product profile. Table modified and used with permission from Zeibich et al., 

2018.    

bMean values (n = 3) are in µmol/gFW. FW, fresh weight. 

Table 27.  Estimated recoveries of carbon and reducing equivalents (e.g., 
electrones) in yeast lysate treatments.a 

 Recoveries (%) 

Main Products Carbon Reducing Equivalents 

CO2 5.2 na 

H2 na 0.7 

Acetate 20 20 

Methylbutyrate 18 23 

Succinate 9.0 7.8 

Propionate 0.8 0.9 

Butyrate 1.9 2.4 

Lactate 0.1 0.1 

Total:   55 55 

aSee Figure 35 for product profile.  Net amounts of products formed in the 
unsupplemented control were subtracted from those of supplemented 
treatments; recoveries are based on the amount of substrate provided.  
Values are based on the arithmetic average of three replicate analyses.  
Table modified and used with permission from Zeibich et al., 2018. 
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3.2.2. Effect of cell lysate on gut fermentative bacterial families 

A total of 1,715,804 bacterial 16S rRNA gene and 16S rRNA sequences were obtained, 

and rarefaction analyses indicated that the most abundant taxa were targeted (Figure 36).  Based 

on the relative abundances of the detected sequences in control and lysate treatments at the end 

of the incubation, the phylum Firmicutes was notably stimulated by lysate and the affiliated 

families Peptostreptococcaceae, Clostridiaceae, and Lachnospiraceae displayed a strong 

increase of relative 16S rRNA abundances in lysate treatments compared to the unsupplemented 

control (Table 28 and Figure 37).  The increases in relative abundances of 

Peptostreptococcaceae-, Clostridiaceae-, and Lachnospiraceae- affiliated 16S rRNA sequences 

were supported by statistical analyses of the comparative relative abundances of sequences in 

control and lysate treatments at the end of the incubation (Table 28). 

 
Figure 36.  Rarefaction analyses of bacterial 16S rRNA gene and 16S rRNA sequences obtained from 
control and yeast lysate treatments.  Phylotypes were based on a 99% sequence similarity cutoff.  
Abbreviations:  0, 6, 10, 12, 20, 30 indicate the time of sampling in hours; C, unsupplemented control; L, 
lysate treatment. 16S rRNA gene (DNA) and 16S rRNA (RNA) samples of the three replicates were always 
pooled except for 16S rRNA samples at 30 hour.  Numbers assigned to a treatment (e.g., C1) indicate the 
respective replicate.  Figure modified and used with permission from Zeibich et al., 2018. 

The phylum Proteobacteria was represented by the families Aeromonadaceae and 

Enterobacteriaceae (Figure 37). The relative abundances of these families varied during the 

incubation period.  Thus, Aeromonadaceae-affiliated 16S rRNA sequences increased initially in 

the yeast lysate treatments but decreasing with time and were less abundant at the end of the 

incubation.  In marked contrast, Enterobacteriaceae-affiliated 16S rRNA sequences increasing 

more gradually during the time period and dominated the Proteobacteria-affiliated sequences at 
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the end of the incubation.  This increases in relative abundances of Aeromonadaceae- and 

Enterobacteriaceae- affiliated 16S rRNA sequences were confirmed by statistical analyses of the 

comparative relative abundances of sequences in control and lysate treatments at the end of the 

incubation (Table 28).  The stability of the pH during the incubation (Figure 35) reinforced the 

likelihood that nutrient input rather than a change in pH was an important factor for the observed 

changes in the community composition of the lysate treatment.  Mycoplasmataceae were 

represented by a phylotype with 99% similarity to Can. Lumbricincola, and 16S rRNA sequences 

of this phylotype had a high relative abundance in unsupplemented controls.  Members of the 

genus Can. Lumbricincola occur in tissues, gut contents, and casts of earthworms (Nechitaylo, 

2009), and affiliated 16S RNA gene and 16S rRNA sequences were also abundant in previous 

gut content treatments (Meier et al., 2018; Figure 24 and Figure 30).  Consistent with the strong 

stimulation of Peptostreptococcaceae, Aeromonadaceae, and Enterobacteriaceae in the lysate 

treatment, the number of detected and expected phylotypes as well as Shannon indices were 

lower at the end of the incubation period in this treatment compared to those of the 

unsupplemented control (Table 29). 

Table 28.  Statistical analysis of main stimulated families in yeast lysate treatments.a 

Family Treatment Mean Variance P valueb 
LDA 

Score 
(log10)c 

Aeromonadaceae Control 0.2 0.0 
 

 
  Lysate 1.4 0.0 0.010 4.1(5) 

Clostridiaceae Control 1.3 0.0   

  Lysate 12 2.4 0.007 5.1(3) 

Enterobacteriaceae Control 0.3 0.0   

  Lysate 13 4.9 0.011 5.1(2) 

Lachnospiraceae Control 0.4 0.0   

  Lysate 9.7 4.8 0.018 5.0(4) 

Peptostreptococcaceae Control 10 5.6   

  Lysate 23 6.1 0.003 5.4(1) 

aFamilies were designated (a) abundant when a family had a relative abundance of ≥ 

5% in at least one sampling period and (b) stimulated when the increase in relative 

abundance over time was more pronounced in the lysate treatment compared to the 

respective unsupplemented control treamtent.  Table modified and used with 

permission from Zeibich et al., 2018. 

bP values (significant at P ≤ 0.05) of control treatment vs. lysate treatment were 

calculated from relative abundances at the end of the 30 h incubation by t-test with 

unequal variances.   

cLDA scores were calculated using LEfSe.  Numbers in parentheses display the rank 
in the LDA analysis (i.e., higher ranking families exhibited a stronger response to 
supplement compared to lower ranking ones). 
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Figure 37.  Effect of yeast lysate on the temporal changes of the relative abundances of bacterial phyla in 
L. terrestris gut content microcosms based on the analyses of 16S rRNA (RNA) and 16S rRNA genes 
(DNA).  The most abundant families (families with ≥ 5% relative abundance in at least one sampling period) 
are displayed in the color of the respective phylum.  Abbreviations:  L, lysate treatment; C, unsupplemented 
control.  Samples of the three replicates of a treatment were always pooled for each sampling time point, 
except for the 16S rRNA samples at the end of the 30 h incubation in which each bar represents one 
replicate (the high similarity of the three replicates illustrates the reproducibility of the analyses).  Process 
data are shown in Figure 35 and information on all detected taxa is provided in Table A4.  Figure modified 
and used with permission from Zeibich et al., 2018.  
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Table 29.  Alpha diversity of the microbial community in control and yeast lysate treatments.a 

Sampling time:  0 h  6 h  12 h  20 h 

Treatment:b  DNA RNA  C.RNA L.RNA  C.RNA L.RNA  C.RNA L.RNA 

Number of sequences   90591 105034  70681 90615  104319 87844  70036 96059 

Observed PTsc  
(normalized)d 

 7384 
(6328) 

6911 
(5506) 

 6625 
(6326) 

5596 
(4670) 

 6720 
(5365) 

4833 
(4112) 

 5848 
(5618) 

4917 
(3989) 

Chao1  
(normalized)d 

 11975 
(10608) 

11553 
(9751) 

 11842 
(11419) 

10159 
(8995) 

 11199 
(9460) 

8722 
(7864) 

 10712 
(10409) 

9341 
(7911) 

Shannon  
(normalized)d 

 9.8  
(9.7) 

7.3 
(7.3) 

 8.2  
(8.1) 

6.1 
(6.0) 

 7.9 
(7.9) 

5.8 
(5.8) 

 7.2 
 (7.2) 

6.2  
(6.2) 

Sampling time:  30 h 

Treatment:b  C1.RNA C2.RNA  C3.RNA L1.RNA  L2.RNA L3.RNA  C.DNA L.DNA 

Number of sequences   109807 147651  126676 114515  126281 142222  111359 122114 

Observed PTsc 
(normalized)d 

 8086 
(6179) 

8411 
(5566) 

 8150 
(5841) 

5509 
(4083) 

 6825 
(4822) 

6332 
(4214) 

 7323 
(5573) 

5745 
(4200) 

Chao1  
(normalized)d 

 14324 
(11675) 

14417 
(10764) 

 13660 
(10822) 

10514 
(8101) 

 12345 
(9390) 

11492 
(8483) 

 12972 
(10395) 

9945 
(7761) 

Shannon  
(normalized)d 

 8.3 
(8.3) 

7.6 
(7.6) 

 7.7 
(7.6) 

6.6 
(6.6) 

 7.2 
(7.1) 

6.7 
(6.7) 

 8.3 
(8.2) 

7.2 
(7.2) 

aTable modified and used with permission from Zeibich et al., 2018. 

bC and L corresponds to unsupplemented control and cell lysate treatments, respectively.  16S rRNA gene (DNA) or 16S rRNA (RNA) samples of the three 
replicates were always polled except for RNA samples at 30 h.  Numbers assigned to a treatment (e.g., C1) indicate the respective replicate. 

cPhylotypes (PTs) were clustered based on a sequence similarity cut-off of 99%. 

dThe data sets were normalized to 64,864 sequences for comparison of amplicon libraries of different sizes.
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3.2.3. Effect of protein and RNA on gut content fermentation 

Protein and RNA are the primary components of microbial cell lysate.  Therefore, these two 

biopolymers were evaluated for their potential to stimulate fermentations and associated gut 

content microbes of earthworms.  Gut contents were also challenged with cellulose and xylan to 

directly compare the potential specificity of protein- and RNA-linked stimulation. 

The anaerobic production of H2 and CO2 in anoxic gut content was enhanced in all 

biopolymer treatments (Figure 38).  Likewise, fatty acid production was augmented by all four 

biopolymers in gut content treatments (Table 30).  However, protein and RNA were considerably 

more stimulatory than cellulose and xylan, and yielded dissimilar fermentation profiles.  For 

example, RNA yielded high amounts of H2 and succinate, whereas protein strongly enhanced the 

production of methylbutyrate and butyrate (Figure 38 and Table 30).  That H2 was only marginally 

produced in the protein treatment, suggesting the occurrence of Stickland reactions, a non-H2-

producing process often engaged when the H2 concentrations reach a certain level (Schink and 

Stams, 2013).   

 
Figure 38.  Effect of biopolymers on the formation of H2 and CO2 in anoxic microcosms of L. terrestris gut 
contents.  The amount of biopolymer-derived carbon added per microcosm approximated 2.4 mmol.  
Controls lacked supplemental biopolymers.  Biopolymers alone did not display any fermentation activity.  
Values are the arithmetic average of three replicate analyses, and error bars indicate the standard 
deviations.  Some standard deviations are smaller than the size of the symbol and therefore not apparent.  
FW, fresh weight.  Figure modified and used with permission from Zeibich et al., 2018.  
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Table 30.  Fatty acid profiles of anoxic microcosms of L. terrestris gut contents supplemented with different biopolymers.a 

 Treatment 

 Products (µmol/gFW)b 

 Time (h) Acetate Succinate Formate Propionate Butyrate Methylbutyrate Lactate 

Protein and RNA        

Control 0 2.2 ± 0.5 0.5 ± 0.0 3.6 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.6 ± 0.1 
 30 23 ± 2.8 0.0 ± 0.0 2.9 ± 0.8 4.5 ± 0.3 1.9 ± 0.1 5.3 ± 0.1 0.5 ± 0.1 
         

Protein 0 2.7 ± 0.1 0.4 ± 0.1 2.7 ± 0.3 0.0 ± 0.0 0.9 ± 0.2 0.0 ± 0.0 1.2 ± 0.2 
 30  146 ± 5.6* 0.0 ± 0.0 13 ± 9.2  22 ± 1.7*  25 ± 2.6*  53 ± 1.3* 5.8 ± 2.4 
         

RNA 0 18 ± 1.4 4.9 ± 0.3 2.3 ± 0.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.9 ± 0.3 
 30  87 ± 5.3*  19 ± 1.4*  39 ± 1.3*  8.0 ± 0.9* 3.2 ± 1.4 5.5 ± 1.2  12 ± 0.5* 

Cellulose and Xylan        

Control 0 1.2 ± 0.1 0.5 ± 0.1 3.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.7 ± 0.3 0.3 ± 0.0 
 30 25 ± 1.4 1.9 ± 0.2 2.5 ± 0.8 3.7 ± 0.1 0.6 ± 0.0 6.8 ± 0.2 0.8 ± 0.1 
         

Cellulose 0 1.8 ± 0.2 0.4 ± 0.1 0.7 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.1 
 30 33 ± 7.0  3.1 ± 0.1* 2.8 ± 2.9 4.0 ± 0.2 0.7± 0.0 7.1 ± 0.3  2.0 ± 0.2* 
         

Xylan 0 12 ± 0.7 0.6 ± 0.0 1.3 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.0 
 30  45 ± 4.4*  2.7 ± 0.1* 3.0 ± 0.1 4.3 ± 0.1*  0.9 ± 0.0* 7.2 ± 0.3  1.6 ± 0.1* 

aThe amount of biopolymer-derived carbon added per microcosm approximated 2.4 mmol.  Controls lacked supplemental biopolymers.  Biopolymers alone did 

not display any fermentation activity.  Values are the arithmetic average of three replicate analyses (± standard derivation).  FW, fresh weight.  Table modified 

and used with permission from Zeibich et al., 2018. 

bThe asterisk (*) indicates significant P values (P ≤ 0.05) of control vs. protein, RNA, cellulose, or xylan treatments at the end of incubation. P values were 

calculated by t-test with unequal variances. 
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The rapid increase of fermentation activity in protein and RNA treatments indicated that the 

facultative aerobes and anaerobes in gut content were not nutrient saturated and poised to 

respond to these biopolymers.  Indeed, increasing amounts of protein and RNA yielded increasing 

amounts of CO2 and H2, respectively (Table 31), indicating a cause-and-effect relation between 

the availability of protein and RNA and the anaerobic production of these gases.     

Time-resolved fermentation analysis and statistical analysis of protein treatments displayed 

a strongly enhanced and significant production of CO2, acetate, propionate, butyrate, and 

methylbutyrate compared to the unsupplemented control treatments (Figure 39 and Table 32).  

Furthermore, casamino acids stimulated fermentation similarly to that obtained in the protein 

treatment (Table 33).  In marked contrast to the fermentation profile of protein treatments, RNA 

treatments and associated statistical analysis displayed a significantly enhanced production of 

H2, CO2, formate, acetate, and succinate compared to the unsupplemented control treatments 

(Figure 39 and Table 32).  Acetate and formate were the dominant initial products detected.  The 

initial pH approximated 7 and was relatively stable (Figure 39), corroborated the likelihood that 

nutrient input rather than a change in pH was an important factor for the observed enhanced 

fermentations in protein and RNA treatments.  Formate was transient in both protein and RNA 

treatments.  An observation consistent with previous studies and treatments supplemented with 

yeast lysate (Figure 27, Figure 34, and Figure 35).  The transient accumulation of formate in 

protein and RNA treatments, and the transient accumulation of succinate and lactate in protein 

treatments, suggest that these products were metabolic intermediates and most likely consumed 

by secondary processes.   

Table 31.  Effect of different amounts of protein and RNA on the 
formation of CO2 or H2, respectively, in anoxic microcosms of L. 
terrestris gut contents.a   

Treatment 
Carbon 
(mmol)   µmol/gFW

b P Valuec 

Protein   CO2  

 0.0  10 ± 2.8  

 0.5  25 ± 2.0 0.002 

 2.0  56 ± 5.1 0.000 

RNA    H2  

 0.0  0.8 ± 0.1  

 0.5  8.7 ± 1.8 0.002 

 2.0   47 ± 9.3 0.001 

aTable modified and used with permission from Zeibich et al., 2018. 

bAmounts of CO2 and H2 at the end of incubation (30 h).  Values 
are the arithmetic average of three replicate analyses (± standard 
deviation).  FW, fresh weight. 

cP values were calculated by t-test with different variances and are 
based on the difference between the unsupplemented control and 
the supplemented treatment.  Values are significant at P ≤ 0.05. 
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Figure 39.  Effect of protein or RNA on the fermentation product profiles of anoxic microcosms of L. 
terrestris gut contents.  The amount of protein- and RNA-derived carbon approximated 1 mmol per 
microcosm.  Controls lacked supplemental protein or RNA.  Protein or RNA alone did not display any 
fermentation activity.  Values are the arithmetic average of three replicate analyses, and error bars indicate 
the standard deviations.  Some standard deviations are smaller than the size of the symbol and therefore 
not apparent.  FW, fresh weight.  Figure modified and used with permission from Zeibich et al., 2018.
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Table 32.  P values of the fermentation products in protein (A) and RNA (B) treatments.a 

(A) Protein treatment  
           

 
CO2 H2 Succinate Lactate Formate Acetate Propionate Butyrate Methylbutyrate 

 
C P C P C P C P C P C P C P C P C P 

Mean valueb 7.1 38 0.5 3.2 0.0 0.0 0.3 0.4 1.5 11 15 90 3.5 19 0.9 11 3.0 30 

Variance 0.2 3.5 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.7 0.2 7.4 0.1 0.5 0.0 0.0 0.0 8.6 

P value 0.001 0.001 - 0.502 0.016 0.010 0.000 0.009 0.004 

(B) RNA treatment  
             

 
CO2 H2 Succinate Lactate Formate  Acetate Propionate Butyrate Methylbutyrate 

 
C R C R C R C R C R C R C R C R C R 

Mean valueb 7.1 76 0.5 48 0.0 13 0.3 6.1 2.8 26 15 59 3.5 3.7 0.9 0.4 3.0 2.1 

Variance 0.2 39 0.0 9.6 0.0 0.1 0.0 0.0 0.1 0.4 0.2 4.8 0.1 0.0 0.0 0.0 0.0 0.4 

P value 0.001 0.003 0.000 0.000 0.000 0.001 0.775 0.118 0.158 

aP values (significant at P ≤ 0.05) were calculated by t-test with unequal variances and are based on the difference between the net amount of products in 
control (C) and protein (P) or RNA (R) treatments at the end of incubation.  See Figure 39 for product profile. Table modified and used with permission from 
Zeibich et al., 2018.    

bMean values (n = 3) are in µmol/gFW. FW, fresh weight. 
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Table 33.  Fermentation profiles (A) and estimated recoveries of carbon and reducing equivalents (e.g., electrons) (B) in casamino acids, ribose, adenine, 
uracil, or glycerol treatments.a 

(A) Fermentation Profileb    

 

Treatment 
     Products (µmol/gFW) 

 

Time 
(h) 

pH CO
2
 H

2
 Acetate Ethanol Succinate Lactate Formate Propionate Butyrate 

Methyl- 
butyrate 

ControlA 0 7.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2.4 ± 0.2 0.0 ± 0.0 0.7 ± 0.0 1.0 ± 0.1 1.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

 30 7.0 ± 0.0 7.5 ± 1.0 0.7 ± 0.1 16 ± 0.4 0.0 ± 0.0 0.4 ± 0.1 0.8 ± 0.1 0.7 ± 0.1 3.0 ± 0.1 1.3 ± 0.1 1.7 ± 0.1 

Casamino 
acidsc 

0 7.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2.5 ± 0.1 0.0 ± 0.0 0.6 ± 0.0 1.3 ± 0.0 1.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

30 6.9 ± 0.0  33 ± 2.8*  3.8 ± 0.2*  90 ± 3.4* 0.0 ± 0.0  2.6 ± 0.7* 1.4 ± 0.3  3.2 ± 0.9*  16 ± 1.1*  8.7 ± 0.4* 14 ± 1.5* 

Ribosed     0 7.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.9 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 0.9 ± 0.3 0.9 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

  30 6.8 ± 0.0  12 ± 1.0*  3.9 ± 0.8*  32 ± 3.1*  19 ± 2.3*  1.9 ± 0.4*  1.3 ± 0.1*  7.8 ± 0.4* 3.1 ± 0.2 1.5 ± 0.2 2.0 ± 0.2 

Adenined  0 7.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.9 ± 0.2 0.0 ± 0.0 0.7 ± 0.1 0.9 ± 0.0 0.6 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

  30 7.0 ± 0.0   5.1 ± 0.4* 0.5 ± 0.2 11 ± 2.4  0.9 ± 0.1*  1.7 ± 0.3* 0.7 ± 0.0 0.6 ± 0.1 1.2 ± 0.2* 0.6 ± 0.4 1.5 ± 0.3 

Uracild  0 7.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.8 ± 0.4 0.0 ± 0.0 0.7 ± 0.1 0.9 ± 0.1 0.5 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

  30 7.0 ± 0.0 10 ± 1.5 0.8 ± 0.1 17 ± 1.2 -  1.2 ± 0.1* 1.2 ± 0.2 1.2 ± 0.5 3.0 ± 0.3  1.6 ± 0.1*  2.7 ± 0.2* 

ControlB  0 7.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 6.4 ± 0.1 0.0 ± 0.0 1.1 ± 0.0 0.9 ± 0.0 2.1 ± 0.1 0.7 ± 0.0 0.5 ± 0.0 0.0 ± 0.0 

  30 7.0 ± 0.0 11 ± 2.7 0.1 ± 0.3 14 ± 0.5 3.0 ± 0.8 0.4 ± 0.1 1.0 ± 0.0 - 2.9 ± 0.1 1.1 ± 0.2 0.9 ± 0.1 

Glycerold  0 7.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 5.6 ± 0.4 0.8 ± 0.2 1.1 ± 0.1 0.8 ± 0.1 2.3 ± 0.1 0.7 ± 0.0 0.6 ± 0.2 0.0 ± 0.0 

  30 7.0 ± 0.0 18 ± 3.7 1.0 ± 0.8 15 ± 1.6 4.3 ± 0.5 0.4 ± 0.0 1.0 ± 0.0 - 6.6 ± 0.8* 1.2 ± 0.2 0.4 ± 0.2 
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(B) Recoveries (%)e   

Treatment  CO2 H2 Acetate Ethanol Succinate Lactate Formate 
Prop- 
ionate 

Butyrate 
Methyl- 
butyrate 

Total  

Casamino 
acidsc 

Carbon 2.1 na 12 - 0.8 0.0 0.2 3.2 2.5 5.0 26 
Reducing Equivalents na 0.1 12 - 0.6 0.0 0.1 3.6 2.9 6.2 25 

Ribosed Carbon 3.5 na 24 27 2.3 2.0 5.2 0.1 0.6 1.2 66 

 Reducing Equivalents na 1.2 24 40 2.0 2.0 2.6 0.2 0.8 1.5 75 

Adenined Carbon 0.0 na 0.0 0.9 2.7 0.0 0.1 0.0 0.0 0.0 3.7 

 Reducing Equivalents na 0.0 0.0 2.7 4.8 0.0 0.1 0.0 0.0 0.0 7.6 

Uracild Carbon 1.2 na 2.2 0.0 1.6 0.6 0.5 0.0 0.6 2.5 9.1 

 Reducing Equivalents na 0.1 3.6 0.0 2.2 1.0 0.4 0.0 1.1 5.2 13 

Glycerold Carbon 25 na 16 3.9 0.1 1.5 - 38 0.5 - 85 

 Reducing Equivalents na 1.6 14 4.9 0.1 1.2 - 38 0.6 - 60 

aTable modified and used with permission from Zeibich et al., 2018. 

bControls lacked supplemental substrates.  Values are the arithmetic average of three replicate analyses (± standard derivation).  FW, fresh weight.  The 
asterisk (*) indicates significant P values (significant at P ≤ 0.05) of control vs. casamino acids, ribose, adenine, uracil, or glycerol treatments at the end of 
incubation. P were calculated by t-test with unequal variances. 

cThe amount of casamino acid-derived carbon added per microcosm approximated 1.2 mmol, 

dThe amount of ribose, adenine, uracil, and glycerol per microcosm approximated 5 mM.  3 mM of ribose were consumed.  The consumption of uracil and 
glycerol were not determinable due to overlapping retention times with ethanol and formate, respectively.  Adenine was not detectable. 

eSee A for product profile.  Net amounts of products formed in the unsupplemented control were subtracted from those of supplemented treatments; recoveries 
are based on the amount of substrate provided.  Recoveries in ribose treatments are based on the amount of substrate consumed.  Values are based on the 
arithmetic average of three replicate analyses.  -, no net increase of the product during the 30 h incubation.  na, not applicable.
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40% and 24% of protein- and RNA-derived carbon, respectively, and 24% and 23% of protein- 

and RNA-derived reduction equivalents, respectively, were theoretically recovered in the detected 

fermentation products (Table 34).  These theoretical recoveries (a) corroborate the likelihood that 

protein and RNA were responsible for the observed diverse fermentations and (b) indicated that 

the supplemental amounts of these biopolymers were adequate for the observed fermentation 

products.  Furthermore, the recovery of carbon and reducing equivalents tended to be identical 

in both treatments, indicating that anaerobic respirations were nearly inactive.  The marked 

production of propionate and methylbutyrate in protein treatments and casamino acid treatments 

is consistent with amino acid-derived fermentations (Barker, 1981; Nanninga, 1985; McInerny, 

1988; Smith and Macfarlane, 1997) (Figure 39 and Table 33).  These considerations reinforcing 

the likelihood that protein fermentation was due to the hydrolysis of this biopolymer and 

subsequently fermentative utilization of available amino acids.   

Table 34.  Estimated recoveries of carbon and reducing equivalents (e.g., electrons) in protein 
and RNA treatments.a 

 Recoveries (%) 

  Protein   RNA  

Main 
Products 

 Carbon 
Reducing 

Equivalents 
 Carbon 

Reducing 
Equivalents 

CO2 
 

3.1 na 
 

6.9 na 

H2  na 0.1  na 3.1 

Acetate  15 15  8.9 12 

Methylbutyrate  14 17  - - 

Succinate  - -  4.7 5.3 

Propionate  4.8 5.4  0.3 0.4 

Butyrate  4.0 4.9  - - 

Formate  - -  1.1 0.7 

Lactate  - -  1.7 2.2 

Total:   
 

40 42 
 

24 23 
     (45)b (34)b 

aSee Figure 39 for product profiles of protein and RNA treatments.  Net amounts of products 
formed in the unsupplemented control were subtracted from those of supplemented 
treatments; recoveries are based on the amount of substrate provided.  Values are based on 
the arithmetic average of three replicate analyses.  Table modified and used with permission 
from Zeibich et al., 2018. 

bParenthetical values are the estimated recoveries based on RNA-derived ribose as sole 
source of carbon and reducing equivalents. 

The hydrolysis of RNA ensure the release of its subunits ribose, purines, and pyrimidines.  

Ribose-supplemented treatments displayed enhanced amounts of diverse fermentation products 

(Table 33), and the theoretical amounts of recovered carbon and reducing equivalents from 

supplemental RNA did not exceed the amounts available from RNA-derived ribose (Table 34 
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[parenthetical values]).  Furthermore, the RNA-derived production of succinate and formate is 

consistent with ribose-linked fermentations (Stanier and Adams, 1944; Altermatt et al., 1955; 

Rosenberg, 1980).  These findings suggest that the fermentative utilization of RNA-derived ribose 

was likely the important driver of the observed and enhanced fermentation in RNA treatments.  

Although supplemented adenine (a purine) and uracil (a pyrimidine) yielded no enhanced gut 

content fermentation as single substrates (Table 33), it cannot be excluded that purines and 

pyrimidines were utilized during RNA fermentation (e.g., assimilation for cell biosynthesis), and 

thereby indirectly enhanced ribose-based fermentation.   

Ethanol was a major product in ribose treatments, constituting approximately 40% of the 

recovered reducing equivalents (Table 33B).  In marked contrast, ethanol was not detected in 

protein and casamino acid treatments.  Ethanol and uracil had overlapping retention times on the 

high performance liquid chromatograph column which did not allow accurate determination of 

ethanol in the RNA treatment.  However, that ethanol was a major product in the ribose treatment 

and indicated that ethanol was most likely formed during RNA-based fermentation.  Ethanol is 

also produced during the earthworm gut content-fermentation of xylose (Figure 25; Meier et al., 

2018) confirming that ethanol is one of the main products formed during pentose fermentations.  

Lipids can constitute up to 10% of a microbial cell, and the hydrolysis of glycerophospholipids 

would increase the availability of glycerol that can be fermented to propionate (Section 1.3.4.2 

and Section 1.4.3.2; Buckel, 1999; Chen et al., 2016).  Indeed, glycerol-supplemented treatments 

yielded a significant production of propionate compared to the unsupplemented control (Table 

33A). 

3.2.4. Effect of protein and RNA on gut fermentative bacterial 
families 

A total of 2,019,822 bacterial 16S rRNA and 16S rRNA gene sequences were obtained, 

yielding 26 phyla (including candidate phyla).  The rarefaction analyses indicated that the most 

abundant taxa of the unsupplemented control treatments, the protein treatments, and the RNA 

treatments were effectively targeted (Figure 40).  Furthermore, the analysis illustrated, that the 

relative abundances of 16S rRNA gene and 16S rRNA sequences were almost identical in all 

treatments prior to incubation (Figure 41 [sequences at 0 h]).   

Based on the analyzed relative 16S rRNA and 16S rRNA gene sequence abundances, 

Actinobacteria, Proteobacteria, Planctomycetes, Tenericutes, and Verrucomicrobia were 

abundant in gut content at the beginning of incubation, and the relative abundances of 16S rRNA 

sequences demonstrated that these taxa were active throughout the incubation period in 

unsupplemented controls (Figure 41).  Consistent with previous findings (Figure 28), Firmicutes-

affiliated families displayed a increase in relative abundance in unsupplemented controls (Figure 

24). 
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Figure 40.  Rarefaction analyses of bacterial 16S rRNA (RNA) and 16S rRNA gene (DNA) sequences 
obtained from protein and RNA treatments.  Phylotypes were based on a 97% sequence similarity cutoff.  
Abbreviations:  0, 6, 10, 12, 20, 30 indicate the time of sampling in hours; C, unsupplemented control; P, 
protein treatment; R, RNA treatment.  For both panels, 16S rRNA gene or 16S rRNA samples of the three 
replicates were always pooled except for 16S rRNA samples at 30 hour.  Numbers assigned to a treatment 
(e.g., C1) indicate the respective replicate.  Figure modified and used with permission from Zeibich et al., 
2018. 

The marked change in relative abundances of 16S rRNA-based families in the first 10 h of 

incubation demonstrated that the bacterial community responded quickly to the availability of 

protein and RNA (Figure 41).  The molecular analyses indicated that the community-response to 

protein was dissimilar to the community-response to RNA.  Thus, the Firmicutes were mostly 

stimulated by protein, whereas the Proteobacteria were mainly stimulated by RNA (Figure 41).  In 

this regard, Peptostreptococcaceae-, Clostridiaceae-, and Fusobacteriaceae-affiliated phylotypes 

were stimulated by protein, whereas Aeromonadaceae-affiliated phylotypes were stimulated by 

RNA (Figure 41).  The increases in relative abundances of Aeromonadaceae-, Clostridiaceae-, 

Fusobacteriaceae-, and Peptostreptococcaceae-affiliated 16S rRNA sequences were supported 

by statistical analyses, based on the quantitative differences of the relative abundances of 

sequences in unsupplemented control and protein or RNA treatments at the end of the incubation 

(Table 35).  Members of the Mycoplasmataceae, Planctomycetaceae, and 

Xiphinematobacteraceae displayed a relatively stable abundance in all treatments, suggesting 

that the constant high abundance of these families was not dependent on supplemental protein 

or RNA.  However, the increase in the relative abundances of these families corresponded to a 

decrease in the relative abundances of the Mycoplasmataceae and Planctomycetaceae.  
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Figure 41.  Effect of protein or RNA on the temporal changes of the relative abundances of bacterial phyla 
in L. terrestris gut content microcosms based on the analyses of 16S rRNA (RNA) and 16S rRNA genes 
(DNA).   The most abundant families (i.e., families with ≥ 5% relative abundance in at least one sampling 
period) are displayed in the color of the respective phylum.  Abbreviations:  C, unsupplemented control;  P, 
protein treatment; R, RNA treatment.  Samples of the three replicates of a treatment were always pooled 
for each sampling time point, except for the 16S rRNA samples at the end of the 30 h incubation in which 
each bar represents one replicate.  Process data are shown in Figure 39, and information on all detected 
taxa is provided in Table A5.  Figure modified and used with permission from Zeibich et al., 2018. 
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Table 35.  Statistical analyses of main stimulated families in protein or RNA treatments.a 

Family Treatment Mean Variance P Valueb 
LDA Score 

(log10)c 

Aeromonadaceae Control 0.2 0.0 
  

  RNA 19 5.5 0.005 5.3(1) 

  Protein 0.4 0.0 0.119 (0.005)  

Clostridiaceae Control 1.5 0.2 
 

 

  Protein 13 1.3 0.000 5.1(2) 

  RNA 3.3 0.2 0.009 (0.001)  

Fusobacteriaceae Control 1.0 0.3 
 

 

  Protein 8.4 4.7 0.029 4.9(3) 

  RNA 0.2 0.0 0.120 (0.023)  

Peptostreptococcaceae Control 4.6 0.5 
 

 

  Protein 23 5.8 0.006 5.4(1) 

  RNA 2.9 0.4 0.035 (0.005)  

aFamilies were designated (a) abundant when a family had a relative abundance of ≥ 5% in at least 

one sampling period and (b) stimulated when the increase in relative abundance over time was more 

pronounced in at least one treatment (protein or RNA) compared to the respective unsupplemented 

control.  Table modified and used with permission from Zeibich et al., 2018. 

bP values (significant at P ≤ 0.05) of control vs. lysate, protein, or RNA treatments were calculated 
from relative abundances at the end of the 30 h incubation by t-test with unequal variances 
(parenthetical values indicate P values of protein vs. RNA treatments).  

cLDA scores were calculated using LEfSe (protein vs. RNA treatments).  Numbers in parentheses 
display the rank in the LDA analysis (i.e., higher ranking families exhibited a stronger response to 
supplement compared to lower ranking ones). 

The number of detected and expected phylotypes decreased during the incubation (Table 

36).  A trend more pronounced for the protein and RNA treatments compared to the 

unsupplemented controls.  Furthermore, the Shannon indices decreased in the protein and RNA 

treatments whereas those in the controls remained relatively constant with time (Table 36).  These 

findings reinforced the aforementioned stimulation of subgroups (e.g., Aeromonadaceae in RNA 

treatments and Peptostreptococcaceae in protein treatments) of the microbial gut content 

community in protein and RNA treatments.   

The collective relative abundance of the most responsive taxa of the lysate treatment (a) 

constituted approximately 60% of the total abundance of the detected taxa and (b) was greater 

than that of either the protein or RNA treatments (Figure 42).  However, there was an 

approximately three-fourths overlap between the responsive families in lysate treatments and the 

responsive families in the protein and RNA treatments (Figure 42).  This overlap consist of the 

the dominant responsive families in protein and RNA treatments.  Thus, Peptostreptococcaceae 

(protein), Clostridiaceae (protein), and Aeromonadaceae (RNA) collectively constituted 

approximately three-fourths of the responsive families in the lysate treatment (Figure 42).  
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Table 36.  Alpha diversity of the microbial community in control, protein and RNA treatments.a 

Sampling Time  0 h  10 h  20 h 

Treatment:  C.DNA P.DNA R.DNA C.RNA P.RNA R.RNA  C.RNA P.RNA R.RNA  C.RNA P.RNA R.RNA 

Number of 
sequences  

 
95270 98173 93122 96621 98821 101284 

 
108667 118733 103052 

 
80188 90359 82138 

Observed PTsb 
(normalized)c 

 5527 
(3478) 

5660 
(3572) 

5444 
(3404) 

5886 
(3463) 

5898 
(3517) 

6004 
(3504) 

 6008 
(3572) 

5780 
(3392) 

5578 
(3353) 

 5175 
(2910) 

4452 
(2522) 

4689 
(2720) 

Chao1 
(normalized)c 

 7925 
(5967) 

8092 
(5999) 

7908 
(5797) 

9270 
(6431) 

9151 
(6383) 

9723 
(6339) 

 9382 
(6094) 

9177 
(5734) 

8510 
(5744) 

 8668 
(6121) 

7092 
(4988) 

7542 
(5481) 

Shannon 
(normalized)c 

 9.3 
(9.2) 

9.3 
(9.2) 

9.3 
(9.2) 

8.0 
(7.9) 

8.3 
(8.2) 

8.3 
(8.2) 

 8.4 
(8.3) 

7.6 
(7.5) 

8.2 
(8.1) 

 8.0 
(7.9) 

6.6 
(6.5) 

7.6 
(7.5) 

Sampling Time  30 h 

Treatment:  C1.RNA C2.RNA C3.RNA P1.RNA P2.RNA P3.RNA R1.RNA R2.RNA R3.RNA C.DNA P.DNA R.DNA 

Number of 
sequences  

 
84481 83599 35563 114393 80012 78166 73608 69987 48891 59211 61820 63663 

Observed PTsb 
(normalized)c 

 5077 
(2866) 

5011 
(2855) 

3247 
(1788) 

4944 
(2769) 

4082 
(2237) 

4033 
(2241) 

4299 
(2421) 

4329 
(2355) 

3544 
(1911) 

4274 
(2583) 

3558 
(1997) 

3465 
(1909) 

Chao1 
(normalized)c 

 8266 
(5806) 

8117 
(5742) 

5378 
(5302) 

8014 
(5075) 

6927 
(4930) 

6730 
(4713) 

7128 
(5208) 

7330 
(5539) 

6063 
(5242) 

6557 
(5439) 

5838 
(4707) 

5739 
(4589) 

Shannon 
(normalized)c 

 7.7 
(7.6) 

7.9 
(7.8) 

7.9 
(7.9) 

6.7 
(6.6) 

6.7 
(6.6) 

6.7 
(6.6) 

7.5 
(7.4) 

7.4 
(7.3) 

7.4 
(7.3) 

9.3 
(9.3) 

7.1 
(7.0) 

6.2 
(6.2) 

aC, P, and R corresponds to unsupplemented control, protein, and RNA treatments, respectively.  16S rRNA gene or 16S rRNA samples of the three replicates 
were always pooled except for 16S rRNA samples at 30 h.  Numbers assigned to a treatment (e.g., C1) indicate the respective replicate.  DNA, 16S rRNA genes; 
RNA, 16S rRNA.  Table modified and used with permission from Zeibich et al., 2018.  

bPhylotypes (PTs) were clustered based on a sequence similarity cut-off of 97%. 

cThe data sets were normalized to 33,658 sequences for comparison of amplicon libraries of different sizes. 
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Figure 42.  Average relative abundances of 16S rRNA sequences of the most responsive families of lysate, 
protein, and RNA treatments.  Families were considered to be responsive when a family in a given treatment 
displayed a minimum increase in relative abundance of 5% above control values in at least one of the 
sampling periods.  The values for each family are based on the arithmetic average of all abundances 
detected at 6, 12, 20 and 30 h for the yeast lysate treatment and at 10, 20, and 30 h for the protein or RNA 
treatments.  Figure modified and used with permission from Zeibich et al., 2018.   

3.2.5. Lysate-, protein-, and RNA-responsive phylotypes 

The contrasting trends of stimulated fermentative families in lysate, protein, or RNA 

treatments extended to several phylotypes (Figure 43).  For example, the phylotypes PR2, PR6, 

PR7, and PR12 displayed the strongest response to protein and the relative 16S rRNA 

abundances of these four phylotypes were significantly higher in protein treatments than in the 

RNA treatments at the end of the incubation (Table 37).  Of these four phylotypes, phylotype PR2 

(closely related to Romboutsia lituseburensis), was most responsive at both transcript- and gene-

levels (Figure 43).  Phylotype PR6 (related to C. somerae) responded late in the protein treatment 

(Figure 43).  Phylotypes PR7, PR8, and PR12 (closely related to Clostridium thiosulfatireducens, 

Clostridium difficile, and Clostridium tunisiense, respectively) displayed a statistically significant 

response to protein, whereas phylotype PR3 (closely related to Aeromonas media and A. 

hydrophila) was the dominant phylotype that responded significantly to RNA (Figure 43 and Table 

37).  The phylotype CL5 (closely related to Terrisporobacter glycolicus) and phylotype CL18 

(closely related to Clostridium magnum) responded only to the lysate treatment.  Phylotype CL2 

(closely related to P. bifermentans) responded rapidly to yeast lysate during the first 6 h of 

incubation but subsequently decreased in relative abundance, whereas phylotypes CL8 (closely 

related to Clostridium peptidivorans) and CL6 (closely related to the Niameybacter massiliensis) 

had a more sustained response to yeast lysate, with maximum relative abundances of 16S rRNA 

at the end of the 30 hour incubation (Figure 43).
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Figure 43.  16S rRNA-based phylogenetic tree of responsive phylotypes and affiliated reference sequences.   Phylotypes (PT) are based on a sequence similarity cut-
off of 97% and were designated responsive when a phylotype in a given treatment displayed a minimum increase in relative abundance of 2% above control values in 
at least one of the sampling periods.  The phylotypes are derived from the analysis of either 16S rRNA (RNA) and 16S rRNA genes (DNA).  The phylogenetic tree was 
calculated using the neighbor-joining, maximum parsimony, and maximum likelihood methods.  Solid circles, congruent nodes in three trees.  Empty and grey circles at 
nodes, congruent nodes in two trees (neighbor-joining congruent with maximum parsimony or maximum parsimony congruent with maximum likelihood).  Branch length 
and bootstrap values (1,000 resamplings) are from the maximum parsimony tree.  The bar indicates 0.1 change per nucleotide.  T. maritima (AE000512) was used as 
outgroup.  Accession numbers occur at the end of each branch.  Relative abundances (in %) of phylotypes in the table are shown for each sampling period (i.e., 0, 6, 
12, 20 and 30 h for the yeast lysate treatment, and 0, 10, 20, and 30 h for the protein or RNA treatments).  Closely related phylotypes (i.e., >97% sequence similarity) 
that increased in the yeast lysate (L) treatment and protein (P) or RNA (R) treatments were placed on the same horizontal level.  C, unsupplemented control, T, treatment.  
Figure modified and used with permission from Zeibich et al., 2018.
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CL4
0.4

3.5 9.0 14.6 10.9
0.6

12.3 L PR33 0.3 0.6 0.7 0.4 0.1 0.8 P

0.2 0.0 1.0 0.2 1.4 C 0.2 0.4 0.7 2.5 0.1 4.0 R

0.1 0.1 0.2 0.1 0.1 0.2 C

PR6 0.0 0.5 4.0 8.2 0.0 11.4 P

0.0 0.2 0.1 0.2 0.0 0.6 R

0.0 0.1 0.8 1.0 0.1 1.4 C

CL2
0.4

36.0 37.0 20.9 12.8
0.2

22.8 L PR2 0.2 15.7 22.1 16.7 0.2 15.2 P

4.5 12.0 16.0 7.7 14.9 C 0.1 0.6 0.5 0.9 0.1 0.6 R

0.1 1.2 3.1 2.2 0.1 2.0 C

CL5
0.0

0.6 1.0 6.5 7.2
0.0

5.9 L

0.1 0.0 1.0 1.4 1.2 C

PR8 0.0 0.6 2.7 3.2 0.0 2.1 P

0.0 0.1 0.4 1.6 0.0 0.7 R

0.0 0.1 0.4 1.3 0.0 0.6 C

CL6
0.0

0.0 1.0 3.3 7.2
0.0

1.3 L

0.0 0.0 0.0 0.0 0.0 C

CL10
0.0

0.8 3.0 1.7 1.0
0.0

2.3 L PR7 0.1 2.3 5.2 6.5 0.0 5.5 P

0.1 0.0 0.0 0.5 3.5 C 0.0 0.2 0.1 0.3 0.0 0.2 R

0.0 0.2 0.4 0.5 0.0 0.4 C

PR12 0.0 0.8 1.5 3.5 0.0 5.3 P

0.0 0.0 0.1 0.1 0.0 0.1 R

0.0 0.1 0.1 0.2 0.0 0.3 C

CL18
0.0

0.0 0.0 0.4 2.0
0.0

0.9 L

0.0 0.0 0.0 0.0 0.0 C

CL8
0.0

0.0 0.0 1.1 4.9
0.0

1.2 L

0.0 0.0 0.0 0.0 0.5 C

CL15
0.0

0.1 1.0 2.2 1.1
0.0

3.8 L

0.0 0.0 0.0 0.0 0.0 C

Paraclostridium bifermentans, AB075769 

 CL2, LT626667
Romboutsia lituseburensis, EU887828
 PR2, LT626825
Romboutsia sedimentorum, KF44380863

Terrisporobacter glycolicus, X76750

CL5, LT626673 

92

Clostridium difficile, AB075770
 PR8, LT626831

Clostridium bartlettii, ABEZ02000015

50

62

69

Niameybacter massiliensis, LN850735 
 CL6, LT626674

94

92

57

Clostridium subterminale, AB294137 
Clostridium sulfidigenes, EF199998 

Clostridium thiosulfatireducens, AF317650 

CL10, LT626678 
PR7, LT626830

Clostridium huakuii, KC967412 
Clostridium tunisiense, AY187622  

PR12, LT626834

98

38
Clostridium magnum, X77835 
CL18, LT626686

Clostridium drakei, Y18813 

57

77

97

Clostridium pascui, X96736  
Clostridium peptidivorans, AF156796 

CL8, LT626676

48

53

Clostridium butyricum, AB075768

Clostridium frigidicarnis, AF069742

CL15, LT626683 
84

51

57

86

CL7, LT626675

PR3, LT626826

Aeromonas hydrophila, AB472953 

Aeromonas media, X60410

Enterobacter aerogenes, AJ251468 
CL4, LT626672 

Buttiauxella agrestis, AJ233400
 PR33, LT626700

64

100
98

Cetobacterium somerae, AJ438155 
Cetobacterium ceti, X78419
PR6, LT626829
uncultured earthworm bacterium, HG964632

62

100
100

0.10
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Table 37.  Statistical analyses of main stimulated phylotypes displayed in Figure 43.a 

(A) Lysate 
    

Phylotype Treatment Mean 
Standard 
Deviation 

Median 
LDA Score 

(log10)b 

CL4 Control 0.1 0.0 0.1  
 Lysate 6.7 1.0 6.2 4.9(2) 

CL5 Control 1.1 0.1 1.1 
 

 Lysate 6.5 4.3 6.6 4.9(3) 

CL6 Control 0.0 0.0 0.0 
 

 Lysate 7.2 2.1 7.4 5.0(1) 

CL7 Control 0.1 0.0 0.1 
 

 Lysate 0.8 0.1 0.8 4.0(10) 

CL8 Control 0.0 0.0 0.0 
 

 Lysate 4.9 0.7 4.8 4.8(4) 

CL10 Control 0.4 0.1 0.3 
 

 Lysate 0.9 0.1 0.9 4.1(8) 

CL15 Control 0.0 0.0 0.0 
 

 Lysate 1.1 0.2 1.2 4.2(7) 

CL18 Control 0.0 0.0 0.0  
  Lysate 2.0 1.1 1.6 4.4(6) 

      

(B) Protein and RNA 
    

Phylotype Treatment Mean 
Standard 
Deviation 

Median 
LDA Score 

(log10)b 

PR2 Protein 17 1.9 17 5.3(1) 
 RNA 0.9 0.1 0.9  

PR6 Protein 8.2 2.1 7.9 5.0(2) 
 RNA 0.2 0.0 0.2  

PR7 Protein 6.5 0.7 6.3 4.9(3) 
 RNA 0.3 0.1 0.3  

PR8 Protein 3.2 0.5 3.1 4.7(4) 

 RNA 1.6 0.4 1.4  

PR12 Protein 3.5 0.2 3.4 4.6(5) 
 RNA 0.1 0.0 0.1   

PR3 Protein 0.3 0.0 0.3 
 

 RNA 15 1.9 14 5.3(2) 

PR33 Protein 0.1 0.0 0.1 
 

  RNA 1.2 0.1 1.2 4.2(6) 

aOnly phylotypes that were significantly stimulated (based on LEfSe analyses) by a given 
supplement are shown. The LEfSe analysis, mean value, standard deviation, and median 
are based on the relative abundance of 16S rRNA sequences of the three replicates per 
treatment at the end of the incubation.  Table modified and used with permission from 
Zeibich et al., 2018. 

bLDA scores were calculated using LEfSe.  Numbers in parentheses display the rank in the 
LDA analysis (i.e., higher ranking phylotypes exhibited a stronger response to supplement 
compared to lower ranking ones). 
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3.2.6. Amino acid-derived fermentation in gut content of L. terrestris 

The fermentation of protein in the gut is dependent on diverse proteases that hydrolyze 

peptide bonds, yielding monomeric amino acids (Section 1.3.2 and Section 1.4.2), and the marked 

stimulation of gut fermentations by protein warranted a more detailed analysis.  In a preliminary 

study, eight fermentable amino acids (Buckel, 1999) were evaluated for their potential to stimulate 

gut content fermentation (Figure 44).  In this regard, only glutamate, aspartate, and threonine 

yielded an obvious stimulation of fermentation (Figure 44 and Table 38).  Based on an equal 

amount of available amino acids, casamino acids (a mixture of amino acids) also enhanced the 

gut content fermentation but was less stimulatory than glutamate.   

 

Figure 44.  Collective amounts of fermentation products in amino acid treatments of the 
preliminary study.  Initial amino acid concentrations approximated 10 mM.  Control lacked 
supplemental amino acids.  Values are the average of duplicate analyses shown in Table 38 and 
represent the net amounts of products at the end of the 30 h incubation.  Abbreviations:  C, 
unsupplemented control; CAA, casamino acids; Glu, glutamate; Asp, aspartate; Thr, threonine; 
Ala, alanine; Gly, glycine; Leu, leucine; Tyr, tyrosine; Val, valine; FW, fresh weight.  Figure 
modified and used with permission from Zeibich et al., 2019b. 
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Table 38.  Effect of amino acids on the fermentation product profiles of anoxic microcosms of L. terrestris gut contents.a 

  Products (µmol/gFW)  
 

Treatment 
Time 
(h) 

CO2 H2 Acetate Succinate 
Prop-
ionate 

Formate Lactate Ethanol Butyrate 
Iso-

butyrate 
Methyl-
butyrate 

pH 

Control 0 0.0 / 0.0 0.0 / 0.0 6.1 / 6.6 1.4 / 1.5 0.5 / 0.6 2.4 / 2.4 0.8 / 0.8 1.2 / 1.1 0.7 / 0.6 0.0 / 0.1 0.0 / 0.0 7.0 / 7.0 
 30 13 / 9.9 0.0 / 0.0 17 / 17 0.0 / 0.0 3.5 / 3.4 0.6 / 0.6 0.5 / 0.5 1.5 / 1.5 1.4 / 1.3 0.1 / 0.1 1.4 / 1.7 7.1 / 7.1 

Casamino Acids 0 0.0 / 0.0 0.0 / 0.0 9.3 / 9.3 2.0 / 1.9 0.0 / 0.0 2.9 / 3.1 1.2 / 1.2 0.7 / 0.7 0.6 / 0.6 0.1 / 0.1 0.0 / 0.0 7.0 / 7.0 
30 28 / 30 0.5 / 0.6 52 / 52 1.3 / 1.1 11 / 11 0.4 / 0.3 1.3 / 1.4 1.5 / 1.5 3.8 / 3.9 0.3 / 0.3 2.6 / 2.5 7.0 / 7.0 

Alanine 0 0.0 / 0.0 0.0 / 0.0 5.7 / 6.0 1.3 / 1.3 0.6 / 0.6 2.5 / 2.7 1.0 / 0.8 1.0 / 1.1 0.7 / 0.7 0.0 / 0.1 0.0 / 0.0 7.1 / 7.1 
 30 5.4 / 5.4 0.0 / 0.0 18 / 17 0.4 / 0.5 3.0 / 2.6 1.1 / 0.5 0.6 / 0.5 1.0 / 1.0 1.3 / 1.3 0.1 / 0.1 0.7 / 0.8 7.1 / 7.1 

Aspartate 0 0.0 / 0.0 0.0 / 0.0 5.4 / 5.7 1.3 / 1.4 0.5 / 0.5 2.5 / 4.6 0.9 / 0.9 1.1 / 1.0 0.6 / 0.6 0.1 / 0.0 0.0 / 0.0 6.8 / 6.8 
 30 25 / 28 0.0 / 0.0 22 / 24 1.5 / 1.4 28 / 28 0.2 / 0.2 0.9 / 0.9 1.7 / 1.6 1.2 / 1.3 0.3 / 0.3 1.7 / 1.7 6.9 / 6.9 

Glutamate 0 0.0 / 0.0 0.0 / 0.0 5.5 / 5.3 1.2 / 1.1 0.5 / 0.5 2.6 / 2.5 0.9 / 0.9 0.8 / 0.8 0.6 / 0.7 0.1 / 0.1 0.0 / 0.0 6.7 / 6.7 
 30 25 / 38 5.0 / 11 130 / 140 1.9 / 2.0 1.6 / 1.7 11 / 11 0.7 / 0.5 1.8 / 1.5 9.0 / 9.6 0.0 / 0.0 0.3 / 0.4 6.6 / 6.6 

Glycine 0 0.0 / 0.0 0.0 / 0.0 5.7 / 5.3 1.2 / 1.2 0.5 / 0.5 2.3 / 2.3 0.9 / 0.9 0.9 / 0.9 0.6 / 0.6 0.0 / 0.1 0.0 / 0.0 6.7 / 6.7 
 30 7.9 / 11 0.0 / 0.0 21 / 20 0.2 / 0.2 3.4 / 3.4 0.8 / 0.2 0.5 / 0.5 0.9 / 1.1 1.1 / 1.0 0.1 / 0.1 1.6 / 1.6 6.7 / 6.7 

Leucine 0 0.0 / 0.0 0.0 / 0.0 5.8 / 8.1 1.3 / 1.9 0.5 / 0.6 1.7 / 2.4 0.8 / 1.1 0.9 / 1.3 0.6 / 0.9 0.1 / 0.1 0.0 / 0.0 7.1 / 7.0 
 30 7.6 / 8.6 0.0 / 0.0 15 / 15 0.2 / 0.2 2.8 / 2.8 0.8 / 0.9 0.5 / 0.5 1.3 / 1.2 1.0 / 1.0 0.1 / 0.1 2.6 / 2.6 7.1 / 7.1 

Threonine 0 0.0 / 0.0 0.0 / 0.0 8.0 / 9.0 1.8 / 2.0 0.8 / 1.1 3.0 / 3.0 1.0 / 1.0 0.9 / 0.9 0.9 / 1.0 0.1 / 0.0 0.0 / 0.0 7.0 / 7.1 
 30 26 / 17 1.2 / 1.5 18 / 18 1.1 / 1.3 32 / 29 4.1 / 1.1 1.0 / 1.0 1.5 / 1.5 1.9 / 1.9 0.3 / 0.2 0.9 / 0.8 7.0 / 7.0 

Tyrosine 0 0.0 / 0.0 0.0 / 0.0 6.5 / 6.3 1.6 / 1.5 0.6 / 0.5 2.6 / 2.7 1.0 / 0.9 1.0 / 1.0 0.9 / 0.9 0.1 / 0.1 0.0 / 0.0 7.1 / 7.1 
 30 9.0 / 8.8 0.2 / 0.2 19 / 19 0.0 / 0.0 3.0 / 3.1 0.3 / 0.3 0.5 / 0.5 2.3 / 2.6 0.9 / 1.0 0.1 / 0.0 1.0 / 1.0 7.1 / 7.1 

Valine 0 0.0 / 0.0 0.0 / 0.0 7.9 / 7.6 1.8 / 1.6 0.6 / 0.6 2.5 / 2.5 0.8 / 0.8 1.3 / 1.0 0.9 / 0.8 0.0 / 0.1 0.0 / 0.0 7.1 / 7.1 

  30 7.1 / 3.5 0.0 / 0.0 16 / 15 0.0 / 0.0 2.9 / 2.9 0.3 / 0.3 0.5 / 0.5 0.8 / 0.9 0.9 / 0.8 1.9 / 1.8 0.0 / 0.1 7.1 / 7.1 

aThe amount of amino acids per microcosm approximated 10 mM.  Controls lacked supplemental amino acids.  Amounts of products formed in the duplicates are separated 
by a slash.  FW, fresh weight.  Table modified and used with permission from Zeibich et al., 2019b.  
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These preliminary findings demonstrated that the stimulation of fermentation was limited to 

specific amino acids.  Therefore, only the stimulatory amino acids glutamate, aspartate, threonine, 

and casamino acids were selected for more detailed studies including taxa analysis.  The potential 

for Stickland reactions (simultaneous fermentation of two amino acids; Section 1.4.2) in gut 

contents was assessed by supplementing glycine and either alanine or valine.   

As in the preliminary experiment, the glutamate treatment displayed the strongest response 

(Figure 45) and the formation of diverse products without an apparent delay (Figure 46), 

illustrating the high capacity of a single amino acid to stimulate gut fermenters.  Several pathways 

can be utilized for glutamate fermentation, and the associated fermenters produce acetate, CO2, 

H2, formate, and butyrate (Stams and Hansen, 1984; Buckel, 2001; Section 1.4.2), products that 

significantly increased in the glutamate treatment (Figure 45, Figure 46, and Table 39).   

 
Figure 45.  Collective amounts of fermentation products in amino acid-supplemented anoxic 
microcosms of L. terrestris gut contents.  Initial concentrations approximated 10 mM for casamino 
acids, glutamate, aspartate, threonine, and glycine, and 5 mM for alanine and valine.  Control lacked 
supplemental amino acids.  Values are the average of triplicate analyses in Figure 46 and represent 
the net amounts of products at the end of the 30 h incubation.  The asterisks indicate significant 
differences between the collective amount of products formed in control and amino acid treatments 
(*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; t-test with unequal variances; see Table 39 for P values, 
mean values, and variances).  Abbreviations:  C, unsupplemented control; CAA, casamino acids; 
Glu, glutamate; Asp, aspartate; Thr, threonine; Ala, alanine; Gly, glycine; Val, valine;  FW, fresh 
weight.  Figure modified and used with permission from Zeibich et al., 2019b. 
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Figure 46.  Effect of amino acids on the fermentation product profiles of anoxic microcosms of L. terrestris 
gut contents.  Initial concentrations approximated 10 mM for casamino acids, glutamate, aspartate, 
threonine, and glycine, and 5 mM for alanine and valine.  Control lacked supplemental amino acids.  Values 
are the arithmetic average of three replicate analyses, and error bars indicate the standard deviations.  
Some standard deviations are smaller than the size of the symbol and therefore not apparent.  FW, fresh 
weight.  Figure modified and used with permission from Zeibich et al., 2019b. 
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Table 39.  P values of fermentation products in amino acid treatments.a 

Products CO2 

Treatment C CAA Glu Asp Thr Ala/Gly Val/Gly 

Mean valueb 14 35 63 66 32 17 20 

Variance 4.2 14 142 70 6.6 9.0 5.5 

P value 
 

0.003 0.02 0.009 0.001 0.168 0.034 

Products H2 

Treatment C CAA Glu Asp Thr Ala/Gly Val/Gly 

Mean valueb 0.4 1.1 26 0.0 0 -1.1 -1.0 

Variance 0.0 0.0 9.3 0.0 0.2 0.0 0.0 

P value 
 

0.023 0.005 0.000 0.264 0.000 0.002 

Products Acetate 

Treatment C CAA Glu Asp Thr Ala/Gly Val/Gly 

Mean valueb 11 48 183 32 18 18 14 

Variance 0.0 2.4 2.5 1.7 27 1.3 0.4 

P value 
 

0.001 0.000 0.001 0.127 0.009 0.010 

Products Succinate 

Treatment C CAA Glu Asp Thr Ala/Gly Val/Gly 

Mean valueb -0.9 -0.9 0.5 34 0.0 -1.1 -1.0 

Variance 0.0 0.0 0.0 2.1 0.2 0.0 0.0 

P value 
 

0.650 0.004 0.001 0.095 0.002 0.130 

Products Formate 

Treatment C CAA Glu Asp Thr Ala/Gly Val/Gly 

Mean valueb 1.1 1.1 17 0.7 1.8 0.4 0.7 

Variance 1.0 0.2 0.3 0.8 0.8 0.2 0.1 

P value 
 

0.999 0.000 0.640 0.397 0.388 0.596 

Products Propionate 

Treatment C CAA Glu Asp Thr Ala/Gly Val/Gly 

Mean valueb 2.3 9.6 0.6 20 37 2.3 2.4 

Variance 0.0 0.1 0.0 1.7 78 0.1 0.0 

P value 
 

0.000 0.000 0.002 0.021 0.760 0.186 

Products Butyrate 

Treatment C CAA Glu Asp Thr Ala/Gly Val/Gly 

Mean valueb 0.1 3.7 8.2 0.3 3.0 0.3 0.2 

Variance 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

P value 
 

0.001 0.000 0.237 0.000 0.234 0.902 

Products Methylbutyrate 

Treatment C CAA Glu Asp Thr Ala/Gly Val/Gly 

Mean valueb 1.8 4.2 0.8 1.9 1.7 1.7 0.3 

Variance 0.0 0.0 0.0 0.1 0.0 0.0 0.0 

P value 
 

0.000 0.000 0.493 0.385 0.165 0.000 

Products Isobutyrate 

Treatment C CAA Glu Asp Thr Ala/Gly Val/Gly 

Mean valueb 0.1 0.2 0.0 0.3 0.3 0.1 3.2 

Variance 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

P value 
 

0.067 0.057 0.078 0.036 0.549 0.000 



114    RESULTS 

 

 

Products Lactate 

Treatment C CAA Glu Asp Thr Ala/Gly Val/Gly 

Mean valueb -0.1 0.0 0.5 0.2 0.1 0.0 0.0 

Variance 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

P value 
 

0.040 0.000 0.025 0.133 0.052 0.023 

Products Ethanol 

Treatment C CAA Glu Asp Thr Ala/Gly Val/Gly 

Mean valueb 1.8 1.3 2.3 2.2 1.8 1.6 2.0 

Variance 0.3 0.0 0.0 0.1 0.0 0.0 0.0 

P value 
 

0.317 0.243 0.403 0.774 0.627 0.563 

Products Total 

Treatment C CAA Glu Asp Thr Ala/Gly Val/Gly 

Mean valueb 31 103 301 158 101 41 42 

Variance 2.9 9.6 219 55 146 13 3.4 

P value 
 

0.000 0.001 0.001 0.010 0.027 0.002 

aP values (significant at P ≤ 0.05) were calculated by t-test with unequal variances and are based on the 
difference between the net amount of products in control (C) and casamino acid (CAA), glutamate (Glu), 
aspartate (Asp), threonine (Thr), alanine and glycine (Ala/Gly), and valine and glycine (Val/Gly) treatments.  
To calculate net amounts, amounts of products at the beginning of incubation were subtracted from those 
at the end of incubation.  See Figure 46 for product profile.  Table modified and used with permission from 
Zeibich et al., 2019b. 

bMean values (n = 3) are in µmol/gFW.  FW, fresh weight. 

90% and 92% of glutamate-derived carbon and reducing equivalents, respectively, were 

theoretically recovered in the detected fermentation products (Table 40).  These recoveries and 

the formation of almost the same amount of ammonium compared to the supplemented glutamate 

(Table 41) illustrated that nearly all of the supplemented glutamate was utilized.  In contrast to the 

glutamate treatment, the aspartate treatment yielded high amounts of propionate and succinate, 

whereas threonine significantly stimulated the production of propionate and CO2 (Figure 45, 

Figure 46, and Table 39).  Propionate is also one of the main product of threonine fermentation 

in the human gut (Smith and Macfarlane, 1997).  The comparative amounts of detected 

ammonium at the end of the incubation and the theoretical recoveries of carbon and reducing 

equivalents (Table 40 and Table 41) demonstrated (a) that the amount of supplemented amino 

acid was adequate for the detected products, and (b) that the fermentative gut microbiota is more 

efficient to utilize glutamate than aspartate or threonine.  The increased amounts of ammonium 

in the amino acid treatments (Table 41) suggests that detected in situ amounts of ammonium in 

the alimentary canal and cast of earthworms (Parle, 1963a; Drake and Horn, 2007) might at least 

be partially caused by the deamination and fermentation of amino acids in the gut. 

The co-amino acid treatments (alanine plus glycine or valine plus glycine) displayed only a 

marginally stimulation of fermentations (Figure 45 and Figure 46).  Furthermore, only 5 to 6% of 

the amino acids-derived carbon and reducing equivalent were recovered in the detected 

fermentation products (Table 40).    However, the collective amounts of fermentation products 

formed in the co-amino acid treatments were significantly greater than in the unsupplemented 
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Table 40.  Estimated recoveries of carbon and reducing equivalents (i.e., electrons) in amino acid treatments.a 

  Recoveries (%) 

 Casamino 
Acids 

 Glutamate  Aspartate  Threonine  Alanine/ 
Glycine 

 Valine/  
Glycine 

Main Products  Carbon RE  Carbon RE  Carbon RE  Carbon RE  Carbon RE   Carbon RE 

CO2 4.0 na  10 na  13 na  4.6 na  1.0 na  1.3 na 

H2 na 0.1  na 2.8  na -  na 0.6  na -  na - 

Acetate 14 13  69 76  11 14  3.8 3.8  4.1 5.5  1.7 1.5 

Ethanol - -  0.2 0.4  0.2 0.4  0.1 0.1  - -  0.1 0.1 

Lactate 0.1 0.1  0.4 0.4  0.3 0.4  0.2 0.2  0.1 0.1  0.1 0.0 

Succinate - -  1.1 1.0  35 41  0.8 0.7  - -  - - 

Formate - -  3.1 1.7  - -  0.2 0.1  - -  - - 

Butyrate 2.7 3.1  6.4 8.8  0.2 0.3  2.9 3.6  0.2 0.3  - - 

Propionate 4.2 4.7  - -  13 21  26 30  0.0 0.1  0.1 0.1 

Isobutyrate 0.1 0.1  - -  0.1 0.2  0.1 0.2  - -  2.7 3.1 

Methylbutyrate 2.3 2.9  - -  0.2 0.3  - -  - -  - - 

Total  28 25   90 92   73 77   39 39   5.4 6.0   5.9 5.0 

aSee Figure 46 for product profiles.  Net amounts of products formed in the unsupplemented control were subtracted from those of supplemented treatments; recoveries 
are based on the amount of substrate provided.  Values are based on the arithmetic average of three replicate analyses.  RE, reducing equivalents; -, no net increase of 
the product during the incubation in supplemented treatments relative to the control treatments; na, not applicable.  Table modified and used with permission from Zeibich 
et al., 2019b. 
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control, suggesting that gut content microbes had at least a low potential for conducting Stickland 

reactions (Figure 45, Figure 46, and Table 39).  Furthermore, isobutyrate was significantly 

produced in valine/glycine treatments but was only detected at trace levels in all other amino acid 

and control treatments (Figure 45 and Figure 46), a finding confirmed by the production of 

isobutyrate when valine is utilized (McInerny, 1988).  Treatments supplemented with casamino 

acids yielded CO2, acetate, propionate, and methylbutyrate as main fermentation products (Figure 

45 and Figure 46).  Expect of the leucine treatment in the preliminary experiment, methylbutyrate 

was much less produced in all other amino acid treatment (Table 38, Figure 45, and Figure 46), 

suggesting that the fermentation of leucine may have been at least partially contributed to the 

production of these product in the casamino acid treatments (Table 38, Figure 45, and Figure 46).   

73% and 77% of aspartate-derived carbon and reducing equivalents, respectively, were 

theoretically recovered in the detected fermentation products, and the theoretically recoveries of 

threonine-derived carbon and reducing equivalents in the detected products approximated 39% 

and 39%, respectively (Table 40).  In comparison, only 28% and 25% of casamino acid-derived 

carbon and reducing equivalents, respectively, were recovered in the detected fermentation 

products (Table 40).  The collective findings indicated the fermenters of gut content were not 

capable of fermenting all amino acids equally, a trend consistent with certain amino acids being 

less easily fermented by the microbial community of the human colon (Smith and Macfarlane, 

1997).  However, the enhanced formation of fermentation products in certain treatments (Figure 

45 and Figure 46) illustrated that gut fermenters were poised to respond to specific amino acids. 

Table 41.  Production of ammonium in amino acid-supplemented 
anoxic microcosms of L. terrestris gut contents.a 

Treatment Time (h) NH4
+ (mM) 

Control 0 0.6 ± 0.5 
 30 0.0 ± 0.0 

Casamino Acids 0 0.8 ± 0.3 
 30 4.7 ± 0.6 

Glutamate 0 0.9 ± 0.1 
 30 9.5 ± 1.0 

Aspartate 0 1.0 ± 0.0 
 30 7.8 ± 0.7 

Threonine 0 0.6 ± 0.2 
 30 2.7 ± 0.2 

Alanine/Glycine 0 0.6 ± 0.0 
 30 1.3 ± 0.3 

Valine/Glycine 0 0.4 ± 0.1 
 30 1.2 ± 0.3 

aThe amount of amino acids per microcosm approximated 10 mM.  
Controls lacked supplemental amino acids.  Values are the arithmetic 
average of three replicate analyses (± standard deviation).  See 
Figure 46 for product profile.  Table modified and used with permission 
from Zeibich et al., 2019b. 
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3.2.7. Effect of amino acids on gut fermentative bacterial families 

A total of 9,169,869 bacterial 16S rRNA gene and 16S rRNA sequences, associated to 32 

phyla (including candidate phyla), were obtained from the amino acid treatments, and the 

rarefaction analyses indicated that the most abundant taxa were targeted (Figure 47).  Based on 

the net increases of the relative 16S rRNA gene and 16S rRNA sequence abundances, 

Fusobacteriaceae were mostly stimulated by glutamate, aspartate, and casamino acids.  

Furthermore, Aeromonadaceae were stimulated in aspartate treatment, and the relative 

abundance of Peptostreptococcaceae-affiliated sequences increased mainly in casamino acid, 

threonine, and co-amino acid treatments.  Apart from that, Clostridiaceae and Enterobacteriaceae 

displayed a significant increase in glutamate treatments compared to the unsupplemented control 

(Figure 48, Figure 49, and Table 42). Enterobacteriaceae was also significantly stimulated by 

aspartate and threonine (Figure 48, Figure 49, and Table 42).  Both co-amino acid treatments 

displayed a significant stimulation of Lachnospiraceae compared to the unsupplemented control, 

suggesting this family as responsible for the marginal enhanced Stickland reaction (Table 42).   

Consistent with the strong stimulation of Enterobacteriaceae, Clostridiaceae, and 

Fusobacteriaceae in the glutamate treatment (Figure 48), the number of detected phylotypes, the 

number of expected phylotypes (Chao1), and Shannon indices of this treatment were lower than 

those of unsupplemented controls (Figure 49).  The apparent shift in the fermentative community 

during the incubation was (a) corroborated by the NMDS analysis (Section 2.6.2.2) of all the 

detected phylotypes (Figure 50), and (b) more obvious in amino acid than in unsupplemented 

control treatments.  The similarity of the bacterial community composition in the amino acid 

treatments at the beginning of incubation (Figure 49 A) and in the triplicate analysis at the end of 

incubation (Figure 49 B) demonstrate the reproducibility of the phylogenic analyses that is further 

reinforced by the groupings in the NMDS plot (Figure 50). 

 



118    RESULTS 

 

 

 

Figure 47.  Rarefaction analyses of bacterial 16S rRNA genes (A) and 16S rRNA (B) sequences obtained 
from anoxic L. terrestris gut content microcosms supplemented with amino acids.  Phylotypes were based 
on a 97% sequence similarity cutoff.  Samples of the three replicates of the 16S rRNA control treatment at 
0 h, and all 16S rRNA treatments at 30 h were analyzed separately.  Samples of the three replicates were 
pooled for each of the other treatments at 0 h, 10 h, 22 h or 30 h.  Abbreviations: C, unsupplemented 
control; CAA, casamino acids; Glu, glutamate; Asp, aspartate; Thr, threonine; Ala, alanine; Gly, glycine; 
Val, valine.  Numbers assigned to a treatment (e.g., C1) indicate the respective replicate.  Figure modified 
and used with permission from Zeibich et al., 2019b. 
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Figure 48.  Net increases in 16S rRNA gene (DNA) and 16S rRNA (RNA) relative abundances of bacterial 
families stimulated by supplemental amino acids in L. terrestris gut content microcosms.  The graph is 
limited to families that displayed a net increase in relative abundance of ≥ 4% in at least one treatment and 
the families are color-coded to the respective phyla (see Figure 49 for the complete 16S rRNA and 16S 
rRNA gene analyses).  Net increases of relative abundances were calculated as follows: (a) the calculation 
is based either on mean relative abundances when samples from the three replicates were analyzed 
separately (i.e., all RNA and DNA samples of control treatments and RNA samples at 30 h of supplemented 
treatments) or on single relative abundances when samples of the three replicates were pooled for 
sequence analyses (i.e.,  DNA samples at 0 h and 30 h and RNA samples at 0 h of supplemented 
treatments); (b) mean or single relative abundances at the beginning of incubation were subtracted from 
those at the end of incubation for control and supplemented treatments; (c) the resulting time-corrected 
relative abundances of control treatments were subtracted from those of supplemented treatments 
(negative time-corrected relative abundances of control treatments were ignored).  Figure modified and 
used with permission from Zeibich et al., 2019b. 

Table 42.  Statistical analyses of stimulated families in amino acid treatments.a 

Family Treatment Mean 
Standard 
Deviation 

Median 
LDA 

Score 
(log10)b 

Clostridiaceae Control 2.9 0.3 2.9 
 

 Glutamate 7.7 1.0 7.8 4.9(3) 
 Threonine 3.6 0.2 3.6 4.5(3) 

Enterobacteriaceae Control 3.0 0.2 3.1  

 Casamino Acids 5.4 0.6 5.4 4.7(2) 

 Glutamate 10 1.3 10 5.0(2) 

 Aspartate 8.1 0.4 8.1 4.9(2) 

 Threonine 4.3 0.2 4.3 4.6(4) 

 Alanine/Glycine 4.2 0.4 4.3 4.6(2) 

 Valine/Glycine 4.9 0.3 4.9 4.7(2) 

Fusobacteriaceae Control 16 0.5 16  

 Casamino Acids 25 0.3 25 5.4(1) 

 Glutamate 29 2.3 29 5.5(1) 

 Aspartate 22 0.7 22 5.3(1) 

 Threonine 18 1.2 17 5.3(1) 

Lachnospiraceae Control 1.9 0.3 2.0  

 Alanine/Glycine 3.7 0.6 3.8 4.6(3) 

 Valine/Glycine 3.9 0.6 3.9 4.6(3) 

Peptostreptococcaceae Control 1.1 0.1 1.1  

 Casamino Acids 3.9 0.3 3.8 4.6(3) 

 Threonine 6.3 0.6 6.0 4.8(2) 

 Alanine/Glycine 12 0.1 12 5.1(1) 

 Valine/Glycine 4.9 1.0 4.7 4.7(1) 

Shewanellaceae Control 3.3 0.3 3.4  
  Threonine 4.4 0.1 4.3 4.6(3) 

aFamilies reaching a LDA score ≥ 4.0 were considered. LEfSe analysis, mean value, standard deviation, and 
median are based on the relative abundance of 16S rRNA sequences of the three replicates per treatment 
at the end of the incubation.  Table modified and used with permission from Zeibich et al., 2019b. 

bLDA scores were calculated using LEfSe.  Numbers in parentheses display the rank in the LDA analysis 
(i.e., higher ranking families exhibited a stronger response to supplement compared to lower ranking ones). 
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Figure 49.  16S rRNA gene and 16S rRNA analyses of control and amino acid treatments.   The most 
abundant families (i.e., families with ≥ 4% relative abundance in at least one sampling period) are displayed 
in the color of the respective phylum.  Process data are shown in Figure 46, and information on all detected 
taxa is provided in Table A6.  Abbreviations: C, unsupplemented control; CAA, casamino acids; Glu, 
glutamate; Asp, aspartate; Thr, threonine; Ala, alanine; Gly, glycine; Val, valine.  Panel A: Single bars 
without asterisk indicate that 16S rRNA gene (DNA) or 16S rRNA (RNA) samples of the three replicates 
were pooled for the sequence analysis.  Asterisk indicates analysis was performed individually for the three 
replicates (see grouped bars Panel B).  Figure modified and used with permission from Zeibich et al., 2019b.  
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Table 43.  Alpha diversity of the microbial community in control and amino acid treatments.a 

Sample 
(Sampling  
Time) 

Treatment 
Number of 
sequences 

Observed 
phylotypesb 

(normalized)c 

Chao1 
(normalized)c 

Shannon 
(normalized)c 

DNA  Control  128322 2594 (477) 3418 (480) 5.0 (4.5) 

(0 h) Casamino acids 108230 2431 (476) 3114 (479) 4.9 (4.4) 
 Glutamate 116420 2485 (476) 3342 (481) 4.9 (4.4) 
 Aspartate 136612 2594 (476) 3445 (484) 4.8 (4.3) 
 Threonine  118672 2491 (475) 3290 (477) 4.8 (4.3) 
 Alanine/Glycine 109665 2422 (475) 3202 (479) 4.8 (4.3) 
 Valine/Glycine 169345 2741 (475) 3534 (479) 4.8 (4.3) 

DNA  Controld  6431 646 (  -  ) 1084 (  -  ) 4.1 (  -  ) 

(10 h) Casamino acids 91618 1887 (465) 2652 (473) 3.5 (3.2) 
 Glutamate 125262 2232 (471) 3011 (476) 3.8 (3.4) 

 Aspartate 93662 2165 (475) 3036 (480) 4.3 (3.9) 

 Threonine  148875 2531 (476) 3274 (479) 4.5 (4.0) 

 Alanine/Glycine 93869 2328 (478) 3156 (484) 4.8 (4.3) 

 Valine/Glycine 111828 2378 (477) 3185 (480) 4.7 (4.2) 

DNA  Control  96516 2167 (480) 2940 (484) 4.5 (4.0) 

(22 h) Casamino acids 147534 2101 (472) 3155 (482) 3.3 (3.0) 
 Glutamate 153193 2076 (474) 2897 (483) 3.3 (3.0) 

 Aspartate 120118 2000 (475) 2723 (482) 3.6 (3.3) 

 Threonine  120781 2137 (479) 2855 (483) 4.1 (3.7) 

 Alanine/Glycine 113657 2233 (478) 2949 (481) 4.7 (4.2) 

 Valine/Glycine 128504 2330 (480) 3050 (484) 4.5 (4.0) 

DNA  Control  119569 2294 (480) 3027 (483) 4.5 (4.1) 

(30 h) Casamino acids 144816 2123 (473) 2870 (481) 3.7 (3.4) 

 Glutamate 102791 1874 (470) 2484 (477) 3.5 (3.2) 

 Aspartate 143408 2130 (473) 2894 (483) 3.9 (3.5) 

 Threonine  146505 2278 (480) 2916 (483) 4.3 (3.9) 

 Alanine/Glycine 142761 2417 (480) 3218 (483) 4.7 (4.3) 

 Valine/Glycine 144847 2265 (479) 3006 (484) 4.3 (3.9) 

RNA  Control 1 211207 2803 (477) 3406 (482) 4.6 (4.0) 

(0 h) Control 2 124938 2345 (476) 2969 (478) 4.4 (3.9) 

 Control 3 176174 2561 (477) 3309 (480) 4.3 (3.8) 

 Casamino acids 117131 2362 (476) 3143 (478) 4.4 (3.9) 

 Glutamate 166463 2540 (477) 3164 (479) 4.4 (3.9) 

 Aspartate 131510 2454 (477) 3232 (479) 4.5 (4.0) 

 Threonine  174976 2503 (476) 3180 (479) 4.1 (3.7) 

 Alanine/Glycine 127750 2356 (478) 3013 (484) 4.4 (3.9) 

 Valine/Glycine 159830 2544 (478) 3302 (480) 4.5 (4.0) 

RNA  Control  122862 2318 (482) 2958 (486) 4.3 (3.8) 

(10 h) Casamino acids 168746 2271 (480) 2887 (482) 3.6 (3.2) 

 
Glutamate 126412 2260 (480) 3121 (482) 3.9 (3.5) 
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Sample 
(Sampling  
Time) 

Treatment 
Number of 
sequences 

Observed 
phylotypesb 

(normalized)c 

Chao1 
(normalized)c 

Shannon 
(normalized)c 

RNA  Aspartate 160540 2435 (481) 3019 (483) 4.2 (3.7) 

(10 h) Threonine  113043 2260 (481) 3026 (484) 4.3 (3.8) 

 Alanine/Glycine 97295 2321 (481) 3012 (482) 4.6 (4.1) 

 Valine/Glycine 120964 2414 (482) 3167 (486) 4.6 (4.1) 

RNA  Control  135915 2490 (486) 3131 (486) 4.4 (3.9) 

(22 h) Casamino acids 94755 1862 (483) 2533 (485) 3.6 (3.2) 

 Glutamate 115249 1953 (481) 2632 (485) 3.6 (3.2) 

 Aspartate 120291 2053 (483) 2723 (485) 3.8 (3.5) 

 Threonine  140737 2333 (484) 2963 (485) 4.2 (3.8) 

 Alanine/Glycine 136979 2514 (485) 3179 (486) 4.8 (4.3) 

 Valine/Glycine 139028 2459 (485) 3186 (485) 4.7 (4.2) 

RNA  Control 1 121953 2345 (485) 3160 (486) 4.6 (4.1) 

(30 h) Control 2 145730 2359 (485) 3011 (486) 4.4 (3.9) 

 Control 3 135750 2316 (486) 2954 (486) 4.4 (4.0) 

 Casamino acids 1 154449 2241 (484) 2914 (485) 4.0 (3.7) 

 Casamino acids 2 57895 1700 (482) 2362 (484) 4.0 (3.6) 

 Casamino acids 3 109922 2041 (482) 2660 (485) 4.0 (3.6) 

 Glutamate 1 127517 2084 (484) 2784 (486) 3.8 (3.4) 

 Glutamate 2 102218 1985 (482) 2647 (485) 3.9 (3.5) 

 Glutamate 3 98379 1925 (482) 2524 (485) 3.8 (3.4) 

 Aspartate 1 132724 2280 (483) 2914 (485) 4.2 (3.7) 

 Aspartate 2 98432 1980 (484) 2806 (485) 4.0 (3.6) 

 Aspartate 3 108184 2039 (484) 2690 (485) 4.0 (3.6) 

 Threonine 1 103154 2048 (484) 2595 (487) 4.3 (3.9) 

 Threonine 2 158797 2348 (485) 3010 (486) 4.4 (3.9) 

 Threonine 3 138039 2202 (486) 2808 (487) 4.4 (4.0) 

 Alanine/Glycine 1 130264 2312 (486) 2997 (486) 4.6 (4.1) 

 Alanine/Glycine 2 161641 2437 (484) 3129 (486) 4.6 (4.1) 

 Alanine/Glycine 3 145579 2341 (484) 3080 (486) 4.5 (4.1) 

 Valine/Glycine 1 126821 2248 (484) 2895 (486) 4.5 (4.1) 

 Valine/Glycine 2 128701 2192 (484) 2898 (487) 4.3 (3.9) 

 
Valine/Glycine 3 117114 2228 (483) 2948 (484) 4.5 (4.0) 

aSamples of the three replicates of the 16S rRNA control treatment at 0 h, and all 16S rRNA treatments at 

30 h were analyzed separately.  Samples of the three replicates were pooled for each of the other 
treatments at 0 h, 10 h, 22 h or 30 h.  Numbers assigned to a treatment (e.g., Control 1) indicate the 
respective replicate.  Table modified and used with permission from Zeibich et al., 2019b. 

bPhylotypes were clustered based on a sequence similarity cut-off of 97%. 

cFor comparison of amplicon libraries of different sizes, the data sets were normalized to 50,000 sequences.  

d-, normalization was not possible because of the low number of sequences in this sample. 
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Figure 50.  NMDS plot of the microbial community composition in amino acid treatments. Distance matrices 
(Bray-Curtis) are based on the relative abundances of all detected phylotypes in the different treatments 
(Table A6).  Samples of the three replicates of the 16S rRNA control treatment at 0 h, and all 16S rRNA 
treatments at 30 h were analyzed separately.  Samples of the three replicates were pooled for each of the 
other treatments at 0 h, 10 h, 22 h or 30 h.  Proximity of symbols represent the degree of similarity between 
the different treatments.  Abbreviations: C, unsupplemented control; CAA, casamino acids; Glu, glutamate; 
Asp, aspartate; Thr, threonine; Ala, alanine; Gly, glycine; Val, valine; DNA, 16S rRNA genes; RNA, 16S 
rRNA.  Figure modified and used with permission from Zeibich et al., 2019b. 

3.2.8. Fermentation of ribose and effects of transient intermediates 

The fermentation of RNA is dependent on its degradation by RNases that in the end yield 

ribose, purines, and pyrimidines (Section 1.3.3 and Section 1.4.1).  In marked contrast to ribose-

supplemented treatments microcosms supplemented with adenine (a purine) and uracil (a 

pyrimidine) displayed only a slightly enhancement of fermentation activity (Table 33), suggesting 

ribose as the primary fermentable component of RNA.  Indeed, the fermentation profile of the 

ribose treatment was similar to that of the RNA treatment (Figure 39 and Figure 51 A), and the 

collective amount of products in the ribose treatment were strongly enhanced and significant 

compared to the controls (Figure 51 A).  Comparable to certain amino acid treatments, propionate 

and H2 were significantly produced in the ribose treatment (Table 39 and Table 45).  Previous 

studies demonstrated that the production of propionate and H2 was coincident with the transient 

accumulation of succinate and formate, respectively (Figure 27, Figure 34, and Figure 35), 

suggesting the decarboxylation of succinate to propionate and CO2 (Schink and Pfennig, 1982) 

and the conversions of formate by formate-hydrogen lyase to H2 and CO2 (Sawers, 1994; 

McDowall et al., 2014) (Section 1.4.4).  The consumptions of potential transient intermediates like 

succinate, formate, ethanol, and lactate in earthworm gut contents were not investigated before, 

and therefore evaluated more closely.   

Gut content treatments supplemented with succinate and formate indicated a consumption 

of these primary fermentation products (Figure 52) that significantly enhanced the collective 

fermentation profile (Figure 51 B and Table 45).  The decrease of succinate was concomitant with 

the enhanced production of propionate and CO2, whereas the decrease of formate was 
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concomitant with the enhanced production of H2 and CO2 (Figure 52).  That the control treatment 

displayed also a transient occurrence of succinate with a concomitant accumulation of propionate, 

reinforces the likelihood that the production of propionate in the earthworm gut is at least partially 

dependent on the production of succinate.  Supplemented lactate and ethanol were not used 

during incubation and therefore not further evaluated (Figure 52).  

 

Figure 51.  Collective amounts of fermentation products in ribose (A), transient intermediate, and glucose 
(B) treatments.  Values are the average of triplicate analyses shown in Table 44 (ribose) and Figure 52 
(transient intermediates) and represent the net amounts of products at the end of the 30 h incubation. The 
asterisks indicate significant differences between the collective amount of products formed in 
unsupplemented control and supplemented treatments (**, P ≤ 0.01; ***, P ≤ 0.001; t-test with unequal 
variances; see Table 45 for P values, mean values, and variances).  Abbreviations: CA and CB, 
unsupplemented control; R, ribose; S, succinate, F, formate; G, glucose;  FW, fresh weight.  Figure modified 
and used with permission from Zeibich et al., 2019b. 

Table 44.  Effect of ribose on the fermentation product profiles of anoxic microcosms of L. terrestris gut 
contents.a 

Treatment 

   Products (µmol/gFW) 

Time (h) Ribose CO2 H2 Acetate Succinate 

Control 0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 6.4 ± 0.1 1.1 ± 0.0  
30 0.0 ± 0.0 11 ± 2.7 0.1 ± 0.3 14 ± 0.5 0.4 ± 0.1 

Ribose 0 56 ± 23 0.0 ± 0.0 0.0 ± 0.0 6.4 ± 2.0 1.1 ± 0.3 
 30 39 ± 3.2 21 ± 2.5 4.1 ± 0.8 26 ± 1.7 1.0 ± 0.3 

  pH Propionate Formate Butyrate Ethanol 

Control 0 7.0 ± 0.0 0.7 ± 0.0 2.1 ± 0.1 0.5 ± 0.0 0.0 ± 0.0  
30 7.0 ± 0.0 2.9 ± 0.1 3.6 ± 0.4 1.1 ± 0.2 3.0 ± 0.8 

Ribose 0 7.0 ± 0.0 0.7 ± 0.1 2.7 ± 0.7 0.5 ± 0.0 0.9 ± 0.1 
 30 6.9 ± 0.0 6.6 ± 0.4 7.5 ± 0.6 1.3 ± 0.1 17 ± 0.8 

aThe amount of ribose supplemented per microcosm approximated 5 mM.  Controls lacked supplemental 
ribose.  Values are the arithmetic average of three replicate analyses (± standard derivation).  FW, fresh 
weight.  Table modified and used with permission from Zeibich et al., 2019b. 
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Figure 52.  Effect of transient intermediates and glucose on the fermentation product profiles of anoxic 
microcosms of L. terrestris gut contents.  Initial concentrations approximated 10 mM for succinate, formate, 
lactate, and ethanol, and 5 mM for glucose.  The control lacked supplement.  Values are the arithmetic 
average of three replicate analyses, and error bars indicate the standard deviations.  Some standard 
deviations are smaller than the size of the symbol and therefore not apparent. FW, fresh weight.  Figure 
modified and used with permission from Zeibich et al., 2019b. 
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Gut content treatments supplemented with glucose, a saccharide detected in the earthworm 

gut (Wüst et al., 2009b), also displayed a transient accumulation of succinate and formate and 

the simultaneous formation of propionate and H2, respectively (Figure 52).  82 to 98% of glucose- 

or ribose-derived carbon and reducing equivalents were recovered in the detected fermentation 

products (Table 46), indicating that the amount of supplemented saccharides were adequate for 

the enhanced fermentation product profile.  The collective findings demonstrated that the 

secondary utilization of succinate and formate might contribute to the production of propionate 

and H2, respectively, during the earthworm gut fermentation. 

