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1. Introduction

We consider two fixed finite, undirected, and simple graphs: Let G = (V,E) be
a graph without isolated vertices, where V = {1, . . . , n} and E (with |E| = m)
denote the vertex set and the edge set of G, respectively. Let δ ≥ 1 denote the
minimum degree of G. Furthermore, let dH = 2e

h
be the average degree of a graph

H = (V (H), E(H)), where |V (H)| = h and |E(H)| = e.
The eigenvalues λ1 ≤ · · · ≤ λn of the adjacency matrix A of G are the ordinary

eigenvalues (or shortly the eigenvalues) of G. Note that −r ≤ λ ≤ λn = r for all
eigenvalues λ of an r-regular graph G, and if G is connected, then λ1 = −λn if
and only if G is bipartite [4, 7].
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Let D be the degree matrix of G, that is an (n × n) diagonal matrix, where
the degree di of vertex i ∈ V is the i-th entry at the main diagonal. Moreover, let
0 = η1 ≤ · · · ≤ ηn be the eigenvalues of the Laplacian L = D−A of G [1, 13]. If
G is r-regular, then η is an eigenvalue of the Laplacian if and only if r − η is an
eigenvalue of A.

For G without isolated vertices, the normalized Laplacian is the (n×n) matrix
L = (lij) with lij = 1 if i = j, lij = − 1√

didj
if ij ∈ E, and lij = 0 otherwise. The

eigenvalues 0 = σ1 ≤ · · · ≤ σn of L are the normalized Laplacian eigenvalues of G
[5, 6, 13]. It is known that 1 < σn ≤ 2 and that G is bipartite if and only if σn = 2
[10, 12, 13]. For an r-regular graph G, σ is a normalized Laplacian eigenvalue if
and only if r(1− σ) is an eigenvalue of A.

For further notation and terminology we refer to [8].
In the present paper, we are interested in necessary conditions in terms of

eigenvalues for the fact that G contains a copy of H as an induced subgraph. If
all eigenvalues of G and all eigenvalues φ1 ≤ · · · ≤ φh of the adjacency matrix
AH of H are taken into consideration, then Theorem 1 is a typical result of this
kind.

Theorem 1 (Cauchy’s Inequalities, Interlacing Theorem [4, 7]). If H is an in-

duced subgraph of G with eigenvalues φ1 ≤ · · · ≤ φh, then λi ≤ φi ≤ λn−h+i for

i = 1, . . . , h.

In general, it is difficult to determine the spectra of large graphs G and H, how-
ever, the largest and the smallest eigenvalues of the matrices A, L, and L of a
graph are well investigated ([1, 4, 5, 6]). Hence, we focus on simpler necessary
conditions for H being an induced subgraph of G just involving smallest or largest
eigenvalues. The inequalities (1) obtained from Theorem 1 are possible results of
this type.

(1) λ1 ≤ φ1 and λn ≥ φh.

If the largest Laplacian eigenvalue ηn of G and the degrees of the vertices of H in
G are taken into account, then the assertion of Theorem 2 holds.

Theorem 2 (Bollobás, Nikiforov [3]). If H is an induced subgraph of G, then
(

∑

i∈V (H) di − 2e
)

n ≤ ηnh(n− h).

In general, it is not easy to determine the value
∑

i∈V (H) di exactly. If the degrees
of G do not differ too much, then the inequality

∑

i∈V (H) di ≥ δh is reasonable
and it follows

Corollary 3. If H is an induced subgraph of G, then ηnh ≤ (dH + ηn − δ)n.
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Note that Corollary 3 only makes sense if δ > dH . If G is r-regular, then δ = r,
ηn = r − λ1, and

∑

i∈V (H) di = rh, hence, Theorem 2, Corollary 3, and the
following Corollary 4, proved by Haemers already in [9], coincide in this case.

Corollary 4 (Haemers [9]). If H is an induced subgraph of the r-regular graph

G, then (r − λ1)h ≤ (dH − λ1)n.

The identity matrix is the (n × n) square matrix with ones on the main
diagonal and zeros elsewhere. It is denoted simply by I if the size is immaterial
or can be trivially determined by the context. In the sequel, x denotes a vector,
where 1 = (1, 1, . . . , 1)T and 0 = (0, 0, . . . , 0)T , and we write x ≥ 0 if xi ≥ 0 for
each entry xi of x.

Our first result is Theorem 5 concerning the case that G is regular and in-
volving the smallest eigenvalue λ1 of G.

