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e-mail: erika.skrabulakova@tuke.sk

and

Andrej Taranenko

Department of Mathematics and Computer Science

Faculty of Natural Sciences and Mathematics

University of Maribor, Maribor, Slovenia

e-mail: andrej.taranenko@um.si

Abstract

A sequence is called non-repetitive if none of its subsequences forms a
repetition (a sequence r1r2 · · · r2n such that ri = rn+i for all 1 ≤ i ≤ n). Let
G be a graph whose vertices are coloured. A colouring ϕ of the graph G is
non-repetitive if the sequence of colours on every path in G is non-repetitive.
The Thue chromatic number, denoted by π(G), is the minimum number of
colours of a non-repetitive colouring of G.
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In this short note we present two general upper bounds for the Thue
chromatic number for the lexicographic product G ◦H of graphs G and H
with respect to some properties of the factors. One upper bound is then used
to derive the exact values for π(G ◦H) when G is a complete multipartite
graph and H an arbitrary graph.

Keywords: non-repetitive colouring, Thue chromatic number, lexicographic
product of graphs.
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1. Introduction and preliminaries

In 1906 the Norwegian mathematician Axel Thue started the systematic study of
word structure. Thue [11] showed that there are arbitrarily long non-repetitive
sequences over three symbols, where a sequence a1a2 · · · is called non-repetitive if
it does not contain a subsequence of consecutive elements, the first half of which
is exactly the same as its second half. A sequence r1 · · · r2n such that ri = rn+i

for all 1 ≤ i ≤ n is called a repetition.

With the development of computer-science the research on string-type chains
became more and more popular. Non-repetitive sequences found their applica-
tions besides mathematics or informatics in many very different areas from infor-
mation security management to music.

Non-repetitive sequences were introduced also to graph theory by Alon,
Grytczuk, Ha luszcak and Riordan [1]. Let G be a simple graph and let ϕ be
a proper colouring of its vertices, ϕ : V (G) → {1, . . . , k}. We say that ϕ is non-
repetitive if for any simple path on vertices v1 · · · v2n in G the associated sequence
of colours ϕ(v1) · · ·ϕ(v2n) is not a repetition. The minimum number of colours
in a non-repetitive colouring of a graph G is the Thue chromatic number π(G).
For the case of list-colourings let the Thue choice number πch(G) of a graph G
denote the smallest integer k such that for every list assignment L : V (G) → 2N

with minimum list length at least k, there is a colouring of the vertices of G from
the assigned lists such that the sequence of vertex colours of no path in G forms
a repetition. If a graph G is non-repetitively list colourable for every list assign-
ment L with list size at least k, we call G non-repetitively k-choosable. Hence,
πch(G) is the smallest integer k such that G is non-repetitively k-choosable.

A walk v1 · · · v2n is boring if vi = vn+i for all i ∈ {1, . . . , n}. A boring walk
is repetitively coloured by every colouring. A colouring ϕ is walk non-repetitive

if the only walks that are repetitively coloured by ϕ are boring. The walk Thue

chromatic number πw(G) of a graph G is the smallest integer k such that G is
walk non-repetitively k colourable. The walk Thue chromatic number was first
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investigated by Barát and Wood in [2]. They showed that every graph with
treewidth k and maximum degree ∆ has a O(k∆3) walk non-repetitive colouring.

In [7] various questions concerning non-repetitive colourings of graphs have
been formulated. We deal with the problem of finding the minimum number
of colours that can be used to colour all vertices of a given graph such that
the obtained colouring is non-repetitive. The problem of determining the Thue
chromatic number of a graph was studied among others in [1, 3, 4, 10].

The lexicographic product or graph composition G ◦H of graphs G and H is
a graph such that the vertex set of G ◦H is the Cartesian product V (G)×V (H)
and any two vertices (u, v) and (x, y) are adjacent in G ◦H if either u is adjacent
with x in G or u = x and v is adjacent with y in H. For any vertex v ∈ V (G) we
call the set {(v, w) : w ∈ V (H)} an H-layer (through v) and denote it by v[H].
A subgraph induced by v[H] of G ◦H is clearly isomorphic to H. If G ◦H is a
coloured graph, then we say that an H-layer v[H] is rainbow coloured whenever
all vertices of v[H] have pairwise different colours. Note that the lexicographic
product is in general non-commutative: G◦H 6= H◦G. The independence number
of a lexicographic product may be easily calculated from that of its factors (see
[6]): α(G ◦H) = α(G)α(H) and the clique number of a lexicographic product is
multiplicative as well: ω(G ◦H) = ω(G)ω(H).