Table 45.  P values of fermentation products in ribose, succinate, formate, and glucose treatments.a  

Product CO2 

Treatment CA R CB S F G 

Mean valueb 11 21 25 48 51 94 

Variance 7.5 6.3 16 29 4.6 1.2 

P value  0.010  0.004 0.002 0.001 

Product H2 

Treatment CA R CB S F G 

Mean valueb 0.1 4.1 2.3 1.7 31 51 

Variance 0.1 0.7 0.0 0.0 5.3 7.9 

P value  0.004  0.030 0.002 0.001 

Product Acetate 

Treatment CA R CB S F G 

Mean valueb 7.1 19 24 18 26 61 

Variance 0.3 2.4 4.8 2.1 7.8 2.2 

P value  0.006  0.031 0.328 0.000 

Product Succinate 

Treatment CA R CB S F G 

Mean valueb -0.7 0.1 -0.9 - -0.9 -1.1 

Variance 0.0 0.1 0.0 - 0.0 0.0 

P value  0.105  - 0.821 0.075 

Product Formate 

Treatment CA R CB S F G 

Mean valueb 1.5 4.8 0 -1.4 - 4.2 

Variance 0.3 0.3 0.1 0.3 - 0.1 

P value  0.002  0.040 - 0.000 

Product Propionate 

Treatment CA R CB S F G 

Mean valueb 2.3 5.9 4.9 47 5.0 11 

Variance 0.0 0.2 0.2 161 0.2 0.0 

P value  0.005  0.028 0.727 0.002 

Product Butyrate 

Treatment CA R CB S F G 

Mean valueb 0.0 0.0 1.6 1.2 1.4 1.1 

Variance 0.0 0.0 0.0 0.0 0.0 0.1 

P value  -  0.013 0.185 0.082 
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Product Methylbutyrate 

Treatment CA R CB S F G 

Mean valueb 0.0 0.0 2.9 2.4 3 2.5 

Variance 0.0 0.0 0.2 0.1 0.1 0.0 

P value  -  0.178 0.822 0.282 

Product Isobutyrate 

Treatment CA R CB S F G 

Mean valueb 0.0 0.0 0.2 0.2 0.3 0.0 

Variance 0.0 0.0 0.0 0.0 0.0 0.0 

P value  -  0.525 0.281 0.006 

Product Ethanol 

Treatment CA R CB S F G 

Mean valueb 3.0 15 2.6 2.9 3.2 43 

Variance 0.6 0.7 0.3 0.8 0.5 2.1 

P value  0.003  0.666 0.332 0.000 

Products Total 

Treatment CA R CB S F G 

Mean valueb 25 66 77 231 172 299 

Variance 8.5 18 103 460 431 197 

P value  0.000  0.002 0.006 0.000 

aP values (significant at P ≤ 0.05) were calculated by t-test with unequal variances and are based on the 
difference between the net amount of products in control (CA and CB), ribose (R), succinate (S), formate 
(F), or glucose (G) treatments.  To calculate net amounts, amounts of products at the beginning of 
incubation were subtracted from those at the end of incubation (unless otherwise indicated).  See Figure 
51 for product profiles.  Table modified and used with permission from Zeibich et al., 2019b. 

bMean values (n = 3) are in µmol/gFW.  FW, fresh weight. 

Table 46.  Estimated recoveries of carbon and reducing equivalents (i.e., electrons) in ribose, succinate, 
formate, and glucose treatments.a 

  Recoveries (%) 

  Ribose  Succinate  Formate  Glucose 

Main Products   Carbon RE  Carbon RE  Carbon RE  Carbon RE 

CO2  10 na  16 na  52 na  24 na 

H2  na 2.1  na -  na 58  na 8.4 

Acetate  25 25  - -  9 18  25 25 

Ethanol  26 40  0.4 0.7  2.3 6.8  28 42 

Succinate  2.5 2.2  - -  - -  - - 

Lactate  1.0 1.0  - -  4.6 9.2  13 13 

Formate  3.4 1.7  - -     1.5 0.7 

Propionate  11 13  86 114  0.8 2.0  6.1 7.2 

Isobutyrate  - -  - -  0.7 1.7  - - 

Methylbutyrate  - -  - - 
 

0.7 1.9 
 

- - 

Total   82 87  102 115   71 98   98 96 

aSee Figure 51 for product profiles.  Net amounts of products formed in the unsupplemented control were 
subtracted from those of supplemented treatments; recoveries are based on the amount of substrate 
consumed.  Values are based on the arithmetic average of three replicate analyses.  RE, reducing 
equivalents; -, no net increase of the product during the incubation in supplemented treatments relative to 
the control treatments; na, not applicable.  Table modified and used with permission from Zeibich et al., 
2019b. 
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3.2.9. Effect of ribose and transient intermediates on gut 
fermentative bacterial families 

A total of 606,090 bacterial 16S rRNA gene and 16S rRNA sequences, associated to 25 

phyla (including candidate phyla), were obtained from the saccharide and transient intermediate 

treatments, and the rarefaction analyses indicated that the most abundant taxa were targeted 

(Figure 53 and Figure 54).  The analysis of the relative sequence abundances demonstrated that 

Aeromonadaceae were stimulated by ribose and glucose (Figure 55, Figure 56, Figure 57, and 

Table 47).  Fusobactariaceae-affiliated sequences displayed a net increase of affiliated 

sequences in succinate treatments, whereas formate mostly stimulated Peptrostreptococcaceae 

(Figure 55).  The associated relative sequence abundances of these families were significantly 

greater in the respective supplemented treatment than in the control at the end of incubation 

(Table 47).  Consistent with the strong fermentative response of Aeromonadaceae to glucose 

(Figure 51 and Figure 55), the number of detected phylotypes, the number of expected phylotypes 

(Chao1), and Shannon indices of the glucose treatment were lower than those of unsupplemented 

control (Figure 54 B and Table 48).  These findings indicated that shifts in the community occurred 

during the incubation, and NMDS analysis (Section 2.6.2.2) of all detected phylotypes confirmed 

that the microbial communities changed during the incubation (Figure 58). 

 

Figure 53.  Rarefaction analyses of bacterial 16S rRNA gene (DNA) and 16S rRNA (RNA) sequences 
obtained from anoxic L. terrestris gut content microcosms supplemented with ribose.   Phylotypes were 
based on a 97% sequence similarity cutoff.  Samples of the three replicates of the 16S rRNA gene control 
treatment at 0 h and 30 h, 16S rRNA control treatment at 0 h, and all 16S rRNA treatments at 30 h were 
analyzed separately.  Samples of the three replicates were pooled for each of the other treatments at 0 h 
or 30 h.  Abbreviations: 0 h and 30 h indicate the time of sampling in hours; C, unsupplemented control; R, 
ribose.  Numbers assigned to a treatment (e.g., C1) indicate the respective replicate.  Figure modified and 
used with permission from Zeibich et al., 2019b.
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Figure 54.  Rarefaction analyses of bacterial 16S rRNA gene (A) and 16S rRNA (B) sequences obtained 

from anoxic L. terrestris gut content microcosms supplemented with glucose and transient intermediates. 
Phylotypes were based on a 97% sequence similarity cutoff. Samples of the three replicates of the 16S 
rRNA control treatment at 0 h, and all 16S rRNA treatments at 30 h were analyzed separately.  Samples 
of the three replicates were pooled for each of the other treatments at 0 h, 10 h, 22 h or 30 h.  
Abbreviations: C, unsupplemented control; S, succinate; F, formate; G, glucose.  Identification numbers 
(e.g., C1) indicate the respective replicates.  Figure modified and used with permission from Zeibich et 
al., 2019b. 
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Figure 55.  Net increases in 16S rRNA gene (DNA) and 16S rRNA (RNA) relative abundances of bacterial 
families stimulated by supplemental saccharides, succinate, and formate in L. terrestris gut content 
microcosms.   The graph is limited to families that displayed a net increase in relative abundance of ≥ 4% 
in at least one treatment and the families are color-coded to the respective phyla (see Figure 56 and Figure 
57 for the complete 16S rRNA and 16S rRNA gene analyses).  Net increases of relative abundances were 
calculated as follows: (a) the calculation is based either on mean relative abundances when samples from 
the three replicates were analyzed separately (i.e., all RNA and DNA samples of control treatments and 
RNA samples at 30 h of supplemented treatments) or on single relative abundances when samples of the 
three replicates were pooled for sequence analyses (i.e.,  DNA samples at 0 h and 30 h and RNA samples 
at 0 h of supplemented treatments); (b) mean or single relative abundances at the beginning of incubation 
were subtracted from those at the end of incubation for control and supplemented treatments; (c) the 
resulting time-corrected relative abundances of control treatments were subtracted from those of 
supplemented treatments (negative time-corrected relative abundances of control treatments were 
ignored).  Figure modified and used with permission from Zeibich et al., 2019b. 

Table 47.  Statistical analyses of stimulated families in ribose, succinate, formate, and glucose treatments.a  

Family Treatment Mean 
Standard 
Deviation 

Median 
LDA 

Score 
(log10)b 

Aeromonadaceae ControlA 22 2.3 21  
 Ribose 41 2.7 41 5.6(1) 

 ControlB 21 1.9 20  
 Glucose 42 3.7 41 5.6(1) 

Clostridiaceae ControlB 2.1 0.2 2.1  
 Formate 3.3 0.2 3.2 4.5(3) 

 Glucose 3.7 0.4 3.6 4.6(4) 

Enterobacteriaceae ControlA 2.0 0.1 1.9  
 Ribose 4.4 0.5 4.1 4.6(2) 

 ControlB 3.3 3.0 3.5  
 Formate 4.3 0.4 4.2 4.6(2) 

 
Glucose 4.4 0.4 4.6 4.6(2) 

DNA RNA

Ribose

Formate

Glucose

Succinate

0 10 20

Net Increase in 

Relative Abundance (%)

30 0 10 20 30

Net Increase in 

Relative Abundance (%)

Firmicutes

Peptostreptococcaceae

Proteobacteria

Aeromonadaceae

Enterobacteriaceae

Fusobacteria

Fusobacteriaceae 

Aeromonadaceae 

Enterobacteriaceae 

Shewanellaceae 

Other Proteobacteria 

Peptostreptococcaceae 

Clostridiaceae 

Lachnospiraceae 

Other Firmicutes 

Fusobacteriaceae 

Planctomycetaceae 

Other Plan 

Mycoplasmataceae 

Other Tenericutes 

Verrucomicrobia 

Bacteroidaceae 

Other Bacteroidetes 

Actinobacteria 

Chloroflexi 

Others 

Aeromonadaceae 

Enterobacteriaceae 

Shewanellaceae 

Other Proteobacteria 

Peptostreptococcaceae 

Clostridiaceae 

Lachnospiraceae 

Other Firmicutes 

Fusobacteriaceae 

Planctomycetaceae 

Other Plan 

Mycoplasmataceae 

Other Tenericutes 

Verrucomicrobia 

Bacteroidaceae 

Other Bacteroidetes 

Actinobacteria 

Chloroflexi 

Others 

Aeromonadaceae 

Enterobacteriaceae 

Shewanellaceae 

Other Proteobacteria 

Peptostreptococcaceae 

Clostridiaceae 

Lachnospiraceae 

Other Firmicutes 

Fusobacteriaceae 

Planctomycetaceae 

Other Plan 

Mycoplasmataceae 

Other Tenericutes 

Verrucomicrobia 

Bacteroidaceae 

Other Bacteroidetes 

Actinobacteria 

Chloroflexi 

Others 

Aeromonadaceae 

Enterobacteriaceae 

Shewanellaceae 

Other Proteobacteria 

Peptostreptococcaceae 

Clostridiaceae 

Lachnospiraceae 

Other Firmicutes 

Fusobacteriaceae 

Planctomycetaceae 

Other Plan 

Mycoplasmataceae 

Other Tenericutes 

Verrucomicrobia 

Bacteroidaceae 

Other Bacteroidetes 

Actinobacteria 

Chloroflexi 

Others 



132    RESULTS 

 

 

Family Treatment Mean 
Standard 
Deviation 

Median 
LDA 

Score 
(log10)b 

Lachnospicraeae ControlB 3.8 0.6 4.1  
 Succinate 4.9 0.3 4.8 4.7(1) 

Peptostreptococcaceae ControlB 3.3 0.2 3.2  
 Formate 8.3 1.0 7.9 5.0(1) 

 
Glucose 4.0 0.4 4.2 4.6(3) 

aFamilies reaching a LDA score ≥ 4.0 were considered. LEfSe analysis, mean value, standard deviation, 
and median are based on the relative abundance of 16S rRNA sequences of the three replicates per 
treatment at 30 h of incubation.  Table modified and used with permission from Zeibich et al., 2019b. 

bLDA scores were calculated using LEfSe.  Numbers in parentheses display the rank in the LDA analysis 
(i.e., higher ranking families exhibited a stronger response to supplement compared to lower ranking ones). 

 

Figure 56.  16S rRNA gene (DNA) and 16S rRNA (RNA) analyses of control and ribose treatments.  The 

most abundant families (i.e., families with ≥ 4% relative abundance in at least one sampling period) are 
displayed in the color of the respective phylum.  Process data are shown Figure 51 and Table 44, and 
information on all detected taxa is provided in Table A7.  Abbreviations:  C, unsupplemented control; R, 
ribose treatment.  Single bars indicate that 16S rRNA or 16S rRNA gene samples of the three replicates 
were pooled for the sequence analysis and grouped bars indicate that the sequence analysis was 
performed individually for the three replicates.  Figure modified and used with permission from Zeibich et 
al., 2019b. 
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Figure 57.  16S rRNA (RNA) and 16S rRNA gene (DNA) analyses of control, succinate, formate, and 
glucose treatments.  The most abundant families (i.e., families with ≥ 4% relative abundance in at least one 
sampling period) are displayed in the color of the respective phylum.  Process data are shown in Figure 52, 
and information on all detected taxa is provided in Table A8.  Abbreviations:  C, unsupplemented control; 
S, succinate; F, formate; G, glucose.  Panel A: Single bars without asterisk indicate that DNA or RNA 
samples of the three replicates were pooled for the sequence analysis. Asterisk indicates analysis was 
performed individually for the three replicates (see grouped bars Panel B).  Figure modified and used with 
permission from Zeibich et al., 2019b. 

Table 48.  Alpha diversity of the microbial community in control, ribose, glucose and transient intermediate 
treatments.a 

Sample 
(Sampling  
Time) 

Treatment 
Number of 
sequences 

Observed 
phylotypesb 

(normalized)c 

Chao1 
(normalized)c 

Shannon 
(normalized)c 

DNA (0 h) ControlA  1 15345 776 (198) 1046 (241) 4.0 (3.5) 

 ControlA  2 10377 681 (199) 984 (234) 4.1 (3.6) 
 ControlA  3 11331 734 (203) 1019 (236) 4.3 (3.7) 
 Ribose 10234 650 (188) 974 (227) 3.8 (3.4) 

 
ControlB 15359 965 (235) 1315 (253) 4.6 (3.9) 

 Succinate 17131 896 (221) 1311 (239) 3.9 (3.3) 
 Formate 20373 1060 (232) 1380 (245) 4.5 (3.8) 
 Glucose 16530 1022 (232) 1337 (247) 4.6 (3.8) 

DNA (10 h) Control 14156 742 (216) 1109 (243) 3.5 (3.0) 
 Glucose 12798 416 (139) 720 (185) 1.7 (1.5) 

DNA (22 h) Control 18327 789 (216) 1193 (244) 3.4 (3.0) 
 Glucose 17591 583 (175) 912 (223) 2.3 (2.1) 

DNA (30 h) ControlA  1 8937 571 (179) 317 (223) 3.5 (3.1) 
 ControlA  2 9669 624 (192) 995 (237) 3.7 (3.3) 

 ControlA  3 9364 597 (190) 958 (232) 3.7 (3.3) 
 Ribose 7845 364 (136) 611 (196) 2.6 (2.4) 

 
Control 18096 787 (223) 1105 (255) 3.7 (3.3) 

 Succinate 18342 733 (209) 1071 (237) 3.3 (2.9) 
 Formate 17229 772 (220) 1105 (249) 3.9 (3.3) 
 Glucose 15892 669 (204) 998 (236) 3.1 (2.4) 

RNA (0 h) ControlA  1 3684 339 (144) 634 (175) 3.1 (2.7) 
 ControlA  2 2958 307 (152) 581 (183) 3.1 (2.9) 

 ControlA  3 4255 556 (213) 866 (242) 4.0 (3.4) 
 Ribose 9677 643 (188) 10110 (234) 3.5 (3.1) 

 
ControlB  1 10695 768 (216) 1178 (237) 3.5 (3.0) 

 ControlB  2 10734 802 (225) 1185 (240) 3.8 (3.2) 
 ControlB  3 10158 816 (227) 1242 (246) 3.9 (3.3) 
 Succinate 15874 883 (218) 1325 (240) 3.5 (2.9) 
 Formate 15238 925 (232) 1332 (248) 3.8 (3.2) 
 Glucose 9185 772 (224) 1163 (240) 3.8 (3.2) 

RNA (10 h) Control 13621 668 (197) 1074 (229) 3.0 (2.7) 

 Glucose 20734 556 (142) 1019 (199) 1.9 (1.7) 

RNA (22 h) Control 9473 517 (202) 891 (228) 3.2 (2.9) 

 Glucose 15076 480 (157) 865 (211) 2.2 (2.0) 
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Sample 
(Sampling  
Time) 

Treatment 
Number of 
sequences 

Observed 
phylotypesb 

(normalized)c 

Chao1 
(normalized)c 

Shannon 
(normalized)c 

RNA (30 h) ControlA  1 4433 333 (146) 634 (196) 2.9 (2.6) 
 ControlA  2 5019 428 (176) 743 (217) 3.4 (3.0) 

 ControlA  3 4226 399 (168) 813 (212) 3.3 (3.0) 
 Ribose  1 6497 382 (149) 675 (206) 2.9 (2.6) 
 Ribose  2 6020 366 (146) 554 (198) 3.0 (2.7) 
 Ribose  3 7561 458 (160) 773 (215) 3.1 (2.8) 

 
ControlB  1 9280 575 (202) 986 (229) 3.3 (3.0) 

 ControlB  2 11820 607 (204) 987 (242) 3.3 (2.9) 
 ControlB  3 12244 626 (214) 1004 (252) 3.3 (3.0) 
 Succinate 1 16056 719 (220) 1012 (250) 3.5 (3.1) 
 Succinate 2 8100 479 (192) 793 (224) 3.1 (2.8) 
 Succinate 3 9278 530 (200) 913 (234) 3.2 (2.8) 
 Formate 1 8459 538 (208) 951 (237) 3.4 (3.1) 
 Formate 2 10208 560 (197) 979 (223) 3.4 (3.1) 
 Formate 3 11610 598 (207) 897 (237) 3.5 (3.2) 
 Glucose 1 12941 455 (151) 851 (195) 2.5 (2.3) 
 Glucose 2 15522 502 (167) 808 (210) 2.7 (2.5) 

 Glucose 3 10518 424 (162) 744 (206) 2.7 (2.5) 

aFor the ribose experiment:  Samples of the three replicates of the 16S rRNA gene (DNA) control treatment 
at 0 h and 30 h, 16S rRNA (RNA) control treatment at 0 h, and all 16S rRNA treatments at 30 h were 
analyzed separately.  Samples of the three replicates were pooled for each of the other treatments at 0 h 
or 30 h.  For the transient intermediate experiment:  Samples of the three replicates of the 16S rRNA control 
treatment at 0 h, and all 16S rRNA treatments at 30 h were analyzed separately.  Samples of the three 
replicates were pooled for each of the other treatments at 0 h, 10 h, 22h, or 30 h.  Identification numbers 
(e.g., ControlA1) indicate the respective replicates.  Table modified and used with permission from Zeibich 
et al., 2019b. 

bPhylotypes were clustered based on a sequence similarity cut-off of 97%. 

cFor comparison of amplicon libraries of different sizes, the transient data sets were normalized to 5,000 
and the ribose data set were normalized to 2,500 sequences. 
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Figure 58.  NMDS plot of the microbial community composition in ribose (A and B), and succinate, 
formate, and glucose (C and D) treatments.  Distance matrices (Bray-Curtis) are based on the relative 
abundances of all detected phylotypes in the different treatments (Table A8).  Proximity of symbols 
represent the degree of similarity between the different treatments. Panel A and B:  Samples of the three 
replicates of the 16S rRNA gene (DNA) control treatment at 0 h and 30 h, 16S rRNA (RNA) control 
treatment at 0 h, and all 16S rRNA treatments at 30 h were analyzed separately.  Samples of the three 
replicates were pooled for each of the other treatments at 0 h or 30 h.  Panel C and D:  Samples of the 
three replicates of the 16S rRNA control treatment at 0 h, and all 16S rRNA treatments at 30 h were 
analyzed separately.  Samples of the three replicates were pooled for each of the other treatments at 0 h 
or 30 h.  Figure modified and used with permission from Zeibich et al., 2019b.  

3.2.10. Amino acid- and ribose-responsive phylotypes  

The aforementioned trends of simulated families in amino acid, saccharide, succinate, and 

formate treatments (Figure 48 and Figure 55) extended to five group phylotypes and two single 

phylotypes (Table 49 and Figure 59).  GPT-1, closely related to A. hydrophila, was significantly 

stimulated by supplemented ribose and glucose.  The the relative 16S rRNA abundances 

associated to GPT-1 display also a net increase in casamino acid and aspartate treatments 

(Figure 59).  The family Enterobacteriaceae was represented by GPT-2 (closely related to 

Enterobacteria aerogenes), and GPT-3 (closely related to Y. regensburgei).  GPT-2 was 

moderate stimulated in all treatments expect of succinate and formate treatments, GPT-3 

responded significantly to all amino acid treatments expect of the co-amino acid treatments 

(Figure 59 and Table 49).  Furthermore, GPT-4, closely related to the acetogen T. glycolicus, 

displayed the strongest net increase in relative 16S rRNA abundance in threonine and formate 

treatments (Figure 59).  The two single phylotypes A8 (closely related to P. bifermentans) and 

A14 (closely related to Clostridium pascui) were significantly stimulated in co-amino acid 

treatments and glutamate treatments, respectively (Figure 59 and Table 49).  The family 

Fusobacteriaceae was represented by GPT-5, a group phylotype related to C. somerae and 

mostly stimulated in treatments supplemented with casamino acid, glutamate, aspartate, and 

succinate (Figure 59).   
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Figure 59.  Net increase in 16S rRNA gene (DNA) and 16S rRNA (RNA) relative abundances of the main 
stimulated group phylotypes (A) and phylogenetic tree of these stimulated group phylotypes (B).  Panel A:  
Each group phylotype (GPT) consists of identical or nearly identical phylotypes based on a ≥97% sequence 
similarity.  Phylotypes are based on a sequence similarity cut-off of 97% and were considered to be 
stimulated when a phylotype in at least one of the supplemented treatments displayed a ≥ 2% net increase 
in relative abundance. Net increases of relative abundances were calculated as follows (8):  (a) the 
calculation is based either on mean relative abundances when samples from the three replicates were 
analyzed separately (i.e., all RNA and DNA samples of control treatments and RNA samples at 30 h of 
supplemented treatments) or on single relative abundances when samples of the three replicates were 
pooled for sequence analyses (i.e.,  DNA samples at 0 h and 30 h and RNA samples at 0 h of supplemented 
treatments); (b) mean or single relative abundances at the beginning of incubation were subtracted from 
those at the end of incubation for control and supplemented treatments; (c) the resulting time-corrected 
relative abundances of control treatments were subtracted from those of supplemented treatments 
(negative time-corrected relative abundances of control treatments were ignored).  Abbreviations:  C, 
unsupplemented control; CAA, casamino acids; Glu, glutamate; Asp, aspartate; Thr, threonine; Ala, 
alanine; Gly, glycine; Val, valine; S, succinate; F, formate; G, glucose.  Panel B:  The phylogenetic tree was 
calculated using the neighbor-joining, maximum parsimony, and maximum likelihood methods.  Solid 
circles, congruent nodes in three trees; empty circles, congruent nodes in maximum parsimony and 
maximum likelihood trees; gray circles, congruent nodes in maximum parsimony and neighbor-joining trees.  
Branch length and bootstrap values (1,000 resamplings) are from the maximum parsimony tree.  The bar 
indicates 0.1 change per nucleotide.  T. maritima (AE000512) was used as outgroup.  Accession numbers 
occur at the end of each branch.  Phylotype descriptors:  A, phylotypes derived from amino acid experiment 
(Figure 46); R, phylotypes derived from ribose experiment (Figure 51 A); T, phylotypes derived from 
transient intermediate experiment (Figure 51 B).  Figure modified and used with permission from Zeibich et 
al., 2019b. 

Table 49.  Statistical analyses of main stimulated phylotypes displayed in Figure 59.a 

Group 
Phylotype 

Phylotypeb Treatment Mean 
Standard 
Deviation 

Median 
LDA 

Score 
(log10)c 

GPT-1 T3 Control 21 1.9 20  

   Glucose 42 3.7 41 5.8(1) 

 R96 Control 13 0.7 13  

  Ribose 30 1.5 29 5.5(1) 

GPT-2 A6 Control 2.1 0.2 2.2  

  Casamino Acids 3.3 0.3 3.3 4.5(2) 

  Glutamate 4.3 0.6 4.2 4.6(3) 

  Aspartate 3.2 0.2 3.1 4.5(2) 

  Alanine/Glycine 2.9 0.3 3.0 4.5(3) 

  Valine/Glycine 3.4 0.1 3.4 4.5(2) 

 T6 Control 2.9 0.2 2.9  

  Glucose 3.7 0.3 3.6 4.6(2) 

  Formate 3.9 0.4 3.8 4.6(2) 

 R5 Control 1.6 0.1 1.6  

  Ribose 3.3 0.5 3.1 4.5(2) 

GPT-3 A129 Control 0.4 0.0 0.4  

  Casamino Acids 1.1 0.1 1.0 4.0(5) 

  Glutamate 3.2 0.3 3.2 4.5(4) 

  Aspartate 2.4 0.1 2.4 4.4(3) 

  Threonine 1.0 0.1 1.0 4.0(6) 

  Alanine/Glycine 0.6 0.1 0.7 3.8(7) 

  Valine/Glycine 0.7 0.1 0.8 3.9(4) 
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Group 
Phylotype 

Phylotypeb Treatment Mean 
Standard 
Deviation 

Median 
LDA 

Score 
(log10)c 

 A1526 Control 0.3 0.0 0.3  

  Glutamate 2.6 0.4 2.6 4.4(5) 

  Aspartate 2.0 0.1 2.1 4.3(4) 

  Threonine 0.8 0.0 0.8 3.9(7) 

  Alanine/Glycine 0.5 0.1 0.5 3.7(10) 

  Valine/Glycine 0.6 0.1 0.6 3.8(9) 

GPT-4 A25 Control 0.1 0.0 0.2  

  Casamino Acids 1.1 0.3 1.0 4.0(4) 

  Glutamate    3.8(7) 

  Threonine 2.7 0.2 2.6 4.4(3) 

  Alanine/Glycine 0.6 0.3 0.4 3.8(8) 

  Valine/Glycine 0.7 0.2 0.8 3.8(5) 

 T7 Control 1.0 0.1 0.9  

  Glucose 2.5 0.5 2.8 4.4(3) 

  Formate 4.2 0.8 4.2 4.6(1) 

GPT-5 A1 Control 16 0.5 16  

  Casamino Acids 25 0.3 25 5.4(1) 

  Glutamate 29 1.1 29 5.5(1) 

  Aspartate 21 0.7 21 5.3(1) 

  Threonine 18 1.2 17 5.2(1) 

 A8 Control 0.6 0.0 0.6 
 

  Casamino Acids 1.6 0.1 1.6 4.2(3) 

  Threonine 1.6 0.3 1.4 4.2(4) 

  Alanine/Glycine 9.3 1.0 9.7 5.0(1) 

  Valine/Glycine 3.5 1.2 3.2 4.5(1) 

 A14 Control 0.0 0.0 0.0 
 

  Glutamate 6.2 0.9 6.2 4.8(2) 

aOnly phylotypes that were significantly stimulated (based on LEfSe analyses) by a given 

supplement are shown. The LEfSe analysis, mean value, standard deviation, and median are based 

on the relative abundance of 16S rRNA sequences of the three replicates per treatment at the end 

of the incubation.  Table modified and used with permission from Zeibich et al., 2019b. 

bA, phylotypes derived from amino acid experiment (Figure 46); R, phylotypes derived from ribose 

experiment (Figure 51 A); T, phylotypes derived from transient intermediate experiment (Figure 51 

B). 

cLDA scores were calculated using LEfSe.  Numbers in parentheses display the rank in the LDA 

analysis (i.e., higher ranking phylotypes exhibited a stronger response to supplement compared to 

lower ranking ones). 
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3.3. The nature of the earthworm gut microbiota 

The nature of the microorganisms contributing to the observed earthworm gut fermentations 

is less well understood.  However, cultivation and molecular methods demonstrated similar 

bacteria in soil, earthworm gut, and earthworm casts (Bassalik, 1913; Furlong et al., 2002; Egert 

et al., 2004).  Such findings reinforces the presumption that most bacteria in the earthworm gut 

are ingested and transient (Section 1.2.2).   

Based on the consideration that the detection of a taxon is at least partially dependent on 

its metabolic activity, it could be possible to experimentally bring both soil and gut communities to 

a similar metabolic status, and thereby minimize such potential detection bias.  If gut fermenters 

that might originate from soil are mainly inactive prior ingestion, the nutrient richness of fresh 

yeast cell lysate might stimulate these fermenters in soil similarly to that observed in gut contents.  

This theoretical potential of complex substrates to stimulate gut-like fermentations in soil 

prompted the comparison of the activities and associated microbiota in soil and gut contents of L. 

terrestris. 

3.3.1. Fermentative responses of gut contents and soil 

In unsupplemented microcosms, soil displayed marginal activity whereas gut contents 

produced diverse fermentation products such as H2, CO2, acetate, methylbutyrate, propionate, 

and succinate (Figure 60).  In gut content treatments, the rapid formation of fermentation products 

appeared to occur without appreciable delay, suggesting that gut-associated fermenters were 

poised to respond to endogenous nutrients in gut contents.  These findings illustrated qualitatively 

and quantitatively dissimilar fermentative activities in soil and gut content.   

Fresh microbial cell lysate (a) simulates gizzard-disrupted biomass and (b) strongly 

enhanced fermentative activities of gut content-associated microbes (Section 3.2.1).  Although 

unsupplemented soil treatments displayed only a negligible fermentative activity, soil and gut 

contents displayed nearly identical fermentative responses when both were challenged with the 

complex nutrients of cell lysate (Figure 61).  Time-resolved analysis indicated that the initial 

fermentative response to supplemented cell lysate was more rapid in gut content treatments than 

in soil treatments (Figure 61).  The formation of the dominant fermentation products in response 

to lysate was statistically significant (Table 50) and characteristic of those formed by fermentative 

facultative aerobes and fermentative obligate anaerobes (Buckel, 1999).  Protein and RNA were 

evaluated for their potential to (a) stimulate fermentation in soil and thus (b) mimic the capacity of 

cell lysate to enhance fermentation.  Although these biopolymers greatly enhanced gut content 

fermentations (Section 3.2.3), the fermentative response of soil to either protein or RNA was 

negligible compared to the strong response of soil to cell lysate (Table 51).    
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Figure 60.  Fermentation product profiles of unsupplemented anoxic L. terrestris gut content and soil 

microcosms.   Traces of lactate are not shown.  Values are the arithmetic average of three replicate 
analyses, and error bars indicate the standard deviations.  Some standard deviations are smaller than the 
size of the symbol and therefore not apparent.  DW, dry weight. Figure modified and used with permission 
from Zeibich et al., 2019c. 
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Figure 61.  Fermentation product profiles of anoxic L. terrestris gut content and soil microcosms 
supplemented with cell lysate.  Traces of lactate are not shown.  The amount of carbon derived from filter-
sterilized lysate (5.0% dry weight) added per microcosm approximated 2 mmol.  Filter sterilized lysate alone 
did not display any fermentation activity.  Values are the arithmetic average of three replicate analyses, and 
error bars indicate the standard deviations.  Some standard deviations are smaller than the size of the 
symbol and therefore not apparent.  DW, dry weight.  Figure modified and used with permission from 
Zeibich et al., 2019c.
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Table 50.  P values of fermentation products in cell lysate-supplemented gut content (A) and soil (B) treatments, and P values of gut content versus soil treatments (C).a 

(A) Gut Contentb  
             

 Products 

 CO2 H2 Succinate  
(15h) 

Lactate  
(6h) 

Formate 
(15h) 

Acetate Propionate Butyrate Methylbutyrate Isobutyrate 

 C L C L C L C L C L C L C L C L C L C L 

Mean valuec 
43 394 2.1 61 4.0 63 2.4 14 0.9 33 52 377 9.8 99 3.0 26 12 103 3.5 25 

Variance 6.8 886 0.3 60 0.2 1.4 0.1 1.5 0.0 0.2 14 125 1.0 34 0.1 8.7 0.3 116 0.3 12 

P value 0.002 0.006 0.000  0.004  0.000  0.000 0.001 0.006 0.005 0.008 

                    
(B) Soilb 

                

 Products 

 
CO2 H2 Succinate  

(15h) 
Lactate  

(6h) 
Formate 

(15h) 
Acetate Propionate Butyrate Methylbutyrate Isobutyrate 

 C L C L C L C L C L C L C L C L C L C L 

Mean valuec 
5.4 178 0.0 14 0.3 19 0.0 2.8 0.0 18 4.7 271 1.8 36 0.1 24 1.0 56 0.3 12 

Variance 22 1747 0.0 33 0.3 2.3 0.0 0.3 0.0 1.8 67 314 0.1 44 0.0 33 3.2 16 0.2 0.0 

P value 0.019 0.054 0.002 0.014 0.002  0.000 0.012 0.018 0.000 0.000 
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(C) Gut Content versus Soild              

 Products 

 CO2 H2 Succinate  
(15h) 

Lactate  
(6h) 

Formate 
(15h) 

Acetate Propionate Butyrate Methylbutyrate Isobutyrate 

 G S G S G S G S G S G S G S G S G S G S 

Mean valuec 394 178 61 14 63 19 14 2.8 33 18 337 271 99 36 26 24 103 56 25 12 

Variance 886 1747 60 33 1.4 2.3 1.5 0.3 0.2 1.8 125 314 34 44 8.7 33 116 16 12 0.0 

P value 0.002 0.001 0.000 0.001 0.003 0.003 0.000 0.737 0.006 0.003 (15h) 

aTable modified and used with permission from Zeibich et al., 2019c. 

bP values (significant at P ≤ 0.05) were calculated by t-test with unequal variances and are based on the difference between the amount of products in control (C) and cell 
lysate (L) treatments.  For transient products (i.e., formate, succinate, isobutyrate and lactate), the significance of differences of net amounts between control and supplemented 
treatments were tested for the time point of the highest concentration (shown in parentheses).  See Figure 60 and Figure 61 for product profiles.  
cMean values (n = 3) are in µmol/gDW.  DW, dry weight.   
dP values (significant at P ≤ 0.05) were calculated by t-test with unequal variances and are based on the difference between the amount of products in lysate-supplemented 
gut content (G) and lysate-supplemented soil (S) treatments.  Unless otherwise indicated, the values are based on the amount of products at the end of the incubation.  

Table 51.  Effect of protein, RNA, and cell lysate on fermentation product profiles of anoxic soil treatments.a 

 Supplement 

   Products (µmol/gDW) 

Time 
(h) 

pH Total CO2 H2 Acetate Succinate Formate Propionate Butyrate 
Methyl-
butyrate 

Iso-
butyrate 

Protein 0 6.9 ± 0.0 1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.0 0.0 ± 0.0 0.0 ± 0.4 0.9 ± 0.1 0.1 ± 0.0 0.0 ± 0.0 
 30 6.8 ± 0.0 18 4.0 ± 0.8 0.5 ± 0.1 5.0 ± 0.7 1.9 ± 1.2 6.2 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 0.5 ± 0.0 0.0 ± 0.0 

RNA 0 6.9 ± 0.0 5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.9 ± 0.3 2.5 ± 4.3 0.5 ± 2.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

  30 6.7 ± 0.0 23 6.3 ± 1.1 3.0 ± 0.8 5.3 ± 1.1 3.3 ± 3.6 0.0 ± 0.0 0.0 ± 0.0 4.5 ± 5.5 0.0 ± 0.0 0.0 ± 0.0 

Lysate 0 6.9 ± 0.0 1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.4 0.3 ± 0.0 0.0 ± 0.0 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

 30 6.7 ± 0.0 507 136 ± 11 21 ± 7.2 230 ± 16 12 ± 9.0 0.0 ± 0.0 23 ± 12 20 ± 5.0 52 ± 1.8 13 ± 1.9 

aThe amount of protein-, RNA-, and lysate-derived carbon added per microcosm approximated 2.4, 2.4, and 2.0 mmol, respectively.  Values are the arithmetic average of 
three replicate analyses (± standard derivation).  Lysate values obtained from Figure 61.  DW, dry weight. Table modified and used with permission from Zeibich et al., 2019c.  
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Likewise, soil microcosms displays essentially no fermentative activity when they were challenged 

with glucose and other gut-associated saccharides that rapidly augment fermentation in gut 

contents (Meier et al., 2018).  These findings indicates that the marked response of soil to complex 

nutrients, available in cell lysate, did not occur when saccharides, protein, or RNA were provided 

as ‘high quality’ substrates.   

The pH approximated 7 and did not vary much in both soil and gut content microcosms 

during the incubation (Figure 61), reinforcing the likelihood that the complex nutrient input rather 

than a change in pH was an important factor for the observed fermentation activities.  Based on 

the theoretical recoveries of lysate-derived carbon and reducing equivalents, approximately half 

of the lysate-derived organic carbon was recovered in the fermentation products of soil and gut 

content treatments (Table 52), demonstrating that the amount of available supplemental organic 

carbon was adequate for the observed fermentative responses to lysate.  Formate, succinate, 

and isobutyrate were transient in both treatments (Figure 61).  Previous findings indicated that 

succinate can be decarboxylated to CO2 and propionate, whereas formate can be converted to 

CO2 and H2 (Section 3.2.8).  The continuous and strong production of CO2, H2, and propionate in 

soil and gut content treatments (a) reinforced the occurrence of these secondary processes and 

(b) illustrated that such processes were not exclusive for gut contents.  

Table 52.  Estimated recoveries of carbon and reducing equivalents (i.e., electrons) in yeast lysate-
supplemented gut content or soil treatments.a 

   Gut Content  Soil 

 
 

 
Recoveries (%) 

  
Recoveries (%) 

Main Products  
 Net amt. 

(µmol) Carbon 
Reducing 

equivalents 
 

Net amt. 
(µmol) Carbon 

Reducing 
equivalents 

CO2  158 7.7 na  131 6.4 na 

H2  26 na 0.6  10 na 0.3 

Acetate  145 14 14  204 20 20 

Methylbutyrate  41 10 13  41 10 13 

Propionate  41 6.1 7.0  27 4.0 4.6 

Butyrate  10 2.0 2.5  18 3.6 4.5 

Isobutyrate  11 2.2 2.7  9.8 1.9 2.4 

Succinate  3.9 0.8 0.7  4.2 0.8 0.7 

Formate  0.3 - -  0.1 - - 

Total: 437 43 41   447 47 45 

aSee Figure 60 and Figure 61 for product profiles of lysate treatments.  Net amounts of products formed 
in the unsupplemented control were subtracted from those of supplemented treatments; recoveries are 
based on the amount of substrate provided.  Values are based on the arithmetic average of three replicate 
analyses.  Recoveries were calculated from the net amounts of products.  amt., amount; -, no net increase 
of the product during the incubation; na, not applicable.  Table modified and used with permission from 
Zeibich et al., 2019c.
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3.3.2. Effect of yeast extract on fermentative taxa in gut content and 
soil 

The findings derived from fresh lysate treatments demonstrated that a complex source of 

nutrients rather than single high quality substrates yielded a similar stimulation of fermentative 

microbes in both gut contents and soil.  Commercially yeast extract was used as substrate to 

evaluate (a) if this finding was reproducible with an alternative source of complex nutrients and 

(b) which bacterial taxa were associated with the observed fermentations. 

Although supplemented gut content produced higher amounts of fermentation products than 

supplemented soil, the yeast extract was highly stimulatory for both and yielded nearly identical 

fermentation profiles in gut content and soil treatments (Figure 62, Table 53, and Table 54).  The 

dominant end products of the yeast extract treatments were similar to those of the fresh lysate 

treatments, and approximately half of the yeast extract-derived carbon and reducing equivalents 

were recovered in the detected fermentation products (Table 55).  Similar to cell lysate treatments, 

(a) the pH approximated 7 and did not vary (Table 53), and (b) the formation of the main 

fermentation products in response to yeast extract was statistically significant for both treatments 

(Figure 62).  Thus, the stimulatory effect of fresh lysate was reproduced with yeast extract, 

confirming that the availability of complex nutrients stimulated similar fermentations in both gut 

contents and soil.  

 

Figure 62.  Effect of yeast extract on the fermentation product profiles of anoxic gut content and soil 
microcosms.  The amount of extract-derived carbon added per microcosm approximated 2 mmol.  Filter 
sterilized extract alone did not display any fermentation activity.  Values are the average of three replicate 
analyses and represent the net production of products at the end of the 40 h incubation.  DW, dry weight.  
The two asterisks (**) indicate significant differences between the collective amount of products formed in 
gut and soil treatments (P ≤ 0.01, t-test with unequal variances).  Figure modified and used with permission 
from Zeibich et al., 2019c.  
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Table 53.  Effect of yeast extract on the fermentation product profiles of gut content (A) and soil (B) treatments.a 

 Treatment 

  
 

Products (µmol/gDW) 

Time (h) pH CO2 H2 Acetate Succinate Formate Propionate Butyrate 
Methyl- 
butyrate 

Iso- 
butyrate 

Lactate 

(A) Gut Content 
           

Control 0 7.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2.6 ± 1.1 2.1 ± 0.2 4.7 ± 6.7 0.0 ± 0.0 1 .0 ± 0.0 0.0 ± 0.0 2.2 ± 0.1 1.3 ± 0.1 

 40 6.9 ± 0.0 20 ± 5.7 2.7 ± 0.1 50 ± 6.6 1.7 ± 0.2 7.4 ± 8.2 11 ± 0.6 5.7 ± 0.7 6.4 ± 0.3 5.0 ± 0.9 2.4 ± 0.3 

Extract 0 7.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 3.4 ± 0.9 5.6 ± 0.7 4.1 ± 5.3 0.2 ± 0.2 0.2 ± 0.1 0.1 ± 0.1 0.5 ± 0.1 0.7 ± 0.1  
40 6.8 ± 0.0 263 ± 5.0 58 ± 13 480 ± 38 37 ± 2.6 5.4 ± 16 54 ± 2.8 54 ± 11 65 ± 5.3 44 ± 4.9 3.6 ± 0.9 

(B) Soil 
            

Control 0 7.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.8 ± 0.2 0.3 ± 0.0 1.7 ± 2.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.2 ± 0.2 0.7 ± 0.0 
 40 6.9 ± 0.0 1.4 ± 0.2 0.0 ± 0.0 1.5 ± 1.5 0.0 ± 0.0 1.0 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.5 ± 0.0 0.7 ± 0.1 

Extract 0 7.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.1 ± 0.4 1.9 ± 0.3 3.4 ± 2.9 0.0 ± 0.1 1.1 ± 0.1 0.1 ± 0.1 0.3 ± 0.0 0.3 ± 0.0  
40 6.6 ± 0.0 130 ± 3.2 18 ± 2.7 315 ± 18 13 ± 1.8 23 ± 23 52 ± 3.4 42 ± 1.9 41 ± 2.1 27 ± 1.0 0.3 ± 0.2 

aThe amount of yeast extract-derived carbon added per microcosm approximated 2 mmol.  Controls lacked supplemental yeast extract.  Values are the arithmetic average 

of three replicate analyses (± standard derivation).  DW, dry weight.  Table modified and used with permission from Zeibich et al., 2019c.  
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Table 54.  P values of fermentation products in yeast extract-supplemented gut content (A) and soil (B) treatments, and P values of gut content versus soil treatments (C).a 

(A) Gut Contentb 
                   

Products CO2 H2 Succinate Lactate Formate Acetate Propionate Butyrate Methylbutyrate Isobutyrate 

Treatment C E C E C E C E C E C E C E C E C E C E 

Mean valuec 19 263 2.7 58 1.7 37 2.4 3.6 7.4 7.9 50 480 11 91 5.7 54 6.4 65 5.0 44 

Variance 32 26 0.0 158 0.0 6.9 0.1 0.9 67 188 43 1441 0.4 8.1 0.5 130 0.1 28 0.9 24 

P value 0.000 0.017 0.002 0.156 0.960 0.003 0.000 0.018 0.003 0.005 

(B) Soilb 
                    

Products CO2 H2 Succinate Lactate Formate Acetate Propionate Butyrate Methylbutyrate Isobutyrate 

Treatment C E C E C E C E C E C E C E C E C E C E 

Mean valuec 1.4 130 0.0 18 0.0 13 0.7 0.3 1.0 22 1.5 315 0.0 52 0.0 42 0.0 41 1.5 27 

Variance 0.0 10 0.0 7.4 0.0 3.1 0.0 0.0 0.2 538 2.2 322 0.0 11 0.0 3.6 0.0 4.5 0.0 1.1 

P value 0.000 0.008 0.006 0.026 0.250 0.001 0.001 0.001 0.001 0.001 

(C) Gut Content versus Soild 
                 

Products CO2 H2 Succinate Lactate Formate Acetate Propionate Butyrate Methylbutyrate Isobutyrate 

Treatment G S G S G S G S G S G S G S G S G S G S 

Mean valuec 263 130 58 18 37 13 3.6 0.3 7.9 22 480 315 91 52 54 42 65 41 44 27 

Variance 26 10 158 7.4 6.9 3.1 0.9 0.0 188 538 1411 322 8.1 11 130 3.6 28 4.5 24 1.1 

P value 0.000 0.033 0.001 0.026 0.417 0.006 0.000 0.204 0.005 0.026 

aTable modified and used with permission from Zeibich et al., 2019c. 

bP values (significant at P ≤ 0.05) were calculated by t-test with unequal variances and are based on the difference between the amount of products at the end of the 
incubation in control (C) and yeast extract (E) treatments.  See Table 53 for product profiles. 

cMean values (n = 3) are in µmol/gDW (DW, dry weight). 

dP values are based on the difference between the amount of products at the end of the incubation in extract-supplemented gut content (G) and extract-supplemented 
soil (S) treatments. 
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Table 55.  Estimated recoveries of carbon and reducing equivalents (i.e., electrons) in yeast extract-
supplemented gut content and soil treatments.a 

   Gut Content  Soil 

 
 

 
Recoveries (%) 

  
Recoveries (%) 

Main Products  
 Net amt. 

(µmol) Carbon 
Reducing 

equivalents 
 

Net amt. 
(µmol) Carbon 

Reducing 
equivalents 

CO2  110 5.5 na  89 4.4 na 

H2  25 na 0.6  14 na 0.3 

Acetate  194 19 19  238 24 24 

Methylbutyrate  26 6.5 8.5  31 7.7 10 

Propionate  36 5.4 6.3  39 5.9 6.9 

Butyrate  22 4.4 5.5  32 6.3 7.8 

Isobutyrate  18 3.7 4.6  20 4.0 4.9 

Succinate  14 2.9 2.5  8.4 1.7 1.5 

Formate  - - -  15 0.8 0.4 

Total: 445 48 47 
 

485 55 55 

aSee Table 53 for product profiles of extract treatments.  Net amounts of products formed in the 
unsupplemented control were subtracted from those of supplemented treatments; recoveries are based 
on the amount of substrate provided.  Values are based on the arithmetic average of three replicate 
analyses.  amt., amount; -, no net increase of the product during the incubation; na, not applicable.  Table 
modified and used with permission from Zeibich et al., 2019c. 

A total of 439,704 bacterial 16S rRNA gene and16S rRNA sequences were obtained, 

yielding 2,804 phylotypes associated to 27 phyla (including candidate phyla).  Most of the bacterial 

phylotypes detected in gut content treatments were also detected in soil treatments. Thus, 92.3% 

to 99.5% of the collective relative sequence abundances of the phylotypes were similar to gut and 

soil treatments (Figure 63).  In addition, as shown in the core values of the Venn diagrams, the 

relative abundances of the phylotypes common to all four treatments constituted the majority of 

the detected sequences (Figure 63).   

The 16S rRNA gene and 16S rRNA sequence-pool in unsupplemented soil treatments was 

nearly identical at the beginning and ending of the incubation (Figure 64), a finding that is 

consistent with the negligible fermentative activity in these treatments (Figure 62).  Based on the 

increase in relative abundance of 16S rRNA gene or 16S rRNA sequences, Clostridiaceae, 

Peptostreptococcaceae, Bacillaceae, and Aeromonadaceae were responsive families in 

unsupplemented gut content treatments (Figure 64).  Of these four families, the Clostridiaceae, 

Peptostreptococcaceae, and Aeromonadaceae were low abundant in unsupplemented soil 

treatments (Figure 64).  In marked contrast to the detected differences between unsupplemented 

soil and gut content treatments, a large overlap occurred in the responsive taxa of yeast extract-

supplemented gut content and soil microcosms.  In this regard, the relative 16S rRNA gene and 

16S rRNA sequence abundances of Proteobacteria- and Firmicutes displayed a strong increased 

in both extract-supplemented treatments (Figure 64).  At the end of the incubation, the 

Aeromonadaceae, Bacillaceae, Clostridiaceae, Enterobacteriaceae, Lachnospiraceae, and 

Peptostreptococcaceae were the dominant families similar to gut content and soil treatments 
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supplemented with yeast extract (Figure 64).  Although both treatments displayed different 

relative abundances of these six families, they collectively constituted approximately 87% and 

91% of the 16S rRNA relative sequence abundances from supplemented gut content and soil 

treatments, respectively, at the end of the 40 h incubation.  This observation indicated that the 

majority of the responsive taxa in lysate gut content treatments were affiliated to soil-based taxa.  

The apparent changes in the relative abundances of 16S rRNA sequences affiliated with these 

families were supported by statistical analyses (Table 56).   

 

Figure 63.  Venn diagrams of all detected phylotypes (97% similarity cut-off) in gut content and soil 
treatments at the beginning (0 h) and end (40 h) of the incubation.  Underlined values are the number of 
phylotypes, with the collective relative abundance of these phylotypes in a given treatment shown in percent 
(%).  Red values pertain to the phylotypes common to all treatments.  Abbreviations:  GC, gut content 
control; GE, gut content yeast extract; SC, soil control; SE, soil yeast extract; DNA, 16S rRNA gene; RNA, 
16S rRNA.  Figure modified and used with permission from Zeibich et al., 2019c.
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The trend of strongly stimulated subgroups in the fermentative communities of 

supplemented soil and gut content was corroborated by alpha diversity analysis.  In this regard, 

the number of detected phylotypes, the number of expected phylotypes (Chao1), and Shannon 

indices at the end of the incubation were lower than those of unsupplemented controls (Figure 66 

and Table 57).  In addition, the collective relative abundances of the phylotypes similar to each of 

the replicated sequence analyses (a) were nearly identical and (b) constituted the vast majority 

(i.e., 90 to 97%) of the sequences obtained (Figure 65).  These findings illustrated the 

reproducible detection of the most abundant phylotypes (Figure 65), and the associated 

rarefaction analyses indicated that the majority of the affiliated sequences in soil and gut content 

treatments were targeted (Figure 66). 

 

Figure 64.  Effect of yeast extract on the relative abundances of the most abundant fermentative families 
in L. terrestris gut content and soil microcosms.  Abundances are based on the analyses of 16S rRNA 
genes (DNA) or 16S rRNA (RNA).  The families represent taxa that had a ≥ 4% relative abundance in at 
least one sampling and are color-coded to the respective phylum.  Information on all detected taxa is 
provided in Table A9.  Abbreviations:  C, unsupplemented control; E, yeast extract treatment.  Samples of 
the three replicates of a treatment were pooled for each sampling, except for the 16S rRNA gene samples 
at the beginning of the incubation and 16S rRNA samples at the end of the incubation in which each bar 
represents one replicate.  Figure modified and used with permission from Zeibich et al., 2019c.
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Table 56.  Statistical analyses of abundant responsive families in yeast extract-supplemented gut content 
(A) and soil (B) treatments.a 

(A) Gut Content  
      

Family Treatment Mean Variance P valueb 
LDA Score 

(log10)c 

Aeromonadaceae Control 0.5 0.1 
0.001 4.4(5) 

 Extract 2.6 0.1 

Bacillaceaed Control 5.8 0.1 
0.000 -4.8(5) 

 Extract 1.8 0.0 

Clostridiaceae Control 6.5 1.5 
0.001 5.4(2) 

 Extract 26 5.3 

Enterobacteriaceae Control 0.7 0.0 
0.002 5.4(3) 

 Extract 23 3.0 

Lachnospiraceae Control 1.3 0.1 
0.007 4.8(4) 

 Extract 6.4 0.5 

Peptostreptococcaceae Control 11 1.6 
0.001 5.4(1) 

  Extract 27 3.6 

          

(B) Soil  
 

  

 

  

Family Treatment Mean Variance P valueb 
LDA Score 

(log10)c 

Aeromonadaceae Control 0.0 0.0 
0.021 5.5(1) 

 Extract 29 55 

Bacillaceae Control 1.6 0.0 
0.006 4.8(5) 

 Extract 6.7 0.4 

Clostridiaceae Control 0.1 0.0 
0.002 5.3(2) 

 Extract 21 2.1 

Enterobacteriaceae Control 0.0 0.0 
0.028 5.3(3) 

 Extract 21 38 

Lachnospiraceae Control 0.0 0.0 
0.001 4.2(6) 

 Extract 1.7 0.0 

Peptostreptococcaceae Control 0.1 0.0 
0.008 5.1(4) 

  Extract 11 3.0 

aA family was considered to be responsive when the mean relative abundance of 16S rRNA sequences 
in at least one yeast extract treatment (gut content or soil) was at least 4% greater than that of the 
unsupplemented control at the end of the incubation.  Table modified and used with permission from 
Zeibich et al., 2019c. 

bP values (significant at P ≤ 0.05) were calculated by t-test with unequal variances and are based on the 
difference between the relative abundance of 16S rRNA sequences in control and yeast extract treatments 
at the end of the incubation.   

cLDA scores were calculated using LEfSe.  Numbers in parentheses display the rank in the LDA analysis 

(i.e., higher ranking families exhibited a stronger response to extract compared to lower ranking ones).  

dThe negative LDA score reflects the higher relative abundance of Bacillaceae-affiliated 16S rRNA 
sequences in control compared to extract treatments.
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Table 57.  Alpha diversity of the microbial community in control and yeast extract-supplemented gut content 
(A) and soil (B) treatments.a 

(A) Gut Content 
  

Sample 
(Sampling Time) 

Treatmentb 
Number of 
sequences 

Observed 
phylotypesc 

(normalized)d 

Chao1 
(normalized)d 

Shannon 
(normalized)d 

DNA (0 h) Control 1 21172 1533 (791) 1993 (1048) 5.9 (5.7) 
 Control 2 22232 1583 (794) 2018 (1059) 5.9 (5.7) 

 Control 3 24907 1659 (796) 2053 (1040) 6.0 (5.7) 

 Extract 25394 1608 (786) 2126 (1045) 5.9 (5.7) 

RNA (0 h) Control 13925 1418 (817) 1872 (1046) 5.9 (5.6) 
 Extract 11244 1177 (690) 1653 (920) 5.1 (4.9) 

DNA (40 h) Control 30246 1519 (672) 2068 (951) 5.4 (5.2) 
 Extract 22629 742 (295) 1338 (496) 3.3 (3.2) 

RNA (40 h) Control 1 7840 872 (580) 1293 (741) 4.8 (4.7) 
 Control 2 7197 878 (590) 1353 (752) 5.0 (4.8) 

 Control 3 12629 1138 (647) 1538 (858) 5.2 (5.0) 

 Extract 1 12511 564 (276) 954 (441) 3.2 (3.2) 

 Extract 2 12853 530 (262) 995 (417) 3.2 (3.1) 
  Extract 3 11362 492 (256) 1001 (394) 3.1 (3.1) 

    P valuee 0.041 (0.004) 0.032 (0.003) 0 (0.003) 

(B) Soil 
  

Sample 
(Sampling Time) 

Treatmentb 
Number of 
sequences 

Observed 
phylotypesc 

(normalized)d 

Chao1 
(normalized)d 

Shannon 
(normalized)d 

DNA (0 h) Control 1 25672 1794 (849) 2243 (1144) 6.1 (5.9) 
 Control 2 24505 1800 (855) 2274 (1133) 6.1 (5.9) 

 Control 3 21094 1787 (883) 2313 (1163) 6.2 (5.9) 

 Extract 19222 1727 (863) 2189 (1092) 6.3 (6.0) 

RNA (0 h) Control 10311 1340 (830) 1792 (1031) 6.1 (5.8) 
 Extract 10063 1421 (841) 1940 (1032) 6.2 (5.9) 

DNA (40 h) Control 7777 1242 (809) 1816 (994) 6.1 (5.9) 
 Extract 19844 850 (365) 1428 (619) 3.1 (3.0) 

RNA (40 h) Control 1 6544 1079 (755) 1519 (918) 5.8 (5.6) 
 Control 2 7438 1165 (775) 1682 (951) 5.9 (5.7) 

 Control 3 9787 1286 (811) 1752 (1000) 6.0 (5.8) 

 Extract 1 15477 529 (219) 1173 (400) 2.7 (2.6) 

 Extract 2 13072 558 (260) 1105 (438) 2.9 (2.8) 

 
Extract 3 12757 578 (273) 1048 (441) 2.9 (2.9) 

    P valuee 0.010 (0.000) 0.006 (0.000) 0.000 (0.000) 

aTable modified and used with permission from Zeibich et al., 2019c. 

bSamples of the three replicates of a treatment were pooled except for 16S rRNA gene (DNA) samples at 
0 h and 16S rRNA (RNA) samples at 40 h.  Numbers assigned to a treatment (e.g., Control 1) indicate the 
respective replicate.  C, control treatment; E, yeast extract treatment.  

cPhylotypes were clustered based on a sequence similarity cut-off of 97%.  

dThe data sets were normalized to 5,000 sequences for comparison of amplicon libraries of different sizes.  

eP values (significant at P ≤ 0.05) were calculated by t-test with unequal variances and are based on the 
16S rRNA analysis and the difference between the values of observed phylotypes, Chao1, and Shannon 
at the end of the incubation in control and yeast extract treatments. 
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Figure 65.  Venn diagrams of all detected phylotypes (97% similarity cut-off) in the three replicates of gut 
content and soil treatments at the beginning (0 h) and end (40 h) of the incubation.  Underlined values are 
the number of phylotypes, with the collective relative abundance of these phylotypes in a given replicate 
shown in percent (%).  Numbers assigned to a treatment (e.g., GC1) indicate the respective replicate.  
Abbreviations: GC, gut content control; SC, soil control; GE, gut content yeast extract; SE, soil yeast extract; 
DNA, 16S rRNA gene; RNA, 16S rRNA.  Figure modified and used with permission from Zeibich et al., 
2019c.
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Figure 66.  Rarefaction analyses of bacterial 16S rRNA (RNA) and 16S rRNA gene (DNA) sequences 
obtained from control (C) and yeast extract (E) treatments.  Phylotypes were based on a 97% sequence 
similarity cut-off.  Samples of the three replicates of a treatment were pooled except for 16S rRNA gene 
samples at the beginning of the incubation (0 h) and 16S rRNA samples at the end of incubation (40 h).  
Numbers assigned to a treatment (e.g., C1) indicate the respective replicate.  Additional abbreviations:  0 
and 40, time of sampling in hours; G, gut content; S, soil.  Figure modified and used with permission from 
Zeibich et al., 2019c. 

3.3.3. Responsive soil- and gut content-phylotypes  

Based on the relative sequence abundances of 16S rRNA sequences, the aforementioned 

trend of extract-stimulated families extended to ten abundant phylotypes (Figure 67).  For 

example, the relative sequence abundance of phylotype E2 (closely related to E. aerogenes), 

phylotype E17 (closely related to Clostridium subterminale), and phylotype E6 (closely related to 

C. peptidivorans) significantly increased in extract-supplemented treatments of both gut contents 

and soil (Figure 67).  Phylotype E5 (closely related to T. glycolicus) and phylotype E13 (closely 

related to C. magnum) were additional phylotypes that were responsive in both extract-

supplemented treatments.  Furthermore, sequences affiliated to phylotype E4 (closely related to 

R. lituseburensis) and phylotype E314 (closely related to Escherichia vulneris) were abundant in 

gut content treatments but less abundant in soil treatments at the end of the incubation (Figure 

67).   

The relative abundance of a phylotype was in some cases different between gut content 

and soil treatments, or control and supplemented treatments.  Thus, phylotype E3 (closely related 

to A. hydrophila) was abundant in yeast extract-supplemented soil but less abundant in extract-

supplemented gut content at the end of incubation (Figure 67 B).  Furthermore, phylotype E19 
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(related to Bacillus cereus) was abundant in control gut content treatments but less abundant in 

extract-supplemented treatments (Figure 67 B).  However, the ten phylotypes were hardly 

detectable in unsupplemented soil treatments at the end of the incubation, and collectively 

constituting only 0.3% and 0.2% of the relative 16S rRNA gene and 16S rRNA abundances, 

respectively.  In marked contrast, these ten phylotypes collectively constituted 22% and 18% of 

the relative 16S rRNA gene and 16S rRNA abundances, respectively, in unsupplemented gut 

content treatments (Figure 67 B).  This finding illustrates that these phylotypes responded to 

endogenous gut nutrients but were only marginally able to respond to soil nutrients.  However, 

the same phylotypes were distinctly abundant in gut content and soil when these treatments were 

supplemented with a complex substrate.  They collectively constituting 76% and 78% of the 

relative 16S rRNA gene and 16S rRNA abundances, respectively, in supplemented gut content 

treatments, and 72% and 73% of the relative 16S rRNA gene and 16S rRNA abundances, 

respectively, in supplemented soil treatments (Figure 67 A).   
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Figure 67.  16S rRNA-based phylogenetic tree of stimulated phylotypes in gut content and soil treatments 
(A) and comparative overview of the relative abundances of these ten phylotypes (B) at the end of the 
incubation.  Panel A: The phylogenetic tree was calculated using the neighbor-joining, maximum 
parsimony, and maximum likelihood methods.  Solid circles, congruent nodes in three trees; empty circles, 
congruent nodes in neighbor-joining and maximum parsimony trees; grey circles, congruent nodes in 
maximum parsimony and maximum likelihood trees.  Branch length and bootstrap values (1,000 
resamplings) are from the maximum parsimony tree.  The bar indicates 0.1 change per nucleotide.  T. 
maritima (AE000512) was used as outgroup.  Accession numbers occur at the end of each branch.  
Phylotypes (E) are based on a sequence similarity cut-off of 97% and were considered to be stimulated 
when a phylotype in at least one gut content or soil treatment displayed a minimum increase in relative 
abundance of 4% during the incubation.  The phylotypes are derived from the analyses of 16S rRNA genes 
(DNA) or 16S rRNA (RNA), and the table displays the relative abundances of each phylotype at the end of 
the incubation.  Abbreviations: T, treatment; C, unsupplemented control; E, yeast extract.  Panel B: 
Combined relative abundance of the most responsive phylotypes in each treatment at the end of the 
incubation.  The three asterisks (***) beside the collective total 16S rRNA relative abundances (%) of the 
phylotypes indicate significant differences between the control and yeast extract treatments (P ≤ 0.001, t-
test with unequal variances).  Figure modified and used with permission from Zeibich et al., 2019c.     

Table 58.  Statistical analyses of phylotypes displayed in Figure 67.a 

(A) Gut Content 

Phylotype Treatment Mean Variance P value LDA Score 
(log10)b 

E2 Control 0.5 0.0 0.002 5.2(1) 

 
Extract 15 1.4 

E3 Control 0.5 0.1 0.002 4.4(10) 

 
Extract 2.4 0.1 

E4 Control 3.8 0.3 0.001 5.2(2) 

 
Extract 14 1.0 

E5 Control 6.5 0.6 0.021 5.1(3) 

 
Extract 12 4.2 
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Phylotype Treatment Mean Variance P value LDA Score 
(log10)b 

E13 Control 2.2 0.5 0.003 5.0(4) 

 
Extract 9.4 1.3 

E6 Control 0.4 0.1 0.006 4.9(6) 

 
Extract 7.6 0.8 

E314 Control 0.2 0.0 0.004 4.9(5) 

 
Extract 8.3 0.7 

E17 Control 1.9 0.3 0.012 4.6(8) 

 
Extract 4.0 0.1 

E16 Control 0.4 0.0 0.174 4.6(7) 

 
Extract 4.0 9.0 

E19c Control 1.2 0.0 
0.001 - 4.1(7) 

  Extract 0.4 0.0 

(B) Soil  
      

Phylotype Treatment Mean Variance P value LDA Score 
(log10)b 

E2 Control 0.0 0.0 0.031 5.3(2) 

 Extract 20 39 

E3 Control 0.0 0.0 0.022 5.4(1) 

 Extract 28 54 

E4 Control 0.1 0.0 0.008 4.9(3) 

 Extract 8.9 1.9 

E5 Control 0.0 0.0 0.008 4.4(10) 

 Extract 2.2 0.1 

E13 Control 0.0 0.0 0.006 4.7(5) 

 Extract 4.5 0.4 

E6 Control 0.0 0.0 0.002 4.8(4) 

 Extract 5.9 0.2 

E314 Control 0.0 0.0 0.035 3.7(15) 

 Extract 0.5 0.0 

E17 Control 0.0 0.0 0.003 4.2(11) 

 Extract 1.8 0.0 

E16 Control 0.0 0.0 0.017 3.9(14) 

 Extract 0.7 0.0 

E19 Control 0.0 0.0 
0.027 3.1(26) 

  Extract 0.1 0.0 

aMean values are based on the relative abundance of 16S rRNA sequences of the three replicates at the 
end of the incubation.  P values (significant at P ≤ 0.05) were calculated by t-test with unequal variances 
and are based on the difference between the relative abundance of 16S rRNA sequences in control and 
yeast extract treatments at the end of the incubation.  Table modified and used with permission from 
Zeibich et al., 2019c. 

bLDA scores were calculated using LEfSe.  Numbers in parentheses display the rank in the LDA analysis 
(i.e., higher ranking phylotypes exhibited a stronger response to extract compared to lower ranking ones).   

cThe negative LDA score reflects the higher relative abundance of E19-affiliated 16S rRNA sequences in 
control compared to extract treatments. 
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3.4. Impact of increased water content on the fermentative 
gut community of L. terrestris 

Large experimental set ups required a 1:10 dilution of the extracted gut contents for 

obtaining adequate samples for chemical and molecular analyses (Wüst et al., 2011; Section 

2.1.2).  In addition to the experimentally necessary dilution of the gut associated microbes, the 

earthworm ingested soil bacteria experience also in situ high fluctuations in water content during 

gut passage (Section 1.2; Horn et al., 2003).  These considerations prompted the comparison of 

the fermentation in diluted and undiluted gut contents by (a) evaluating the fermentative activities 

and (b) analyzing the microbial shifts during anoxic incubations.  

3.4.1. Effect of increased water content on gut fermentative taxa 

The differences between fermentation products formed during the incubation in diluted and 

undiluted gut content treatments were small and, except of CO2, not significant (Figure 68 and 

Table 59), indicating only a marginal impact of the dilution on the fermentative activity of gut-

associated microbes.  However, the collective net amount of products was significantly higher in 

diluted gut contents than in the undiluted gut contents, an observation mainly caused by the 

enhanced CO2 production in undiluted treatments (Figure 69 A).  As observed in previous studies, 

accumulated succinate was in both diluted and undiluted treatments consumed during the 

incubation and the concomitant production of propionate and CO2, suggesting the 

decarboxylation of succinate.  This assumption was reinforced by the lack of propionate 

production at the end of incubation when succinate was hardly detectable.  

Based on the 16S rRNA gene and 16S rRNA analyses, a total of 360,508 bacterial 

sequences were obtained from the diluted and undiluted treatments, yielding 29 phyla (including 

candidate phyla).  Consistent with the marginal differences in fermentation activity, the analyses 

indicated that most of the abundant responsive families of the diluted and undiluted gut content 

communities displayed nearly identical shifts during the anoxic incubation (Figure 69 B and Figure 

70).  In this regard, the relative sequence abundances (either 16S rRNA or 16S rRNA) of 

Shewanellaceae, Peptostreptococcaceae, Lachnospiraceae and Fucobacteriaceae were 

significantly greater in both treatments at the end of incubation than at the beginning of incubation 

(Figure 69 B, Figure 70, and Table 60).  The stimulation of a family was in some cases 

quantitatively or qualitatively different between diluted and undiluted gut contents.  For example, 

the Firmicutes-affiliated family Peptostreptococcaceae responded positively in both treatments, 

but was apparently more stimulated in the undiluted gut content than in the diluted gut content 

(Figure 69 B).  The diluted treatment displayed in addition to the weakly stimulated 

Peptostreptococcaceae a significant increase of relative sequence abundances affiliated to 

Lachnospiraceae and Clostridiaceae (Figure 69, Figure 70, and Table 60).   
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Figure 68.  Effect of increased water content on the fermentation product profiles of anoxic microcosms of  
L. terrestris.   Values are the arithmetic average of three replicate analyses, and error bars indicate the 
standard deviations.  Some standard deviations are smaller than the size of the symbol and therefore not 
apparent.  FW, fresh weight.
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Table 59.  P values of fermentation products in undiluted (U) and diluted (D) gut contents of L. terrestris.a 

Products CO2 H2 Succinate Lactate Formate 

Treatment U D U D U D U D U D 

Mean valueb 31 20 0.0 0.3 -1.2 -1.4 -0.3 -0.3 -0.4 -0.4 

Variance 5.6 3.1 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.7 
P value 0.003 0.057 0.032 0.970 0.987 

Products Acetate Propionate Ethanol Butyrate Methylbutyrate 

Treatment U D U D U D U D U D 

Mean valueb 5.5 3.9 2.1 1.5 0.5 0.3 1.0 1.0 1.1 1.1 

Variance 0.1 0.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
P value 0.072 0.075 0.257 0.432 0.624 

aP values (significant at P ≤ 0.05) were calculated by t-test with unequal variances, and are based on the 
difference between the net amount of products at the end of the incubation in undiluted (U) and diluted (D) 
treatments.  To calculate net amounts, amounts of products at the beginning of incubation were subtracted 
from those at the end of incubation.  See Figure 68 for product profiles. 

bMean values (n = 3) are in µmol/gFW.  FW, fresh weight. 

In marked contrast to the stimulation of aforementioned families, Mycoplasmataceae and 

Aeromonadaceae displayed a significant decrease in both treatments during incubation (Figure 

69 B, Figure 70, and Table 60).  However, the detectable shifts of the families in undiluted and 

diluted communities during the incubation were more similar than dissimilar.  Furthermore, these 

shifts were more pronounced in undiluted than diluted gut contents and therefore at least in part 

responsible for the higher fermentative activity in undiluted treatments.  Consistent with the 

stimulation of Firmicutes-, Proteobacteria-, and Fusobacteria-affiliated families, the numbers of 

detected phylotypes, the number of expected phylotypes (Chao1), and the Shannon indices were 

slightly lower at the end of the incubation than at the beginning of incubation (Table 61), and  the 

rarefaction analyses indicated that the most abundant taxa were targeted (Figure 71). 

3.4.2.  Responsive phylotypes 

The aforementioned findings demonstrated that especially Peptostreptococcaceae, 

Shewanellaceae and Fusobacteriaceae were stimulated in both treatments during the incubation, 

whereas Mycoplasmataceae and Aeromonadaceae responded negatively during the incubation 

(Figure 69).  These trends extended to six most responsive phylotypes (Figure 72 A).  For 

example, Fusobacteriaceae-affiliated phylotype D1 (related to C. somerae), Shewanellaceae- 

affiliated phylotype D2 (closely related to Shewanella putrefaciens), and Peptostreptococcaceae-

affiliated phylotype D5 (closely related to P. bifermentans) displayed a ≥ 4% net increase (at either 

the 16S rRNA or 16S rRNA gene level) in at least one of the treatments during the incubation 

(Figure 72).  The stimulation of phylotype D2 and phylotype D5 was supported by the results of 

statistical analyses (Table 62).  Aeromonadaceae-affiliated phylotype D4 (closely related to A. 
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hydrophila and A. media) displayed a significant decrease at 16S rRNA gene and 16S rRNA level 

in both treatments during the incubation (Figure 72 and Table 62).  Phylotype D179 (also closely 

related to to A. hydrophila and A. media [Figure 72 C]) displayed a contrasting net change in 

relative abundance based on 16S rRNA gene and 16S rRNA analysis (Figure 72 B).  Thus, the 

relative 16S rRNA gene abundance of this phylotype increased during incubation in diluted 

treatments, whereas the relative 16S rRNA abundance displayed a net decrease during 

incubation in this treatment (Figure 72 B).  This observation is consistent with previous findings, 

demonstrating an initial increase and subsequent decrease of A. hydrophila-affiliated relative 16S 

rRNA abundances during incubation, whereby the affiliated relative 16S rRNA gene abundances 

at the end of incubation were apparently higher than the decreased 16S rRNA abundances 

(Figure 43).  The family Mycoplasmataceae was represented by phylotype D3 (closely related to 

Can. Lumbricincola), a taxon that responded negatively in both treatments (Figure 72).  

Consistent with the aforementioned responses of fermentative families, the shifts of the most 

responsive phylotypes were more pronounced in undiluted treatments than diluted treatments.  

 

Figure 69.  Collective amounts of fermentation products (A) and most responsive families (B) in undiluted 
and diluted gut contents of L. terrestris.   Panel A:  Values are the average of triplicate analyses in Figure 
68 and represent the net amounts of products at the end of the 30 h incubation.  The asterisks indicate a 
significant difference between the collective amount of products formed in the undiluted treatment and 
diluted treatment (**, P ≤ 0.01).  FW, fresh weight.  Panel B:  Families were considered to be responsive 
when a family in at least one of the undiluted or diluted treatments displayed a ≥ 4% higher or lower relative 
16S rRNA gene (DNA) or 16S rRNA (RNA) sequence abundance at the end of incubation than at the 
beginning of incubation.  All 16S rRNA gene and 16S rRNA samples at 0 h and 30 h were analyzed 
separately.  
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Figure 70.  Effect of a increased water content on the temporal changes of the relative abundances of 
bacterial phyla in L. terrestris gut content microcosms based on the analyses of 16S rRNA genes and 16S 
rRNA.  The most abundant families (i.e., families with ≥ 4% relative abundance in at least one sampling 
period) are displayed in the color of the respective phylum.  Information on all detected taxa is provided in 
Table A10. All 16S rRNA gene (DNA) and 16S rRNA (RNA) samples at 0 h and 30 h were analyzed 
separately, and samples of the three replicates were pooled for each of the other treatments at 5 h, 10 h, 
or 20 h.  Process data are shown in Figure 68.   
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Figure 71.  Rarefaction analyses of bacterial 16S rRNA gene (A) and 16S rRNA (B) sequences obtained 
from undiluted (U) and diluted (D) gut contents of L. terrestris.   Phylotypes were based on a 97% sequence 
similarity cut-off.  All 16S rRNA gene and 16S rRNA samples at 0 h and 30 h were analyzed separately, 
and samples of the three replicates were pooled for each of the other treatments at 5 h, 10 h, or 20 h.  
Identification numbers (e.g., D1) indicate the respective replicates. 
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Table 60.  Statistical analyses of the most responsive families displayed in Figure 69 based on 16S rRNA 
gene (A) and 16S rRNA (B) analysis.a 

(A) 16S rRNA gene 
    

Treatment Family  
Sampling 
Time (h) 

Mean 
Standard 
Deviation 

Median 
LDA 

Score 
(log10)b 

Undiluted Clostridiaceae 0  0.2 0.0 0.2  
  30  0.3 0.0 0.3 3.5(7) 

 Fusobacteriaceae 0  5.0 0.0 5.0  
  30  11 1.6 11 5.0(2) 

 Peptostreptococcaceae 0  1.1 0.0 1.1  
  30  4.4 1.2 3.8 4.6(5) 

 Shewanellaceae 0  5.7 0.3 5.6  
  30  14 2.7 13 5.1(1) 

 Aeromonadaceae  0  11 1.0 12  
  30  0.3 0.2 0.2 5.0(1) 

 Mycoplasmataceae  0  11 0.4 11  
  30  2.7 0.5 2.5 5.0(2) 

Diluted Clostridiaceae  0  0.1 0.0 0.1  
  30  3.2 0.5 3.5 4.5(3) 

 Lachnospiraceae 0  0.1 0.0 0.1  
  30  4.2 0.6 4.0 4.6(2) 

 Peptostreptococcaceae  0 1.0 0.1 0.9  
  30  1.8 0.2 1.8 4.3(4) 

 Shewanellaceae  0  5.2 0.4 5.3  
  30  10 0.3 10 5.0(1) 

 Mycoplasmataceae  0  9.1 0.7 8.9  
  30  5.2 0.9 5.5 5.0(1) 

(B) 16S rRNA 
    

Treatment Family  
Sampling 
Time (h) 

Mean 
Standard 
Deviation 

Median 
LDA 

Score 
(log10)b 

Undiluted Fusobacteriaceae  0 h 12 1.6 12  
  30 h 29 2.5 28 5.4(1) 

 Lachnospiraceae  0 h 0.1 0.1 0.1  
  30 h 0.2 0.0 0.2 3.3(5) 

 Peptostreptococcaceae  0 h 0.5 0.0 0.5  
  30 h 11 1.3 10 5.0(3) 

 Shewanellaceae  0 h 3.6 0.7 3.4  
  30 h 12 2.4 11 5.1(2) 

 Aeromonadaceae  0 h 22 1.0 22  
  30 h 3.8 0.1 3.8 5.3(1) 

 Mycoplasmataceae  0 h 21 2.8 22  
  30 h 0.5 0.2 0.3 5.3(2) 
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Treatment Family  
Sampling 
Time 

Mean 
Standard 
Deviation 

Median 
LDA 

Score 
(log10)b 

Diluted Clostridiaceae  0 h 0.1 0.0 0.1  
  30 h 4.4 0.1 4.4 4.6(3) 

 Lachnospiraceae  0 h 0.0 0.0 0.0  
  30 h 3.1 0.3 3.0 4.5(4) 

 Peptostreptococcaceae 0 h 0.7 0.0 0.7  
  30 h 2.0 0.1 2.0 4.3(5) 

 Shewanellaceae 0 h 2.3 0.4 2.1  
  30 h 6.0 0.7 6.2 4.8(2) 

 Aeromonadaceae  0 h 24 1.9 25  
  30 h 17 1.8 16 5.4(1) 

 Mycoplasmataceae  0 h 18 3.3 17  
  30 h 13 1.5 13 5.2(2) 

aLEfSe analysis, mean value, standard deviation, and median are based on the relative abundance of 16S 
rRNA gene and 16S rRNA sequences of the three replicates per treatment at the beginning (0 h) and the 
end (30 h) of incubation.  Green-colored families displayed a significantly positive response during 
incubation. Red-colored families displayed a significantly negative response during incubation. 

bLDA scores were calculated using LEfSe.  Numbers in parentheses display the rank in the LDA analysis 

(i.e., higher ranking families exhibited a stronger response to a treatment than lower ranking ones).  

Table 61.  Alpha diversity of the microbial community in undiluted and diluted gut contents of L. terrestris.a  

Sample 
(Sampling 
Time) 

Treatment 
Number of 
sequences 

Observed 
phylotypesb 

(normalized)c 

Chao1 
(normalized)c 

Shannon 
(normalized)c 

DNA (0 h) Undiluted 1 23712 1252 (287) 1793 (355) 5.0 (4.4) 

 Undiluted 2 28421 1350 (290) 1776 (347) 5.1 (4.5) 

 Undiluted 3 20125 1163 (281) 1651 (343) 4.9 (4.4) 

 Diluted 1 24894 1198 (269) 1632 (345) 4.5 (3.9) 

 Diluted 2 17425 1024 (265) 1603 (333) 4.5 (4.0) 

 Diluted 3 24801 1240 (270) 1801 (329) 4.6 (4.0) 

DNA (5 h) Undiluted 13968 803 (233) 1257 (298) 4.1 (3.8) 
 Diluted 20919 1153 (278) 1737 (340) 4.6 (4.1) 

DNA (10 h) Undiluted 25551 1027 (247) 1451 (306) 4.4 (4.0) 
 Diluted 22833 1091 (270) 1552 (345) 4.4 (3.9) 

DNA (20 h) Undiluted 20390 915 (232) 1289 (282) 4.3 (3.9) 
 Diluted 22392 1131 (280) 1589 (342) 4.5 (4.1) 

DNA (30 h) Undiluted 1 29093 1108 (244) 1493 (297) 4.6 (4.1) 
 Undiluted 2 19850 969 (249) 1342 (297) 4.7 (4.2) 
 Undiluted 3 26441 1115 (253) 1572 (302) 4.9 (4.4) 
 Diluted 1 23661 1150 (273) 1582 (347) 4.5 (4.0) 
 Diluted 2 16928 939 (259) 1352 (331) 4.3 (3.8) 
 Diluted 3 18474 1026 (268) 1494 (339) 4.5 (4.0) 

RNA (0 h) Undiluted 1 6142 579 (218) 930 (270) 3.8 (3.4) 
 Undiluted 2 6422 569 (211) 979 (275) 3.8 (3.4) 
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Sample 
(Sampling 
Time) 

Treatment 
Number of 
sequences 

Observed 
phylotypesb 

(normalized)c 

Chao1 
(normalized)c 

Shannon 
(normalized)c 

RNA (0 h) Undiluted 3 8883 750 (237) 1198 (297) 4.1 (3.7) 
 Diluted 1 5996 470 (175) 858 (229) 3.2 (2.9) 
 Diluted 2 6957 580 (200) 1026 (273) 3.6 (3.2) 
 Diluted 3 9108 618 (194) 964 (274) 3.4 (3.1) 

RNA (5 h) Undiluted 9320 555 (191) 1076 (263) 3.5 (3.2) 
 Diluted 10455 756 (236) 1168 (304) 3.9 (3.5) 

RNA (10 h) Undiluted 11653 637 (207) 1016 (274) 3.8 (3.5) 
 Diluted 8551 596 (197) 970 (262) 3.5 (3.1) 

RNA (20 h) Undiluted 8760 446 (168) 717 (232) 3.0 (2.8) 
 Diluted 7284 572 (211) 985 (275) 3.7 (3.3) 

RNA (30 h) Undiluted 1 6345 437 (188) 819 (241) 3.5 (3.3) 
 Undiluted 2 6402 450 (176) 758 (227) 3.5 (3.2) 
 Undiluted 3 6918 455 (178) 652 (220) 3.7 (3.4) 
 Diluted 1 4699 473 (208) 883 (257) 3.8 (3.5) 
 Diluted 2 9310 610 (202) 963 (273) 3.7 (3.3) 

 Diluted 3 9501 611 (213) 894 (283) 3.8 (3.4) 

aAll 16S rRNA gene and 16S rRNA samples at 0 h and 30 h were analyzed separately.  Samples of the 
three replicates were pooled for each of the other treatments at 5 h, 10 h, or 20 h.  Identification numbers 
(e.g., Diluted1) indicate the respective replicates. 

bPhylotypes were clustered based on a sequence similarity cut-off of 97%.  

cThe data sets were normalized to 2,500 sequences for comparison of amplicon libraries of different sizes.  
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Figure 72.  16S rRNA gene (DNA)- and 16S rRNA (RNA)-based overview of the most abundant phylotypes 
in undiluted (U) and diluted (D) treatments at the end of incubation (A), the net change in DNA and RNA 
relative sequence abundances affiliated to these phylotypes (B), and phylogenetic tree (C).  Panel A:  
Phylotypes were considered to be abundant when a phylotype in at least one of the treatments displayed 
a ≥ 4% relative abundance at the end of the 30 h incubation.  Panel B:  Phylotypes are based on a sequence 
similarity cut-off of 97% and were considered to be responsive when a phylotype in at least one of the 
undiluted or diluted treatment displayed a ≥ 4% higher or lower relative 16S rRNA or 16S rRNA gene 
abundances at the end of incubation than at the beginning of incubation.  Panel C:  The phylogenetic tree 
was calculated using the neighbor-joining, maximum parsimony, and maximum likelihood methods.  Solid 
circles, congruent nodes in three trees; grey circles, congruent nodes in neighbor-joining and maximum 
parsimony trees; empty circles, congruent nodes in maximum parsimony and maximum likelihood trees.  
Branch length and bootstrap values (1,000 resamplings) are from the maximum parsimony tree.  The bar 
indicates 0.1 change per nucleotide.  T. maritima (AE000512) was used as outgroup.  Accession numbers 
occur at the end of each branch. 