Theorem 5. Let G be r-regular. If H is an induced subgraph of G, then (AH −
λ1I)x = 1 is solvable, and, for any solution x of this equation,

r − λ1

n
≤ min

{

zT (AH − λ1I)z | z ∈ R|V (H)|, 1T z = 1
}

=
1

1Tx
.

Moreover, if λ1 < φ1, then AH − λ1I is regular and 1Tx equals the sum of all

entries of (AH − λ1I)
−1.

If z =
(

1
h
, . . . , 1

h

)T ∈ Rh, then 1T z = 1 and zT (AH − λ1I)z = 2e−λ1h
h2 . Thus,

Theorem 5 is an extension of Corollary 4. If in Theorem 5, additionally, H is

assumed to be ρ -regular, then x =
(

1
ρ−λ1

, . . . , 1
ρ−λ1

)T

is a solution of (AH −
λ1I)x = 1, thus, 1

1T x
= (ρ−λ1)

h
= (dH−λ1)

h
, hence, Corollary 4 and Theorem 5

coincide in this case.
Now consider the following example, where the assertion of Theorem 5 is

stronger than that one of Corollary 4 and inequalities (1) only lead to trivial
statements. We ask for a necessary condition that the r-regular graph G contains
k ≥ 1 disjoint and independent copies of the path P3 on 3 vertices, that is, H
consists of k components each of them is isomorphic to P3. The eigenvalues of P3

are −
√
2, 0,

√
2 ([4]), hence, with Theorem 1 we may assume λ1 ≤ −

√
2 < −4

3 .

With h = 3k and dH = 4
3 , Corollary 4 leads to k ≤ 4−3λ1

9(r−λ1)
n.

If we consider the system (AH −λ1I)x = 1, then, by Theorem 5, it is solvable
and it follows 1Tx = k1T y, where y is a solution of (AP3

− λ1I)y = 1. It is easy

to see that 1T y = 4+3λ1

2−λ2

1

, thus, again by Theorem 5, k ≤ 2−λ2

1

(4+3λ1)(r−λ1)
n, which is

stronger than k ≤ 4−3λ1

9(r−λ1)
n.

If, additionally, G is assumed to be bipartite, then λ1 = −r and λn = r. The
inequalities (1) just imply

√
2 ≤ r in this case.
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Next we consider again the case that G is not necessarily regular and try
to establish a result similar to Theorem 5. Therefore, let M(G,H) be the set
of non-empty induced subgraphs H∗ of H such that By = 1 has a solution y =

(y1, . . . , yt)
T with ys > 0 for s = 1, . . . , t = |V (H∗)|, where AH∗ denotes the

adjacency matrix of H∗ and B = AH∗ + (σn − 1)δI. In this case y is called a

positive solution of By = 1. With H∗ = K1 and y1 = 1
(σn−1)δ > 0 (note that

σn > 1), it follows K1 ∈ M(G,H) 6= ∅ .

If H∗ ∈ M(G,H) and y1 and y2 are positive solutions of By = 1, then,

since B is symmetric, 1T y1 = y2
TBy1 = y2

T 1 = 1T y2, hence, the value 1T y is

independent on the choice of the positive solution y. We define g(G,H∗) = 1T y,
where y is an arbitrary positive solution of By = 1.

If the induced subgraph H∗ of H is ρ-regular, then it is easy to see that

(AH∗ +(σn−1)δI)y = 1 has a positive solution y =
(

1
ρ+(σn−1)δ , . . . ,

1
ρ+(σn−1)δ

)T

,

hence, H∗ ∈ M(G,H).

If H∗
1 and H∗

2 are independent induced subgraphs of H and H∗
1 ,H

∗
2 ∈M(G,H),

then the disjoint union H∗
1 ∪ H∗

2 of H∗
1 and H∗

2 also belongs to M(G,H) and
g(G,H∗

1 ∪H∗
2 ) = g(G,H∗

1 ) + g(G,H∗
2 ).

Eventually, let f(G,H) = minH∗∈M(G,H)
1

g(G,H∗) . Our second result is Theo-
rem 6 involving the largest normalized Laplacian eigenvalue σn of G.

Theorem 6. If H is an induced subgraph of G, then

σnδ
2

2m
≤ min

{

zT (AH + (σn − 1)δI)z | z ∈ R|V (H)|, 1T z = 1, z ≥ 0
}

= f(G,H).