Table 62.  Statistical analyses of the most responsive phylotypes displayed in Figure 72 based on 16S 
rRNA gene (A) and 16S rRNA (B) analysis.a 

(A) 16S rRNA genes     

Treatment Phylotypeb 
Sampling 

Time 
Mean 

Standard 
Deviation 

Median 
LDA 

Score 
(log10)c 

Undiluted D3 0 h 11 1.0 11 
 

  30 h 0.2 0.1 0.1 5.0(1) 

 D4 0 h 5.4 0.2 5.4  

  30 h 0.3 0.1 0.3 4.7(3) 

 D179 0 h 5.8 0.3 5.7  

  30 h 2.4 0.5 2.3 4.8(2) 

 D1 0 h 5.0 0.0 5.0  

  30 h 11 1.6 11 5.0(5) 

 D2 0 h 5.6 0.3 5.5  

  30 h 13 2.7 13 5.1(1) 

 D5 0 h 0.1 0.0 0.1  

  30 h 1.4 1.3 0.7 4.1(10) 

Aero-

monadaceae

Fuso-

bacteriaceae

Peptostrepto-

coccaceae

Shewa-

nellaceae

Myco-

plamataceae

0.1

D3, LR589687

Can. Lumbricincola,  FM165585

Cetobacterium somerae, AJ438155 
D1, LR589684

Paraclostridium bifermentans, AB618787 
D5, LR589697

Aeromonas hydrophila, FR870443, 

D4, LR589688

D179, LR589686

D2, 589685
Shewanella putrefaciens, AJ000213

Shewanella baltica, CP000563

Aeromonas media, KU363329

Romboutsia lituseburensis, AY458860

100

77

100

100

49

63

36

100

100

36

C



RESULTS 169 

 

 

Treatment Phylotypeb 
Sampling 

Time 
Mean 

Standard 
Deviation 

Median 
LDA 

Score 
(log10)c 

Diluted D3 0 h 9.0 0.7 8.9  
  30 h 5.2 0.9 5.5 5.0(1) 

 D4 0 h 8.1 0.2 8.2  
  30 h 4.4 0.6 4.5 4.9(2) 

 D2 0 h 5.2 0.4 5.3 
 

  30 h 10 0.3 10 5.0(1) 

 D5 0 h 0.1 0.0 0.1  

  30 h 0.9 0.0 0.9 3.9(7) 

 D179 0 h 8.0 0.0 8.0  

  30 h 9.6 1.3 9.4 5.0(2) 

(B) 16S rRNA 
    

Treatment Phylotypeb 
Sampling 

Time 
Mean 

Standard 
Deviation 

Median 
LDA Score 

(log10)c 

Undiluted D3 0 h 21 2.8 22 
 

  30 h 0.5 0.3 0.3 5.3(1) 

 D4 0 h 10 0.2 10  

  30 h 0.5 0.1 0.6 5.0(3) 

 D179 0 h 11 1.2 12  

  30 h 3.3 0.2 3.2 5.1(2) 

 D1 0 h 12 1.6 12  

  30 h 29 2.5 27 5.5(1) 

 D2 0 h 3.6 0.7 3.3  

  30 h 12 2.4 11 5.1(2) 

 D5 0 h 0.2 0.0 0.2  

  30 h 8.7 1.4 8.0 4.9(3) 

Diluted D3 0 h 18 3.3 17  
  30 h 13 1.5 13 5.2(1) 

 D4 0 h 12 1.0 12  

  30 h 6.3 0.5 6.2 5.1(2) 

 D2 0 h 2.2 0.4 2.0  

  30 h 5.8 0.7 6.0 4.8(1) 

 D5 0 h 0.2 0.1 0.2  

  30 h 1.1 0.1 1.1 4.1(4) 

aLEfSe analysis, mean value, standard deviation, and median are based on the relative abundance of 16S 
rRNA gene and 16S rRNA sequences of the three replicates per treatment at the beginning (0 h) and the 
end (30 h) of incubation.  

bGreen-colored phylotypes displayed a significantly positive response during incubation.  Red-colored 
phylotypes displayed a significantly negative response during incubation. 

cLDA scores were calculated using LEfSe.  Numbers in parentheses display the rank in the LDA analysis 
(i.e., higher ranking families exhibited a stronger response to a treatment than lower ranking ones).
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3.5. Effect of ingested material on Can. Lumbricincola 

The anecic model earthworm L. terrestris ingest a wide range of differential material (e.g., 

plant material, soil, and associated microorganisms [Section 1.3]).  In this regard, the feeding 

behavior of L. terrestris introduces diverse organic matter to the alimentary canal that potentially 

causes high fluctuations of organic carbon in the earthworm gut.  Previous studies demonstrated 

the emission of gut fermentation-derived H2 by L. terrestris (Wüst et al., 2009b), and further 

evaluations, including different earthworm diets, indicated a positive correlation between the 

emitted H2 and the organic carbon content of ingested material (Feustel, Oppermann, Schmidt, 

and Drake; data not published).  Furthermore, the findings of this study also illustrates a potential 

impact of the dietary material on abundant families of the gut content microbiota, including 

Mycoplasmataceae.  In this regard, this earthworm-associated bacterial family displayed a 

positive response, when L. terrestris was maintained on organic carbon rich dietary substrates 

(Feustel, Oppermann, Schmidt, Drake; data not published).   

Interestingly, Mycoplasmataceae-affiliated phylotypes closely related to Can. Lumbricincola 

displayed essentially no positive response to any supplemental nutrient (e.g., amino acids, 

saccharides, microbial- and plant-derived lysates, protein, RNA) evaluated in this dissertation.  

Although these phylotypes are strongly associated with L. terrestris (Nechitaylo et al., 2009), their 

metabolism and function in this invertebrate is largely unresolved.  These considerations 

prompted the evaluation of the response of Can. Lumbricincola-affiliated phylotypes in gut 

contents of earthworms maintained on dietary substrates, containing different amounts of organic 

carbon (worm bedding, turf, or soil [Section 2.1.1 and Section 2.5.3]).  

A total of 99,886 bacterial 16S rRNA sequences were obtained from the different gut content 

samples, yielding 25 phyla (including candidate phyla), and rarefaction analyses indicated that 

the most abundant taxa were targeted (Figure 73).  Based on the 16S rRNA abundance analyses 

at family-level, only the family Pseudomonadaceae was significantly associated with one of the 

three different gut contents.  Thus, this family displayed a significantly higher 16S rRNA 

abundance in gut contents extracted from earthworms maintained on worm bedding than in gut 

contents of earthworms kept on soil or turf (Figure 74; Statistical analyses using LEfSe revealed 

a LDA score [log 10] of 5.2 [Section 2.7.4.2]).  The Tenericutes-affiliated family 

Mycoplasmataceae displayed no significant response to any of the three dietary substrates.   

However, based on the relative 16S rRNA abundance analyses at phylotype-level, three 

Can. Lumbricincola-affiliated taxa were abundant and responded differentially to the three 

earthworm-ingested dietary substrates (Figure 75).  Thus, phylotype OC8 (closely related to an 

uncultured earthworm bacterium and distantly related to Can. Lumbricincola) displayed a 

significant higher relative 16S rRNA abundance in gut contents extracted from worms maintained 

on worm bedding (Figure 75; Statistical analyses using LEfSe revealed a LDA score [log 10] of 

5.3 [Section 2.7.4.2]). Furthermore, this phylotype was hardly detectable in earthworm gut 
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contents derived from dietary substrates with limited organic carbon contents (Figure 75 A and 

B).  Likewise, phylotype OC6 (closely related to Can. Lumbricincola) displayed a higher 16S rRNA 

abundance in earthworm gut contents derived from worm bedding than in the gut contents derived 

from turf and soil (Figure 75).  In marked contrast, phylotype OC1 (also closely related to Can. 

Lumbricincola) displayed a positive response in gut contents of earthworm that ingested turf and 

soil (Figure 75), an observation more pronounced in gut contents pooled from approximately 20 

worm individuals maintained on turf or soil (Figure 75 B).   

Based on the mean values, the numbers of detected phylotypes, the number of expected 

phylotypes (Chao1), and Shannon indices were lowest in gut contents extracted from earthworms 

maintained on the worm bedding (Table 63), indicating a lower bacterial diversity in alimentary 

canals of earthworms that are finding on organic carbon rich dietary substrates.  That the gut 

content diversity decreases when the availability of organic carbon increases is corroborated by 

previous microcosm experiments (Figure 25, Figure 36, and Figure 66). 

 

Figure 73.  Rarefaction analyses of bacterial 16S rRNA sequences obtained from gut contents of 
earthworms maintained on different dietary substrates.  Phylotypes were based on a 97% sequence 
similarity cut-off.  Capital letter assigned to a substrate [e.g., Turf A] indicate the respective individual.  
Number assigned to a substrate [e.g., Turf 1] indicate the respective replicate of the three replicate analyses 
of pooled gut content from approximately 20 individuals per substrate.  WB, worm bedding.  
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Figure 74.  Effect of dietary substrates on the relative 16S rRNA sequence abundances of gut-associated 
families.  The most abundant families (i.e., families with ≥ 4% relative abundance in at least one sampling 
period) are displayed in the color of the respective phylum.  Information on all detected taxa is provided in 
Table A11.  Capital letter assigned to a substrate [e.g., Turf A] indicate the respective individual.  Number 
assigned to a substrate [e.g., Turf 1] indicate the respective replicate of the three replicate analyses of 
pooled gut content from approximately 20 individuals per substrate.  Abbreviations: OC, organic carbon 
content; WB, worm bedding.   
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Figure 75.  16S rRNA-based overview of the most abundant and responsive Can. Lumbricincola-affiliated 
phylotypes in gut contents of earthworms maintained on different dietary substrates (A and B), and  
phylogenetic tree of these phylotypes (C).  Phylotypes (OC) are based on a sequence similarity cut-off of 
97% and were considered to be abundant when a phylotype displayed a ≥ 4% relative 16S rRNA 
abundances in at least one of the different gut contents. Panel A: 16S rRNA analyses of three worm 
individuals per substrate.  Panel B: the 16S rRNA analyses of pooled (P) gut content from approximately 
20 individuals per substrate.  Panel C: The phylogenetic tree was calculated using the neighbor-joining, 
maximum parsimony, and maximum likelihood methods.  Solid circles, congruent nodes in three trees.  
Branch length and bootstrap values (1,000 resamplings) are from the maximum parsimony tree.  The bar 
indicates 0.1 change per nucleotide.  T. maritima (AE000512) was used as outgroup.  Accession numbers 
occur at the end of each branch. 

Table 63.  Alpha diversity of the microbial community in gut contents of earthworms 
maintained on different dietary substrates.a  

Dietary  
Substrate 

Number of 
sequences 

Observed 
phylotypesb 

(normalized)c 

Chao1 
(normalized)c 

Shannon 
(normalized)c 

Worm Bedding A 10525 249 (60) 381 (75) 2.9 (2.4) 

Worm Bedding B 9385 304 (78) 412 (102) 3.4 (2.9) 

Worm Bedding C 8180 457 (122) 681 (167) 3.4 (2.8) 

Turf A 5065 560 (210) 899 (233) 4.4 (3.9) 

Turf B 5757 682 (239) 928 (264) 4.8 (4.1) 

Turf C 8572 565 (171) 866 (216) 3.6 (3.2) 

Soil A 3493 603 (228) 841 (244) 5.4 (4.6) 

Soil B 4696 548 (212) 882 (245) 4.5 (3.9) 

Soil C 4484 414 (175) 814 (221) 3.3 (2.9) 

Turf 1 3776 433 (200) 711 (240) 3.9 (3.5) 

Turf 2 7565 643 (216) 919 (250) 4.2 (3.7) 

Turf 3 5187 526 (208) 848 (246) 3.9 (3.5) 

Soil 1 8678 757 (229) 1075 (257) 4.3 (3.7) 

Soil 2 8394 748 (225) 1001 (254) 4.6 (4.0) 

Soil 3 6119 595 (216) 902 (255) 4.1 (3.6) 

aAnalyses based on 16S rRNA sequences. Capital letter assigned to a substrate [e.g., 
Turf A] indicate the respective individual.  Number assigned to a substrate [e.g., Turf 1] 
indicate the respective replicate of the three replicate analyses of pooled gut content 
from approximately 20 individuals per substrate. 

bPhylotypes were clustered based on a sequence similarity cut-off of 97%.  

cThe data sets were normalized to 2,500 sequences for comparison of amplicon libraries 
of different sizes. 
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4. DISCUSSION 

Evolutionarily, earthworms and worm-like animals are among the oldest known animals 

(Seilacher, 1998; Morris and Peel, 2008), and their gut ecosystems are therefore representative 

of primitive gut ecosystems.  Although it is assumed that dietary biopolymers are important to the 

maintenance of earthworms, how these complex nutrients are transformed and utilized in the 

alimentary canal is not resolved.  As outlined in the Introduction, the main objectives of the work 

described in this dissertation were to evaluate the potentials of the fermentative gut microbiota of 

L. terrestris to utilize dietary biopolymers and convert them to products that can be of nutritional 

value for these invertebrates.  

4.1. Dietary polysaccharides:  fermentative capacities of a 
primitive gut ecosystem (Hypothesis I) 

It can be presumed that ancient gut ecosystems were at least partially dependent on 

microbes capable of utilizing the ‘easiest substrates’ first.  For example, structural 

polysaccharides (e.g., cellulose, xylan, chitin) are designed for stability and must therefore be 

more difficult to decompose than polysaccharides (e.g., energy storage polymers) whose 

importance is based on rapid utilization in response to the energy needs of a cell (Ebert and 

Schenk, 1968).  In this regard, more easily hydrolysable energy storage polysaccharides such as 

starch (activation energy approximates 26 kJ/mol [Prajapati et al., 2014]) were preferential 

candidates for polysaccharide-based gut fermentations (i.e., best to use the easiest first).  In 

marked contrast, the use of difficult to degrade structural polysaccharides such as cellulose, a 

polymer with extensive hydrogen bonding to ensure stability (activation energy approximates 92 

kJ/mol [Kunov-Kruse et al., 2013; Sørensen et al., 2015]) was most likely not strategically 

prioritized in the oxygen-limited ancient gut ecosystem of the earthworm during evolution.  The 

utilization of structural polysaccharides might requires more highly evolved gut communities that 

are specialized in the anaerobic breakdown of such hardly degradable polysaccharides like 

cellulose and lignin (Dietrich et al., 2014; Xue et al., 2018).  Interestingly, although ruminants 

harbor these highly specialized cellulose-degrading gut microbes that greatly enhance the 

breakdown and utilization of cellulolytic fibers, the microbiota is unable to completely digest the 

ingested plant-derived structural polysaccharides (Russell et al., 2009), demonstrating the 

challenging hydrolysis of these durable polymers.   

The gut passage of earthworms can be up to 24 h and is dependent in part on the feeding 

status of the earthworm (Parle, 1963a; Satchell, 1967; Wüst et al., 2011).  The findings indicate 

that structural polysaccharides (e.g., cellulose, chitin, pectin, and xylan) were poorly utilized in 

this time period.  Nonetheless, it is noteworthy that they marginally enhanced the formation of 

fermentation products.  For example, cellulose, chitin, pectin, and xylan treatments displayed 
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statistically significant amounts of H2 (Table 14).  These observations indicated that earthworm 

gut-associated microbes have the capacity to utilize at least marginally certain structural 

polysaccharides, a process most likely facilitated by digestive enzymes in the alimentary canal of 

earthworms (Laverack, 1963; Edwards and Fletcher, 1988; Nozaki et al., 2009).  Indeed, worm-

derived digestive enzymes present in extracted gut contents might contribute to the slightly 

enhanced fermentation observed in the structural polysaccharide microcosms.  The hardly 

detectable stimulation of fermentation in chitin treatments (Figure 22 A) illustrates that the 

availability of chitin-derived N-acetylglucosamine would likely be limited during the earthworm gut 

passage.  However, this monosaccharide is also a major component of peptidoglycan of the 

bacterial cell wall, and cellular disruption of bacterial cell walls would yield N-acetylglucosamine 

and other potentially fermentable cell wall-associated monomers (Silhavy et al., 2010). 

4.1.1. Fermentative phylotypes responsive to polymeric and non-
polymeric saccharides 

The Proteobacteria-affiliated families Aeromonadaceae and Enterobacteriaceae were 

significantly stimulated by almost all polymeric and non-polymeric saccharides (Table 16 and 

Table 20).  Furthermore, at least one of the supplemented polymeric or non-polymeric 

saccharides significantly stimulated Clostridiaceae and/or Fusobacteriaceae (Table 16 and Table 

20).  These trend extended to several phylotypes that displayed a ≥ 4% higher relative abundance 

(at either the 16S rRNA gene or 16S rRNA level) in at least one of the treatments compared to 

the control treatment at the end of the incubation (Table 64).   

GPT-1 (PA3/PB96/PB3/S5, 99 to 100% identity to A. hydrophila) was significantly stimulated 

by all supplemental polymeric and non-polymeric saccharides except of chitin, xylan, and 

galacturonic acid (Table 64).  The facultative aerobe A. hydrophila is known to produce 

extracellular amylases that can hydrolyze alpha-1,4-glyosidic bonds in polysaccharides such as 

starch, maltodextrin, and glycogen (Gobius and Pemberton, 1988; Emele, 2001).  Furthermore, 

A. hydrophila utilizes glucose and forms acetate, ethanol, lactate, succinate, formate, CO2, and 

H2 (Stanier and Adams, 1944; Lee et al., 2008).  A. hydrophila-associated phylotypes responded 

also positively in gut contents of L. terrestris in other studies and experiments (Meier et al., 2018; 

Section 3.2.4).  That the A. hydrophila-associated GPT-1 was also stimulated in cellobiose, 

xylose, and N-acetylglucosamine treatments (Table 64) suggests that this phylotype might be 

able to hydrolyze, in addition to alpha-1,4-glyosidic bonds, beta-1,4-glyosidic bonds.  

Furthermore, the stimulation in these treatments is consistent with the ability of some A. 

hydrophila strains to ferment cellobiose and xylose (Stanier and Adams, 1944; Popoff and Véron, 

1976).  The stimulation of A. hydrophila-affiliated phylotypes in dextran treatments is consistent 

with the detection of pullulanase-excretion genes that are required for the extracellular activity of 

the respective enzyme (hydrolyzes alpha-1,6-glycosidic bonds) (Howard et al., 1993). 
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Enterobacteriaceae-affiliated GPT-5 (PA13/PB5/S10, 99 to 100% identity to B. gaviniae) was 

significantly stimulated by starch, maltodextrin, glycogen, dextran, and all supplemental non-

polymeric saccharides (Table 64).  The genus Buttiauxella is abundant in intestinal ecosystems 

(e.g., snails, slugs, and other molluscs), and the fermentative facultative aerobe B. gaviniae is 

able to ferment starch, N-acetylglucosamine, cellobiose, glucose, galacturonic acid, and xylose 

(Müller et al., 1996).   

GPT-4 (PA8/PB1018/S19, 99 to 100% identity to Y. regensburgei) responded most strongly 

to maltodextrin, but was also responsive to dextran, pectin, and most of the non-polymeric 

saccharides (Table 64).  Y. regensburgei ferments diverse saccharides, for example glucose, 

cellobiose, and xylose (Kosako et al., 1984).  Although GPT-4 was stimulated by galacturonic 

acid, the utilization of galacturonic acid by Yokenella is unknown.  However, certain species of 

the Enterobacteriaceae utilize galacturonic acid and produce ethanol, acetate, lactate, succinate, 

formate, and CO2 (Kraght and Starr, 1952; Grohmann et al., 1994; Hata et al., 2016). 

The obligate anaerobic family Fusobacteriaceae was represented by GPT-7 (PA14/PB2/S4, 

96% identity to C. somerae), a group phylotype stimulated by all saccharides except of xylose 

(Table 64).  Although a 96% sequence identity is relatively low in terms of species-level 

classification, it is of interest to note that this microaerotolerant anaerobe can be saccharolytic 

and ferments saccharides to acetate, propionate, butyrate, and succinate (Finegold et al., 2003; 

James and Whitman, 2011).  Clostridiaceae-affiliated GPT-6 (PA6/S12, 100% identity to 

Clostridium sartagoforme) responded most strongly to maltodextrin (Table 64).  C. sartagoforme 

is able to hydrolyze starch and ferments glucose to formate, acetate, and lactate (Šimŭnek et al., 

2001).  Clostridiaceae-affiliated GPT-8 (PA26/PB11/S51, 99 to 100% identity to Clostridium 

beijerinckii) was stimulated by glycogen, starch, and maltodextrin (Table 64).  C. beijerinckii 

ferments saccharides to solvents, like acetone and butanol (Chen and Blaschek, 1999).  

Peptostreptococaceae-affiliated GPT-2 (PA4/PB205/S3, 99% identity to P. bifermentans) was 

abundant in several treatments, including the unsupplemented controls (Table 64), suggesting 

that P. bifermentans utilize supplemented or gut content-endogenous saccharides, and produces 

ethanol, formate, lactate, acetate, CO2, and H2 (Chamkha et al., 2001a). 

Likewise, the Mycoplasmataceae, represented by group GPT-3 (PA1/PB1/S2, 99% similarity 

to Can. Lumbricincola sp. LR-C2), were abundant in all gut content treatments, including the 

unsupplemented controls.  Although this GPT was significantly stimulated in cellulose and chitin 

treatments (Table 22), the extremely low levels of fermentation activity in these structural 

polysaccharide treatments (Figure 22) suggest that this taxon utilized these structural 

polysaccharides tenuous.  It is of interest to note that this phylotype did not increase in relative 

abundance in controls treatments whereas other taxa did (Figure 24 and Figure 30), suggesting 

that it was less capable of responding to gut content nutrients than were other taxa that were most 

likely ingested (Section 3.3).  This finding is consistent with other studies and experiments that
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Table 64.  Summary of the most abundant and stimulated phylotypes in control, polysaccharide and non-polymeric saccharide treatments (Figure 33).a  

GPT Phylotype Phyla Family 
Closest cultured 
microorganism 

Sequence 
Identity 

Stimulated by 
Aerobe/ 
Anaerobeb 

Refer-
encesb 

GPT-1 PA3/PB96/ 
PB3/S5 

Proteobacteria Aero-
monadaceae 

A. hydrophila 99-100% Cellulose, pectin, dextran, maltodextrin, 
glycogen, starch, N- acetylglucosamine, 
cellobiose, glucose, xylose 

Facultative 
aerobe 

1 

GPT-2 PA4/PB205/
S3 

Firmicutes Pepto-
streptococcaceae 

P. bifermentans 99% - Obligate 
anaerobe 

2 

GPT-3 PA1/PB1/S2 Tenericutes Myco-
plasmataceae 

Can. Lumbricincola 99% - Facultative 
aerobe 

3 

GPT-4 PA8/PB1018
/S19 

Proteobacteria Enter-
obacteriaceae 

Y. regensburgei 99-100% Pectin, maltodextrin, dextran, starch, N-
acetylglucosamine, cellobiose, glycose, 
galacturonic acid  

Facultative 
aerobe 

4 

GPT-5 PA13/PB5/ 
S10 

Proteobacteria Entero-
bacteriaceae 

B. gaviniae 99-100% Maltodextrin, dextran, glycogen, starch, N-
acetylglucosamine, glucose, cellobiose, 
galacturonic acid, xylose 

Facultative 
aerobe 

5 

GPT-6 PA6/S12 Firmicutes Clostridiacea C. sartagoforme 100% Maltodextrin Obligate 
anaerobe 

6 

GPT-7 PA14/PB2/ 
S4 

Fusobacteria Fuso-
bacteriaceae 

C. comerae 96% Cellobiose, glucose, N-acetylglucosamine, 
galacturonic acid 

Obligate 
anaerobe 

7 

GPT-8 PA26/PB11/
S51 

Firmicutes Clostridiaceae C. beijerinckii 99-100% Glycogen, starch, maltodextrin, pectin, 
cellobiose 

Obligate 
anaerobe 

6 

aPhylotypes are based on a sequence similarity cut-off of 97% and were considered to be stimulated when a phylotype in at least one of the supplemented treatments 
displayed a ≥ 4% higher relative abundance (at either the 16S rRNA gene or 16S rRNA level) than in the control treatment at the end of incubation.  The group phylotypes 
are derived from the analyses of 16S rRNA genes or 16S rRNA.  PA and PB, phylotypes in polysaccharide treatments; S, phylotypes in non-polymeric saccharide treatments. 
-, no polysaccharide- or saccharide-derived  stimulation. 

bInformation about the closest cultured microorganism obtained from:  1, Martin-Carnahan and Joseph, 2005;  2, Sasi Jyothsna et al., 2016;  3, Brown et al., 2011;  4, Farmer 
and Brenner, 2005;  5, Kämpfer, 2005;  6, Wiegel, 2009;  7, Tsuchiya et al., 2007.   
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have indicated that this taxon is not responsive during gut content fermentation (Meier et al., 2018; 

Section 3.2, and Section 3.3).  The Mycoplasmataceae belong to the Mollicutes, a class that can 

be parasitic/pathogenic in plants and animals including invertebrates (Brown et al., 2011), and 

Mycoplasmataceae-affiliated species have been detected in other annelids (Murakami et al., 

2015).   

The diversity of responsive group phylotypes (Table 64) demonstrates that the limitation of 

O2 after ingestion and the availability of various saccharides can have broad impact on the 

fermentative gut microbiota of earthworms.  Although anaerobes were represented in the group 

phylotypes (e.g., GPT-7), facultative aerobes sometimes displayed a strong response (e.g., GPT-

1, GPT-4, and GPT-5), indicating the potential importance of ingested facultative aerobes to gut 

fermentation of ingested saccharides.  Independent of the quantity of responsiveness of a given 

group phylotype, the collective responsiveness of the group phylotypes was similar in control and 

structural polysaccharide treatments (Figure 33).  In marked contrast, polysaccharide treatments 

that yielded strongly enhances fermentations (e.g., maltodextrin and glycogen [Figure 22]) 

displayed a greater collective responsiveness of the group phylotypes compared to that of control 

treatments (Figure 33).  

4.1.2. Polysaccharide-based fermentation network 

The collective findings indicates that diverse plant- and microbial-derived saccharides, have 

a contrasting impact on earthworm gut-associated fermentative bacteria (Figure 76).  Thus, the 

hypothetical model illustrates the facultative aerobic and obligate anaerobic families that were 

potential responsible for the fermentations detected in the different treatments (Table 64). 

Furthermore, it summarize the diverse fermentation products that accumulated in response to 

supplemented polymeric and non-polymeric saccharides.  These detected products are 

consistent with those detected in the alimentary canal (Wüst et al., 2009b), indicating their 

potential in situ relevance.  The experimental design did not simulate all in situ parameters of the 

gut, and the model (Figure 76) is therefore not intended to display all fermentations that could 

occur in this ecosystem (e.g., protein-driven fermentation is not integrated into the model [Section 

3.2]).  Rather, it emphasize potential fermentations in the earthworm gut that could occur in 

response to a given ingested polymeric- or non-polymeric saccharide.  Nonetheless and 

consistent with theoretical considerations (Ebert and Schenk, 1968), the findings illustrate that 

fermentative gut bacteria would respond more rapidly to non-structural polysaccharides (e.g., 

glycogen and starch) than to structural polysaccharides (e.g., cellulose and chitin) during gut 

passage.  The formation of glucose in (a) the cellobiose treatment (Figure 27) and (b) certain non-

structural polysaccharide treatments (e.g., maltodextrin and glycogen [Table 13]) indicates the 

hydrolytic potentials of gut content.  These observations are consistent with the utilization of 

supplemented polysaccharides and concomitant formation of fermentation products in the gut 

ecosystem of earthworms (Horn et al., 2003; Wüst et al., 2009b).  In this regard, certain 
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fermentation products that were produced in marginal amounts achieved potential in situ 

relevance in other studies.  For example, butyrate was a minor product but has been shown in 

previous studies to (a) approximate 5 mM in the aqueous phase of the midgut and hindgut (Wüst 

et al., 2009b) and (b) be produced in gut content fermentations (Wüst et al., 2011; Section 3.2).  

Gut contents supplemented with protein yielded butyrate as main fermentation product (Section 

3.2.3), indicating that the butyrate detected in the midgut and hindgut (up to 6 mM in the aqueous 

phase) was most likely derived by the utilization of available amino acids.  That Fusobacteria were 

hardly detectable in the polysaccharide experiment A (Figure 23) but abundant in the 

polysaccharide experiment B and the non-polymeric saccharide experiment (Figure 23 and Figure 

29) reflects the differences in the microbiota of the dietary substrate ingested by the earthworm.  

Indeed, these experiments based on separate batches of earthworms that were maintained on 

soils collected at different times.  Furthermore, the competitive potential of the earthworm to 

assimilate non-polymeric saccharides from the gut must also be taken into consideration.  

However, the concentration of fatty acids in the aqueous phase of the midgut can exceed 30 mM 

(Wüst et al., 2009b), indicating the high potential of gut fermenters to utilize available gut 

endogenous nutrients prior to the absorption by the earthworm.   

As illustrated in Figure 76 and Table 64, facultative aerobes displayed a wide range of 

response to the diverse supplemented saccharides.  This trend was particularly apparent in the 

strong response of the Proteobacteria-affiliated families to maltodextrin, dextran, glycogen, and 

starch (Figure 23).  However, obligatory anaerobic taxa affiliated to the Firmicutes were 

responsive to endogenous nutrients of gut contents and increased in most treatments, including 

the unsupplemented control (Figure 24 and Figure 30), and it can be therefore not excluded that 

this phylum were also involved in saccharide-stimulated fermentations.  The apparent enrichment 

of Fusobacteriaceae (James and Whitman, 2011) in control and non-polymeric saccharide 

treatments (Figure 29 and Figure 30) reinforces the likelihood that anaerobes were at least in part 

responsible for the observed enhanced fermentations.  Furthermore, changes in relative 

abundances during the incubations were not evaluated, so transient phylotypes (i.e., phylotypes 

that might have increased in abundance initially but returned to low abundance at the end of 

incubation [Section 3.2]) would have not been detected and therefore worthy of further studies. 

As noted above, the experimental design did not simulate all in situ gut conditions. For 

example, the gut contents was subjected to a 1:10 dilution and might have therefore altered the 

efficiency of the gut community to utilize structural polysaccharides.  Furthermore, the 

supplemented polysaccharides are only representative of the large diversity of naturally occurring 

polysaccharides.  For example, poly-beta-hydroxybutyrate, a polyester produced by most Bacillus 

species, represent another bacterial energy storage polymer (Wilkinson, 1959, 1963) that was 

not tested in this study but warrants further evaluations.  Although O2 is not detectable in the gut 

(Horn et al., 2003; Wüst et al., 2009b), it cannot be excluded that traces of O2 diffuse into the 

alimentary canal at the inner-surface of the gut wall and facilitate a negligible amount of aerobic 
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polymer degradation at the transient oxic microzones proximal to the gut wall.  In addition, the 

occurrence of anaerobic respirations in the digestive tract (e.g., denitrification and iron reduction 

[Karsten and Drake, 1997; Matthies et al., 1999; Horn et al., 2006a; Wüst et al., 2009a]) might 

contribute to the breakdown of polysaccharides.  These considerations indicate a potentially more 

efficient degradation and utilization of structural polysaccharides during the earthworm gut 

passage than overserved in the anoxic microcosms.   

 

Figure 76.  Hypothetical model of contrasting gut content fermentations and associated families stimulated 
by polymeric and non-polymeric saccharides.  Fermentation products and associated families were only 
displayed if the average of triplicates (µmol/gFW for products and relative abundance of 16S rRNA for 
families) was at least 20% higher than the respective control at the end of incubation.  Bars with lighter 
shading indicate that the potential to utilize structural polysaccharides would be marginal compared to the 
more robust potential to utilize non-structural polysaccharides. Figure modified and used with permission 
from Zeibich et al., 2019a. 
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4.2. Protein- and RNA-enhanced gut fermentation (Hypo-
thesis II-IV) 

4.2.1. Protein and RNA as main fermentable cell constituents 

The anecic earthworm L. terrestris consumes soil (Palm et al., 2013), a dietary material that 

can harbor 109 or more microbial cells per gram dry weight (Torsvik et al., 1990; Whitman et al., 

1998).  Thus, ingested material provides an enormous number of microorganisms to the O2-

limited alimentary canal of the earthworm.  The ingestion is linked to the abrasive action of the 

gizzard that (a) ensure the disruption of larger cells and thus (b) the release of diverse microbial-

derived biopolymers into the gut.  In this regard, protein and RNA, the primary polymers of such 

cells, constitute up to 50% and 20%, respectively, on a dry weight basis (Babel and Müller, 1985; 

Lange and Heijnen, 2001; Delgado et al., 2013).  The findings demonstrated that fermentative gut 

microbes were poised to respond rapidly to these two biopolymers (Figure 39 and Figure 41) 

4.2.1.1. Fermentative phylotypes responsive to microbial cell lysate, 
protein and RNA 

The degree of the protein and RNA-based enhanced fermentative activity in anoxic gut 

content treatments was greater than that observed with structural polysaccharides (Figure 38 and 

Figure 22 A).  This finding is consistent with the more intractable nature of plant cell wall-derived 

structural polysaccharides compared to the more soluble cytoplasmic biopolymers that can be 

easier attacked by hydrolytic enzymes.  Furthermore, it reflects the diverse capacities of gut-

associated microbes to hydrolyze these different biopolymers under O2-limited conditions.  The 

product profiles of treatments supplemented with microbial cell lysate, protein, and RNA indicated 

that these substrates were fermented by facultative aerobes and obligate anaerobes (Figure 35, 

Figure 39, and Table 65).  Interestingly, H2 accumulated in RNA treatments but did not accumulate 

in protein treatments, a phenomenon most likely caused by amino acid fermenters that switch to 

non-H2-producing Stickland reaction when H2 concentrations reach a certain level (Schink and 

Stams, 2013). 

16S rRNA analyses displayed an approximately three-fourths overlap between the 

responsive family-level taxa in protein and RNA treatments and the responsive family-level taxa 

in the cell lysate treatments (Figure 42), suggesting that many of the stimulated taxa in the lysate 

treatment were stimulated by lysate-derived protein and RNA.  In contrast, the families 

Enterobacteriaceae and Lachnospiraceae responded to cell lysate but appeared to be non-

responsive in protein or RNA treatments (Figure 42), illustrating that nutrients other than protein 

and RNA in cell lysate stimulated additional taxa and associated processes not linked to either 

one of these biopolymers.  In this regard, cell lysate contains many components in addition to 

protein and RNA, including diverse saccharides (Babel and Müller, 1985; Delgado et al., 2013) 

that can be fermented by Enterobacteriaceae-affiliated taxa (Meier et al., 2018; Figure 29).  This 
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illustrates that the strong response of Enterobacteriaceae-affiliated phylotype CL4 (99% identity 

to E. aerogenes) to cell lysate (Table 65 and Figure 43) might have been due to lysate-derived 

saccharides.  Consistent with saccharides (ribose from RNA) being potentially utilized by these 

Enterobacteriaceae-affiliated taxa, phylotype PR33 was not stimulated by supplemental protein 

but displayed a modest stimulation in RNA treatments.   

Clostridia are known for their consumption of diverse saccharides as well as amino acids, 

and several clostridial phylotypes (Table 65) were responsive to supplemental microbial cell lysate 

and protein.  Phylotypes CL5 and CL18 were closely related to potential acetogens (100% identity 

to T. glycolicus and C. magnum, respectively [Schink, 1984; Küsel et al., 2001]) that were also 

detected in gut contents of the CH4-emitting earthworm Eudrilus eugeniae (Schulz et al., 2015).  

However, gut contents of L. terrestris displayed no methanogenic potential (Meier et al., 2018).  

Although the observed consumption of formate might have been associated with acetogenesis, 

further experiments indicated that non-acetogenic formate-hydrogen lyase-containing taxa are 

most likely responsible for the formate conversion (Section 3.2.9).  A finding corroborated by the 

concomitant accumulation of H2 that exceeded the H2-consumming capacity of acetogens.  

However, that acetogens can at least minimally profit from the conversion of formate to CO2 and 

H2 was reinforced by the increase of acetogen-affiliated sequences in formate-supplemented gut 

content treatments (Figure 51B and Figure 59).   

The phylotypes PR2, PR6, PR7, and PR12 were most strongly stimulated in protein 

treatments.  Of these four phylotypes, phylotype PR2 (99% identity to R. lituseburensis), displayed 

an increase at both 16S rRNA genes and 16S rRNA relative abundances-levels, (Figure 43).  

Obligate anaerobes of Rombutsia are common in soil, humus, lake sediments, and intestinal 

tracts of mammals (Wiegel, 2009; Gerritsen et al., 2014; Wang et al., 2015; Ricaboni et al., 2016).  

Rombutsia-affiliated species ferment amino acids and carbohydrates to acetate, formate, ethanol, 

propionate, butyrate, isobutyrate, and methylbutyrate, and R. lituseburensis utilizes gelatin, 

chopped meat, and casein, indicating it produces proteases (Wiegel, 2009; Gerritsen et al., 2014; 

Wang et al., 2015).  Phylotype PR6 represented the members of the family Fusobacteriaceae 

(Table 65).  This family responded late in the protein treatment and the phylotype PR6 had a 96% 

sequence identity to its closest cultured relative C. somerae (Table 65).  As mentioned before, a 

96% sequence identity is relatively low in terms of species-level classification, but it is noteworthy 

that C. somerae, a species occurring in gastrointestinal systems, is not able to hydrolyze complex 

proteins but ferment amino acids and peptides to acetate, propionate, and butyrate (Finegold et 

al., 2003; Tsuchiya et al., 2007).  Fusobacteriaceae-affiliated sequences with identities up to 99% 

to phylotype PR6 (HG964632; Figure 43) were also present in gut content of the epigeic 

earthworm E. eugeniae (Schulz et al., 2015).  This finding and the positive response of 

Fusobacteriaceae-affiliated phylotype PR6 in gut contents of the anecic earthworm L. terrestris 

supplemented with protein, indicates that this family may contribute to the degradation of amino 

acids in earthworms of contrasting feeding guilds.   
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Table 65.  Summary of the most stimulated phylotypes in lysate, protein and RNA treatments (Figure 43).a 

Phylotype Phyla Family 
Closest cultured 
microorganism 

Sequence 
Identity 

Stimulated by 
Aerobe/ 
Anaerobeb 

Refer-
encesb 

CL2/PR2 Firmicutes Peptostreptococcaceae R. lituseburensis 99% Lysate and protein Obligate anaerobe 1, 2 

CL4/PR33 Proteobacteria Enterobacteriaceae E. aerogenes 99-100% Lysate and RNA Facultative aerobe 3, 4 

CL7/PR3 Proteobacteria Aeromonadaceae A. hydrophila 99-100% Lysate and RNA Facultative aerobe 5 

CL10/PR7 Firmicutes Clostridiaceae C. thiosulfatireducens 100% Lysate and protein Obligate anaerobe 2 

CL5 Firmicutes Peptostreptococcaceae T. glycolicus 100% Lysate Obligate anaerobe 6 

CL6 Firmicutes Lachnospiraceae N. massiliensis 96% Lysate Obligate anaerobe 7 

PR6 Fusobacteria Fusobacteriaceae C. comerae 95% Protein Obligate anaerobe 8 

CL8 Firmicutes Clostridiaceae C. peptidivorans 99% Lysate Obligate anaerobe 2 

PR8 Firmicutes Peptostreptococcaceae C. difficile 99% Protein Obligate anaerobe 2 

PR12 Firmicutes Clostridiaceae C. tunisiense 100% Protein Obligate anaerobe 2 

CL15 Firmicutes Clostridiaceae C. fridigicarnis 100% Lysate Obligate anaerobe 2 

CL18 Firmicutes Clostridiaceae C. magnum 100% Lysate Obligate anaerobe 2 

aPhylotypes are based on a sequence similarity cut-off of 97% and were designated responsive when a phylotype in a given treatment displayed a minimum increase in 
relative abundance of 2% above control values in at least one of the sampling periods.  The phylotypes are derived from the analysis of 16S rRNA and 16S rRNA genes. 
CL, phylotypes in cell lysate treatments; PR, phylotypes in protein and RNA treatments. 

bInformation about the closest cultured microorganism obtained from: 1, Gerritsen et al., 2014;  2, Wiegel, 2009;  3, Yokoi et al., 1995;  4, Grimont and Grimont, 2005;  
5, Martin-Carnahan and Joseph, 2005;  6, Chamkha et al., 2001b;  7, Rainey, 2009;  8, Tsuchiya et al., 2007.  
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A more moderate response to protein was displayed by phylotypes most closely related to 

proteolytic anaerobes, including C. thiosulfatireducens (100% identity to phylotype PR7), C. 

difficile (99% identity to phylotype PR8), and C. tunisiense (100% identity to phylotype PR12) 

(Table 65 and Figure 43) (Seddon and Borriello, 1992; Hernández-Eugenio, 2002; Thabet et al., 

2004).  The fermentation products acetate, methylbutyrate, propionate, and butyrate are common 

products of amino acid fermentations (McInerny, 1988; Buckel, 1999) and accumulated in the 

protein treatment.  Furthermore, the most abundant phylotypes detected in these treatments were 

closely related to species that produce acetate, methylbutyrate, propionate, and butyrate while 

fermenting amino acids (Suen et al., 1988; Chamkha et al., 2001b; Finegold et al., 2003; Tsuchiya 

et al., 2007; Wiegel, 2009; Ruan et al., 2014; Wang et al., 2015).  Thus, several phylotypes that 

responded positively to protein were associated with proteolytic taxa.   

The dominant phylotype, phylotype PR3, that responded to RNA (Table 65 and Figure 43) 

represented the genus Aeromonas (100% identity to A. media and A. hydrophila), that was 

continuously detected in gut contents of L. terrestris (Wüst et al., 2011; Meier et al., 2018; Section 

3.1.2 and 3.1.4) and casts of Lumbricus rubellus (Furlong et al., 2002).  Aeromonas-affiliated 

facultative aerobes can hydrolyze RNA and ferment pentoses (e.g., via pentose phosphate cycle 

[McMillan, 1993]) to acetate, succinate, and formate (Stanier and Adams, 1944; Allen et al., 1983; 

Abbott et al., 2003; Martin-Carnahan and Joseph, 2005; Li et al., 2017).  The stimulation of this 

phylotype by the supplemented pentose ribose (Section 3.2.8) is consistent with the stimulation 

of Aeromonadaceae-affiliated taxa in gut contents of L. terrestris supplemented with xylose (Meier 

et al., 2018; Figure 33 A).  Thus, the enhanced fermentation in pentose treatments and the 

negligible fermentative response to supplemented purines and pyrimidines reinforce the likelihood 

that ribose was the main driver of the enhanced fermentation in RNA treatments (Figure 41).  The 

production of extracellular RNases by ingested soil microbes (Hankin and Anagnostakis, 1975; 

Mishra et al., 2017) can contribute to the degradation and utilization of RNA in the anoxic 

alimentary canal and suggest that the hydrolysis of RNA can be independent of ribose fermenting 

taxa. 

Phylotype CL2 (99% identity to the amino acid and carbohydrate fermenter P. bifermentans 

[Wiegel, 2009]) was rapidly stimulated by supplemented microbial cell lysate during the first 6 h 

of incubation but subsequently decreased in relative abundance.  In contrast, phylotypes CL8 

(99% identity to the proteolytic fermenter C. peptidivorans [Whitman et al., 1998]) and CL6 (95% 

identity to the potentially proteolytic Lachnospiraceae-affiliated fermenter N. massiliensis [Tidjani 

Alou et al., 2017]) had a more sustained response to cell lysate, yielding a maximum relative 

abundance of 16S rRNA at the end of incubation (Figure 43).  This observation reflects the 

capacity of fermenters with broad substrate spectra to be initially more competitive for the diversity 

of substrates derived from microbial cell lysate.  However, the closely related phylotypes CL2 and 

PR2 displayed a differential respond in unsupplemented controls, with the response of CL2 being 

more pronounced.  Such observation might be due in part to a different nutrient status of gut 
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content at the time of gut content-extraction.  Furthermore, these two experiments (lysate and 

protein/RNA) based on separate batches of earthworms that were maintained on soils collected 

at different times and such observed differences between the controls visualize the varying 

microbiota of the dietary substrate ingested by the earthworm. 

4.2.1.2. Protein- and RNA-based fermentation network 

The findings illustrate that the primary biopolymers of disrupted microbial biomass, protein 

and RNA, display a high potential to stimulate a subsets of the fermentative earthworm gut 

bacteria.  The hypothetical model (Figure 77) is a summarizing abstraction of the main findings 

and therefore restricted to the most responsive families.  As such, the model emphasizes that 

protein and RNA may contribute to the overall fermentation profile of the earthworm alimentary 

canal.    

The hydrolysis and fermentation of protein in the earthworm gut is consistent with the 

decreasing amount of protein during the gut passage (Tillinghast et al., 2001).  Such protein-

based fermentations occurs also in other gut ecosystems.  For example, the fermentation of 

protein in the gastrointestinal tract of higher animals, including humans, can affect the functional 

status of gut microbiota and the health status of the animal (Windey et al., 2012; Pieper et al., 

2016; Yao et al., 2016).  Until today, it seems that there is no other study that has evaluated 

microbial taxa that facilitate RNA-based fermentation in a gut ecosystem.   

The experimental design of the experiments did not simulate all of the in situ conditions of 

the gut, and the quantitative differences observed for the contrasting phylotypes can therefore not 

be extended to in vivo conditions.  As such, the model does not include the possibility that less 

responsive taxa also participated in the protein- and RNA-based fermentation.  Likewise, it does 

not address what taxa might respond to low nutrient input.  However, the findings qualitatively 

illustrate the potential competiveness of subgroups of the fermentative gut microbes that could 

respond to protein- and RNA-derived organic carbon in the alimentary canal and thus contribute 

to gut-associated fermentations.  In this regard, the rapid stimulation of the phylotypes CL2, CL7, 

PR2, and PR3 (Figure 43) illustrate the remarkable anaerobic abilities of phylotypes that are 

related to bacterial species with phenotypes that are consistent with the fermentation profiles 

obtained.  The accumulation of fermentation-derived H2 in the treatments is consistent with the 

occurrence of H2 in the gut and concomitant emission of this gas by L. terrestris (Wüst et al., 

2009b).  This process can be linked to secondary H2-consuming processes in soil (Osborne et 

al., 2010; Khdhiri et al., 2017).  The production of fermentation-derived CO2 is less certain and 

would in part be influenced by the formation of carbonates in the pH neutral alimentary canal 

(Horn et al., 2003).  

The protein-, RNA-, and cell lysate-dependent stimulation of both fermentation and 

associated taxa were rapid and occurred within the initial 6 to 10 h of incubation.  This 
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demonstrates that such substrates have the potential to stimulate microbes during gut passage.  

DNA is another nucleic acid released from gizzard-disrupted microbial cells and can constitute up 

to 3% of the dry weight (Babel and Müller, 1985; Delgado et al., 2013).  Given the marked potential 

of RNA to stimulate fermentation, it seems likely that the hydrolysis of DNA could also contribute 

to fermentation in the gut, and therefore worthy of further studies.  In addition to gizzard-derived 

protein, this biopolymer is also a component of gut mucus and reinforces the likelihood that protein 

is available in the alimentary canal and therefore subject to utilization during gut passage 

(Rahemtulla and Løvtrup, 1975; Martin et al., 1987; Brown et al., 2000).   

The in situ availability of protein and RNA in the gut can be additionally enhanced by other 

lytic events than those facilitated by the gizzard.  In this regard, viruses represent one of the most 

abundant biological agents in the biosphere, and bacteriophages can be ten-fold more abundant 

than their bacterial hosts (Ashelford et al., 2003; Clokie et al., 2011).  Indeed, soil is an excellent 

matrix for bacteria-phage interaction and the lysis of the bacterial host cell (Ashelford et al., 2003; 

Armon, 2011; Clokie et al., 2011) in the alimentary canal might therefore increase the amount of 

available polymers.  Bacterial lysis by earthworm-derived lysozyme (Ville et al., 1995; Schuch et 

al., 2010), and the lysis of fungal cells by bacteria (Horikoshi and Iida, 1958; Mitchell and 

Alexander, 1963) are additional example for lytic events that can occur in the gut system.  For 

example, B. cereus, a species affiliated to phylotypes detected in gut content microcosms 

(Section 3.3.3), produces chitinase to lyse the hyphae of several fungal species (Mitchell and 

Alexander, 1963).  These multiple mechanisms that potentially occur in the earthworm ingested 

material would increase the amount of fermentable biopolymers and thus enhance the formation 

of fermentation product that can be a source of nutrients for the earthworm (Bergman, 1990; 

Sampedro et al., 2006).   

The evaluated transformations of protein and RNA are obviously not restricted to the anoxic 

earthworms gut and therefore most likely highly stimulatory to fermentative microbes in all other 

O2-limited environments.  However, the impact of these fermentative transformations on 

ecosystem- and microbiome-level have not been as profoundly evaluated as those of plant-

derived polysaccharides such as cellulose (Weimer, 1992; Leschine, 1995).  At the global level 

and based on the productivity of both autotrophic and heterotrophic microbes, the capacity of 

prokaryotes to synthesize protein- and RNA-rich biomass might be similar to the capacity of plants 

to produce polysaccharides (Gasol et al., 1997; Whitman et al., 1998; Kuzyakov and Larionova, 

2005; Müren et al., 2005; Calvo-Díaz et al., 2011; Aytan et al., 2018), illustrating the tremendous 

global potential of microbes to synthesize protein and RNA.   

The evolution of life is presumed to have started approximately 4 billion years ago under 

O2-free conditions, and the production of O2 by cyanobacteria and the occurrence of plants that 

finally became the major producers of polysaccharides is believed to have developed 

approximately 2.5 and 1 billion years ago, respectively (Shih, 2015).  In this regard and on the 

assumption that protein and RNA were also the major biopolymers of primordial microbial cells, 
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it is most likely that these biopolymers were the main drivers of early fermentation and other redox 

processes conducted by obligate anaerobes.  These reflections and the strong stimulation of 

fermentations by protein and RNA demonstrated at the primitive gut ecosystem of L. terrestris 

illustrates the huge biological capacity to profit from the fermentative transformation of these 

biopolymers.  Further evaluations of these transformations in other anoxic environments would 

increase our understanding of how they contribute to the anaerobic turnover of organic carbon in 

today’s biosphere. 

 

Figure 77.  Hypothetical model illustrating the ingested soil microorganisms that are able of fermenting 
protein and RNA derived from gizzard-disrupted microbial and plant cells. 
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4.2.2. Amino acids and ribose as main drivers of protein and RNA 
fermentations  

Assuming protein and RNA constitute 50% and 20%, respectively, of microbial cytoplasm 

on a dry weight basis (Babel and Müller, 1985; Lange and Heijnen, 2001; Delgado et al., 2013), 

and cytoplasm has an 80% water content, the cytoplasm would contain up to 1 M polymeric amino 

acids and 100 mM polymeric ribose.  This estimate is based on the assumption that the average 

amino acid has a molecular weight of 100 and that RNA consist of approximately 40% ribose.  An 

intact bacterial cell in the direct proximity of a gizzard-ruptured cell would therefore experience an 

extraordinarily high amount of protein/amino acids and RNA/ribose.  As noted above, additional 

sources of protein/amino acids and RNA/ribose that might enhance the available amount of these 

compounds in the gut ecosystem can be other lytic events, ingested plant biomass, and 

earthworm-excreted gut mucus (note: mucus does not contain RNA) (Needham, 1957; Martin et 

al., 1987; Section 4.2.1.2).  Independent of its origin, the amount of protein in the alimentary canal 

decreases rapidly from anterior to posterior, whereas the amount of ammonium increases from 

anterior to posterior (Tillinghast et al., 2001) .  Furthermore, the amounts of ammonium in the gut 

and cast of earthworms are relatively high in comparison to the negligible amounts detected in 

pre-ingested soil (Parle, 1963b; Drake and Horn, 2007).  These reflections suggest that gut 

fermentation of protein and concomitant deamination of amino acids lead to the accumulation of 

ammonium in the alimentary canal.  In this regard, the significant stimulation of gut bacteria by 

certain supplemented amino acids is consistent with the availability of these biopolymer and the 

products of its hydrolysis in the alimentary canal.   

4.2.2.1. Fermentative phylotypes responsive to amino acids, ribose, and 
transient intermediates 

The contrasting product profiles of amino acid, ribose, succinate, and formate treatments 

suggesting that these substrates were fermented or converted by contrasting obligate anaerobes 

and facultative aerobes.  In this regard, Firmicutes- and Fusobacteria-affiliated obligate 

anaerobes were responsive during the fermentation of protein, whereas the fermentation of RNA 

was linked to responsive Proteobacteria-affiliated facultative aerobes (Section 3.2.4).  The 

numerous phylotypes including five main GPT that were responsive in the amino acid and ribose 

treatments were also affiliated to these families (Table 66 and Figure 59). 

In this regard, group phylotype GPT-1 (A4/R96/T3, 99 to 100% identity to A. hydrophila) 

was significantly stimulated by aspartate, ribose, and glucose (Table 66 and Figure 59).  This 

phylotype responded additionally to RNA and saccharides (Section 3.2.4 and Section 3.1.4; Meier 

et al., 2018).  As mentioned before, the facultative aerobe A. hydrophila is able to ferment simple 

saccharides to acetate, ethanol, lactate, succinate, formate, CO2, and H2 (Stanier and Adams, 

1944; Allen et al., 1983; Abbott et al., 2003; Martin-Carnahan and Joseph, 2005; Li et al., 2017).  
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Although A. hydrophila is not known to ferment aspartate, this species and closely related A.media 

harbor aspartate ammonia-lyase that could transforms aspartate into the electron acceptor 

fumarate which reductively forms succinate (Knight and Blakemore, 1998; Parmeggiani et al., 

2018).  In addition, A. hydrophila synthesize aspartate transcarbamoylase that is required in the 

formation of pyrimidine precursors (Wild and Wales, 1990). 

Enterobacteriaceae-affiliated group phylotype GPT-2 (A6/R5/T6, 99 to 100% identity to the 

facultative aerobes B. gaviniae and E. aerogenes) displayed a positive response in glutamate, 

aspartate, threonine, casamino acid, and ribose treatments (Table 66 and Figure 59).  The 

Buttiauxella- and Enterobacter-affiliated phylotypes were also stimulated in gut contents 

supplemented with RNA or cell lysate (Section 3.2).  B. gaviniae produces fatty acids and gases 

when fermenting sugars such as ribose, and several Buttiauxella-associated species can utilize 

amino acids including glutamate, aspartate, and threonine as sole carbon and energy sources 

(Müller et al., 1996).  

Sequences of the Yokenella-affiliated group phylotype GPT-3 (A129/A1526, 97 to 99% 

identity to the facultative aerobe Y. regensburgei) displayed an apparent net increase in relative 

abundance in glutamate, aspartate, and threonine treatments.  Although it is unknown that Y. 

regensburgei can utilize amino acids, its presence in human wounds and infections is consistent 

with the potential ability to utilize amino acids (Abbott and Janda, 1994; Jain et al., 2013).   

Threonine and formate stimulated the group phylotype GPT-4 (A25/T7) that was closely 

related to the potential acetogen T. glycolicus (Table 66 and Figure 59).  The stimulation in 

threonine and formate treatments (a) reflects the ability of T. glycolicus to convert threonine to 

propionate (Chamkha et al., 2001b), and (b) is congruent with the potential for this acetogen to 

from acetate from formate (Küsel et al., 2001).  Acetogen-affiliated phylotypes were also 

stimulated in yeast lysate-supplemented treatments that displayed high amounts of transient 

formate (Section 3.2.1).  However, acetogens are capable of diverse anaerobically processes 

including fermentation (Drake et al., 2006, 2008), and the response of a potential acetogen in a 

certain treatment is therefore not strictly dependent on acetogenesis.  

Fusobacteriaceae-affiliated phylotypes, continuously detected in gut contents of L. 

terrestris, were strongly stimulated by supplemental protein (Section 3.2.5).  The associated group 

phylotype GPT-5 (A1/T2, 96% identity to C. somerae) was stimulated by glutamate, aspartate, 

valine/glycine, and succinate treatments (Table 66 and Figure 59).  C. somerae occurs in 

gastrointestinal systems and ferments amino acids and peptides to acetate, propionate, and 

butyrate (Finegold et al., 2003; Tsuchiya et al., 2007).  For example, threonine can be converted 

to propionate (James and Whitman, 2011), an observation consistent with the significant 

production of propionate in the threonine treatment (Table 39).  Group phylotype GPT-5 was more 

distantly related to species of the strictly anaerobic genus Propionigenium (93% sequence 

identity).
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Table 66.  Summary of the most stimulated phylotypes in amino acid, ribose, succinate and formate treatments (Figure 59).a 

GPT Phylotype Family 
Closest 
cultured 
microorganism 

Sequence 
Identity 

Stimulated by Aerobe/Anaerobeb Referencesb 

GPT-1 A4/R96/T3 Aero-
monadaceae 

A. hydrophila 99-100% Casamino acids, aspartate, glucose, 
ribose 

Facultative aerobe 1 

GPT-2 A6/R5/T6 Entero- 
bacteriaceae 

B. gaviniae 99% Casamino acids, glutamate, 
aspartate, threonine, ribose 

Facultative aerobe 2 

GPT-3 A129/A1526 Enter- 
obacteriaceae 

Y. regensburgei 97-99% Casamino acids, glutamate, 
aspartate, threonine 

Facultative aerobe 3 

GPT-4 A25/T7 Pepto- 
streptococcaceae 

T. glycolicus 99-100% Casamino acids, threonine, formate  Obligate anaerobe 4 

GPT-5 A1/T2 Fuso- 
bacteriaceae 

C. somerae 96% Casamino acids, glutamate, 
aspartate, valine and glycine, 
succinate 

Obligate anaerobe 5 

 A8 Pepto-
streptococcaceae 

P. bifermentans 99% Casamino acids, alanine and glycine, 
valine and glycine 

Obligate anaerobe 6 

 A14 Clostridiaceae C. pascui 100% Glutamate Obligate anaerobe 7 

aPhylotypes are based on a sequence similarity cut-off of 97% and were considered to be stimulated when a phylotype in at least one of the supplemented treatments 
displayed a ≥ 2% net increase in relative abundance. The phylotypes are derived from the analysis of 16S rRNA and 16S rRNA genes. A, phylotypes derived from 
amino acid experiment; R, phylotypes derived from ribose experiment; T, phylotypes derived from transient intermediate experiment. 

bInformation about the closest cultured microorganism obtained from:  1, Martin-Carnahan and Joseph, 2005;  2, Kämpfer, 2005;  3, Farmer and Brenner, 2005; 4, 
Chamkha et al., 2001b;  5, Tsuchiya et al., 2007;  6, Sasi Jyothsna et al., 2016;  7, Wiegel, 2009. 
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Members of this genus are able to utilize succinate for growth and produce propionate 

(Schink and Pfennig, 1982; Janssen and Liesack, 1995), a process consistent with the product 

profile of the succinate treatment (Figure 51 and Figure 52) that displayed a positive response of 

this group phylotype (Table 66 and Figure 59).  Glutamate-stimulated phylotype A14 (Table 66 

and Figure 59) is closely related to C. pascui (100% identity) and was also stimulated by protein 

rich cell lysate (Section 3.2.5). C. pascui is a proteolytic spore-forming anaerobe that is known to 

ferment glutamate (Wilde et al., 1997).  Phylotype A8 (99% identity to the amino acid fermenter 

P. bifermentans) responded in the co-amino acid treatments (Table 66 and Figure 59), reflecting 

the potential of this phylotype to conduct Stickland reaction (McInerny, 1988).  That P. 

bifermentans, isolated from the human gut, can be cultivated on co-amino acids such as alanine 

plus glycine (Smith and Macfarlane, 1998) is consistent with the stimulation of phylotype A8 in 

co-amino acid treatments.  This phylotype was also slightly stimulated in the casamino acid 

treatment (Table 66 and Figure 59) and strongly stimulated by protein and cell lysate (Section 

3.2.5), findings consistent with the ability to ferment a mixture of amino acids.  In addition to the 

catabolic fermentative processes associated to the aforementioned main stimulated phylotypes, 

it is noteworthy, that the supplemented amino acids could have also stimulated phylotypes via 

assimilatory processes.  Indeed, given the availability of diverse amino acids in the alimentary 

canal (Drake and Horn, 2007), it is likely that amino acids would be utilized both catabolically and 

anabolically by ingested microbes during gut passage.   

4.2.2.2. Potential interactions of amino acid and ribose fermenters in the 
earthworm gut 

The findings illustrates that certain amino acids stimulated fermentative subgroups of 

contrasting gut-associated affiliated taxa (Figure 78).  Furthermore, the findings indicate that 

ribose lead to a stimulation of fermentative Proteobacteria-affiliated taxa.  The fermentation-

derived metabolic intermediates succinate and formate were converted by secondary processes 

associated with the positive response of Firmicutes- and Fusobacteria-affiliated taxa (Figure 78).   

The model (Figure 78) is restricted to the main findings and therefore does not depict all 

potential fermentations in the alimentary canal of the earthworm.  For example, several of the 

common amino acids that occur in the gut (Drake and Horn, 2007) were not evaluated but would 

be subject to in situ fermentations.  In this regard, isoleucine can represent approximately 10% of 

the amino acids in the earthworm gut (Drake and Horn, 2007) and might be fermented to 

methylbutyrate (McInerny, 1988).  This is consistent with (a) the formation of methylbutyrate in 

the casamino acid treatment (Figure 45), and (b) the in situ-occurrence of methylbutyrate in the 

earthworm gut (Wüst et al., 2009b).  Thus, the evaluation of other amino acids, including other 

stickland reactions, would warrant further studies.  As displayed in the hypothetical model the 

glycoprotein-rich gut mucus (Laverack, 1963; Martin et al., 1987) provides additional fermentable 

amino acids and saccharides for ingested microbes.  Although it is advantageous for the 
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earthworm to utilize the fatty acids derived from fermentation of gut mucus (Figure 78), such 

recycling of worm-derived organic carbon cannot explain how the earthworm perpetuates.  In this 

regard, ingested nutrients including biopolymers must be utilized.  Both microbial- and plant-

derived organic matter rapidly stimulate fermentation by gut-associated bacteria (Section 3.1 and 

Section 3.2), and dietary polymers that are more easily hydrolyzed are primary sources of 

fermentable organic carbon.  The resulting animal-microbe interactions have been more 

extensively characterized in higher developed and compartmentalize gut ecosystems with 

specific host-associated syntrophs that optimize the breakdown of ingested polymers, including 

structural polysaccharides (e.g., termites and ruminants [Dietrich et al., 2014; Xue et al., 2018]).  

However, the relatively simple, more primitive gut of the earthworm exemplary illustrates the 

competitive and beneficial interactions that can occur between the animal host and hosted 

fermenters (Figure 78).  Thus, available hydrolysis-derived amino acids can be either directly 

absorbed by the earthworm or fermented by the gut microbiota, whereby the latter case lead to 

products that potentially also serve as nutrition source for the earthworm (Figure 78; Adibi et al., 

1967; Bergman, 1990; Sampedro et al., 2006). 

 
Figure 78.  Hypothetical model of fermentative transformations of amino acids and saccharides in the 
earthworm gut.  The model depicts events that are interfaced to (a) the in situ hydrolysis of dietary protein, 
dietary RNA, and glycoprotein-rich mucus, and (b) the earthworm’s utilization of biopolymer constituents 
and fermentation-derived products.  Figure modified and used with permission from Zeibich et al., 2019b.
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4.3. Fermenters in the earthworm gut: just on a visit (Hypo-
thesis V) 

An endemic and fermentative intestinal microbiota is a typical characteristic of many well 

studied higher (e.g., ruminants and humans) and lower (e.g., termites and cockroaches) animals 

(Brune and Friedrich, 2000; Lozupone et al., 2012; Espey, 2013; Dietrich et al., 2014).  However, 

the nature and origin of the microorganisms contributing to the fermentations in the earthworm 

gut is not well understood.  Nonetheless, the ingestion of soil introduces an enormous metabolic 

(i.e., microbial) potential to the anoxic alimentary canal (Section 1.2.2).  For example, the activity 

of denitrifiers in the gut lead to the emission of N2O by the earthworm (Karsten and Drake, 1997; 

Matthies et al., 1999; Horn et al., 2006a).  Based on genetically analysis, these gut denitrifiers are 

phylogenetical affiliated to those of soil denitrifiers, suggesting that the denitrifiers in the gut are 

derived from the ingested matter rather than endemic to the host (Ihssen et al., 2003; Horn et al., 

2006b; Wüst et al, 2009a; Depkat-Jakob et al., 2010, 2012).  However, on the basis of recovered 

carbon and reductants in the products, fermentation rather than denitrification or iron reducion is 

the most dominant anaerobic process in the alimentary canal of the earthworm (Horn et al., 

2006a; Wüst et al., 2009b).  Independent of such processes the aforementioned considerations 

reinforce the likelihood that most of the microbes in the earthworm gut are ingested and transient 

(Drake and Horn, 2007).  In comparison to the nutrient-poor soil, the gut of earthworms is a 

nutrient-rich microzone in soils (Section 1.2.2) and the ingestion of fermentative dormant soil taxa 

into the gut might therefore change their metabolic status and thus detectability (at both the 

phenotypic and genotypic levels).   

The inability of soil to respond fermentatively to anoxia was independent of supplemented 

saccharides, protein, or RNA (Meier et al., 2018; Table 51), and in marked contrast to the gut 

content that responded rapidly to these ‘high quality’ substrates.  These findings might be 

interpreted to mean that the fermentative microbiota of gut content and soil differ.  However, the 

supplement of a substrate with high nutrient complexity finally brought both soil and gut 

communities experimentally to a similar metabolic status, what reduce this potential detection 

bias.  If gut fermenters originate from soil but are mostly dormant pre-ingestion, the nutrient 

richness of cell lysate and commercial yeast extract might stimulate soil microbes similarly to that 

observed with gut content.  In this regard, cell lysate, simulating complex gizzard-disrupted 

biomass, greatly enhanced the fermentative activity of both soil and gut microbiota (Kristůfek et 

al., 1994; Schönholzer et al., 1999; Section 3.2), yielding nearly identical fermentation profiles.  

4.3.1. Fermentative soil taxa responsive to simulated gut conditions 

The comparative evaluation of fermentative soil and gut microbes indicated that 

Aeromonadaceae, Bacillaceae, Clostridiaceae, Enterobacteriaceae, Lachnospiraceae and 

Peptostreptococcaceae were the main families detected in both gut content and soil treatments.  
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The occurrence of these families is consistent with previous findings, demonstrating a saccharide-

derived response of Aeromonadaceae- and Enterobacteriaceae-affiliated phylotypes and a 

protein-derived response of Clostridiaceae- and Peptostreptococcaceae-affiliated phylotypes in 

anoxic gut content treatments (Meier et al., 2018; Section 3.1.5).   

Table 67.  Summary of the most extract-stimulated phylotypes in L. terrestris gut content and soil treatments 
(Figure 61).a 

Phylo-
type 

Phlya Family 
Closest cultured 
microorganism 

Sequence 
Identity 

Aerobe/ 
Anaerobeb 

Refer-
encesb 

E2 Proteo-

bacteria 

Entero- 

bacteriaceae 

E. aerogenes 99% Facultative 

aerobe 

1, 2 

E3 Proteo-

bacteria 

Aero- 

monadaceae 

A. media 100% Facultative  

aerobe 

3 

E4 Fimicutes Peptostrepto-

coccaceae 

R. lituseburensis 99% Obligate  

anaerobe 

4, 5 

E5 Fimicutes Peptostrepto-

coccaceae 

T. glycolicus 99% Obligate  

anaerobe 

6 

E6 Fimicutes Clostridiaceae C. peptidivorans 100% Obligate  

anaerobe 

5 

E13 Fimicutes Clostridiaceae C. magnum 100% Obligate  

anaerobe 

5 

E16 Fimicutes Clostridiaceae C. sartagoforme 100% Obligate  

anaerobe 

5 

E17 Fimicutes Clostridiaceae C. subterminale 100% Obligate  

anaerobe 

5 

E19 Fimicutes Bacillaceae B. cereus 96% Facultative  

aerobe 

7 

E314 Proteo-

bacteria 

Entero- 

bacteriaceae 

E. vulneris 99% Facultative  

aerobe 

8 

aPhylotypes are based on a sequence similarity cut-off of 97% and were considered to be stimulated when 
a phylotype in at least one gut content or soil treatment displayed a minimum increase in relative abundance 
of 4% during the incubation.  The phylotypes are derived from 16S rRNA genes or 16S rRNA analyses. 

bInformation about the closest cultured microorganism obtained from:  1, Yokoi et al., 1995;  2, Grimont and 
Grimont, 2005;  3, Martin-Carnahan and Joseph, 2005;  4, Gerritsen et al., 2014;  5, Wiegel, 2009;  6, 
Chamkha et al., 2001b;  7, Logan and De Vos, 2009;  8, Scheutz and Strockbine, 2005. 

Independent of the quantitative dissimilarities between the treatments, the ten most 

abundant phylotypes were detected in both gut content and soil.  Thus, Proteobacteria-affiliated 

phylotype E2 (99% identity to E. aerogenes) and Clostridiaceae-affiliated phylotype E6 (100% 

identity to C. peptidivorans) were abundant in both extract-supplemented soil and gut content 

treatments (Table 67).  E. aerogenes is a facultative soil aerobe and ferments carbohydrates and 

polypeptone to diverse products including hydrogen, acetate, succinate, and lactate (Yokoi et al., 

1995; Deepa et al., 2010; Section 4.2.1.1). Firmicutes-affiliated C. peptidivorans ferments amino 

acids (Mechichi et al., 2000; Wiegel, 2009) and was also stimulated in protein and amino acid 

treatments (Section 3.2.5 and Section 3.2.10).  T. glycolicus-affiliated phylotype E5 (99% identity) 

and C. magnum-affiliated phylotype E13 (100% identity), both related to acetogens that are 

dectected in soils and sediments (Gaston and Stadtman, 1963; Schink, 1984; Küsel et al., 2001;  
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Meyer et al., 2007), were additional phylotypes that responded in both treatments.   

As indicated before, acetogens utilize diverse substrates by either anaerobic respiration or 

fermentation (Drake et al., 2008).  The Aeromonadaceae-affiliated phylotype E3 (100% identity 

to A. hydrophila [Table 67]) was more abundant in supplemented soil treatments than in gut 

content treatments.  Species of the genus Aeromonas, were continuously detected in earthworm 

gut contents and casts (Furlong et al., 2002; Wüst et al., 2011; Meier et al., 2018; Section 3.1.5, 

Section 3.2.5, and Section 3.3.3).  A. hydrophila occur in soil and aquatic habitats and ferment 

carbohydrates to ethanol and divers fatty acids (Brandi et al., 1996; Martin-Carnahan and Joseph, 

2005; Lee et al., 2008).  Although the affiliated phylotype was more responsive in soil treatments, 

it is known from previous experiments that this phylotype can (a) respond early in supplemented 

gut content treatments and (b) diminishe to marginal levels at the end of incubations (Section 

3.2.5).  In contrast, other phylotypes (e.g., closely related to E. aerogenes) become more 

abundant in the latter stages of incubation (Section 3.2.5).  In this regard, the relative abundance 

of a phylotype at the end of the incubation does not reflect potential shifts that might occur during 

the incubation.  Furthermore, even with additional complex nutrients, it is most likely that 

fermentative phylotypes in soil would respond slower under experimentally anoxic conditions than 

would the same phylotypes in gut contents since the latter are primed to respond anaerobically 

in the anoxic gut.  Indeed, at the beginning of incubation the fermentation was marginally delayed 

in soil microcosms compared to the more rapid fermentative response of gut content (Figure 61).  

The death of certain microbes in the gut content and the antimicrobial characteristics of the 

earthworm digestive fluids (Kristůfek et al., 1994; Schönholzer et al., 1999; Khomyakov et al., 

2007) are additional factors that could have led to observed differences between the relative 

abundance of a given phylotype in soil and gut content treatments. 

Enterobacteriaceae-affiliated phylotype E314 (99% identity to E. vulneris) and 

Peptostreptococcaceae-affiliated phylotype E4 (99% identity to R. lituseburensis [Table 67]) were 

abundant in gut content treatments but less abundant in soil treatments at the end of the 

incubation (Figure 67).  Members of the genus Escherichia are facultative aerobes occuring in 

terrestrial and aquatic environments and form diverse products including lactate, acetate, and 

formate when fermenting carbohydrates.  This genus consist of enteric bacteria that potentially 

convert formate to H2 and CO2 (Scheutz and Strockbine, 2005; Walk et al., 2009).  R. 

lituseburensis is a proteolytic anaerobe that produces butyrate, acetate, and isobutyrate (Wiegel, 

2009; Gerritsen et al., 2014; Wang et al., 2015).  Soil is known to harbor such proteolytic bacteria 

(Fuka et al., 2009), and phylotype E17 was another responsive phylotype closely related to a 

proteolytic fermenter common to soil (100% identity to C. subterminale; Smith, 1975; Suen et al., 

1988).  That the relative abundances of the phylotypes detected in all four treatments (soil and 

gut content in each case supplemented or unsupplemented) constituted the majority of the 

detected sequences is consistent with previous studies that have indicated that bacteria in the 

earthworm gut are present in soil (Bassalik, 1913; Brown, 1995; Furlong et al., 2002; Egert et al., 

2004). The stimulation of several proteolytic amino acid-fermenting phylotypes (e.g., E2, E4, E6, 
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E17) in yeast extract treatments is consistent with the availability of proteins and associated 

amino acids in yeast extract.  That a Baciliaceae-affiliated phylotype (phylotype E19, 96% identity 

to B. cereus) was abundant in control gut content treatments, but not significantly stimulated in 

yeast extract treatments of either gut content or soil (Figure 61), suggesting that this phylotype 

was less competitive when nutrient availability increased and therefore of minimal importance to 

the fermentation profiles of extract-supplemented treatments.  However, the detection of the ten 

most abundant gut-associated phylotypes in soil was greatly enhanced by the stimulation of soil-

based taxa with supplemented complex nutrients.  

4.3.2. Perspectives on a transient dominated gut 

The findings indicate that responsive fermentative gut phylotypes in the earthworm gut 

originate from soil.  A conclusion confirmed by earlier studies that revealed similar bacteria in soil 

and the gut of the earthworm (Bassalik, 1913; Furlong et al., 2002; Egert et al., 2004).  

Furthermore, the study reinforce the likelihood that fermentative microorganisms that may be 

dormant or difficult to detect pre-ingestion might become active post-ingestion and contribute to 

the collective microbial metabolic potentials of the gut ecosystem.  However, it cannot be excluded 

that resident microbes also participate in the microbiology of the earthworm gut.  In this regard, 

although the abrasion properties of the passage of soil through the alimentary canal of anecic 

earthworms might theoretically prevent a resistant gut wall-associated distribution of ingested 

microbes, microscopic studies illustrate that the gut wall is at least minimally colonized (Jolly et 

al., 1993; Mendez et al., 2003).  For example, Mycoplasmataceae-affiliated Can. Lumbricincola 

species are associated with the gut and other anatomical regions of the earthworm (Nechitaylo et 

al., 2009).  Can. Lumbricincola-affiliated phylotypes did not increase in response to the complex 

nutrient input (Figure 64), an observation confirmed by earlier findings that indicated 

Mycoplasmataceae-affiliated phylotypes were not stimulated by any supplemented saccharides, 

protein, or RNA (Meier et al., 2018;Section 3.1.5 and Section 3.2.5).  Nutrient limitation and 

extended incubation times can improve the cultivability and culture-based detection of rare taxa 

in soil, reflecting the nutrient poorness of this habitat (Joseph et al., 2003; Stevenson et al., 2004; 

Davis et al., 2005; Stott et al., 2008).  In marked contrast to the nutrient-poor conditions in soil, 

the alimentary canal of the earthworm represents a nutrient-rich anoxic microzone that introduce 

ingested soil microbes to a temporary large amount of nutrients.  However, the alimentary canal 

of the earthworm is O2-limited and therefore of primary value to ingested facultative aerobes and 

anaerobes.  In this regard, the relatively high number of cultivable microorganisms in soil that are 

capable of anaerobic growth (107 to 109 per gram dry weight soil [Karsten and Drake, 1997; Küsel 

et al., 1999]) are provided with ideal conditions for anaerobic activity in the anoxic gut.  The O2-

limited conditions in the gut are also important for the earthworm since anoxia optimizes the 

fermentative production of fatty acids that can be utilized by the earthworm (Bergman, 1990; 

Sampedro et al., 2006). 
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4.4. Impact of increased water content on the microbial gut 
community of L. terrestris (Hypothesis VI) 

Large experimental set ups, including three replicate analysis and treatments supplemented 

with different substrates, require a 1:10 dilution of the extracted gut contents for obtaining 

adequate samples for chemical and molecular analyses (Wüst et al., 2011; Section 2.1.2).  In 

addition to the experimentally necessary dilution of the gut content-associated microbes, previous 

studies illustrated that the earthworm ingested soil bacteria experience also in situ high 

fluctuations in water content during the gut passage (Horn et al., 2003).  Indeed, soil exhibit a 

water content of approximately 20%, whereas the anterior part of the earthworm gut ecosystem 

contain a water content of up to 80% (Horn et al., 2003), indicating a potential four-fold dilution of 

the ingested biomass and associated microorganisms in this region of the alimentary canal.  

Furthermore, it is of interest to note, that the water content in the alimentary canal decreases by 

approximately 20% from the anterior region to the posterior end, demonstrating that ingested 

bacteria are subject to further water fluctuations.   

4.4.1. Fermentative microbes responsive to increased water 
contents 

Despite the 1:10 dilution of material, the findings demonstrated that the undiluted and 

diluted fermentative gut microbiota responded nearly identical during anoxic incubation.  

However, the fermentative activity and the increase of sequence abundances of certain families, 

like Shewanellaceae, Peptostreptococcaceae and Fusobacteriaceae, were more pronounced in 

undiluted gut contents than in diluted gut contents.  The stronger stimulation of these families in 

undiluted gut contents was concomitant with a higher amount of collective fermentation products 

(Figure 69A), indicating that these families were most likely the main drivers for the observed 

fermentation profiles, including acetate, CO2, and propionate as main products.  In marked 

contrast, the facultative aerobic Aeromonadaceae and Mycoplasmataceae responded negatively 

in both treatments during incubation (Figure 69), suggesting that these families were less 

competitive than Shewanellaceae, Peptostreptococcaceae and Fusobacteriaceae.  Nonetheless, 

the trends observed on family-level were extended to several abundant phylotypes.  Thus, 

phylotype D2, D5, and D1, most closely related to S. putrefaciens (100% identity, 

Shewanellaceae), P. bifermentans (99% identity, Peptostreptococcaceae), and C. somerae (96% 

identity, Fusobacteriaceae) (Table 68), respectively, displayed a positive response during anoxic 

incubation (Figure 72), suggesting a fermentative stimulation of these phylotypes by endogenous 

gut nutrients, including saccharides and amino acids (Horn et al., 2003; Wüst et al., 2009b).  As 

noted above, C. somerae is able to ferment amino acids and peptides to acetate, propionate, and 

butyrate and occurs in other gastrointestinal systems (Finegold et al., 2003; Tsuchiya et al., 2007).  

P. biferementans utilize carbohydrates and amino acids and form diverse fermentation products, 
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including H2, acetate, formate, butyrate isobutyrate and propionate (Wiegel, 2009).  Members of 

the genus Shewanella use inorganic or organic electron acceptors (e.g., NO3
-, Fe3+) that are 

common to soil and detected in the earthworm gut (Drake and Horn, 2007; Zhou et al., 2019; 

Wüst et al., 2009a) to oxidize carbon compounds or H2 (Bowman, 2005).  In addition to nitrate or 

iron reduction, members of these genus can also be fermentative and produce acids from 

carbohydrate such as glucose or N-acetylglucosamine (Bowman, 2005).  In this regard, these 

saccharides can be derived from earthworm-ingested and -disrupted microbial cell walls 

(Schleifer and Kandler, 1972).  

Table 68.  Summary of the most responsive phylotypes in diluted and undiluted treatments (Figure 72).a  

Phylo-
type 

Phyla Family 
Closest 
cultured 
microorganism 

Sequence 
Identity 

Response 
Aerobe/ 
Anaerobeb 

Refer-
encesb 

D1 Fuso-
bacteria 

Fuso-
bacteriaceae 

C. somerae 96% positive Obligate 
anaerobe 

1 

D2 Firmi-
cutes 

Shewa-
nellaceae 

S. putrefaciens 100% positive Obligate 
anaerobe 

2 

D3 Teneri-
cutes 

Mycoplasma-
taceae 

Can. 
Lumbricincola 

99% negative Facultative 
aerobe 

3 

D4 Proteo-
bacteria 

Aeromona-
daceae 

A. hydrophila 99% negative Facultative 
aerobe 

4 

D5 Firmi-
cutes 

Peptostrepto-
coccaceae 

P. bifermentans 99% positive Obligate 
anerobe 

5 

D179 Proteo-
bacteria 

Aeromona-
daceae 

A. hydrophila 99% negative Facultative 
aerobe 

4 

aPhylotypes are based on a sequence similarity cut-off of 97% and were considered to be responsive when 
a phylotype in at least one of the undiluted or diluted treatment displayed a ≥ 4% higher or lower relative 
16S rRNA or 16S rRNA gene abundances at the end of incubation than at the beginning of incubation. 

bInformation about the closest cultured microorganism obtained from: 1, Tsuchiya et al., 2007; 2, Bowman, 
2005; 3, Brown et al., 2011; 4, Martin-Carnahan and Joseph, 2005; 5, Sasi Jyothsna et al., 2016. 

Consistent with the negative response of Aeromonadaceae and Mycoplasmataceae, the 

phylotypes D4/D179 (both 99% identity to A. hydrophila) and phylotype D3 (99% identity to Can. 

Lumbricincola) displayed a decrease in both diluted and undiluted treatments during incubation.  

These findings suggest that these taxa were less competitive to respond positively to gut content 

nutrients than were other taxa, and therefore of lower importance to the observed fermentation 

profiles (Figure 69A).  The decrease of sequence abundances affiliated to phylotypes of 

Aeromonadaceae is consistent with previous findings that indicated no positive response of these 

taxa in unsupplemented control treatments (Section 3.1.2, Section 3.1.4, Section 3.2.4, Section 

3.2.7, and Section 3.2.9).  That Can. Lumbricincola-affiliated phylotypes displayed a negative 

response in the treatments, was also consistent with other studies and previous findings that have 

demonstrated that this taxon was, independent of a supplemented substrate, not stimulated 

during gut content incubations (Meier et al., 2018; Figure 24, Figure 30, Figure 37, Figure 41, 
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Figure 49, Figure 56, Figure 64).  The negative response of D4, D179, and D3 and their affiliated-

families was more pronounced in undiluted gut contents, suggesting a stronger competition in this 

treatment.  This enhanced competition was most likely caused by the enhanced stimulation of 

Shewanellaceae, Peptostreptococcaceae, and Fusobacteriaceae in undiluted gut contents 

compared to diluted gut contents.   

 

4.4.2. The minor effect of increasing water content  

Water has in biological systems two main functions.  Thus, the availability of water (a) 

provides dissolved nutrients, metabolic wastes, and metabolic products, and (b) ensures the 

stability and function of biopolymers (e.g., protein and RNA) (Gervais et al., 1996; Chaplin, 2001).  

In this regard, if water becomes inadequate cell metabolism slows or stop, and the structure and 

function of membranes and biopolymers can no longer be maintained (Gervais et al., 1996).   

Although the experimentally necessary dilution of the gut contents and the associated 

microbiota is a much higher dilution than may occur in situ, the magnitude of the physiological 

response of the 1:10 diluted gut content was only slightly less compared to the undiluted gut 

content.  Consistent with that, the undiluted treatment yielded a stronger community response 

than the diluted treatments.  Although Firmicutes-affiliated families displayed a different response 

in both treatments (Clostridiaceae and Lachnospiraceae increased in diluted treatment but did 

not in undiluted treatments), the fermentation profiles of the two treatments were nearly identical 

(Figure 68).  Thus, the communities in undiluted and diluted gut contents, that slightly differ, 

catalyzed identical fermentative processes, illustrating the functional redundancy of both 

communities (Miki et al., 2013; Langer et al., 2015).  Nonetheless, the fermentative activity and 

community of both treatments were qualitatively more similar than dissimilar, demonstrating that 

the diluted gut content reflects the response of the system without a major disturbance of the 

dilution.   

In contrast to the stimulatory effects of microbial- and plant-derived biopolymers, the in situ 

dilution of ingested material and associated microorganisms in the anterior part of the gut 

ecosystem has most likely a minor effect on the fermentative gut microbiota.  Thus, the earthworm 

gut community composition and the associated fermentations are potentially more effected by the 

varying physiological properties of soil-derived microorganisms and the high complexity of 

ingested dietary materials (e.g., structural and non-structural polysaccharides, protein, RNA).  

This assumption is reinforced by the marginally fermentation activity of microcosms containing 

diluted soil that was only enhanced when soil was additionally supplemented with a complex 

substrate (Section 3.3).  The dilution of ingested soil microorganisms in the anterior region of the 

earthworm is concomitant with an increase of available nutrients derived from gizzard-disrupted 

cells and gut mucus.  Thus, evaluating the potential effect of increased water content on the 

fermentative gut microbiota that is simultaneously challenged with complex substrates warrants 

further studies. 
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4.5. Potential impact of dietary substrates on the earthworm 
symbiont Can. Lumbricincola (Hypothesis VII) 

Earthworms feed on diverse materials, including plant matter, soil, and associated microbes 

(Section 1.3).  Thus, dependent on the current feeding status of the earthworm, the ingested 

material varies in composition, including the amount of organic carbon, an important nutrition 

source for the fermentative gut community of the earthworm.  Indeed, earlier studies 

demonstrated, that the carbon content of ingested material effected the earthworm gut 

community, including the family Mycoplasmataceae (Feustel, Oppermann, Schmidt, and Drake; 

data not published).  In this regard, the Tenericutes-affiliated Mycoplasmataceae responded 

negatively to dietary substrates with limited organic carbon content.  To further resolve these 

observations, additional experiments were conducted to highlight the potential impact of different 

environmental substrates on Can. Lumbricincola in gut contents of L. terrestris.   

The findings indicated that on family-level the gut communities of the earthworms kept on 

different dietary substrates were qualitatively similar but displayed quantitative differences that 

were more pronounced on phylotype-level.  The detectable differences in the gut bacterial 

community is confirmed by the assumption that the earthworm gut is dominated by ingested 

bacteria that are further influenced by available nutrients derived from ingested materials (Section 

3.3).  Thus, the absence or presence of a bacterial taxon in this gut ecosystem is dependent on 

the nature of the ingested material at time of feeding.  In contrast to taxa common to both soil and 

earthworms, the Mycoplasmataceae-affiliated taxon Can. Lumbricincola was exclusively and 

continuously detected in earthworm gut contents and not in the dietary material (Section 3.3; 

Nechitaylo et al., 2009).  Furthermore, other studies confirm that this group of Mollicutes were 

strongly associated with earthworms but not detectable in their native substrates, a finding (a) 

consistent with the inability of Mycoplasmataceae-affiliated taxa to withstand outside the hosts 

(McAuliffe, 2006), and (b) corroborating that this taxon is a potential resistant bacterial symbiont 

in the earthworms.   

4.5.1. Differential response of Can. Lumbricincola-affiliated taxa 

16S rRNA based analysis on phylotype-level revealed phylotype OC1 and OC6 as 

abundant phylotypes closely related to Can. Lumbricincola (100% identity).  Furthermore, OC8 

was an abundant phylotype distantly related to Can. Lumbricincola (87% identity).  Interestingly, 

phylotype OC1 was more abundant in gut contents obtained from earthworms kept on organic 

carbon limited substrates (i.e., turf and soil), whereas phylotype OC6 and OC8, hardly detectable 

in this substrates, were more abundant in worm bedding (Figure 75).  These finding indicate that 

Can. Lumbricincola-affiliated phylotypes were differently effected by the contrasting 

environmental substrates.  Chemoorganotrophic Mycoplasmataceae occur in coelom, gut tissues, 

gut contents and casts of several earthworm species and are characterizes by the lack of a cell 

wall (Nechitaylo et al., 2009; Brown et al., 2011).  Members of this family ferment glucose and/or 



DISCUSSION 201 

 

 

hydrolyze arginine via the arginine deaminase pathway to ammonia, CO2, and ornithine (Schimke 

et al., 1966; Razin et al., 1980; Buckel, 1999; Brown et al., 2011).  Furthermore, they are known 

for their symbiotic lifestyle with eukaryotes (e.g., annelids, fishes, and crustacean) as mutualist, 

commensals or parasites (Holben et al., 2002; Johansson and Pettersson, 2002; Maniloff, 2002; 

Nechitaylo et al., 2009; Chen et al., 2015; Murakami et al., 2015; Llewellyn et al., 2016).  The type 

of symbiosis (i.e., mutualistic, commensalistic, or parasitic) of this taxon that accounts for its 

association with the earthworm is still unknown and warrants further studies.  Interestingly, some 

members of the family have a requirement for urea as sole energy source and/or sterols (e.g., 

cholesterol) for growth (Brown et al., 2011).  Urea is a metabolic waste product in the coelomic 

fluid, intestine, and gut tissue of earthworms (Cohen and Lewis, 1949; Laverack, 1963; Bishop 

and Campbell, 1965), whereas cholesterol is an important membrane component in earthworms 

(Cerbulis and Wight Taylor, 1969; McLaughlin, 1971; Okamura et al., 1985; Petersen and 

Holmstrup, 2000).  These considerations illustrate and reinforce the dependence of Can. 

Lumbricincola on host-specific factors, a conclusion consistent with the studies of this dissertation 

that demonstrated no positive response of this taxon to any of the supplemented substrates (e.g., 

protein, RNA, saccharides, cell lysates, amino acids).  In addition to Can. Lumbricincola, the 

earthworm can harbor other microbes that are not detectable in the dietary material and thus 

potential earthworm symbionts.  In this regard, Verminephrobacter eiseniae (Comamonadaceae-

affiliated beta-proteobacterium), associated with the nephridia (Pinel et al., 2008), and an 

uncultured Verrucomicrobium (Nechitaylo et al., 2010) was only detected in earthworm-derived 

sources.   

4.5.2. Hypothetical links between Can. Lumbricincola and dietary 
substrates 

That two of the three abundant Can. Lumbricincola-affiliated phylotypes were negatively 

influenced by organic carbon limited environmental substrates is confirm with previous studies 

that demonstrated a decrease of Mycoplasmataceae when earthworms were maintained on such 

substrates (Feustel, Oppermann, Schmidt, and Drake; data not published).  Independent of the 

supplemented substrates, Can. Lumbricincola was also not competitive in gut content 

microcosms of other studies, an observation confirm with the assumption that this taxon is 

strongly dependent on host-specific factors (e.g., urea).  That the three Can. Lumbricincola-

affiliated phylotypes responded differently to the dietary substrates indicated that ingested 

environmental material can affect the occurrence of these phylotypes.  In this regard, diverse 

potential factors could influence the colonization of different anatomical regions in earthworms by 

these phylotypes (Figure 79).   

The highly variable direct and indirect links between the composition of ingested substrate 

and Can. Lumbricincola are most likely primary effected by the fermentative activities of the gut 

microbiota and the nitrogen metabolism of the earthworm (Figure 79).  For example, the 

stimulation of a urea-dependent Can. Lumbricincola-affiliated phylotype can be influenced by (a) 



202    DISCUSSION 

 

 

the amount of protein in dietary material, (b) the hydrolysis of these proteins in the gut, (c) the 

deamination and fermentation of available amino acids, and (d) the detoxification of released 

ammonium that is facilitated by the production of urea via the urea cycle of the earthworm (Figure 

79; Bishop and Campbell, 1965).  These processes can then be further effected by urease activity 

in the earthworm gut content or the amount of carbonate, produced as CO2 by the fermentative 

microbiota or the earthworm (Figure 79; Wu, 2009; Wüst et al., 2009b; Kizilkaya et al., 2011; Hill, 

2014; Mishra et al., 2017).  In this regard, future evaluations of the impact of host-specific factors 

(e.g., urea, arginine, cholesterol) on the unknown metabolism of Can. Lumbricincola would 

increase our understanding of the symbiosis, and further resolve how this taxon contribute to the 

performance and health of earthworms. 

 

Figure 79.  Hypothetical scheme of potential direct and indirect effects of dietary substrates on the 
earthworm symbiont Can. Lumbricincola.  Red-framed boxes and red arrows indicate potential 
requirements and associated processes (italic) directly linked to the symbiont.  Information obtained from: 
1, Cerbulis and Wight Taylor, 1969; Okamura et al., 1985; Petersen and Holmstrup, 2000; Desmond and 
Gribaldo, 2009; Weete et al., 2010; Nes, 2011; Wei et al., 2016;  2, Razin and Tully, 1970; Razin et al., 
1980;  3, Section 3.3, Bassalik, 1913; Furlong et al., 2002; Egert et al., 2004;  4, Babel and Müller, 1985; 
Martin et al., 1987; Kristůfek et al., 1994; Schönholzer et al., 1999; Lange and Heijnen, 2001; Delgado et 
al., 2013;  5, Laverack, 1963; Edwards and Bohlen, 1996;  6, Section 3.1 and Section 3.2, Laverack, 1963; 
Mishra and Dash, 1980; Edwards and Fletcher, 1988; Beloqui et al., 2010;  7, Martin et al., 1987;  8, 
Washburn and Somerson, 1977; Brown et al., 2011;  9, Section 3.1.3 and Section 3.2.6, Wu, 2009; Hill, 
2014;  10, Bishop and Campbell, 1965;  11, Cohen and Lewis, 1949; Bishop and Campbell, 1965; 
Tillinghast, 1967;  12, Mishra and Dash, 1980; Kizilkaya et al., 2011;  13, Lin et al., 2012;  14, Schimke et 
al., 1966;  15, Nechitaylo et al., 2009. 
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4.6. General conclusions and limitations 

The collective findings of this dissertation indicated that (a) the earthworm gut microbiota is 

poised to respond rapidly to nutrient input, (b) nonstructural polysaccharides, protein, and RNA 

of disrupted cells are subject to fermentation by earthworm gut microbes, (c) certain amino acids 

and ribose are the main drivers for intestinal protein and RNA fermentation, and (d) the hydrolysis 

of certain ingested structural polysaccharides may be the limiting factor in the ability of gut 

fermenters to utilize them.  Furthermore, the findings illustrate that (a) responsive fermentative 

taxa may originate from soil, and (b) the detectability of the fermentative taxa is conditional on 

their nutrient-dependent metabolic status.   

Figure 80 summarizes the main findings and illustrates the potential trophic interactions 

between the earthworm and ingested fermentative taxa in the alimentary canal.  This hypothetical 

model is a theoretical abstraction and does not depict all anaerobic processes in the alimentary 

canal. For example, gut denitrification that leads to the earthworm’s emission of N2O (Ihssen et 

al., 2003; Horn et al., 2006a; Drake and Horn, 2007; Wüst et al., 2009a) is not included.  As such, 

the model emphasize the potential that non-structural polysaccharides, protein, and RNA 

contribute to the overall fermentation profile of the alimentary canal.   

The trophic interactions between the earthworm and the ingested microbial community 

(Figure 80) is in part responsible for the environmental impact of the earthworm in the terrestrial 

biosphere and the survival of the earthworm throughout its evolution.  In this regard and like in 

other animals, the earthworm can utilized the fatty acids produced by the fermentative gut 

microbiota (Bergman, 1990; Sampedro et al., 2006) that is most likely important to the overall 

strategies by which the earthworm obtains dietary nutrients.  However, the earthworm, like other 

animals, would also benefit from assimilating initial products of biopolymer hydrolysis (e.g., 

protein-derived amino acids or polysaccharide-derived saccharides [Figure 80]) prior to microbial 

fermentation (Adibi and Gray, 1967; Robinson and Alvarado, 1971; Kiela and Ghishan, 2016).  

This illustrates a potentially in situ competition between the earthworm and gut fermenters for the 

initial products of biopolymer hydrolysis.  In this regard, earthworm salivary glands secrete 

proteases and amylases into the alimentary canal (Laverack, 1963), indicating that the earthworm 

contributes to the breakdown of ingested biopolymers during gut passage.  As such, certain non-

proteolytic amino acid fermenters and non-saccharolytic sugar fermenters likely benefit from the 

protease rich gut. 

The experimental protocol did not simulate all in situ conditions of the gut, but was adequate 

for the evaluation of the responsiveness of specific fermentative taxa to a supplemental substrate.  

Thus, the strong quantitative enhancement of a given phylotype is not proposed to occur in situ.  

However, the gut content microcosms reflected the response of the system without a major 

disturbance of the experimental necessary dilution, and the observed fermentations are 

consistent with the diverse in situ fermentative activities that can occur in the alimentary canal 
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(Wüst et al., 2009b).  Likewise, that the fermentative potentials of the closest cultured 

microorganism associated to the most abundant phylotypes were consistent with the observed 

fermentations in the treatments, reinforce the likelihood that the detected organisms could 

account for the observed activities.  

Illumina sequencing generates relatively short read lengths that can compromise the 

accurate taxonomic assignment of sequences to a known species (Yarza et al., 2014; Singer et 

al., 2016), and phylotype assessments should be qualified accordingly.  Furthermore, the 

detection of a phylotype based on the 16S rRNA genes and 16S rRNA analysis is dependent on 

the primer-dependent detection of a given target sequence, and a greater number of targets 

increases the likelihood of detection.  In this regard, the number of 16S rRNA genes per genome 

varies and is dependent on the species (Větrovský and Baldrian, 2013).  Thus, an organism with 

a highly active metabolism and a low gene copy number might therefore be more detectable with 

16S rRNA-based analysis since the number of ribosomes can exceed 104 per cell (Xie et al., 

2008).  Nonetheless, the fermentative activities of the detected phylotypes were consistent with 

the phenotypic properties of the species most closely related to a phylotype.   

 

Figure 80.  Summarizing model illustrating the potential trophic interactions between the earthworm L. 
terrestris and ingested soil microorganisms capable of fermenting biopolymer-derived organic carbon, a 
source of which can be gizzard-disrupted cells.  Broken arrows symbolize the utilization of fermentation 
products by the earthworm. Figure modified and used with permission from Zeibich et al., 2018. 

The taxonomic analysis was simplified by constraining the evaluation to the most abundant 

phylotypes.  However, less abundant phylotypes could have also contribute to gut fermentations.  

For example, 4,471 phylotypes were detected at the beginning of incubation in the amino acid 

experiment, illustrating the large in situ potential of the ingested microbial community to respond 

to the nutrient-rich earthworm gut which includes diverse biopolymers and millimolar 

concentrations of saccharides, amino acids, fatty acids, and diverse inorganic compounds (Drake 
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and Horn, 2007; Wüst et al., 2009b; Section 3.1 and Section 3.2).  The fermentative response to 

such endogenous nutrients is dependent on the occurrence of a given phylotype in pre-ingested 

soil.  For example, the occurrence of Fusobacteriaceae is variable in gut content, being in some 

cases relatively abundant and responsive, and in other cases hardly detectable and non-

responsive.   

The high number of phylotypes associated to less abundant bacterial families (Table A1-

A11), raising questions as to their potential in situ activity.  The nutrient availability along the 

alimentary canal is highly variable (Wüst et al., 2009b), and the in situ activity of many detected 

phylotypes might be therefore (a) temporary during the gut passage and constrained to specific 

zones in the gut, a matter that warrant further studies.  Indeed, detected fluctuating fatty acids in 

the gut illustrating different types of fermentation that appear in different regions of the alimentary 

canal (Wüst et al., 2009b).  Furthermore, given the large functional redundancy of fermentative 

taxa (Miki et al., 2013; Langer et al., 2015), in situ fermentation could be implemented by 

alternative taxa to those that were abundant and stimulated in a given treatment.  In this regard, 

responsive fermenters in gut content appear to be largely ingested  and thus fermentative taxa in 

the gut can vary with the substrate (i.e., soil and plant debris) on which the earthworm is 

maintained (Section 3.3 and Section 4.3).   

The community analysis was constrained to bacteria and the associated 16S rRNA genes 

and 16S rRNA.  However, considering the occurrence of facultative aerobic fungi in soil with the 

capacity of fermentation (Collins et al., 1995; Reith et al., 2002; Kurakov et al., 2008; Tonouchi, 

2010) and the assumption that the earthworm gut is dominated by ingested microbes (Section 

4.3), it cannot be excluded that such fungi (a) facilitate biopolymer degradation in the alimentary 

canal of earthworms, and (b) contributed to the observed fermentation profiles.  Indeed, the 

production of cellulases, glucosidases, chitinases, and xylanases by facultative aerobic fungi 

(Durrant, 1996; Reguera and Leschine, 2001) would enhance the degradation of ingested 

biopolymers in the gut of earthworms.  Thus, evaluating the potential effects of earthworm-

ingested fungi on the overall gut fermentation profile of the earthworm warrants further studies.  

Likewise, the potential involvement of lytic phages in the microbial dynamics of the gut is under 

explored and worthy of investigation. 
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5. SUMMARY 

Gut microbial communities are of interest because of their importance to animal 

development and health.  The alimentary canal of the earthworm is representative of primitive gut 

ecosystems, and gut fermenters capable of degrading ingested biomass-derived biopolymers 

might contribute to the environmental impact and survival of this important terrestrial invertebrate.  

However, relatively little is known about the capacity of fermentative microbes in the earthworm 

gut to utilize such biopolymers.  Thus, the work described in this dissertation evaluated the 

hypothesis that the gut microbiota of the model earthworm L. terrestris hydrolyze and ferment 

diverse dietary plant- and microbial-derived biopolymers. 

Structural polysaccharides had a marginal impact on the fermentation in anoxic gut content 

treatments.  In marked contrast, nonstructural polysaccharides greatly enhanced the formation of 

diverse fermentation products and stimulated Aeromonadaceae and Enterobacteriaceae.  

Although the experimental design required a 1:10 dilution of the gut contents, comparative 

analysis of the fermentative community in diluted und undiluted gut contents indicated that the 

dilution did not cause a major disturbance of the system.   

The disruption of ingested plant and microbial cells by the earthworm gizzard and other lytic 

events introduces protein and RNA in the anoxic alimentary canal of earthworms.  Yeast cell 

lysate, as proof-of principle, augmented the production of H2, CO2, and diverse fatty acids in 

anoxic gut content microcosms, indicating that the cell lysate triggered diverse fermentations.  

Likewise, protein and RNA enhanced fermentations in gut contents and yielded contrasting 

product profile.  The combined product profile of protein and RNA treatments was similar to that 

of cell lysate treatments, and 16S rRNA gene- and 16S rRNA-based analyses indicated that many 

taxa that responded to cell lysate were similar to taxa that responded to protein or RNA.  To 

further resolve protein- and RNA-derived fermentations, amino acids and ribose were evaluated 

as potential drivers of fermentation in gut content of the model earthworm L. terrestris.  Of eight 

amino acids tested, glutamate, aspartate, and threonine were most stimulatory and yielded 

dissimilar fermentations facilitated by contrasting taxa.  Ribose yielded a complex fermentation 

profile primarily produced by the Aeromonadaceae. 

Although theoretical considerations suggest that most microbes in the earthworm gut are 

likely ingested and transient, the non-responsiveness of soil microbes to a specific ‘high quality’ 

gut substrate and anoxia has made it difficult to demonstrate that responsive gut fermenters are 

derived from soil.  Therefore, soil and gut content of L. terrestris were further examined for their 

fermentative capabilities.  In unsupplemented anoxic treatments, fermentation was negligible with 

soil but rapid with gut content.  However, both soil and gut content facilitated similar fermentations 

when challenged with complex nutrients, and the responsive fermentative taxa this treatments 

displayed marked similarities, indicating that (a) most of the fermentative taxa in the gut originate 

from ingested soil, and (b) detectable differences between the fermentative taxa in soil and gut 
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contents were in part caused by the nutrient-dependent metabolic status of the community 

members.  Mycoplasmataceae-affiliated phylotypes that might be symbionts of the earthworm 

displayed essentially no positive response to any supplemental nutrient, suggesting their 

occurrence in the earthworm is dependent on host specific factors.  In this regard, the occurrence 

of these phylotypes shifted in response to the dietary substrate of the earthworm. 

In conclusion, the findings in this dissertation demonstrate that ingested fermentative gut 

microbes of the earthworm are poised to respond rapidly to nonstructural polysaccharides, 

protein, and RNA, biopolymers that can be derived from disrupted biomass.  The marked ability 

of gut fermenters to utilize constituents derived from the hydrolysis of these biopolymers suggest 

that they compete with the earthworm for these biopolymer constituents (a negative symbiosis) 

and also produce fatty acids that can be utilized by the earthworm (a positive symbiosis).  These 

complex microbe-host interactions illustrate that biopolymer-driven gut fermentations are likely 

functionally linked to the development and health of this invertebrate. 
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6. ZUSAMMENFASSUNG 

Mikrobielle Darmgemeinschaften haben in den letzten Jahrzehnten aufgrund ihrer 

tragenden Rolle in der Entwicklung und Gesundheit von Mensch und Tier großes 

wissenschaftliches Interesse erlangt.  Der Verdauungstrakt des Regenwurms repräsentiert ein 

archaisches Modeldarmökosystem und die assoziierten fermentativen Bakterien, welche 

theoretisch in der Lage sind, diverse Biopolymere der inkorporierten Biomasse abzubauen, 

tragen höchstwahrscheinlich zum Umwelteinfluss und Überleben dieses wichtigen terrestrischen 

Invertebraten bei.  Obwohl die Aktivität der Regenwürmer im Boden von besonderer Bedeutung 

ist, ist nur wenig bekannt über die fermentative Fähigkeit der Darmmikrobiota, vom Regenwurm 

aufgenommene, mikrobielle und pflanzliche Biopolymere zu hydrolysieren und zu fermentieren.  

Daher wurden im Rahmen zahlreicher Studien die Fähigkeiten der Darmmikrobiota untersucht, 

diät-relevante Biopolymere zu nutzen.   

Strukturelle Polysaccharide hatten nur einen geringen Einfluss auf die Fermentation in den 

anoxischen Darminhalt-Mikrokosmen.  Im Gegensatz dazu stimulierten nicht-strukturelle 

Polysaccharide (a) die Bildung verschiedener Fermentationsprodukte und (b) die fakultativ-

aeroben Familien Aeromonadaceae sowie Enterobacteriaceae erheblich.  Obwohl das 

experimentelle Design eine 1:10 Verdünnung erforderte, konnte durch den Vergleich der 

fermentativen Mikroorganismen und deren Aktivitäten in verdünnten und unverdünnten 

Darminhalten gezeigt werden, dass die Verdünnung keine nennenswerte Störung des Systems 

verursachte. 

Die Zerkleinerung von aufgenommenen größeren Pflanzen- und Microben-Zellen durch den 

Regenwurmgizzard und anderen lytischen Ereignissen führt zur Freisetzung verschiedenster 

Nährstoffe im Verdauungstrakt, unter anderem großer Mengen an Protein und RNA.  Als „Proof 

of Principle“ wurde Hefezelllysat zu anoxischen Darminhalt-Mikrokosmen gegeben.  Das Lysat 

führte zu einer starken Stimulation der fermentativen Prozesse, was an der erhöhten Produktion 

von H2, CO2 und diversen Fettsäuren zu erkennen war.  Ebenso steigerten Protein und RNA die 

Darmfermentation und führten zu unterschiedlichen Fermentationsprofilen.  Das kombinierte 

Produktprofil von den Mikrokosmen mit Protein oder RNA war ähnlich dem Fermentationsprofil 

der Mikrokosmen mit Hefezelllysat.  Des Weiteren zeigte die 16S rRNA Gen und 16S rRNA 

Analyse, dass viele Taxa, die vom Zelllysat stimuliert wurden, auch positiv auf Protein oder RNA 

reagierten.  Für die weitere Aufklärung der Protein- und RNA-stimulierten Fermentationen im 

anoxischen Regenwurmdarm wurden verschiedene Aminosäuren und Ribose als potenziell-

stimulierende Treiber der Fermentationen evaluiert.  Von acht getesteten Aminosäuren 

stimulierten vor allem Glutamat, Aspartat und Threonin die Fermentation am meisten/stärksten 

und führten zu unterschiedlichen Fermentationsprofilen assoziiert mit unterschiedlichen Taxa.  

Mikrokosmen mit Ribose zeigten ebenfalls ein komplexes Fermentationsprofil, welches 

hauptsächlich von den Aeromonadaceae gebildet wurde.   
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Obwohl theoretische Überlegungen darauf hindeuten, dass sich die Mehrheit der 

aufgenommenen Bodenmikroben nur vorrübergehend im Regenwurmdarm befinden und somit 

nicht regenwurm-spezifisch sind, war der Nachweis aufgrund einer zu geringen metabolischen 

Reaktion der Bodenmikroorganismen zu Anoxia und hochwertigen endogenen Nährstoffen bisher 

jedoch schwierig.  Um die fermentativen Fähigkeiten von Mikroben in Boden und Darminhalt von 

L. terrestris untersuchen zu können, wurden beide mit einem nährstoffreichen komplexen 

Substrat versetzt.  Die Fermentation in den Boden-Mikrokosmen war ohne zusätzliches 

komplexes Substrat - im Gegensatz zu den Darminhalt-Mikrokosmen - erwartungsgemäß sehr 

schwach.  Wurde jedoch Hefeextrakt zu Boden und Darminhalt gegeben, zeigten beide 

Mikrokosmen starke und ähnliche fermentative Reaktionen und die stimulierten dominanten 

Phylotypen waren in beiden Mikrokosmen nahezu identisch.  Daran wurde deutlich, dass die 

Mehrheit der fermentativen Darmbakterien im Regenwurm vom inkorporiertem Boden abstammt 

und die detektierten Unterschiede zwischen den Mikroben im Boden und im Darminhalt teilweise 

durch den metabolischen Status der einzelnen Taxa entstanden sind.  Mycoplasmataceae-

verwandte Phylotypen, welche hochwahrscheinlich Symbionten des Regenwurms sind, wurden 

von keinem der verschiedenen zugegebenen Substrate stimuliert.  Dies deutete darauf hin, dass 

deren Vorkommen im Regenwurm von Host spezifischen Faktoren abhängt.  Dementsprechend 

führten verschiedene Substrate, auf dem die Regenwürmer gehalten wurden, zu 

unterschiedlichen Reaktionen dieser Phylotypen. 

Die Hauptergebnisse dieser Dissertation verdeutlichen, dass die vom Regenwurm 

aufgenommene fermentative Darmmikroben bereit sind, schnell auf nichtstrukturelle 

Polysaccharide, Protein und RNA von zerkleinerter Biomasse zu reagieren.  Die ausgesprochene 

Fähigkeit der Darmfermentierer, die von der Hydrolyse stammenden Bestandteile dieser 

Biopolymere zu verwerten, deutet darauf hin, dass sie mit dem Regenwurm um die Produkte der 

Hydrolyse konkurrieren (negative Symbiose) und gleichzeitig Fermentationsprodukte bilden, 

welche vom Regenwurm genutzt werden können (positive Symbiose).  Diese komplexen Mikrob-

Wirt-Interaktionen illustrieren, dass die biopolymer-getriebenen Darmfermentationen 

höchstwahrscheinlich funktionell mit der Entwicklung und Gesundheit dieses Invertebraten 

zusammenhängen. 
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9. APPENDIX 

Table A1.  Summary of all detected families in the polysaccharide experiment A based on 16S rRNA gene (A) and 16S rRNA (B) anaylsis (Section 3.1.2).a 

(A)  16S rRNA genes 

 Sampling Time:     0h          30h     

Treatment: C1 C2 C3 Cel Ch Pe Xy Md Da  C1 C2 C3 Ce Ch Pe Xy Md Da 

Phyla, Class, Familyb Relative Abundance (%) 
  

Acidobacteria,                    
Acidobacteria,                    

Acidobacteriaceae (8) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Acidobacteriales (3) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 

Blastocatellia,                    
Blastocatellaceae (15) 0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.2 0.2  0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 

Holophagae,                    
Unassigned Holophagae (6) 0.2 0.2 0.2 0.1 0.2 0.1 0.2 0.2 0.1  0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Solibacteres,                    
Solibacteraceae (19) 0.3 0.2 0.2 0.2 0.3 0.1 0.2 0.2 0.2  0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.1 
Subgroup_2 (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_5 (6) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.0 
Subgroup_6 (78) 2.8 3.3 2.9 3.1 3.1 2.3 3.1 3.2 3.0  1.5 1.7 1.3 1.0 1.3 1.0 0.9 0.5 0.7 
Subgroup_11 (3) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_17 (15) 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3  0.1 0.2 0.3 0.1 0.2 0.1 0.1 0.1 0.1 
Subgroup_18 (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_22 (10) 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.2  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_25 (5) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Actinobacteria,                    
Acidimicrobiia,                    

Acidimicrobiaceae (20) 1.5 1.6 1.3 1.2 1.3 1.1 1.4 1.2 1.1  0.9 1.1 1.0 0.7 0.9 0.6 0.6 0.4 0.6 
Iamiaceae (5) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 
Unassigned Acidimicrobiales (45) 3.6 3.2 3.2 2.9 3.0 2.4 3.0 2.6 2.6  2.0 2.7 2.4 1.3 1.8 1.3 1.1 1.0 1.2 

Actinobacteria,                    
Bifidobacteriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Catenulisporaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mycobacteriaceae (7) 1.0 1.1 1.0 0.9 0.9 0.7 1.0 1.0 0.9  0.7 0.8 0.6 0.4 0.4 0.4 0.3 0.2 0.3 
Nocardiaceae (9) 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1  0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.0 
Acidothermaceae (6) 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.5 0.5  0.4 0.5 0.6 0.3 0.4 0.3 0.3 0.2 0.3 
Cryptosporangiaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Frankiaceae (3) 0.3 0.3 0.2 0.1 0.1 0.1 0.2 0.1 0.2  0.1 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 
Geodermatophilaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nakamurellaceae (3) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0  0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 
Sporichthyaceae (4) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 
Unassigned Frankiales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Glycomycetaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Kineosporiaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Brevibacteriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cellulomonadaceae (1) 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0  0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 
Demequinaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Intrasporangiaceae (3) 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2  0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 
Microbacteriaceae (6) 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.2  0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.1 
Micrococcaceae (2) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2  0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 
Promicromonosporaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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 Sampling Time:     0h          30h     

Treatment: C1 C2 C3 Cel Ch Pe Xy Md Da  C1 C2 C3 Ce Ch Pe Xy Md Da 

Phyla, Class, Familyb Relative Abundance (%) 
  

Micromonosporaceae (29) 2.1 2.1 2.2 2.2 2.1 1.6 2.1 2.1 1.8  1.8 2.1 1.7 1.2 1.4 1.2 1.1 0.8 1.0 
Nocardioidaceae (23) 2.3 2.2 2.2 1.9 2.0 1.9 2.1 1.9 1.8  1.3 1.6 1.3 0.9 1.1 0.8 1.0 0.6 0.7 
Propionibacteriaceae (5) 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 
Pseudonocardiaceae (10) 0.4 0.4 0.3 0.2 0.3 0.3 0.3 0.3 0.2  0.2 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 
Streptomycetaceae (2) 0.9 0.9 1.0 0.9 1.0 0.8 1.0 0.9 0.9  0.6 0.7 0.6 0.4 0.5 0.5 0.5 0.2 0.3 
Streptosporangiaceae (3) 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 
Thermomonosporaceae (6) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 
Unassigned Actinobacteria (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Coriobacteriia,                    
Coriobacteriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Coriobacteriia (16) 2.4 2.5 2.5 2.4 2.7 2.4 2.6 2.5 2.4  1.6 2.1 2.0 1.2 1.7 1.1 1.2 0.8 1.1 

Rubrobacteria,                    
Rubrobacteriaceae (5) 0.5 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.2  0.2 0.4 0.4 0.1 0.2 0.1 0.1 0.1 0.1 

Thermoleophilia,                    
Gaiellaceae (9) 2.2 2.4 2.1 2.2 2.1 1.9 2.0 2.1 1.9  1.3 1.7 1.5 1.0 1.4 1.0 1.0 0.6 1.0 
Unassigned Gaiellales (35) 4.6 4.7 4.7 4.9 4.5 3.9 4.7 4.3 4.0  3.1 3.8 3.3 2.2 2.9 2.3 1.9 1.5 1.9 
Conexibacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Patulibacteraceae (4) 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Solirubrobacteraceae (4) 0.7 0.6 0.7 0.4 0.5 0.4 0.5 0.5 0.4  0.3 0.4 0.4 0.2 0.3 0.2 0.1 0.2 0.2 
Unassigned Solirubrobacterales (46) 3.3 3.5 3.1 2.9 3.0 2.5 3.2 2.8 2.3  1.9 2.4 2.3 1.3 1.7 1.4 1.1 1.0 1.1 

Unassigned Actinobacteria (6) 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.3  0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 
Armatimonadetes,                    

Armatimonadia,                    
Unassigned Armatimonadales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Chthonomonadetes,                    
Chthonomonadaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chthonomonadales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Armatimonadetes (10) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Bacteroidetes,                    
Bacteroidia,                    

Prevotellaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rikenellaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Bacteroidales (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cytophagia,                    
Cyclobacteriaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cytophagaceae (20) 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Flavobacteriia                    
Flavobacteriaceae (9) 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.1 0.2  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Flavobacteriales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Sphingobacteriia,                    
Chitinophagaceae (24) 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.2  0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 
Saprospiraceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingobacteriaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriales (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

BRC1,                    
Unassigned BRC1 (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Chlamydiae,                    
Chlamydiae,                    

Chlamydiaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Parachlamydiaceae (42) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0  0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.0 
Simkaniaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Chlorobi,                    
Chlorobia,                    

Unassigned Chlorobiales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chloroflexi,                    

Anaerolineae,                    
Anaerolineaceae (12) 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Ardenticatenia,                    
Unassigned Ardenticatenia (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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 Sampling Time:     0h          30h     

Treatment: C1 C2 C3 Cel Ch Pe Xy Md Da  C1 C2 C3 Ce Ch Pe Xy Md Da 

Phyla, Class, Familyb Relative Abundance (%) 
  

Caldilineae,                    
Caldilineaceae (10) 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.2 0.2  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Chloroflexia,                    
Roseiflexaceae (8) 0.2 0.3 0.4 0.3 0.3 0.2 0.3 0.2 0.3  0.2 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 
Unassigned Kallotenuales (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gitt-GS-136 (1) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
JG30-KF-CM66 (7) 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
KD4-96 (11) 2.7 2.5 2.5 2.4 2.3 2.0 2.0 1.8 1.9  1.3 1.5 1.5 0.9 1.1 0.7 0.8 0.6 0.6 

Ktedonobacteria,                    
Thermosporotrichaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacterales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacteria (9) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3  0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 
S085 (11) 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2  0.1 0.2 0.1 0.1 0.0 0.0 0.1 0.1 0.1 
SBR2076 (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
SHA-26 (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thermomicrobia,                    
Unassigned Thermomicrobia (35) 0.6 0.5 0.7 0.5 0.6 0.5 0.7 0.6 0.6  0.3 0.4 0.4 0.2 0.4 0.2 0.2 0.2 0.2 
TK10 (15) 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 

Unassigned Chloroflexi (5) 0.2 0.3 0.3 0.2 0.2 0.3 0.2 0.2 0.2  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 
Cyanobacteria,                    

Chloroplast,                    
Unassigned Chloroplast (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cyanobacteria,                    
Unassigned Cyanobacteria (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Melainabacteria,                    
Unassigned Obscuribacterales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
ML635J-21(2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Deferribacteres,                    
Unassigned Deferribacteres (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Deinococcus-Thermus,                    
Unassigned Deinococci (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Elusimicrobia,                    
Elusimicrobia                    

Unassigned Elusimicrobia (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Fibrobacteres,                    

Fibrobacteria,                    
Fibrobacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Fibrobacterales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Firmicutes,                    
Bacilli,                    

Alicyclobacillaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bacillaceae (16) 1.8 1.8 1.8 2.0 1.8 1.7 2.2 2.2 2.0  3.0 3.8 3.2 4.3 4.1 3.1 4.5 1.9 4.8 
Lactobacillaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Paenibacillaceae (28) 0.2 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.2  0.9 1.0 1.1 2.5 1.5 2.8 2.3 0.1 1.1 
Planococcaceae (8) 0.2 0.3 0.2 0.2 0.1 0.1 0.2 0.2 0.2  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Staphylococcaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoactinomycetaceae (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Bacilli (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Clostridia,                    
Christensenellaceae (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Clostridiaceae (24) [GPT-6, GPT-8] 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2  9.8 8.1 9.8 12 13 7.1 12 4.9 5.5 
Defluviitaleaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Eubacteriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gracilibacteraceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Heliobacteriaceae (8) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Lachnospiraceae (38) 0.1 0.1 0.1 0.0 0.1 0.2 0.1 0.1 0.1  5.0 4.2 6.2 4.8 5.0 6.1 6.8 0.0 1.9 
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Treatment: C1 C2 C3 Cel Ch Pe Xy Md Da  C1 C2 C3 Ce Ch Pe Xy Md Da 

Phyla, Class, Familyb Relative Abundance (%) 
  

Peptococcaceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Peptostreptococcaceae (6) [GPT-2] 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2  20 13 16 13 16 23 20 2.4 5.1 
Ruminococcaceae (39) 0.1 0.1 0.0 0.1 0.1 0.3 0.1 0.1 0.1  0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.2 
Thermoanaerobacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Clostridia (13) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.2 0.3 0.3 0.2 0.3 0.1 0.3 0.0 0.0 

Erysipelotrichia,                    
Erysipelotrichaceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Limnochordia,                    
Limnochordaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Negativicutes,                    
Acidaminococcaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Veillonellaceae (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Selenomonadales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fusobacteria,                    
Fusobacteriia,                    

Fusobacteriaceae (1) [GPT-7] 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.1  0.8 0.8 0.6 1.6 1.2 0.4 1.3 0.0 0.6 
Gemmatimonadetes,                    

Gemmatimonadetes                    
Gemmatimonadaceae (22) 0.7 0.8 0.8 0.6 0.8 0.7 0.8 0.6 0.7  0.4 0.5 0.5 0.3 0.4 0.3 0.2 0.2 0.3 
Unassigned Gemmatimonadetes (5) 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Latescibacteria,                    
Lentisphaeria,                    

Unassigned Victivallales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Latescibacteria (19) 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Nitrospirae,                    
Nitrospira,                    

Nitrospiraceae (9) 0.3 0.2 0.2 0.2 0.3 0.3 0.3 0.2 0.3  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 
Unassigned Nitrospirales (14) 1.7 1.9 1.6 1.6 1.7 1.4 1.5 1.6 1.5  0.8 1.1 0.9 0.7 0.8 0.6 0.6 0.3 0.5 

Parcubacteria,                    
Unassigned Parcubacteria (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Planctomycetes,                    
OM190 (39) 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.2  0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 
Phycisphaerae,                    

Phycisphaeraceae (15) 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tepidisphaeraceae (48) 0.9 1.0 0.9 0.8 1.1 0.8 0.9 0.9 1.0  0.5 0.6 0.6 0.5 0.5 0.3 0.4 0.3 0.4 
Unassigned Phycisphaerae (9) 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Planctomycetacia,                    
Planctomycetaceae (488) 5.6 6.3 6.5 6.3 6.7 4.6 6.2 6.4 6.2  4.0 5.1 4.3 3.2 4.0 2.8 3.1 2.5 2.9 

Unassigned Planctomycetes (2) 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Proteobacteria,                    

Alphaproteobacteria,                    
Caulobacteraceae (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Hyphomonadaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Beijerinckiaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bradyrhizobiaceae (6) 1.3 1.2 1.2 1.4 1.4 1.0 1.3 1.1 1.2  0.8 1.1 1.0 0.7 0.9 0.5 0.6 0.2 0.5 
Brucellaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Hyphomicrobiaceae (6) 0.7 0.8 0.7 0.7 0.8 0.6 0.7 0.7 0.6  0.5 0.6 0.7 0.4 0.5 0.3 0.3 0.2 0.3 
Methylobacteriaceae (4) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1 
Phyllobacteriaceae (3) 0.3 0.3 0.3 0.4 0.4 0.3 0.4 0.3 0.3  0.2 0.3 0.2 0.1 0.2 0.2 0.2 0.1 0.1 
Rhizobiaceae (2) 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rhodobiaceae (2) 1.4 1.5 1.6 1.7 1.9 1.3 1.8 1.7 1.5  1.3 1.6 1.5 0.8 1.2 0.8 0.9 0.4 0.6 
Roseiarcaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthobacteraceae (5) 3.6 4.1 4.2 4.4 4.1 3.2 4.1 4.1 3.7  2.5 3.3 3.0 1.6 2.2 1.7 1.6 0.9 1.1 
Unassigned Rhizobiales (15) 0.4 0.4 0.4 0.3 0.4 0.3 0.4 0.3 0.3  0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 
Rhodobacteraceae (4) 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Acetobacteraceae (8) 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Rhodospirillaceae (13) 0.6 0.7 0.7 0.6 0.5 0.5 0.6 0.6 0.7  0.3 0.4 0.4 0.3 0.4 0.2 0.2 0.1 0.2 
Unassigned Rhodospirillales (33) 1.0 1.0 1.0 0.7 0.9 0.7 0.8 0.8 0.8  0.6 0.8 0.6 0.4 0.5 0.3 0.4 0.2 0.3 
Holosporaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Unassigned Rickettsiales (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Erythrobacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingomonadaceae (4) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingomonadales (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Betaproteobacteria,                    
Alcaligenaceae (3) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 
Burkholderiaceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Comamonadaceae (10) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 
Oxalobacteraceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Burkholderiales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Methylophilaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Neisseriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrosomonadaceae (29) 0.4 0.4 0.5 0.5 0.4 0.4 0.5 0.4 0.5  0.2 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1 
Rhodocyclaceae (6) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Betaproteobacteria (20) 0.4 0.3 0.3 0.3 0.4 0.2 0.4 0.4 0.4  0.2 0.3 0.2 0.1 0.2 0.2 0.1 0.1 0.1 

Deltaproteobacteria,                    
Bacteriovoracaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bdellovibrionaceae (15) 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0  0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Desulfurellaceae (32) 1.4 1.5 1.2 1.4 1.3 1.1 1.5 1.3 1.3  0.8 1.0 0.9 0.7 0.8 0.6 0.7 0.3 0.5 
Desulfuromonadaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Geobacteraceae (14) 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.2  0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 
Archangiaceae (7) 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.1  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Haliangiaceae (42) 0.2 0.3 0.2 0.3 0.2 0.2 0.2 0.2 0.2  0.1 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1 
Myxococcaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nannocystaceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phaselicystidaceae (5) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 
Polyangiaceae (22) 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 
Sandaracinaceae (21) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 
Vulgatibacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Myxococcales (58) 0.2 0.3 0.2 0.2 0.2 0.2 0.3 0.3 0.2  0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.1 
Oligoflexaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Oligoflexales (8) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Syntrophaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Deltaproteobacteria (13) 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

Gammaproteobacteria,                    
Aeromonadaceae (2) [GPT-1] 14 13 12 13 13 27 14 15 18  5.9 5.9 6.3 18 8.0 14 11 48 45 
Shewanellaceae (1) 0.3 0.2 0.3 0.3 0.3 1.0 0.5 0.3 0.5  0.8 1.1 0.9 1.8 1.5 1.4 1.6 0.0 1.0 
Cellvibrionaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Halieaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Spongiibacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Enterobacteriaceae (4) [GPT-4, GPT-5] 1.0 1.1 0.9 1.3 1.1 1.8 0.9 1.3 1.8  2.8 1.8 3.2 2.7 1.8 4.7 1.7 20 5.2 
Coxiellaceae (6) 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Legionellaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oleiphilaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Moraxellaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Pseudomonadaceae (3) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Thiotrichales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthomonadaceae (10) 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Xanthomonadales (18) 0.5 0.5 0.5 0.4 0.4 0.3 0.4 0.5 0.4  0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 
Unassigned Gammaproteobacteria (13) 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Saccharibacteria,                    
Unassigned Saccharibacteria (10) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Spirochaetae,                    
Spirochaetes,                    

Spirochaetaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
SR1_Absconditabacteria,                    
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 Sampling Time:     0h          30h     

Treatment: C1 C2 C3 Cel Ch Pe Xy Md Da  C1 C2 C3 Ce Ch Pe Xy Md Da 

Phyla, Class, Familyb Relative Abundance (%) 
  

Unassigned SR1_Absconditabacteria (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tectomicrobia,                    

Unassigned Tectomicrobia (10) 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.2  0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 
Tenericutes,                    

Mollicutes,                    
Anaeroplasmataceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Entomoplasmatales (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mycoplasmataceae (4) [GPT-3] 15 13 17 16 14 12 15 17 15  9.5 8.3 6.3 8.1 7.7 8.2 9.6 3.5 5.2 

TM6_Dependentiae,                    
Unassigned TM6-Dependentiae (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Verrucomicrobia,                    
OPB35 soil group (45) 0.3 0.4 0.2 0.3 0.3 0.3 0.3 0.4 0.4  0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 
Opitutae,                    

Opitutaceae (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Opitutae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Spartobacteria,                    
Chthoniobacteraceae (28) 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 
Xiphinematobacteraceae (4) 1.4 1.5 1.2 1.4 1.4 1.2 1.4 1.2 1.5  1.2 1.3 1.3 1.2 1.3 0.9 1.1 0.5 0.9 
Unassigned Chthoniobacterales (24) 1.7 2.5 2.2 2.8 2.7 2.1 2.5 2.6 2.4  1.5 1.7 1.6 1.2 1.8 1.0 1.1 0.9 1.1 

Verrucomicrobiae,                    
Verrucomicrobiaceae (14) 0.1 0.2 0.1 0.2 0.1 0.1 0.2 0.2 0.2  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 
Unassigned Verrucomicrobiales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Verrucomicrobia (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Archeae                    
Euryarchaeota,                    

Methanobacteria,                    
Methanobacteriaceae (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Thermoplasmatales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thaumarchaeota,                    
Unassigned Thaumarchaeota (6) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

(B) 16S rRNA  

Sampling Time: 0h  30h 
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Phyla, Class, Familyb Relative Abundance (%) 
  

Acidobacteria,                                
Acidobacteria,                                

Acidobacteriaceae (8) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Acido- 
bacteriales (3) 0.1 0.0 0.2 0.1 0.1 0.1 0.3 0.1 0.0  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 

Blastocatellia,                                
Blastocatellaceae (15) 0.0 0.0 0.1 0.1 0.1 0.1 0.6 0.1 0.1  0.0 0.1 0.2 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 

Holophagae,                                
Unassigned  
Holophagae (6) 0.0 0.0 0.1 0.0 0.1 0.0 0.2 0.0 0.0  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Solibacteres,                                
Solibacteraceae (19) 0.2 0.3 0.3 0.2 0.2 0.1 0.6 0.3 0.2  0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.2 
Subgroup_2 (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_5 (6) 0.0 0.0 0.2 0.0 0.1 0.1 0.1 0.0 0.0  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 
Subgroup_6 (78) 1.4 0.7 3.1 1.2 2.6 1.5 4.1 0.7 0.6  0.2 0.8 1.5 0.3 0.2 0.2 0.3 0.5 0.3 0.6 0.2 0.5 0.5 0.6 0.5 0.1 0.1 0.1 0.3 0.4 0.2 
Subgroup_11 (3) 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_17 (15) 0.1 0.1 0.2 0.1 0.2 0.1 0.5 0.0 0.0  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_18 (1) 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Sampling Time: 0h  30h 
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Subgroup_22 (10) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_25 (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Actinobacteria,                                
Acidimicrobiia,                                

Acidimicrobiaceae (20) 0.8 1.0 0.9 0.9 0.7 0.3 1.3 0.7 0.5  0.6 0.7 0.7 0.8 0.7 0.7 0.8 0.8 0.6 0.3 0.7 0.5 0.3 0.5 0.3 0.1 0.1 0.1 0.5 0.6 0.8 
Iamiaceae (5) 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.1 0.1  0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 
Unassigned Acidi- 
microbiales (45) 1.5 1.7 1.7 2.0 1.5 0.5 1.9 1.3 0.9  1.3 1.6 2.2 1.0 0.8 1.3 1.0 1.5 1.5 0.6 0.8 1.5 0.7 0.7 0.5 0.2 0.1 0.1 1.2 1.3 1.3 

Actinobacteria,                                
Bifidobacteriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Catenulisporaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mycobacteriaceae (7) 0.3 0.3 0.2 0.3 0.2 0.1 0.7 0.2 0.1  0.2 0.2 0.4 0.2 0.2 0.3 0.2 0.3 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.0 0.0 0.0 0.2 0.2 0.1 
Nocardiaceae (9) 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.0  0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 
Acidothermaceae (6) 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1  0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.0 0.1 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.2 0.2 0.1 
Cryptosporangiaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Frankiaceae (3) 0.1 0.1 0.1 0.1 0.1 0.0 0.2 0.0 0.0  0.1 0.1 0.2 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 
Geodermatophilaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nakamurellaceae (3) 0.1 0.1 0.1 0.0 0.1 0.0 0.5 0.0 0.0  0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 
Sporichthyaceae (4) 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.0  0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned  
Frankiales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Glycomycetaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Kineosporiaceae (1) 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Brevibacteriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cellulomonadaceae (1) 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.1 0.1  0.1 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.1 0.4 0.2 0.1 0.0 0.3 0.3 0.0 0.0 0.0 0.1 0.2 0.1 
Demequinaceae (1) 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0  0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Intrasporangiaceae (3) 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.0  0.1 0.1 0.2 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.2 0.1 0.0 0.0 0.0 0.1 0.1 0.1 
Microbacteriaceae (6) 0.1 0.1 0.2 0.1 0.2 0.0 0.2 0.1 0.1  0.1 0.1 0.3 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 
Micrococcaceae (2) 0.2 0.1 0.1 0.1 0.2 0.1 0.7 0.1 0.1  0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0 
Promicromonosporaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Micromono- 
sporaceae (29) 1.5 1.3 1.2 1.5 1.2 0.2 2.2 1.0 0.7  1.3 1.8 1.9 1.3 0.9 1.3 1.4 1.7 1.3 0.1 1.1 1.4 0.5 0.1 0.1 0.1 0.1 0.1 1.0 1.0 0.8 
Nocardioidaceae (23) 1.2 1.0 1.2 1.4 0.8 0.5 1.9 0.8 0.6  0.8 1.1 1.5 0.9 0.7 0.8 1.1 0.9 0.9 0.5 0.6 0.8 0.4 0.6 0.3 0.1 0.1 0.1 0.6 1.0 0.7 
Propionibacteriaceae (5) 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0  0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 
Pseudonocardiaceae (10) 0.2 0.2 0.2 0.3 0.3 0.2 0.4 0.1 0.1  0.2 0.3 0.4 0.3 0.3 0.2 0.2 0.3 0.2 0.1 0.2 0.3 0.1 0.2 0.1 0.0 0.0 0.0 0.3 0.2 0.1 
Streptomycetaceae (2) 0.7 0.6 0.8 0.6 0.7 0.2 1.2 0.5 0.3  0.6 0.7 1.0 0.6 0.2 0.3 0.6 0.6 0.3 0.3 0.3 0.5 0.1 0.2 0.1 0.1 0.1 0.1 0.3 0.5 0.3 
Streptosporangiaceae (3) 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermomono- 
sporaceae (6) 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned  
Actinobacteria (1) 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0  0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

Coriobacteriia,                                
Coriobacteriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Coriobacteriia (16) 0.5 0.5 0.7 0.7 0.6 0.1 0.6 0.5 0.3  0.4 0.4 0.8 0.4 0.3 0.4 0.4 0.7 0.5 0.0 0.3 0.3 0.4 0.1 0.0 0.1 0.0 0.0 0.3 0.4 0.3 

Rubrobacteria,                                
Rubrobacteriaceae (5) 0.5 0.3 0.3 0.3 0.3 0.1 0.4 0.3 0.2  0.3 0.5 0.4 0.3 0.2 0.4 0.3 0.3 0.4 0.1 0.2 0.3 0.1 0.2 0.1 0.1 0.0 0.0 0.2 0.3 0.3 
Thermoleophilia                                
Gaiellaceae (9) 0.4 0.4 0.7 0.5 0.6 0.5 1.2 0.4 0.4  0.3 0.6 0.9 0.2 0.1 0.2 0.2 0.5 0.3 0.3 0.2 0.4 0.5 0.6 0.3 0.1 0.1 0.1 0.2 0.4 0.2 
Unassigned  
Gaiellales (35) 1.1 0.9 1.6 0.9 1.1 0.6 1.5 0.8 0.8  0.7 1.1 1.7 0.5 0.4 0.4 0.5 0.8 0.7 0.4 0.3 0.9 0.9 1.0 0.5 0.2 0.2 0.2 0.7 0.9 0.5 
Conexibacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Patulibacteraceae (4) 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Solirubrobacteraceae (4) 0.7 0.5 1.1 0.7 0.6 0.2 1.0 0.4 0.3  0.3 0.6 0.8 0.4 0.2 0.3 0.3 0.4 0.4 0.1 0.2 0.4 0.1 0.3 0.1 0.1 0.1 0.0 0.4 0.5 0.3 
Unassigned Solirubro-bacterales 
(46) 0.7 0.6 1.0 0.7 0.7 0.2 1.9 0.5 0.3  0.4 0.7 1.2 0.3 0.4 0.3 0.4 0.4 0.5 0.1 0.3 0.4 0.7 0.3 0.1 0.1 0.1 0.1 0.5 0.6 0.4 
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Unassigned  
Actinobacteria (6) 0.0 0.0 0.1 0.0 0.1 0.0 0.2 0.1 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Armatimonadetes,                                
Armatimonadia,                                

Unassigned Armatimonadales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chthonomonadetes,                                

Chthonomonadaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chthonomonadales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Armatimonadetes (10) 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Bacteroidetes,                                
Bacteroidia,                                

Prevotellaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rikenellaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned  
Bacteroidales (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cytophagia,                                
Cyclobacteriaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cytophagaceae (20) 0.0 0.0 0.0 0.1 0.1 0.0 0.4 0.1 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Flavobacteriia,                                
Flavobacteriaceae (9) 0.2 0.1 0.1 0.2 0.4 0.2 0.3 0.3 0.4  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned  
Flavobacteriales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Sphingobacteriia,                                
Chitinophagaceae (24) 0.0 0.1 0.0 0.1 0.1 0.0 0.9 0.1 0.0  0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Saprospiraceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingobacteriaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriales (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

BRC1, 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned BRC1 (5),                                

Chlamydiae,                                
Chlamydiae,                                

Chlamydiaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Parachlamydiaceae (42) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Simkaniaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Chlorobi,                                
Chlorobia,                                

Unassigned  
Chlorobiales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Chloroflexi,                                
Anaerolineae,                                

Anaerolineaceae (12) 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Ardenticatenia,                                

Unassigned  
Ardenticatenia (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Caldilineae,                                
Caldilineaceae (10) 0.0 0.1 0.1 0.1 0.1 0.0 0.2 0.1 0.1  0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 

Chloroflexia,                                
Roseiflexaceae (8) 0.2 0.2 0.3 0.2 0.3 0.1 0.2 0.1 0.1  0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 
Unassigned  
Kallotenuales (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gitt-GS-136 (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
JG30-KF-CM66 (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
KD4-96 (11) 0.5 0.6 0.6 0.7 0.7 0.5 1.2 0.6 0.5  0.3 0.7 0.8 0.2 0.3 0.4 0.3 0.4 0.4 0.4 0.2 0.4 0.4 0.7 0.3 0.2 0.1 0.2 0.3 0.4 0.2 

Ktedonobacteria,                                
Thermo- 
sporotrichaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacterales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacteria (9) 0.2 0.2 0.2 0.2 0.1 0.1 0.0 0.1 0.1  0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 
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S085 (11) 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.0  0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
SBR2076 (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
SHA-26 (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thermomicrobia,                                
Unassigned Thermomicrobia (35) 0.3 0.2 0.7 0.3 0.6 0.1 0.6 0.2 0.1  0.2 0.3 0.4 0.1 0.1 0.1 0.2 0.1 0.2 0.0 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1 
TK10 (15) 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1  0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 
Unassigned  
Chloroflexi (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

Cyanobacteria,                                
Chloroplast,                                

Unassigned  
Chloroplast (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cyanobacteria,                                
Unassigned  
Cyanobacteria (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Melainabacteria,                                
Unassigned Obscuribacterales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
ML635J-21(2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Deferribacteres,                                
Unassigned  
Deferribacteres (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Deinococcus-Thermus,                                
Unassigned Deinococci (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Elusimicrobia,                                
Elusimicrobia                                

Unassigned  
Elusimicrobia (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fibrobacteres,                                
Fibrobacteria,                                

Fibrobacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Fibrobacterales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Firmicutes,                                
Bacilli,                                

Alicyclobacillaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bacillaceae (16) 1.3 1.1 1.8 1.2 1.5 1.3 0.9 0.8 0.9  1.4 1.7 2.1 1.1 0.7 1.2 1.3 1.3 1.2 2.4 0.7 1.5 1.6 2.2 2.3 0.8 0.6 0.7 2.8 3.2 3.3 
Lactobacillaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Paenibacillaceae (28) 0.2 0.1 0.1 0.1 0.1 0.1 0.5 0.1 0.1  0.5 1.0 1.0 2.4 2.9 3.6 0.5 0.7 0.5 7.7 3.1 2.6 1.7 6.7 6.7 0.2 0.1 0.2 1.1 1.6 2.1 
Planococcaceae (8) 0.0 0.1 0.1 0.0 0.1 0.1 0.2 0.1 0.0  0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Staphylococcaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoactino- 
mycetaceae (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Bacilli (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Clostridia,                                
Christensenellaceae (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Clostridiaceae (24)  
[GPT-6, GPT-8] 0.1 0.2 0.2 0.1 0.4 0.5 0.6 0.2 0.3  11 12 13 11 12 12 7.0 8.1 7.8 14 4.5 4.8 9.2 12 28 14 14 14 8.2 11 7.5 
Defluviitaleaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Eubacteriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gracilibacteraceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Heliobacteriaceae (8) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Lachnospiraceae (38) 0.0 0.3 0.1 0.0 0.1 0.0 0.2 0.1 0.0  4.5 5.9 5.4 4.3 6.5 7.6 5.4 4.3 4.4 12 3.7 5.5 3.0 9.7 13 0.1 0.0 0.0 3.6 3.8 1.8 
Peptococcaceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Peptostrepto- 
coccaceae (6) [GPT-2] 0.1 0.2 0.2 0.1 0.2 0.2 0.7 0.2 0.3  25 17 19 18 19 17 18 20 18 13 37 29 3.9 14 12 4.9 4.9 3.4 13 16 8.6 
Ruminococcaceae (39) 0.1 0.4 0.0 0.0 0.0 0.1 0.0 0.0 0.0  0.5 0.2 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoan-aerobacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Unassigned  
Clostridia (13) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.4 0.5 0.5 0.3 0.2 0.2 0.5 0.4 0.4 0.3 0.1 0.2 0.2 0.8 0.6 0.0 0.0 0.0 0.1 0.1 0.0 

Erysipelotrichia,                                
Erysipelotrichaceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Limnochordia,                                
Limnochordaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Negativicutes,                                
Acidaminococcaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Veillonellaceae (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Selenomonadales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fusobacteria,                                
Fusobacteriia,                                

Fusobacteriaceae (1) [GPT-7] 0.1 0.1 0.0 0.1 0.1 0.2 0.0 0.1 0.1  1.0 0.7 0.5 1.7 3.7 1.6 1.5 1.2 1.0 0.6 1.0 0.3 0.2 1.5 0.3 0.0 0.0 0.0 1.1 0.7 0.6 
Gemmatimonadetes,                                

Gemmatimonadetes,                                
Gemmatimona- 
daceae (22) 0.3 0.2 0.5 0.2 0.2 0.1 1.2 0.1 0.2  0.2 0.3 0.5 0.1 0.1 0.1 0.2 0.3 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.2 0.1 
Unassigned Gemmatimonadetes (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Latescibacteria,                                
Lentisphaeria,                                

Unassigned  
Victivallales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Latescibacteria (19) 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Nitrospirae,                                
Nitrospira,                                

Nitrospiraceae (9) 0.1 0.2 0.3 0.1 0.3 0.1 0.4 0.1 0.2  0.1 0.2 0.2 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 
Unassigned  
Nitrospirales (14) 1.1 0.7 1.5 1.1 1.4 0.5 1.8 0.9 0.8  0.6 1.5 1.2 0.5 0.5 0.4 0.4 0.6 0.5 0.3 0.3 0.7 0.2 0.3 0.2 0.2 0.1 0.1 0.5 0.6 0.3 

Parcubacteria,                                
Unassigned Parcubacteria (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Planctomycetes,                                
OM190 (39) 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1  0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phycisphaerae,                                

Phycisphaeraceae (15) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tepidisphaeraceae (48) 0.6 0.7 1.1 0.8 1.1 0.4 0.6 0.7 0.5  0.4 0.8 0.4 0.5 0.3 0.4 0.5 0.4 0.7 0.3 0.4 0.4 0.1 0.2 0.1 0.0 0.0 0.0 0.3 0.3 0.6 
Unassigned Phycisphaerae (9) 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.0  0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Planctomycetacia,                                
Planctomycetaceae (488) 9.0 9.1 15 11 11 2.8 7.3 8.2 6.2  11 11 10 11 6.8 8.6 12 10 12 2.0 8.1 6.9 1.2 2.3 1.3 1.1 0.8 0.7 5.8 5.3 9.4 

Unassigned  
Planctomycetes (7) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Proteobacteria,                                
Alphaproteobacteria,                                

Caulobacteraceae (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Hyphomonadaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Beijerinckiaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bradyrhizobiaceae (6) 1.3 1.7 1.1 1.8 2.1 1.0 2.2 1.6 2.1  1.0 2.1 1.4 1.1 1.3 1.5 1.4 1.8 1.5 1.3 1.2 0.9 0.3 1.0 0.8 0.3 0.3 0.4 1.3 1.4 1.5 
Brucellaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Hyphomicrobiaceae (6) 0.4 0.5 0.5 0.5 0.5 0.4 0.9 0.5 0.6  0.5 0.6 0.3 0.4 0.5 0.6 0.6 0.7 0.6 0.7 0.4 0.6 0.3 0.8 0.5 0.1 0.1 0.1 0.6 0.5 0.4 
Methylobacteriaceae (4) 0.2 0.3 0.2 0.2 0.3 0.2 0.3 0.3 0.2  0.1 0.3 0.3 0.1 0.2 0.2 0.1 0.2 0.2 0.3 0.2 0.2 0.0 0.3 0.2 0.1 0.0 0.1 0.2 0.2 0.2 
Phyllobacteriaceae (3) 0.2 0.3 0.3 0.3 0.5 0.5 0.9 0.5 0.4  0.2 0.5 0.3 0.2 0.3 0.3 0.3 0.2 0.3 0.5 0.3 0.5 0.2 0.7 0.4 0.1 0.1 0.1 0.2 0.2 0.3 
Rhizobiaceae (2) 0.1 0.0 0.1 0.1 0.1 0.1 0.3 0.1 0.1  0.0 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.0 
Rhodobiaceae (2) 0.2 0.3 0.3 0.3 0.3 0.2 0.7 0.4 0.4  0.3 0.5 0.3 0.2 0.4 0.3 0.5 0.6 0.4 0.3 0.4 0.4 0.3 0.4 0.2 0.1 0.0 0.1 0.2 0.2 0.3 
Roseiarcaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthobacteraceae (5) 1.3 1.2 1.0 1.9 1.3 1.2 2.8 1.2 1.3  1.3 2.0 1.6 1.1 0.8 1.3 1.2 2.2 1.4 1.3 1.0 1.2 0.8 1.4 1.2 0.2 0.2 0.2 0.9 1.2 0.9 
Unassigned  
Rhizobiales (15) 0.1 0.2 0.2 0.2 0.2 0.2 0.6 0.2 0.2  0.2 0.4 0.3 0.1 0.1 0.1 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.0 0.0 0.0 0.1 0.1 0.1 
Rhodobacteraceae (4) 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.0 0.0  0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 
Acetobacteraceae (8) 0.1 0.1 0.1 0.1 0.1 0.2 0.5 0.1 0.1  0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.0 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.1 
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Rhodospirillaceae (13) 0.4 0.3 0.4 0.4 0.6 0.3 0.6 0.3 0.4  0.3 0.6 0.6 0.4 0.4 0.6 0.6 0.6 0.4 0.4 0.3 0.5 0.1 0.6 0.3 0.1 0.1 0.1 0.4 0.4 0.3 
Unassigned Rhodospirillales (33) 0.6 0.6 0.9 0.6 1.1 0.6 1.2 0.6 0.7  0.6 1.2 1.2 0.5 0.7 1.0 0.6 0.6 0.7 0.6 0.5 1.0 0.2 0.5 0.3 0.2 0.1 0.1 0.7 0.6 0.4 
Holosporaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned 
Rickettsiales (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Erythrobacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingomonadaceae (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingomonadales (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Betaproteobacteria,                                
Alcaligenaceae (3) 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.1  0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Burkholderiaceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Comamonadaceae (10) 0.2 0.2 0.4 0.3 0.5 0.1 1.0 0.3 0.3  0.0 0.1 0.2 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 
Oxalobacteraceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Burkholderiales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Methylophilaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Neisseriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrosomonadaceae (29) 0.2 0.1 0.2 0.2 0.3 0.2 1.4 0.2 0.1  0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0 
Rhodocyclaceae (6) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Betaproteobacteria (20) 0.1 0.1 0.2 0.1 0.3 0.1 0.7 0.1 0.1  0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 

Deltaproteobacteria,                                
Bacteriovoracaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bdellovibrionaceae (15) 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 
Desulfurellaceae (32) 0.6 0.5 0.9 0.4 0.9 0.4 1.1 0.5 0.5  0.3 1.0 0.9 0.3 0.4 0.4 0.3 0.5 0.4 0.3 0.3 0.6 0.2 0.5 0.3 0.1 0.1 0.1 0.6 0.5 0.3 
Desulfuro- 
monadaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Geobacteraceae (14) 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1  0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.2 0.1 0.0 0.0 0.0 0.1 0.1 0.1 
Archangiaceae (7) 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.0 0.0  0.0 0.2 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 
Haliangiaceae (42) 0.2 0.3 0.3 0.3 0.3 0.2 0.7 0.1 0.1  0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.4 0.2 0.3 0.1 0.2 0.1 0.3 0.2 0.1 0.0 0.0 0.2 0.2 0.2 
Myxococcaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nannocystaceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phaselicystidaceae (5) 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.0 0.0  0.0 0.2 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 
Polyangiaceae (22) 0.2 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1  0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.2 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.1 0.2 0.1 
Sandaracinaceae (21) 0.1 0.1 0.3 0.1 0.2 0.1 0.6 0.0 0.1  0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 
Vulgatibacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Myxococcales (58) 0.3 0.3 0.4 0.3 0.3 0.3 0.4 0.2 0.1  0.3 0.4 0.4 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.1 0.3 0.2 0.0 0.0 0.1 0.2 0.4 0.2 
Oligoflexaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned 
Oligoflexales (8) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Syntrophaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Deltaproteobacteria 
(13) 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Gammaproteobacteria,                                
Aeromonadaceae (2) [GPT-1] 38 32 28 25 28 51 11 29 37  1.3 1.8 2.3 3.2 3.1 3.6 2.2 2.2 3.0 5.4 3.0 3.4 34 2.0 1.5 35 34 31 13 13 23 
Shewanellaceae (1) 0.3 0.2 0.2 0.2 0.2 0.7 0.1 0.1 0.2  0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.1 
Cellvibrionaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Halieaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Spongiibacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Enterobacteriaceae (4) [GPT-4, 
GPT-5] 2.7 2.8 2.9 2.4 4.1 4.3 1.7 5.0 6.5  1.0 1.0 1.6 0.8 0.8 1.1 0.7 0.6 1.0 2.7 3.6 3.1 16 0.3 0.2 33 37 37 12 11 12 
Coxiellaceae (6) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Legionellaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oleiphilaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Moraxellaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Pseudomonadaceae (3) 0.1 0.1 0.1 0.1 0.2 0.3 0.6 0.1 0.2  0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 
Unassigned  
Thiotrichales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Sampling Time: 0h  30h 

Treatment: 
C 
1 

C 
2 

C 
3 Ce Ch Pe Xy Md Da  

C 
1 

C 
2 

C 
3 

Cel 
1 

Cel 
2 

Cel 
3 

Ch 
1 

Ch 
2 

Ch 
3 

Pe 
1 

Pe 
2 

Pe 
3 

Xy 
1 

Xy 
2 

Xy 
3 

Md 
1 

Md 
2 

Md 
3 

Da 
1 

Da 
2 

Da 
3 

Phyla, Class, Familyb Relative Abundance (%) 
  

Xanthomonadaceae (10) 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Xanthomonadales (18) 0.2 0.2 0.3 0.1 0.2 0.1 1.7 0.1 0.1  0.1 0.1 0.3 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.1 0.2 0.1 
Unassigned Gamma-proteobacteria 
(13) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Saccharibacteria,                                
Unassigned  
Saccharibacteria (10) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Spirochaetae,                                
Spirochaetes,                                

Spirochaetaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
SR1_Absconditabacteria,                                

Unassigned SR1_Absconditabacteria (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tectomicrobia,                                

Unassigned  
Tectomicrobia (10) 1.0 0.8 1.0 0.9 1.0 0.7 1.0 0.6 0.6  0.6 0.8 0.9 0.6 0.4 0.9 0.5 0.7 0.7 0.6 0.2 0.7 0.1 0.6 0.3 0.1 0.1 0.1 0.6 0.6 0.6 

Tenericutes,                                
Mollicutes,                                

Anaeroplasmataceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Entomoplasmatales (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mycoplasmataceae (4) [GPT-3] 20 26 14 29 17 20 13 30 23  22 12 7.4 27 25 20 28 24 27 21 18 18 16 27 21 5.5 4.8 7.8 21 14 13 

TM6_Dependentiae,                                
Unassigned TM6-Dependentiae (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Verrucomicrobia,                                
OPB35 soil group (45) 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 
Opitutae,                                

Opitutaceae (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Opitutae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Spartobacteria,                                
Chthonio- 
bacteraceae (28) 0.1 0.1 0.2 0.2 0.3 0.1 0.1 0.3 0.2  0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 
Xiphinemato- 
bacteraceae (4) 0.7 1.4 1.0 1.0 2.1 1.3 0.7 2.3 3.1  0.9 3.0 0.8 1.5 3.5 2.6 2.1 1.6 1.9 2.6 2.0 2.7 0.6 1.9 1.6 0.6 0.6 0.6 1.3 0.8 1.6 
Unassigned  
Chthoniobacterales (24) 0.3 0.3 0.4 0.4 0.7 0.2 0.4 0.6 0.5  0.3 0.5 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.4 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 

Verrucomicrobiae,                                
Verrucomicrobiaceae (14) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Verrucomicrobiales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned  
Verrucomicrobia (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Archeae                                
Euryarchaeota,                                

Methanobacteria,                                
Methanobacteriaceae (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Thermoplasmatales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thaumarchaeota,                                
Unassigned  
Thaumarchaeota (6) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

aSamples of the three replicates of the 16S rRNA gene (A) control treatment at 0 h and 30 h, 16S rRNA (B) control treatment at 0 h, and all 16S rRNA treatments at 30 h were analyzed separately.  
Samples of the three replicates were pooled for each of the other treatments at 0 h or 30 h.  Identification numbers (e.g., C1) indicate the respective replicates.  Treatments: C, unsupplemented control; 
Cel, cellulose; Ch, chitin; Pe, pectin; Xy, xylan; Md, maltodextrin; Da, dextran.  Table modified and used with permission from Zeibich et al., 2019a.   

bThe number of phylotypes are shown in parenthesis.  Abundant responsive group phylotypes from Figure 33 are bold and in brackets. 
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Table A2.  Summary of all detected families in the polysaccharide experiment B based on 16S rRNA gene (A) and 16S rRNA (B) anaylsis (Section 3.1.2).a 

(A)  16S rRNA genes 

Sampling Time: 0h   30h 

Treatment: C1 C2 C3 Gl St  C1 C2 C3 Gl St 

Phyla, Class, Familyb Relative Abundance (%) 
  

Acidobacteria,            
Acidobacteria,            

Acidobacteriaceae (3) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 
Blastocatellia, 

           

Blastocatellaceae (4) 0.0 0.1 0.1 0.0 0.1 
 

0.0 0.0 0.0 0.0 0.0 
Holophagae, 

           

Unassigned Holophagae (4) 0.1 0.1 0.1 0.1 0.1 
 

0.0 0.1 0.1 0.0 0.0 
Solibacteres, 

           

Solibacteraceae (12) 0.1 0.1 0.1 0.1 0.1 
 

0.1 0.0 0.1 0.0 0.0 
Subgroup_5 (5) 0.1 0.1 0.1 0.1 0.1 

 
0.1 0.1 0.1 0.0 0.0 

Subgroup_6 (45) 1.4 1.2 1.2 1.3 1.0 
 

0.7 0.7 0.9 0.1 0.1 
Subgroup_11 (3) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Subgroup_17 (4) 0.0 0.0 0.1 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Subgroup_18 (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Subgroup_22 (5) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Subgroup_25 (3) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.1 0.0 0.0 0.0 

Actinobacteria, 
           

Acidimicrobiia, 
           

Acidimicrobiaceae (12) 0.8 1.1 1.4 1.0 0.9 
 

0.7 1.0 0.8 0.2 0.1 
Iamiaceae (5) 0.1 0.2 0.2 0.2 0.1 

 
0.2 0.2 0.1 0.0 0.0 

Unassigned Acidimicrobiia (40) 1.8 1.8 2.3 1.7 1.4 
 

1.1 1.4 1.4 0.5 0.2 
Actinobacteria, 

           

Acidothermaceae (5) 0.3 0.2 0.3 0.2 0.3 
 

0.2 0.2 0.1 0.1 0.0 
Catenulisporaceae (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Cellulomonadaceae (1) 0.1 0.0 0.0 0.0 0.0 
 

0.0 0.1 0.0 0.0 0.0 
Demequinaceae (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Dermacoccaceae (1) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Frankiaceae (2) 0.1 0.1 0.1 0.1 0.0 

 
0.1 0.1 0.1 0.1 0.0 

Geodermatophilaceae (1) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Glycomycetaceae (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Intrasporangiaceae (3) 0.2 0.2 0.3 0.2 0.1 
 

0.1 0.2 0.2 0.1 0.0 
Kineosporiaceae (2) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.1 0.0 0.0 0.0 

Microbacteriaceae (6) 0.1 0.2 0.2 0.1 0.1 
 

0.1 0.1 0.2 0.1 0.0 
Micrococcaceae (2) 0.2 0.2 0.1 0.1 0.2 

 
0.1 0.1 0.2 0.0 0.0 

Micromonosporaceae (18) 1.1 1.1 1.3 0.9 0.8 
 

0.6 0.9 0.8 0.4 0.2 
Mycobacteriaceae (5) 0.4 0.5 0.5 0.5 0.3 

 
0.3 0.3 0.3 0.1 0.0 

Nakamurellaceae (1) 0.1 0.0 0.1 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Nocardiaceae (5) 0.0 0.0 0.1 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Nocardioidaceae (19) 1.3 1.4 1.6 1.2 0.8 
 

0.9 1.1 1.0 0.3 0.2 
Promicromonosporaceae (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Propionibacteriaceae (6) 0.5 0.4 0.4 0.3 0.3 
 

0.2 0.3 0.3 0.1 0.0 
Pseudonocardiaceae (10) 0.5 0.5 0.5 0.5 0.5 

 
0.3 0.5 0.4 0.2 0.1 

Sporichthyaceae (3) 0.1 0.1 0.1 0.1 0.0 
 

0.0 0.1 0.1 0.0 0.0 
Streptomycetaceae (4) 0.8 0.7 0.7 0.7 0.6 

 
0.5 0.5 0.6 0.2 0.0 

Streptosporangiaceae (2) 0.0 0.1 0.0 0.0 0.0 
 

0.0 0.0 0.1 0.0 0.0 
Thermomonosporaceae (3) 0.1 0.1 0.1 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Unassigned Actinobacteria (2) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Coriobacteriia, 

           

Coriobacteriaceae (2) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Unassigned Coriobacteriia (21) 2.2 2.8 3.1 2.1 1.8 

 
1.6 1.6 1.8 0.5 0.3 

Rubrobacteria, 
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Sampling Time: 0h   30h 

Treatment: C1 C2 C3 Gl St  C1 C2 C3 Gl St 

Phyla, Class, Familyb Relative Abundance (%) 
  

Rubrobacteriaceae (3) 0.1 0.1 0.1 0.1 0.0 
 

0.0 0.1 0.0 0.0 0.0 
Unassigned Rubrobacteria (2) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Thermoleophilia, 
           

Conexibacteraceae (1) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Gaiellaceae (5) 1.9 1.9 2.3 1.6 1.5 

 
1.3 1.5 1.4 0.8 0.2 

Unassigned Gaiellales (30) 3.5 4.2 4.3 3.4 2.6 
 

2.0 2.6 2.6 1.2 0.5 
Parviterribacteraceae (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Patulibacteraceae (3) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Solirubrobacteraceae (4) 0.5 0.6 0.7 0.5 0.5 

 
0.4 0.6 0.6 0.1 0.1 

Unassigned Solirubrobacterales (38) 2.4 2.4 3.0 2.1 1.8 
 

1.6 1.8 2.2 0.4 0.4 
Armatimonadetes, 

           

Armatimonadia,            
Unassigned Armatimonadales  (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Bacteroidetes, 
           

Bacteroidia, 
           

Bacteroidaceae (6) 1.4 0.0 0.0 0.2 0.0 
 

0.2 0.6 0.4 0.2 1.1 
Porphyromonadaceae (2) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Rikenellaceae (2) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Cytophagia, 

           

Cytophagaceae (6) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Flavobacteriia, 

           

Flavobacteriaceae (9) 0.2 0.3 0.2 0.2 0.2 
 

0.5 0.8 0.4 0.0 0.0 
Sphingobacteriia, 

           

Chitinophagaceae (5) 0.0 0.0 0.0 0.1 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Sphingobacteriaceae (2) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Unassigned Sphingobacteriales (1) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
BRC1, 

           

Unassigned BRC1 (2) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Chlamydiae, 

           

Chlamydiae, 
           

Parachlamydiaceae (5) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Chloroflexi, 

           

Anaerolineae, 
           

Anaerolineaceae (6) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Ardenticatenia (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Caldilineae, 
           

Caldilineaceae (10) 0.2 0.2 0.1 0.1 0.1 
 

0.1 0.1 0.2 0.0 0.0 
Chloroflexia 

           

AKIW781 (1) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Roseiflexaceae (4) 0.1 0.1 0.1 0.1 0.1 

 
0.1 0.1 0.1 0.0 0.0 

Gitt-GS-136 (4) 0.3 0.3 0.4 0.2 0.2 
 

0.2 0.3 0.1 0.1 0.1 
JG30-KF-CM66 (8) 0.0 0.0 0.1 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

KD4-96 (10) 1.7 2.0 2.4 1.6 1.4 
 

1.3 1.4 1.1 0.4 0.2 
Ktedonobacteria, 

           

Unassigned Ktedonobacteria (7) 0.1 0.1 0.1 0.0 0.1 
 

0.1 0.1 0.1 0.0 0.0 
S085 (11) 0.1 0.2 0.1 0.1 0.0 

 
0.0 0.0 0.1 0.0 0.0 

SBR2076 (5) 0.0 0.0 0.1 0.0 0.1 
 

0.0 0.0 0.0 0.0 0.0 
SJA-15 (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Thermomicrobia, 
           

Unassigned Thermomicrobia (26) 0.4 0.5 0.4 0.4 0.3 
 

0.2 0.2 0.3 0.1 0.1 
TK10 (12) 0.2 0.2 0.2 0.2 0.1 

 
0.1 0.1 0.1 0.0 0.0 

Cyanobacteria, 
           

Chloroplast, 
           

Unassigned Chloroplast (2) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Cyanobacteria, 

           

Unassigned Cyanobacteria  (1) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Elusimicrobia, 

           

Elusimicrobia,            
Unassigned Elusimicrobia (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Firmicutes, 
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Sampling Time: 0h   30h 

Treatment: C1 C2 C3 Gl St  C1 C2 C3 Gl St 

Phyla, Class, Familyb Relative Abundance (%) 
  

Bacilli, 
           

Alicyclobacillaceae (2) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Bacillaceae (6) 0.6 0.5 0.4 0.5 0.4 

 
0.5 0.5 0.6 0.3 0.3 

Lactobacillaceae (1) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Paenibacillaceae (18) 0.1 0.1 0.2 0.2 0.1 

 
0.1 0.2 0.2 0.1 0.1 

Planococcaceae (4) 0.1 0.1 0.1 0.1 0.0 
 

0.0 0.0 0.1 0.0 0.0 
Streptococcaceae (1) 0.0 0.0 0.0 0.0 0.1 

 
0.0 0.0 0.0 0.0 0.0 

Thermoactinomycetaceae (2) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Unassigned Bacilli (3) 0.8 0.7 0.5 0.6 0.4 

 
0.3 0.3 0.3 0.0 0.0 

Clostridia, 
           

Christensenellaceae (1) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Clostridiaceae (16) [GPT-6, GPT-8] 0.1 0.1 0.0 0.1 0.0 

 
0.8 1.0 1.0 1.3 1.2 

Unassigned Clostridiales  (4) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.2 0.0 0.0 
Gracilibacteraceae (2) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Heliobacteriaceae (3) 0.0 0.0 0.1 0.1 0.1 
 

0.0 0.0 0.1 0.0 0.0 
Lachnospiraceae (14) 0.0 0.0 0.0 0.1 0.2 

 
0.5 0.7 0.8 0.0 0.1 

Peptococcaceae (3) 1.4 1.5 1.3 2.5 2.1 
 

1.0 1.1 0.9 0.8 0.8 
Peptostreptococcaceae (3) [GPT-2] 0.0 0.0 0.0 0.0 0.0 

 
0.1 0.1 0.2 0.1 0.0 

Ruminococcaceae (9) 0.0 0.0 0.0 0.0 0.0 
 

0.1 0.1 0.0 0.0 0.0 
Unassigned Clostridia (2) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Erysipelotrichia, 
           

Erysipelotrichaceae (2) 0.0 0.0 0.0 0.0 0.1 
 

0.0 0.0 0.0 0.0 0.0 
Negativicutes, 

           

Veillonellaceae (2) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Fusobacteria, 

           

Fusobacteriia, 
           

Fusobacteriaceae (1) [GPT-7] 14 13 10 16 16 
 

20 19 18 16 16 
Gemmatimonadetes, 

           

Gemmatimonadetes, 
           

Gemmatimonadaceae (13) 0.2 0.2 0.3 0.2 0.3 
 

0.2 0.2 0.3 0.0 0.0 
Latescibacteria, 

           

Unassigned Latescibacteria (4) 0.1 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Nitrospirae, 

           

Nitrospira, 
           

Nitrospiraceae (4) 0.0 0.0 0.1 0.0 0.1 
 

0.0 0.1 0.1 0.0 0.0 
Unassigned Nitrospirales (10) 0.6 0.7 0.7 0.5 0.5 

 
0.4 0.5 0.4 0.1 0.0 

Planctomycetes, 
           

OM190 (11) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Phycisphaerae, 

           

Phycisphaeraceae (1) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Tepidisphaeraceae (32) 0.4 0.6 0.6 0.4 0.7  0.4 0.4 0.4 0.1 0.1 
Unassigned Phycisphaerae (7) 0.0 0.1 0.1 0.1 0.0  0.0 0.0 0.0 0.0 0.0 

Planctomycetacia, 
           

Planctomycetaceae (321) 2.6 2.9 3.6 2.5 2.7 
 

2.0 2.5 1.8 1.0 0.5 
Unassigned Planctomycetes (5) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Proteobacteria, 
           

Alphaproteobacteria, 
           

Acetobacteraceae (5) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Beijerinckiaceae (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Bradyrhizobiaceae (3) 0.7 0.8 0.8 0.5 0.5 
 

0.5 0.5 0.5 0.1 0.1 
Caulobacteraceae (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Hyphomicrobiaceae (4) 0.2 0.3 0.2 0.2 0.2 
 

0.2 0.1 0.2 0.0 0.0 
Methylobacteriaceae (3) 0.1 0.1 0.2 0.1 0.1 

 
0.1 0.1 0.2 0.0 0.0 

Phyllobacteriaceae (3) 0.2 0.2 0.2 0.1 0.1 
 

0.1 0.2 0.2 0.0 0.0 
Rhizobiaceae (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Rhodobacteraceae (3) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
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Sampling Time: 0h   30h 

Treatment: C1 C2 C3 Gl St  C1 C2 C3 Gl St 

Phyla, Class, Familyb Relative Abundance (%) 
  

Rhodobiaceae (2) 1.0 1.0 0.9 0.9 0.7 
 

0.7 0.7 0.7 0.1 0.0 
Rhodospirillaceae (13) 0.4 0.5 0.5 0.4 0.4 

 
0.4 0.4 0.4 0.2 0.0 

Unassigned Rhodospirillales (13) 0.1 0.1 0.1 0.0 0.1 
 

0.1 0.1 0.1 0.0 0.0 
Unassigned Rhizobiales (8) 0.1 0.1 0.1 0.0 0.1 

 
0.1 0.1 0.1 0.0 0.0 

Sphingomonadaceae (1) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingomonadales (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Xanthobacteraceae (3) 2.5 2.6 3.1 2.4 2.1 
 

1.7 1.9 2.3 0.7 0.3 
Unassigned Alphaproteobacteria (13) 0.4 0.5 0.5 0.4 0.4 

 
0.3 0.4 0.4 0.1 0.1 

Betaproteobacteria, 
           

Alcaligenaceae (1) 0.1 0.1 0.1 0.1 0.0 
 

0.1 0.1 0.1 0.0 0.0 
Burkholderiaceae (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Comamonadaceae (7) 0.1 0.0 0.1 0.0 0.1 
 

0.0 0.1 0.0 0.0 0.0 
Gallionellaceae (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Nitrosomonadaceae (17) 0.3 0.2 0.3 0.2 0.1 
 

0.1 0.2 0.1 0.0 0.0 
Oxalobacteraceae (2) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Rhodocyclaceae (2) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Unassigned Betaproteobacteria (11) 0.1 0.2 0.2 0.1 0.1 

 
0.1 0.1 0.1 0.0 0.0 

Deltaproteobacteria, 
           

Archangiaceae (5) 0.1 0.1 0.1 0.1 0.0 
 

0.1 0.1 0.0 0.0 0.0 
Bdellovibrionaceae (5) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Desulfobulbaceae (1) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Desulfurellaceae (19) 0.8 0.7 0.9 0.6 0.6 

 
0.4 0.4 0.7 0.2 0.1 

Desulfuromonadaceae (2) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Geobacteraceae (11) 0.1 0.1 0.1 0.1 0.1 

 
0.1 0.1 0.1 0.0 0.0 

Haliangiaceae (24) 0.1 0.2 0.1 0.1 0.1 
 

0.1 0.1 0.2 0.0 0.0 
Myxococcaceae (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Unassigned Myxococcales (20) 0.1 0.1 0.1 0.1 0.1 
 

0.1 0.1 0.1 0.0 0.0 
Nannocystaceae (2) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Phaselicystidaceae (1) 0.0 0.0 0.1 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Polyangiaceae (17) 0.1 0.0 0.1 0.1 0.0 

 
0.1 0.0 0.0 0.0 0.0 

Sandaracinaceae (14) 0.0 0.1 0.1 0.0 0.0 
 

0.0 0.0 0.1 0.0 0.0 
Vulgatibacteraceae (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Unassigned Oligoflexales (4) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Unassigned Deltaproteobacteria (11) 0.1 0.1 0.0 0.0 0.0 

 
0.1 0.1 0.0 0.0 0.0 

Gammaproteobacteria, 
           

Aeromonadaceae (3) [GPT-1] 22 22 23 24 27 
 

24 20 19 60 66 
Coxiellaceae (1) 0.1 0.1 0.1 0.1 0.1 

 
0.1 0.1 0.1 0.1 0.0 

Enterobacteriaceae (5) [GPT-4, GPT-5] 1.4 2.4 1.5 2.0 1.9 
 

1.7 2.0 2.2 4.0 5.2 
Legionellaceae (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Oleiphilaceae (1) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Pseudomonadaceae (2) 0.0 0.0 0.1 0.0 0.1 

 
0.1 0.0 0.1 0.0 0.0 

Shewanellaceae (4) 8.4 8.6 8.8 5.7 6.4 
 

15 15 16 1.1 1.0 
Xanthomonadaceae (1) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Unassigned Gammaproteobacteria (14) 0.2 0.2 0.3 0.1 0.2 
 

0.2 0.1 0.1 0.0 0.0 
Saccharibacteria, 

           

Unassigned Saccharibacteria (1) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Spirochaetae, 

           

Spirochaetes, 
           

Spirochaetaceae (1) 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 0.0 0.0 0.0 
Tectomicrobia, 

           

Unassigned Tectomicrobia (11) 0.2 0.2 0.2 0.1 0.3 
 

0.2 0.2 0.2 0.1 0.0 
Tenericutes, 

           

Mollicutes, 
           

Mycoplasmataceae (5) [GPT-3] 10 8.8 6.7 12 12 
 

8.4 7.2 8.7 5.4 3.3 
Unassigned Entomoplasmatales (2) 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 

Verrucomicrobia, 
           

OPB35 soil group (24) 0.1 0.2 0.1 0.2 0.1 
 

0.1 0.1 0.1 0.0 0.0 
Spartobacteria, 

           

Chthoniobacteraceae (10) 0.0 0.1 0.1 0.0 0.1 
 

0.0 0.0 0.0 0.0 0.0 
Xiphinematobacteraceae (3) 0.9 1.0 0.8 0.7 1.0 

 
1.0 1.0 0.7 0.4 0.1 
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Sampling Time: 0h   30h 

Treatment: C1 C2 C3 Gl St  C1 C2 C3 Gl St 

Phyla, Class, Familyb Relative Abundance (%) 
  

Unassigned Chthoniobacterales (17) 1.0 1.4 1.3 1.2 1.1 
 

0.8 0.9 0.9 0.4 0.2 
Verrucomicrobiae, 

           

Verrucomicrobiaceae (4) 0.0 0.0 0.0 0.1 0.0 
 

0.0 0.0 0.0 0.0 0.0 

 

(B) 16S rRNA 

Sampling Time: 0h   30h 

Treatment: C1 C2 C3 Gl St  C1 C2 C3 Gl1 Gl2 Gl3 St1 St2 St3 

Phyla, Class, Familyb Relative Abundance (%) 
  

Acidobacteria,                
Acidobacteria,                

Acidobacteriaceae (3) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Blastocatellia,                

Blastocatellaceae (4) 0.0 0.0 0.1 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Holophagae,                

Unassigned Holophagae (4) 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Solibacteres,                

Solibacteraceae (12) 0.1 0.1 0.2 0.1 0.1  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_5 (5) 0.0 0.1 0.0 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_6 (45) 0.5 0.3 0.7 0.6 0.7  0.2 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 
Subgroup_11 (3) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_17 (4) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_18 (1) 0.0 0.1 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_22 (5) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_25 (3) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Actinobacteria,                

Acidimicrobiia,                

Acidimicrobiaceae (12) 0.6 0.6 1.3 0.7 0.6  0.5 0.6 0.7 0.2 0.1 0.1 0.1 0.1 0.1 
Iamiaceae (5) 0.2 0.1 0.1 0.2 0.1  0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Acidimicrobiia (40) 0.9 1.2 1.9 1.0 1.0  0.6 0.7 1.3 0.2 0.3 0.2 0.2 0.2 0.3 

Actinobacteria,                

Acidothermaceae (5) 0.1 0.1 0.2 0.1 0.1  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Catenulisporaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cellulomonadaceae (1) 0.0 0.1 0.2 0.1 0.2  0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.1 0.0 
Demequinaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Dermacoccaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Frankiaceae (2) 0.1 0.0 0.1 0.1 0.1  0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Geodermatophilaceae (1) 0.1 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Glycomycetaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Intrasporangiaceae (3) 0.1 0.1 0.3 0.1 0.1  0.1 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Kineosporiaceae (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Microbacteriaceae (6) 0.1 0.0 0.1 0.1 0.1  0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Micrococcaceae (2) 0.0 0.1 0.1 0.0 0.0  0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Micromonosporaceae (18) 0.9 0.9 1.8 0.8 0.7  0.6 0.9 0.8 0.2 0.2 0.1 0.2 0.1 0.2 
Mycobacteriaceae (5) 0.0 0.0 0.1 0.0 0.1  0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Nakamurellaceae (1) 0.1 0.0 0.0 0.1 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Nocardiaceae (5) 0.0 0.1 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nocardioidaceae (19) 0.4 0.6 1.4 0.6 0.6  0.4 0.8 0.5 0.1 0.1 0.1 0.1 0.2 0.2 
Promicromonosporaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Propionibacteriaceae (6) 0.2 0.1 0.2 0.1 0.2  0.1 0.1 0.2 0.0 0.1 0.0 0.1 0.0 0.0 
Pseudonocardiaceae (10) 0.2 0.3 0.9 0.3 0.3  0.2 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 
Sporichthyaceae (3) 0.0 0.1 0.2 0.0 0.0  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
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Sampling Time: 0h   30h 

Treatment: C1 C2 C3 Gl St  C1 C2 C3 Gl1 Gl2 Gl3 St1 St2 St3 

Phyla, Class, Familyb Relative Abundance (%) 
  

Streptomycetaceae (4) 0.2 0.2 0.8 0.5 0.3  0.3 0.3 0.3 0.1 0.1 0.1 0.0 0.1 0.1 
Streptosporangiaceae (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermomonosporaceae (3) 0.0 0.0 0.0 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Actinobacteria (2) 0.0 0.1 0.1 0.1 0.2  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Coriobacteriia,                

Coriobacteriaceae (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Coriobacteriia (21) 0.3 0.6 0.9 0.4 0.5  0.2 0.6 0.4 0.1 0.1 0.1 0.0 0.0 0.1 

Rubrobacteria,                

Rubrobacteriaceae (3) 0.0 0.0 0.1 0.1 0.0  0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Rubrobacteria (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thermoleophilia,                

Conexibacteraceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gaiellaceae (5) 0.4 0.5 0.6 0.5 0.6  0.3 0.5 0.5 0.1 0.1 0.2 0.1 0.1 0.1 
Unassigned Gaiellales (30) 0.9 0.8 1.4 1.3 1.1  0.4 1.1 0.8 0.2 0.3 0.2 0.2 0.2 0.2 
Parviterribacteraceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Patulibacteraceae (3) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Solirubrobacteraceae (4) 0.7 0.7 1.3 0.9 0.9  0.4 0.7 0.7 0.1 0.2 0.1 0.2 0.1 0.2 
Unassigned Solirubrobacterales (38) 0.5 0.7 0.9 0.9 0.4  0.3 0.5 0.4 0.2 0.1 0.1 0.1 0.2 0.1 

Armatimonadetes,                

Armatimonadia,                
Unassigned Armatimonadales  (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Bacteroidetes,                

Bacteroidia,                

Bacteroidaceae (6) 0.1 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 
Porphyromonadaceae (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 
Rikenellaceae (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cytophagia,                

Cytophagaceae (6) 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Flavobacteriia,                

Flavobacteriaceae (9) 0.1 0.0 0.0 0.1 0.0  0.0 0.4 0.1 0.1 0.0 0.0 0.0 0.1 0.0 
Sphingobacteriia,                

Chitinophagaceae (5) 0.0 0.1 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingobacteriaceae (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriales (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

BRC1,                

Unassigned BRC1 (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chlamydiae,                

Chlamydiae,                

Parachlamydiaceae (5) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chloroflexi,                

Anaerolineae,                

Anaerolineaceae (6) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Ardenticatenia (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Caldilineae,                

Caldilineaceae (10) 0.0 0.1 0.1 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chloroflexia                

AKIW781 (1) 0.0 0.0 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Roseiflexaceae (4) 0.1 0.1 0.2 0.1 0.0  0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gitt-GS-136 (4) 0.0 0.2 0.0 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
JG30-KF-CM66 (8) 0.1 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
KD4-96 (10) 0.5 0.5 0.9 0.6 0.4  0.2 0.5 0.4 0.2 0.1 0.1 0.1 0.1 0.1 

Ktedonobacteria,                

Unassigned Ktedonobacteria (7) 0.0 0.0 0.1 0.0 0.0  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
S085 (11) 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
SBR2076 (5) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
SJA-15 (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thermomicrobia,                

Unassigned Thermomicrobia (26) 0.1 0.2 0.2 0.4 0.4  0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0 
TK10 (12) 0.2 0.1 0.4 0.2 0.2  0.1 0.2 0.3 0.1 0.0 0.0 0.0 0.0 0.1 

Cyanobacteria,                
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Sampling Time: 0h   30h 

Treatment: C1 C2 C3 Gl St  C1 C2 C3 Gl1 Gl2 Gl3 St1 St2 St3 

Phyla, Class, Familyb Relative Abundance (%) 
  

Chloroplast,                

Unassigned Chloroplast (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cyanobacteria,                

Unassigned Cyanobacteria  (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Elusimicrobia,                

Elusimicrobia                
Unassigned Elusimicrobia (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Firmicutes,                

Bacilli,                

Alicyclobacillaceae (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bacillaceae (6) 0.4 0.2 0.6 0.5 0.3  0.1 0.4 0.3 0.2 0.2 0.2 0.3 0.3 0.1 
Lactobacillaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Paenibacillaceae (18) 0.0 0.1 0.1 0.1 0.1  0.1 0.1 0.0 0.1 0.2 0.0 0.1 0.1 0.2 
Planococcaceae (4) 0.1 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Streptococcaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoactinomycetaceae (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Bacilli (3) 0.4 0.5 0.7 0.8 0.6  0.3 0.2 0.3 0.0 0.0 0.1 0.0 0.0 0.0 

Clostridia,                

Christensenellaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Clostridiaceae (16) [GPT-6, GPT-8] 0.0 0.1 0.2 0.1 0.2  2.0 1.2 1.5 4.8 6.5 4.9 3.4 3.5 5.8 
Unassigned Clostridiales  (4) 0.0 0.0 0.0 0.0 0.0  0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Gracilibacteraceae (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Heliobacteriaceae (3) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Lachnospiraceae (14) 0.0 0.0 0.0 0.0 0.1  1.5 0.8 0.9 0.0 0.1 0.1 0.1 0.1 0.1 
Peptococcaceae (3) 1.2 1.3 2.3 2.5 1.0  1.2 0.9 0.9 0.3 0.7 0.2 0.4 0.4 0.3 
Peptostreptococcaceae (3) [GPT-2] 0.0 0.0 0.1 0.0 0.0  0.1 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.1 
Ruminococcaceae (9) 0.0 0.0 0.0 0.0 0.0  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Clostridia (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Erysipelotrichia,                

Erysipelotrichaceae (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Negativicutes,                

Veillonellaceae (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Fusobacteria,                

Fusobacteriia,                

Fusobacteriaceae (1) [GPT-7] 22 19 1.8 9.7 10  27 22 25 18 12 5.9 11 12 14 
Gemmatimonadetes,                

Gemmatimonadetes,                

Gemmatimonadaceae (13) 0.1 0.1 0.2 0.1 0.1  0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 
Latescibacteria,                

Unassigned Latescibacteria (4) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrospirae,                

Nitrospira,                

Nitrospiraceae (4) 0.0 0.1 0.1 0.1 0.0  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Nitrospirales (10) 0.1 0.2 0.5 0.3 0.4  0.2 0.5 0.2 0.1 0.1 0.1 0.1 0.1 0.1 

Planctomycetes,                

OM190 (11) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phycisphaerae, 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Phycisphaeraceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tepidisphaeraceae (32) 0.4 0.5 0.8 0.7 0.4  0.2 0.2 0.4 0.0 0.1 0.1 0.1 0.1 0.1 
Unassigned Phycisphaerae (7) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

Planctomycetacia,                

Planctomycetaceae (321) 7.1 7.1 15 8.4 7.0  5.9 8.1 8.5 1.8 1.4 1.2 1.7 1.7 2.2 
Unassigned Planctomycetes (5) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Proteobacteria,                

Alphaproteobacteria,                

Acetobacteraceae (5) 0.1 0.1 0.1 0.0 0.1  0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Sampling Time: 0h   30h 

Treatment: C1 C2 C3 Gl St  C1 C2 C3 Gl1 Gl2 Gl3 St1 St2 St3 

Phyla, Class, Familyb Relative Abundance (%) 
  

Beijerinckiaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bradyrhizobiaceae (3) 0.5 0.6 0.8 0.6 0.7  0.4 0.7 0.6 0.1 0.1 0.1 0.2 0.1 0.1 
Caulobacteraceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Hyphomicrobiaceae (4) 0.1 0.1 0.2 0.1 0.1  0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Methylobacteriaceae (3) 0.1 0.2 0.2 0.1 0.2  0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 
Phyllobacteriaceae (3) 0.2 0.0 0.4 0.2 0.1  0.1 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 
Rhizobiaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rhodobacteraceae (3) 0.0 0.1 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rhodobiaceae (2) 0.2 0.1 0.4 0.2 0.2  0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.1 
Rhodospirillaceae (13) 0.2 0.3 1.0 0.3 0.3  0.5 0.5 0.4 0.2 0.0 0.1 0.1 0.1 0.1 
Unassigned Rhodospirillales (13) 0.1 0.1 0.2 0.2 0.1  0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 
Unassigned Rhizobiales (8) 0.0 0.0 0.2 0.1 0.1  0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingomonadaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingomonadales (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthobacteraceae (3) 0.7 1.3 1.7 0.9 1.0  0.5 0.8 1.1 0.2 0.2 0.1 0.1 0.3 0.2 
Unassigned Alphaproteobacteria (13) 0.2 0.2 0.6 0.2 0.4  0.1 0.3 0.3 0.1 0.0 0.0 0.0 0.1 0.1 

Betaproteobacteria,                

Alcaligenaceae (1) 0.0 0.0 0.0 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Burkholderiaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Comamonadaceae (7) 0.0 0.1 0.2 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gallionellaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrosomonadaceae (17) 0.1 0.0 0.2 0.1 0.1  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Oxalobacteraceae (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rhodocyclaceae (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Betaproteobacteria (11) 0.1 0.1 0.2 0.0 0.1  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

Deltaproteobacteria,                

Archangiaceae (5) 0.0 0.1 0.2 0.1 0.1  0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Bdellovibrionaceae (5) 0.0 0.0 0.0 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Desulfobulbaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Desulfurellaceae (19) 0.2 0.1 0.6 0.2 0.4  0.1 0.1 0.2 0.0 0.1 0.0 0.1 0.0 0.1 
Desulfuromonadaceae (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Geobacteraceae (11) 0.0 0.1 0.2 0.2 0.1  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Haliangiaceae (24) 0.1 0.2 0.4 0.2 0.3  0.2 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.1 
Myxococcaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Myxococcales (20) 0.1 0.1 0.2 0.1 0.1  0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Nannocystaceae (2) 0.0 0.0 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phaselicystidaceae (1) 0.0 0.0 0.1 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Polyangiaceae (17) 0.3 0.0 0.4 0.2 0.1  0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.1 
Sandaracinaceae (14) 0.1 0.1 0.2 0.1 0.1  0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
Vulgatibacteraceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Oligoflexales (4) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Deltaproteobacteria (11) 0.0 0.0 0.1 0.1 0.1  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

Gammaproteobacteria,                

Aeromonadaceae (3) [GPT-1] 27 21 5.0 27 33  21 25 21 57 61 76 66 67 60 
Coxiellaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Enterobacteriaceae (5) [GPT-4, GPT-5] 2.5 3.0 0.4 3.8 4.8  1.9 2.0 1.9 5.1 6.1 5.2 7.5 6.4 6.5 
Legionellaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oleiphilaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Pseudomonadaceae (2) 0.1 0.0 0.0 0.1 0.1  0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 
Shewanellaceae (4) 3.1 2.3 0.7 1.3 1.7  2.4 5.1 4.3 0.2 0.4 0.5 0.5 0.4 0.4 
Xanthomonadaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Gammaproteobacteria (14) 0.1 0.1 0.2 0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

Saccharibacteria,                

Unassigned Saccharibacteria (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Spirochaetae,                

Spirochaetes,                

Spirochaetaceae (1) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tectomicrobia,                

Unassigned Tectomicrobia (11) 0.4 0.6 0.9 0.4 0.7  0.5 0.7 0.5 0.2 0.1 0.1 0.2 0.2 0.1 
Tenericutes,                
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Sampling Time: 0h   30h 

Treatment: C1 C2 C3 Gl St  C1 C2 C3 Gl1 Gl2 Gl3 St1 St2 St3 

Phyla, Class, Familyb Relative Abundance (%) 
  

Mollicutes,                

Mycoplasmataceae (5) [GPT-3] 21 28 41 26 21  25 17 18 8.2 7.2 2.9 5.3 4.8 6.4 
Unassigned Entomoplasmatales (2) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Verrucomicrobia,                

OPB35 soil group (24) 0.2 0.0 0.1 0.1 0.0  0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Spartobacteria,                

Chthoniobacteraceae (10) 0.0 0.0 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xiphinematobacteraceae (3) 0.7 1.2 1.8 1.0 1.0  0.8 0.7 1.0 0.5 0.2 0.2 0.2 0.2 0.2 
Unassigned Chthoniobacterales (17) 0.3 0.1 0.4 0.3 0.2  0.1 0.1 0.2 0.0 0.1 0.1 0.0 0.1 0.1 

Verrucomicrobiae,                

Verrucomicrobiaceae (4) 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

aSamples of the three replicates of the 16S rRNA gene (A) control treatment at 0 h and 30 h, 16S rRNA (B) control treatment at 0 h, and all 16S rRNA treatments at 30 h were 
analyzed separately.  Samples of the three replicates were pooled for each of the other treatments at 0 h or 30 h.  Identification numbers (e.g., C1) indicate the respective replicates.  
Treatments: C, unsupplemented control; Gl, glycogen; St, starch.  Table modified and used with permission from Zeibich et al., 2019a. 

bThe number of phylotypes are shown in parenthesis.  Abundant responsive group phylotypes from Figure 33 are bold and in brackets. 