If G is r-regular, then the assertion of Theorem 6 is weaker than that one of
Theorem 5 because λ1 = r(1− σn),

2m
σnδ2

= n
r−λ1

, and min
{

zT (AH − λ1I)z | z ∈
R|V (H)|, 1T z = 1

}

≤ min
{

zT (AH − λ1I)z | z ∈ R|V (H)|, 1T z = 1, z ≥ 0
}

in this
case.

In general, it is not easy to calculate min
{

zT (AH + (σn − 1)δI)z | 1T z = 1,
z ≥ 0}, however, in special cases it can be done efficiently.

Therefore, we consider an example, where the graph G is non-regular (i.e.,
Corollary 4 and Theorem 5 are not applicable), f(G,H) can be determined easily,
and the necessary condition of Theorem 6 for the graph H to be an induced
subgraph of G is stronger than that one of Theorem 2.

For positive integers p and q, where p is even, let G = Cp�P3 be the Cartesian
product1 of the cycle Cp and the path P3 on 3 vertices (for p = 20, G is shown in
the figure) and let H consist of q copies of K1,4.

1Given graphs G1 and G2 with vertex set V1 and V2, respectively, their Cartesian product

G1�G2 is the graph with vertex set V1 × V2, where (v1, v2)(w1, w2) ∈ E(G1�G2) when either

v1 = w1 and v2w2 ∈ E(G2) or v2 = w2 and v1w1 ∈ E(G1).
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We have n = 3p, m = 5p, δ = 3, and, since G is bipartite, σn = 2. The Laplacian
eigenvalues of Cp and of P3 are 2 − 2 cos(2πj

p
) for j = 0, . . . , p − 1 and 0, 1, 3,

respectively ([4]). Moreover, if η′ and η′′ are Laplacian eigenvalues of G′ and G′′,
respectively, then η′ + η′′ is a Laplacian eigenvalue of G′

�G′′ ([4]). Because p is
even, it follows ηn = 2− 2 cos(π) + 3 = 7.

It is easy to see that
∑

i∈V (H) di − 2e = 10q and, using h = 5q, Theorem 2

implies q ≤ 3
7p in this case.

If H∗ is an induced subgraph of K1,4, then H∗ = K1,s or H∗ = Ks (the
edgeless graph on s vertices) for suitable s ∈ {1, 2, 3, 4}.

Let H∗ = K1,s and consider the system (AH∗ + (σn − 1)δI)y = (AH∗ +
3I)y = 1. It is easy to see that K1,4,K1,3 /∈ M(G,H), K1,2,K1,1 ∈ M(G,H),

g(G,K1,2) =
5
7 , and g(G,K1,1) =

1
2 .

If H∗ = Ks, then H∗ ∈ M(G,H) and (AH∗ +3I)y = 1 lead to g(G,H∗) = s
3 ,

hence, f(G,H) = 3
4q . By Theorem 6, it follows q ≤ 5

12p < 3
7p.

If H∗ with |V (H∗)| ≥ 1 is an arbitrary induced subgraph of H and z =
(z1, . . . , zh)

T with zi =
1

|V (H∗)| if i ∈ V (H∗) and zi = 0 otherwise, then 1T z = 1

and zT (AH + (σn − 1)δI)z = dH∗+(σn−1)δ
|V (H∗)| , where dH∗ denotes the average degree

of H∗. Thus, Corollary 7 is a consequence of Theorem 6.

Corollary 7. If H is an induced subgraph of G, then σnδ
2

2m ≤ dH∗+(σn−1)δ
|V (H∗)| , where

H∗ is an arbitrary induced subgraph of H with |V (H∗)| ≥ 1.

Obviously, Corollary 7 is an extension of Corollary 4 if G is regular. We conclude
with an example, where Corollary 3 is weaker than Corollary 7 for not necessarily
regular G. Therefore, let V (H) be an independent set of G, i.e. dH = 0. By

Corollary 3 and Corollary 7, it follows that h ≤ ηn−δ
ηn

n and h ≤ 2(σn−1)
σnδ

m if G
contains h independent vertices, respectively. In [11], it is shown that there are

infinitely many graphs G such that 2(σn−1)
σnδ

m < ηn−δ
ηn

n.

2. Proofs

In [11], the following Lemma 8 is proved. For completeness we give a proof here.
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Lemma 8. If x1, . . . , xn are real numbers, then

(2) σn

(

∑n

i=1
dixi

)2
− 2(σn − 1)m

∑n

i=1
dix

2
i ≤ 4m

∑

ij∈E
xixj .