Table A3.  Summary of all detected families in the saccharide experiment based on 16S rRNA gene (A) and 16S rRNA (B) anaylsis (Section 3.1.4).a 

(A)  16S rRNA genes 

Sampling Time: 0h  30h 

Treatment: C1 C2 C3 A Ce G Ga X  C1 C2 C3 A Ce G Ga X 

Phyla, Class, Familyb Relative Abundance (%) 
  

Acidobacteria,                  
Acidobacteria,                  

Acidobacteriaceae (12) 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.0 
Blastocatellia,                  

Blastocatellaceae (14) 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.3  0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.1 
Unassigned Acidobacteria (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Holophagae,                  
Unassigned Holophagae (7) 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 

Solibacteres,                  
Solibacteraceae (26) 0.5 0.4 0.5 0.5 0.5 0.4 0.5 0.5  0.2 0.3 0.3 0.1 0.1 0.2 0.2 0.2 
Subgroup_2 (5) 0.3 0.2 0.3 0.2 0.3 0.2 0.2 0.2  0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 
Subgroup_5 (6) 0.3 0.2 0.3 0.2 0.3 0.2 0.2 0.2  0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 
Subgroup_6 (83) 2.8 3.1 3.4 2.9 3.0 2.7 2.9 3.1  1.2 1.6 1.9 0.9 0.8 1.0 0.9 1.5 
Subgroup_11 (6) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_15 (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_17 (17) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.2 
Subgroup_18 (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_22 (13) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_25 (6) 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Actinobacteria,                  
Acidimicrobiia,                  

Acidimicrobiaceae (19) 1.4 1.7 1.8 1.6 1.8 1.7 1.8 1.6  1.0 1.3 1.4 0.8 0.9 0.8 0.9 1.4 
Iamiaceae (9) 0.2 0.1 0.2 0.2 0.2 0.3 0.2 0.2  0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 
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Sampling Time: 0h  30h 

Treatment: C1 C2 C3 A Ce G Ga X  C1 C2 C3 A Ce G Ga X 

Phyla, Class, Familyb Relative Abundance (%) 
  

Unassigned Acidimicrobiales (51) 2.3 2.3 2.5 2.5 2.5 2.5 2.2 2.7  1.2 1.7 1.7 0.9 1.0 1.2 1.1 1.4 
Actinobacteria (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Catenulisporaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mycobacteriaceae (9) 1.5 1.3 1.3 1.3 1.1 1.3 1.3 1.3  0.6 0.7 0.9 0.4 0.4 0.5 0.4 0.7 
Nocardiaceae (8) 2.0 2.0 2.3 2.2 2.1 2.3 2.0 2.0  0.9 1.3 1.4 0.8 0.6 0.7 0.8 1.1 
Acidothermaceae (5) 0.2 0.3 0.2 0.2 0.2 0.3 0.3 0.3  0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 
Cryptosporangiaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Frankiaceae (4) 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 
Geodermatophilaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nakamurellaceae (2) 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sporichthyaceae (3) 0.1 0.1 0.2 0.1 0.1 0.2 0.2 0.1  0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 
Unassigned Frankiales (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Glycomycetaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Kineosporiaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cellulomonadaceae (1) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.2 
Demequinaceae (1) 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Intrasporangiaceae (2) 0.3 0.3 0.4 0.3 0.4 0.3 0.3 0.2  0.2 0.2 0.3 0.1 0.1 0.1 0.1 0.2 
Microbacteriaceae (5) 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3  0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 
Micrococcaceae (2) 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.2  0.1 0.1 0.2 0.1 0.0 0.1 0.1 0.1 
Promicromonosporaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Micromonosporaceae (25) 1.4 1.3 1.5 1.3 1.2 1.4 1.2 1.1  0.7 0.9 1.0 0.5 0.6 0.5 0.5 0.9 
Nocardioidaceae (27) 2.0 2.0 2.3 2.2 2.1 2.3 2.0 2.0  0.9 1.3 1.4 0.8 0.6 0.7 0.8 1.1 
Propionibacteriaceae (9) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3  0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.2 
Pseudonocardiaceae (10) 0.5 0.4 0.6 0.4 0.4 0.4 0.4 0.4  0.3 0.3 0.4 0.2 0.2 0.2 0.2 0.3 
Streptomycetaceae (3) 0.7 0.6 0.7 0.6 0.7 0.7 0.6 0.5  0.3 0.3 0.4 0.2 0.1 0.3 0.2 0.4 
Streptosporangiaceae (5) 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 
Thermomonosporaceae (8) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 
Unassigned Actinobacteria (3) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 

Coriobacteriia,                  
Coriobacteriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
MB-A2-108 (22) 2.2 2.2 2.5 2.4 2.3 2.6 2.3 2.3  1.2 1.4 1.6 0.8 0.8 0.9 0.9 1.2 

Rubrobacteria,                  
Rubrobacteriaceae (3) 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Thermoleophilia,                  
Gaiellaceae (7) 2.3 2.6 2.8 2.4 2.5 2.5 2.4 2.6  1.3 1.6 1.9 1.0 1.0 1.0 1.2 1.6 
Unassigned Gaiellaceae  (37) 3.8 4.0 4.2 3.9 4.0 3.8 3.9 4.4  1.9 2.8 2.7 1.5 1.3 1.6 1.6 2.2 
Conexibacteraceae (2) 0.0 0.0 0.1 0.1 0.0 0.1 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Patulibacteraceae (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Solirubrobacteraceae (3) 0.5 0.5 0.7 0.5 0.5 0.6 0.5 0.5  0.2 0.4 0.5 0.2 0.2 0.2 0.2 0.3 
Unassigned Solirubrobacterales (58) 2.7 2.8 3.4 2.9 2.8 2.9 2.5 2.9  1.3 1.9 1.9 1.1 1.1 1.2 0.9 1.3 

Unassigned Actinobacteria  (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Armatimonadetes,                  

Armatimonadia,                  
Unassigned Armatimonadales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Chthonomonadetes,                  
Chthonomonadaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chthonomonadales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Armatimonadetes (9) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Bacteroidetes,                  
Bacteroidia,                  

Prolixibacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cytophagia (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cytophagaceae (24) 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1  0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 
Flavobacteriia (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Flavobacteriaceae (9) 0.3 0.2 0.1 0.2 0.2 0.2 0.3 0.3  0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 
Unassigned Flavobacteriales (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingobacteriia (40) 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5  0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.2 
Lentimicrobiaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Saprospiraceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingobacteriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Unassigned Sphingobacteriales (18) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Bacteriodetes (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

BJ-169,                  
Unassigned BJ-169 (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

BRC1,                  
Unassigned BRC1 (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Chlamydiae,                  
Chlamydiae,                  

Chlamydiaceae (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Parachlamydiaceae (70) 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.1  0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.1 
Simkaniaceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chlamydiales (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Chlorobi,                  
Chlorobia,                  

Unassigned Chlorobiales (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chloroflexi,                  

Anaerolineae,                  
Anaerolineaceae (8) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Caldilineae,                  
Caldilineaceae (7) 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2  0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 

Chloroflexia,                  
Roseiflexaceae (5) 0.4 0.3 0.4 0.3 0.3 0.3 0.4 0.3  0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 
Unassigned Kallotenuales (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gitt-GS-136 (3) 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 
JG30-KF-CM66 (11) 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
JG37-AG-4 (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
KD4-96 (12) 1.7 1.6 1.8 2.0 2.0 2.0 2.1 2.1  0.9 1.0 1.1 0.7 0.7 0.8 0.7 1.1 

Ktedonobacteria,                  
Ktedonobacteraceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermosporotrichaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacterales (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacteria (13) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
NLS2-31 (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
S085 (12) 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1  0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
SBR2076 (9) 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
SHA-26 (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thermomicrobia,                  
Thermomicrobiaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Thermomicrobia (38) 0.4 0.6 0.6 0.6 0.6 0.7 0.6 0.5  0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.4 
TK10 (18) 0.3 0.3 0.4 0.4 0.3 0.3 0.4 0.3  0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.2 

Cyanobacteria,                  
Chloroplast,                  

Unassigned Chloroplast (13) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cyanobacteria,                  

Unassigned Cyanobacteria (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Melainabacteria,                  

Unassigned Obscuribacterales (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
ML635J-21 (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Deinococcus-Thermus,                  
Deinococci,                  

Unassigned Deinococci (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Elusimicrobia,                  

Elusimicrobia,                  
Unassigned Elusimicrobia (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fibrobacteres,                  
Fibrobacteria,                  
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Fibrobacteraceae (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Fibrobacterales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Firmicutes,                  
Bacilli,                  

Alicyclobacillaceae (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bacillaceae (22) 1.1 1.0 1.0 1.1 1.1 1.2 1.1 1.0  5.1 3.5 3.8 5.3 2.0 5.1 3.9 4.4 
Paenibacillaceae (39) 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2  0.6 0.8 1.0 0.5 0.2 0.6 0.4 0.9 
Pasteuriaceae (1) 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 
Planococcaceae (9) 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.1  0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.1 
Sporolactobacillaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Staphylococcaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoactinomycetaceae (11) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Bacilli (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Clostridia,                  
Caldicoprobacteraceae (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Clostridiaceae (25) [GPT-6, GPT-8] 0.3 0.2 0.2 0.2 0.2 0.3 0.2 0.2  12 8.5 8.1 6.2 4.0 5.2 7.5 6.2 
Defluviitaleaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Eubacteriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gracilibacteraceae (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Heliobacteriaceae (9) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Lachnospiraceae (14) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  1.8 1.1 1.0 1.0 0.3 1.0 0.7 1.0 
Peptococcaceae (7) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.2 0.1 0.4 0.2 0.3 0.0 0.2 
Peptostreptococcaceae (7) [GPT-2] 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2  23 13 11 9.3 4.3 8.1 17 9.4 
Ruminococcaceae (31) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 
Unassigned Clostridiales (19) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 
Halanaerobiaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoanaerobacteraceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Clostridia (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Erysipelotrichia,                  
Erysipelotrichaceae (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Limnochordia,                  
Limnochordaceae (10) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Limnochordales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Negativicutes,                  
Selenomonadales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Veillonellaceae (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Selenomonadales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fusobacteria,                  
Fusobacteriales,                  

Fusobacteriaceae (1) [GPT-7] 0.1 0.2 0.1 0.3 0.2 0.2 0.4 0.4  6.2 3.4 4.4 21 23 11 7.1 5.1 
Gemmatimonadetes,                  

Gemmatimonadetes,                  
Gemmatimonadaceae (32) 0.9 0.9 0.9 1.0 0.8 0.9 1.0 0.9  0.4 0.6 0.6 0.3 0.3 0.4 0.3 0.5 
Unassigned Gemmatimonadetes (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Latescibacteria,                  
Unassigned Latescibacteria (20) 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Nitrospirae,                  
Nitrospira,                  

Nitrospiraceae (8) 0.2 0.2 0.3 0.2 0.3 0.3 0.3 0.3  0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.2 
Unassigned Nitrospirales (12) 1.2 1.4 1.4 1.2 1.3 1.2 1.3 1.4  0.6 0.7 0.8 0.4 0.4 0.5 0.5 0.6 

Planctomycetes,                  
OM190 (33) 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.2  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 
Phycisphaerae,                  

Phycisphaeraceae (26) 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tepidisphaeraceae (57) 0.9 1.0 1.0 0.9 1.0 1.1 1.2 1.0  0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.6 
Unassigned Phycisphaerae (15) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 

Planctomycetacia,                  
Planctomycetaceae (539) 5.9 6.1 6.4 6.4 6.7 6.8 6.6 6.4  3.4 4.3 4.3 2.8 3.9 3.6 3.2 4.9 

Unassigned Planctomycetes (8) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Proteobacteria,                  
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Alphaproteobacteria,                  
Caulobacteraceae (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Hyphomonadaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Beijerinckiaceae (1) 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bradyrhizobiaceae (5) 1.7 1.7 1.8 1.8 1.6 1.8 1.7 1.8  0.8 1.1 1.3 0.4 0.5 0.7 0.6 1.0 
Hyphomicrobiaceae (6) 0.6 0.5 0.5 0.6 0.6 0.6 0.6 0.6  0.3 0.4 0.5 0.2 0.2 0.2 0.2 0.4 
Methylobacteriaceae (4) 0.2 0.3 0.3 0.3 0.3 0.3 0.2 0.3  0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.2 
Phyllobacteriaceae (3) 0.5 0.5 0.7 0.4 0.5 0.6 0.5 0.5  0.1 0.2 0.4 0.1 0.1 0.1 0.2 0.3 
Rhizobiaceae (3) 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rhodobiaceae (2) 2.2 2.0 2.2 2.1 2.2 2.2 1.9 1.9  1.0 1.6 1.7 0.8 0.7 0.9 0.7 1.3 
Roseiarcaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthobacteraceae (6) 6.2 6.2 6.8 6.4 6.4 6.7 6.1 6.0  2.8 4.4 4.5 2.0 1.8 2.6 2.2 4.5 
Unassigned Rhizobiales  (14) 0.4 0.5 0.6 0.5 0.5 0.4 0.5 0.5  0.2 0.4 0.4 0.1 0.1 0.2 0.2 0.3 
Rhodobacteraceae (6) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.0 
Acetobacteraceae (10) 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2  0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 
Rhodospirillaceae (14) 0.5 0.5 0.6 0.5 0.5 0.5 0.6 0.7  0.3 0.4 0.4 0.2 0.2 0.2 0.2 0.3 
Unassigned Rhodospirillales  (32) 1.2 1.3 1.3 1.3 1.3 1.2 1.3 1.4  0.6 1.0 0.9 0.5 0.4 0.6 0.6 0.8 
Anaplasmataceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Holosporaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mitochondria (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Rickettsiales (6) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Erythrobacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingomonadaceae (7) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingomonadales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Betaproteobacteria,                  
Alcaligenaceae (2) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 
Burkholderiaceae (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Comamonadaceae (15) 0.4 0.3 0.3 0.3 0.3 0.4 0.3 0.3  0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 
Oxalobacteraceae (6) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Methylophilaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Neisseriaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gallionellaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrosomonadaceae (24) 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.6  0.2 0.2 0.3 0.2 0.1 0.1 0.1 0.2 
Rhodocyclaceae (10) 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1  0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 
Unassigned Rubrobacterales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Betaproteobacteria (26) 0.6 0.6 0.9 0.6 0.7 0.7 0.5 0.6  0.3 0.5 0.5 0.2 0.1 0.2 0.2 0.5 

Deltaproteobacteria,                  
Bacteriovoracaceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bdellovibrionaceae (21) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 
Desulfarculaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Desulfurellaceae (33) 1.6 1.8 1.6 1.7 1.5 1.7 1.5 1.8  0.6 1.0 1.2 0.4 0.3 0.5 0.5 0.8 
Desulfuromonadaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
Geobacteraceae (15) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3  0.1 0.1 0.2 0.1 0.0 0.1 0.1 0.1 
Archangiaceae (14) 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Haliangiaceae (47) 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.3  0.2 0.2 0.3 0.1 0.1 0.2 0.1 0.2 
Myxococcaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nannocystaceae (6) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phaselicystidaceae (7) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 
Polyangiaceae (31) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 
Sandaracinaceae (23) 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 
Vulgatibacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Myxococcales (79) 0.4 0.3 0.5 0.3 0.3 0.3 0.3 0.3  0.2 0.2 0.3 0.1 0.1 0.1 0.2 0.2 
Oligoflexaceae (6) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Oligoflexales (29) 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Syntrophaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Deltaproteobacteria (14) 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Sampling Time: 0h  30h 

Treatment: C1 C2 C3 A Ce G Ga X  C1 C2 C3 A Ce G Ga X 

Phyla, Class, Familyb Relative Abundance (%) 
  

Gammaproteobacteria,                  
Acidiferrobacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Aeromonadaceae (4) [GPT-1] 5.0 5.2 4.2 6.8 5.2 6.1 7.2 8.6  3.3 2.5 3.7 15 20 20 3.3 6.4 
Shewanellaceae (1) 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1  0.5 0.6 0.7 0.1 0.0 0.2 0.3 0.9 
Cellvibrionaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Halieaceae (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Enterobacteriaceae (5) [GPT-4, GPT-5] 0.5 0.5 0.5 0.8 0.6 0.8 0.9 0.9  1.2 0.7 1.0 5.3 7.1 4.5 22 4.1 
Coxiellaceae (11) 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Legionellaceae (11) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Methylococcaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oleiphilaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Pseudomonadaceae (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Thiotrichales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthomonadaceae (9) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 
Unassigned Xanthomonadales (24) 0.7 0.7 0.8 0.7 0.5 0.7 0.5 0.6  0.2 0.3 0.4 0.2 0.2 0.2 0.2 0.3 
Unassigned Gammaproteobacteria (16) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 
Unassigned Proteobacteria (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Saccharibacteria,                  
Unassigned Saccharibacteria (18) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Tectomicrobia,                  
Spirochaetes,                  

Brevinemataceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Spirochaetaceae (1) 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Tectomicrobia (12) 0.4 0.4 0.4 0.4 0.4 0.3 0.4 0.5  0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.2 

Tenericutes,                  
Mollicutes,                  

Haloplasmataceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mycoplasmataceae (7) [GPT-3] 23 21 17 18 20 17 18 16  13 19 16 9.2 12 13 8.9 18 
Unassigned Entomoplasmatales (2) 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Haloplasmataceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

TM6_Dependentiae,                  
Unassigned TM6_Dependentiae (8) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Verrucomicrobia,                  
OPB35 soil group (64) 0.6 0.5 0.5 0.6 0.5 0.6 0.6 0.6  0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 
Spartobacteria,                  

Spartobacteria (34) 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.3  0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 
Chthoniobacteraceae (5) 1.2 1.4 1.3 1.4 1.3 1.4 1.7 1.6  1.0 1.4 1.0 0.8 1.0 1.0 0.8 1.1 
Xiphinematobacteraceae (31) 2.8 3.5 3.4 3.6 3.6 3.8 3.5 3.4  2.1 2.4 2.4 1.7 2.0 1.7 2.0 2.4 

Opitutae,                  
Opitutaceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Opitutae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Verrucomicrobiae,                  
Verrucomicrobiaceae (24) 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Unassigned Verrucomicrobiales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Verrucomicrobia (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Archeae                  
Euryarchaeota,                  

Methanomicrobia,                  
Methanosarcinaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thaumarchaeota,                  
Unassigned Thaumarchaeota (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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(B)  16S rRNA 

Sampling Time: 0h  30h 

Treatment: C1 C2 C3 A Ce G Ga X  
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Phyla, Class, Familyb Relative Abundance (%) 
  

Acidobacteria,                            
Acidobacteria,                            

Acidobacteriaceae (12) 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1  0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1 
Blastocatellia,                            

Blastocatellaceae (14) 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 
Unassigned Acidobacteria (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Holophagae,                            
Unassigned Holophagae (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Solibacteres,                            
Solibacteraceae (26) 0.7 0.6 0.7 0.6 0.7 0.6 0.5 0.6  0.2 0.4 0.4 0.5 0.2 0.2 0.3 0.2 0.3 0.4 0.4 0.4 0.2 0.5 0.3 0.3 0.4 0.4 
Subgroup_2 (5) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 
Subgroup_5 (6) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 
Subgroup_6 (83) 0.9 0.9 1.3 1.0 1.0 1.0 0.9 0.8  0.3 0.4 0.6 0.7 0.5 0.2 0.3 0.3 0.3 0.7 0.4 0.7 0.2 0.4 0.4 0.5 0.5 0.4 
Subgroup_11 (6) 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
Subgroup_15 (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_17 (17) 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1 
Subgroup_18 (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_22 (13) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_25 (6) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Actinobacteria,                            
Acidimicrobiia,                            

Acidimicrobiaceae (19) 1.2 0.9 1.1 1.1 1.1 1.3 1.0 1.0  0.6 1.0 1.1 1.1 0.6 0.5 0.9 0.7 0.7 0.7 0.8 0.7 0.5 0.8 0.8 0.9 0.9 0.9 
Iamiaceae (9) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 
Unassigned Acidimicrobiales (51) 1.2 0.9 1.2 0.8 0.9 0.9 0.9 1.0  0.6 0.8 1.0 1.3 0.9 0.4 0.7 0.7 0.7 0.9 0.8 1.2 0.5 1.0 1.1 1.1 1.3 0.9 
Actinobacteria (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Catenulisporaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mycobacteriaceae (9) 0.3 0.2 0.5 0.3 0.2 0.2 0.2 0.2  0.1 0.2 0.2 0.3 0.2 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.1 0.2 0.3 0.3 0.2 0.2 
Nocardiaceae (8) 0.8 0.7 1.2 0.7 0.6 0.6 0.6 0.6  0.5 0.6 0.7 0.9 0.6 0.3 0.4 0.3 0.5 0.8 0.5 0.7 0.4 0.5 0.6 0.6 0.8 0.7 
Acidothermaceae (5) 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.1  0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 
Cryptosporangiaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Frankiaceae (4) 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.0 
Geodermatophilaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nakamurellaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sporichthyaceae (3) 0.1 0.0 0.2 0.1 0.0 0.1 0.0 0.1  0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 
Unassigned Frankiales (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Glycomycetaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Kineosporiaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 
Cellulomonadaceae (1) 0.2 0.1 0.3 0.2 0.1 0.1 0.2 0.1  0.2 0.2 0.3 0.3 0.2 0.1 0.1 0.2 0.2 0.3 0.2 0.3 0.1 0.2 0.2 0.3 0.3 0.4 
Demequinaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Intrasporangiaceae (2) 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.1  0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.2 
Microbacteriaceae (5) 0.1 0.0 0.2 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.2 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Micrococcaceae (2) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 
Promicromonosporaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Micromonosporaceae (25) 0.7 0.8 1.3 0.8 0.7 0.8 0.8 0.7  0.5 0.9 1.0 0.9 0.6 0.4 0.7 0.5 0.6 1.1 0.7 0.9 0.4 0.8 0.9 0.9 1.1 0.9 
Nocardioidaceae (27) 0.8 0.7 1.2 0.7 0.6 0.6 0.6 0.6  0.5 0.6 0.7 0.9 0.6 0.3 0.4 0.3 0.5 0.8 0.5 0.7 0.4 0.5 0.6 0.6 0.8 0.7 
Propionibacteriaceae (9) 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.2  0.1 0.1 0.2 0.3 0.1 0.0 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.1 
Pseudonocardiaceae (10) 0.2 0.2 0.4 0.2 0.1 0.2 0.2 0.2  0.2 0.2 0.3 0.5 0.3 0.1 0.2 0.2 0.2 0.4 0.2 0.3 0.1 0.2 0.3 0.3 0.2 0.2 
Streptomycetaceae (3) 0.3 0.3 0.5 0.3 0.3 0.4 0.3 0.3  0.2 0.2 0.3 0.4 0.3 0.2 0.2 0.2 0.1 0.3 0.2 0.4 0.1 0.3 0.3 0.3 0.3 0.3 
Streptosporangiaceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermomonosporaceae (8) 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Actinobacteria (3) 0.2 0.1 0.2 0.1 0.1 0.1 0.2 0.2  0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.3 0.2 0.3 0.1 0.1 0.3 0.2 0.2 0.2 

Coriobacteriia,                            
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Coriobacteriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
MB-A2-108 (22) 0.2 0.2 0.4 0.3 0.3 0.3 0.2 0.3  0.2 0.3 0.2 0.3 0.2 0.1 0.2 0.2 0.2 0.3 0.2 0.2 0.1 0.3 0.3 0.3 0.3 0.3 

Rubrobacteria,                            
Rubrobacteriaceae (3) 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 

Thermoleophilia,                            
Gaiellaceae (7) 0.3 0.4 0.5 0.4 0.3 0.2 0.4 0.4  0.2 0.3 0.3 0.4 0.4 0.1 0.2 0.2 0.2 0.4 0.3 0.5 0.1 0.4 0.3 0.3 0.4 0.3 
Unassigned Gaiellaceae  (37) 0.5 0.5 0.9 0.5 0.5 0.5 0.5 0.7  0.4 0.3 0.6 0.7 0.5 0.2 0.4 0.3 0.4 0.7 0.5 0.7 0.3 0.5 0.6 0.7 0.7 0.5 
Conexibacteraceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Patulibacteraceae (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Solirubrobacteraceae (3) 0.3 0.4 0.8 0.4 0.3 0.3 0.4 0.5  0.2 0.2 0.4 0.5 0.5 0.2 0.2 0.2 0.2 0.5 0.4 0.6 0.2 0.4 0.3 0.4 0.6 0.4 
Unassigned Solirubrobacterales (58) 0.4 0.3 0.7 0.4 0.4 0.4 0.3 0.4  0.2 0.4 0.4 0.4 0.3 0.2 0.2 0.2 0.2 0.4 0.3 0.5 0.2 0.4 0.4 0.4 0.5 0.5 
Unassigned Actinobacteria  (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Armatimonadetes,                            
Armatimonadia,                            

Unassigned Armatimonadales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chthonomonadetes,                            

Chthonomonadaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chthonomonadales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Armatimonadetes (9) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Bacteroidetes,                            
Bacteroidia,                            

Prolixibacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cytophagia (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cytophagaceae (24) 0.2 0.1 0.2 0.2 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 
Flavobacteriia (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Flavobacteriaceae (9) 0.7 0.5 0.2 0.6 0.5 0.7 0.5 0.6  0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 
Unassigned Flavobacteriales (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingobacteriia (40) 0.4 0.3 0.2 0.3 0.4 0.3 0.3 0.3  0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.2 
Lentimicrobiaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Saprospiraceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingobacteriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriales (18) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Bacteriodetes (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
BJ-169,                            

Unassigned BJ-169 (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
BRC1,                            

Unassigned BRC1 (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chlamydiae,                            

Chlamydiae,                            
Chlamydiaceae (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Parachlamydiaceae (70) 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.1 
Simkaniaceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chlamydiales (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Chlorobi,                            
Chlorobia,                            

Unassigned Chlorobiales (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chloroflexi,                            

Anaerolineae,                            
Anaerolineaceae (8) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Caldilineae,                            
Caldilineaceae (7) 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0  0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.0 

Chloroflexia,                            
Roseiflexaceae (5) 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.2  0.1 0.2 0.1 0.3 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 
Unassigned Kallotenuales (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gitt-GS-136 (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
JG30-KF-CM66 (11) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
JG37-AG-4 (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
KD4-96 (12) 0.5 0.3 0.5 0.5 0.4 0.4 0.3 0.3  0.2 0.3 0.4 0.5 0.4 0.1 0.3 0.3 0.2 0.3 0.3 0.5 0.2 0.3 0.5 0.4 0.5 0.4 

Ktedonobacteria,                            
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Ktedonobacteraceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermosporotrichaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacterales (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacteria (13) 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 
NLS2-31 (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
S085 (12) 0.1 0.0 0.1 0.1 0.0 0.1 0.0 0.1  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.0 
SBR2076 (9) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
SHA-26 (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thermomicrobia,                            
Thermomicrobiaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Thermomicrobia (38) 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2  0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 
TK10 (18) 0.3 0.2 0.4 0.2 0.2 0.2 0.3 0.3  0.2 0.1 0.2 0.4 0.2 0.1 0.2 0.2 0.1 0.3 0.2 0.3 0.1 0.3 0.2 0.3 0.2 0.2 

Cyanobacteria,                            
Chloroplast,                            

Unassigned Chloroplast (13) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cyanobacteria,                            

Unassigned Cyanobacteria (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Melainabacteria,                            

Unassigned Obscuribacterales (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
ML635J-21 (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Deinococcus-Thermus,                            
Deinococci,                            

Unassigned Deinococci (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Elusimicrobia,                            

Elusimicrobia,                            
Unassigned Elusimicrobia (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fibrobacteres,                            
Fibrobacteria,                            

Fibrobacteraceae (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Fibrobacterales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Firmicutes                            
Bacilli,                            

Alicyclobacillaceae (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bacillaceae (22) 0.3 0.4 0.7 0.4 0.4 0.4 0.5 0.6  1.2 0.7 1.0 6.7 6.7 4.0 2.4 2.2 2.5 6.5 5.4 6.1 2.3 2.4 4.8 2.4 2.3 2.1 
Paenibacillaceae (39) 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1  0.5 0.3 0.6 0.4 0.3 0.3 0.2 0.2 0.2 0.4 0.4 0.5 0.2 0.3 0.4 0.9 0.7 0.6 
Pasteuriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.2 
Planococcaceae (9) 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0  0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 
Sporolactobacillaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Staphylococcaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoactinomycetaceae (11) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Bacilli (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Clostridia,                            
Caldicoprobacteraceae (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Clostridiaceae (25) [GPT-6, GPT-8] 0.2 0.1 0.2 0.2 0.1 0.2 0.1 0.2  11 2.9 4.1 4.5 8.2 10 4.9 4.5 6.1 4.1 4.1 5.3 10 2.2 3.3 4.4 5.2 3.4 
Defluviitaleaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Eubacteriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gracilibacteraceae (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Heliobacteriaceae (9) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Lachnospiraceae (14) 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0  2.3 1.0 1.6 1.3 1.5 0.9 0.7 0.7 0.5 1.5 1.0 1.1 1.1 1.1 1.2 1.8 1.1 1.0 
Peptococcaceae (7) 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.1  0.1 0.1 0.1 0.2 0.4 0.2 0.1 0.1 0.1 0.2 0.2 0.3 0.0 0.0 0.0 0.1 0.1 0.1 
Peptostreptococcaceae (7) [GPT-2] 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2  24 9.9 10 11 17 23 12 11 12 13 16 15 35 9.2 14 13 10 8.2 
Ruminococcaceae (31) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 
Unassigned Clostridiales (19) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Halanaerobiaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoanaerobacteraceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Clostridia (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Erysipelotrichia,                            
Erysipelotrichaceae (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Limnochordia,                            
Limnochordaceae (10) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Limnochordales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Negativicutes,                            
Selenomonadales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Veillonellaceae (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Selenomonadales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fusobacteria,                            
Fusobacteriales,                            

Fusobacteriaceae (1) [GPT-7] 0.4 0.4 0.2 0.6 0.5 0.4 0.8 1.0  2.7 0.7 0.5 1.6 2.4 13 5.4 3.4 5.1 1.1 1.2 0.8 2.5 0.8 1.0 0.6 0.5 0.3 
Gemmatimonadetes,                            

Gemmatimonadetes,                            
Gemmatimonadaceae (32) 0.2 0.1 0.5 0.2 0.2 0.2 0.2 0.2  0.1 0.2 0.3 0.3 0.2 0.1 0.1 0.2 0.1 0.3 0.3 0.3 0.1 0.2 0.3 0.3 0.3 0.2 
Unassigned Gemmatimonadetes (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Latescibacteria,                            
Unassigned Latescibacteria (20) 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Nitrospirae,                            
Nitrospira,                            

Nitrospiraceae (8) 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.1  0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 
Unassigned Nitrospirales (12) 0.5 0.3 0.7 0.5 0.3 0.3 0.4 0.5  0.4 0.4 0.4 0.9 0.9 0.2 0.4 0.4 0.4 0.6 0.6 0.9 0.3 0.4 0.8 0.7 0.9 0.6 

Planctomycetes,                            
OM190 (33) 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1  0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 
Phycisphaerae,                            

Phycisphaeraceae (26) 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tepidisphaeraceae (57) 0.7 0.7 0.7 0.6 0.7 0.8 0.7 0.7  0.2 0.4 0.3 0.6 0.4 0.2 0.4 0.3 0.3 0.4 0.5 0.5 0.3 0.3 0.5 0.7 0.9 0.4 
Unassigned Phycisphaerae (15) 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1  0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 

Planctomycetacia,                            
Planctomycetaceae (539) 11 11 11 9.3 12 12 11 9.7  8.0 13 10 9.6 6.6 6.1 10 8.7 8.7 11 11 9.2 6.9 13 12 13 12 13 
Unassigned Planctomycetes (8) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Proteobacteria,                            
Alphaproteobacteria,                            

Caulobacteraceae (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 
Hyphomonadaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Beijerinckiaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bradyrhizobiaceae (5) 1.2 1.5 1.7 1.7 1.4 1.3 1.3 1.7  0.7 1.0 1.5 1.6 0.9 0.6 1.0 0.6 0.9 1.6 1.0 1.1 0.4 1.3 1.0 1.0 1.0 1.1 
Hyphomicrobiaceae (6) 0.3 0.3 0.4 0.3 0.4 0.3 0.2 0.2  0.3 0.3 0.5 0.3 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.4 0.3 0.3 0.3 0.3 
Methylobacteriaceae (4) 0.2 0.2 0.3 0.4 0.2 0.2 0.2 0.2  0.2 0.2 0.2 0.3 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2 
Phyllobacteriaceae (3) 0.3 0.3 0.4 0.4 0.3 0.3 0.3 0.3  0.3 0.3 0.4 0.4 0.3 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.1 0.4 0.3 0.3 0.2 0.3 
Rhizobiaceae (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rhodobiaceae (2) 0.5 0.5 0.5 0.5 0.5 0.6 0.3 0.2  0.5 0.8 0.7 0.4 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.6 0.5 0.5 0.4 0.6 
Roseiarcaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthobacteraceae (6) 1.7 2.1 3.0 2.1 1.9 2.3 1.9 1.2  1.3 2.2 2.5 2.0 1.4 0.8 1.4 1.2 1.3 2.1 1.9 1.8 0.8 2.0 1.9 1.8 2.0 2.2 
Unassigned Rhizobiales  (14) 0.2 0.2 0.3 0.3 0.3 0.3 0.2 0.2  0.2 0.2 0.2 0.3 0.2 0.1 0.2 0.2 0.1 0.3 0.2 0.3 0.1 0.3 0.3 0.2 0.2 0.3 
Rhodobacteraceae (6) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0  0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 
Acetobacteraceae (10) 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.2  0.2 0.2 0.2 0.3 0.2 0.1 0.1 0.1 0.2 0.3 0.2 0.3 0.1 0.2 0.2 0.3 0.2 0.2 
Rhodospirillaceae (14) 0.4 0.4 0.5 0.4 0.5 0.4 0.4 0.4  0.6 0.6 0.7 0.7 0.5 0.3 0.4 0.3 0.4 0.7 0.5 0.5 0.2 0.7 0.6 0.5 0.5 0.6 
Unassigned Rhodospirillales  (32) 0.8 0.7 0.9 0.8 0.7 0.6 0.7 0.7  0.6 0.8 1.0 1.1 0.9 0.4 0.6 0.5 0.6 1.1 0.8 0.9 0.4 0.9 1.0 0.8 0.8 0.9 
Anaplasmataceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Holosporaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mitochondria (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Rickettsiales (6) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Erythrobacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingomonadaceae (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingomonadales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Betaproteobacteria,                            
Alcaligenaceae (2) 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1  0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.0 
Burkholderiaceae (3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Comamonadaceae (15) 0.5 0.4 0.5 0.5 0.5 0.3 0.3 0.6  0.2 0.2 0.2 0.5 0.3 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.1 0.3 0.3 0.2 0.3 0.2 
Oxalobacteraceae (6) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Methylophilaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Neisseriaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gallionellaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrosomonadaceae (24) 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.2  0.1 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Rhodocyclaceae (10) 0.2 0.1 0.1 0.1 0.0 0.0 0.1 0.1  0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.0 
Unassigned Rubrobacterales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Betaproteobacteria (26) 0.2 0.2 0.3 0.2 0.3 0.1 0.1 0.2  0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 

Deltaproteobacteria,                            
Bacteriovoracaceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bdellovibrionaceae (21) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0  0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Desulfarculaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Desulfurellaceae (33) 0.4 0.4 0.7 0.6 0.5 0.5 0.4 0.6  0.4 0.4 0.7 0.9 0.7 0.3 0.4 0.3 0.4 0.6 0.6 0.8 0.2 0.6 0.5 0.5 0.6 0.5 
Desulfuromonadaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Geobacteraceae (15) 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.2 
Archangiaceae (14) 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Haliangiaceae (47) 0.3 0.2 0.6 0.3 0.3 0.2 0.2 0.2  0.2 0.4 0.4 0.3 0.2 0.2 0.2 0.1 0.2 0.4 0.3 0.4 0.1 0.3 0.2 0.3 0.3 0.3 
Myxococcaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nannocystaceae (6) 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0  0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 
Phaselicystidaceae (7) 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.2 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 
Polyangiaceae (31) 0.3 0.3 0.5 0.3 0.2 0.2 0.3 0.2  0.3 0.4 0.6 0.3 0.2 0.2 0.2 0.2 0.2 0.5 0.4 0.3 0.2 0.4 0.3 0.4 0.3 0.4 
Sandaracinaceae (23) 0.1 0.1 0.3 0.2 0.1 0.2 0.1 0.1  0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.1 0.2 0.2 0.2 
Vulgatibacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Myxococcales (79) 0.4 0.4 0.7 0.4 0.4 0.4 0.4 0.4  0.3 0.3 0.5 0.5 0.4 0.2 0.3 0.2 0.2 0.5 0.5 0.4 0.2 0.4 0.4 0.5 0.5 0.6 
Oligoflexaceae (6) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Oligoflexales (29) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Syntrophaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Deltaproteobacteria (14) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Gammaproteobacteria,                            
Acidiferrobacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Aeromonadaceae (4) [GPT-1] 11 13 14 13 10 11 17 18  0.9 0.3 0.4 5.6 5.9 2.7 5.6 6.7 7.7 4.3 3.7 4.2 0.9 0.8 0.8 1.2 2.1 1.2 
Shewanellaceae (1) 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cellvibrionaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Halieaceae (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Enterobacteriaceae (5)  
[GPT-4, GPT-5] 1.6 1.7 1.8 2.5 1.7 1.8 2.5 3.6  0.8 0.4 0.4 2.2 2.5 4.2 3.5 4.9 3.2 1.5 1.2 1.5 11 7.2 5.5 2.3 2.5 2.1 
Coxiellaceae (11) 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Legionellaceae (11) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Methylococcaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oleiphilaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Pseudomonadaceae (3) 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Thiotrichales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthomonadaceae (9) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Xanthomonadales (24) 0.3 0.2 0.4 0.3 0.2 0.2 0.2 0.2  0.2 0.2 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.2 
Unassigned  
Gammaproteobacteria (16) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Proteobacteria (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Saccharibacteria,                            
Unassigned Saccharibacteria (18) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Tectomicrobia,                            
Spirochaetes,                            

Brevinemataceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Spirochaetaceae (1) 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Tectomicrobia (12) 1.2 1.1 1.3 1.3 1.0 1.1 1.5 1.8  0.5 0.7 0.8 1.3 1.0 0.5 0.6 0.5 0.6 1.3 1.0 1.0 0.3 0.9 0.8 0.6 0.9 0.8 

Tenericutes,                            
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Sampling Time: 0h  30h 

Treatment: C1 C2 C3 A Ce G Ga X  
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Phyla, Class, Familyb Relative Abundance (%) 
  

Mollicutes,                            
Haloplasmataceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mycoplasmataceae (7) [GPT-3] 46 48 35 43 48 47 41 39  30 47 41 24 27 22 35 41 36 28 32 29 19 37 32 34 36 43 
Unassigned Entomoplasmatales (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Haloplasmataceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

TM6_Dependentiae                            
Unassigned TM6_Dependentiae (8) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Verrucomicrobia,                            
OPB35 soil group (64) 0.4 0.5 0.5 0.4 0.4 0.4 0.4 0.5  0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.3 0.2 
Spartobacteria,                            

Spartobacteria (34) 0.3 0.2 0.1 0.3 0.2 0.2 0.2 0.1  0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.2 
Chthoniobacteraceae (5) 1.6 1.4 0.7 1.8 1.8 1.6 1.5 1.2  2.2 2.6 2.6 2.0 1.0 1.4 2.1 1.4 1.3 1.1 1.6 1.1 1.0 2.7 1.7 1.8 1.4 1.6 
Xiphinematobacteraceae (31) 0.5 0.5 0.5 0.5 0.6 0.4 0.4 0.4  0.2 0.2 0.4 0.5 0.3 0.2 0.4 0.4 0.3 0.3 0.4 0.4 0.2 0.4 0.5 0.6 0.4 0.4 

Opitutae,                            
Opitutaceae (5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Opitutae (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Verrucomicrobiae,                            
Verrucomicrobiaceae (24) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.1 
Unassigned Verrucomicrobiales (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Verrucomicrobia (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Archeae                            
Euryarchaeota,                            

Methanomicrobia,                            
Methanosarcinaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thaumarchaeota,                            
Unassigned Thaumarchaeota (7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

aSamples of the three replicates of the 16S rRNA gene (A) control treatment at 0 h and 30 h, 16S rRNA (B) control treatment at 0 h, and all 16S rRNA treatments at 30 h were analyzed separately.  Samples of 
the three replicates were pooled for each of the other treatments at 0 h or 30 h.  Identification numbers (e.g., C1) indicate the respective replicates.  Treatments: C, unsupplemented control; A, N-
acetylglucosamine; Ce, cellobiose; G, glucose; Ga, galacturonic acid; X, xylose.  Table modified and used with permission from Zeibich et al., 2019a. 

bThe number of phylotypes are shown in parenthesis.  Abundant responsive group phylotypes from Figure 33 are bold and in brackets. 

Table A4.  Summary of all detected families in the yeast cell lysate experiment based on 16S rRNA gene and 16S rRNA anaylsis (Section 3.2.2).a 

 Sampling Time:  0 h  6 h  12 h  20 h 

 Treatmentb:  D R  C.R L.R  C.R L.R  C.R L.R 

Phylum, Class, Familyc  Relative Abundance (%) 

   

Actinobacteria,             
Acidimicrobiia,             

Acidimicrobiaceae (8)  2.1 1.2  1.7 0.6  1.5 0.6  1.3 0.7 
TM214 group (4)  1.0 0.3  0.4 0.2  0.6 0.2  0.3 0.2 
Unassigned Acidimicrobiales (6)  1.0 0.4  0.6 0.3  0.8 0.2  0.5 0.2 

Actinobacteria,             
Mycobacteriaceae (2)  0.5 0.2  0.2 0.1  0.2 0.0  0.1 0.0 
Nakamurellaceae (1)  0.3 0.3  0.3 0.1  0.4 0.1  0.2 0.1 
Cellulomonadaceae (2)  0.1 0.5  0.6 0.3  0.7 0.2  0.5 0.2 
Intrasporangiaceae (1)  0.4 0.3  0.5 0.1  0.6 0.1  0.4 0.1 
Microbacteriaceae (5)  1.7 0.7  1.0 0.4  1.6 0.3  0.9 0.4 
Micrococcaceae (1)  0.3 0.2  0.2 0.1  0.2 0.1  0.1 0.1 
Micromonosporaceae (1)  0.1 0.1  0.1 0.0  0.1 0.0  0.1 0.0 



APPENDIX 268 

 

 
 

 Sampling Time:  0 h  6 h  12 h  20 h 

 Treatmentb:  D R  C.R L.R  C.R L.R  C.R L.R 

Phylum, Class, Familyc  Relative Abundance (%) 

   

Nocardioidaceae (7)  1.7 0.6  0.7 0.3  0.9 0.3  0.7 0.3 
Propionibacteriaceae (3)  0.5 0.3  0.4 0.1  0.4 0.1  0.3 0.1 
Streptomycetaceae (2)  0.6 0.4  0.3 0.1  0.4 0.1  0.2 0.1 
Unassigned Actinobacteria (4)  2.2 1.0  1.1 0.4  1.1 0.4  0.8 0.4 

Thermoleophilia,              
Gaiellaceae (2)  0.8 0.2  0.2 0.1  0.3 0.1  0.1 0.1 
Unassigned Gaiellaceae (5)  1.9 0.3  0.3 0.1  0.5 0.1  0.3 0.1 
Patulibacteraceae (1)  0.1 0.2  0.2 0.1  0.2 0.1  0.1 0.1 
Solirubrobacteraceae (2)  0.2 0.4  0.4 0.1  0.5 0.1  0.3 0.1 
Unassigned Solirubrobacteraceae (3) 1.1 0.2  0.2 0.1  0.3 0.1  0.2 0.1 

Chloroflexi,              
Unassigned Chloroflexi (3)  1.5 0.5  0.5 0.2  0.7 0.2  0.4 0.3 

Firmicutes,              
Bacilli,              

Bacillaceae (4)  1.5 2.0  1.3 1.9  1.6 0.4  1.0 0.5 
Paenibacillaceae (1)  0.0 0.0  0.0 0.1  0.2 0.1  0.1 0.2 

Clostridia,              
Clostridiaceae (10) [CL8, CL10, CL18, CL15]  0.0 0.0  0.1 1.0  0.6 4.3  0.7 5.9 
Lachnospiraceae (5) [CL6]  0.0 0.0  0.0 0.0  0.0 0.5  0.0 3.4 
Peptostreptococcaceae (14) [CL2, CL5]  0.2 0.4  4.6 37  12.1 38.6  17 28 

Proteobacteria,              
Alphaproteobacteria,              

Bradyrhizobiaceae (1)  1.2 1.8  1.7 0.6  1.2 0.4  1.0 0.4 
Hyphomicrobiaceae (2)  0.2 0.2  0.3 0.1  0.3 0.1  0.2 0.1 
Methylobacteriaceae (2)  0.2 0.3  0.2 0.1  0.3 0.1  0.2 0.1 
Phyllobacteriaceae (1)  0.3 0.4  0.5 0.2  0.5 0.1  0.3 0.1 
Rhodobiaceae (1)  1.4 0.6  0.7 0.3  0.7 0.2  0.6 0.2 
Xanthobacteraceae (4)  2.5 1.1  1.3 0.4  1.6 0.4  1.2 0.4 
Acetobacteraceae (1)  0.0 0.2  0.1 0.1  0.1 0.0  0.1 0.1 
Rhodobacteraceae (3)  0.2 0.8  0.7 0.3  0.7 0.3  0.4 0.3 
Rhodospirillaceae (1)  0.0 0.1  0.1 0.0  0.1 0.0  0.1 0.0 
Unassigned Rhodospirillales (6)  0.0 0.8  1.2 1.2  0.5 1.6  0.4 1.1 

Deltaproteobacteria,              
Nitrospinaceae (3)  0.2 0.8  0.8 0.3  0.8 0.3  0.7 0.3 
Sorangiineae (2)  0.1 0.3  0.3 0.1  0.4 0.1  0.2 0.1 
Unassigned Deltaproteobacteria (2)  0.6 0.5  0.3 0.2  0.4 0.1  0.3 0.1 

Gammaproteobacteria,              
Aeromonadaceae (3) [CL7]  5.8 3.0  0.4 10  0.4 8.9  0.6 7.2 
Shewanellaceae (1)   0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.1 
Enterobacteriaceae (7) [CL4]  0.6 0.4  0.2 3.5  0.3 8.6  0.6 15 

Planctomycetes,              
Planctomycetacia,              

Planctomycetaceae (13)  0.8 1.1  1.6 0.8  1.3 0.8  2.0 0.8 
Tenericutes,              

Mollicutes,              
Mycoplasmataceae (4)  6.0 37  27 14  24 10  27 13 

Verrucomicrobia,              
Spartobacteria,              

Xiphinematobacteraceae (2)  3.3 4.2  6.5 2.5  3.2 2.5  5.1 2.5 
Unassigned Chthoniobacterales (1) 

 
1.1 0.2 

 
0.2 0.1 

 
0.1 0.1 

 
0.1 0.1 
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 Sampling Time:  30 h 

 Treatmentb:  D.C D.L C1.R C2.R C3.R L1.R L2.R L3.R 

Phylum, Class, Familyc  Relative Abundance (%) 
   

Actinobacteria,          
Acidimicrobiia,          

Acidimicrobiaceae (8)  1.4 1.3 2.0 1.9 1.5 0.7 1.2 0.9 
TM214 group (4)  0.6 0.6 0.6 0.5 0.4 0.3 0.3 0.3 
Unassigned Acidimicrobiales (6)  0.6 0.5 0.7 0.6 0.6 0.3 0.4 0.3 

Actinobacteria,          
Mycobacteriaceae (2)  0.2 0.3 0.2 0.1 0.2 0.1 0.1 0.1 
Nakamurellaceae (1)  0.1 0.2 0.4 0.4 0.3 0.3 0.2 0.1 
Cellulomonadaceae (2)  0.2 0.1 0.6 0.7 0.6 0.3 0.3 0.3 
Intrasporangiaceae (1)  0.3 0.3 0.5 0.4 0.4 0.2 0.2 0.2 
Microbacteriaceae (5)  0.9 1.2 1.5 1.4 1.6 1.1 0.6 0.5 
Micrococcaceae (1)  0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 
Micromonosporaceae (1)  0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 
Nocardioidaceae (7)  1.0 1.0 0.9 0.9 0.7 0.3 0.4 0.3 
Propionibacteriaceae (3)  0.2 0.2 0.4 0.4 0.4 0.2 0.2 0.2 
Streptomycetaceae (2)  0.3 0.4 0.3 0.3 0.4 0.3 0.2 0.2 
Unassigned Actinobacteria (4)  1.0 1.0 1.0 0.9 0.7 0.4 0.5 0.4 

Thermoleophilia,           
Gaiellaceae (2)  0.4 0.4 0.2 0.2 0.2 0.1 0.1 0.1 
Unassigned Gaiellaceae (5)  0.8 0.9 0.4 0.4 0.3 0.2 0.2 0.2 
Patulibacteraceae (1)  0.1 0.2 0.1 0.1 0.2 0.2 0.1 0.1 
Solirubrobacteraceae (2)  0.2 0.2 0.4 0.4 0.3 0.2 0.2 0.1 
Unassigned Solirubrobacteraceae (3) 0.4 0.5 0.3 0.2 0.3 0.1 0.1 0.1 

Chloroflexi,           
Unassigned Chloroflexi (3)  0.9 0.8 0.6 0.6 0.5 0.3 0.4 0.3 

Firmicutes,           
Bacilli,           

Bacillaceae (4)  3.3 1.3 1.5 1.4 1.8 1.1 0.8 0.7 
Paenibacillaceae (1)  0.5 0.1 0.1 0.2 0.1 0.1 0.1 0.1 

Clostridia,           
Clostridiaceae (10) [CL8, CL10, CL18, CL15]  8.5 11 0.9 1.1 1.1 11 8.6 11 
Lachnospiraceae (5) [CL6]  0.5 1.3 0.1 0.1 0.1 11 8.7 6.4 
Peptostreptococcaceae (14) [CL2, CL5]  17 29 7.0 9.9 11 20 19 23 

Proteobacteria,           
Alphaproteobacteria,           

Bradyrhizobiaceae (1)  0.5 0.6 0.9 0.6 0.8 0.3 0.4 0.5 
Hyphomicrobiaceae (2)  0.1 0.2 0.3 0.3 0.2 0.1 0.2 0.1 
Methylobacteriaceae (2)  0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 
Phyllobacteriaceae (1)  0.1 0.1 0.2 0.2 0.3 0.1 0.1 0.1 
Rhodobiaceae (1)  0.7 0.8 0.7 0.6 0.7 0.3 0.5 0.3 
Xanthobacteraceae (4)  1.0 1.1 1.4 1.6 1.1 0.8 0.6 0.5 
Acetobacteraceae (1)  0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 
Rhodobacteraceae (3)  0.1 0.1 0.4 0.4 0.4 0.3 0.3 0.2 
Rhodospirillaceae (1)  0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.0 
Unassigned Rhodospirillales (6)  0.5 0.4 0.2 1.5 1.4 0.7 0.6 0.7 

Deltaproteobacteria,           
Nitrospinaceae (3)  0.1 0.1 0.5 0.5 0.2 0.1 0.2 0.2 
Sorangiineae (2)  0.1 0.1 0.4 0.5 0.3 0.2 0.2 0.1 
Unassigned Deltaproteobacteria (2)  0.2 0.1 0.2 0.2 0.1 0.0 0.0 0.0 

Gammaproteobacteria,           
Aeromonadaceae (3) [CL7]  4.8 0.2 0.1 0.2 0.1 1.3 0.9 1.2 
Shewanellaceae (1)   2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Enterobacteriaceae (7) [CL4]  1.4 12 0.3 0.3 0.2 10 9.4 13 

Planctomycetes,           
Planctomycetacia,           

Planctomycetaceae (13)  0.7 0.4 2.9 2.6 2.0 0.8 1.4 1.2 
Tenericutes,           

Mollicutes,           
Mycoplasmataceae (4)  8.7 2.1 24 28 29 13 13 11 

Verrucomicrobia,           
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 Sampling Time:  30 h 

 Treatmentb:  D.C D.L C1.R C2.R C3.R L1.R L2.R L3.R 

Phylum, Class, Familyc  Relative Abundance (%) 
   

Spartobacteria,           
Xiphinematobacteraceae (2)  2.7 1.8 5.9 5.2 4.9 2.4 4.7 4.6 
Unassigned Chthoniobacterales (1) 

 
0.9 0.2 0.1 0.1 0.1 0.0 0.0 0.0 

aListed are families that had at least one phylotype with ≥ 1,000 reads.  Table modified and used with permission from Zeibich et al., 2018. 

bAbbreviations and treatments: D, 16S rRNA genes; R, 16S rRNA; C, unsupplemented control; L, S.cerevisiae lysate treatment.  RNA or DNA samples of the three replicates 
were always polled except for RNA samples at 30 h.  Identification numbers (e.g., C1) indicate the respective replicates. 

cThe number of phylotypes with ≥ 1,000 reads are shown in parenthesis.  Abundant responsive phylotypes from Figure 43 are bold and in brackets. 

Table A5.  Summary of all detected families in the protein and RNA experiment based on 16S rRNA gene and 16S rRNA anaylsis (Section 3.2.4).a 

 Sampling Time:  0 h  10 h  20 h 

 Treatmentb:  p.D p.R C.D C.R r.D r.R  p.R C.R r.R  p.R C.R r.R 

Phylum, Class, Familyc 
 

Relative Abundance (%) 
   

Actinobacteria,                
Acidimicrobiia,                 

Acidimicrobiaceae (7)  1.2 0.8 1.2 1.0 1.2 1.0  0.7 1.1 1.0  0.5 1.1 0.7 
Unassigned Acidimicrobiales (7)  1.3 0.8 1.3 0.7 1.3 0.8  0.7 1.0 0.8  0.5 0.9 0.7 

Actinobacteria,                 
Mycobacteriaceae (2)  0.4 0.1 0.4 0.1 0.4 0.1  0.0 0.0 0.0  0.0 0.1 0.0 
Unassigned Corynebacteriales (1)  0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1 0.0  0.0 0.1 0.0 
Cellulomonadaceae (1)  0.1 0.3 0.1 0.3 0.1 0.3  0.3 0.4 0.3  0.2 0.4 0.3 
Intrasporangiaceae (1)  0.4 0.2 0.4 0.3 0.4 0.2  0.3 0.3 0.3  0.2 0.3 0.3 
Microbacteriaceae (5)  1.0 1.3 1.0 1.4 0.9 1.3  0.9 1.3 0.8  0.6 0.9 0.6 
Micrococcaceae (1)  0.2 0.1 0.2 0.1 0.2 0.1  0.1 0.1 0.1  0.1 0.1 0.1 
Micromonosporaceae (2)  0.3 0.2 0.3 0.2 0.3 0.2  0.2 0.3 0.2  0.1 0.2 0.2 
Nakamurellaceae (1)  0.1 0.2 0.1 0.2 0.1 0.2  0.2 0.2 0.2  0.1 0.2 0.2 
Nocardioidaceae (4)  0.8 0.4 0.8 0.4 0.8 0.4  0.3 0.5 0.4  0.2 0.4 0.3 
Propionibacteriaceae (3)  1.0 0.4 0.9 0.4 0.9 0.5  0.3 0.5 0.4  0.3 0.5 0.3 
Pseudonocardiaceae (3)  0.6 0.5 0.6 0.5 0.6 0.6  0.6 0.7 0.6  0.3 0.6 0.5 
Streptomycetaceae (2)  0.5 0.4 0.5 0.4 0.4 0.3  0.3 0.3 0.3  0.2 0.3 0.3 
DA023 group (13)  2.3 1.8 2.2 1.5 2.2 1.5  1.1 1.4 1.2  0.5 0.9 0.9 
Unassigned Holophagae (1)  0.1 0.0 0.1 0.0 0.1 0.1  0.0 0.1 0.0  0.0 0.0 0.0 

Thermoleophilia,                 
Gaiellaceae (1)  0.5 0.1 0.5 0.1 0.5 0.2  0.2 0.2 0.2  0.1 0.2 0.2 
Unassigned Gaiellales (8)  2.3 0.5 2.2 0.5 2.2 0.5  0.5 0.7 0.6  0.3 0.6 0.5 
Patulibacteraceae (1)  0.1 0.1 0.2 0.1 0.2 0.1  0.1 0.1 0.1  0.1 0.1 0.1 
Solirubrobacteraceae (4)  0.8 1.0 0.9 1.0 0.9 1.0  0.8 1.2 0.9  0.5 1.1 0.8 
Unassigned Solirubrobacterales (6)  1.2 0.3 1.3 0.3 1.3 0.3  0.2 0.3 0.3  0.2 0.3 0.2 
Unassigned Actinobacteria  (5)  1.6 0.6 1.7 0.6 1.6 0.7  0.6 0.9 0.7  0.4 0.7 0.6 

Chloroflexi,                 
Caldilineae,                 

Caldilineaceae (1)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1  0.1 0.1 0.1 
Chloroflexia,                 

Chloroflexaceae (1)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1  0.0 0.1 0.1 
KD4-96 group (4)  2.6 0.9 2.7 0.9 2.8 0.9  0.7 1.0 0.7  0.5 0.7 0.6 
Unassigned Thermomicrobia (2)  0.3 0.1 0.4 0.1 0.4 0.1  0.1 0.1 0.1  0.0 0.1 0.1 
Unassigned Chlorofexi (3)  0.5 0.2 0.6 0.2 0.5 0.2  0.1 0.2 0.2  0.1 0.2 0.1 
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 Sampling Time:  0 h  10 h  20 h 

 Treatmentb:  p.D p.R C.D C.R r.D r.R  p.R C.R r.R  p.R C.R r.R 

Phylum, Class, Familyc 
 

Relative Abundance (%) 
   

Firmicutes                 
Bacilli                 

Bacillaceae (6)  0.6 0.6 0.6 0.6 0.6 0.8  0.4 0.6 1.1  0.3 0.5 0.8 
Clostridia                 

Clostridiaceae (9) [PR7, PR12]  0.2 0.3 0.2 0.2 0.2 0.2  3.4 0.5 0.5  7.8 0.8 0.6 
Lachnospiraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.1 
Peptostreptococcaceae (4) [PR2, PR8]  0.2 0.2 0.2 0.1 0.1 0.1  17 1.4 0.8  26 4.1 0.9 
Unassigned Clostridiales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0  0.1 0.1 0.0 

Fusobacteria,                 
Fusobacteria,                 

Fusobacteriaceae (1) [PR6]  0.0 0.0 0.1 0.0 0.0 0.0  0.5 0.1 0.2  4.0 0.8 0.1 
Nitrospirae,                 

Nitrospira,                 
Nitrospiraceae (1)  0.0 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1  0.0 0.0 0.0 
Unassigned Nitrospirales (3)  0.5 0.3 0.5 0.3 0.5 0.3  0.2 0.3 0.3  0.2 0.3 0.4 

Planctomycetes                 
Planctomycetacia,                 

Planctomycetaceae (64)  5.9 8.8 6.1 9.0 6.8 9.1  7.0 9.3 9.5  5.3 10 10 
Unassigned Phycisphaerae (7)  1.2 1.0 1.0 0.8 1.3 0.9  0.6 0.7 1.0  0.3 0.7 0.8 
Unassigned Planctomycetales (1)  0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.1  0.0 0.1 0.0 

Proteobacteria,                 
Alphaproteobacteria,                 

Bradyrhizobiaceae (1)  0.7 1.2 0.6 1.1 0.6 1.2  1.0 1.3 1.0  0.7 1.2 0.7 
Hyphomicrobiaceae (2)  0.2 0.2 0.2 0.2 0.2 0.2  0.2 0.2 0.2  0.1 0.2 0.1 
Methylobacteriaceae (2)  0.2 0.2 0.2 0.2 0.2 0.3  0.2 0.3 0.2  0.2 0.3 0.2 
Phyllobacteriaceae (1)  0.2 0.3 0.2 0.3 0.2 0.3  0.3 0.4 0.3  0.2 0.3 0.2 
Rhodobiaceae (1)  1.1 0.4 1.0 0.4 1.0 0.4  0.3 0.4 0.3  0.2 0.4 0.2 
Xanthobacteraceae (7)  2.4 1.4 2.4 1.2 2.2 1.4  1.1 1.5 1.2  0.8 1.5 0.9 
Unassigned Rhizobiales (1)  0.1 0.1 0.0 0.1 0.1 0.1  0.1 0.1 0.1  0.0 0.1 0.0 
Rhodobacteraceae (1)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1  0.1 0.1 0.1 
Rhodospirillaceae (7)  0.6 1.3 0.6 1.2 0.6 1.3  1.3 1.7 1.4  0.8 1.5 1.2 
Unassigned Rhodospirillales (4)  0.4 0.6 0.5 0.5 0.5 0.5  0.6 0.6 0.6  0.3 0.6 0.5 

Betaproteobacteria,                 
Alcaligenaceae (1)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1  0.1 0.1 0.1 
Comamonadaceae (1)  0.0 0.1 0.0 0.1 0.0 0.1  0.1 0.1 0.1  0.1 0.1 0.1 

Deltaproteobacteria,                 
Nitrospinaceae (2)  0.1 0.7 0.1 0.6 0.1 0.6  0.6 0.6 0.6  0.3 0.5 0.5 
Cystobacteraceae (1)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.2  0.0 0.1 0.1 
Nannocystineae (1)  0.0 0.1 0.0 0.1 0.0 0.1  0.0 0.1 0.0  0.0 0.1 0.1 
Sorangiineae (1)  0.0 0.1 0.0 0.1 0.0 0.1  0.1 0.1 0.1  0.0 0.1 0.1 
Unassigned Deltaproteobacteria (2)  0.5 0.4 0.5 0.4 0.5 0.4  0.3 0.5 0.4  0.3 0.4 0.3 

Gammaproteobacteria,                 
Aeromonadaceae (4) [PR3]  0.4 0.1 0.3 0.1 0.3 0.8  1.3 0.3 12  0.7 0.3 25 
Shewanellaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0 
Enterobacteriaceae (3) [PR33]  0.1 0.3 0.1 0.1 0.1 0.2  0.6 0.1 0.4  0.7 0.2 0.7 
Sinobacteraceae (1)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1  0.0 0.1 0.0 

Tenericutes,                 
Mollicutes,                 

Mycoplasmataceae (3)  13 29 13 32 11 28  20 26 21  20 28 15 
Unassigned Mollicutes  (2)  0.2 0.3 0.2 0.3 0.2 0.3  0.2 0.2 0.2  0.2 0.2 0.1 

Verrucomicrobia,                 
Spartobacteria,                 

Chthoniobacteraceae (1)  0.1 0.2 0.2 0.2 0.2 0.2  0.1 0.1 0.1  0.1 0.1 0.0 
Xiphinematobacteraceae (2)  4.5 5.0 4.9 4.4 5.5 5.3  5.0 5.6 4.2  3.7 4.6 2.8 
Unassigned Chthoniobacterales (8)  3.7 0.7 4.3 0.8 4.6 0.8  0.5 0.6 0.5  0.3 0.5 0.4 

Verrucomicrobiae,                 
Verrucomicrobiaceae (1)   0.2 0.1 0.1 0.1 0.2 0.1 

 
0.0 0.1 0.0 

 
0.0 0.0 0.0 
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 Sampling Time:  30 h 

 Treatmentb:  p.D p1.R p2.R p3.R C.D C1.R C2.R C3.R r.D r1.R r2.R r3.R 

Phylum, Class, Familyc 

 
Relative Abundance (%)b 

   

Actinobacteria,              
Acidimicrobiia,            

 
  

Acidimicrobiaceae (7)  0.6 0.6 0.6 0.6 1.2 1.0 1.0 0.8 0.6 0.8 0.7 1.1 
Unassigned Acidimicrobiales (7)  0.5 0.4 0.4 0.5 1.3 0.9 0.8 0.7 0.5 0.7 0.6 0.8 

Actinobacteria,               
Mycobacteriaceae (2)  0.3 0.0 0.0 0.0 0.3 0.1 0.1 0.1 0.2 0.1 0.0 0.0 
Unassigned Corynebacteriales (1)  0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
Cellulomonadaceae (1)  0.1 0.2 0.2 0.2 0.3 0.4 0.4 0.3 0.1 0.3 0.3 0.5 
Intrasporangiaceae (1)  0.2 0.1 0.2 0.2 0.4 0.3 0.3 0.2 0.2 0.2 0.2 0.2 
Microbacteriaceae (5)  0.4 0.5 0.6 0.6 0.9 1.1 0.8 0.8 0.4 1.0 0.7 1.2 
Micrococcaceae (1)  0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Micromonosporaceae (2)  0.1 0.1 0.1 0.2 0.3 0.2 0.3 0.2 0.1 0.2 0.2 0.2 
Nakamurellaceae (1)  0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.0 0.2 0.1 0.2 
Nocardioidaceae (4)  0.3 0.2 0.2 0.2 0.7 0.3 0.5 0.3 0.3 0.3 0.3 0.4 
Propionibacteriaceae (3)  0.4 0.3 0.3 0.3 1.0 0.4 0.5 0.4 0.4 0.4 0.3 0.5 
Pseudonocardiaceae (3)  0.2 0.3 0.4 0.3 0.5 0.5 0.6 0.5 0.3 0.5 0.5 0.7 
Streptomycetaceae (2)  0.2 0.1 0.2 0.2 0.5 0.3 0.4 0.3 0.2 0.3 0.3 0.4 
DA023 group (13)  0.8 0.2 0.4 0.4 1.8 0.7 0.8 0.4 0.6 0.6 0.7 0.6 
Unassigned Holophagae (1)  0.1 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.1 0.0 0.0 0.1 

Thermoleophilia,               
Gaiellaceae (1)  0.2 0.1 0.1 0.1 0.5 0.2 0.2 0.2 0.2 0.2 0.1 0.2 
Unassigned Gaiellales (8)  1.0 0.3 0.3 0.4 2.4 0.7 0.6 0.6 1.0 0.6 0.5 0.7 
Patulibacteraceae (1)  0.1 0.0 0.0 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Solirubrobacteraceae (4)  0.3 0.4 0.5 0.5 0.8 1.0 1.0 0.8 0.3 0.8 0.7 1.1 
Unassigned Solirubrobacterales (6)  0.5 0.2 0.2 0.2 1.1 0.3 0.3 0.3 0.5 0.2 0.2 0.3 
Unassigned Actinobacteria  (5)  0.7 0.4 0.4 0.4 1.6 0.7 0.8 0.7 0.7 0.6 0.5 0.8 

Chloroflexi,               
Caldilineae,               

Caldilineaceae (1)  0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 
Chloroflexia,               

Chloroflexaceae (1)  0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 
KD4-96 group (4)  1.1 0.4 0.4 0.5 2.9 0.9 0.7 0.6 1.1 0.7 0.7 0.9 
Unassigned Thermomicrobia (2)  0.2 0.0 0.1 0.1 0.4 0.1 0.1 0.1 0.2 0.1 0.1 0.1 
Unassigned Chlorofexi (3)  0.2 0.1 0.1 0.1 0.6 0.2 0.2 0.1 0.2 0.1 0.2 0.2 

Firmicutes               
Bacilli               

Bacillaceae (6)  1.7 0.4 0.3 0.4 1.0 0.6 0.7 0.7 1.1 1.2 1.2 1.8 
Clostridia               

Clostridiaceae (9) [PR7, PR12]  14 11 13 12 1.5 1.4 1.1 1.3 0.8 1.8 1.7 3.0 
Lachnospiraceae (1)  0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.7 1.1 1.1 2.2 
Peptostreptococcaceae (4) [PR2, PR8]  18 18 21 23 3.4 4.1 3.6 3.5 1.3 2.2 2.4 4.5 
Unassigned Clostridiales (1)  0.2 0.5 0.4 0.6 0.1 0.3 0.4 0.4 0.0 0.0 0.0 0.0 

Fusobacteria,               
Fusobacteria,               

Fusobacteriaceae (1) [PR6]  12 11 7.9 6.3 1.4 0.6 1.6 0.5 0.6 0.2 0.2 0.2 
Nitrospirae,               

Nitrospira,               
Nitrospiraceae (1)  0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 
Unassigned Nitrospirales (3)  0.2 0.1 0.1 0.2 0.6 0.2 0.3 0.2 0.2 0.3 0.2 0.3 

Planctomycetes               
Planctomycetacia,               

Planctomycetaceae (64)  3.2 5.7 5.6 6.1 6.6 9.2 9.5 6.4 3.4 8.1 8.3 10.6 
Unassigned Phycisphaerae (7)  0.6 0.3 0.3 0.3 1.0 0.5 0.5 0.3 0.6 0.5 0.5 0.5 
Unassigned Planctomycetales (1)  0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 

Proteobacteria,               
Alphaproteobacteria,               

Bradyrhizobiaceae (1)  0.3 0.5 0.6 0.6 0.6 1.0 1.2 0.9 0.2 0.6 0.8 1.0 
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 Sampling Time:  30 h 

 Treatmentb:  p.D p1.R p2.R p3.R C.D C1.R C2.R C3.R r.D r1.R r2.R r3.R 

Phylum, Class, Familyc 

 
Relative Abundance (%)b 

   

Hyphomicrobiaceae (2)  0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 
Methylobacteriaceae (2)  0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.1 0.2 0.2 0.2 
Phyllobacteriaceae (1)  0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.1 0.2 0.2 0.3 
Rhodobiaceae (1)  0.4 0.3 0.2 0.2 0.9 0.5 0.5 0.3 0.3 0.2 0.2 0.4 
Xanthobacteraceae (7)  0.9 0.7 0.7 0.8 2.1 1.5 1.6 1.2 0.8 0.9 0.9 1.2 
Unassigned Rhizobiales (1)  0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 
Rhodobacteraceae (1)  0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 
Rhodospirillaceae (7)  0.3 0.8 0.8 0.8 0.6 1.2 1.4 1.1 0.3 1.1 1.0 1.6 
Unassigned Rhodospirillales (4)  0.2 0.3 0.4 0.3 0.5 0.5 0.6 0.4 0.2 0.5 0.4 0.5 

Betaproteobacteria,               
Alcaligenaceae (1)  0.1 0.1 0.1 0.0 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.1 
Comamonadaceae (1)  0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 

Deltaproteobacteria,               
Nitrospinaceae (2)  0.1 0.2 0.3 0.2 0.1 0.3 0.5 0.3 0.1 0.4 0.5 0.5 
Cystobacteraceae (1)  0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 
Nannocystineae (1)  0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 
Sorangiineae (1)  0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.0 0.1 
Unassigned Deltaproteobacteria (2)  0.2 0.2 0.2 0.2 0.4 0.3 0.3 0.3 0.2 0.3 0.3 0.4 

Gammaproteobacteria,               
Aeromonadaceae (4) [PR3]  4.4 0.3 0.4 0.3 2.2 0.1 0.3 0.1 45 18 21 22 
Shewanellaceae (1)  0.7 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.5 0.2 0.2 0.2 
Enterobacteriaceae (3) [PR33]  0.8 0.4 0.4 0.3 0.2 0.1 0.1 0.1 4.0 2.3 2.6 3.4 
Sinobacteraceae (1)  0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 

Tenericutes,               
Mollicutes,               

Mycoplasmataceae (3)  6.8 18.0 16 16 7.8 32 28 19 6.5 22 18 30 
Unassigned Mollicutes  (2)  0.1 0.2 0.2 0.2 0.1 0.3 0.3 0.2 0.1 0.2 0.2 0.3 

Verrucomicrobia,               
Spartobacteria,               

Chthoniobacteraceae (1)  0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.1 
Xiphinematobacteraceae (2)  2.8 4.6 4.5 3.7 4.3 4.4 5.2 3.9 3.0 3.0 5.1 6.4 
Unassigned Chthoniobacterales (8)  2.1 0.3 0.3 0.2 3.4 0.6 0.6 0.3 1.8 0.4 0.3 0.5 

Verrucomicrobiae,               
Verrucomicrobiaceae (1) 

 
0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

aListed are families that had at least one phylotype with ≥ 1,000 reads.  Table modified and used with permission from Zeibich et al., 2018. 

bAbbreviations and treatments: D, 16S rRNA genes; R, 16S rRNA; C, unsupplemented control; r, RNA treatment; p, protein treatment.  RNA or DNA samples of the three replicates were 
always pooled except for RNA samples at 30 h.  Identification numbers (e.g., C1) indicate the respective replicates. 

cThe number of phylotypes with ≥ 1,000 reads are shown in parenthesis.  Abundant responsive phylotypes from Figure 43 are bold and in brackets. 