Proof. It is easy to see that σ is an eigenvalue of L if and only if µ = 1−σ fulfills
det(A− µD) = 0, see [10, 12, 14]. Let µi = 1− σn−i+1 for i = 1, . . . , n.
Note that D is positive definite since δ ≥ 1. Define xTDy as the inner product

for vectors x, y ∈ Rn and let x and y be called D-orthogonal if xTDy = 0. If

xTDx = 1 then x is called D-normal. A set of D-normal vectors being pairwise
D-orthogonal is a D-orthonormal set.

We consider the generalized eigenvalue problem Ax = µDx for µ ∈ R and
x ∈ Rn with x 6= 0. If the pair (µ, x) is a solution of this equation, then x is a
D-eigenvector of G and µ is the corresponding D-eigenvalue of G.

We use the well known fact (e.g. see [14]) that there is a D-orthonormal basis
of Rn consisting of D-eigenvectors of G. Next we will show the following assertion.
If {u1, . . . , un} is a D-orthonormal basis of Rn such that ui is a D-eigenvector
with corresponding D-eigenvalue µi for i = 1, . . . , n, then, for any vector x ∈ Rn,

(3) (µ2 − µ1)(x
TDu2)

2 + · · ·+ (µn − µ1)(x
TDun)

2 + µ1x
TDx = xTAx.

To see this, let x be given. There are real numbers a1, . . . , an such that x =
a1u1 + · · ·+ anun.

Then xTAx = µ1a
2
1 + · · ·+ µna

2
n, xTDx = a21 + · · ·+ a2n, and xTDui = ai for

i = 1, . . . , n. The desired equality (3) is equivalent to (µ2 − µ1)a
2
2 + · · · + (µn −

µ1)a
2
n + µ1(a

2
1 + · · ·+ a2n) = µ1a

2
1 + . . .+ µna

2
n.

As a consequence,

(4) (µn − µ1)(x
TDun)

2 + µ1x
TDx ≤ xTAx.

The vector 1√
2m

1 is a D-normal D-eigenvector of G with corresponding D-eigenva-

lue µn = 1, thus, inequality (4) and σn = 1− µ1 imply the lemma.

Proof of Theorem 5. Inequality (2) and λ1 = r(1−σn), if G is r-regular, imply
the fact that if G is r-regular and x1, . . . , xn are real numbers, then

(5) (r − λ1)
(

∑n

i=1
xi

)2
+ λ1n

∑n

i=1
x2i ≤ 2n

∑

ij∈E
xixj .

Let U be an induced subgraph of G isomorphic to H and φ : V (H) → V (U)
be a graph isomorphism from H to U .

For real numbers z1, . . . , zh with
∑h

q=1 zq = 1, let x1, . . . , xn be defined as
follows: If i ∈ V (U), then there is a suitable q ∈ {1, . . . , h} such that i = φ(vq).
Set xi = zq in this case. If i ∈ V \ V (U), then let xi = 0.
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With z = (z1, . . . , zh)
T , we obtain

∑

i∈V xi =
∑h

q=1 zq = 1,
∑

i∈V x2i =
∑h

q=1 z
2
q , and 2

∑

ij∈E xixj = 2
∑

vqvq′∈E(H) zqzq′ = zTAHz.

Inequality (5) implies (r − λ1) + λ1(
∑h

q=1 z
2
q )n ≤ zTAHzn, hence, with B =

(AH − λ1I), 1 ≤ n
(r−λ1)

min zTBz = n
(r−λ1)

MIN, where the minimum is taken

over all vectors z = (z1, . . . , zh)
T with

∑h
q=1 zq = 1.

Note that this minimum exists, because λ1 ≤ φ1 follows from Theorem 1,
hence, all eigenvalues φ1 − λ1, φ2 − λ1, . . . , φh − λ1 of B are non-negative. It
follows that B is positive semidefinite.

To investigate this value MIN , we consider the Lagrange function L(z, κ) =
zTBz−2κ(

∑h
q=1 zq−1) with Lagrange multiplier 2κ and the necessary optimality

conditions Lzq = 0 for q = 1, . . . , h (for more details an Lagrange Theory see [2]).

We obtain that the equations Bz = κ1 and 1T z = 1 are simultaneously
solvable.

Next we will show that κ is unique. If Bz1 = κ11, 1
T z1 = 1, Bz2 = κ21, and

1T z2 = 1, then κ1 = κ11
T z2 = z1

TBz2 = κ2z1
T 1 = κ2.

With 1 ≤ n
(r−λ1)

MIN , it follows MIN = zTBz = κ > 0.

If x = 1
κ
z, then Bx = 1 and 1Tx = 1

κ
.