Table A6.  Summary of all detected families in the amino acid experiment based on 16S rRNA gene (A) and 16S rRNA (B) analysis (Sectio 3.2.7).a 

(A) 16S rRNA genes 

Sampling Time:   0 h  10 h 

 Treatment:  C CAA Glu Asp Thr Ala/Gly Val/Gly  C CAA Glu Asp Thr Ala/Gly Val/Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Acidobacteria,  
       

 
       

Acidobacteria,  
       

 
       

Acidobacteriaceae (16)  0.1 0.0 0.1 0.1 0.1 0.0 0.1  0.1 0.0 0.0 0.1 0.1 0.0 0.1 
Blastocatellia,  
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Sampling Time:   0 h  10 h 

 Treatment:  C CAA Glu Asp Thr Ala/Gly Val/Gly  C CAA Glu Asp Thr Ala/Gly Val/Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Blastocatellaceae (23)  0.2 0.1 0.1 0.1 0.1 0.1 0.1  0.2 0.1 0.1 0.1 0.1 0.1 0.1 
Holophagae,   

       
 

       

Unassigned Holophagae (12)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Solibacteres,   

       
 

       

Solibacteraceae (34)  0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.1 0.1 0.2 0.1 0.2 0.2 0.2 
Subgroup_11 (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_17 (16)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.1 0.1 0.1 0.1 0.1 
Subgroup_22 (16)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_25 (9)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.1 0.0 
Subgroup_5 (10)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.2 0.1 0.1 0.1 0.1 0.1 0.1 
Subgroup_6 (113)  2.0 1.7 1.8 1.7 1.7 1.6 1.7  1.0 1.0 1.3 1.4 1.5 1.8 1.6 

Unassigned Acidobacteria (8)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Actinobacteria,   

       
 

       

Acidimicrobiia,   
       

 
       

Acidimicrobiaceae (30)  1.3 1.3 1.3 1.3 1.3 1.4 1.3  0.8 0.7 0.9 1.1 1.2 1.3 1.4 
Iamiaceae (12)  0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.1 0.1 0.1 0.1 0.2 0.2 0.2 
Unassigned Acidimicrobiales (70)  1.9 1.8 1.8 1.7 1.8 1.8 1.7  1.3 1.0 1.3 1.5 1.5 1.8 1.8 

Actinobacteria,   
       

 
       

Actinospicaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Catenulisporaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mycobacteriaceae (12)  1.3 1.1 1.1 1.1 1.0 1.2 1.2  0.7 0.7 0.7 0.9 1.0 1.0 1.0 
Nocardiaceae (12)  0.1 0.0 0.1 0.1 0.0 0.1 0.1  0.0 0.0 0.0 0.1 0.1 0.1 0.1 
Acidothermaceae (10)  0.2 0.3 0.2 0.2 0.2 0.3 0.2  0.2 0.1 0.1 0.1 0.2 0.2 0.2 
Cryptosporangiaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Frankiaceae (5)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Geodermatophilaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nakamurellaceae (5)  0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.1 0.1 0.1 0.1 0.2 0.2 0.2 
Sporichthyaceae (6)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.1 0.1 0.1 0.1 0.1 
Glycomycetaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Kineosporiaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Beutenbergiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Brevibacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cellulomonadaceae (1)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.1 0.1 0.1 0.1 0.1 
Demequinaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Dermabacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Dermacoccaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Intrasporangiaceae (4)  0.3 0.3 0.3 0.3 0.3 0.3 0.3  0.2 0.2 0.2 0.3 0.3 0.4 0.4 
Microbacteriaceae (15)  0.3 0.3 0.2 0.3 0.3 0.3 0.3  0.3 0.1 0.2 0.2 0.2 0.2 0.2 
Micrococcaceae (4)  0.6 0.6 0.6 0.5 0.6 0.5 0.5  0.4 0.3 0.3 0.3 0.4 0.4 0.4 
Promicromonosporaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sanguibacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Micromonosporaceae (44)  1.1 1.0 1.0 1.0 1.0 1.0 1.0  0.7 0.6 0.7 0.9 0.9 1.1 1.0 
Nocardioidaceae (41)  2.2 2.2 2.4 2.3 2.3 2.3 2.3  1.9 1.3 1.6 1.8 2.1 2.4 2.3 
Propionibacteriaceae (11)  0.3 0.3 0.3 0.3 0.3 0.3 0.3  0.3 0.2 0.1 0.2 0.2 0.3 0.3 
Pseudonocardiaceae (20)  0.6 0.5 0.5 0.5 0.5 0.6 0.5  0.6 0.3 0.4 0.5 0.5 0.7 0.6 
Streptomycetaceae (5)  0.7 0.7 0.7 0.7 0.7 0.7 0.7  0.6 0.4 0.5 0.5 0.6 0.7 0.7 
Nocardiopsaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Streptosporangiaceae (4)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.1 0.1 0.1 0.1 0.1 
Thermomonosporaceae (15)  0.1 0.0 0.0 0.1 0.1 0.0 0.1  0.1 0.0 0.0 0.0 0.0 0.0 0.1 
Unassigned Frankiales (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Actinobacteria (2)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.0 0.1 0.1 0.1 0.1 

Coriobacteriia,   
       

 
       

Coriobacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rubrobacteria,   

       
 

       

Rubrobacteriaceae (6)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Thermoleophilia,   
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Sampling Time:   0 h  10 h 

 Treatment:  C CAA Glu Asp Thr Ala/Gly Val/Gly  C CAA Glu Asp Thr Ala/Gly Val/Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Gaiellaceae (11)  2.3 2.3 2.3 2.2 2.3 2.4 2.3  2.1 1.2 1.5 1.8 1.9 2.4 2.4 
Unassigned Gaiellales (72)  4.7 4.7 4.8 4.4 4.5 4.6 4.5  3.1 2.5 2.9 3.8 3.8 4.5 4.4 
Conexibacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Parviterribacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Patulibacteraceae (15)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.1 0.0 
Solirubrobacteraceae (15)  0.6 0.6 0.7 0.6 0.6 0.6 0.7  0.7 0.4 0.5 0.6 0.7 0.8 0.8 
Unassigned Solirubrobacterales (26)  0.7 0.6 0.7 0.7 0.7 0.7 0.7  0.6 0.4 0.6 0.7 0.7 0.8 0.8 
Unassigned Thermoleophilia (67)  2.4 2.5 2.3 2.4 2.3 2.2 2.6  2.0 1.5 1.8 2.1 2.1 2.4 2.2 

Unassigned Actinobacteria (34)  2.1 2.0 2.1 1.9 1.9 2.1 2.0  1.1 1.0 1.2 1.5 1.5 1.7 1.7 
Armatimonadetes,   

       
 

       

Armatimonadia,   
       

 
       

Unassigned Armatimonadales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chthonomonadaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chthonomonadales (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Armatimonadetes (21)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bacteroidetes,   

       
 

       

Bacteroidia,   
       

 
       

Prolixibacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cytophagia (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cytophagaceae (33)  0.0 0.0 0.0 0.0 0.0 0.1 0.0  0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Flammeovirgaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Flavobacteriia,   

       
 

       

Flavobacteriaceae (21)  0.6 0.6 0.6 0.6 0.5 0.4 0.5  0.7 0.3 0.4 0.5 0.5 0.2 0.3 
Sphingobacteriia,   

       
 

       

Chitinophagaceae (48)  0.1 0.1 0.1 0.2 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Lentimicrobiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Saprospiraceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingobacteriaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriales (14)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriia (10)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Bacteroidetes (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
BJ-169,   

       
 

       

Unassigned BJ-169 (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
BRC1,   

       
 

       

Unassigned BCR1 (14)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chlamydiae,   

       
 

       

Chlamydiae,   
       

 
       

Chlamydiaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Parachlamydiaceae (154)  0.1 0.1 0.1 0.2 0.1 0.1 0.1  0.1 0.0 0.1 0.1 0.1 0.1 0.1 
Simkaniaceae (11)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Waddliaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Chlamydiales (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chlorobi,   

       
 

       

Chlorobia,   
       

 
       

Unassigned Chlorobia (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chloroflexi,   

       
 

       

Anaerolineae,   
       

 
       

Anaerolineaceae (14)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ardenticatenia (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Caldilineae,   
       

 
       

Caldilineaceae (15)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Chloroflexia,   

       
 

       

Roseiflexaceae (8)  0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.0 0.1 0.1 0.2 0.2 0.2 0.2 
Unassigned Chloroflexia (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Ktedonobacteria,   
       

 
       

Ktedonobacterales,   
       

 
       

Ktedonobacteraceae (9)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermosporotrichaceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacterales (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacteria (18)  0.2 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
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Sampling Time:   0 h  10 h 

 Treatment:  C CAA Glu Asp Thr Ala/Gly Val/Gly  C CAA Glu Asp Thr Ala/Gly Val/Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Thermomicrobia,   
       

 
       

Thermomicrobiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Thermomicrobia (56)  0.5 0.5 0.4 0.4 0.4 0.4 0.4  0.2 0.2 0.3 0.3 0.3 0.4 0.4 

Unassigned Chloroflexi (111)  2.1 2.1 2.0 2.0 2.1 2.1 2.0  1.5 1.1 1.4 1.7 1.8 2.1 2.0 
Cyanobacteria,   

       
 

       

Chloroplast,   
       

 
       

Unassigned Chloroplast (34)  0.1 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cyanobacteria,   

       
 

       

Unassigned Cyanobacteria (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gastranaerophilales,   

       
 

       

Unassigned Gastranaerophilales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Obscuribacterales,   

       
 

       

Unassigned Obscuribacterales (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Cyanobacteria (11)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Deferribacteres,   
       

 
       

Unassigned Deferribacteres (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Deinococcus-Thermus,   

       
 

       

Deinococci,   
       

 
       

Unassigned Deinococci (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Elusimicrobia,   

       
 

       

Unassigned Elusimicrobia,   0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Euryarchaeota,   

       
 

       

Methanomicrobia,   
       

 
       

Methanosarcinaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoplasmata,   

       
 

       

Unassinged Thermoplasmatales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Fibrobacteres,   

       
 

       

Fibrobacteria,   
       

 
       

Fibrobacteraceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Fibrobacterales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Firmicutes,   
       

 
       

Bacilli,   
       

 
       

Alicyclobacillaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bacillaceae (38)  0.8 0.8 0.8 0.8 0.7 0.7 0.7  0.5 0.4 0.5 0.5 0.6 0.7 0.6 
Paenibacillaceae (88)  0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.2 0.1 0.1 0.2 0.1 0.2 0.2 
Pasteuriaceae (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Planococcaceae (7)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.1 0.1 0.1 0.1 0.1 
Sporolactobacillaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Staphylococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoactinomycetaceae (18)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Streptococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Bacilli (13)  0.7 0.7 0.7 0.8 0.6 0.7 0.7  0.3 0.2 0.3 0.4 0.3 0.4 0.4 

Clostridia,   
       

 
       

Caldicoprobacteraceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Christensenellaceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Clostridiaceae (38) [A14]  0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.3 0.2 0.2 0.2 0.2 0.3 0.2 
Defluviitaleaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Eubacteriaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gracilibacteraceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Heliobacteriaceae (22)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Lachnospiraceae (79)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.2 0.0 0.1 0.1 0.1 0.1 0.1 
Peptococcaceae (17)  2.5 2.5 2.9 2.9 2.5 2.1 2.1  1.5 1.2 1.4 1.6 1.6 2.0 1.9 
Peptostreptococcaceae (11) [GPT-4], [A8]  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.4 0.5 0.2 0.2 0.3 0.3 0.3 
Ruminococcaceae (96)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.1 0.1 0.1 0.1 0.1 
Syntrophomonadaceae (10)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoanaerobacteraceae (8)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Sampling Time:   0 h  10 h 

 Treatment:  C CAA Glu Asp Thr Ala/Gly Val/Gly  C CAA Glu Asp Thr Ala/Gly Val/Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Unassigned Clostridiales (17)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Thermoanaerobacterales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Clostridia (34)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Erysipelotrichia,   
       

 
       

Erysipelotrichaceae (18)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Limnochordia,   

       
 

       

Limnochordaceae (23)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Limnochordales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Negativicutes,   
       

 
       

Veillonellaceae (20)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Selenomonadales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Firmicutes (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Fusobacteria,   

       
 

       

Fusobacteriia,   
       

 
       

Fusobacteriaceae (10) [GPT-5]  10 11 11 12 13 14 14  21 38 36 22 19 14 17 
Leptotrichiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Gemmatimonadetes,   
       

 
       

Gemmatimonadetes,   
       

 
       

Gemmatimonadaceae (37)  0.6 0.5 0.5 0.5 0.5 0.5 0.5  0.3 0.3 0.4 0.4 0.4 0.5 0.5 
Longimicrobiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Gemmatimonadetes (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Hydrogenedentes,   

       
 

       

Unassigned Hydrogenedentes (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Latescibacteria,   

       
 

       

Unassigned Latescibacteria (30)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrospirae,   

       
 

       

Nitrospira,   
       

 
       

Nitrospiraceae (8)  0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.1 0.1 0.1 0.1 0.1 0.2 0.2 
Unassigned Nitrospira (18)  0.7 0.7 0.6 0.6 0.6 0.6 0.6  0.5 0.3 0.4 0.4 0.5 0.6 0.5 

Parcubacteria,   
       

 
       

Unassigned Parcubacteria (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Planctomycetes,   

       
 

       

Phycisphaerae,   
       

 
       

Phycisphaeraceae (38)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tepidisphaeraceae (82)  0.8 0.6 0.7 0.6 0.6 0.6 0.6  0.2 0.3 0.4 0.5 0.5 0.6 0.5 
Unassigned Phycisphaerales (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Phycisphaerae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.1 0.0 0.0 0.0 0.0 0.0 0.0 

Planctomycetacia,   
       

 
       

Planctomycetaceae (733)  4.5 4.0 4.1 3.8 4.0 4.0 3.7  2.2 2.3 2.5 3.0 3.3 3.9 3.7 
Unassigned Planctomycetes (82)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.1 0.1 0.1 0.1 0.1 

Proteobacteria,   
       

 
       

Alphaproteobacteria,   
       

 
       

Caulobacteraceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Beijerinckiaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bradyrhizobiaceae (5)  1.2 1.2 1.1 1.1 1.0 1.2 1.0  0.7 0.6 0.7 0.9 0.9 1.1 1.2 
Hyphomicrobiaceae (8)  0.3 0.4 0.3 0.3 0.3 0.3 0.3  0.1 0.2 0.2 0.3 0.2 0.3 0.3 
Methylobacteriaceae (4)  0.1 0.2 0.1 0.1 0.1 0.2 0.1  0.2 0.1 0.1 0.1 0.1 0.1 0.1 
Methylocystaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phyllobacteriaceae (3)  0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.1 0.1 0.1 0.2 0.2 0.2 0.2 
Rhizobiaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rhodobiaceae (2)  1.3 1.2 1.2 1.3 1.3 1.2 1.1  0.9 0.6 0.8 1.0 0.9 1.2 1.1 
Roseiarcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthobacteraceae (9)  3.7 3.4 3.4 3.4 3.3 3.2 3.1  2.1 1.7 2.0 2.5 2.6 3.2 3.1 
Unassigned Rhizobiales (19)  0.3 0.3 0.2 0.3 0.3 0.3 0.3  0.2 0.1 0.2 0.2 0.2 0.3 0.2 
Rhodobacteraceae (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.1 
Acetobacteraceae (15)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Rhodospirillaceae (19)  0.5 0.4 0.4 0.3 0.3 0.4 0.4  0.2 0.2 0.2 0.3 0.3 0.3 0.3 
Unassigned Rhodospirillales (25)  0.6 0.6 0.6 0.5 0.5 0.6 0.5  0.5 0.3 0.4 0.5 0.5 0.6 0.6 
Anaplasmataceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Holosporaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Sampling Time:   0 h  10 h 

 Treatment:  C CAA Glu Asp Thr Ala/Gly Val/Gly  C CAA Glu Asp Thr Ala/Gly Val/Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Mitochondria (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rickettsiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Rickettsiales (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Erythrobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingomonadaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingomonadales (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Alphaproteobacteria (19)  0.2 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Betaproteobacteria,   
       

 
       

Alcaligenaceae (2)  0.1 0.1 0.1 0.0 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.1 0.1 
Burkholderiaceae (10)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  1.0 0.0 0.0 0.0 0.0 0.0 0.0 
Comamonadaceae (17)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.2 
Oxalobacteraceae (15)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Neisseriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gallionellaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrosomonadaceae (30)  0.3 0.3 0.3 0.3 0.2 0.3 0.2  0.3 0.2 0.2 0.2 0.2 0.3 0.3 
Rhodocyclaceae (9)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.0 0.1 0.1 0.1 0.1 
Unassigned Betaproteobacteria (41)  0.3 0.3 0.3 0.3 0.3 0.3 0.3  0.3 0.1 0.2 0.2 0.2 0.3 0.3 

Deltaproteobacteria,   
       

 
       

Bacteriovoracaceae (12)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bdellovibrionaceae (54)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.1 0.0 
Desulfarculaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Desulfobulbaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Desulfurellaceae (41)  1.0 0.9 0.9 0.9 0.8 0.9 0.9  0.9 0.5 0.6 0.6 0.8 0.8 0.9 
Desulfuromonadaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Geobacteraceae (26)  0.2 0.2 0.2 0.1 0.1 0.2 0.1  0.0 0.1 0.1 0.1 0.1 0.1 0.1 
Archangiaceae (20)  0.0 0.0 0.0 0.1 0.1 0.1 0.0  0.1 0.0 0.0 0.0 0.1 0.1 0.0 
Haliangiaceae (74)  0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.2 0.1 0.2 0.2 0.2 0.3 0.3 
Myxococcaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nannocystaceae (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phaselicystidaceae (14)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1 0.1 0.1 0.1 0.1 0.1 
Polyangiaceae (48)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Sandaracinaceae (38)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.0 0.1 0.1 0.1 0.1 
Vulgatibacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Myxococcales (177)  0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.1 0.1 0.2 0.2 0.2 0.2 0.2 
Oligoflexaceae (29)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Oligoflexales (86)  0.0 0.1 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Syntrophaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Deltaproteobacteria (19)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Gammaproteobacteria,   
       

 
       

Acidiferrobacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Aeromonadaceae (8) [GPT-1]  10 11 11 9.5 11 12 11  14 14 7.9 14 10 9.8 9.7 
Shewanellaceae (3)  3.6 4.5 4.6 4.5 4.6 4.7 5.0  9.3 4.8 7.4 5.6 7.9 6.0 6.0 
Cellvibrionaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Halieaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Enterobacteriaceae (12) [GPT-2], [GPT-3]  2.1 2.3 2.2 2.2 2.1 2.6 2.5  3.3 4.2 2.4 4.0 5.3 2.9 2.8 
Coxiellaceae (35)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.1 0.1 0.1 0.1 0.1 
Legionellaceae (30)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Methylococcaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oleiphilaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Moraxellaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Pseudomonadaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Thiotrichales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthomonadaceae (12)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Xanthomonadales (24)  0.3 0.3 0.3 0.3 0.3 0.3 0.3  0.1 0.2 0.2 0.2 0.3 0.3 0.3 
Unassigned Gammaproteobacteria (30)  0.0 0.0 0.0 0.1 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Proteobacteria (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 



 

APPENDIX 279

Sampling Time:   0 h  10 h 

 Treatment:  C CAA Glu Asp Thr Ala/Gly Val/Gly  C CAA Glu Asp Thr Ala/Gly Val/Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

RsaHf231,   
       

 
       

Unassigned RsaHf231 (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Saccharibacteria,   

       
 

       

Unassigned Saccharibacteria (78)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Spirochaetae,   

       
 

       

Spirochaetes,   
       

 
       

Spirochaetaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Brevinemataceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Synergistetes,   
       

 
       

Synergistia,   
       

 
       

Synergistaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tectomicrobia,   

       
 

       

Unassigned Tectomicrobia (21)  0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.1 0.1 0.1 0.1 0.2 0.2 0.2 
Tenericutes,   

       
 

       

Mollicutes,   
       

 
       

Unassigned Entomoplasmatales (3)  0.1 0.0 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.1 0.0 0.1 
Haloplasmataceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mycoplasmataceae (19)  13 13 12 14 13 9.7 12  10 7.5 7.7 8.9 10 11 10 

TM6_Dependentiae,   
       

 
       

Unassigned TM6_Dependentiae (40)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Verrucomicrobia,   

       
 

       

Unassigned OPB35 soil group (87)  0.3 0.2 0.3 0.2 0.2 0.2 0.2  0.2 0.1 0.1 0.2 0.2 0.2 0.2 
Opitutae,   

       
 

       

Opitutaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Opitutae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Spartobacteria,   
       

 
       

Chthoniobacteraceae (46)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Unassigned Chthoniobacterales (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

DA101 soil group (28)  3.4 3.5 3.4 3.6 3.3 3.3 3.3  2.1 1.7 2.3 2.6 2.7 3.1 3.0 
Xiphinematobacteraceae (9)  1.2 1.1 1.1 1.1 1.0 1.2 1.1  0.5 0.7 0.8 0.9 1.0 1.1 1.1 
Unassigned Spartobacteria (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Verrucomicrobiae,   
       

 
       

Verrucomicrobiaceae (22)  0.1 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.1 0.1 
Unassigned Verrucomicrobia (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Archeae                 
Thaumarchaeota,                  

Unassigned Thaumarchaeota (9)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Sampling Time:   22 h  30 h 

 Treatment:  C CAA Glu Asp Thr Ala/Gly Val/Gly  C CAA Glu Asp Thr Ala/Gly Val/Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Acidobacteria,                 
Acidobacteria,                 

Acidobacteriaceae (16)  0.0 0.0 0.0 0.0 0.0 0.0 0.1  0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Blastocatellia,  

       
 

       

Blastocatellaceae (23)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Holophagae,   

       
 

       

Unassigned Holophagae (12)  0.1 0.0 0.0 0.0 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Solibacteres,   

       
 

       

Solibacteraceae (34)  0.2 0.1 0.1 0.1 0.1 0.1 0.2  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Subgroup_11 (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_17 (16)  0.1 0.0 0.0 0.0 0.1 0.1 0.1  0.1 0.0 0.0 0.0 0.1 0.1 0.1 
Subgroup_22 (16)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_25 (9)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_5 (10)  0.1 0.1 0.0 0.0 0.1 0.1 0.1  0.1 0.1 0.0 0.1 0.1 0.1 0.1 
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Sampling Time:   22 h  30 h 

 Treatment:  C CAA Glu Asp Thr Ala/Gly Val/Gly  C CAA Glu Asp Thr Ala/Gly Val/Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Subgroup_6 (113)  1.7 0.8 0.8 0.9 1.0 1.8 1.6  1.5 0.9 0.9 0.9 1.0 1.5 1.2 
Unassigned Acidobacteria (8)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Actinobacteria,   
       

 
       

Acidimicrobiia,   
       

 
       

Acidimicrobiaceae (30)  1.2 0.6 0.7 0.7 0.9 1.1 1.2  1.1 0.8 0.7 0.8 0.9 1.2 1.0 
Iamiaceae (12)  0.2 0.1 0.1 0.1 0.1 0.2 0.2  0.1 0.1 0.1 0.1 0.1 0.2 0.1 
Unassigned Acidimicrobiales (70)  1.6 1.0 0.9 1.0 1.3 1.8 1.6  1.5 1.0 1.0 1.0 1.3 1.5 1.4 

Actinobacteria,   
       

 
       

Actinospicaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Catenulisporaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mycobacteriaceae (12)  1.0 0.6 0.5 0.6 0.7 1.1 0.9  0.9 0.6 0.6 0.6 0.7 0.9 0.8 
Nocardiaceae (12)  0.1 0.0 0.0 0.0 0.0 0.1 0.1  0.1 0.0 0.0 0.0 0.0 0.0 0.1 
Acidothermaceae (10)  0.2 0.1 0.1 0.1 0.2 0.2 0.2  0.2 0.1 0.1 0.1 0.1 0.2 0.1 
Cryptosporangiaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Frankiaceae (5)  0.1 0.1 0.1 0.1 0.1 0.2 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Geodermatophilaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nakamurellaceae (5)  0.2 0.1 0.1 0.1 0.1 0.2 0.2  0.2 0.1 0.1 0.1 0.1 0.2 0.1 
Sporichthyaceae (6)  0.1 0.0 0.0 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0 0.1 0.1 0.1 
Glycomycetaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Kineosporiaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Beutenbergiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Brevibacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cellulomonadaceae (1)  0.1 0.0 0.0 0.0 0.1 0.1 0.1  0.1 0.1 0.1 0.0 0.1 0.1 0.1 
Demequinaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Dermabacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Dermacoccaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Intrasporangiaceae (4)  0.4 0.2 0.2 0.2 0.2 0.4 0.3  0.3 0.2 0.2 0.2 0.2 0.3 0.3 
Microbacteriaceae (15)  0.2 0.1 0.1 0.1 0.1 0.2 0.2  0.2 0.1 0.1 0.1 0.1 0.2 0.2 
Micrococcaceae (4)  0.4 0.2 0.2 0.2 0.2 0.3 0.3  0.3 0.2 0.2 0.3 0.2 0.4 0.4 
Promicromonosporaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sanguibacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Micromonosporaceae (44)  0.9 0.5 0.5 0.6 0.7 1.0 0.9  0.9 0.6 0.6 0.5 0.7 0.8 0.7 
Nocardioidaceae (41)  1.9 1.1 1.1 1.2 1.5 2.0 2.0  2.1 1.4 1.2 1.2 1.6 2.1 1.8 
Propionibacteriaceae (11)  0.2 0.1 0.1 0.1 0.2 0.2 0.2  0.2 0.1 0.2 0.1 0.1 0.2 0.2 
Pseudonocardiaceae (20)  0.5 0.3 0.3 0.3 0.4 0.7 0.6  0.5 0.3 0.3 0.3 0.4 0.4 0.4 
Streptomycetaceae (5)  0.6 0.3 0.3 0.3 0.4 0.7 0.6  0.6 0.4 0.4 0.4 0.5 0.6 0.6 
Nocardiopsaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Streptosporangiaceae (4)  0.1 0.0 0.0 0.0 0.0 0.1 0.1  0.1 0.0 0.0 0.0 0.1 0.1 0.1 
Thermomonosporaceae (15)  0.1 0.0 0.0 0.0 0.0 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Frankiales (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Actinobacteria (2)  0.1 0.0 0.0 0.0 0.1 0.1 0.1  0.1 0.0 0.0 0.0 0.1 0.0 0.0 

Coriobacteriia,   
       

 
       

Coriobacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rubrobacteria,   

       
 

       

Rubrobacteriaceae (6)  0.1 0.1 0.0 0.1 0.1 0.2 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Thermoleophilia,   

       
 

       

Gaiellaceae (11)  2.1 1.1 1.2 1.2 1.5 2.3 2.0  1.9 1.3 1.3 1.3 1.7 2.0 1.7 
Unassigned Gaiellales (72)  3.9 2.2 2.2 2.5 3.2 4.5 4.0  3.9 2.6 2.5 2.6 3.2 4.0 3.4 
Conexibacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Parviterribacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Patulibacteraceae (15)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Solirubrobacteraceae (15)  0.7 0.4 0.4 0.5 0.6 0.9 0.7  0.8 0.5 0.5 0.4 0.5 0.7 0.5 
Unassigned Solirubrobacterales (26)  0.7 0.4 0.4 0.4 0.6 0.9 0.7  0.7 0.5 0.4 0.3 0.5 0.6 0.5 
Unassigned Thermoleophilia (67)  2.3 1.2 1.3 1.4 1.6 2.5 2.2  2.2 1.5 1.5 1.3 1.6 2.0 1.7 

Unassigned Actinobacteria (34)  1.5 0.9 0.9 1.0 1.2 1.8 1.5  1.4 1.0 0.9 1.0 1.2 1.5 1.3 
Armatimonadetes,   
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 Treatment:  C CAA Glu Asp Thr Ala/Gly Val/Gly  C CAA Glu Asp Thr Ala/Gly Val/Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Armatimonadia,   
       

 
       

Unassigned Armatimonadales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chthonomonadaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chthonomonadales (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Armatimonadetes (21)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bacteroidetes,   

       
 

       

Bacteroidia,   
       

 
       

Prolixibacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cytophagia (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cytophagaceae (33)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Flammeovirgaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Flavobacteriia,   

       
 

       

Flavobacteriaceae (21)  0.7 0.3 0.2 0.6 0.6 0.1 0.2  0.8 0.3 0.2 0.4 0.5 0.1 0.1 
Sphingobacteriia,   

       
 

       

Chitinophagaceae (48)  0.1 0.1 0.0 0.1 0.1 0.1 0.1  0.1 0.1 0.0 0.1 0.1 0.1 0.1 
Lentimicrobiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Saprospiraceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingobacteriaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriales (14)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriia (10)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Bacteroidetes (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
BJ-169,   

       
 

       

Unassigned BJ-169 (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
BRC1,   

       
 

       

Unassigned BCR1 (14)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chlamydiae,   

       
 

       

Chlamydiae,   
       

 
       

Chlamydiaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Parachlamydiaceae (154)  0.1 0.0 0.0 0.0 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Simkaniaceae (11)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Waddliaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Chlamydiales (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chlorobi,   

       
 

       

Chlorobia,   
       

 
       

Unassigned Chlorobia (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chloroflexi,   

       
 

       

Anaerolineae,   
       

 
       

Anaerolineaceae (14)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ardenticatenia (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Caldilineae,   
       

 
       

Caldilineaceae (15)  0.1 0.0 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Chloroflexia,   

       
 

       

Roseiflexaceae (8)  0.2 0.1 0.1 0.1 0.1 0.2 0.2  0.2 0.1 0.1 0.1 0.1 0.2 0.1 
Unassigned Chloroflexia (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Ktedonobacteria,   
       

 
       

Ktedonobacterales,   
       

 
       

Ktedonobacteraceae (9)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermosporotrichaceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacterales (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacteria (18)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Thermomicrobia,   
       

 
       

Thermomicrobiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Thermomicrobia (56)  0.3 0.2 0.2 0.2 0.2 0.3 0.4  0.3 0.2 0.2 0.2 0.3 0.3 0.3 

Unassigned Chloroflexi (111)  1.9 1.0 0.9 1.1 1.4 2.0 1.9  1.7 1.1 1.0 1.1 1.3 1.8 1.5 
Cyanobacteria,   

       
 

       

Chloroplast,   
       

 
       

Unassigned Chloroplast (34)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cyanobacteria,   

       
 

       

Unassigned Cyanobacteria (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gastranaerophilales,   
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Unassigned Gastranaerophilales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Obscuribacterales,   

       
 

       

Unassigned Obscuribacterales (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Cyanobacteria (11)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Deferribacteres,   
       

 
       

Unassigned Deferribacteres (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Deinococcus-Thermus,   

       
 

       

Deinococci,   
       

 
       

Unassigned Deinococci (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Elusimicrobia,   

       
 

       

Unassigned Elusimicrobia,   0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Euryarchaeota,   

       
 

       

Methanomicrobia,   
       

 
       

Methanosarcinaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoplasmata,   

       
 

       

Unassinged Thermoplasmatales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Fibrobacteres,   

       
 

       

Fibrobacteria,   
       

 
       

Fibrobacteraceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Fibrobacterales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Firmicutes,   
       

 
       

Bacilli,   
       

 
       

Alicyclobacillaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bacillaceae (38)  0.6 0.5 0.4 0.4 0.7 0.8 0.7  0.9 0.9 0.7 0.5 1.0 1.0 1.1 
Paenibacillaceae (88)  0.2 0.1 0.1 0.1 0.1 0.2 0.2  0.2 0.2 0.2 0.3 0.2 0.3 0.3 
Pasteuriaceae (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Planococcaceae (7)  0.1 0.0 0.0 0.0 0.0 0.1 0.1  0.1 0.0 0.1 0.0 0.1 0.1 0.1 
Sporolactobacillaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Staphylococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoactinomycetaceae (18)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Streptococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Bacilli (13)  0.2 0.2 0.1 0.2 0.2 0.2 0.3  0.2 0.2 0.1 0.2 0.2 0.2 0.2 

Clostridia,   
       

 
       

Caldicoprobacteraceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Christensenellaceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Clostridiaceae (38) [A14]  0.7 0.6 0.9 0.6 0.7 1.1 0.8  2.0 1.5 2.6 2.0 2.2 2.3 1.7 
Defluviitaleaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Eubacteriaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gracilibacteraceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Heliobacteriaceae (22)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Lachnospiraceae (79)  0.2 0.2 0.1 0.3 0.2 0.6 0.4  1.2 1.2 0.6 1.5 1.1 3.2 3.0 
Peptococcaceae (17)  1.8 1.1 1.0 1.0 1.0 1.3 1.5  1.8 1.4 1.4 1.4 1.3 2.0 1.8 
Peptostreptococcaceae (11) [GPT-4], [A8]  0.6 1.0 0.3 0.2 1.2 1.5 1.1  0.8 2.0 0.5 0.2 2.6 5.5 2.7 
Ruminococcaceae (96)  0.1 0.0 0.0 0.0 0.0 0.1 0.1  0.1 0.1 0.0 0.1 0.1 0.1 0.1 
Syntrophomonadaceae (10)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoanaerobacteraceae (8)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Clostridiales (17)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.1 0.1 0.0 0.1 0.0 0.1 0.1 
Unassigned Thermoanaerobacterales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Clostridia (34)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Erysipelotrichia,   
       

 
       

Erysipelotrichaceae (18)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Limnochordia,   

       
 

       

Limnochordaceae (23)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Limnochordales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Negativicutes,   
       

 
       

Veillonellaceae (20)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Phyla, Class, Familyb  Relative Abundance (%) 
   

Unassigned Selenomonadales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Firmicutes (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fusobacteria,   
       

 
       

Fusobacteriia,   
       

 
       

Fusobacteriaceae (10) [GPT-5]  21 39 44 30 25 17 22  18 33 39 23 20 14 23 
Leptotrichiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Gemmatimonadetes,   
       

 
       

Gemmatimonadetes,   
       

 
       

Gemmatimonadaceae (37)  0.5 0.2 0.2 0.3 0.3 0.5 0.4  0.4 0.2 0.3 0.3 0.4 0.5 0.3 
Longimicrobiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Gemmatimonadetes (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Hydrogenedentes,   

       
 

       

Unassigned Hydrogenedentes (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Latescibacteria,   

       
 

       

Unassigned Latescibacteria (30)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrospirae,   

       
 

       

Nitrospira,   
       

 
       

Nitrospiraceae (8)  0.1 0.1 0.1 0.1 0.1 0.2 0.2  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Unassigned Nitrospira (18)  0.5 0.3 0.3 0.4 0.4 0.5 0.6  0.4 0.3 0.3 0.3 0.4 0.4 0.4 

Parcubacteria,   
       

 
       

Unassigned Parcubacteria (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Planctomycetes,   

       
 

       

Phycisphaerae,   
       

 
       

Phycisphaeraceae (38)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tepidisphaeraceae (82)  0.5 0.3 0.3 0.3 0.4 0.4 0.5  0.4 0.3 0.3 0.3 0.4 0.5 0.4 
Unassigned Phycisphaerales (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Phycisphaerae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Planctomycetacia,   
       

 
       

Planctomycetaceae (733)  3.1 1.7 1.9 2.1 2.5 2.7 3.3  3.1 2.0 1.8 2.1 2.7 3.4 2.7 
Unassigned Planctomycetes (82)  0.1 0.0 0.0 0.0 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Proteobacteria,   
       

 
       

Alphaproteobacteria,   
       

 
       

Caulobacteraceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Beijerinckiaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bradyrhizobiaceae (5)  0.8 0.5 0.5 0.6 0.7 0.9 0.9  0.8 0.5 0.5 0.6 0.7 0.8 0.8 
Hyphomicrobiaceae (8)  0.3 0.1 0.1 0.2 0.2 0.2 0.3  0.3 0.2 0.1 0.2 0.2 0.3 0.2 
Methylobacteriaceae (4)  0.1 0.1 0.1 0.1 0.1 0.2 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Methylocystaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phyllobacteriaceae (3)  0.2 0.1 0.1 0.1 0.1 0.2 0.2  0.2 0.1 0.1 0.1 0.1 0.2 0.2 
Rhizobiaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rhodobiaceae (2)  1.1 0.5 0.5 0.5 0.6 1.0 1.0  0.9 0.6 0.6 0.7 0.8 1.1 0.9 
Roseiarcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthobacteraceae (9)  2.7 1.4 1.4 1.4 1.9 2.3 2.6  2.4 1.6 1.4 1.7 2.0 2.7 2.2 
Unassigned Rhizobiales (19)  0.2 0.1 0.1 0.1 0.1 0.2 0.2  0.2 0.1 0.1 0.1 0.2 0.2 0.2 
Rhodobacteraceae (6)  0.0 0.0 0.0 0.0 0.0 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Acetobacteraceae (15)  0.1 0.1 0.0 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Rhodospirillaceae (19)  0.2 0.1 0.1 0.2 0.2 0.3 0.2  0.2 0.1 0.1 0.1 0.2 0.2 0.2 
Unassigned Rhodospirillales (25)  0.5 0.2 0.2 0.3 0.4 0.5 0.5  0.5 0.3 0.2 0.2 0.4 0.5 0.4 
Anaplasmataceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Holosporaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mitochondria (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rickettsiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Rickettsiales (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Erythrobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingomonadaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingomonadales (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Alphaproteobacteria (19)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.0 0.1 0.1 0.1 0.1 

Betaproteobacteria,   
       

 
       

Alcaligenaceae (2)  0.1 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.1 0.0 
Burkholderiaceae (10)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Sampling Time:   22 h  30 h 

 Treatment:  C CAA Glu Asp Thr Ala/Gly Val/Gly  C CAA Glu Asp Thr Ala/Gly Val/Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Comamonadaceae (17)  0.1 0.1 0.0 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Oxalobacteraceae (15)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Neisseriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gallionellaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrosomonadaceae (30)  0.2 0.1 0.1 0.1 0.2 0.2 0.3  0.2 0.1 0.1 0.1 0.2 0.2 0.2 
Rhodocyclaceae (9)  0.1 0.0 0.0 0.0 0.1 0.1 0.1  0.1 0.0 0.0 0.0 0.0 0.1 0.0 
Unassigned Betaproteobacteria (41)  0.3 0.1 0.1 0.1 0.2 0.2 0.2  0.2 0.1 0.1 0.1 0.2 0.2 0.2 

Deltaproteobacteria,   
       

 
       

Bacteriovoracaceae (12)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bdellovibrionaceae (54)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Desulfarculaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Desulfobulbaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Desulfurellaceae (41)  0.7 0.4 0.4 0.5 0.6 0.8 0.8  0.7 0.4 0.4 0.4 0.6 0.7 0.6 
Desulfuromonadaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Geobacteraceae (26)  0.1 0.1 0.1 0.1 0.1 0.2 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Archangiaceae (20)  0.1 0.0 0.0 0.0 0.0 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.1 0.0 
Haliangiaceae (74)  0.2 0.1 0.1 0.1 0.1 0.2 0.2  0.2 0.1 0.1 0.1 0.2 0.2 0.2 
Myxococcaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nannocystaceae (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phaselicystidaceae (14)  0.1 0.0 0.0 0.0 0.0 0.1 0.1  0.1 0.1 0.0 0.0 0.1 0.1 0.1 
Polyangiaceae (48)  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Sandaracinaceae (38)  0.1 0.0 0.0 0.0 0.0 0.1 0.1  0.1 0.0 0.0 0.0 0.1 0.1 0.1 
Vulgatibacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Myxococcales (177)  0.2 0.1 0.1 0.1 0.1 0.2 0.1  0.2 0.1 0.1 0.1 0.1 0.2 0.1 
Oligoflexaceae (29)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Oligoflexales (86)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Syntrophaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Deltaproteobacteria (19)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Gammaproteobacteria,   
       

 
       

Acidiferrobacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Aeromonadaceae (8) [GPT-1]  9.8 13 5.9 16 9.5 9.6 8.0  10 11 5.0 16 8.7 7.5 7.2 
Shewanellaceae (3)  7.1 6.9 7.1 7.6 12 7.8 8.0  9.6 7.7 7.4 7.6 10 6.5 8.6 
Cellvibrionaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Halieaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Enterobacteriaceae (12) [GPT-2], [GPT-3]  2.5 4.8 10 8.9 8.9 3.8 3.3  2.4 4.4 10 12 9.2 3.1 3.5 
Coxiellaceae (35)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.1 0.0 0.0 0.0 0.0 0.1 0.1 
Legionellaceae (30)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Methylococcaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oleiphilaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Moraxellaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Pseudomonadaceae (4)  0.1 0.0 0.0 0.0 0.0 0.1 0.1  0.2 0.0 0.0 0.1 0.1 0.1 0.2 
Unassigned Thiotrichales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthomonadaceae (12)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Xanthomonadales (24)  0.2 0.1 0.1 0.1 0.1 0.2 0.2  0.2 0.1 0.1 0.1 0.2 0.2 0.2 
Unassigned Gammaproteobacteria (30)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Proteobacteria (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
RsaHf231,   

       
 

       

Unassigned RsaHf231 (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Saccharibacteria,   

       
 

       

Unassigned Saccharibacteria (78)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Spirochaetae,   

       
 

       

Spirochaetes,   
       

 
       

Spirochaetaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Brevinemataceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Synergistetes,   
       

 
       

Synergistia,   
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Sampling Time:   22 h  30 h 

 Treatment:  C CAA Glu Asp Thr Ala/Gly Val/Gly  C CAA Glu Asp Thr Ala/Gly Val/Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Synergistaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tectomicrobia,   

       
 

       

Unassigned Tectomicrobia (21)  0.1 0.1 0.1 0.1 0.1 0.2 0.2  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Tenericutes,   

       
 

       

Mollicutes,   
       

 
       

Unassigned Entomoplasmatales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Haloplasmataceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mycoplasmataceae (19)  9.7 7.3 5.4 5.9 6.5 8.4 8.0  8.6 7.6 5.9 7.2 7.2 10 9.5 

TM6_Dependentiae,   
       

 
       

Unassigned TM6_Dependentiae (40)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Verrucomicrobia,   

       
 

       

Unassigned OPB35 soil group (87)  0.2 0.1 0.1 0.1 0.1 0.2 0.2  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Opitutae,   

       
 

       

Opitutaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Opitutae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Spartobacteria,   
       

 
       

Chthoniobacteraceae (46)  0.1 0.0 0.0 0.0 0.1 0.1 0.1  0.1 0.0 0.0 0.0 0.1 0.1 0.0 
Unassigned Chthoniobacterales (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

DA101 soil group (28)  2.8 1.5 1.5 1.7 2.0 2.6 2.7  2.6 1.7 1.7 1.6 2.1 2.5 2.1 
Xiphinematobacteraceae (9)  0.9 0.6 0.6 0.7 0.9 0.9 1.0  1.0 0.7 0.6 0.7 0.9 1.0 0.9 
Unassigned Spartobacteria (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Verrucomicrobiae,   
       

 
       

Verrucomicrobiaceae (22)  0.0 0.0 0.0 0.0 0.0 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Verrucomicrobia (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Archeae                 
Thaumarchaeota,                  

Unassigned Thaumarchaeota (9)  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

(B) 16S rRNA  

Sampling Time:   0 h  10 h  22 h 

 Treatment: 
 

C1 C2 C3 CAA Glu Asp Thr 
Ala/ 
Gly 

Val/ 
Gly 

 
C CAA Glu Asp Thr 

Ala/ 
Gly 

Val/ 
Gly 

 
C CAA Glu Asp Thr 

Ala/ 
Gly 

Val/ 
Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Acidobacteria,  
         

 
       

 
       

Acidobacteria,  
         

 
       

 
       

Acidobacteriaceae (16)  0.1 0.0 0.0 0.1 0.1 0.0 0.1 0.1 0.1  0.0 0.0 0.0 0.1 0.1 0.0 0.1  0.1 0.0 0.0 0.1 0.0 0.1 0.0 
Blastocatellia,  

         
 

       
 

       

Blastocatellaceae (23)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.1 0.0 0.1 0.1 0.1 
Holophagae,   

         
 

       
 

       

Unassigned Holophagae (12)  0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.1 
Solibacteres,   

         
 

       
 

       

Solibacteraceae (34)  0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3  0.3 0.2 0.2 0.3 0.3 0.3 0.3  0.2 0.2 0.2 0.2 0.2 0.3 0.3 
Subgroup_11 (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_17 (16)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_22 (16)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_25 (9)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_5 (10)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0 0.1 0.1 0.1 
Subgroup_6 (113)  1.0 0.8 0.9 0.8 0.8 0.9 0.7 0.7 0.7  0.6 0.6 0.6 0.7 0.8 1.0 0.8  0.8 0.6 0.5 0.5 0.6 0.6 0.8 

Unassigned Acidobacteria (8)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Actinobacteria,   

         
 

       
 

       

Acidimicrobiia,   
         

 
       

 
       

Acidimicrobiaceae (30)  1.3 1.2 1.1 1.2 1.2 1.3 1.0 1.2 1.2  1.2 0.8 1.0 1.1 1.2 1.3 1.4  1.1 0.6 0.7 0.9 1.0 1.2 1.3 
Iamiaceae (12)  0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.2  0.2 0.1 0.2 0.2 0.1 0.1 0.2  0.1 0.1 0.1 0.1 0.1 0.2 0.2 
Unassigned Acidimicrobiales (70)  1.2 1.1 1.1 1.3 1.3 1.3 1.4 1.5 1.5  1.4 0.9 1.2 1.3 1.2 1.3 1.5  1.2 0.8 0.8 1.1 1.1 1.5 1.5 
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Sampling Time:   0 h  10 h  22 h 

 Treatment: 
 

C1 C2 C3 CAA Glu Asp Thr 
Ala/ 
Gly 

Val/ 
Gly 

 
C CAA Glu Asp Thr 

Ala/ 
Gly 

Val/ 
Gly 

 
C CAA Glu Asp Thr 

Ala/ 
Gly 

Val/ 
Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Actinobacteria,   
         

 
       

 
       

Actinospicaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Catenulisporaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mycobacteriaceae (12)  0.5 0.4 0.5 0.5 0.5 0.7 0.7 0.8 0.7  0.7 0.4 0.5 0.6 0.5 0.5 0.6  0.4 0.3 0.3 0.3 0.4 0.6 0.6 
Nocardiaceae (12)  0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.0 0.1 0.1 0.0 0.1  0.1 0.0 0.0 0.0 0.0 0.1 0.1 
Acidothermaceae (10)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.0 0.1 0.1 0.1 0.1 
Cryptosporangiaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Frankiaceae (5)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.0 0.1 0.1 0.1 0.1 
Geodermatophilaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nakamurellaceae (5)  0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2  0.2 0.1 0.2 0.2 0.2 0.3 0.2  0.2 0.1 0.1 0.2 0.2 0.2 0.2 
Sporichthyaceae (6)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.1 0.1 0.1 0.1 0.1 
Glycomycetaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Kineosporiaceae (5)  0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.1 0.1  0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Beutenbergiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Brevibacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cellulomonadaceae (1)  0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2  0.2 0.1 0.2 0.2 0.2 0.2 0.2  0.2 0.1 0.1 0.1 0.1 0.2 0.2 
Demequinaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Dermabacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Dermacoccaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Intrasporangiaceae (4)  0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2  0.2 0.2 0.2 0.2 0.2 0.3 0.2  0.3 0.2 0.1 0.2 0.2 0.2 0.3 
Microbacteriaceae (15)  0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.1 0.2  0.1 0.1 0.1 0.2 0.1 0.1 0.2  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Micrococcaceae (4)  0.3 0.2 0.2 0.3 0.3 0.3 0.2 0.3 0.3  0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.2 0.1 0.1 0.1 0.1 0.2 0.2 
Promicromonosporaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sanguibacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Micromonosporaceae (44)  1.1 0.9 0.9 1.0 1.0 1.3 0.9 1.1 1.1  1.3 0.8 0.9 1.0 1.0 1.1 1.3  1.0 0.7 0.6 0.7 0.8 1.4 1.3 
Nocardioidaceae (41)  1.3 1.1 1.1 1.3 1.2 1.4 1.1 1.3 1.3  1.2 0.8 1.1 1.2 1.1 1.3 1.4  1.0 0.7 0.6 0.9 0.9 1.2 1.3 
Propionibacteriaceae (11)  0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2  0.2 0.1 0.2 0.2 0.2 0.2 0.2  0.2 0.1 0.1 0.2 0.2 0.2 0.2 
Pseudonocardiaceae (20)  0.8 0.7 0.7 0.6 0.6 0.7 0.5 0.7 0.6  0.7 0.4 0.5 0.6 0.6 0.7 0.7  0.5 0.4 0.4 0.5 0.6 0.6 0.7 
Streptomycetaceae (5)  0.5 0.4 0.4 0.5 0.4 0.5 0.4 0.4 0.5  0.5 0.3 0.4 0.4 0.4 0.5 0.5  0.5 0.4 0.3 0.3 0.3 0.5 0.5 
Nocardiopsaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Streptosporangiaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.1 0.0 
Thermomonosporaceae (15)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Frankiales (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Actinobacteria (2)  0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.2  0.1 0.1 0.1 0.2 0.2 0.2 0.2  0.2 0.1 0.1 0.2 0.2 0.2 0.2 

Coriobacteriia,   
         

 
       

 
       

Coriobacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rubrobacteria,   

         
 

       
 

       

Rubrobacteriaceae (6)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Thermoleophilia,   

         
 

       
 

       

Gaiellaceae (11)  0.8 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7  0.8 0.5 0.7 0.8 0.7 0.8 0.9  0.8 0.5 0.5 0.6 0.6 0.7 0.9 
Unassigned Gaiellales (72)  1.4 1.3 1.3 1.3 1.3 1.4 1.4 1.4 1.4  1.5 0.9 1.2 1.4 1.2 1.5 1.6  1.3 0.9 0.9 1.1 1.1 1.4 1.5 
Conexibacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Parviterribacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Patulibacteraceae (15)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Solirubrobacteraceae (15)  1.0 1.0 0.9 1.0 0.9 1.0 1.0 1.1 1.0  1.0 0.7 0.9 1.0 1.1 1.2 1.3  1.0 0.7 0.7 0.8 0.8 1.0 1.1 
Unassigned Solirubrobacterales (26)  0.4 0.3 0.3 0.4 0.4 0.4 0.3 0.4 0.4  0.4 0.3 0.3 0.4 0.4 0.4 0.5  0.4 0.2 0.2 0.3 0.3 0.4 0.4 
Unassigned Thermoleophilia (67)  0.5 0.4 0.4 0.4 0.5 0.6 0.3 0.4 0.5  0.5 0.3 0.5 0.5 0.5 0.6 0.6  0.6 0.3 0.3 0.3 0.4 0.6 0.5 

Unassigned Actinobacteria (34)  0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5  0.5 0.3 0.4 0.5 0.4 0.5 0.5  0.4 0.3 0.2 0.3 0.4 0.5 0.5 
Armatimonadetes,   

         
 

       
 

       

Armatimonadia,   
         

 
       

 
       

Unassigned Armatimonadales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chthonomonadaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chthonomonadales (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Armatimonadetes (21)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bacteroidetes,   
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Sampling Time:   0 h  10 h  22 h 

 Treatment: 
 

C1 C2 C3 CAA Glu Asp Thr 
Ala/ 
Gly 

Val/ 
Gly 

 
C CAA Glu Asp Thr 

Ala/ 
Gly 

Val/ 
Gly 

 
C CAA Glu Asp Thr 

Ala/ 
Gly 

Val/ 
Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Bacteroidia,   
         

 
       

 
       

Prolixibacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cytophagia (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cytophagaceae (33)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.0 0.1 0.1 0.1 0.1 
Flammeovirgaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Flavobacteriia,   

         
 

       
 

       

Flavobacteriaceae (21)  0.9 0.9 0.9 0.9 0.9 0.8 0.6 0.5 0.7  1.2 0.5 0.7 0.8 0.8 0.3 0.4  1.1 0.5 0.5 0.9 1.0 0.1 0.2 
Sphingobacteriia,   

         
 

       
 

       

Chitinophagaceae (48)  0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.0 0.1 0.1 0.1 0.1 
Lentimicrobiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Saprospiraceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingobacteriaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriales (14)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriia (10)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Bacteroidetes (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
BJ-169,   

         
 

       
 

       

Unassigned BJ-169 (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
BRC1,   

         
 

       
 

       

Unassigned BCR1 (14)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chlamydiae,   

         
 

       
 

       

Chlamydiae,   
         

 
       

 
       

Chlamydiaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Parachlamydiaceae (154)  0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1  0.0 0.0 0.0 0.0 0.1 0.1 0.1  0.1 0.0 0.0 0.0 0.0 0.1 0.1 
Simkaniaceae (11)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Waddliaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Chlamydiales (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chlorobi,   

         
 

       
 

       

Chlorobia,   
         

 
       

 
       

Unassigned Chlorobia (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chloroflexi,   

         
 

       
 

       

Anaerolineae,   
         

 
       

 
       

Anaerolineaceae (14)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ardenticatenia (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Caldilineae,   
         

 
       

 
       

Caldilineaceae (15)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0 0.1 0.1 0.1 
Chloroflexia,   

         
 

       
 

       

Roseiflexaceae (8)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1  0.1 0.1 0.1 0.1 0.1 0.2 0.2  0.2 0.1 0.1 0.1 0.1 0.2 0.2 
Unassigned Chloroflexia (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Ktedonobacteria,   
         

 
       

 
       

Ktedonobacterales,   
         

 
       

 
       

Ktedonobacteraceae (9)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermosporotrichaceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacterales (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacteria (18)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Thermomicrobia,   
         

 
       

 
       

Thermomicrobiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Thermomicrobia (56)  0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.2  0.3 0.1 0.2 0.2 0.2 0.2 0.3  0.2 0.1 0.1 0.2 0.2 0.3 0.2 

Unassigned Chloroflexi (111)  1.3 1.2 1.1 1.3 1.1 1.2 1.2 1.3 1.3  1.4 0.8 1.0 1.2 1.1 1.2 1.4  1.2 0.7 0.8 0.9 0.9 1.1 1.2 
Cyanobacteria,   

         
 

       
 

       

Chloroplast,   
         

 
       

 
       

Unassigned Chloroplast (34)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cyanobacteria,   

         
 

       
 

       

Unassigned Cyanobacteria (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gastranaerophilales,   

         
 

       
 

       

Unassigned Gastranaerophilales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Obscuribacterales,   

         
 

       
 

       

Unassigned Obscuribacterales (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Cyanobacteria (11)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Deferribacteres,   
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C1 C2 C3 CAA Glu Asp Thr 
Ala/ 
Gly 

Val/ 
Gly 

 
C CAA Glu Asp Thr 

Ala/ 
Gly 

Val/ 
Gly 

 
C CAA Glu Asp Thr 

Ala/ 
Gly 

Val/ 
Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Unassigned Deferribacteres (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Deinococcus-Thermus,   

         
 

       
 

       

Deinococci,   
         

 
       

 
       

Unassigned Deinococci (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Elusimicrobia,   

         
 

       
 

       

Unassigned Elusimicrobia,   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Euryarchaeota,   

         
 

       
 

       

Methanomicrobia,   
         

 
       

 
       

Methanosarcinaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoplasmata,   

         
 

       
 

       

Unassinged Thermoplasmatales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Fibrobacteres,   

         
 

       
 

       

Fibrobacteria,   
         

 
       

 
       

Fibrobacteraceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Fibrobacterales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Firmicutes,   
         

 
       

 
       

Bacilli,   
         

 
       

 
       

Alicyclobacillaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bacillaceae (38)  0.7 0.6 0.6 0.6 0.5 0.6 0.5 0.5 0.6  0.5 0.4 0.4 0.5 0.5 0.6 0.6  0.5 0.5 0.4 0.5 0.6 0.7 0.8 
Paenibacillaceae (88)  0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.2  0.1 0.1 0.1 0.2 0.1 0.1 0.2  0.2 0.1 0.1 0.2 0.1 0.3 0.2 
Pasteuriaceae (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Planococcaceae (7)  0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0  0.0 0.0 0.0 0.1 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.1 
Sporolactobacillaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Staphylococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoactinomycetaceae (18)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Streptococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Bacilli (13)  0.8 0.8 0.7 0.8 0.7 0.8 0.7 0.7 0.7  0.5 0.4 0.4 0.5 0.4 0.5 0.6  0.4 0.3 0.2 0.3 0.2 0.4 0.4 

Clostridia,   
         

 
       

 
       

Caldicoprobacteraceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Christensenellaceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Clostridiaceae (38) [A14]  0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.2  0.3 0.4 0.4 0.3 0.5 0.4 0.4  1.3 1.3 4.7 1.2 1.4 1.7 1.3 
Defluviitaleaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Eubacteriaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gracilibacteraceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Heliobacteriaceae (22)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Lachnospiraceae (79)  0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.5 0.3 0.2 0.4 0.3 1.0 0.9 
Peptococcaceae (17)  2.0 1.9 1.7 1.9 1.9 2.0 1.9 1.5 1.7  1.3 1.0 1.3 1.3 1.5 2.0 1.7  2.0 1.0 1.0 1.1 1.1 1.6 1.7 
Peptostreptococcaceae (11) [GPT-4], [A8]  0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.2  0.4 1.2 0.4 0.3 0.8 0.8 0.8  1.1 2.3 0.7 0.3 3.6 5.5 2.9 
Ruminococcaceae (96)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.1 0.0 0.0 0.0 0.0 0.0 0.1 
Syntrophomonadaceae (10)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoanaerobacteraceae (8)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Clostridiales (17)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.1 0.1 0.0 0.1 0.0 0.0 0.0 
Unassigned Thermoanaerobacterales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Clostridia (34)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Erysipelotrichia,   
         

 
       

 
       

Erysipelotrichaceae (18)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Limnochordia,   

         
 

       
 

       

Limnochordaceae (23)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Limnochordales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Negativicutes,   
         

 
       

 
       

Veillonellaceae (20)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Selenomonadales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Firmicutes (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Fusobacteria,   

         
 

       
 

       

Fusobacteriia,   
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Sampling Time:   0 h  10 h  22 h 

 Treatment: 
 

C1 C2 C3 CAA Glu Asp Thr 
Ala/ 
Gly 

Val/ 
Gly 

 
C CAA Glu Asp Thr 

Ala/ 
Gly 

Val/ 
Gly 

 
C CAA Glu Asp Thr 

Ala/ 
Gly 

Val/ 
Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Fusobacteriaceae (10) [GPT-5]  8.6 13 13 9.6 13 10 12 10 10  20 33 29 20 19 13 13  20 33 34 25 22 12 15 
Leptotrichiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Gemmatimonadetes,   
         

 
       

 
       

Gemmatimonadetes,   
         

 
       

 
       

Gemmatimonadaceae (37)  0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.2 0.1 0.2 0.2 0.2 0.3 0.3  0.2 0.2 0.1 0.2 0.2 0.3 0.3 
Longimicrobiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Gemmatimonadetes (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Hydrogenedentes,   

         
 

       
 

       

Unassigned Hydrogenedentes (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Latescibacteria,   

         
 

       
 

       

Unassigned Latescibacteria (30)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrospirae,   

         
 

       
 

       

Nitrospira,   
         

 
       

 
       

Nitrospiraceae (8)  0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.2 0.2 0.2  0.2 0.1 0.1 0.1 0.1 0.2 0.2 
Unassigned Nitrospira (18)  0.5 0.4 0.4 0.4 0.4 0.5 0.5 0.6 0.6  0.5 0.3 0.4 0.4 0.4 0.5 0.6  0.5 0.3 0.4 0.3 0.4 0.6 0.5 

Parcubacteria,   
         

 
       

 
       

Unassigned Parcubacteria (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Planctomycetes,   

         
 

       
 

       

Phycisphaerae,   
         

 
       

 
       

Phycisphaeraceae (38)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tepidisphaeraceae (82)  0.6 0.6 0.5 0.5 0.6 0.6 0.7 0.6 0.5  0.5 0.3 0.4 0.5 0.5 0.7 0.6  0.5 0.2 0.3 0.4 0.4 0.6 0.5 
Unassigned Phycisphaerales (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Phycisphaerae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Planctomycetacia,   
         

 
       

 
       

Planctomycetaceae (733)  8.1 8.1 7.3 7.5 8.0 7.8 6.5 7.2 8.0  8.5 4.9 6.4 6.6 7.7 10 9.1  8.1 4.6 4.6 5.5 7.3 10 9.3 
Unassigned Planctomycetes (82)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.0 0.0 0.0 0.1 0.1  0.1 0.0 0.0 0.0 0.0 0.1 0.1 

Proteobacteria,   
         

 
       

 
       

Alphaproteobacteria,   
         

 
       

 
       

Caulobacteraceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Beijerinckiaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bradyrhizobiaceae (5)  2.0 1.7 1.7 1.6 1.6 1.7 0.9 1.3 1.4  1.0 1.1 1.2 1.1 1.4 1.6 1.6  1.5 1.0 0.8 0.9 1.4 1.5 1.5 
Hyphomicrobiaceae (8)  0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2  0.1 0.2 0.2 0.2 0.2 0.2 0.2  0.2 0.1 0.1 0.1 0.2 0.2 0.2 
Methylobacteriaceae (4)  0.2 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.2  0.1 0.1 0.1 0.1 0.1 0.2 0.2  0.2 0.1 0.1 0.1 0.2 0.2 0.2 
Methylocystaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phyllobacteriaceae (3)  0.3 0.3 0.3 0.3 0.2 0.3 0.2 0.2 0.3  0.2 0.2 0.2 0.2 0.2 0.3 0.3  0.2 0.2 0.1 0.2 0.2 0.2 0.2 
Rhizobiaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rhodobiaceae (2)  0.3 0.3 0.2 0.3 0.3 0.4 0.3 0.3 0.3  0.3 0.2 0.2 0.3 0.2 0.3 0.3  0.3 0.2 0.1 0.2 0.2 0.4 0.3 
Roseiarcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthobacteraceae (9)  1.3 1.1 1.1 1.2 1.1 1.3 1.2 1.1 1.3  1.0 0.8 1.0 1.1 1.0 1.4 1.3  1.1 0.8 0.7 0.9 0.9 1.4 1.4 
Unassigned Rhizobiales (19)  0.3 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2  0.2 0.1 0.2 0.2 0.2 0.2 0.2  0.2 0.2 0.1 0.2 0.2 0.2 0.3 
Rhodobacteraceae (6)  0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1  0.0 0.0 0.0 0.0 0.1 0.1 0.1  0.1 0.0 0.0 0.0 0.0 0.0 0.1 
Acetobacteraceae (15)  0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.2 0.1 0.2 0.2 0.2 0.2 0.2  0.2 0.1 0.1 0.2 0.2 0.2 0.2 
Rhodospirillaceae (19)  0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.6  0.4 0.3 0.4 0.4 0.5 0.6 0.6  0.4 0.3 0.3 0.4 0.6 0.5 0.6 
Unassigned Rhodospirillales (25)  0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.6 0.6  0.5 0.4 0.4 0.4 0.5 0.6 0.6  0.5 0.4 0.4 0.4 0.6 0.6 0.7 
Anaplasmataceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Holosporaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mitochondria (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rickettsiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Rickettsiales (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Erythrobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingomonadaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingomonadales (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Alphaproteobacteria (19)  0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2  0.1 0.1 0.1 0.1 0.1 0.2 0.2  0.2 0.1 0.1 0.1 0.2 0.2 0.2 

Betaproteobacteria,   
         

 
       

 
       

Alcaligenaceae (2)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.0 0.1 0.1 0.1 0.1 
Burkholderiaceae (10)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Comamonadaceae (17)  0.4 0.3 0.3 0.4 0.3 0.4 0.3 0.3 0.3  0.2 0.2 0.2 0.2 0.2 0.3 0.3  0.3 0.1 0.1 0.2 0.2 0.2 0.3 
Oxalobacteraceae (15)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Neisseriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Sampling Time:   0 h  10 h  22 h 

 Treatment: 
 

C1 C2 C3 CAA Glu Asp Thr 
Ala/ 
Gly 

Val/ 
Gly 

 
C CAA Glu Asp Thr 

Ala/ 
Gly 

Val/ 
Gly 

 
C CAA Glu Asp Thr 

Ala/ 
Gly 

Val/ 
Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Gallionellaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrosomonadaceae (30)  0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.2 0.2  0.1 0.1 0.1 0.1 0.2 0.2 0.2  0.2 0.1 0.1 0.1 0.1 0.2 0.2 
Rhodocyclaceae (9)  0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Betaproteobacteria (41)  0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2  0.2 0.1 0.2 0.2 0.2 0.2 0.2  0.2 0.1 0.1 0.1 0.1 0.2 0.2 

Deltaproteobacteria,   
         

 
       

 
       

Bacteriovoracaceae (12)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bdellovibrionaceae (54)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.0 0.0 0.1 0.1 0.1 
Desulfarculaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Desulfobulbaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Desulfurellaceae (41)  0.6 0.5 0.5 0.6 0.5 0.6 0.4 0.6 0.6  0.5 0.4 0.4 0.5 0.5 0.6 0.6  0.5 0.4 0.3 0.4 0.5 0.6 0.7 
Desulfuromonadaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Geobacteraceae (26)  0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.2 
Archangiaceae (20)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.0 0.1 0.1 0.1 0.1 
Haliangiaceae (74)  0.4 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.3  0.3 0.2 0.3 0.3 0.3 0.4 0.3  0.4 0.3 0.2 0.2 0.3 0.4 0.3 
Myxococcaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nannocystaceae (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phaselicystidaceae (14)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.2 0.2 
Polyangiaceae (48)  0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.4 0.3  0.3 0.2 0.2 0.3 0.3 0.4 0.3  0.3 0.2 0.2 0.2 0.3 0.4 0.3 
Sandaracinaceae (38)  0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.2 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.2 
Vulgatibacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Myxococcales (177)  0.4 0.3 0.3 0.3 0.2 0.3 0.2 0.3 0.2  0.2 0.2 0.2 0.2 0.2 0.4 0.3  0.3 0.2 0.1 0.2 0.3 0.4 0.4 
Oligoflexaceae (29)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Oligoflexales (86)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Syntrophaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Deltaproteobacteria (19)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Gammaproteobacteria,   
         

 
       

 
       

Acidiferrobacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Aeromonadaceae (8) [GPT-1]  15 19 20 16 17 13 19 17 16  18 16 14 17 15 11 12  12 15 10 18 14 12 8.9 
Shewanellaceae (3)  2.0 2.4 2.4 2.8 2.9 2.6 3.1 3.1 2.9  2.6 2.3 3.3 2.4 2.9 2.4 2.6  2.1 3.2 3.2 3.0 4.2 2.4 2.5 
Cellvibrionaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Halieaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Enterobacteriaceae (12) [GPT-2], [GPT-3]  5.6 4.9 5.3 6.0 5.1 5.1 5.0 5.9 5.8  3.4 6.2 5.2 5.3 4.5 4.5 5.3  3.9 6.5 13 9.1 4.5 5.4 5.3 
Coxiellaceae (35)  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Legionellaceae (30)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Methylococcaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oleiphilaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Moraxellaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Pseudomonadaceae (4)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.2 0.1 0.1 0.1 0.1 0.2 0.1 
Unassigned Thiotrichales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthomonadaceae (12)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Xanthomonadales (24)  0.2 0.1 0.2 0.2 0.1 0.2 0.1 0.2 0.2  0.1 0.1 0.1 0.2 0.1 0.2 0.2  0.2 0.1 0.1 0.1 0.1 0.2 0.2 
Unassigned Gammaproteobacteria (30)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Proteobacteria (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
RsaHf231,   

         
 

       
 

       

Unassigned RsaHf231 (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Saccharibacteria,   

         
 

       
 

       

Unassigned Saccharibacteria (78)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Spirochaetae,   

         
 

       
 

       

Spirochaetes,   
         

 
       

 
       

Spirochaetaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Brevinemataceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Synergistetes,   
         

 
       

 
       

Synergistia,   
         

 
       

 
       

Synergistaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tectomicrobia,   
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Sampling Time:   0 h  10 h  22 h 

 Treatment: 
 

C1 C2 C3 CAA Glu Asp Thr 
Ala/ 
Gly 

Val/ 
Gly 

 
C CAA Glu Asp Thr 

Ala/ 
Gly 

Val/ 
Gly 

 
C CAA Glu Asp Thr 

Ala/ 
Gly 

Val/ 
Gly 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Unassigned Tectomicrobia (21)  0.9 0.8 0.8 0.8 0.7 0.7 0.5 0.8 0.8  0.7 0.5 0.5 0.6 0.7 0.9 0.8  0.7 0.6 0.5 0.7 0.9 0.7 1.0 
Tenericutes,   

         
 

       
 

       

Mollicutes,   
         

 
       

 
       

Unassigned Entomoplasmatales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Haloplasmataceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mycoplasmataceae (19)  21 18 18 22 21 23 24 21 21  13 13 14 17 17 21 19  17 12 9.4 13 14 14 17 

TM6_Dependentiae,   
         

 
       

 
       

Unassigned TM6_Dependentiae (40)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Verrucomicrobia,   

         
 

       
 

       

Unassigned OPB35 soil group (87)  0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2  0.2 0.1 0.1 0.2 0.2 0.2 0.2  0.2 0.1 0.1 0.1 0.2 0.2 0.2 
Opitutae,   

         
 

       
 

       

Opitutaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Opitutae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Spartobacteria,   
         

 
       

 
       

Chthoniobacteraceae (46)  0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.1 0.1 0.1 0.1 0.1 
Unassigned Chthoniobacterales (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

DA101 soil group (28)  1.0 0.9 0.8 1.0 0.8 1.0 0.9 1.0 1.0  1.0 0.6 0.8 0.9 0.8 0.8 0.9  1.0 0.4 0.6 0.6 0.5 1.0 0.7 
Xiphinematobacteraceae (9)  2.3 2.0 1.9 2.0 1.8 2.0 0.8 1.6 1.8  1.5 1.1 1.3 1.2 1.8 1.4 1.8  1.7 1.0 0.9 1.0 1.9 1.9 1.9 
Unassigned Spartobacteria (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Verrucomicrobiae,   
         

 
       

 
       

Verrucomicrobiaceae (22)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Verrucomicrobia (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Archeae                           
Thaumarchaeota,                            

Unassigned Thaumarchaeota (9)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Sampling Time:  30 h 

 Treatment:  C1 C2 C3 
CAA 

1 
CAA 

2 
CAA 

3 
Glu 
1 

Glu 
2 

Glu 
3 

Asp 
1 

Asp 
2 

Asp 
3 

Thr 
1 

Thr 
2 

Thr 
3 

Ala/ 
Gly1 

Ala/ 
Gly2 

Ala/ 
Gly3 

Val/ 
Gly1 

Val/ 
Gly2 

Val/ 
Gly3 

Phyla, Class, Familyb   Relative Abundance % 
   

Acidobacteria,  
                     

Acidobacteria,  
                     

Acidobacteriaceae (16)  0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
Blastocatellia,  

                     

Blastocatellaceae (23)  0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Holophagae,   

                     

Unassigned Holophagae (12)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Solibacteres,   

                     

Solibacteraceae (34)  0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.2 0.2 
Subgroup_11 (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_17 (16)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_22 (16)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_25 (9)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_5 (10)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Subgroup_6 (113)  0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.5 0.4 0.6 0.4 0.6 0.5 0.5 0.5 0.6 0.6 0.5 0.5 0.5 0.5 

Unassigned Acidobacteria (8)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Actinobacteria,   

                     

Acidimicrobiia,   
                     

Acidimicrobiaceae (30)  1.2 1.0 1.2 0.8 0.8 0.8 0.7 0.8 0.7 0.9 0.8 0.8 0.9 1.0 1.0 1.2 1.2 1.0 1.1 1.0 1.0 
Iamiaceae (12)  0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 
Unassigned Acidimicrobiales (70)  1.2 1.1 1.2 0.9 0.8 0.8 0.7 0.8 0.7 0.9 0.9 0.8 1.0 1.0 1.0 1.1 1.1 1.0 1.3 0.9 1.0 

Actinobacteria,   
                     

Actinospicaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Catenulisporaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Sampling Time:  30 h 

 Treatment:  C1 C2 C3 
CAA 

1 
CAA 

2 
CAA 

3 
Glu 
1 

Glu 
2 

Glu 
3 

Asp 
1 

Asp 
2 

Asp 
3 

Thr 
1 

Thr 
2 

Thr 
3 

Ala/ 
Gly1 

Ala/ 
Gly2 

Ala/ 
Gly3 

Val/ 
Gly1 

Val/ 
Gly2 

Val/ 
Gly3 

Phyla, Class, Familyb   Relative Abundance % 
   

Mycobacteriaceae (12)  0.5 0.4 0.4 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.4 0.3 0.4 0.4 0.3 
Nocardiaceae (12)  0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 
Acidothermaceae (10)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Cryptosporangiaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Frankiaceae (5)  0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Geodermatophilaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nakamurellaceae (5)  0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 
Sporichthyaceae (6)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Glycomycetaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Kineosporiaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Beutenbergiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Brevibacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cellulomonadaceae (1)  0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.1 
Demequinaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Dermabacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Dermacoccaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Intrasporangiaceae (4)  0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
Microbacteriaceae (15)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Micrococcaceae (4)  0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
Promicromonosporaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sanguibacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Micromonosporaceae (44)  1.1 1.0 1.0 0.8 0.7 1.0 0.7 0.7 0.6 0.8 0.7 0.7 0.9 0.9 0.8 0.9 1.0 0.8 0.9 0.9 0.9 
Nocardioidaceae (41)  1.2 1.0 1.2 0.8 0.8 0.8 0.7 0.8 0.7 0.9 0.9 0.8 0.8 0.9 1.0 1.1 1.1 1.0 1.2 0.9 1.0 
Propionibacteriaceae (11)  0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.2 
Pseudonocardiaceae (20)  0.6 0.5 0.5 0.5 0.4 0.5 0.4 0.3 0.4 0.4 0.4 0.4 0.6 0.4 0.4 0.5 0.5 0.4 0.5 0.5 0.6 
Streptomycetaceae (5)  0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5 0.4 0.5 0.4 0.4 
Nocardiopsaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Streptosporangiaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermomonosporaceae (15)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Frankiales (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Actinobacteria (2)  0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.2 

Coriobacteriia,   
                     

Coriobacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rubrobacteria,   

                     

Rubrobacteriaceae (6)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Thermoleophilia,   

                     

Gaiellaceae (11)  0.7 0.6 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.7 0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.7 0.8 0.7 0.6 
Unassigned Gaiellales (72)  1.3 1.1 1.4 0.9 0.8 0.9 0.8 1.0 0.9 1.1 1.0 1.0 1.0 1.0 1.1 1.2 1.3 1.2 1.4 1.1 1.2 
Conexibacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Parviterribacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Patulibacteraceae (15)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Solirubrobacteraceae (15)  1.0 1.0 1.0 0.7 0.8 0.6 0.6 0.6 0.6 0.8 0.8 0.7 0.7 0.8 0.9 1.0 1.0 0.9 1.1 0.9 0.9 
Unassigned Solirubrobacterales (26)  0.3 0.3 0.4 0.3 0.2 0.2 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.3 0.3 
Unassigned Thermoleophilia (67)  0.5 0.4 0.5 0.3 0.4 0.4 0.3 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.4 0.5 

Unassigned Actinobacteria (34)  0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.3 0.4 
Armatimonadetes,   

                     

Armatimonadia,   
                     

Unassigned Armatimonadales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chthonomonadaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chthonomonadales (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Armatimonadetes (21)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bacteroidetes,   

                     

Bacteroidia,   
                     

Prolixibacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cytophagia (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Cytophagaceae (33)  0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 
Flammeovirgaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Flavobacteriia,   

                     

Flavobacteriaceae (21)  1.5 1.3 1.3 0.7 0.7 0.5 0.6 0.4 0.3 0.5 0.6 0.6 0.6 0.7 0.8 0.1 0.1 0.1 0.2 0.1 0.1 
Sphingobacteriia,   

                     

Chitinophagaceae (48)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Lentimicrobiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Saprospiraceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingobacteriaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriales (14)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriia (10)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Bacteroidetes (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
BJ-169,   

                     

Unassigned BJ-169 (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
BRC1,   

                     

Unassigned BCR1 (14)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chlamydiae,   

                     

Chlamydiae,   
                     

Chlamydiaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Parachlamydiaceae (154)  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Simkaniaceae (11)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Waddliaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Chlamydiales (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chlorobi,   

                     

Chlorobia,   
                     

Unassigned Chlorobia (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chloroflexi,   

                     

Anaerolineae,   
                     

Anaerolineaceae (14)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ardenticatenia (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Caldilineae,   
                     

Caldilineaceae (15)  0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Chloroflexia,   

                     

Roseiflexaceae (8)  0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Unassigned Chloroflexia (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Ktedonobacteria,   
                     

Ktedonobacterales,   
                     

Ktedonobacteraceae (9)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermosporotrichaceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacterales (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacteria (18)  0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 

Thermomicrobia,   
                     

Thermomicrobiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Thermomicrobia (56)  0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Unassigned Chloroflexi (111)  1.1 1.0 1.1 0.8 0.8 0.7 0.6 0.8 0.7 0.9 0.7 0.8 0.8 0.9 0.9 1.0 1.0 0.9 1.1 0.9 0.9 
Cyanobacteria,   

                     

Chloroplast,   
                     

Unassigned Chloroplast (34)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cyanobacteria,   

                     

Unassigned Cyanobacteria (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gastranaerophilales,   

                     

Unassigned Gastranaerophilales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Obscuribacterales,   

                     

Unassigned Obscuribacterales (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Cyanobacteria (11)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Deferribacteres,   
                     

Unassigned Deferribacteres (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Deinococcus-Thermus,   

                     

Deinococci,   
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Unassigned Deinococci (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Elusimicrobia,   

                     

Unassigned Elusimicrobia,   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Euryarchaeota,   

                     

Methanomicrobia,   
                     

Methanosarcinaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoplasmata,   

                     

Unassinged Thermoplasmatales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Fibrobacteres,   

                     

Fibrobacteria,   
                     

Fibrobacteraceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Fibrobacterales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Firmicutes,   
                     

Bacilli,   
                     

Alicyclobacillaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bacillaceae (38)  0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.5 0.5 0.5 0.4 0.5 1.0 0.8 1.0 0.7 0.9 0.9 1.0 0.9 0.9 
Paenibacillaceae (88)  0.2 0.2 0.3 0.2 0.2 0.3 0.1 0.2 0.1 0.4 0.3 0.3 0.2 0.2 0.2 0.3 0.3 0.4 0.2 0.4 0.4 
Pasteuriaceae (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Planococcaceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
Sporolactobacillaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Staphylococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoactinomycetaceae (18)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Streptococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Bacilli (13)  0.3 0.3 0.3 0.3 0.4 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.2 0.3 0.2 0.2 0.3 0.2 0.6 0.2 0.2 

Clostridia,   
                     

Caldicoprobacteraceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Christensenellaceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Clostridiaceae (38) [A14]  2.6 3.2 2.9 2.7 2.2 2.9 8.7 6.8 7.8 3.2 3.4 3.2 3.4 3.6 3.7 2.8 2.4 3.5 1.9 3.0 2.3 
Defluviitaleaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Eubacteriaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gracilibacteraceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Heliobacteriaceae (22)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Lachnospiraceae (79)  1.5 2.0 2.2 2.4 2.0 2.4 0.9 1.0 1.2 2.2 2.6 2.0 1.4 1.4 1.2 3.8 3.1 4.3 3.3 4.4 3.9 
Peptococcaceae (17)  1.7 1.9 2.1 1.2 1.7 1.5 1.2 1.5 1.5 1.7 1.6 1.5 1.2 1.4 1.2 1.9 1.9 1.9 2.0 1.8 1.8 
Peptostreptococcaceae (11) [GPT-4], [A8]  1.0 1.2 1.1 3.6 3.8 4.2 1.0 1.2 1.3 0.3 0.3 0.3 6.9 5.9 6.0 12 12 12 6.0 4.1 4.7 
Ruminococcaceae (96)  0.2 0.1 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 
Syntrophomonadaceae (10)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoanaerobacteraceae (8)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Clostridiales (17)  0.2 0.2 0.2 0.4 0.3 0.4 0.0 0.0 0.0 0.1 0.2 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 
Unassigned Thermoanaerobacterales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Clostridia (34)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Erysipelotrichia,   
                     

Erysipelotrichaceae (18)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Limnochordia,   

                     

Limnochordaceae (23)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Limnochordales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Negativicutes,   
                     

Veillonellaceae (20)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Selenomonadales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Firmicutes (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Fusobacteria,   

                     

Fusobacteriia,   
                     

Fusobacteriaceae (10) [GPT-5]  16 16 16 25 25 26 29 28 30 21 21 22 19 17 17 9.4 9.8 12 16 19 18 
Leptotrichiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Gemmatimonadetes,   
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 Treatment:  C1 C2 C3 
CAA 

1 
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1 
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2 
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1 
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2 
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1 
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2 
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Val/ 
Gly3 

Phyla, Class, Familyb   Relative Abundance % 
   

Gemmatimonadetes,   
                     

Gemmatimonadaceae (37)  0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 
Longimicrobiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Gemmatimonadetes (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Hydrogenedentes,   

                     

Unassigned Hydrogenedentes (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Latescibacteria,   

                     

Unassigned Latescibacteria (30)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrospirae,   

                     

Nitrospira,   
                     

Nitrospiraceae (8)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.2 0.1 0.1 
Unassigned Nitrospira (18)  0.4 0.4 0.5 0.4 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.4 

Parcubacteria,   
                     

Unassigned Parcubacteria (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Planctomycetes,   

                     

Phycisphaerae,   
                     

Phycisphaeraceae (38)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tepidisphaeraceae (82)  0.6 0.5 0.4 0.3 0.4 0.3 0.3 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.5 0.5 0.4 0.4 0.4 0.3 0.4 
Unassigned Phycisphaerales (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Phycisphaerae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Planctomycetacia,   
                     

Planctomycetaceae (733)  8.9 7.7 7.8 6.1 6.9 5.7 5.6 6.7 6.2 7.2 6.2 6.3 7.7 8.1 8.6 8.9 8.3 8.2 8.1 6.9 8.6 
Unassigned Planctomycetes (82)  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 

Proteobacteria,   
                     

Alphaproteobacteria,   
                     

Caulobacteraceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Beijerinckiaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bradyrhizobiaceae (5)  1.6 1.3 1.1 1.2 0.9 1.0 1.0 0.8 0.8 1.0 0.9 0.9 1.2 1.1 1.1 1.3 1.3 1.1 1.2 1.3 1.4 
Hyphomicrobiaceae (8)  0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 
Methylobacteriaceae (4)  0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 
Methylocystaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phyllobacteriaceae (3)  0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 
Rhizobiaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rhodobiaceae (2)  0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.2 
Roseiarcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthobacteraceae (9)  1.1 1.0 1.0 0.8 0.9 0.8 0.7 0.8 0.8 1.0 0.8 0.8 0.9 0.8 0.9 1.0 1.1 1.0 1.1 1.0 0.9 
Unassigned Rhizobiales (19)  0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
Rhodobacteraceae (6)  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.0 
Acetobacteraceae (15)  0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
Rhodospirillaceae (19)  0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.3 0.3 0.4 0.4 0.4 0.5 0.4 0.5 
Unassigned Rhodospirillales (25)  0.5 0.5 0.5 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.4 0.5 0.4 0.5 
Anaplasmataceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Holosporaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mitochondria (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rickettsiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Rickettsiales (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Erythrobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingomonadaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingomonadales (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Alphaproteobacteria (19)  0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 

Betaproteobacteria,   
                     

Alcaligenaceae (2)  0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 
Burkholderiaceae (10)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Comamonadaceae (17)  0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.1 0.1 0.1 0.1 
Oxalobacteraceae (15)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Neisseriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gallionellaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrosomonadaceae (30)  0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 
Rhodocyclaceae (9)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Unassigned Betaproteobacteria (41)  0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 
Deltaproteobacteria,   

                     

Bacteriovoracaceae (12)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bdellovibrionaceae (54)  0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Desulfarculaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Desulfobulbaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Desulfurellaceae (41)  0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.3 0.3 0.4 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 
Desulfuromonadaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Geobacteraceae (26)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Archangiaceae (20)  0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Haliangiaceae (74)  0.4 0.3 0.3 0.2 0.3 0.3 0.2 0.3 0.3 0.4 0.2 0.3 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.3 
Myxococcaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nannocystaceae (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phaselicystidaceae (14)  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Polyangiaceae (48)  0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.2 0.3 
Sandaracinaceae (38)  0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 
Vulgatibacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Myxococcales (177)  0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.2 0.3 
Oligoflexaceae (29)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Oligoflexales (86)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Syntrophaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Deltaproteobacteria (19)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Gammaproteobacteria,   
                     

Acidiferrobacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Aeromonadaceae (8) [GPT-1]  13 16 14 12 10 11 8.1 7.3 7.9 14 16 15 14 11 12 7.1 7.0 8.1 7.1 9.2 8.1 
Shewanellaceae (3)  3.0 3.5 3.4 3.3 3.8 3.0 3.4 3.4 3.3 2.6 3.1 3.4 4.5 4.2 4.3 2.0 2.2 2.7 3.4 3.4 3.4 
Cellvibrionaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Halieaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Enterobacteriaceae (12) [GPT-2], [GPT-3]  2.8 3.2 3.1 5.4 4.9 6.0 12 10 9.1 7.6 8.5 8.1 4.3 4.4 4.1 3.8 4.3 4.6 4.6 4.9 5.2 
Coxiellaceae (35)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Legionellaceae (30)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Methylococcaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oleiphilaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Moraxellaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Pseudomonadaceae (4)  0.9 0.3 0.7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.2 0.2 0.1 0.2 0.7 0.5 0.4 0.7 0.2 
Unassigned Thiotrichales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthomonadaceae (12)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Xanthomonadales (24)  0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 
Unassigned Gammaproteobacteria (30)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Proteobacteria (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
RsaHf231,   

                     

Unassigned RsaHf231 (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Saccharibacteria,   

                     

Unassigned Saccharibacteria (78)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Spirochaetae,   

                     

Spirochaetes,   
                     

Spirochaetaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Brevinemataceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Synergistetes,   
                     

Synergistia,   
                     

Synergistaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tectomicrobia,   

                     

Unassigned Tectomicrobia (21)  0.8 0.7 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.6 0.5 0.6 0.7 0.5 0.7 0.6 0.7 0.5 0.7 0.7 0.8 
Tenericutes,   

                     

Mollicutes,   
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Unassigned Entomoplasmatales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Haloplasmataceae (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mycoplasmataceae (19)  16 16 17 14 17 15 11 13 13 16 14 16 13 18 16 19 19 17 17 16 17 

TM6_Dependentiae,   
                     

Unassigned TM6_Dependentiae (40)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Verrucomicrobia,   

                     

Unassigned OPB35 soil group (87)  0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Opitutae,   

                     

Opitutaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Opitutae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Spartobacteria,   
                     

Chthoniobacteraceae (46)  0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Unassigned Chthoniobacterales (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

DA101 soil group (28)  0.9 0.7 0.8 0.5 0.5 0.5 0.5 0.6 0.5 0.8 0.7 0.6 0.5 0.6 0.6 0.7 0.6 0.6 0.5 0.5 0.5 
Xiphinematobacteraceae (9)  2.0 1.6 1.5 1.7 1.1 1.5 1.4 0.9 1.1 1.2 1.3 1.0 1.7 1.5 1.6 1.9 1.8 1.5 1.9 1.7 1.9 
Unassigned Spartobacteria (7)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Verrucomicrobiae,   
                     

Verrucomicrobiaceae (22)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Verrucomicrobia (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Archeae                       
Thaumarchaeota,                        

Unassigned Thaumarchaeota (9)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

aSamples of the three replicates of the 16S rRNA control treatment at 0 h, and all 16S rRNA treatments at 30 h were analyzed separately.  Samples of the three replicates were pooled for each of the other 
treatments at 0 h, 10 h, 22h, or 30 h.  Identification numbers (e.g., C1) indicate the respective replicates.  Abbreviations: C, unsupplemented control; CAA, casamino acids; Glu, glutamate; Asp, aspartate; 
Thr, threonine; Ala, alanine, alanine; Gly, glycine; Val, valine.  Table modified and used with permission from Zeibich et al., 2019b. 

bThe number of phylotypes are shown in parenthesis.  Abundant responsive group phylotypes and phylotypes from Figure 59 are bold and in brackets. 