If λ1 < φ1, then B is regular and 1 = 1T z = κ1TB−11, hence, 1Tx = 1TB−11.

Proof of Theorem 6. The proof of Theorem 6 is similar to that one of Theo-
rem 5.

Let xi ≥ 0 for i = 1, . . . , n and, since σn > 1, inequality (2) implies

σn(
∑n

i=1 dixi)
2 − 2(σn−1)m

δ

∑n
i=1(dixi)

2 ≤ 4m
δ2

∑

ij∈E(dixi)(djxj).

Substituting wi = dixi for i = 1, . . . , n, it follows

(6) σnδ
2 − 2(σn − 1)mδ

∑n

i=1
w2
i ≤ 4m

∑

ij∈E
wiwj ,

for arbitrary wi ≥ 0 for i = 1, . . . , n with
∑n

i=1wi = 1.

Again, let U be an induced subgraph of G isomorphic to H and φ : V (H) →
V (U) be a graph isomorphism from H to U , and, for real numbers z1, . . . , zh ≥ 0
with

∑h
q=1 zq = 1, let w1, . . . , wn be defined as follows: If i ∈ V (U), then there

is a suitable q ∈ {1, . . . , h} such that i = φ(vq). Set wi = zq in this case. If
i ∈ V \ V (U), then let wi = 0.

Inequality (6) implies σnδ
2

2m ≤ min(zTAHz+(σn−1)δzT z) = MIN, where the

minimum is taken over Sh = {z = (z1, . . . , zh)
T | zq ≥ 0 for q = 1, . . . , h,

∑h
q=1 zq

= 1}. Note that this minimum exists because zTAHz+(σn−1)δzT z is a continuous
function and Sh is a compact set.
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Let z = (z1, . . . , zh)
T ∈ Sh with zTAHz+(σn−1)δzT z = MIN . Furthermore,

let H ′ be the induced subgraph of H with vertex set V (H ′) = {q ∈ V (H) | zq >
0} 6= ∅.

If t = |V (H ′)| = 1, then H ′ = K1 ∈ M(G,H) with V (H ′) = {q}, zq = 1,
and MIN = (σn − 1)δ > 0. Hence, y = ( 1

(σn−1)δ ) is a positive solution of

(AH′ + (σn − 1)δI)y = 1 and it follows g(G,H ′) = 1T y = 1
(σn−1)δ = 1

MIN
and

1 ≤ 2m
σnδ2g(G,H′)

.

If t ≥ 2, then 0 < zq < 1 for all q ∈ V (H ′). Thus, MIN = min(uTAH′u +
(σn − 1)δuTu), where the minimum is taken over the relative interior rint(St) =
{u = (u1, . . . , ut)

T | us > 0 for s = 1, . . . , t,
∑t

s=1 us = 1} of St, consequently, this
minimum is a local minimum at the hyperplane Ht = {u = (u1, . . . , ut)

T | ∑t
s=1 us

= 1}.
To investigate this value MIN , we consider the Lagrange function L(u, κ) =

uTAH′u+ (σn − 1)δuTu− 2κ(
∑t

s=1 us − 1) with Lagrange multiplier 2κ and the
necessary optimality conditions Lus = 0 for s = 1, . . . , t.

With B = AH′ + (σn − 1)δI, we obtain that the system Bu = κ1, 1Tu = 1
has a positive solution u.

Next we will show that κ is unique. If Bu1 = κ11, 1
Tu1 = 1, Bu2 = κ21, and

1Tu2 = 1, then κ1 = κ11
Tu2 = u1

TBu2 = κ2u1
T 1 = κ2.

With 1 ≤ 2m
σnδ2

MIN , it follows MIN = uTBu = κ > 0.

If y = 1
κ
u, then By = 1 has a positive solution y, consequently, H ′ ∈

M(G,H). Moreover, g(G,H ′) = 1T y = 1
κ
= 1

MIN
and we obtain 1 ≤ 2m

σnδ2g(G,H′)
.

To see that f(G,H) = 1
g(G,H′) , assume there is H ′′ ∈ M(G,H) with g(G,H ′′)

> g(G,H ′). Then there exists u ∈ rint(St) with t = |V (H ′′)| such that uTAH′′u+
(σn − 1)δuTu < MIN .

Let xi = ui if i ∈ V (H ′′) and xi = 0 for i ∈ V (H) \ V (H ′′).
It follows x = (x1, . . . , xh)

T ∈ S|V (H)| and xTAHx + (σn − 1)δxTx < MIN ,
contradicting the definition of MIN .
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