Table A7.  Summary of all detected families in the ribose experiment based on 16S rRNA gene and 16S rRNA analysis (Section 3.2.9).a 

  16S rRNA Genes  16S rRNA 

Sampling Time:  0 h  30 h  0 h  30 h 

 Treatment:  C1 C2 C3 R  C1 C2 C3 R  C1 C2 C3 R  C1 C2 C3 R1 R2 R3 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Acidobacteria,                       
Acidobacteria,                       

Acidobacteriaceae (3)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Blastocatellia,                       

Blastocatellaceae(4)  0.0 0.1 0.1 0.1  0.0 0.0 0.0 0.0  0.0 0.0 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Holophagae,                       

Unassigned Holophagae (4)  0.1 0.1 0.1 0.1  0.0 0.1 0.1 0.0  0.0 0.0 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Solibacteres,                       

Solibacteraceae (12)  0.1 0.1 0.1 0.1  0.1 0.0 0.1 0.0  0.1 0.1 0.2 0.1  0.0 0.1 0.1 0.0 0.1 0.1 
Subgroup_5 (5)  0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0  0.0 0.1 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_6 (46)  1.4 1.2 1.2 1.1  0.7 0.7 0.9 0.4  0.5 0.3 0.7 0.8  0.2 0.3 0.3 0.2 0.1 0.3 
Subgroup_11 (3)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_17 (4)  0.0 0.0 0.1 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_18 (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_22 (6)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
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  16S rRNA Genes  16S rRNA 

Sampling Time:  0 h  30 h  0 h  30 h 

 Treatment:  C1 C2 C3 R  C1 C2 C3 R  C1 C2 C3 R  C1 C2 C3 R1 R2 R3 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Subgroup_25 (3)  0.0 0.0 0.0 0.0  0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Actinobacteria,                       

Acidimicrobiia,                       
Acidimicrobiaceae (13)  0.8 1.1 1.4 0.9  0.7 1.0 0.8 0.3  0.6 0.6 1.3 0.5  0.5 0.6 0.7 0.5 0.3 0.5 
Unassigned Acidimicrobiales (40)  1.8 1.8 2.3 1.7  1.1 1.4 1.4 0.7  0.9 1.2 1.9 0.9  0.6 0.7 1.3 0.8 0.8 1.0 
Iamiaceae (5)  0.1 0.2 0.2 0.1  0.2 0.2 0.1 0.0  0.2 0.1 0.1 0.1  0.0 0.2 0.1 0.1 0.1 0.1 

Actinobacteria,                       
Acidothermaceae (4)  0.3 0.2 0.3 0.2  0.2 0.2 0.1 0.1  0.1 0.1 0.2 0.2  0.0 0.1 0.1 0.0 0.1 0.1 
Catenulisporaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Cellulomonadaceae (1)  0.1 0.0 0.0 0.0  0.0 0.1 0.0 0.0  0.0 0.1 0.2 0.1  0.0 0.1 0.2 0.1 0.1 0.0 
Demequinaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Dermacoccaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Frankiaceae (2)  0.1 0.1 0.1 0.0  0.1 0.1 0.1 0.0  0.1 0.0 0.1 0.1  0.0 0.1 0.0 0.0 0.0 0.0 
Geodermatophilaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.1 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Glycomycetaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Intrasporangiaceae (3)  0.2 0.2 0.3 0.1  0.1 0.2 0.2 0.1  0.1 0.1 0.3 0.2  0.1 0.3 0.1 0.1 0.1 0.1 
Kineosporiaceae (2)  0.0 0.0 0.0 0.0  0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Microbacteriaceae (7)  0.1 0.2 0.2 0.1  0.1 0.1 0.2 0.1  0.1 0.0 0.1 0.1  0.1 0.2 0.1 0.0 0.1 0.0 
Micrococcaceae (2)  0.2 0.2 0.1 0.2  0.1 0.1 0.2 0.1  0.0 0.1 0.1 0.1  0.2 0.1 0.0 0.0 0.0 0.0 
Micromonosporaceae (18)  1.1 1.1 1.3 1.0  0.6 0.9 0.8 0.4  0.9 0.9 1.8 1.0  0.6 0.9 0.8 0.6 0.6 0.6 
Mycobacteriaceae (5)  0.4 0.5 0.5 0.4  0.3 0.3 0.3 0.1  0.0 0.0 0.1 0.1  0.1 0.1 0.1 0.0 0.1 0.1 
Nakamurellaceae (1)  0.1 0.0 0.1 0.1  0.0 0.0 0.0 0.0  0.1 0.0 0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 
Nocardiaceae (5)  0.0 0.0 0.1 0.0  0.0 0.0 0.0 0.0  0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Nocardioidaceae (18)  1.3 1.4 1.6 1.2  0.9 1.1 1.0 0.4  0.4 0.6 1.4 0.8  0.4 0.8 0.5 0.3 0.5 0.4 
Promicromonosporaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Propionibacteriaceae (6)  0.5 0.4 0.4 0.4  0.2 0.3 0.3 0.2  0.2 0.1 0.2 0.2  0.1 0.1 0.2 0.1 0.2 0.1 
Pseudonocardiaceae (10)  0.5 0.5 0.5 0.4  0.3 0.5 0.4 0.1  0.2 0.3 0.9 0.6  0.2 0.3 0.2 0.3 0.3 0.3 
Sporichthyaceae (3)  0.1 0.1 0.1 0.1  0.0 0.1 0.1 0.0  0.0 0.1 0.2 0.0  0.0 0.1 0.1 0.0 0.0 0.0 
Streptomycetaceae (4)  0.8 0.7 0.7 0.6  0.5 0.5 0.6 0.3  0.2 0.2 0.8 0.5  0.3 0.3 0.3 0.2 0.1 0.2 
Streptosporangiaceae (2)  0.0 0.1 0.0 0.1  0.0 0.0 0.1 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Thermomonosporaceae (3)  0.1 0.1 0.1 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Actinobacteria (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 

Coriobacteriia,                       
Coriobacteriaceae (2)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Rubrobacteria,                       
Rubrobacteriaceae (3)  0.1 0.1 0.1 0.1  0.0 0.1 0.0 0.0  0.0 0.0 0.1 0.1  0.1 0.1 0.2 0.0 0.0 0.0 

Thermoleophilia,                       
Conexibacteraceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Thermoleophilia (28)  1.5 1.6 1.9 1.5  1.1 1.2 1.4 0.5  0.3 0.4 0.5 0.5  0.2 0.2 0.3 0.3 0.2 0.3 
Gaiellaceae (5)  1.9 1.9 2.3 1.7  1.3 1.5 1.4 0.7  0.4 0.5 0.6 0.7  0.3 0.5 0.5 0.3 0.2 0.5 

Unassigned Gaiellales (28)  3.5 4.2 4.3 3.0  2.0 2.6 2.6 1.1  0.8 0.8 1.4 1.0  0.4 1.0 0.8 0.5 0.5 1.0 
Parviterribacteraceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Patulibacteraceae (3)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Solirubrobacteraceae (4)  0.5 0.6 0.7 0.4  0.4 0.6 0.6 0.2  0.7 0.7 1.3 0.9  0.4 0.7 0.7 0.5 0.5 0.8 
Unassigned Solirubrobacterales (13)  0.9 0.8 1.1 0.7  0.4 0.7 0.8 0.3  0.3 0.3 0.4 0.4  0.1 0.3 0.1 0.2 0.2 0.2 

Unassigned Actinobacteria (23)  2.2 2.8 3.2 2.0  1.6 1.6 1.8 0.7  0.3 0.6 0.9 0.5  0.2 0.6 0.4 0.3 0.2 0.3 
Armatimonadetes,                       

Armatimonadia,                       
Unassigned Armatimonadia (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Bacteroidetes,                       
Bacteroidia,                       

Bacteroidaceae (5)  1.4 0.0 0.0 0.0  0.2 0.6 0.4 0.3  0.1 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.1 
Porphyromonadaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Rikenellaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Cytophagia,                       
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  16S rRNA Genes  16S rRNA 

Sampling Time:  0 h  30 h  0 h  30 h 

 Treatment:  C1 C2 C3 R  C1 C2 C3 R  C1 C2 C3 R  C1 C2 C3 R1 R2 R3 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Cytophagaceae (6)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Flavobacteriia,                       

Flavobacteriaceae (9)  0.2 0.3 0.2 0.2  0.5 0.8 0.4 0.2  0.1 0.0 0.0 0.1  0.0 0.4 0.1 0.1 0.1 0.2 
Sphingobacteriia,                       
Chitinophagaceae (5)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Sphingobacteriaceae (2)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Sphingobacteriales (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
BRC1,                       

Unassigned BRC1 (2)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Chlamydiae,                       

Chlamydiae,                       
Parachlamydiaceae (3)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Chloroflexi,                       
Anaerolineae,                       

Anaerolineaceae (6)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Ardenticatenia (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Caldilineae,                       
Caldilineaceae (10)  0.2 0.2 0.1 0.1  0.1 0.1 0.2 0.1  0.0 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 

Chloroflexia,                       
Roseiflexaceae (4)  0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0  0.1 0.1 0.2 0.2  0.1 0.1 0.0 0.0 0.0 0.1 
Unassigned Kallotenuales (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Ktedonobacteria,                       
Unassigned Ktedonobacterales (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacteria (6)  0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0  0.0 0.0 0.1 0.1  0.1 0.0 0.0 0.0 0.0 0.0 

Thermomicrobia,                       
Unassigned Thermomicrobia (27)  0.4 0.5 0.4 0.3  0.2 0.2 0.3 0.1  0.1 0.2 0.2 0.2  0.1 0.1 0.1 0.1 0.1 0.1 

Unassigned Chloroflexi (51)  2.4 2.7 3.2 2.3  1.7 1.9 1.4 0.8  0.9 0.9 1.5 0.9  0.4 0.8 0.8 0.4 0.5 0.6 
Cyanobacteria,                       

Chloroplast,                       
Unassigned Chloroplast (2)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Cyanobacteria,                       
Unassigned Cyanobacteria (2)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Euryarchaeota,                       
Methanomicrobia,                       

Methanocellaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Firmicutes,                       

Bacilli,                       
Alicyclobacillaceae (2)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Bacillaceae (6)  0.6 0.5 0.4 0.5  0.5 0.5 0.6 0.3  0.4 0.2 0.6 0.7  0.1 0.4 0.3 0.4 0.3 0.4 
Lactobacillaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Lactobacillales (1)  0.2 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Paenibacillaceae (18)  0.1 0.1 0.2 0.1  0.1 0.2 0.2 1.0  0.0 0.1 0.1 0.1  0.1 0.1 0.0 1.4 1.7 1.4 
Pasteuriaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Planococcaceae (4)  0.1 0.1 0.1 0.0  0.0 0.0 0.1 0.1  0.1 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Streptococcaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Thermoactinomycetaceae (2)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Bacilli (2)  0.6 0.7 0.5 0.8  0.3 0.3 0.3 0.1  0.4 0.5 0.7 0.6  0.3 0.2 0.3 0.2 0.2 0.2 

Clostridia,                       
Christensenellaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Clostridiaceae (16) [A14]  0.1 0.1 0.0 0.1  0.8 1.0 1.0 0.6  0.0 0.1 0.2 0.2  2.0 1.2 1.5 0.8 1.3 1.1 
Unassigned Clostridiales (3)  0.0 0.0 0.0 0.0  0.0 0.0 0.2 0.0  0.0 0.0 0.0 0.0  0.2 0.1 0.1 0.0 0.0 0.0 
Eubacteriaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Gracilibacteraceae (2)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Heliobacteriaceae (3)  0.0 0.0 0.1 0.0  0.0 0.0 0.1 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Lachnospiraceae (13)  0.0 0.0 0.0 0.0  0.5 0.7 0.8 0.8  0.0 0.0 0.0 0.1  1.5 0.8 0.9 0.6 0.7 0.6 
Peptococcaceae (4)  1.4 1.5 1.3 1.8  1.0 1.1 0.9 1.0  1.2 1.3 2.3 0.8  1.2 0.9 0.9 1.3 1.2 0.9 
Peptostreptococcaceae (4) [GPT-4], [A8]  0.0 0.0 0.0 0.0  0.1 0.1 0.2 0.1  0.0 0.0 0.1 0.0  0.1 0.2 0.1 0.1 0.0 0.1 
Ruminococcaceae (11)  0.0 0.0 0.0 0.0  0.1 0.1 0.0 0.1  0.0 0.0 0.0 0.1  0.0 0.1 0.1 0.0 0.1 0.1 
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  16S rRNA Genes  16S rRNA 

Sampling Time:  0 h  30 h  0 h  30 h 

 Treatment:  C1 C2 C3 R  C1 C2 C3 R  C1 C2 C3 R  C1 C2 C3 R1 R2 R3 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Unassigned Clostridia (2)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Erysipelotrichia,                       

Erysipelotrichaceae (3)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Negativicutes,                       

Veillonellaceae (2)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Fusobacteria,                       

Fusobacteriia,                       
Fusobacteriaceae (1) [GPT-5]  14 13 9.8 19  20 19 18 20  22 19 1.8 12  27 22 25 20 16 14 

Gemmatimonadetes,                       
Gemmatimonadetes,                       

Gemmatimonadaceae (14)  0.2 0.2 0.3 0.3  0.2 0.2 0.3 0.1  0.1 0.1 0.2 0.1  0.0 0.2 0.2 0.1 0.0 0.1 
Latescibacteria,                       

Unassigned Latescrbacteria (4)  0.1 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Nitrospirae,                       

Nitrospira,                       
Nitrospiraceae (5)  0.0 0.0 0.1 0.1  0.0 0.1 0.1 0.0  0.0 0.1 0.1 0.1  0.1 0.0 0.0 0.0 0.0 0.0 
Unassigned Nitrospirales (10)  0.6 0.7 0.7 0.4  0.4 0.5 0.4 0.2  0.1 0.2 0.5 0.4  0.2 0.5 0.2 0.3 0.3 0.3 

Planctomycetes,                       
Phycisphaerae,                       

Phycisphaeraceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Phycisphaerae (7)  0.0 0.1 0.1 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 
Unassigned Phycisphaerales (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Tepidisphaeraceae (34)  0.4 0.6 0.6 0.5  0.4 0.4 0.4 0.2  0.4 0.5 0.8 0.4  0.2 0.2 0.4 0.2 0.2 0.3 

Planctomycetacia,                       
Planctomycetaceae (331)  2.6 2.9 3.6 2.5  2.0 2.5 1.8 1.0  7.1 7.1 15 6.1  5.9 8.1 8.5 5.4 5.4 5.8 

Unassigned Planctomycetes (17)  0.1 0.0 0.1 0.1  0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.1 
Proteobacteria,                       

Alphaproteobacteria,                       
Acetobacteraceae (4)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.1 0.1 0.1 0.1  0.0 0.1 0.0 0.1 0.0 0.1 
Beijerinckiaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Bradyrhizobiaceae (3)  0.7 0.8 0.8 0.7  0.5 0.5 0.5 0.2  0.5 0.6 0.8 0.6  0.4 0.7 0.6 0.2 0.3 0.5 
Caulobacteraceae (2)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingomonadales (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Hyphomicrobiaceae (4)  0.2 0.3 0.2 0.2  0.2 0.1 0.2 0.1  0.1 0.1 0.2 0.1  0.1 0.1 0.1 0.0 0.0 0.1 
Methylobacteriaceae (3)  0.1 0.1 0.2 0.2  0.1 0.1 0.2 0.0  0.1 0.2 0.2 0.2  0.0 0.1 0.1 0.1 0.2 0.1 
Phyllobacteriaceae (3)  0.2 0.2 0.2 0.1  0.1 0.2 0.2 0.0  0.2 0.0 0.4 0.2  0.1 0.0 0.3 0.0 0.0 0.1 
Rhizobiaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Rhodobacteraceae (3)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Rhodobiaceae (2)  1.0 1.0 0.9 0.6  0.7 0.7 0.7 0.2  0.2 0.1 0.4 0.2  0.0 0.2 0.1 0.1 0.1 0.1 
Rhodospirillaceae (13)  0.4 0.5 0.5 0.5  0.4 0.4 0.4 0.1  0.2 0.3 1.0 0.5  0.5 0.5 0.4 0.3 0.2 0.4 
Unassigned Rhodospirillales (23)  0.5 0.5 0.6 0.4  0.4 0.4 0.4 0.1  0.3 0.3 0.7 0.6  0.2 0.5 0.4 0.3 0.5 0.4 
Sphingomonadaceae (2)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Xanthobacteraceae (3)  2.5 2.6 3.1 2.1  1.7 1.9 2.3 0.7  0.7 1.3 1.7 1.0  0.5 0.8 1.1 0.6 0.5 0.7 
Unassigned Rhizobiales (12)  0.2 0.2 0.2 0.1  0.2 0.2 0.2 0.1  0.1 0.1 0.3 0.1  0.0 0.1 0.0 0.0 0.1 0.1 

Betaproteobacteria,            0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Alcaligenaceae (1)  0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0  0.0 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 
Burkholderiaceae (2)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Comamonadaceae (8)  0.1 0.0 0.1 0.0  0.0 0.1 0.0 0.0  0.0 0.1 0.2 0.1  0.0 0.0 0.0 0.0 0.0 0.0 
Gallionellaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Nitrosomonadaceae (16)  0.3 0.2 0.3 0.2  0.1 0.2 0.1 0.1  0.1 0.0 0.2 0.1  0.0 0.0 0.1 0.1 0.0 0.1 
Oxalobacteraceae (2)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Rhodocyclaceae (3)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Betaproteobacteria (11)  0.1 0.2 0.2 0.0  0.1 0.1 0.1 0.0  0.1 0.1 0.2 0.1  0.0 0.0 0.1 0.0 0.1 0.0 

Deltaproteobacteria,                       
Unassigned Oligoflexales (5)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
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  16S rRNA Genes  16S rRNA 

Sampling Time:  0 h  30 h  0 h  30 h 

 Treatment:  C1 C2 C3 R  C1 C2 C3 R  C1 C2 C3 R  C1 C2 C3 R1 R2 R3 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Archangiaceae (5)  0.1 0.1 0.1 0.1  0.1 0.1 0.0 0.0  0.0 0.1 0.2 0.3  0.1 0.1 0.1 0.1 0.0 0.1 
Bdellovibrionaceae (6)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Desulfobulbaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Desulfurellaceae (19)  0.8 0.7 0.9 0.6  0.4 0.4 0.7 0.2  0.2 0.1 0.6 0.5  0.1 0.1 0.2 0.1 0.1 0.2 
Desulfuromonadaceae (2)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Geobacteraceae (9)  0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0  0.0 0.1 0.2 0.2  0.0 0.0 0.1 0.0 0.0 0.0 
Haliangiaceae (26)  0.1 0.2 0.1 0.1  0.1 0.1 0.2 0.0  0.1 0.2 0.4 0.3  0.2 0.1 0.2 0.1 0.1 0.1 
Myxococcaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Nannocystaceae (2)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Phaselicystidaceae (1)  0.0 0.0 0.1 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.1 
Polyangiaceae (17)  0.1 0.0 0.1 0.0  0.1 0.0 0.0 0.0  0.3 0.0 0.4 0.2  0.1 0.2 0.1 0.0 0.1 0.1 
Sandaracinaceae (13)  0.0 0.1 0.1 0.1  0.0 0.0 0.1 0.0  0.1 0.1 0.2 0.2  0.0 0.0 0.0 0.0 0.0 0.0 
Vulgatibacteraceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Myxococcales (31)  0.1 0.2 0.1 0.1  0.2 0.1 0.2 0.1  0.1 0.1 0.3 0.2  0.0 0.2 0.2 0.1 0.1 0.2 
Unassigned Deltaproteobacteria (4)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Gammaproteobacteria,                       
Aeromonadacea (3) [GPT-1]  22 22 23 22  24 20 19 42  27 21 5.0 34  21 25 21 39 41 44 
Coxiellaceae (1)  0.1 0.1 0.1 0.1  0.1 0.1 0.1 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Enterobacteriaceae (5) [GPT-2], [GPT-3]  1.4 2.4 1.5 1.6  1.7 2.0 2.2 5.0  2.5 3.0 0.4 3.5  1.9 2.0 1.9 4.1 5.0 4.1 
Legionellaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Oleiphilaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Pseudomonadaceae (2)  0.0 0.0 0.1 0.0  0.1 0.0 0.1 0.0  0.1 0.0 0.0 0.1  0.1 0.1 0.0 0.0 0.1 0.0 
Shewanellaceae (4)  8.4 8.6 8.8 7.9  15 15 16 10  3.1 2.3 0.7 3.9  2.4 5.1 4.3 4.5 3.6 4.9 
Xanthomonadaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Xanthomonadales (12)  0.1 0.2 0.2 0.1  0.1 0.1 0.1 0.0  0.1 0.1 0.2 0.1  0.0 0.0 0.1 0.0 0.0 0.0 
Unassigned Gammaproteobacteria (2)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Saccharibacteria,                       
Unassigned Saccharibacteria (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Spirochaetae,                       
Spirochaetes,                       

Spirochaetaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Tectomicrobia,                       

Unassigned Tectomicrobia (10)  0.2 0.2 0.2 0.2  0.2 0.2 0.2 0.1  0.4 0.6 0.9 0.9  0.5 0.7 0.5 0.4 0.3 0.6 
Tenericutes,                       

Mollicutes,                       
Unassigned Entomoplasmatales (2)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Mycoplasmataceae (5)  10 8.8 6.7 10  8.4 7.2 8.7 5.4  21 28 41 17  25 17 18 12 12 8.8 

Verrucomicrobia,                       
OPB35 soil group (29)  0.1 0.2 0.1 0.2  0.1 0.1 0.1 0.1  0.2 0.0 0.1 0.1  0.0 0.1 0.0 0.0 0.0 0.1 
Opitutae,                       

Opitutaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Spartobacteria,                       

Chthoniobacteraceae (10)  0.0 0.1 0.1 0.1  0.0 0.0 0.0 0.0  0.0 0.0 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chthoniobacterales (17)  1.0 1.4 1.3 1.3  0.8 0.9 0.9 0.3  0.3 0.1 0.4 0.2  0.1 0.1 0.2 0.1 0.0 0.1 
Xiphinematobacteraceae (3)  0.9 1.0 0.8 1.1  1.0 1.0 0.7 0.4  0.7 1.2 1.8 0.8  0.8 0.7 1.0 0.4 0.7 0.5 

Verrucomicrobiae,                       
Verrucomicrobiaceae (4)  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.3  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Archeae                       
Thaumarchaeota,                        

Unassigned Thaumarchaeota (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

aSamples of the three replicates of the 16S rRNA gene control treatment at 0 h and 30 h, 16S rRNA control treatment at 0 h, and all 16S rRNA treatments at 30 h were analyzed separately.  Samples of 
the three replicates were pooled for each of the other treatments at 0 h or 30 h.  Identification numbers (e.g., C1) indicate the respective replicates.  Abbreviations: C, unsupplemented control; R, ribose.  
Table modified and used with permission from Zeibich et al., 2019b. 

bThe number of phylotypes are shown in parenthesis.  Abundant responsive group phylotypes from Figure 59 are bold and in brackets. 
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Table A8.  Summary of all detected families in the transient intermediate experiment based on 16S rRNA gene (A) and 16S rRNA (B) analysis 

(Section 3.2.9).a 

(A) 16S rRNA genes 

Sampling Time:  0 h  10 h  22 h  30 h 

 
Treatment:  C G F S  C G  C G  C G F S 

Phyla, Class, Familyb   Relative Abundance (%) 
                 

Acidobacteria,                 
Acidobacteria,                 

Acidobacteriaceae (3)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Blastocatellia,                  

Blastocatellaceae (9)  0.2 0.1 0.1 0.1  0.1 0.0  0.1 0.0  0.1 0.1 0.1 0.1 
Holophagae,                  

Unassigned Holophagae (4)  0.1 0.1 0.1 0.1  0.1 0.0  0.1 0.0  0.0 0.0 0.1 0.1 
Solibacteres,                  

Solibacteraceae (10)  0.1 0.1 0.0 0.0  0.1 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Subgroup_11 (3)  0.0 0.1 0.1 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Subgroup_17 (9)  0.1 0.1 0.1 0.1  0.1 0.0  0.0 0.0  0.0 0.0 0.1 0.0 
Subgroup_18 (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Subgroup_22 (5)  0.1 0.1 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Subgroup_25 (3)  0.1 0.1 0.1 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Subgroup_5 (6)  0.1 0.2 0.1 0.1  0.0 0.0  0.1 0.0  0.0 0.0 0.0 0.0 
Subgroup_6 (49)  1.8 1.4 1.8 1.2  0.8 0.2  0.7 0.4  0.7 0.3 0.7 0.4 
Subgroup_9 (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 

Actinobacteria,                  

Acidimicrobiia,                  

Acidimicrobiaceae (17)  1.6 1.7 1.6 1.2  1.0 0.4  0.9 0.4  0.9 0.7 1.1 0.7 
Iamiaceae (8)  0.4 0.2 0.3 0.3  0.2 0.0  0.2 0.1  0.2 0.1 0.2 0.1 
Unassigned Acidimicrobiales (39)  2.7 2.9 2.5 2.2  1.5 0.5  1.3 0.8  1.4 1.0 1.5 1.0 

Actinobacteria,                  

Acidothermaceae (4)  0.2 0.2 0.1 0.1  0.1 0.0  0.1 0.0  0.1 0.1 0.1 0.0 
Actinomycetaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Bifidobacteriaceae (3)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.1 0.0 0.0 
Bogoriellaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Cellulomonadaceae (1)  0.0 0.0 0.1 0.0  0.0 0.0  0.0 0.0  0.0 0.1 0.1 0.0 
Corynebacteriaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Cryptosporangiaceae (2)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Demequinaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Frankiaceae (3)  0.1 0.1 0.1 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.1 0.0 
Geodermatophilaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Intrasporangiaceae (3)  0.2 0.2 0.2 0.2  0.1 0.1  0.1 0.1  0.1 0.1 0.2 0.1 
Kineosporiaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Microbacteriaceae (6)  0.2 0.3 0.3 0.2  0.1 0.0  0.1 0.1  0.1 0.1 0.1 0.1 
Micrococcaceae (1)  0.4 0.5 0.5 0.3  0.2 0.1  0.2 0.1  0.1 0.1 0.1 0.1 
Micromonosporaceae (18)  0.9 1.0 1.1 0.6  0.5 0.1  0.5 0.3  0.5 0.4 0.6 0.3 
Mycobacteriaceae (5)  0.6 0.7 0.7 0.5  0.3 0.1  0.3 0.2  0.3 0.2 0.4 0.2 
Nakamurellaceae (2)  0.0 0.1 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Nocardiaceae (6)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Nocardioidaceae (25)  1.6 1.6 1.7 1.4  0.7 0.3  0.7 0.4  0.8 0.5 0.9 0.6 
Promicromonosporaceae (2)  0.1 0.1 0.1 0.0  0.0 0.0  0.0 0.0  0.1 0.0 0.1 0.0 
Propionibacteriaceae (6)  0.5 0.4 0.7 0.4  0.3 0.1  0.3 0.1  0.2 0.2 0.3 0.1 
Pseudonocardiaceae (10)  0.5 0.6 0.6 0.5  0.4 0.1  0.3 0.2  0.3 0.3 0.4 0.2 
Sporichthyaceae (3)  0.1 0.1 0.1 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.1 0.0 
Streptomycetaceae (4)  0.7 0.6 0.6 0.4  0.4 0.1  0.3 0.1  0.3 0.2 0.4 0.2 
Streptosporangiaceae (3)  0.0 0.0 0.0 0.1  0.0 0.0  0.1 0.0  0.0 0.0 0.0 0.1 
Thermomonosporaceae (4)  0.0 0.1 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Unassigned Frankiales (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 



 

APPENDIX 303

Sampling Time:  0 h  10 h  22 h  30 h 

 
Treatment:  C G F S  C G  C G  C G F S 

Phyla, Class, Familyb   Relative Abundance (%) 
                 

Unassigned Actinobacteria (4)  0.1 0.1 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.1 0.0 
Coriobacteriia,                 

Coriobacteriaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Rubrobacteria,                  

Rubrobacteriaceae (4)  0.2 0.3 0.2 0.1  0.1 0.0  0.1 0.1  0.1 0.1 0.1 0.1 
Thermoleophilia,                  

Gaiellaceae (7)  2.6 2.1 1.9 1.9  1.2 0.5  1.1 0.6  1.2 0.8 1.4 0.8 
Parviterribacteraceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Patulibacteraceae (4)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Solirubrobacteraceae (4)  0.4 0.5 0.5 0.4  0.4 0.1  0.3 0.2  0.3 0.3 0.5 0.3 
Unassigned Solirubrobacterales (16)  0.9 0.8 0.8 0.7  0.6 0.2  0.3 0.3  0.5 0.3 0.7 0.4 
Unassigned Gaiellales (27)  4.6 3.9 3.7 3.3  2.5 0.8  1.7 1.2  1.9 1.3 2.6 1.6 
Unassigned Thermoleophilia (36)  2.2 1.8 1.6 1.3  1.2 0.5  0.9 0.5  1.0 0.7 1.2 0.7 
Unassigned Actinobacteria (23)  2.5 2.7 2.6 1.9  1.4 0.4  1.3 0.5  1.1 0.8 1.2 0.9 

Armatimonadetes,                   
Unassigned Armatimonadetes  (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 

Bacteroidetes,                  

Bacteroidia,                  

Bacteroidaceae (5)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.2 0.0 0.6 
Porphyromonadaceae (2)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Prevotellaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Rikenellaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Sphingobacteriia                  

Chitinophagaceae (9)  0.0 0.0 0.1 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Cytophagia,                  

Cytophagaceae (11)  0.1 0.1 0.1 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Flavobacteriia,                  

Flavobacteriaceae (7)  0.7 0.9 0.7 0.6  0.4 0.1  0.3 0.1  0.2 0.0 0.1 0.1 
Sphingobacteriia,                  

Saprospiraceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Sphingobacteriaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriales (3)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 

BRC1,                  

Unassigend BRC1 (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Chlamydiae,                  

Chlamydiae,                  

Chlamydiaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Parachlamydiaceae (13)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 

Chlorobi,                  

Chlorobiales,                  

 Unassigned Chlorobiales (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Chloroflexi,,                  

Anaerolineae                  

Anaerolineaceae (5)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Unassigned Ardenticatenia (2)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 

Caldilineae,                  

Caldilineaceae (11)  0.3 0.2 0.2 0.2  0.1 0.0  0.1 0.1  0.1 0.1 0.1 0.1 
Chloroflexia,                  

Unassigned Kallotenuales (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Roseiflexaceae (6)  0.2 0.3 0.2 0.2  0.1 0.0  0.1 0.1  0.1 0.1 0.1 0.1 

Ktedonobacteria,                  

Ktedonobacteraceae (2)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Thermosporotrichaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Unassigned Ktedonobacterales (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Unassigned Ktedonobacteria (5)  0.0 0.1 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Unassigned Thermomicrobia (28)  0.5 0.6 0.5 0.3  0.2 0.1  0.3 0.1  0.3 0.2 0.3 0.2 

Unassigned Chloroflexi (41)  2.9 2.3 2.8 2.1  1.4 0.5  1.4 0.5  1.4 0.8 1.6 1.1 
Cyanobacteria,                  

Chloroplast,                   

Unassigned Chloroplast (5)  0.1 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
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Sampling Time:  0 h  10 h  22 h  30 h 

 
Treatment:  C G F S  C G  C G  C G F S 

Phyla, Class, Familyb   Relative Abundance (%) 
                 

Cyanobacteria,                  

Unassigned Cyanobacteria (2)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Unassigned Cyanobacteria (2)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 

Elusimicrobia,                  

Unassigned Elusimicrobia (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Fibrobacteres,                  

Fibrobacteria,                  

Fibrobacteraceae (2)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Firmicutes,                  

Bacilli,                  

Aerococcaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Alicyclobacillaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Bacillaceae (9)  1.3 1.3 0.8 0.9  0.8 0.4  1.1 0.8  1.8 1.5 2.0 1.1 
Enterococcaceae (1)  0.0 0.0 0.0 0.4  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Lactobacillaceae (2)  0.1 0.0 0.0 0.0  0.0 0.0  0.0 0.1  0.0 0.1 0.0 0.0 
Paenibacillaceae (22)  0.2 0.1 0.1 0.1  0.0 0.0  0.2 0.1  0.3 0.2 0.2 0.2 
Planococcaceae (7)  0.1 0.1 0.1 0.1  0.1 0.0  0.0 0.0  0.1 0.0 0.1 0.1 
Staphylococcaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Thermoactinomycetaceae (3)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Streptococcaceae (3)  0.0 0.0 0.0 0.0  0.0 0.1  0.0 0.0  0.1 0.0 0.0 0.0 
Unassigned Lactobacillales (1)  0.0 0.0 0.0 0.0  0.1 0.0  0.0 0.0  0.0 0.1 0.0 0.1 
Unassigned Bacilli (2)  0.1 0.1 0.1 0.2  0.1 0.0  0.0 0.0  0.0 0.0 0.0 0.0 

Clostridia,                  

Clostridiaceae (22) [A14]  0.4 0.4 0.4 0.2  0.5 0.2  1.7 1.0  2.5 2.5 2.5 2.1 
Unassigned Clostridiales (7)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.2 0.0 0.0 0.1 
Eubacteriaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Gracilibacteraceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Heliobacteriaceae (3)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Lachnospiraceae (24)  0.1 0.0 0.1 0.0  0.0 0.0  0.9 0.3  4.9 2.7 5.7 6.0 
Peptococcaceae (5)  1.0 1.2 0.8 0.9  1.1 0.5  0.7 0.5  0.9 0.8 0.9 0.6 
Peptostreptococcaceae (6) [GPT-4], [A8]  0.2 0.1 0.2 0.2  0.8 0.1  2.5 1.0  2.9 2.6 5.1 1.9 
Ruminococcaceae (28)  0.1 0.1 0.0 0.0  0.0 0.0  0.0 0.0  0.1 0.2 0.0 1.6 

Erysipelotrichia,                  

Erysipelotrichaceae (6)  0.4 0.0 0.0 0.0  0.0 0.0  0.0 0.7  0.0 0.0 0.0 0.1 
Limnochordia,                  

Unassigned Limnochordales (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Negativicutes,                  

Acidaminococcaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Veillonellaceae (9)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 

Fusobacteria,                  

Fusobacteriia,                  

Fusobacteriaceae (1) [GPT-5]  1.8 2.8 3.0 4.2  20 12  29 23  22 21 17 35 
Gemmatimonadetes,                  

Gemmatimonadaceae (15)  0.3 0.3 0.4 0.2  0.2 0.1  0.1 0.1  0.1 0.1 0.2 0.1 
Unassigned Gemmatimonadetes (4)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 

Latescibacteria,                  

Unassigned Latescibacteria (8)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Nitrospirae,                  

Nitrospira,                  

Nitrospiraceae (5)  0.1 0.1 0.1 0.1  0.1 0.0  0.0 0.0  0.0 0.0 0.1 0.0 
Unassigned Nitrospirales (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 

Unassigned Nitrospira (12)  0.7 0.9 0.8 0.7  0.5 0.1  0.4 0.1  0.4 0.3 0.4 0.3 
Planctomycetes,                  

Phycisphaerae,                  

Phycisphaeraceae (9)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Tepidisphaeraceae (40)  0.9 0.9 1.1 0.6  0.4 0.1  0.4 0.2  0.3 0.3 0.3 0.2 
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Sampling Time:  0 h  10 h  22 h  30 h 

 
Treatment:  C G F S  C G  C G  C G F S 

Phyla, Class, Familyb   Relative Abundance (%) 
                 

Unassigned Phycisphaerae (4)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Planctomycetacia,                  

Planctomycetaceae (400)  3.8 3.9 3.7 2.7  2.4 0.7  2.0 1.0  2.1 1.6 1.9 1.3 
Unassigned Planctomycetes (23)  0.1 0.1 0.1 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.1 0.0 

Proteobacteria,                  

Alphaproteobacteria                  

Acetobacteraceae (6)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Beijerinckiaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Bradyrhizobiaceae (2)  0.7 0.9 0.8 0.6  0.4 0.1  0.4 0.1  0.4 0.2 0.3 0.2 
Caulobacteraceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Erythrobacteraceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Holosporaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Hyphomicrobiaceae (6)  0.9 0.8 0.8 0.7  0.4 0.2  0.4 0.2  0.4 0.2 0.4 0.4 
Methylobacteriaceae (3)  0.1 0.1 0.2 0.2  0.1 0.0  0.1 0.1  0.1 0.1 0.1 0.1 
Phyllobacteriaceae (3)  0.4 0.3 0.4 0.3  0.2 0.0  0.1 0.1  0.2 0.1 0.1 0.2 
Rhizobiaceae (2)  0.1 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Unassigned Rhizobiales (9)  0.3 0.3 0.3 0.2  0.1 0.0  0.1 0.1  0.1 0.0 0.1 0.1 
Rhodobacteraceae (5)  0.1 0.1 0.1 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.1 
Rhodobiaceae (2)  1.9 1.6 1.7 1.1  0.8 0.3  0.7 0.2  0.7 0.4 0.9 0.6 
Rhodospirillaceae (12)  0.6 1.0 1.0 0.5  0.4 0.1  0.4 0.2  0.3 0.2 0.4 0.3 
Unassigned Rhodospirillales (13)  0.6 0.5 0.7 0.4  0.3 0.1  0.3 0.1  0.3 0.2 0.3 0.2 
Sphingomonadaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Unassigned Sphingomonadales (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Xanthobacteraceae (4)  2.8 2.7 2.5 2.0  1.3 0.4  1.2 0.6  1.0 0.6 1.1 1.0 
Unassigned Rickettsiales (2)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Unassigned Alphaproteobacteria (12)  0.1 0.1 0.2 0.1  0.1 0.0  0.1 0.0  0.1 0.0 0.1 0.0 

Betaproteobacteria,                  

Alcaligenaceae (2)  0.2 0.1 0.1 0.1  0.1 0.0  0.1 0.0  0.1 0.0 0.1 0.0 
Burkholderiaceae (4)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Comamonadaceae (9)  0.1 0.1 0.1 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Oxalobacteraceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Neisseriaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Nitrosomonadaceae (17)  0.3 0.4 0.4 0.3  0.2 0.1  0.2 0.1  0.1 0.1 0.1 0.2 
Rhodocyclaceae (3)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Unassigned Betaproteobacteria (20)  0.3 0.3 0.2 0.2  0.1 0.1  0.1 0.0  0.1 0.0 0.1 0.1 

Deltaproteobacteria,                  

Bdellovibrionaceae (9)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Desulfovibrionaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.1 
Desulfurellaceae (21)  1.3 1.1 1.3 1.0  0.6 0.2  0.6 0.3  0.5 0.4 0.6 0.3 
Desulfuromonadaceae (2)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Geobacteraceae (8)  0.1 0.1 0.1 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Archangiaceae (5)  0.1 0.1 0.1 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.1 0.0 
Haliangiaceae (32)  0.2 0.2 0.2 0.1  0.2 0.0  0.1 0.0  0.1 0.1 0.1 0.1 
Myxococcaceae (2)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Unassigned Myxococcales (45)  0.2 0.2 0.2 0.1  0.1 0.0  0.1 0.0  0.1 0.0 0.1 0.1 
Nannocystaceae (4)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Phaselicystidaceae (3)  0.1 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Polyangiaceae (18)  0.1 0.1 0.1 0.1  0.1 0.0  0.0 0.0  0.0 0.0 0.1 0.0 
Sandaracinaceae (19)  0.1 0.1 0.1 0.1  0.1 0.0  0.0 0.0  0.1 0.0 0.0 0.0 
Vulgatibacteraceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Oligoflexaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Unassigned Oligoflexales (6)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Unassigned Deltaproteobacteria (8)  0.0 0.1 0.1 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 

Epsilonproteobacteria,                  

Campylobacteraceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Gammaproteobacteria                  

Aeromonadaceae (2) [GPT-1]  17 15 20 29  26 67  17 48  16 35 15 12 
Coxiellaceae (2)  0.1 0.1 0.1 0.1  0.1 0.0  0.1 0.0  0.0 0.0 0.0 0.0 
Enterobacteriaceae (6) [GPT-2], [GPT-3]  1.6 1.8 2.5 3.0  3.2 2.4  3.4 2.6  3.1 2.2 3.3 3.0 
Halieaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
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Treatment:  C G F S  C G  C G  C G F S 

Phyla, Class, Familyb   Relative Abundance (%) 
                 

Legionellaceae (3)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Pseudomonadaceae (2)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Shewanellaceae (2)  3.1 3.8 3.6 4.2  6.9 2.3  8.6 3.6  9.2 4.6 8.9 6.7 
Xanthomonadaceae (3)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Unassigned Xanthomonadales (14)  0.3 0.2 0.3 0.2  0.2 0.0  0.1 0.0  0.1 0.1 0.1 0.1 
Unassigned Gammaproteobacteria (3)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 

Saccharibacteria,                  

Unassigned Saccharibacteria (8)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Spirochaetae,                  

Spirochaetes,,                  
Spirochaetaceae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 

Tectomicrobia                  

Unassigned Tectomicrobia (16)  0.4 0.4 0.4 0.3  0.3 0.1  0.2 0.1  0.2 0.1 0.1 0.1 
Tenericutes,                  

Mollicutes,                  

Mycoplasmataceae (6)  18 20 16 16  11 5.1  9.0 6.2  11 8.8 11 9.6 
Unassigned Entomoplasmatales (3)  0.1 0.2 0.1 0.1  0.0 0.0  0.0 0.0  0.1 0.0 0.0 0.0 

TM6_Dependentiae,                  

Unassigned TM6_Dependentiae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Verrucomicrobia,                  

Unassigned OPB35 soil group (29)  0.2 0.2 0.2 0.2  0.1 0.0  0.1 0.0  0.0 0.0 0.0 0.0 
Spartobacteria,                  

Chthoniobacteraceae (16)  0.1 0.1 0.1 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Xiphinematobacteraceae (3)  1.8 2.0 2.1 1.6  1.0 0.3  1.3 0.5  1.1 0.9 0.9 0.7 
Unassigned Chthoniobacterales  (19)  1.7 1.4 1.2 1.1  0.8 0.3  0.7 0.3  0.8 0.5 0.6 0.5 

Opitutae,                  

Opitutaceae (2)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 
Unassigned Opitutae (1)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 

Verrucomicrobiae,                  

Verrucomicrobiaceae (7)  0.0 0.1 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.1 0.0 0.1 

Archeae                 
Thaumarchaeota,                  

Unassigned Thaumarchaeota (5)  0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 

 

 

(B) 16S rRNA 

 Sampling Time:  0 h  10 h  22 h  30 h 

 Treatment:  C1 C2 C3 G F S  C G  C G  C1 C2 C3 G1 G2 G3 F1 F2 F3 S1 S2 S3 

Phyla, Class, Familyb  Relative Abundance (%) 
                           

Acidobacteria,                           
Acidobacteria,                           

Acidobacteriaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Blastocatellia,                            

Blastocatellaceae (9)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0  0.1 0.1  0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 
Holophagae,                            

Unassigned Holophagae (4)  0.0 0.0 0.0 0.0 0.1 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Solibacteres,                            

Solibacteraceae (10)  0.1 0.2 0.2 0.1 0.1 0.1  0.1 0.0  0.1 0.0  0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 
Subgroup_11 (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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 Sampling Time:  0 h  10 h  22 h  30 h 

 Treatment:  C1 C2 C3 G F S  C G  C G  C1 C2 C3 G1 G2 G3 F1 F2 F3 S1 S2 S3 

Phyla, Class, Familyb  Relative Abundance (%) 
                           

Subgroup_17 (9)  0.0 0.0 0.0 0.0 0.0 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_18 (1)  0.0 0.0 0.1 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_22 (5)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_25 (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_5 (6)  0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_6 (49)  0.8 0.5 0.6 0.7 0.8 0.6  0.3 0.1  0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 
Subgroup_9 (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Actinobacteria,                            
Acidimicrobiia,                            

Acidimicrobiaceae (17)  1.3 1.5 1.2 1.2 1.2 1.1  0.7 0.3  0.7 0.3  0.8 0.7 0.6 0.3 0.4 0.4 0.9 0.8 0.7 0.6 0.6 0.7 
Iamiaceae (8)  0.1 0.1 0.3 0.2 0.1 0.2  0.1 0.0  0.2 0.1  0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 
Unassigned Acidimicrobiales (39)  1.8 1.6 1.9 1.7 1.6 1.5  1.0 0.5  0.9 0.4  1.0 0.9 0.8 0.3 0.6 0.4 0.7 0.9 0.9 1.1 0.8 0.6 

Actinobacteria,                            
Acidothermaceae (4)  0.0 0.0 0.0 0.1 0.1 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 
Actinomycetaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bifidobacteriaceae (3)  0.0 0.0 0.0 0.0 0.0 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bogoriellaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cellulomonadaceae (1)  0.2 0.2 0.1 0.2 0.2 0.1  0.1 0.0  0.0 0.0  0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 
Corynebacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cryptosporangiaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Demequinaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Frankiaceae (3)  0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0  0.0 0.0  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 
Geodermatophilaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Intrasporangiaceae (3)  0.1 0.1 0.1 0.2 0.1 0.1  0.1 0.0  0.0 0.1  0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.1 
Kineosporiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Microbacteriaceae (6)  0.1 0.1 0.2 0.2 0.2 0.1  0.1 0.1  0.0 0.0  0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 
Micrococcaceae (1)  0.1 0.1 0.1 0.2 0.2 0.2  0.1 0.0  0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.1 
Micromonosporaceae (18)  0.7 0.9 0.9 1.2 0.8 0.8  0.6 0.2  0.4 0.2  0.5 0.4 0.5 0.2 0.3 0.3 0.8 0.4 0.5 0.5 0.4 0.5 
Mycobacteriaceae (5)  0.2 0.1 0.1 0.2 0.2 0.2  0.1 0.0  0.1 0.0  0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 
Nakamurellaceae (2)  0.1 0.1 0.1 0.0 0.1 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 
Nocardiaceae (6)  0.0 0.0 0.1 0.1 0.1 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nocardioidaceae (25)  1.1 0.8 1.0 0.9 0.8 0.7  0.4 0.2  0.4 0.2  0.4 0.5 0.4 0.2 0.2 0.2 0.7 0.4 0.5 0.5 0.4 0.5 
Promicromonosporaceae (2)  0.1 0.1 0.1 0.1 0.2 0.1  0.1 0.0  0.1 0.1  0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.1 0.1 0.2 0.1 0.1 
Propionibacteriaceae (6)  0.2 0.2 0.1 0.3 0.2 0.3  0.2 0.1  0.1 0.1  0.2 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 
Pseudonocardiaceae (10)  0.5 0.5 0.6 0.7 0.7 0.6  0.4 0.1  0.4 0.2  0.4 0.3 0.2 0.2 0.2 0.1 0.5 0.4 0.3 0.4 0.2 0.4 
Sporichthyaceae (3)  0.0 0.0 0.0 0.0 0.1 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 
Streptomycetaceae (4)  0.4 0.3 0.3 0.3 0.5 0.3  0.2 0.1  0.2 0.1  0.2 0.2 0.2 0.1 0.1 0.1 0.3 0.3 0.2 0.3 0.2 0.2 
Streptosporangiaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermomonosporaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Frankiales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Actinobacteria (4)  0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0  0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0 

Coriobacteriia,                           
Coriobacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Rubrobacteria,                            
Rubrobacteriaceae (4)  0.1 0.2 0.3 0.2 0.3 0.2  0.1 0.1  0.2 0.0  0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Thermoleophilia,                            
Gaiellaceae (7)  0.7 0.7 0.7 0.8 0.7 0.7  0.5 0.2  0.5 0.2  0.4 0.3 0.4 0.1 0.2 0.2 0.3 0.2 0.3 0.5 0.3 0.3 
Parviterribacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Patulibacteraceae (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Solirubrobacteraceae (4)  0.9 0.8 1.0 1.0 0.8 0.8  0.5 0.2  0.5 0.2  0.5 0.4 0.4 0.2 0.3 0.3 0.4 0.3 0.4 0.7 0.5 0.4 
Unassigned Solirubrobacterales (16)  0.3 0.4 0.4 0.4 0.3 0.3  0.3 0.1  0.2 0.1  0.2 0.1 0.1 0.1 0.0 0.1 0.1 0.2 0.2 0.4 0.2 0.3 
Unassigned Gaiellales (27)  1.1 1.2 1.1 1.0 1.1 0.9  0.6 0.3  0.4 0.2  0.4 0.5 0.6 0.2 0.3 0.2 0.5 0.4 0.6 0.9 0.6 0.5 
Unassigned Thermoleophilia (36)  0.6 0.3 0.4 0.3 0.3 0.3  0.2 0.1  0.2 0.1  0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.1 0.3 0.4 0.1 0.2 
Unassigned Actinobacteria (23)  0.5 0.4 0.4 0.5 0.5 0.4  0.2 0.1  0.2 0.1  0.4 0.3 0.2 0.1 0.1 0.1 0.3 0.2 0.4 0.3 0.2 0.2 

Armatimonadetes,                             
Unassigned Armatimonadetes  (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Bacteroidetes,                            
Bacteroidia,                            

Bacteroidaceae (5)  0.0 0.1 0.0 0.0 0.0 0.3  0.0 0.0  9.3 0.0  0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 
Porphyromonadaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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 Sampling Time:  0 h  10 h  22 h  30 h 

 Treatment:  C1 C2 C3 G F S  C G  C G  C1 C2 C3 G1 G2 G3 F1 F2 F3 S1 S2 S3 

Phyla, Class, Familyb  Relative Abundance (%) 
                           

Prevotellaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rikenellaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingobacteriia                            
Chitinophagaceae (9)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cytophagia,                            
Cytophagaceae (11)  0.0 0.1 0.1 0.1 0.1 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Flavobacteriia,                            
Flavobacteriaceae (7)  0.2 0.4 0.2 0.3 0.5 0.2  0.3 0.2  0.2 0.1  0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.2 0.2 0.0 0.0 0.1 

Sphingobacteriia,                            
Saprospiraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingobacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriales (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

BRC1,                            
Unassigend BRC1 (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Chlamydiae,                            
Chlamydiae,                            

Chlamydiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Parachlamydiaceae (13)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Chlorobi,                            
Chlorobiales,                            

 Unassigned Chlorobiales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chloroflexi,,                            

Anaerolineae                            
Anaerolineaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ardenticatenia (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Caldilineae,                            
Caldilineaceae (11)  0.1 0.0 0.1 0.2 0.1 0.1  0.0 0.0  0.1 0.0  0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 

Chloroflexia,                            
Unassigned Kallotenuales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Roseiflexaceae (6)  0.1 0.1 0.1 0.0 0.1 0.1  0.0 0.0  0.1 0.0  0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

Ktedonobacteria,                            
Ktedonobacteraceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermosporotrichaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacterales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacteria (5)  0.0 0.0 0.1 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Thermomicrobia (28)  0.2 0.2 0.3 0.3 0.2 0.2  0.1 0.1  0.1 0.0  0.2 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.1 0.1 0.1 

Unassigned Chloroflexi (41)  0.6 0.8 0.8 1.0 0.9 0.6  0.5 0.2  0.5 0.2  0.4 0.3 0.3 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.4 0.4 
Cyanobacteria,                            

Chloroplast,                             
Unassigned Chloroplast (5)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cyanobacteria,                            
Unassigned Cyanobacteria (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Cyanobacteria (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Elusimicrobia,                            

Unassigned Elusimicrobia (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Fibrobacteres,                            

Fibrobacteria,                            
Fibrobacteraceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Firmicutes,                            
Bacilli,                            

Aerococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Alicyclobacillaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bacillaceae (9)  1.3 1.2 1.5 1.1 1.3 1.2  0.8 0.5  0.7 0.6  1.1 1.1 1.2 1.0 1.0 0.7 1.6 1.3 1.4 1.2 0.6 0.9 
Enterococcaceae (1)  0.0 1.3 0.0 0.0 0.0 0.0  0.0 0.8  1.0 0.0  0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.7 0.0 0.0 
Lactobacillaceae (2)  0.1 0.0 0.0 0.0 0.2 0.1  0.1 0.0  0.0 0.0  0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 
Paenibacillaceae (22)  0.1 0.1 0.0 0.0 0.1 0.1  0.1 0.0  0.1 0.1  0.1 0.2 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.3 0.2 0.1 
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 Sampling Time:  0 h  10 h  22 h  30 h 

 Treatment:  C1 C2 C3 G F S  C G  C G  C1 C2 C3 G1 G2 G3 F1 F2 F3 S1 S2 S3 

Phyla, Class, Familyb  Relative Abundance (%) 
                           

Planococcaceae (7)  0.0 0.0 0.0 0.0 0.0 0.1  0.0 0.0  0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 
Staphylococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoactinomycetaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Streptococcaceae (3)  0.1 0.0 0.2 0.1 0.0 0.0  0.1 0.1  0.0 0.2  0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.3 
Unassigned Lactobacillales (1)  0.0 0.0 0.1 0.0 0.0 0.2  0.0 0.0  0.3 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 
Unassigned Bacilli (2)  0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Clostridia,                            
Clostridiaceae (22) [A14]  0.3 0.4 0.2 0.3 0.4 0.3  0.7 0.4  1.6 1.6  2.4 2.0 2.1 3.4 4.1 3.6 3.1 3.2 3.5 2.2 2.0 1.9 
Unassigned Clostridiales (7)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.1 0.0  0.3 0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.2 
Eubacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gracilibacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Heliobacteriaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Lachnospiraceae (24)  0.0 0.0 0.0 0.0 0.1 0.2  0.1 0.0  1.1 0.5  3.1 4.1 4.3 3.0 3.2 4.0 2.5 3.5 5.6 5.2 4.7 4.8 
Peptococcaceae (5)  0.7 0.7 0.9 0.6 0.8 0.8  0.7 0.3  0.5 0.5  0.7 0.4 0.7 0.4 0.6 0.5 0.7 0.8 1.0 0.7 0.8 0.8 
Peptostreptococcaceae (6) [GPT-4], [A8]  0.1 0.1 0.2 0.0 0.2 0.2  1.8 0.5  3.1 2.4  3.2 3.1 3.5 3.6 4.3 4.2 7.9 7.6 9.4 3.1 2.6 2.2 
Ruminococcaceae (28)  0.0 0.0 0.0 0.0 0.0 0.1  0.0 0.0  0.0 0.0  0.1 0.2 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 

Erysipelotrichia,                            
Erysipelotrichaceae (6)  0.0 0.0 0.0 0.0 0.8 0.0  0.0 0.0  0.0 0.0  0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 

Limnochordia,                            
Unassigned Limnochordales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Negativicutes,                            
Acidaminococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Veillonellaceae (9)  0.0 0.0 0.0 0.0 0.0 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fusobacteria,                            
Fusobacteriia,                            

Fusobacteriaceae (1) [GPT-5]  1.3 1.5 0.6 1.3 1.2 1.4  13 10  20 22  23 18 17 16 15 15 15 16 11 22 29 30 
Gemmatimonadetes,                            

Gemmatimonadaceae (15)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0  0.1 0.0  0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.1 
Unassigned Gemmatimonadetes (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Latescibacteria,                            
Unassigned Latescibacteria (8)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Nitrospirae,                            
Nitrospira,                            

Nitrospiraceae (5)  0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0  0.0 0.0  0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.1 0.0 0.0 
Unassigned Nitrospirales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Nitrospira (12)  0.4 0.5 0.5 0.5 0.5 0.4  0.3 0.1  0.3 0.1  0.3 0.2 0.2 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3 
Planctomycetes,                            

Phycisphaerae,                            
Phycisphaeraceae (9)  0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tepidisphaeraceae (40)  0.7 1.2 1.1 1.2 0.8 0.4  0.3 0.1  0.3 0.1  0.6 0.2 0.3 0.1 0.1 0.1 0.3 0.4 0.2 0.1 0.2 0.1 
Unassigned Phycisphaerae (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Planctomycetacia,                            
Planctomycetaceae (400)  8.2 9.8 8.6 8.4 7.5 5.6  4.1 1.5  4.3 1.8  5.8 5.1 5.6 2.1 2.8 2.9 6.8 6.6 5.1 3.7 5.2 4.7 

Unassigned Planctomycetes (23)  0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Proteobacteria,                            

Alphaproteobacteria                            
Acetobacteraceae (6)  0.0 0.1 0.0 0.1 0.0 0.0  0.1 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 
Beijerinckiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bradyrhizobiaceae (2)  0.7 0.8 0.9 1.0 1.1 0.9  0.5 0.2  0.5 0.3  0.5 0.4 0.4 0.2 0.2 0.2 0.4 0.4 0.3 0.4 0.2 0.5 
Caulobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Erythrobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Holosporaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Hyphomicrobiaceae (6)  0.3 0.4 0.4 0.4 0.3 0.3  0.3 0.1  0.2 0.1  0.1 0.3 0.2 0.0 0.1 0.0 0.2 0.1 0.2 0.3 0.2 0.1 
Methylobacteriaceae (3)  0.1 0.1 0.2 0.2 0.2 0.2  0.1 0.1  0.1 0.0  0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.2 0.1 0.2 
Phyllobacteriaceae (3)  0.2 0.2 0.3 0.5 0.2 0.3  0.2 0.0  0.1 0.1  0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 
Rhizobiaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Rhizobiales (9)  0.1 0.1 0.2 0.1 0.2 0.1  0.1 0.0  0.1 0.0  0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 
Rhodobacteraceae (5)  0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.0  0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 
Rhodobiaceae (2)  0.3 0.3 0.2 0.3 0.3 0.3  0.2 0.1  0.1 0.1  0.2 0.2 0.2 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.2 
Rhodospirillaceae (12)  0.7 0.7 0.9 1.2 1.1 1.0  0.5 0.2  0.4 0.2  0.5 0.6 0.4 0.3 0.3 0.2 0.6 0.7 0.5 0.7 0.4 0.6 



APPENDIX 310 

 

 
 

 Sampling Time:  0 h  10 h  22 h  30 h 

 Treatment:  C1 C2 C3 G F S  C G  C G  C1 C2 C3 G1 G2 G3 F1 F2 F3 S1 S2 S3 

Phyla, Class, Familyb  Relative Abundance (%) 
                           

Unassigned Rhodospirillales (13)  0.4 0.4 0.4 0.7 0.6 0.6  0.3 0.1  0.3 0.1  0.2 0.4 0.3 0.1 0.1 0.1 0.3 0.3 0.2 0.4 0.2 0.3 
Sphingomonadaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingomonadales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthobacteraceae (4)  0.5 0.8 0.7 1.0 0.6 0.6  0.3 0.1  0.4 0.1  0.4 0.5 0.4 0.1 0.2 0.1 0.4 0.4 0.3 0.6 0.3 0.3 
Unassigned Rickettsiales (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Alphaproteobacteria (12)  0.1 0.1 0.1 0.1 0.2 0.1  0.1 0.0  0.1 0.0  0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 

Betaproteobacteria,                            
Alcaligenaceae (2)  0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 
Burkholderiaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Comamonadaceae (9)  0.0 0.1 0.1 0.1 0.1 0.2  0.1 0.0  0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oxalobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Neisseriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrosomonadaceae (17)  0.1 0.2 0.2 0.1 0.2 0.2  0.1 0.1  0.1 0.0  0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 
Rhodocyclaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Betaproteobacteria (20)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Deltaproteobacteria,                            
Bdellovibrionaceae (9)  0.1 0.1 0.0 0.1 0.1 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 
Desulfovibrionaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Desulfurellaceae (21)  0.4 0.4 0.5 0.6 0.7 0.6  0.4 0.1  0.3 0.1  0.3 0.2 0.3 0.1 0.1 0.1 0.2 0.1 0.3 0.4 0.2 0.4 
Desulfuromonadaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Geobacteraceae (8)  0.1 0.1 0.0 0.1 0.0 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 
Archangiaceae (5)  0.1 0.1 0.2 0.2 0.1 0.1  0.1 0.0  0.1 0.0  0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.1 
Haliangiaceae (32)  0.2 0.2 0.2 0.2 0.2 0.1  0.2 0.0  0.1 0.1  0.2 0.1 0.2 0.1 0.1 0.0 0.1 0.1 0.1 0.3 0.2 0.2 
Myxococcaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Myxococcales (45)  0.2 0.2 0.3 0.3 0.3 0.2  0.2 0.0  0.1 0.1  0.3 0.2 0.2 0.1 0.1 0.0 0.1 0.1 0.1 0.3 0.1 0.2 
Nannocystaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phaselicystidaceae (3)  0.0 0.0 0.1 0.1 0.1 0.1  0.1 0.0  0.0 0.0  0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.1 
Polyangiaceae (18)  0.3 0.2 0.4 0.3 0.3 0.2  0.1 0.0  0.1 0.0  0.1 0.1 0.2 0.0 0.1 0.0 0.2 0.1 0.2 0.3 0.2 0.2 
Sandaracinaceae (19)  0.1 0.1 0.1 0.1 0.2 0.2  0.1 0.0  0.1 0.0  0.0 0.2 0.2 0.1 0.1 0.0 0.1 0.1 0.1 0.2 0.1 0.1 
Vulgatibacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oligoflexaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Oligoflexales (6)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Deltaproteobacteria (8)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Epsilonproteobacteria,                            
Campylobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Gammaproteobacteria                            
Aeromonadaceae (2) [GPT-1]  23 21 15 16 17 22  31 62  23 46  20 23 20 46 41 39 24 18 15 16 13 13 
Coxiellaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Enterobacteriaceae (6) [GPT-2], [GPT-3]  3.3 3.1 7.0 3.1 5.8 7.2  6.0 4.0  4.1 4.1  3.0 3.5 3.5 4.6 4.0 4.6 4.0 4.2 4.7 4.6 3.2 4.2 
Halieaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Legionellaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Pseudomonadaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Shewanellaceae (2)  1.8 1.5 0.9 1.2 1.2 0.8  1.3 0.7  1.7 0.7  2.1 3.3 3.3 1.9 1.5 1.6 1.5 2.3 1.3 1.4 1.5 1.5 
Xanthomonadaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Xanthomonadales (14)  0.1 0.1 0.1 0.1 0.1 0.0  0.1 0.0  0.0 0.0  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 
Unassigned Gammaproteobacteria (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Saccharibacteria,                            
Unassigned Saccharibacteria (8)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Spirochaetae,                            
Spirochaetes,,                            

Spirochaetaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tectomicrobia                            

Unassigned Tectomicrobia (16)  0.8 0.8 1.2 1.2 1.4 1.4  0.8 0.3  0.8 0.3  0.6 0.8 0.8 0.5 0.5 0.4 1.0 0.8 0.6 1.0 0.7 0.8 
Tenericutes,                            

Mollicutes,                            
Mycoplasmataceae (6)  36 33 32 37 35 35  25 12  15 13  21 22 25 12 15 17 19 23 27 21 26 22 
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 Sampling Time:  0 h  10 h  22 h  30 h 

 Treatment:  C1 C2 C3 G F S  C G  C G  C1 C2 C3 G1 G2 G3 F1 F2 F3 S1 S2 S3 

Phyla, Class, Familyb  Relative Abundance (%) 
                           

Unassigned Entomoplasmatales (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
TM6_Dependentiae,                            

Unassigned TM6_Dependentiae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Verrucomicrobia,                            

Unassigned OPB35 soil group (29)  0.1 0.1 0.2 0.1 0.1 0.2  0.1 0.0  0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Spartobacteria,                            

Chthoniobacteraceae (16)  0.0 0.0 0.0 0.0 0.1 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xiphinematobacteraceae (3)  1.4 2.2 2.3 2.8 2.4 1.8  1.3 0.5  1.0 0.8  1.7 1.2 1.0 0.6 0.7 0.5 1.0 1.3 1.5 0.9 1.0 1.2 
Unassigned Chthoniobacterales  (19)  0.3 0.4 0.3 0.3 0.3 0.3  0.1 0.1  0.1 0.1  0.2 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 

Opitutae,                            
Opitutaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Opitutae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Verrucomicrobiae,                            
Verrucomicrobiaceae (7)  0.0 0.0 3.8 0.0 0.0 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Archeae                           
Thaumarchaeota,                            

Unassigned Thaumarchaeota (5)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

aSamples of the three replicates of the 16S rRNA control treatment at 0 h, and all 16S rRNA treatments at 30 h were analyzed separately.  Samples of the three replicates were pooled for each 
of the other treatments at 0 h, 10 h, 22h, or 30 h.  Identification numbers (e.g., C1) indicate the respective replicates.  Abbreviations: C, unsupplemented control; S, succinate; F, formate; G, 
glucose.  Table modified and used with permission from Zeibich et al., 2019b. 

bThe number of phylotypes are shown in parenthesis.  Abundant responsive group phylotypes from Figure 59 are bold and in brackets. 

Table A9.  Summary of all detected families in the yeast extract experiment with gut content (A) and soil (B) treatments based on 16S rRNA gene and 16S rRNA 

anaylsis (Section 3.3.2).a 

(A) Gut Content 

 Sampling Time:  0 h  40 h 

 Treatmenta:  C1.D C2.D C3.D E.D C.R E.R  C.D E.D C1.R C2.R C3.R E1.R E2.R E3.R 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Acidobacteria, 
                

Acidobacteria,                 

Acidobacteriaceae (7)  0.1 0.1 0.1 0.1 0.1 0.0  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Blastocatellia,                  

Blastocatellaceae (25)  0.3 0.3 0.4 0.5 0.2 0.2  0.3 0.1 0.1 0.1 0.2 0.0 0.0 0.0 
Holophagae,                  

Subgroup_10 (10)  0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_7 (9)  0.2 0.2 0.2 0.1 0.1 0.0  0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 
Unassigned Acidobacteriales (6)  0.1 0.1 0.2 0.1 0.2 0.0  0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 

Solibacteres,                  

Solibacteraceae (25)  0.4 0.3 0.3 0.2 0.6 0.7  0.2 0.0 0.3 0.2 0.3 0.0 0.0 0.1 
Subgroup_11 (6)  0.1 0.1 0.2 0.1 0.1 0.1  0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
Subgroup_17 (22)  0.5 0.7 0.6 0.8 0.3 0.2  0.3 0.1 0.0 0.1 0.1 0.0 0.0 0.0 
Subgroup_22 (26)  0.2 0.3 0.3 0.4 0.2 0.3  0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
Subgroup_25 (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_6 (106)  5.3 5.5 6.0 4.4 4.0 2.6  3.4 0.5 0.8 0.9 1.1 0.2 0.2 0.1 
Unassigned Acidobacteria (25)  0.3 0.2 0.2 0.2 0.2 0.4  0.2 0.0 0.1 0.1 0.1 0.0 0.0 0.0 

Actinobacteria                 

Actinobacteria,                  
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 Sampling Time:  0 h  40 h 

 Treatmenta:  C1.D C2.D C3.D E.D C.R E.R  C.D E.D C1.R C2.R C3.R E1.R E2.R E3.R 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Acidimicrobiaceae (18)  1.7 1.9 1.9 2.2 1.4 1.2  1.1 0.3 1.1 1.3 1.3 0.2 0.2 0.2 
Iamiaceae (8)  0.2 0.3 0.2 0.4 0.1 0.1  0.2 0.0 0.1 0.1 0.1 0.0 0.0 0.0 
Unassigned Acidimicrobiales (54)  3.9 4.4 3.7 5.1 1.9 1.6  2.4 0.5 1.7 2.0 2.1 0.1 0.2 0.4 

Actinobacteria,                 

Actinomycetaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Catenulisporaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mycobacteriaceae (8)  1.2 1.2 1.2 0.8 0.5 0.4  0.7 0.1 0.3 0.3 0.2 0.0 0.1 0.0 
Nocardiaceae (7)  0.1 0.1 0.1 0.1 0.1 0.0  0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.0 
Acidothermaceae (5)  0.6 0.7 0.6 1.1 0.3 0.4  0.4 0.0 0.2 0.2 0.1 0.0 0.0 0.1 
Frankiaceae (3)  0.3 0.4 0.2 0.4 0.3 0.2  0.1 0.0 0.1 0.2 0.1 0.0 0.0 0.0 
Geodermatophilaceae (1)  0.0 0.0 0.0 0.0 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nakamurellaceae (3)  0.1 0.2 0.2 0.1 0.2 0.3  0.0 0.0 0.1 0.2 0.1 0.0 0.0 0.0 
Sporichthyaceae (4)  0.3 0.2 0.2 0.3 0.2 0.1  0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 
Unassigned Frankiales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Kineosporiaceae (1)  0.0 0.1 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cellulomonadaceae (1)  0.1 0.1 0.0 0.0 0.2 0.2  0.1 0.0 0.2 0.2 0.3 0.0 0.0 0.0 
Brevibacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Demequinaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
Intrasporangiaceae (3)  0.3 0.3 0.3 0.3 0.2 0.1  0.2 0.0 0.1 0.2 0.2 0.0 0.0 0.0 
Microbacteriaceae (5)  0.1 0.1 0.1 0.2 0.1 0.1  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Micrococcaceae (3)  0.2 0.2 0.2 0.2 0.3 0.3  0.1 0.0 0.1 0.1 0.2 0.0 0.0 0.0 
Promicromonosporaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Micromonosporaceae (30)  2.4 2.4 2.2 1.3 2.6 0.8  1.7 0.4 1.7 1.6 1.6 0.3 0.2 0.3 
Nocardioidaceae (21)  2.6 2.6 2.5 2.8 2.2 1.3  1.6 0.2 0.8 1.3 1.0 0.2 0.2 0.1 
Propionibacteriaceae (5)  0.3 0.3 0.3 0.3 0.1 0.2  0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 
Pseudonocardiaceae (11)  0.7 0.7 0.6 0.5 0.9 0.6  0.3 0.1 0.5 0.2 0.4 0.0 0.1 0.1 
Streptomycetaceae (2)  1.1 1.1 1.1 0.8 1.1 0.4  0.7 0.1 0.6 0.8 0.5 0.0 0.1 0.1 
Streptosporangiaceae (4)  0.1 0.2 0.2 0.1 0.0 0.0  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermomonosporaceae (6)  0.1 0.2 0.1 0.1 0.1 0.0  0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 
Unassigned Actinobacteria (3)  0.1 0.1 0.1 0.1 0.2 0.4  0.0 0.0 0.1 0.1 0.2 0.0 0.0 0.0 
KIST-JJY010 group (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
MB-A2-108 group (21)  3.3 3.3 3.0 4.0 0.9 0.5  1.8 0.4 0.4 0.5 0.5 0.1 0.1 0.1 

Rubrobacteria,                  

Rubrobacteriaceae (6)  0.6 0.7 0.4 0.8 0.5 0.6  0.2 0.1 0.1 0.3 0.3 0.0 0.1 0.0 
Thermoleophilia,                 

Gaiellaceae (6)  4.1 3.7 3.6 4.3 1.0 0.8  2.7 0.4 0.6 0.8 0.7 0.1 0.1 0.1 
Unassigned Gaiellales (32)  7.3 7.1 6.5 7.9 1.8 1.5  4.3 0.9 1.1 1.1 1.0 0.2 0.1 0.2 
Conexibacteraceae (2)  0.1 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Patulibacteraceae (7)  0.0 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 
Solirubrobacteraceae (4)  1.2 1.3 1.0 1.2 1.6 1.3  0.6 0.1 0.9 0.7 1.0 0.1 0.2 0.1 
Unassigned Solirubrobacterales (52)  4.9 5.0 4.7 4.2 1.2 0.9  2.8 0.5 0.9 0.8 0.9 0.2 0.1 0.1 

Armatimonadetes,                 

Chthonomonadales,                  

Chthonomonadaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chthonomonadales (5)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Armatimonadia,                  

Unassigned Armatimonadales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Armatimonadetes (13)  0.0 0.0 0.0 0.0 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Bacteroidetes,                  

Cytophagia,                  

Cytophagaceae (25)  0.1 0.2 0.1 0.2 0.2 0.3  0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 
Flavobacteriia,                  

Flavobacteriaceae (18)  0.1 0.1 0.1 0.2 0.2 2.7  0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.0 
Sphingobacteriia                  

Chitinophagaceae (43)  0.3 0.3 0.4 0.5 0.3 0.4  0.1 0.0 0.1 0.1 0.2 0.0 0.0 0.0 
Saprospiraceae (2)  0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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 Sampling Time:  0 h  40 h 

 Treatmenta:  C1.D C2.D C3.D E.D C.R E.R  C.D E.D C1.R C2.R C3.R E1.R E2.R E3.R 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Sphingobacteriaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriales (27)  0.0 0.0 0.0 0.1 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

BRC1,                  

Unassigned BCR1 (12)  0.1 0.0 0.0 0.0 0.1 0.1  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
Chlamydiae,                 

Chlamydiae,                  

Parachlamydiaceae (45)  0.1 0.2 0.2 0.1 0.1 0.0  0.2 0.0 0.1 0.1 0.1 0.0 0.0 0.0 
Simkaniaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chlamydiales (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Chlorobi,                 

Chlorobia,                  

Unassigned Chlorobiales (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chloroflexi,                  

Anaerolineae,                 

Anaerolineaceae (20)  0.0 0.1 0.0 0.1 0.1 0.0  0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 
Unassigned Ardenticatenia (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Caldilineae,                 

Caldilineaceae (12)  0.4 0.4 0.4 0.3 0.2 0.1  0.2 0.0 0.2 0.1 0.3 0.0 0.0 0.0 
Chloroflexia,                  

Unassigned Kallotenuales (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Roseiflexaceae (12)  0.4 0.4 0.4 0.4 0.5 0.2  0.2 0.0 0.2 0.1 0.2 0.0 0.0 0.0 

Cyanobacteria,                  

Chloroplast,                  

Trebouxiophyceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chloroplast (6)  0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Cyanobacteria (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 

Cyanobacteria,                  

Unassigned Cyanobacteria (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chloroflexi,                  

JG30-KF-CM66 group (13)  0.1 0.1 0.1 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
KD4-96 group (13)  2.9 3.2 2.9 4.8 1.0 1.1  1.8 0.3 0.5 0.4 0.6 0.1 0.1 0.1 

Ktedonobacteria,                  

Ktedonobacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermosporotrichaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacterales (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacteria (12)  0.3 0.3 0.3 0.3 0.3 0.1  0.2 0.0 0.2 0.1 0.2 0.0 0.0 0.0 

Melainabacteria,                  

Unassigned Obscuribacterales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
S085 group (11)  0.2 0.2 0.1 0.2 0.1 0.1  0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 
SBR2076 group (10)  0.1 0.1 0.0 0.1 0.0 0.0  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thermomicrobia,                  

Unassigned Thermomicrobia (33)  0.6 0.8 0.8 0.6 0.5 0.4  0.6 0.1 0.2 0.3 0.3 0.0 0.0 0.1 
TK10 group (15)  0.3 0.3 0.3 0.4 0.5 0.8  0.2 0.0 0.2 0.1 0.2 0.1 0.0 0.1 
Unassigned Chloroflexi (7)  0.4 0.3 0.4 0.6 0.1 0.1  0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0 

Deinococcus-Thermus,                  

Deinococci,                  

Unassigned Deinococci (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Elusimicrobia,                  

Elusimicrobia,                  

Unassigned Elusimicrobia (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Fibrobacteres,                  

Fibrobacteria,                  

Fibrobacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Firmicutes,                  

Bacilli,                  

Alicyclobacillaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bacillaceae (16) [E19]  2.0 1.6 1.7 0.9 2.2 1.0  11 3.0 5.5 6.2 5.7 1.9 1.7 1.7 
Paenibacillaceae (24)  0.2 0.2 0.2 0.1 0.2 0.1  1.5 0.5 0.5 0.4 0.8 0.3 0.4 0.2 
Pasteuriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Planococcaceae (7)  0.2 0.1 0.2 0.1 0.1 0.0  0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 
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 Sampling Time:  0 h  40 h 

 Treatmenta:  C1.D C2.D C3.D E.D C.R E.R  C.D E.D C1.R C2.R C3.R E1.R E2.R E3.R 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Staphylococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoactinomycetaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Aerococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Streptococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Lactobacillales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Bacillales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Bacilli (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.3 0.0 0.1 0.1 0.1 0.0 0.0 0.0 

Clostridia,                  

Caldicoprobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Christensenellaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Clostridiaceae (20) [E6, E13, E16, E17] ]  0.2 0.2 0.1 0.0 0.1 0.0  6.5 20 5.9 5.7 7.9 28 27 24 
Eubacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gracilibacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Heliobacteriaceae (9)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Lachnospiraceae (15)  0.1 0.1 0.1 0.0 0.2 0.5  1.8 6.8 1.5 1.1 1.4 7.0 5.6 6.5 
Peptococcaceae (6)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Peptostreptococcaceae (5) [E5, E4]  0.2 0.1 0.1 0.0 0.1 0.2  7.2 30 12 11 9.5 25 28 28 
Ruminococcaceae (16)  0.1 0.1 0.1 0.0 0.0 0.0  0.2 0.0 0.2 0.2 0.3 0.0 0.0 0.0 
Unassigned Clostridiales  (12)  0.1 0.0 0.0 0.0 0.0 0.0  2.1 0.2 1.8 1.5 1.7 0.3 0.3 0.3 
Thermoanaerobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Erysipelotrichia,                  

Erysipelotrichaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Limnochordia,                  

Limnochordaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Negativicutes,                  

Veillonellaceae (8)  0.0 0.0 0.0 0.0 0.0 0.0  0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Selenomonadales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fusobacteria,                  

Fusobacteriia,                  

Unassigned Fusobacteriales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
Gemmatimonadetes,                  

Gemmatimonadetes,                  

Gemmatimonadaceae (51)  1.0 1.0 1.1 1.1 0.6 0.3  0.5 0.1 0.3 0.2 0.3 0.0 0.1 0.1 
Unassigned Gemmatimonadetes (6)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Latescibacteria,                  

Unassigned Latescibacteria (37)  0.2 0.2 0.1 0.3 0.4 0.5  0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
Nitrospirae,                  

Nitrospira,                  

0319-6A21 group (16)  1.8 1.9 2.1 1.8 1.8 0.4  1.3 0.2 0.9 0.7 1.1 0.2 0.2 0.2 
Nitrospiraceae (10)  0.3 0.4 0.3 0.3 0.3 0.1  0.1 0.0 0.1 0.0 0.2 0.0 0.0 0.0 
Unassigned Nitrospira (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Parcubacteria,                  

Magasanikbacteria,                  

Unassigned Magasanikbacteria (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nomurabacteria,                  

Unassigned Nomurabacteria (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Parcubacteria (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Planctomycetes,                  

OM190 group,                 
Unassigned OM190 (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

BD7-11 group,                 
Unassigned BD7-11 (58)  0.3 0.3 0.4 0.5 0.5 0.5  0.2 0.0 0.1 0.1 0.1 0.0 0.0 0.0 

Phycisphaerae,                 

Phycisphaerae (27)  0.0 0.0 0.1 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tepidisphaeraceae (51)  1.4 1.4 1.6 1.9 1.7 1.1  0.8 0.2 0.7 0.9 0.8 0.2 0.2 0.2 
Unassigned Phycisphaerae (17)  0.1 0.1 0.1 0.1 0.2 0.1  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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 Sampling Time:  0 h  40 h 

 Treatmenta:  C1.D C2.D C3.D E.D C.R E.R  C.D E.D C1.R C2.R C3.R E1.R E2.R E3.R 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Planctomycetacia,                  

Planctomycetaceae (505)  8.2 8.2 8.6 8.6 20 12  6.9 1.8 17 19 15 4.3 4.2 3.7 
Unassigned Planctomycetes (15)  0.0 0.0 0.1 0.1 0.1 0.1  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

Proteobacteria,                  

Alphaproteobacteria,                  

Caulobacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 
Hyphomonadaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bradyrhizobiaceae (2)  1.4 1.5 1.5 1.2 2.4 2.3  0.9 0.2 1.8 1.6 2.3 0.2 0.3 0.2 
Hyphomicrobiaceae (7)  1.2 1.2 1.2 0.9 1.1 0.9  0.8 0.1 0.9 0.9 1.3 0.1 0.1 0.1 
Methylobacteriaceae (4)  0.3 0.3 0.3 0.2 0.3 0.4  0.2 0.0 0.2 0.4 0.4 0.0 0.0 0.0 
Phyllobacteriaceae (3)  0.5 0.4 0.4 0.3 0.5 0.6  0.2 0.0 0.3 0.3 0.4 0.1 0.0 0.1 
Rhizobiaceae (3)  0.0 0.1 0.0 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 
Rhodobiaceae (2)  1.6 1.5 1.5 1.0 0.6 0.2  1.5 0.3 0.7 0.6 0.7 0.1 0.0 0.1 
Xanthobacteraceae (4)  4.6 4.8 4.8 4.2 2.8 1.5  3.3 0.7 2.3 2.4 2.3 0.3 0.3 0.2 
Unassigned Rhizobiales (14)  0.5 0.5 0.5 0.5 0.5 0.4  0.2 0.1 0.4 0.2 0.3 0.1 0.0 0.0 
Rhodobacteraceae (4)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 
Acetobacteraceae (6)  0.1 0.1 0.1 0.1 0.2 0.3  0.1 0.0 0.2 0.1 0.1 0.0 0.0 0.0 
Rhodospirillaceae (15)  0.8 0.7 0.7 0.6 0.8 1.0  0.3 0.1 0.6 0.7 0.6 0.1 0.1 0.1 
Unassigned Rhodospirillales (32)  1.3 1.3 1.3 1.5 1.5 1.7  0.7 0.2 0.9 0.8 1.2 0.1 0.2 0.1 
Holosporaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Rickettsiales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Erythrobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingomonadaceae (6)  0.2 0.1 0.1 0.1 0.0 0.1  0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
Unassigned Sphingomonadales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Betaproteobacteria,                  

Alcaligenaceae (2)  0.1 0.1 0.1 0.1 0.2 0.1  0.2 0.0 0.1 0.2 0.2 0.0 0.0 0.0 
Burkholderiaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Comamonadaceae (12)  0.3 0.3 0.3 0.2 1.0 0.9  0.2 0.0 0.2 0.1 0.4 0.0 0.0 0.0 
Oxalobacteraceae (7)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Neisseriaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrosomonadaceae (35)  0.6 0.7 0.6 0.8 0.3 0.4  0.3 0.0 0.1 0.1 0.2 0.0 0.0 0.0 
Rhodocyclaceae (10)  0.0 0.0 0.0 0.1 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
SC-I-84 group (22)  0.6 0.7 0.7 0.3 0.5 0.1  0.8 0.1 0.1 0.1 0.1 0.0 0.0 0.0 
TRA3-20 group (5)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 
Unassigned Betaproteobacteria (3)  0.1 0.0 0.0 0.0 0.1 0.0  0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

Deltaproteobacteria,                  

Bacteriovoracaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bdellovibrionaceae (16)  0.1 0.1 0.1 0.0 0.2 0.1  0.1 0.0 0.1 0.1 0.2 0.0 0.0 0.0 
Desulfarculaceae (37)  2.0 2.1 2.1 1.8 1.4 0.8  1.2 0.2 0.5 0.6 1.1 0.2 0.1 0.2 
Desulfuromonadaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Geobacteraceae (14)  0.3 0.3 0.3 0.4 0.4 0.4  0.2 0.1 0.1 0.2 0.4 0.0 0.0 0.0 
Archangiaceae (9)  0.1 0.2 0.1 0.1 0.3 0.2  0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.1 
Haliangiaceae (57)  0.5 0.5 0.4 0.2 0.8 0.3  0.4 0.0 0.5 0.7 0.7 0.1 0.1 0.1 
Myxococcaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nannocystaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phaselicystidaceae (5)  0.2 0.2 0.1 0.1 0.2 0.1  0.1 0.0 0.2 0.2 0.2 0.0 0.0 0.0 
Polyangiaceae (28)  0.2 0.2 0.1 0.0 0.5 0.2  0.1 0.1 0.3 0.4 0.5 0.1 0.0 0.1 
Sandaracinaceae (23)  0.1 0.1 0.1 0.1 0.4 0.1  0.1 0.0 0.3 0.2 0.3 0.1 0.0 0.0 
Vulgatibacteraceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Myxococcales (71)  0.4 0.4 0.5 0.3 1.0 0.6  0.2 0.0 0.5 0.6 0.5 0.1 0.1 0.1 
NB1-j group (13)  0.1 0.1 0.1 0.2 0.1 0.1  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oligoflexaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Oligoflexales (24)  0.1 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 

Gammaproteobacteria,                  

Acidiferrobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Aeromonadaceae (2) [E3]  0.3 0.2 0.2 1.0 1.1 12  3.3 5.9 0.2 0.8 0.5 2.3 2.9 2.7 
Shewanellaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cellvibrionaceae (1)  0.0 0.0 0.0 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Halieaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Spongiibacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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 Sampling Time:  0 h  40 h 

 Treatmenta:  C1.D C2.D C3.D E.D C.R E.R  C.D E.D C1.R C2.R C3.R E1.R E2.R E3.R 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Enterobacteriaceae (4) [E2, E314]  0.1 0.1 0.1 0.2 0.3 1.3  1.7 20.0 0.5 0.8 0.8 23 22 25 
Coxiellaceae (5)  0.1 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Legionellaceae (7)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Halomonadaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oceanospirillaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oleiphilaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Pasteurellaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Moraxellaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Pseudomonadaceae (2)  0.0 0.0 0.0 0.0 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Thiotrichales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Solimonadaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthomonadaceae (14)  0.1 0.0 0.1 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Xanthomonadales (26)  0.7 0.8 0.7 0.5 0.8 0.4  0.4 0.1 0.3 0.3 0.3 0.0 0.1 0.0 
Unassigned Gammaproteobacteria (14)  0.1 0.1 0.1 0.1 0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Saccharibacteria,                  

Unassigned Saccharibacteria (1)  0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Spirochaetae,                  

Spirochaetes,                  

Spirochaetaceae (2)  0.0 0.0 0.0 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tectomicrobia                  

Unassigned Tectomicrobia (12)  0.8 0.5 0.8 0.6 3.1 4.9  0.3 0.0 0.8 1.0 1.2 0.2 0.2 0.2 
Tenericutes                  

Mollicutes,                  

Mycoplasmataceae (5)  4.2 3.4 4.5 2.5 12 17  3.5 0.9 190 17 12 2.2 2.1 1.6 
Haloplasmataceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Entomoplasmatales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

TM6-Dependentiae                  

Unassigned TM6-Dependentiae (5)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Verrucomicrobia                  

OPB35 group,                 
Unassigned OPB35 group (74)  0.5 0.6 0.7 0.8 1.0 1.3  0.2 0.0 0.1 0.2 0.2 0.0 0.0 0.0 

Opitutae,                  
Opitutaceae (4)  0.0 0.0 0.0 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Opitutae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Spartobacteria,                  

Chthoniobacteraceae (32)  0.2 0.3 0.3 0.7 0.3 0.7  0.1 0.0 0.2 0.2 0.3 0.0 0.0 0.0 
Unassigned Chthoniobacterales (23)  3.1 3.0 3.5 3.7 0.9 0.8  2.8 0.8 0.7 0.6 0.9 0.2 0.1 0.1 
Xiphinematobacteraceae (5)  1.9 1.9 2.0 1.7 1.6 3.0  1.5 0.4 4.0 1.9 5.2 0.4 0.5 0.7 

Verrucomicrobiae,                  

Verrucomicrobiaceae (16)  0.1 0.1 0.1 0.2 0.1 0.1  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Verrucomicrobia (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Archeae 
                

Thaumarchaeota,                  

Unassigned Thaumarchaeota  (7)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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(B) Soil 

 Sampling Time:  0 h  40 h 

 Treatmenta:  C1.D C2.D C3.D E.D C.R E.R  C.D E.D C1.R C2.R C3.R E1.R E2.R E3.R 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Acidobacteria,                 

Acidobacteria,                 

Acidobacteriaceae (7)  0.2 0.1 0.2 0.2 0.1 0.0  0.2 0.0 0.0 0.1 0.1 0.0 0.0 0.0 
Blastocatellia,   

               
Blastocatellaceae (25)  0.4 0.4 0.5 1.3 0.3 0.8  0.8 0.1 0.3 0.1 0.2 0.0 0.0 0.0 

Holophagae,   
               

Subgroup_10 (10)  0.1 0.1 0.1 0.1 0.1 0.1  0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_7 (9)  0.4 0.3 0.3 0.1 0.0 0.1  0.4 0.0 0.0 0.1 0.1 0.0 0.0 0.0 
Unassigned Acidobacteriales (6)  0.3 0.3 0.3 0.3 0.2 0.1  0.3 0.1 0.1 0.2 0.1 0.0 0.0 0.0 

Solibacteres,   
               

Solibacteraceae (25)  0.6 0.6 0.6 0.4 0.6 0.9  0.7 0.1 0.9 0.9 0.9 0.1 0.1 0.1 
Subgroup_11 (6)  0.1 0.1 0.3 0.2 0.1 0.0  0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
Subgroup_17 (22)  0.9 0.8 0.7 0.8 0.4 0.4  0.9 0.1 0.3 0.3 0.3 0.0 0.0 0.0 
Subgroup_22 (26)  0.4 0.3 0.3 1.0 0.3 0.6  0.5 0.1 0.4 0.3 0.2 0.0 0.0 0.0 
Subgroup_25 (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_6 (106)  10 9.2 9.3 9.9 3.8 3.5  11 1.3 2.9 2.5 3.1 0.4 0.2 0.3 
Unassigned Acidobacteria (25)  0.4 0.5 0.5 0.5 0.4 0.4  0.6 0.1 0.2 0.2 0.3 0.0 0.0 0.0 

Actinobacteria  
               

Actinobacteria,   
               

Acidimicrobiaceae (18)  1.7 1.7 1.4 1.5 1.8 1.6  1.2 0.2 1.8 1.9 1.6 0.1 0.2 0.2 
Iamiaceae (8)  0.2 0.2 0.2 0.3 0.2 0.2  0.2 0.0 0.2 0.1 0.1 0.0 0.0 0.0 
Unassigned Acidimicrobiales (54)  3.7 3.4 3.2 3.0 2.8 2.2  2.7 0.4 2.5 2.7 2.2 0.1 0.1 0.3 

Actinobacteria,  
               

Actinomycetaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Catenulisporaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mycobacteriaceae (8)  1.0 0.9 1.0 0.6 0.7 0.3  0.9 0.1 0.5 0.4 0.7 0.0 0.0 0.0 
Nocardiaceae (7)  0.0 0.0 0.1 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 
Acidothermaceae (5)  0.5 0.4 0.5 0.6 0.4 0.4  0.3 0.0 0.4 0.3 0.4 0.0 0.0 0.0 
Frankiaceae (3)  0.3 0.2 0.2 0.1 0.4 0.2  0.1 0.0 0.2 0.3 0.4 0.0 0.0 0.0 
Geodermatophilaceae (1)  0.0 0.0 0.0 0.0 0.1 0.0  0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 
Nakamurellaceae (3)  0.1 0.1 0.1 0.1 0.3 0.3  0.1 0.0 0.2 0.2 0.2 0.0 0.0 0.0 
Sporichthyaceae (4)  0.2 0.2 0.1 0.1 0.2 0.1  0.1 0.0 0.1 0.2 0.1 0.0 0.0 0.0 
Unassigned Frankiales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Kineosporiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cellulomonadaceae (1)  0.0 0.0 0.0 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 
Brevibacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Demequinaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Intrasporangiaceae (3)  0.2 0.3 0.2 0.1 0.4 0.3  0.2 0.0 0.3 0.4 0.4 0.0 0.0 0.0 
Microbacteriaceae (5)  0.1 0.1 0.1 0.1 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Micrococcaceae (3)  0.2 0.2 0.2 0.1 0.3 0.2  0.2 0.0 0.1 0.2 0.3 0.0 0.0 0.0 
Promicromonosporaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Micromonosporaceae (30)  2.7 2.7 2.4 1.3 3.7 1.6  2.6 0.4 3.8 4.1 3.3 0.1 0.1 0.2 
Nocardioidaceae (21)  1.9 2.1 1.9 1.6 2.4 2.0  2.0 0.2 2.0 2.0 2.1 0.1 0.2 0.1 
Propionibacteriaceae (5)  0.3 0.3 0.2 0.1 0.2 0.1  0.2 0.0 0.3 0.1 0.2 0.0 0.0 0.0 
Pseudonocardiaceae (11)  0.5 0.5 0.4 0.2 0.9 0.6  0.3 0.1 0.8 1.0 0.7 0.1 0.1 0.1 
Streptomycetaceae (2)  1.1 1.1 1.0 0.6 1.3 0.9  0.9 0.1 1.3 1.2 1.5 0.0 0.0 0.0 
Streptosporangiaceae (4)  0.2 0.2 0.2 0.1 0.1 0.0  0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 
Thermomonosporaceae (6)  0.1 0.1 0.1 0.1 0.1 0.2  0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 
Unassigned Actinobacteria (3)  0.0 0.0 0.0 0.0 0.1 0.1  0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 
KIST-JJY010 group (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
MB-A2-108 group (21)  2.8 3.1 2.7 2.8 1.0 0.7  2.6 0.4 0.9 0.9 0.8 0.1 0.1 0.1 

Rubrobacteria,   
               

Rubrobacteriaceae (6)  0.5 0.5 0.3 0.3 0.6 0.4  0.2 0.0 0.5 0.6 0.6 0.0 0.0 0.0 
Thermoleophilia,  

               
Gaiellaceae (6)  3.5 3.8 2.9 3.0 1.6 1.3  2.9 0.4 1.1 0.9 1.2 0.1 0.1 0.1 
Unassigned Gaiellales (32)  6.6 6.9 5.3 4.6 2.0 1.7  4.7 0.8 1.5 1.2 1.6 0.1 0.1 0.1 
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 Sampling Time:  0 h  40 h 

 Treatmenta:  C1.D C2.D C3.D E.D C.R E.R  C.D E.D C1.R C2.R C3.R E1.R E2.R E3.R 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Conexibacteraceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Patulibacteraceae (7)  0.1 0.1 0.1 0.0 0.1 0.0  0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
Solirubrobacteraceae (4)  1.0 1.0 0.8 0.6 2.2 1.5  0.6 0.1 1.7 1.6 1.5 0.1 0.1 0.1 
Unassigned Solirubrobacterales (52)  5.0 5.2 4.1 2.9 1.5 1.1  3.9 0.6 1.2 1.3 1.3 0.1 0.1 0.1 

Armatimonadetes,  
               

Chthonomonadales,   
               

Chthonomonadaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chthonomonadales (5)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Armatimonadia,   
               

Unassigned Armatimonadales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Armatimonadetes (13)  0.0 0.1 0.0 0.0 0.1 0.0  0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 

Bacteroidetes,   
               

Cytophagia,   
               

Cytophagaceae (25)  0.1 0.2 0.3 0.5 0.3 1.1  0.2 0.0 0.1 0.1 0.1 0.0 0.0 0.0 
Flavobacteriia,   

               
Flavobacteriaceae (18)  0.1 0.2 0.3 1.2 0.2 3.7  0.5 0.1 0.5 1.2 0.6 0.1 0.2 0.1 
Sphingobacteriia   

               
Chitinophagaceae (43)  0.4 0.5 0.7 2.2 0.6 1.6  0.5 0.1 0.5 0.8 0.7 0.1 0.1 0.1 
Saprospiraceae (2)  0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingobacteriaceae (5)  0.0 0.0 0.0 0.1 0.0 0.3  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriales (27)  0.0 0.0 0.1 0.3 0.1 0.9  0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 

BRC1,   
               

Unassigned BCR1 (12)  0.1 0.0 0.0 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 
Chlamydiae,                 

Chlamydiae,   
               

Parachlamydiaceae (45)  0.1 0.1 0.1 0.1 0.1 0.0  0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 
Simkaniaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chlamydiales (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Chlorobi,  
               

Chlorobia,   
               

Unassigned Chlorobiales (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chloroflexi,   

               
Anaerolineae,  

               
Anaerolineaceae (20)  0.1 0.1 0.1 0.2 0.0 0.3  0.2 0.0 0.1 0.1 0.1 0.0 0.0 0.0 
Unassigned Ardenticatenia (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Caldilineae,  
               

Caldilineaceae (12)  0.3 0.3 0.3 0.2 0.2 0.3  0.3 0.0 0.2 0.2 0.1 0.0 0.0 0.0 
Chloroflexia,   

               
Unassigned Kallotenuales (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Roseiflexaceae (12)  0.5 0.4 0.4 0.4 0.5 0.5  0.4 0.0 0.4 0.4 0.5 0.0 0.0 0.1 

Cyanobacteria,   
               

Chloroplast,   
               

Trebouxiophyceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chloroplast (6)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Cyanobacteria (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cyanobacteria,   
               

Unassigned Cyanobacteria (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chloroflexi,   

               
JG30-KF-CM66 group (13)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 
KD4-96 group (13)  3.0 2.8 2.4 3.2 1.9 2.3  2.2 0.2 1.8 1.7 1.6 0.1 0.1 0.1 

Ktedonobacteria,   
               

Ktedonobacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermosporotrichaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacterales (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacteria (12)  0.4 0.4 0.4 0.3 0.2 0.1  0.4 0.1 0.1 0.1 0.2 0.0 0.0 0.0 

Melainabacteria,   
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 Sampling Time:  0 h  40 h 

 Treatmenta:  C1.D C2.D C3.D E.D C.R E.R  C.D E.D C1.R C2.R C3.R E1.R E2.R E3.R 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Unassigned Obscuribacterales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
S085 group (11)  0.2 0.2 0.2 0.3 0.2 0.1  0.2 0.0 0.2 0.1 0.2 0.0 0.0 0.0 
SBR2076 group (10)  0.0 0.0 0.1 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thermomicrobia,   
               

Unassigned Thermomicrobia (33)  0.8 0.9 0.7 0.4 0.6 0.3  1.0 0.1 0.4 0.4 0.5 0.0 0.0 0.0 
TK10 group (15)  0.3 0.4 0.3 0.2 0.5 0.6  0.2 0.0 0.5 0.6 0.6 0.0 0.0 0.0 
Unassigned Chloroflexi (7)  0.5 0.6 0.4 0.8 0.2 0.1  0.5 0.0 0.1 0.1 0.1 0.0 0.0 0.0 

Deinococcus-Thermus,   
               

Deinococci,   
               

Unassigned Deinococci (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Elusimicrobia,   

               
Elusimicrobia,   

               
Unassigned Elusimicrobia (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fibrobacteres,   
               

Fibrobacteria,   
               

Fibrobacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Firmicutes,   

               
Bacilli,   

               
Alicyclobacillaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bacillaceae (16) [E19]  1.2 1.3 2.1 0.6 1.1 0.7  1.4 7.9 1.6 1.4 1.8 6.2 7.4 6.3 
Paenibacillaceae (24)  0.2 0.1 0.3 0.1 0.1 0.0  0.2 0.3 0.1 0.1 0.1 0.9 0.8 0.8 
Pasteuriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Planococcaceae (7)  0.1 0.1 0.1 0.0 0.1 0.0  0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 
Staphylococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoactinomycetaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Aerococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Streptococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Lactobacillales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Bacillales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Bacilli (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Clostridia,   
               

Caldicoprobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Christensenellaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Clostridiaceae (20) [E6, E13, E16, E17] ]  0.1 0.1 0.5 0.2 0.0 0.1  0.3 8.7 0.2 0.1 0.1 23 21 21 
Eubacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gracilibacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Heliobacteriaceae (9)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Lachnospiraceae (15)  0.0 0.0 0.2 0.1 0.0 0.0  0.0 1.9 0.0 0.0 0.0 1.7 1.6 1.8 
Peptococcaceae (6)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Peptostreptococcaceae (5) [E5, E4]  0.0 0.0 0.3 0.3 0.1 0.1  0.1 21 0.0 0.1 0.1 9.4 13 12 
Ruminococcaceae (16)  0.0 0.0 0.1 0.0 0.0 0.0  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Clostridiales  (12)  0.0 0.0 0.1 0.1 0.0 0.0  0.0 0.1 0.0 0.0 0.0 0.1 0.2 0.2 
Thermoanaerobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Erysipelotrichia,   
               

Erysipelotrichaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Limnochordia,   

               
Limnochordaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Negativicutes,   
               

Veillonellaceae (8)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.1 0.0 0.0 0.0 0.4 0.3 0.4 
Unassigned Selenomonadales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fusobacteria,   
               

Fusobacteriia,   
               

Unassigned Fusobacteriales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gemmatimonadetes,   

               
Gemmatimonadetes,   

               
Gemmatimonadaceae (51)  2.0 1.8 1.8 4.3 1.9 1.1  1.6 0.2 1.4 1.5 1.7 0.1 0.0 0.1 
Unassigned Gemmatimonadetes (6)  0.1 0.1 0.1 0.1 0.0 0.0  0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

Latescibacteria,   
               

Unassigned Latescibacteria (37)  0.5 0.5 0.5 1.3 0.6 1.8  0.6 0.1 0.5 0.5 0.6 0.0 0.0 0.1 
Nitrospirae,   
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 Sampling Time:  0 h  40 h 

 Treatmenta:  C1.D C2.D C3.D E.D C.R E.R  C.D E.D C1.R C2.R C3.R E1.R E2.R E3.R 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Nitrospira,   
               

0319-6A21 group (16)  2.5 2.7 2.4 2.9 2.3 0.9  2.6 0.4 1.8 1.8 1.9 0.1 0.2 0.3 
Nitrospiraceae (10)  0.3 0.4 0.4 1.1 0.3 0.2  0.4 0.1 0.4 0.3 0.3 0.0 0.0 0.1 
Unassigned Nitrospira (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Parcubacteria,   
               

Magasanikbacteria,   
               

Unassigned Magasanikbacteria (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nomurabacteria,   

               
Unassigned Nomurabacteria (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Parcubacteria (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Planctomycetes,   
               

OM190 group,                 
Unassigned OM190 (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

BD7-11 group,                 
Unassigned BD7-11 (58)  0.5 0.5 0.5 1.1 0.4 1.5  0.6 0.0 0.4 0.4 0.5 0.0 0.1 0.1 

Phycisphaerae,  
               

Phycisphaerae (27)  0.1 0.1 0.1 0.2 0.0 0.3  0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
Tepidisphaeraceae (51)  1.9 1.5 1.8 2.3 1.5 1.3  1.8 0.5 1.9 1.9 2.0 0.2 0.3 0.3 
Unassigned Phycisphaerae (17)  0.1 0.2 0.2 0.2 0.1 0.1  0.2 0.0 0.1 0.1 0.1 0.0 0.0 0.0 

Planctomycetacia,   
               

Planctomycetaceae (505)  8.7 8.5 9.9 8.9 21 12  11 2.5 23 23 26 1.6 2.9 2.7 
Unassigned Planctomycetes (15)  0.1 0.1 0.1 0.2 0.2 0.6  0.2 0.0 0.1 0.2 0.1 0.0 0.0 0.0 

Proteobacteria,   
               

Alphaproteobacteria,   
               

Caulobacteraceae (3)  0.0 0.0 0.0 0.0 0.1 0.1  0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 
Hyphomonadaceae (4)  0.0 0.0 0.0 0.1 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bradyrhizobiaceae (2)  1.0 1.1 1.3 0.8 4.3 4.1  1.2 0.2 4.7 4.4 3.5 0.1 0.2 0.2 
Hyphomicrobiaceae (7)  1.4 1.2 1.1 0.9 2.0 1.6  1.2 0.2 2.6 2.7 2.3 0.1 0.2 0.1 
Methylobacteriaceae (4)  0.2 0.2 0.2 0.1 0.5 0.4  0.2 0.0 0.3 0.5 0.5 0.0 0.0 0.0 
Phyllobacteriaceae (3)  0.3 0.3 0.3 0.2 0.8 1.2  0.4 0.0 0.9 0.8 0.5 0.0 0.0 0.1 
Rhizobiaceae (3)  0.0 0.0 0.0 0.0 0.1 0.1  0.1 0.0 0.2 0.1 0.1 0.0 0.0 0.0 
Rhodobiaceae (2)  1.4 1.3 1.3 0.7 0.5 0.4  1.6 0.3 0.8 0.6 0.5 0.0 0.0 0.0 
Xanthobacteraceae (4)  4.5 4.7 4.3 2.5 4.2 2.2  4.2 0.6 5.0 4.7 4.5 0.1 0.2 0.2 
Unassigned Rhizobiales (14)  0.5 0.5 0.5 0.5 0.7 1.0  0.5 0.1 0.7 0.8 0.7 0.0 0.1 0.0 
Rhodobacteraceae (4)  0.1 0.0 0.1 0.1 0.1 0.1  0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 
Acetobacteraceae (6)  0.1 0.1 0.1 0.0 0.2 0.3  0.1 0.0 0.4 0.3 0.3 0.0 0.0 0.0 
Rhodospirillaceae (15)  0.7 0.7 0.7 0.5 1.2 1.5  0.9 0.1 0.9 1.2 1.2 0.1 0.1 0.1 
Unassigned Rhodospirillales (32)  1.2 1.2 1.0 0.7 2.3 1.8  1.0 0.1 1.8 2.1 1.6 0.1 0.1 0.1 
Holosporaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Rickettsiales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Erythrobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingomonadaceae (6)  0.2 0.3 0.2 0.4 0.1 0.2  0.2 0.0 0.0 0.1 0.1 0.0 0.0 0.0 
Unassigned Sphingomonadales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Betaproteobacteria,   
               

Alcaligenaceae (2)  0.1 0.1 0.2 0.1 0.1 0.2  0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 
Burkholderiaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Comamonadaceae (12)  0.4 0.4 0.5 0.5 1.8 3.0  0.6 0.1 1.3 1.5 1.3 0.1 0.1 0.1 
Oxalobacteraceae (7)  0.1 0.0 0.1 0.1 0.0 0.3  1.0 0.0 0.4 0.4 0.5 0.0 0.0 0.0 
Neisseriaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrosomonadaceae (35)  1.1 0.8 1.0 1.3 0.4 1.6  0.6 0.0 0.2 0.3 0.2 0.0 0.0 0.0 
Rhodocyclaceae (10)  0.0 0.0 0.0 0.1 0.1 1.1  0.3 0.0 3.2 0.9 0.9 0.0 0.0 0.0 
SC-I-84 group (22)  0.5 0.8 0.7 0.3 0.6 0.2  0.6 0.1 0.3 0.5 0.3 0.0 0.0 0.0 
TRA3-20 group (5)  0.1 0.1 0.1 0.2 0.1 0.2  0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 
Unassigned Betaproteobacteria (3)  0.1 0.0 0.0 0.0 0.1 0.0  0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 

Deltaproteobacteria,   
               

Bacteriovoracaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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 Sampling Time:  0 h  40 h 

 Treatmenta:  C1.D C2.D C3.D E.D C.R E.R  C.D E.D C1.R C2.R C3.R E1.R E2.R E3.R 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Bdellovibrionaceae (16)  0.1 0.1 0.1 0.1 0.1 0.2  0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 
Desulfarculaceae (37)  1.8 2.0 2.1 1.6 1.4 1.0  2.0 0.2 0.9 1.0 1.1 0.1 0.1 0.1 
Desulfuromonadaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Geobacteraceae (14)  0.3 0.2 0.4 0.2 0.5 0.6  0.4 0.1 0.4 0.5 0.4 0.0 0.0 0.1 
Archangiaceae (9)  0.2 0.2 0.2 0.0 0.2 0.1  0.2 0.0 0.9 0.7 1.1 0.0 0.1 0.0 
Haliangiaceae (57)  0.8 0.7 0.6 0.7 1.2 2.1  0.7 0.1 0.7 0.7 0.8 0.1 0.1 0.1 
Myxococcaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nannocystaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phaselicystidaceae (5)  0.2 0.2 0.2 0.1 0.2 0.3  0.2 0.0 0.1 0.2 0.2 0.0 0.0 0.0 
Polyangiaceae (28)  0.2 0.2 0.2 0.1 0.3 0.7  0.2 0.0 0.2 0.3 0.2 0.0 0.0 0.1 
Sandaracinaceae (23)  0.1 0.1 0.1 0.1 0.1 0.2  0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 
Vulgatibacteraceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Myxococcales (71)  0.5 0.6 0.5 0.5 0.8 1.5  0.4 0.0 0.6 0.4 0.5 0.0 0.1 0.0 
NB1-j group (13)  0.3 0.4 0.3 0.7 0.2 0.2  0.4 0.0 0.2 0.1 0.1 0.0 0.0 0.0 
Oligoflexaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Oligoflexales (24)  0.0 0.0 0.1 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Gammaproteobacteria,   
               

Acidiferrobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Aeromonadaceae (2) [E3]  0.0 0.0 0.2 0.1 0.0 0.2  0.2 21 0.0 0.0 0.1 37 28 22 
Shewanellaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cellvibrionaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Halieaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Spongiibacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Enterobacteriaceae (4) [E2, E314]  0.0 0.0 0.1 0.0 0.1 0.1  0.0 24 0.0 0.1 0.1 15 20 28 
Coxiellaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Legionellaceae (7)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Halomonadaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oceanospirillaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oleiphilaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Pasteurellaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Moraxellaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
Pseudomonadaceae (2)  0.0 0.1 0.1 0.1 0.1 0.3  0.2 0.0 0.1 0.2 0.1 0.0 0.0 0.0 
Unassigned Thiotrichales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Solimonadaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthomonadaceae (14)  0.1 0.2 0.1 0.3 0.1 0.2  0.2 0.0 0.1 0.1 0.1 0.0 0.0 0.0 
Unassigned Xanthomonadales (26)  0.9 1.1 1.2 1.5 1.3 1.5  1.0 0.1 0.6 0.7 0.7 0.0 0.0 0.1 
Unassigned Gammaproteobacteria (14)  0.1 0.1 0.1 0.1 0.1 0.0  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Saccharibacteria,   
               

Unassigned Saccharibacteria (1)  0.0 0.0 0.1 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Spirochaetae,   

               
Spirochaetes,   

               
Spirochaetaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Tectomicrobia   
               

Unassigned Tectomicrobia (12)  0.4 0.5 0.7 0.3 3.0 2.8  0.4 0.1 3.1 3.2 3.5 0.2 0.2 0.2 
Tenericutes   

               
Mollicutes,   

               
Mycoplasmataceae (5)  0.0 0.0 0.6 0.3 0.1 0.1  0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 
Haloplasmataceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Entomoplasmatales (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

TM6-Dependentiae   
               

Unassigned TM6-Dependentiae (5)  0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Verrucomicrobia   

               
OPB35 group,                 

Unassigned OPB35 group (74)  0.9 0.8 1.2 2.1 0.8 2.3  1.4 0.2 0.9 0.9 1.0 0.1 0.2 0.2 
Opitutae,                  

Opitutaceae (4)  0.0 0.0 0.0 0.1 0.1 0.4  0.0 0.0 0.1 0.2 0.1 0.0 0.0 0.0 
Unassigned Opitutae (3)  0.0 0.0 0.0 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Spartobacteria,   
               

Chthoniobacteraceae (32)  0.3 0.2 0.4 0.8 0.2 0.5  0.3 0.1 0.2 0.3 0.2 0.1 0.1 0.0 
Unassigned Chthoniobacterales (23)  2.5 2.7 3.3 3.5 0.7 1.0  3.7 0.7 0.5 0.6 0.4 0.1 0.1 0.1 
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 Sampling Time:  0 h  40 h 

 Treatmenta:  C1.D C2.D C3.D E.D C.R E.R  C.D E.D C1.R C2.R C3.R E1.R E2.R E3.R 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Xiphinematobacteraceae (5)  1.2 1.0 1.7 1.0 1.5 3.0  1.5 0.3 1.8 2.0 1.1 0.3 0.3 0.3 
Verrucomicrobiae,   

               
Verrucomicrobiaceae (16)  0.1 0.2 0.1 0.1 0.1 0.2  0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 
Unassigned Verrucomicrobia (2)  0.0 0.0 0.0 0.0 0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Archeae 
 

               
Thaumarchaeota,   

               
Unassigned Thaumarchaeota  (7)  0.0 0.0 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

aSamples of the three replicates of a treatment were pooled except for 16S rRNA gene (D) samples at 0 h and 16S rRNA (R) samples at 40 h.  Identification numbers (e.g., C1) indicate 
the respective replicates.  Treatments: C, unsupplemented control; E, yeast extract.  Table modified and used with permission from Zeibich et al., 2019c. 

bThe number of phylotypes are shown in parenthesis.  Abundant responsive phylotypes from Figure 67 are bold and in brackets. 

Table A10.  Summary of all detected families in dilution experiment based on 16S rRNA gene (A) and 16S rRNA (B) anaylsis (Section 3.4.1).a 

(A) 16S rRNA genes 

 Sampling Time:  0 h  5 h  10 h  20 h  30 h 

Treatment:  U1 U2 U3 D1 D2 D3  U D  U D 
 

U D  U1 U2 U3 D1 D2 D3 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Acidobacteria,                        
Acidobacteria,                        

Acidobacteriaceae (10)  0.0 0.0 0.0 0.0 0.0 0.1  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Blastocatellia,                        

Blastocatellaceae (9)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 
Holophagae,                        

Unassigned Holophagae (6)  0.1 0.2 0.1 0.1 0.1 0.1  0.0 0.1  0.0 0.1  0.0 0.1  0.0 0.1 0.1 0.1 0.0 0.1 
Solibacteres,                        

Solibacteraceae (17)  0.2 0.2 0.2 0.1 0.1 0.2  0.1 0.2  0.1 0.1  0.0 0.2  0.1 0.1 0.1 0.2 0.1 0.2 
Subgroup_2 (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_5 (7)  0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1  0.0 0.1  0.0 0.1  0.0 0.0 0.0 0.1 0.1 0.1 
Subgroup_6 (78)  2.1 2.0 1.8 2.2 2.2 2.1  0.7 2.2  0.6 2.1  0.5 1.8  0.7 0.5 0.5 1.6 1.5 1.8 
Subgroup_11 (4)  0.0 0.1 0.0 0.1 0.0 0.0  0.0 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_13 (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_17 (14)  0.2 0.2 0.2 0.2 0.1 0.2  0.1 0.2  0.2 0.2  0.1 0.2  0.1 0.2 0.2 0.2 0.1 0.2 
Subgroup_18 (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_22 (7)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_25 (5)  0.1 0.1 0.0 0.1 0.1 0.1  0.0 0.1  0.0 0.1  0.0 0.0  0.1 0.1 0.1 0.0 0.1 0.0 

Actinobacteria,                        
Acidimicrobiia,                        

Acidimicrobiaceae (21)  1.3 1.6 1.5 1.3 1.2 1.1  1.1 1.3  1.5 1.2  1.6 1.2  1.6 2.0 2.0 1.2 1.0 1.0 
Iamiaceae (11)  0.2 0.2 0.2 0.2 0.2 0.3  0.2 0.2  0.3 0.2  0.3 0.2  0.3 0.3 0.4 0.2 0.1 0.2 
Unassigned Acidimicrobiales (52)  1.8 2.1 2.2 1.5 1.3 1.3  1.8 1.7  2.1 1.6  2.5 1.7  2.2 2.6 2.8 1.4 1.1 1.3 

Actinobacteria,                        
Acidothermaceae (7)  0.2 0.3 0.3 0.2 0.2 0.2  0.1 0.2  0.2 0.2  0.3 0.2  0.3 0.3 0.3 0.2 0.1 0.1 
Catenulisporaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Cellulomonadaceae (1)  0.1 0.1 0.1 0.1 0.1 0.0  0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.1 0.2 0.1 0.1 0.1 
Cryptosporangiaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Demequinaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
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 Sampling Time:  0 h  5 h  10 h  20 h  30 h 

Treatment:  U1 U2 U3 D1 D2 D3  U D  U D 
 

U D  U1 U2 U3 D1 D2 D3 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Dermabacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Dermacoccaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Frankiaceae (4)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1  0.2 0.1  0.2 0.1  0.2 0.1 0.2 0.1 0.0 0.1 
Geodermatophilaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Glycomycetaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Intrasporangiaceae (3)  0.6 0.6 0.6 0.7 0.4 0.6  0.6 0.6  0.7 0.6  1.0 0.5  1.0 0.9 1.1 0.4 0.4 0.5 
Kineosporiaceae (1)  0.0 0.0 0.1 0.0 0.0 0.0  0.0 0.0  0.1 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Microbacteriaceae (11)  0.6 0.5 0.6 0.6 0.5 0.5  0.5 0.5  0.5 0.4  0.8 0.4  0.7 0.8 0.8 0.2 0.3 0.3 
Micrococcaceae (3)  0.4 0.4 0.4 0.2 0.3 0.3  0.3 0.2  0.4 0.3  0.4 0.2  0.5 0.7 0.5 0.2 0.2 0.3 
Micromonosporaceae (28)  1.3 1.3 1.4 0.9 1.0 0.9  0.9 1.1  1.6 1.1  2.1 1.1  2.2 2.2 2.4 0.9 0.7 0.8 
Mycobacteriaceae (8)  1.4 1.4 1.4 0.9 1.0 0.9  0.9 1.0  1.3 0.9  1.3 1.0  1.3 1.6 1.6 0.9 0.6 0.8 
Nakamurellaceae (2)  0.3 0.2 0.2 0.1 0.2 0.2  0.2 0.2  0.2 0.2  0.2 0.1  0.2 0.2 0.2 0.1 0.1 0.2 
Nocardiaceae (9)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1  0.1 0.1  0.2 0.1  0.1 0.1 0.1 0.1 0.1 0.1 
Nocardioidaceae (28)  2.5 2.6 2.6 2.5 2.1 2.4  2.6 2.5  3.0 2.1  3.6 2.0  3.4 3.7 4.1 1.8 1.5 1.5 
Promicromonosporaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Propionibacteriaceae (10)  0.3 0.3 0.3 0.1 0.2 0.2  0.2 0.2  0.2 0.2  0.3 0.2  0.3 0.4 0.3 0.1 0.1 0.2 
Pseudonocardiaceae (12)  0.9 1.0 0.9 0.5 0.7 0.6  1.0 0.8  1.2 0.7  1.2 0.8  1.1 1.3 1.4 0.5 0.6 0.6 
Sporichthyaceae (3)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1  0.1 0.1  0.2 0.1  0.1 0.1 0.2 0.1 0.1 0.1 
Streptomycetaceae (6)  1.1 1.2 1.2 0.9 0.9 0.9  1.0 1.0  1.3 0.8  1.7 0.8  1.9 1.8 1.9 0.7 0.5 0.7 
Streptosporangiaceae (3)  0.1 0.1 0.0 0.1 0.1 0.0  0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.1 0.2 0.1 0.0 0.1 
Thermomonosporaceae (8)  0.1 0.1 0.1 0.0 0.1 0.0  0.0 0.1  0.1 0.1  0.1 0.0  0.1 0.1 0.1 0.0 0.0 0.0 
Unassigned Actinobacteria (3)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 

Coriobacteriia,                        
Coriobacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Coriobacteriia (23)  2.4 2.7 2.5 2.1 2.0 2.1  1.6 1.9  2.5 1.9  2.8 1.6  3.0 3.3 3.7 1.6 1.4 1.4 

Rubrobacteria,  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Rubrobacteriaceae (3)  0.1 0.2 0.2 0.1 0.1 0.1  0.2 0.2  0.1 0.2  0.2 0.2  0.1 0.1 0.2 0.1 0.1 0.1 

Thermoleophilia,                        
Conexibacteraceae (3)  0.0 0.0 0.0 0.1 0.0 0.0  0.1 0.1  0.1 0.0  0.1 0.1  0.1 0.0 0.1 0.0 0.0 0.0 
Gaiellaceae (5)  1.9 2.2 2.1 1.5 1.4 1.5  1.7 1.7  2.0 1.4  2.2 1.4  2.1 2.1 2.4 1.2 1.0 1.5 
Parviterribacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Patulibacteraceae (5)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 
Solirubrobacteraceae (4)  0.5 0.7 0.6 0.7 0.5 0.6  0.6 0.9  0.8 0.7  0.8 0.7  0.7 0.7 0.9 0.6 0.4 0.5 
Unassigned Solirubrobacterales(54)  2.6 3.0 2.6 2.1 1.8 1.9  2.1 2.5  3.3 2.4  3.8 2.4  3.4 3.7 4.3 1.7 1.4 1.6 
Unassigned Thermoleophilia (44)  2.6 2.8 2.5 2.3 1.9 2.0  2.0 2.4  2.5 2.0  3.1 2.1  3.0 3.3 3.7 1.7 1.6 1.6 

Armatimonadetes,                        
Unassigned Armatimonadia (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Chthonomonadetes,  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Chthonomonadaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chthonomonadetes (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Armatimonadetes (6)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Bacteroidetes,                        
Bacteroidia,                        

Bacteroidaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.1 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Porphyromonadaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Prevotellaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Rikenellaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Cytophagia,                        
Cytophagaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Flavobacteriia,                        
Flavobacteriaceae (9)  1.5 1.5 1.6 1.8 2.0 2.2  0.0 1.2  0.0 1.2  0.0 0.8  0.0 0.0 0.0 0.6 0.4 0.5 

Sphingobacteriia,                        
Chitinophagaceae (23)  0.1 0.1 0.1 0.2 0.1 0.1  0.0 0.1  0.0 0.1  0.0 0.1  0.0 0.0 0.0 0.1 0.1 0.1 
Lentimicrobiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Saprospiraceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Sphingobacteriaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriales (4)  0.0 0.0 0.0 0.2 0.2 0.1  0.0 0.1  0.0 0.1  0.0 0.1  0.0 0.0 0.0 0.1 0.1 0.0 

BJ-169,                        
Unassigned BJ-169 (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

BRC1,                        
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 Sampling Time:  0 h  5 h  10 h  20 h  30 h 

Treatment:  U1 U2 U3 D1 D2 D3  U D  U D 
 

U D  U1 U2 U3 D1 D2 D3 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Unassigned BRC1 (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Chlamydiae,                        

Chlamydiae,                        
Parachlamydiaceae (40)  0.1 0.1 0.0 0.1 0.0 0.0  0.0 0.0  0.1 0.0  0.1 0.0  0.1 0.1 0.1 0.0 0.0 0.0 
Simkaniaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Chlamydiae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Chloroflexi,                        

Anaerolineae,                        
Anaerolineaceae (8)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Caldilineae,                        
Caldilineaceae (10)  0.2 0.2 0.2 0.1 0.1 0.1  0.0 0.2  0.1 0.1  0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 

Chloroflexia,                        
Roseiflexaceae (5)  0.2 0.2 0.2 0.1 0.1 0.1  0.0 0.2  0.0 0.2  0.0 0.1  0.0 0.0 0.0 0.1 0.2 0.1 
Unassigned Chloroflexia (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Ktedonobacteria,                        
Ktedonobacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Thermosporotrichaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacteria (11)  0.1 0.1 0.1 0.1 0.0 0.1  0.1 0.1  0.0 0.0  0.0 0.1  0.0 0.0 0.0 0.1 0.1 0.0 

Thermomicrobia,                        
Thermomicrobiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Thermomicrobia (33)  0.7 0.6 0.4 0.3 0.4 0.4  0.5 0.4  0.4 0.3  0.5 0.3  0.6 0.7 0.7 0.3 0.3 0.3 

Unassigned Chloroflexi (67)  2.3 2.3 2.5 1.7 1.8 2.0  2.5 2.0  2.8 1.8  3.4 1.9  3.3 3.6 4.2 1.5 1.4 1.6 
Cyanobacteria,                        

Chloroplast,                        
Unassigned Chloroplast (12)  0.0 0.1 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.1 0.1 0.0 0.0 0.0 0.0 

Cyanobacteria,                        
Unassigned Cyanobacteria (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Cyanobacteria (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Deferribacteres,                        

Deferribacteres,                        
Deferribacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Deinococcus-Thermus,                        
Unassigned Deinococci (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Elusimicrobia,                        
Unassigned Elusimicrobia (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Euryarchaeota,                        
Methanomicrobia,                        

Methanosarcinaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Fibrobacteria,                        

Fibrobacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Fibrobacteraceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Firmicutes,                        
Bacilli,                        

Alicyclobacillaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Bacillaceae (31)  1.7 1.6 1.5 1.3 1.4 1.2  1.4 1.1  1.4 1.1  1.9 1.0  2.8 3.0 2.9 1.4 1.3 1.4 
Lactobacillaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Leuconostocaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Paenibacillaceae (55)  0.3 0.2 0.2 0.1 0.2 0.2  0.2 0.2  0.3 0.2  0.3 0.5  0.5 0.5 0.4 0.5 0.6 0.7 
Pasteuriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Planococcaceae (7)  0.1 0.2 0.1 0.2 0.1 0.1  0.1 0.1  0.2 0.1  0.2 0.1  0.3 0.2 0.3 0.1 0.1 0.1 
Sporolactobacillaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Thermoactinomycetaceae (14)  0.1 0.0 0.0 0.1 0.0 0.0  0.0 0.0  0.0 0.0  0.1 0.0  0.1 0.1 0.1 0.1 0.0 0.0 
Unassigned Bacilli (8)  1.3 1.2 1.2 0.7 0.5 0.6  1.2 0.5  1.2 0.4  0.4 0.2  0.1 0.1 0.0 0.3 0.2 0.3 

Clostridia,                        
Caldicoprobacteraceae (6)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Christensenellaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
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 Sampling Time:  0 h  5 h  10 h  20 h  30 h 

Treatment:  U1 U2 U3 D1 D2 D3  U D  U D 
 

U D  U1 U2 U3 D1 D2 D3 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Clostridiaceae (27)  0.2 0.2 0.2 0.1 0.1 0.1  0.1 0.2  0.2 0.5  0.2 1.8  0.3 0.4 0.3 3.5 3.5 2.6 
Defluviitaleaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Eubacteriaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Clostridiales (17)  0.0 0.1 0.0 0.0 0.0 0.0  0.1 0.0  0.0 0.0  0.0 0.1  0.1 0.1 0.1 0.3 0.3 0.2 
Gracilibacteraceae (6)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.1 0.0 0.0 0.0 0.0 
Halanaerobiaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Heliobacteriaceae (21)  0.1 0.1 0.1 0.0 0.0 0.0  0.0 0.1  0.1 0.0  0.1 0.1  0.1 0.1 0.1 0.0 0.0 0.1 
Lachnospiraceae (20)  0.2 0.2 0.2 0.2 0.1 0.1  0.2 0.1  0.2 0.2  0.2 1.9  0.3 0.2 0.3 3.7 4.9 4.0 
Peptococcaceae (5)  1.0 0.9 0.9 0.8 0.8 0.8  1.5 0.6  1.9 0.4  2.2 0.4  2.9 3.0 3.0 0.6 0.5 0.4 
Peptostreptococcaceae (5) [D5]  0.2 0.2 0.1 0.2 0.2 0.1  0.1 0.5  1.2 0.8  1.1 1.0  2.9 0.8 0.6 1.4 1.3 1.2 
Ruminococcaceae (39)  0.1 0.0 0.1 0.0 0.0 0.0  0.0 0.0  0.1 0.0  0.1 0.1  0.1 0.1 0.1 0.2 0.3 0.2 
Syntrophomonadaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Thermoanaerobacteraceae (5)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Clostridia (6)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Erysipelotrichia,                        
Erysipelotrichaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Limnochordia,                        
Limnochordaceae (17)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 
Unassigned Limnochordaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Negativicutes,                        
Veillonellaceae (11)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Negativicutes (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Fusobacteria,                        
Fusobacteriia,                        

Fusobacteriaceae (1) [D1]  5.0 4.9 5.0 14 16 13  15 13  18 17  19 12  11 12 9.2 16 18 15 
Gemmatimonadetes,                        

Gemmatimonadetes,                        
Gemmatimonadaceae (22)  0.6 0.6 0.5 0.4 0.5 0.6  0.2 0.4  0.1 0.4  0.2 0.4  0.2 0.2 0.2 0.3 0.3 0.4 
Unassigned Gemmatimonadetes (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Latescibacteria,                        
Unassigned Latescibacteria (10)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Nitrospirae,                        
Nitrospira,                        

Nitrospiraceae (6)  0.1 0.2 0.2 0.1 0.1 0.1  0.1 0.1  0.1 0.1  0.0 0.1  0.0 0.0 0.0 0.1 0.1 0.1 
Unassigned Nitrospirales (10)  0.7 0.7 0.6 0.7 0.6 0.7  0.1 0.6  0.1 0.5  0.0 0.5  0.1 0.1 0.1 0.5 0.5 0.6 

Planctomycetes,                        
Phycisphaerae,                        

Phycisphaeraceae (16)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Tepidisphaeraceae (46)  1.0 0.9 0.9 0.8 0.9 0.9  0.2 0.8  0.1 0.6  0.0 0.6  0.1 0.0 0.0 0.7 0.6 0.8 
Unassigned Phycisphaerae (7)  0.1 0.1 0.1 0.0 0.0 0.1  0.1 0.0  0.0 0.1  0.0 0.0  0.0 0.0 0.0 0.1 0.0 0.1 

Planctomycetacia,                        
Planctomycetaceae (456)  4.9 4.7 4.4 3.8 4.0 4.2  2.8 3.7  3.3 3.4  2.4 3.5  3.2 3.8 3.9 4.1 3.5 3.7 

Unassigend Planctomycetes (28)  0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1  0.0 0.1  0.0 0.1  0.0 0.0 0.0 0.1 0.1 0.0 
Proteobacteria,                        

Alphaproteobacteria,                        
Acetobacteraceae (8)  0.2 0.1 0.2 0.1 0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 
Anaplasmataceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Beijerinckiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Bradyrhizobiaceae (3)  1.4 1.4 1.4 0.9 1.1 1.2  0.7 1.1  1.0 1.0  1.3 0.9  1.1 1.6 1.7 0.9 0.8 0.9 
Caulobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Erythrobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Holosporaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Hyphomicrobiaceae (5)  0.3 0.4 0.4 0.3 0.2 0.3  0.3 0.3  0.4 0.2  0.3 0.3  0.5 0.6 0.7 0.2 0.2 0.2 
Methylobacteriaceae (5)  0.4 0.4 0.3 0.2 0.2 0.3  0.3 0.3  0.4 0.2  0.4 0.2  0.4 0.4 0.5 0.2 0.2 0.2 
Methylocystaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Mitochondria (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Phyllobacteriaceae (3)  0.5 0.4 0.4 0.3 0.3 0.4  0.4 0.3  0.4 0.3  0.5 0.2  0.6 0.7 0.9 0.2 0.2 0.3 
Rhizobiaceae (3)  0.0 0.0 0.1 0.0 0.1 0.0  0.0 0.0  0.1 0.0  0.1 0.0  0.1 0.1 0.1 0.0 0.0 0.1 
Rhodobacteraceae (5)  0.1 0.1 0.1 0.1 0.0 0.1  0.1 0.1  0.1 0.1  0.2 0.1  0.1 0.1 0.2 0.0 0.0 0.0 
Rhodobiaceae (2)  1.5 1.6 1.5 1.2 1.1 1.1  1.1 1.2  1.4 1.0  1.8 0.9  2.4 2.5 2.9 0.9 0.9 0.8 
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 Sampling Time:  0 h  5 h  10 h  20 h  30 h 

Treatment:  U1 U2 U3 D1 D2 D3  U D  U D 
 

U D  U1 U2 U3 D1 D2 D3 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Rhodospirillaceae (14)  0.8 0.8 0.8 0.6 0.7 0.7  0.6 0.6  0.6 0.6  0.5 0.7  0.5 0.6 0.6 0.5 0.5 0.6 
Rickettsiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Sphingomonadaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Xanthobacteraceae (5)  4.7 4.6 4.3 3.3 3.2 3.5  2.8 3.8  3.2 3.0  2.9 2.8  2.8 3.5 4.0 2.7 2.5 2.5 
Unassigned Rhodospirillales (22)  0.8 1.0 0.9 0.7 0.7 0.8  0.7 0.9  0.7 0.7  0.5 0.6  0.5 0.5 0.5 0.6 0.5 0.7 
Unassigned Rhizobiales (17)  0.3 0.3 0.3 0.3 0.2 0.3  0.1 0.2  0.2 0.2  0.3 0.1  0.3 0.3 0.4 0.2 0.2 0.2 

Betaproteobacteria,                        
Alcaligenaceae (4)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.1 0.1 0.1 0.0 0.0 
Burkholderiaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Comamonadaceae (8)  0.2 0.2 0.1 0.1 0.1 0.1  0.1 0.2  0.0 0.1  0.0 0.2  0.1 0.0 0.0 0.1 0.1 0.1 
Nitrosomonadaceae (20)  0.2 0.4 0.3 0.2 0.2 0.2  0.1 0.2  0.1 0.2  0.0 0.2  0.1 0.0 0.0 0.2 0.2 0.2 
Oxalobacteraceae (6)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Rhodocyclaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.1 0.0 0.0 0.0 0.0 
Unassigned Betaproteobacteria (26)  0.3 0.3 0.3 0.2 0.3 0.3  0.1 0.3  0.1 0.3  0.1 0.2  0.2 0.1 0.1 0.2 0.2 0.2 

Deltaproteobacteria,                        
Archangiaceae (10)  0.1 0.0 0.0 0.1 0.0 0.0  0.1 0.1  0.1 0.1  0.1 0.1  0.0 0.0 0.0 0.0 0.1 0.0 
Bacteriovoracaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Bdellovibrionaceae (17)  0.1 0.0 0.1 0.1 0.0 0.0  0.0 0.0  0.1 0.0  0.1 0.0  0.1 0.2 0.1 0.1 0.0 0.0 
Desulfarculaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Desulfovibrionaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Desulfurellaceae (25)  0.9 1.1 1.0 0.7 1.0 0.9  0.5 0.9  0.3 0.7  0.3 0.7  0.3 0.3 0.3 0.6 0.7 0.6 
Desulfuromonadaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Geobacteraceae (10)  0.0 0.1 0.1 0.0 0.0 0.1  0.1 0.0  0.0 0.1  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.1 
Haliangiaceae (33)  0.3 0.2 0.2 0.2 0.2 0.2  0.1 0.2  0.1 0.1  0.0 0.2  0.0 0.0 0.0 0.2 0.1 0.2 
Myxococcaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Nannocystaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.1 0.1 0.0 0.0 0.0 0.0 
Oligoflexaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Phaselicystidaceae (4)  0.1 0.1 0.0 0.0 0.0 0.0  0.0 0.1  0.0 0.1  0.0 0.1  0.0 0.0 0.0 0.1 0.0 0.1 
Polyangiaceae (23)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.0 
Sandaracinaceae (16)  0.1 0.1 0.1 0.0 0.0 0.1  0.1 0.1  0.1 0.1  0.1 0.0  0.0 0.1 0.1 0.1 0.0 0.0 
Syntrophaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Vulgatibacteraceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Myxococcales(57)  0.2 0.2 0.2 0.1 0.1 0.1  0.1 0.2  0.1 0.1  0.1 0.1  0.1 0.1 0.1 0.1 0.2 0.2 
Unassigned Deltaproteobacteria (37)  0.0 0.1 0.0 0.0 0.0 0.1  0.0 0.1  0.0 0.1  0.0 0.1  0.1 0.1 0.1 0.1 0.0 0.0 

Epsilonproteobacteria,                        
Helicobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Gammaproteobacteria,                        
Aeromonadaceae (2) [D4, D179]  11 11 12 16 16 16  16 16  8.8 15  3.6 16  3.3 2.3 2.5 12 14 16 
Coxiellaceae (6)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Enterobacteriaceae (7)  2.2 2.2 2.4 2.9 2.8 2.6  4.0 3.3  3.4 3.4  3.0 3.5  2.6 2.0 1.8 2.5 3.0 3.6 
Halieaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Legionellaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Methylococcaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Oleiphilaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Pseudomonadaceae (4)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.2  0.0 0.0 0.0 0.3 0.3 0.4 
Shewanellaceae (2) [D2]  5.5 5.4 6.0 4.7 5.3 5.6  12 7.8  12 10  15 13  16 13 11 10 11 10 
Spongiibacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Succinivibrionaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Xanthomonadaceae (7)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Xanthomonadales (23)  0.5 0.6 0.4 0.3 0.3 0.3  0.2 0.4  0.2 0.3  0.1 0.3  0.3 0.2 0.2 0.2 0.2 0.3 

Saccharibacteria,                        
Unassigned Saccaribacteria (47)  0.1 0.1 0.1 0.0 0.0 0.0  0.0 0.1  0.0 0.0  0.1 0.0  0.1 0.1 0.1 0.0 0.0 0.0 

Spirochaetae,                        
Spirochaetes,                        

Brevinemataceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Spirochaetaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
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 Sampling Time:  0 h  5 h  10 h  20 h  30 h 

Treatment:  U1 U2 U3 D1 D2 D3  U D  U D 
 

U D  U1 U2 U3 D1 D2 D3 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Synergistetes,                        
Synergistia,                        

Synergistaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Tectomicrobia,                        

Unassigned Tectomicrobia (8)  0.2 0.2 0.2 0.2 0.2 0.2  0.1 0.2  0.1 0.2  0.0 0.2  0.0 0.0 0.0 0.2 0.1 0.1 
Tenericutes,                        

Mollicutes,                        
Haloplasmataceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Mycoplasmataceae (5) [D3]  12 10 12 9.9 8.5 8.9  7.9 5.8  3.1 4.9  0.3 3.6  0.4 0.2 0.2 6.0 5.5 4.2 
Unassigned Mollicutes (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

TM6_Dependentiae,                        
UnassignedTM6_Dependentiae (3)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Verrucomicrobia,                        
OPB35 soil group (42)  0.2 0.2 0.3 0.2 0.2 0.2  0.1 0.2  0.0 0.2  0.0 0.1  0.0 0.0 0.0 0.1 0.1 0.1 
Opitutae,                        

Opitutaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Opitutae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Spartobacteria,                        
Chthoniobacteraceae (20)  0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1  0.0 0.1  0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.1 
Xiphinematobacteraceae (4)  1.2 1.1 1.0 0.9 0.9 1.1  1.3 0.8  1.4 0.8  1.7 0.9  2.2 2.4 2.3 0.9 0.8 1.0 
Unassigned Spartobacteria (25)  2.9 2.9 2.6 2.3 2.2 2.4  1.2 2.1  1.1 1.8  1.3 1.8  1.4 2.0 2.3 2.3 2.0 2.0 

Verrucomicrobiae,                        
Verrucomicrobiaceae (10)  0.4 0.4 0.4 0.4 0.4 0.4  0.7 0.3  0.4 0.2  0.3 0.2  1.1 0.8 0.7 0.2 0.3 0.1 
Unassigned Verrucomicrobiae (1)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0 

 
0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Archeae                        
Thaumarchaeota,                        

Unassigned Thaumarchaeota (6)  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

 

(B) 16S rRNA 

 Sampling Time:  0 h  5 h  10 h  20 h  30 h 

Treatment:  U1 U2 U3 D1 D2 D3  U D  U D 
 

U D  U1 U2 U3 D1 D2 D3 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Acidobacteria,                       
Acidobacteria,                       

Acidobacteriaceae (10) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Blastocatellia,                       

Blastocatellaceae (9) 0.1 0.0 0.1 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.1 0.0 0.1 0.0 0.0 
Holophagae,                       

Unassigned Holophagae (6) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Solibacteres,                       

Solibacteraceae (17) 0.2 0.2 0.1 0.2 0.2 0.2  0.1 0.2  0.0 0.2  0.0 0.1  0.0 0.0 0.0 0.3 0.2 0.2 
Subgroup_2 (3) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_5 (7) 0.1 0.1 0.0 0.0 0.1 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_6 (78) 0.4 0.5 0.6 0.4 0.9 0.7  0.1 0.8  0.1 0.7  0.0 0.4  0.1 0.1 0.1 0.6 0.3 0.5 
Subgroup_11 (4) 0.0 0.0 0.1 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_13 (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_17 (14) 0.1 0.0 0.1 0.0 0.1 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_18 (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_22 (7) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_25 (5) 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Actinobacteria,                       
Acidimicrobiia,                       

Acidimicrobiaceae (21) 0.8 1.0 0.7 0.6 0.5 0.7  0.7 0.9  0.7 0.6  0.5 0.7  0.8 0.8 0.7 0.9 0.7 0.7 
Iamiaceae (11) 0.1 0.2 0.2 0.0 0.1 0.0  0.1 0.3  0.2 0.1  0.2 0.1  0.1 0.2 0.2 0.1 0.1 0.2 
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 Sampling Time:  0 h  5 h  10 h  20 h  30 h 

Treatment:  U1 U2 U3 D1 D2 D3  U D  U D 
 

U D  U1 U2 U3 D1 D2 D3 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Unassigned Acidimicrobiales (52) 0.7 0.9 1.1 0.5 0.7 0.6  0.7 0.9  1.0 0.6  0.8 0.9  1.2 0.8 1.1 1.0 0.6 0.8 
Actinobacteria,                       

Acidothermaceae (7) 0.1 0.1 0.1 0.1 0.0 0.0  0.1 0.0  0.1 0.0  0.1 0.0  0.1 0.1 0.2 0.1 0.0 0.1 
Catenulisporaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Cellulomonadaceae (1) 0.2 0.2 0.1 0.1 0.1 0.2  0.2 0.1  0.1 0.1  0.1 0.2  0.1 0.1 0.1 0.0 0.1 0.1 
Cryptosporangiaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Demequinaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Dermabacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Dermacoccaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Frankiaceae (4) 0.0 0.0 0.1 0.0 0.1 0.1  0.1 0.1  0.1 0.0  0.1 0.0  0.1 0.1 0.1 0.0 0.0 0.1 
Geodermatophilaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Glycomycetaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Intrasporangiaceae (3) 0.2 0.1 0.2 0.1 0.2 0.2  0.1 0.3  0.3 0.3  0.2 0.2  0.4 0.2 0.3 0.2 0.1 0.2 
Kineosporiaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Microbacteriaceae (11) 0.1 0.1 0.2 0.1 0.1 0.1  0.1 0.1  0.2 0.1  0.2 0.1  0.2 0.2 0.1 0.1 0.1 0.1 
Micrococcaceae (3) 0.1 0.2 0.1 0.1 0.1 0.1  0.2 0.1  0.1 0.0  0.2 0.0  0.2 0.2 0.2 0.0 0.1 0.1 
Micromonosporaceae (28) 0.8 0.9 1.2 0.5 0.7 0.5  0.9 1.0  1.5 0.6  1.3 0.6  1.9 2.6 2.5 0.9 0.4 0.5 
Mycobacteriaceae (8) 0.3 0.3 0.3 0.2 0.2 0.2  0.3 0.3  0.4 0.2  0.6 0.2  0.3 0.6 0.5 0.3 0.1 0.2 
Nakamurellaceae (2) 0.1 0.1 0.2 0.1 0.1 0.1  0.1 0.2  0.2 0.1  0.2 0.2  0.2 0.2 0.1 0.1 0.1 0.1 
Nocardiaceae (9) 0.0 0.1 0.1 0.0 0.0 0.0  0.1 0.1  0.1 0.1  0.1 0.0  0.1 0.1 0.3 0.0 0.0 0.1 
Nocardioidaceae (28) 0.8 1.0 1.3 0.7 0.7 0.5  1.1 1.2  1.5 0.8  1.2 0.5  1.1 1.2 1.6 0.5 0.5 0.5 
Promicromonosporaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.1 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Propionibacteriaceae (10) 0.1 0.1 0.2 0.1 0.1 0.1  0.2 0.2  0.3 0.2  0.2 0.2  0.3 0.2 0.2 0.1 0.1 0.1 
Pseudonocardiaceae (12) 0.4 0.7 0.9 0.3 0.3 0.4  0.8 0.6  0.8 0.4  0.8 0.6  0.5 0.9 1.1 0.4 0.3 0.5 
Sporichthyaceae (3) 0.1 0.0 0.0 0.1 0.1 0.0  0.1 0.1  0.1 0.0  0.1 0.0  0.1 0.1 0.1 0.0 0.1 0.1 
Streptomycetaceae (6) 0.5 0.5 0.6 0.3 0.7 0.3  0.9 0.5  1.1 0.3  0.8 0.3  1.5 1.6 1.9 0.5 0.6 0.4 
Streptosporangiaceae (3) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.1 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Thermomonosporaceae (8) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Actinobacteria (3) 0.1 0.1 0.2 0.2 0.1 0.1  0.2 0.2  0.2 0.2  0.2 0.1  0.2 0.0 0.1 0.1 0.1 0.1 

Coriobacteriia,                       
Coriobacteriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Coriobacteriia (23) 0.3 0.2 0.5 0.2 0.3 0.2  0.3 0.5  0.5 0.3  0.6 0.4  0.7 0.8 0.5 0.2 0.2 0.2 

Rubrobacteria, 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Rubrobacteriaceae (3) 0.1 0.2 0.2 0.2 0.1 0.1  0.1 0.2  0.2 0.1  0.2 0.1  0.1 0.1 0.2 0.1 0.1 0.1 

Thermoleophilia,                       
Conexibacteraceae (3) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Gaiellaceae (5) 0.5 0.2 0.6 0.1 0.2 0.3  0.4 0.4  0.5 0.4  0.5 0.2  0.6 0.5 0.4 0.2 0.1 0.3 
Parviterribacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Patulibacteraceae (5) 0.0 0.0 0.0 0.0 0.0 0.0  0.1 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Solirubrobacteraceae (4) 0.7 0.7 1.0 0.4 0.5 0.5  0.5 0.6  0.8 0.5  0.5 0.4  0.6 0.6 0.9 0.4 0.4 0.4 
Unassigned Solirubrobacterales(54) 0.4 0.4 0.7 0.2 0.4 0.3  0.4 0.4  0.8 0.3  0.7 0.4  0.9 0.8 1.2 0.2 0.2 0.3 
Unassigned Thermoleophilia (44) 0.5 0.3 0.6 0.3 0.3 0.2  0.3 0.5  0.6 0.3  0.4 0.3  0.6 0.7 0.7 0.3 0.2 0.4 

Armatimonadetes,                       
Unassigned Armatimonadia (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Chthonomonadetes, 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Chthonomonadaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Chthonomonadetes (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Armatimonadetes (6) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Bacteroidetes,                       
Bacteroidia,                       

Bacteroidaceae (4) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Porphyromonadaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Prevotellaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Rikenellaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Cytophagia,                       
Cytophagaceae (5) 0.0 0.0 0.0 0.1 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
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 Sampling Time:  0 h  5 h  10 h  20 h  30 h 

Treatment:  U1 U2 U3 D1 D2 D3  U D  U D 
 

U D  U1 U2 U3 D1 D2 D3 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Flavobacteriia,                       
Flavobacteriaceae (9) 1.0 0.9 1.1 1.8 1.7 2.4  0.1 0.7  0.0 0.9  0.0 1.6  0.0 0.0 0.0 0.4 0.7 0.7 

Sphingobacteriia,                       
Chitinophagaceae (23) 0.0 0.0 0.1 0.1 0.0 0.1  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.1 0.1 0.0 
Lentimicrobiaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Saprospiraceae (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Sphingobacteriaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriales (4) 0.0 0.0 0.0 0.1 0.1 0.1  0.0 0.1  0.0 0.0  0.0 0.1  0.0 0.0 0.0 0.0 0.0 0.0 

BJ-169,                       
Unassigned BJ-169 (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

BRC1,                       
Unassigned BRC1 (4) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Chlamydiae,                       
Chlamydiae,                       

Parachlamydiaceae (40) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.1 0.1 0.1 0.0 0.0 0.0 
Simkaniaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Chlamydiae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Chloroflexi,                       

Anaerolineae,                       
Anaerolineaceae (8) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Caldilineae,                       
Caldilineaceae (10) 0.1 0.1 0.1 0.0 0.1 0.1  0.0 0.0  0.0 0.0  0.0 0.1  0.0 0.0 0.0 0.1 0.0 0.1 

Chloroflexia,                       
Roseiflexaceae (5) 0.1 0.1 0.1 0.1 0.1 0.1  0.0 0.1  0.1 0.1  0.1 0.0  0.1 0.0 0.1 0.0 0.0 0.1 
Unassigned Chloroflexia (3) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Ktedonobacteria,                       
Ktedonobacteraceae (3) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Thermosporotrichaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacteria (11) 0.0 0.0 0.0 0.0 0.1 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Thermomicrobia,                       
Thermomicrobiaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Thermomicrobia (33) 0.2 0.1 0.2 0.1 0.1 0.1  0.1 0.2  0.2 0.1  0.1 0.1  0.1 0.2 0.3 0.1 0.2 0.1 

Unassigned Chloroflexi (67) 0.7 0.8 1.0 0.5 0.7 0.5  0.6 0.7  0.9 0.8  0.7 0.5  1.0 0.7 1.2 0.6 0.5 0.5 
Cyanobacteria,                       

Chloroplast,                       
Unassigned Chloroplast (12) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Cyanobacteria,                       
Unassigned Cyanobacteria (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Cyanobacteria (3) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Deferribacteres,                       

Deferribacteres,                       
Deferribacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Deinococcus-Thermus,                       
Unassigned Deinococci (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Elusimicrobia,                       
Unassigned Elusimicrobia (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Euryarchaeota,                       
Methanomicrobia,                       

Methanosarcinaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Fibrobacteria,                       

Fibrobacteraceae (3) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Fibrobacteraceae (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Firmicutes,                       
Bacilli,                       

Alicyclobacillaceae (4) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Bacillaceae (31) 0.7 0.9 1.0 0.6 0.6 0.7  1.3 0.8  1.6 0.7  2.4 0.7  2.9 3.8 3.4 0.9 1.0 0.9 
Lactobacillaceae (4) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Leuconostocaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Paenibacillaceae (55) 0.1 0.0 0.1 0.1 0.1 0.1  0.1 0.1  0.2 0.1  0.2 0.3  0.3 0.3 0.3 0.2 0.2 0.2 
Pasteuriaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
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 Sampling Time:  0 h  5 h  10 h  20 h  30 h 

Treatment:  U1 U2 U3 D1 D2 D3  U D  U D 
 

U D  U1 U2 U3 D1 D2 D3 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Planococcaceae (7) 0.1 0.0 0.1 0.0 0.1 0.0  0.1 0.0  0.1 0.0  0.1 0.1  0.2 0.2 0.2 0.1 0.1 0.0 
Sporolactobacillaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Thermoactinomycetaceae (14) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Bacilli (8) 0.7 0.5 0.7 0.4 0.6 0.4  0.6 0.5  1.4 0.3  0.4 0.2  0.2 0.1 0.0 0.4 0.2 0.3 

Clostridia,                       
Caldicoprobacteraceae (6) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Christensenellaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Clostridiaceae (27) 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1  0.2 0.3  0.1 2.1  0.4 0.1 0.1 4.5 4.4 4.3 
Defluviitaleaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Eubacteriaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Clostridiales (17) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.1  0.0 0.0 0.0 0.3 0.2 0.2 
Gracilibacteraceae (6) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Halanaerobiaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Heliobacteriaceae (21) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Lachnospiraceae (20) 0.0 0.1 0.2 0.0 0.0 0.0  0.1 0.1  0.2 0.1  0.2 1.4  0.2 0.2 0.2 3.0 3.3 2.8 
Peptococcaceae (5) 0.3 0.3 0.2 0.4 0.4 0.5  0.6 0.4  0.7 0.2  0.9 0.3  1.7 2.1 1.8 0.3 0.4 0.3 
Peptostreptococcaceae (5) [D5] 0.2 0.2 0.2 0.3 0.3 0.2  0.3 0.7  1.9 1.0  4.2 1.2  10 8.1 7.9 1.8 1.6 1.6 
Ruminococcaceae (39) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.1  0.0 0.0 0.0 0.1 0.2 0.2 
Syntrophomonadaceae (3) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Thermoanaerobacteraceae (5) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Clostridia (6) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Erysipelotrichia,                       
Erysipelotrichaceae (3) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Limnochordia,                       
Limnochordaceae (17) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Limnochordaceae (3) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Negativicutes,                       
Veillonellaceae (11) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Negativicutes (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Fusobacteria,                       
Fusobacteriia,                       

Fusobacteriaceae (1) [D1] 14 12 11 25 19 24  24 19  26 27  42 24  27 31 27 22 25 22 
Gemmatimonadetes,                       

Gemmatimonadetes,                       
Gemmatimonadaceae (22) 0.1 0.1 0.1 0.1 0.2 0.0  0.0 0.2  0.0 0.2  0.0 0.1  0.0 0.1 0.0 0.1 0.1 0.1 
Unassigned Gemmatimonadetes (4) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Latescibacteria,                       
Unassigned Latescibacteria (10) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Nitrospirae,                       
Nitrospira,                       

Nitrospiraceae (6) 0.1 0.1 0.1 0.1 0.1 0.1  0.1 0.1  0.0 0.1  0.0 0.1  0.0 0.0 0.0 0.0 0.1 0.1 
Unassigned Nitrospirales (10) 0.2 0.3 0.4 0.1 0.2 0.3  0.0 0.3  0.1 0.3  0.0 0.2  0.1 0.0 0.0 0.1 0.2 0.2 

Planctomycetes,                       
Phycisphaerae,                       

Phycisphaeraceae (16) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Tepidisphaeraceae (46) 0.6 0.7 0.6 0.5 0.6 0.5  0.2 0.9  0.1 0.6  0.0 0.5  0.0 0.0 0.0 0.3 0.3 0.3 
Unassigned Phycisphaerae (7) 0.0 0.0 0.1 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Planctomycetacia,                       
Planctomycetaceae (456) 9.9 10 9.5 6.5 7.4 6.9  9.7 12  10 8.7  6.7 8.6  7.4 10 11 9.3 8.6 8.6 

Unassigend Planctomycetes (28) 0.1 0.1 0.0 0.0 0.0 0.0  0.0 0.1  0.0 0.1  0.0 0.2  0.0 0.0 0.0 0.0 0.1 0.1 
Proteobacteria,                       

Alphaproteobacteria,                       
Acetobacteraceae (8) 0.2 0.1 0.2 0.1 0.1 0.1  0.2 0.1  0.1 0.1  0.0 0.1  0.1 0.1 0.1 0.1 0.1 0.1 
Anaplasmataceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Beijerinckiaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Bradyrhizobiaceae (3) 1.5 1.4 1.3 0.9 1.1 1.0  0.8 1.1  1.3 0.9  1.1 1.0  1.2 1.8 1.9 0.9 0.8 1.1 
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 Sampling Time:  0 h  5 h  10 h  20 h  30 h 

Treatment:  U1 U2 U3 D1 D2 D3  U D  U D 
 

U D  U1 U2 U3 D1 D2 D3 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Caulobacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Erythrobacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Holosporaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Hyphomicrobiaceae (5) 0.1 0.2 0.2 0.1 0.1 0.1  0.1 0.2  0.2 0.1  0.2 0.1  0.4 0.4 0.3 0.1 0.1 0.1 
Methylobacteriaceae (5) 0.3 0.3 0.3 0.3 0.2 0.2  0.2 0.2  0.3 0.2  0.2 0.4  0.4 0.4 0.4 0.1 0.2 0.3 
Methylocystaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Mitochondria (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Phyllobacteriaceae (3) 0.5 0.6 0.4 0.3 0.3 0.3  0.2 0.2  0.4 0.2  0.4 0.2  0.6 0.7 0.6 0.3 0.3 0.3 
Rhizobiaceae (3) 0.0 0.0 0.0 0.0 0.1 0.1  0.0 0.0  0.0 0.0  0.1 0.0  0.1 0.1 0.0 0.1 0.0 0.0 
Rhodobacteraceae (5) 0.1 0.0 0.1 0.1 0.1 0.1  0.0 0.1  0.1 0.0  0.1 0.2  0.1 0.1 0.1 0.1 0.0 0.0 
Rhodobiaceae (2) 0.3 0.2 0.5 0.2 0.2 0.2  0.2 0.3  0.7 0.2  0.4 0.2  0.9 0.6 0.9 0.2 0.3 0.3 
Rhodospirillaceae (14) 0.8 0.9 1.1 0.6 0.6 0.8  0.8 0.8  1.1 0.6  0.9 0.8  0.8 0.6 0.9 0.8 0.6 0.7 
Rickettsiaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Sphingomonadaceae (5) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Xanthobacteraceae (5) 1.5 1.8 2.1 0.9 1.0 1.0  1.1 1.7  2.3 1.2  1.4 1.1  1.6 1.9 2.1 1.1 1.0 1.1 
Unassigned Rhodospirillales (22) 0.5 0.7 0.9 0.4 0.4 0.4  0.6 0.6  0.7 0.5  0.3 0.4  0.4 0.3 0.3 0.6 0.5 0.4 
Unassigned Rhizobiales (17) 0.1 0.1 0.2 0.1 0.1 0.1  0.1 0.1  0.2 0.1  0.1 0.1  0.1 0.1 0.2 0.2 0.1 0.1 

Betaproteobacteria,                       
Alcaligenaceae (4) 0.0 0.1 0.0 0.0 0.0 0.1  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Burkholderiaceae (5) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Comamonadaceae (8) 0.1 0.1 0.2 0.2 0.1 0.2  0.0 0.1  0.0 0.1  0.0 0.1  0.0 0.0 0.0 0.0 0.1 0.0 
Nitrosomonadaceae (20) 0.1 0.1 0.1 0.0 0.1 0.1  0.0 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.1 0.0 0.1 
Oxalobacteraceae (6) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Rhodocyclaceae (3) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Betaproteobacteria (26) 0.1 0.0 0.1 0.1 0.2 0.1  0.0 0.1  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.1 0.1 0.1 

Deltaproteobacteria,                       
Archangiaceae (10) 0.1 0.2 0.1 0.0 0.0 0.0  0.0 0.2  0.1 0.1  0.0 0.1  0.0 0.0 0.0 0.1 0.1 0.1 
Bacteriovoracaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Bdellovibrionaceae (17) 0.0 0.0 0.1 0.0 0.0 0.0  0.1 0.0  0.1 0.0  0.1 0.0  0.1 0.2 0.2 0.0 0.0 0.1 
Desulfarculaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Desulfovibrionaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Desulfurellaceae (25) 0.3 0.2 0.4 0.2 0.3 0.2  0.1 0.2  0.1 0.2  0.0 0.2  0.1 0.0 0.0 0.1 0.2 0.2 
Desulfuromonadaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Geobacteraceae (10) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Haliangiaceae (33) 0.2 0.1 0.3 0.2 0.2 0.1  0.1 0.2  0.1 0.1  0.0 0.2  0.1 0.0 0.0 0.3 0.1 0.2 
Myxococcaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Nannocystaceae (4) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.1 0.0 0.0 0.0 
Oligoflexaceae (5) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Phaselicystidaceae (4) 0.0 0.0 0.1 0.0 0.0 0.0  0.0 0.1  0.1 0.0  0.0 0.0  0.0 0.0 0.0 0.2 0.1 0.0 
Polyangiaceae (23) 0.1 0.1 0.2 0.1 0.1 0.1  0.1 0.2  0.2 0.1  0.1 0.2  0.3 0.2 0.2 0.1 0.1 0.1 
Sandaracinaceae (16) 0.1 0.0 0.1 0.1 0.0 0.1  0.1 0.1  0.1 0.1  0.0 0.0  0.1 0.1 0.0 0.0 0.0 0.0 
Syntrophaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Vulgatibacteraceae (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Myxococcales(57) 0.1 0.1 0.2 0.0 0.1 0.1  0.1 0.1  0.1 0.0  0.1 0.1  0.1 0.0 0.1 0.1 0.1 0.0 
Unassigned Deltaproteobacteria (37) 0.0 0.1 0.0 0.1 0.0 0.1  0.0 0.0  0.1 0.0   0.1 0.0  0.0 0.0 0.1 0.0 0.0 0.0 

Epsilonproteobacteria,                       
Helicobacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Gammaproteobacteria,                       
Aeromonadaceae (2) [D4, D179] 21 23 22 25 22 25  22 24  17 22  5.9 18  3.7 3.8 4.0 15 16 19 
Coxiellaceae (6) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Enterobacteriaceae (7) 4.4 5.0 4.9 5.0 5.4 5.4  4.2 3.7  4.4 4.1  2.4 3.5  3.7 2.3 2.7 4.5 3.3 3.6 
Halieaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Legionellaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Methylococcaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Oleiphilaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Pseudomonadaceae (4) 0.0 0.0 0.0 0.0 0.1 0.0  0.0 0.0  0.0 0.0  0.0 0.4  0.0 0.0 0.0 0.4 0.4 1.1 
Shewanellaceae (2) [D2] 3.4 3.1 4.4 2.1 2.0 2.7  4.2 2.6  6.6 4.1  14 8.6  15 10 11 6.2 5.2 6.5 
Spongiibacteraceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Succinivibrionaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Xanthomonadaceae (7) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
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 Sampling Time:  0 h  5 h  10 h  20 h  30 h 

Treatment:  U1 U2 U3 D1 D2 D3  U D  U D 
 

U D  U1 U2 U3 D1 D2 D3 

Phyla, Class, Familyb  Relative Abundance (%) 
   

Unassigned Xanthomonadales (23) 0.0 0.1 0.3 0.1 0.1 0.0  0.0 0.2  0.1 0.1  0.1 0.1  0.1 0.1 0.1 0.1 0.1 0.0 
Saccharibacteria,                       

Unassigned Saccaribacteria (47) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Spirochaetae,                       

Spirochaetes,                       
Brevinemataceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Spirochaetaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Synergistetes,                       
Synergistia,                       

Synergistaceae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Tectomicrobia,                       

Unassigned Tectomicrobia (8) 0.5 0.6 0.9 0.7 0.7 0.6  0.5 0.6  0.1 0.6  0.0 0.9  0.0 0.0 0.0 0.5 0.4 0.7 
Tenericutes,                       

Mollicutes,                       
Haloplasmataceae (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Mycoplasmataceae (5) [D3] 22 22 17 17 21 15  15 13  5.6 13  0.8 11  0.8 0.3 0.3 13 14 11 
Unassigned Mollicutes (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

TM6_Dependentiae,                       
UnassignedTM6_Dependentiae (3) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Verrucomicrobia,                       
OPB35 soil group (42) 0.1 0.2 0.1 0.2 0.1 0.1  0.0 0.1  0.0 0.1  0.0 0.1  0.0 0.0 0.0 0.1 0.0 0.0 
Opitutae,                       

Opitutaceae (2) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Opitutae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Spartobacteria,                       
Chthoniobacteraceae (20) 0.1 0.1 0.0 0.0 0.1 0.1  0.0 0.0  0.0 0.0  0.0 0.1  0.1 0.0 0.0 0.0 0.0 0.1 
Xiphinematobacteraceae (4) 1.1 1.0 0.7 0.8 1.0 0.7  0.9 0.6  1.2 0.8  1.9 1.0  3.4 3.1 3.3 0.9 1.2 1.3 
Unassigned Spartobacteria (25) 0.6 0.3 0.4 0.3 0.4 0.3  0.2 0.4  0.3 0.3  0.2 0.3  0.3 0.3 0.3 0.4 0.3 0.3 

Verrucomicrobiae,                       
Verrucomicrobiaceae (10) 0.1 0.1 0.0 0.0 0.0 0.1  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Verrucomicrobiae (1) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0 

 
0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

Archeae                       
Thaumarchaeota,                       

Unassigned Thaumarchaeota (6) 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 

aSamples of the three replicates were analyzed separately expect for samples at 5 h, 10 h and 20 h.  Identification numbers (e.g., U1) indicate the respective replicates.   Treatments: U, undiluted 
gut content; D; diluted gut content. 

bThe number of phylotypes are shown in parenthesis.  Abundant responsive phylotypes from Figure 72 are bold and in brackets. 

Table A11.  Summary of all detected families in the symbiont experiment based on 16S rRNA (Section 3.5).a 

Treatment: 
 

WB A WB B WB C Turf A Turf B Turf C Soil A Soil B Soil C Turf 1 Turf 2 Turf 3 Soil 1 Soil 2 Soil 3 

Phyla, Class, Familyb  Relative Abundance (%) 

   

Acidobacteria,                 
Acidobacteria,                 

Acidobacteriaceae (4)  0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Blastocatellia,  
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Treatment: 
 

WB A WB B WB C Turf A Turf B Turf C Soil A Soil B Soil C Turf 1 Turf 2 Turf 3 Soil 1 Soil 2 Soil 3 

Phyla, Class, Familyb  Relative Abundance (%) 

   

Blastocatellaceae (4)  0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 
Holophagae,  

               

Unassigned Holophagae (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 
Solibacteres,  

               

Solibacteraceae (12)  0.0 0.0 0.0 0.3 0.5 0.0 0.3 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.2 
Subgroup_5 (5)  0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.1 0.1 0.2 0.2 0.1 
Subgroup_6 (43)  0.0 0.0 0.5 1.0 1.5 0.3 1.0 1.5 0.8 0.7 0.9 0.5 1.5 1.6 0.9 
Subgroup_11 (3)  0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 
Subgroup_17 (4)  0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_18 (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subgroup_22 (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
Subgroup_25 (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Actinobacteria,  
               

Acidimicrobiia,  
               

Acidimicrobiaceae (13)  0.0 0.1 0.2 1.7 1.5 0.5 3.1 1.2 0.6 1.0 0.9 0.9 1.6 1.3 1.4 
Unassigned Acidimicrobiales (39)  0.3 0.3 0.5 1.9 2.3 0.8 4.3 2.5 1.7 1.4 1.5 1.4 3.2 3.9 3.4 
Iamiaceae (5)  0.0 0.0 0.0 0.1 0.1 0.1 0.7 0.1 0.0 0.1 0.3 0.2 0.3 0.1 0.2 

Actinobacteria,  
               

Acidothermaceae (8)  2.3 1.4 1.7 0.1 0.1 0.2 0.5 0.5 0.1 0.1 0.2 0.1 0.4 0.5 0.3 
Cellulomonadaceae (1)  0.0 0.1 0.1 0.1 0.0 0.1 1.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 
Demequinaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Dermacoccaceae (1)  0.3 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Frankiaceae (3)  0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.0 0.1 0.2 0.1 0.2 0.2 0.1 
Geodermatophilaceae (1)  0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 
Glycomycetaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Intrasporangiaceae (3)  0.0 0.1 0.6 0.2 0.2 0.1 0.8 0.2 0.1 0.2 0.3 0.2 0.3 0.3 0.3 
Kineosporiaceae (3)  0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Microbacteriaceae (7)  1.0 1.2 1.2 0.2 0.2 0.2 0.5 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 
Micrococcaceae (2)  0.5 1.1 1.3 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.2 0.1 0.2 0.2 0.1 
Micromonosporaceae (18)  0.0 0.0 0.1 1.2 1.1 1.4 2.7 1.8 1.0 0.7 1.0 0.8 2.4 1.4 1.8 
Mycobacteriaceae (7)  0.1 0.1 0.3 0.5 0.1 0.4 0.1 0.2 0.1 0.2 0.5 0.2 0.2 0.1 0.2 
Nakamurellaceae (1)  0.0 0.0 0.0 0.1 0.1 0.0 0.5 0.0 0.0 0.2 0.1 0.1 0.1 0.0 0.1 
Nocardiaceae (4)  0.0 0.1 0.0 0.1 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 
Nocardioidaceae (19)  1.1 0.8 1.4 1.2 1.1 0.5 1.5 0.9 0.7 0.7 1.1 0.9 1.8 1.3 1.2 
Promicromonosporaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Propionibacteriaceae (5)  0.0 0.0 0.0 0.3 0.2 0.2 0.8 0.5 0.1 0.3 0.4 0.3 0.5 0.6 0.3 
Pseudonocardiaceae (11)  0.0 0.1 0.1 1.3 1.0 0.7 0.6 0.7 0.4 1.0 1.2 0.8 1.3 1.0 0.9 
Sporichthyaceae (3)  0.0 0.0 0.0 0.1 0.1 0.0 0.2 0.1 0.0 0.1 0.2 0.1 0.1 0.1 0.1 
Unassigned Frankiales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Streptomycetaceae (4)  0.4 0.3 0.3 0.6 0.7 0.4 1.0 0.4 0.5 0.5 0.8 0.5 0.8 1.0 1.0 
Streptosporangiaceae (2)  0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
Thermomonosporaceae (3)  0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0 
Unassigned Actinobacteria (1)  0.0 0.0 0.0 0.2 0.0 0.1 1.1 0.0 0.0 0.1 0.1 0.2 0.1 0.1 0.0 

Coriobacteriia,  
               

Coriobacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rubrobacteria,  

               

Rubrobacteriaceae (3)  0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.4 0.2 0.1 0.1 0.2 0.3 0.3 0.2 
Thermoleophilia,  

               

Conexibacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gaiellaceae (5)  0.0 0.1 0.2 0.8 0.9 0.8 1.2 1.8 0.7 1.0 1.3 0.9 1.4 1.7 0.9 
Unassigned Gaiellales (29)  0.3 0.3 0.5 1.3 1.6 1.1 1.7 3.3 1.1 1.3 1.7 1.3 2.3 2.1 1.7 
Parviterribacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Patulibacteraceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Solirubrobacteraceae (4)  0.0 0.1 0.2 1.1 1.5 1.1 1.9 1.4 0.7 0.7 1.4 1.0 1.5 1.4 0.9 
Unassigned Solirubrobacterales (13)  0.8 0.6 0.7 0.5 0.7 0.6 0.8 0.7 0.3 0.5 0.8 0.5 0.8 0.7 0.7 
Unassigned Thermoleophilia (27)  0.2 0.2 0.3 0.6 0.5 0.4 1.1 0.7 0.4 0.4 0.8 0.6 0.6 0.7 0.5 
Unassigned Actinobacteria (18)  0.0 0.0 0.1 0.4 0.8 0.3 1.1 1.8 0.7 0.5 0.8 0.5 1.2 1.3 1.2 

Armatimonadetes,  
               

Unassigned Armatimonadetes (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bacteroidetes,  

               

Bacteroidia,  
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Treatment: 
 

WB A WB B WB C Turf A Turf B Turf C Soil A Soil B Soil C Turf 1 Turf 2 Turf 3 Soil 1 Soil 2 Soil 3 

Phyla, Class, Familyb  Relative Abundance (%) 

   

Bacteroidaceae (5)  0.1 1.4 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 
Porphyromonadaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Prevotellaceae (2)  0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rikenellaceae (2)  0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cytophagia,  
               

Cytophagaceae (7)  0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 
Flavobacteriia (13)  4.5 16 2.7 1.8 0.7 0.4 0.3 2.5 0.6 0.5 0.2 0.4 0.0 0.2 0.2 
Sphingobacteriia,  

               

Chitinophagaceae (9)  0.1 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 
Sphingobacteriaceae (6)  0.3 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Sphingobacteriales (2)  0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

BRC1,  
               

Unassigned BRC1 (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chlamydiae,  

               

Chlamydiae,  
               

Parachlamydiaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chloroflexi,  

               

Anaerolineae,  
               

Anaerolineaceae (5)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 
Caldilineae,  

               

Caldilineaceae (8)  0.0 0.0 0.1 0.1 0.3 0.0 0.2 0.1 0.0 0.1 0.1 0.1 0.1 0.3 0.1 
Chloroflexia,  

               

Roseiflexaceae (6)  0.0 0.0 0.0 0.1 0.3 0.0 0.2 0.3 0.2 0.1 0.1 0.2 0.3 0.3 0.2 
Unassigned Kallotenuales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Ktedonobacteria,  
               

Unassigned Ktedonobacterales (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Ktedonobacteria (6)  0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 

Thermomicrobia,  
               

Unassigned Thermomicrobia (22)  0.0 0.1 0.1 0.2 0.6 0.2 0.8 0.2 0.2 0.2 0.4 0.3 0.2 0.5 0.2 
Unassigned Chloroflexi (44)  0.1 0.0 0.4 1.1 1.7 0.6 2.7 2.3 1.0 1.1 1.9 1.4 2.4 2.8 2.3 

Cyanobacteria,  
               

Chloroplast,  
               

Unassigned Chloroplast (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cyanobacteria,  

               

Unassigned Cyanobacteria (2)  0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 
Deinococcus-Thermus,  

               

Deinococci,  
               

Unassigned Deinococci (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Elusimicrobia,  

               

Elusimicrobia,  
               

Unassigned Elusimicrobia (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Firmicutes,  

               

Bacilli,  
               

Bacillaceae (4)  1.0 1.1 1.4 0.8 0.5 1.2 0.5 0.7 0.5 0.7 1.9 1.0 0.8 0.8 0.6 
Lactobacillaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Paenibacillaceae (13)  0.1 0.1 0.3 0.0 0.2 0.1 0.1 0.0 0.0 0.1 0.2 0.0 0.1 0.1 0.1 
Pasteuriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Planococcaceae (4)  0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 
Streptococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thermoactinomycetaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Bacilli (2)  0.0 0.0 0.0 0.0 1.4 1.1 0.0 0.0 0.0 0.4 0.9 0.3 0.4 0.3 0.2 

Clostridia,  
               

Clostridiaceae (9)  0.1 0.1 0.1 0.1 0.2 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.2 
Unassigned Clostridiales (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Eubacteriaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gracilibacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Lachnospiraceae (13)  0.1 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
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Treatment: 
 

WB A WB B WB C Turf A Turf B Turf C Soil A Soil B Soil C Turf 1 Turf 2 Turf 3 Soil 1 Soil 2 Soil 3 

Phyla, Class, Familyb  Relative Abundance (%) 

   

Peptococcaceae (2)  0.3 2.6 0.1 0.4 0.5 0.8 0.3 1.6 0.3 0.8 1.7 1.7 1.8 1.5 1.2 
Peptostreptococcaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Ruminococcaceae (10)  0.4 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 
Erysipelotrichia,  

               

Erysipelotrichaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Fusobacteria,  

               

Fusobacteriia,  
               

Unassigned Fusobacteriales (1)  0.2 4.6 0.1 0.6 3.0 3.3 0.1 4.1 17.1 3.0 1.6 2.4 0.1 0.9 1.8 
Gemmatimonadetes,  

               

Gemmatimonadetes,  
               

Gemmatimonadaceae (13)  0.0 0.0 0.1 0.1 0.2 0.1 0.2 0.6 0.1 0.1 0.1 0.1 0.3 0.3 0.1 
Latescibacteria,  

               

Unassigned Latescrbacteria (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrospirae,  

               

Nitrospira,  
               

Nitrospiraceae (4)  0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 
Unassigned Nitrospirales (10)  0.0 0.0 0.1 0.4 0.9 0.2 1.1 1.4 0.5 0.3 0.5 0.3 1.1 1.1 0.4 

Planctomycetes,  
               

OM190 (10)  0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phycisphaerae,  

               

Unassigned Phycisphaerae (5)  0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tepidisphaeraceae (35)  0.0 0.0 0.1 0.6 1.1 0.1 1.6 0.5 0.2 0.3 0.2 0.5 0.6 1.1 0.4 

Planctomycetacia,  
               

Planctomycetaceae (343)  4.3 3.2 8.3 11 16 8.6 20 14 5.6 9.1 6.1 9.7 7.9 10.5 7.0 
Unassigned Planctomycetes (4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Proteobacteria,  
               

Alphaproteobacteria,  
               

Acetobacteraceae (7)  0.2 0.1 0.2 0.3 0.3 0.1 0.3 0.1 0.1 0.2 0.1 0.3 0.3 0.2 0.2 
Beijerinckiaceae (1)  0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Bradyrhizobiaceae (3)  0.1 0.1 0.2 2.5 1.7 0.7 2.0 1.1 0.8 1.3 1.5 1.0 2.0 1.9 1.7 
Caulobacteraceae (4)  0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Erythrobacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Hyphomicrobiaceae (4)  0.1 0.1 0.1 0.2 0.3 0.1 0.2 0.2 0.2 0.1 0.2 0.1 0.5 0.3 0.3 
Methylobacteriaceae (3)  0.0 0.0 0.1 0.7 0.3 0.1 0.4 0.1 0.0 0.3 0.6 0.3 0.3 0.5 0.4 
Phyllobacteriaceae (3)  0.0 0.1 0.1 0.6 0.5 0.1 0.7 0.2 0.2 0.4 0.4 0.4 0.5 0.5 0.4 
Rhizobiaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rhodobacteraceae (4)  0.1 0.1 0.1 0.1 0.1 0.0 0.4 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.1 
Rhodobiaceae (2)  0.1 0.1 0.1 0.5 0.5 0.2 0.5 0.1 0.2 0.2 0.4 0.3 0.7 0.4 0.6 
Rhodospirillaceae (12)  0.0 0.0 0.3 2.2 1.9 1.0 2.3 1.6 0.8 1.5 1.9 1.1 2.9 2.4 2.6 
Unassigned Rhodospirillales (25)  0.1 0.1 0.3 2.3 1.5 0.9 2.5 0.6 0.4 0.9 1.6 1.1 1.2 1.8 1.1 
Unassigned Rickettsiales (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Roseiarcaceae (1)  0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphingomonadaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Xanthobacteraceae (3)  0.1 0.1 0.4 2.3 2.6 1.3 4.0 2.4 0.9 1.6 2.5 1.8 2.8 2.5 2.3 
Unassigned Rhizobiales (12)  0.0 0.0 0.1 0.5 0.5 0.1 0.4 0.4 0.1 0.2 0.3 0.3 0.4 0.6 0.5 

Betaproteobacteria,  
               

Alcaligenaceae (2)  0.0 0.0 0.1 0.3 0.3 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.6 0.4 0.1 
Burkholderiaceae (3)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Comamonadaceae (10)  0.1 0.3 0.1 0.3 0.3 0.0 0.6 0.2 0.1 0.1 0.3 0.1 0.4 0.3 0.1 
Gallionellaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Methylophilaceae (1)  0.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nitrosomonadaceae (16)  0.0 0.0 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.3 0.4 0.1 
Oxalobacteraceae (3)  0.2 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Rhodocyclaceae (4)  0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Unassigned Betaproteobacteria (11)  0.0 0.0 0.1 0.2 0.2 0.0 0.2 0.1 0.0 0.0 0.1 0.1 0.4 0.1 0.1 
Deltaproteobacteria,  

               

Unassigned Oligoflexales (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Archangiaceae (4)  0.0 0.0 0.0 0.1 0.2 0.2 0.3 0.3 0.1 0.1 0.2 0.1 0.2 0.3 0.1 
Bdellovibrionaceae (6)  0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.1 
Desulfobulbaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Desulfovibrionaceae (1)  0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Treatment: 
 

WB A WB B WB C Turf A Turf B Turf C Soil A Soil B Soil C Turf 1 Turf 2 Turf 3 Soil 1 Soil 2 Soil 3 

Phyla, Class, Familyb  Relative Abundance (%) 

   

Desulfurellaceae (21)  0.0 0.0 0.1 0.5 0.9 0.4 0.7 1.1 0.7 0.5 0.8 0.3 1.6 1.7 1.0 
Desulfuromonadaceae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Geobacteraceae (10)  0.0 0.0 0.0 0.0 0.2 0.1 0.2 0.2 0.0 0.2 0.3 0.2 0.3 0.4 0.1 
Haliangiaceae (24)  0.0 0.0 0.1 0.3 0.3 0.2 0.3 0.1 0.1 0.2 0.4 0.2 0.4 0.2 0.3 
Myxococcaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Nannocystaceae (2)  0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
Phaselicystidaceae (1)  0.0 0.0 0.0 0.1 0.2 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.0 
Polyangiaceae (18)  0.0 0.1 0.0 0.2 0.3 0.3 1.6 0.1 0.1 0.1 0.4 0.3 0.5 0.3 0.2 
Sandaracinaceae (14)  0.0 0.1 0.0 0.2 0.2 0.1 0.7 0.1 0.0 0.1 0.1 0.2 0.2 0.2 0.0 
Vulgatibacteraceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 
Unassigned Myxococcales (30)  0.0 0.0 0.1 0.2 0.3 0.3 2.3 0.3 0.2 0.2 0.4 0.3 0.7 0.4 0.4 
Unassigned Deltaproteobacteria (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Gammaproteobacteria,  
               

Aeromonadacea (3)  10 8.5 7.9 8.7 9.8 31 5.3 16 24 19 11 14 1.0 6.1 13 
Coxiellaceae (1)  0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.4 0.0 0.0 0.1 0.0 0.0 0.1 
Enterobacteriaceae (6)  15 8.4 6.4 8.1 2.7 2.8 0.7 0.2 0.6 5.6 4.8 4.9 0.2 0.5 0.8 
Moraxellaceae (2)  0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oleiphilaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Pseudomonadaceae (3)  14 21 9.8 1.3 0.4 0.4 0.0 0.0 0.0 1.2 0.5 0.5 0.0 0.0 0.0 
Shewanellaceae (3)  0.1 1.0 0.2 0.9 0.9 13 1.2 4.4 8.2 4.8 3.2 3.7 0.2 1.2 3.3 
Xanthomonadaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Xanthomonadales (11)  0.0 0.0 0.1 0.1 0.2 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 
Unassigned Gammaproteobacteria (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Spirochaetae,  
               

Spirochaetes,  
               

Spirochaetaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tectomicrobia,  

               

Unassigned Tectomicrobia (11)  0.0 0.1 0.1 1.2 1.8 0.6 1.8 1.6 0.8 1.4 1.8 1.3 2.3 2.7 1.9 
Tenericutes,  

               

Mollicutes,  
               

Mycoplasmataceae (5)  40 19 46 26 19 15 6.6 17 21 27 29 32 34 25 29 
TM6 Dependentiae,  

               

Unassigned TM6 Dependentiae (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Verrucomicrobia,  

               

OPB35 soil group (24)  0.0 0.0 0.0 0.2 0.4 0.0 0.5 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.2 
Opitutae,  

               

Opitutaceae (1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unassigned Opitutaceae (1)  0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Spartobacteria,  
               

Chthoniobacteraceae (10)  0.0 0.0 0.0 0.1 0.2 0.0 0.4 0.0 0.0 0.2 0.1 0.0 0.1 0.2 0.1 
Unassigned Chthoniobacterales (17)  0.0 0.0 0.0 0.4 0.7 0.1 0.5 0.1 0.2 0.2 0.4 0.5 0.5 0.5 0.3 
Xiphinematobacteraceae (3)  0.0 0.0 0.0 3.3 3.4 0.5 2.3 0.5 1.1 2.2 1.3 2.0 2.4 3.2 3.1 

Verrucomicrobiae,  
               

Verrucomicrobiaceae (5) 
 

0.0 0.1 0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Archeae                 
Thaumarchaeota,                 

Unassigned Thaumarchaeota (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

aCapital letter assigned to a substrate [e.g., Turf A] indicate the respective individual.  Number assigned to a substrate [e.g., Turf 1] indicate the respective replicate of the three replicate analyses of 
pooled gut content from approximately 20 individuals per substrate.  Abbreviations: WB, worm bedding. 

bThe number of phylotypes are shown in parenthesis.  
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Hiermit versichere ich eidesstattlich, dass ich die Arbeit selbstständig verfasst und keine anderen 

als die von mir angegebenen Quellen und Hilfsmittel benutzt habe (vgl. Art. 64 Abs. 1 Satz 6 

BayHSchG). 
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Grades eingereicht habe und dass ich nicht bereits diese oder eine gleichartige Doktorprüfung 

endgültig nicht bestanden habe. 

(§ 8 Satz 2 Nr. 4 PromO Fakultät) 

Hiermit erkläre ich, dass ich Hilfe von gewerblichen Promotionsberatern bzw. –vermittlern oder 

ähnlichen Dienstleistern weder bisher in Anspruch genommen habe noch künftig in Anspruch 

nehmen werde.  

(§ 8 Satz 2 Nr. 7 PromO Fakultät) 

Hiermit erkläre ich mein Einverständnis, dass die elektronische Fassung der Dissertation unter 

Wahrung meiner Urheberrechte und des Datenschutzes einer gesonderten Überprüfung 
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