The Thue chromatic number of G ◦H when G is a path and H is either an
empty graph Ek or a complete graph Kk (also called the blow-up of G by H) was
studied in [10]. Here we give some upper bounds for the Thue chromatic number
of the lexicographic product of arbitrary graphs and demonstrate the tightness
of the bounds by some examples. As a side result we show that for complete
multipartite graphs the Thue chromatic number and the Thue choice number are
the same1.

An easy observation about non-repetitive sequences is the following: If a non-
repetitive sequence is interrupted by non-repetitive sequences using a distinct set
of symbols, then the resulting new sequence remains non-repetitive. Formally,
we get the following lemma, proved in [9], where for a sequence of symbols S =
a1 · · · an with ai ∈ A, for all 1 ≤ k ≤ ℓ ≤ n, the block akak+1 · · · aℓ is denoted by
Sk,ℓ.

Lemma 1.1 (Havet et al.). Let A = a1 · · · am be a non-repetitive sequence with

ai ∈ A for every i ∈ {1, . . . ,m}. Let Bi = bi1 · · · b
i
mi

, 0 ≤ i ≤ r + 1, be non-

repetitive sequences with bij ∈ B for every i ∈ {0, . . . , r + 1} and j ∈ {1, . . . ,mi}.

If A∩B = ∅, then S = B0A1,n1
B1An1+1,n2

· · ·BrAnr+1,mBr+1 is a non-repetitive

sequence.

1Note that in general the Thue chromatic number and the Thue choice number of the same
graph may have arbitrary large difference (see [5]), however the most interesting open problem
from this area is whether the Thue chromatic number of a path equals its Thue choice number
(see [8]).
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A rainbow sequence, i.e., a sequence of pairwise different elements, is trivially
non-repetitive. This implies the following corollary.

Corollary 1.2. Let A = a1 · · · am be a rainbow sequence with ai ∈ A for all

i ∈ {1, . . . ,m}. For i ∈ {0, . . . , r + 1} let bi /∈ A. Then S = b0A1,n1
b1An1+1,n2

· · · brAnr+1,mbr+1 is a non-repetitive sequence.

2. Main Results

We start with a general upper bound for the Thue chromatic number of lexico-
graphic products. An upper bound

π(G ◦H) ≤ πw(G)|V (H)|

was observed already by Keszegh et al. in [10]. We can improve this bound as
follows.

Theorem 2.1. For all simple graphs G and H we have that

π(G ◦H) ≤ π(H) + (πw(G)− 1)|V (H)|.

Proof. Let ϕ′ : V (G) → {1, . . . , πw(G)} be a walk non-repetitive colouring of a
graph G and let V1, . . . , Vπw(G) be colour classes of ϕ′. Colour all H-layers cor-
responding to the vertices from V1 with the set C1 = {11, . . . , π(H)1} of colours,
so that the copy of a graph H in each H-layer is coloured non-repetitively and
for every two vertices w′, w ∈ V1 the colouring of w′[H] is the same as the colour-
ing of w[H]. For every other vertex v ∈ Vi, 2 ≤ i ≤ πw(G), we rainbow colour
v[H] with colours from Ci = {1i, . . . , |V (H)|i}. Obviously, such a colouring uses
π(H)+ (πw(G)− 1)|V (H)| colours. We claim that the obtained colouring, say ϕ,
is a non-repetitive colouring of G ◦H.

Assume that there exists a repetitive path P = v1 · · · vrvr+1 · · · v2r in G ◦H,
such that ϕ(v1) = ϕ(vr+1), . . . , ϕ(vr) = ϕ(v2r). Let P

′ = u1 · · ·u2r be a projection
of P to G. By the definition of ϕ we have ϕ′(u1) = ϕ′(ur+1), . . . , ϕ

′(ur) = ϕ′(u2r).
Suppose first that u1 = u2 = · · · = u2r. Clearly u1 ∈ V1, since for each vertex
z from V (G) \ V1 we have a rainbow colouring of z[H]. This contradicts the
definition of ϕ, where u1[H] is coloured non-repetitively. Hence we may assume
that not all vertices of P ′ are the same. In the sequences u1 · · ·ur and ur+1 · · ·u2r
delete every vertex ui+1 whenever ui+1 = ui for 1 ≤ i ≤ r−1 and r+1 ≤ i ≤ 2r−1,
respectively. Notice that ui is deleted from the first sequence if and only if ur+i

is deleted from the second sequence by the definition of ϕ and ϕ′. The sequence
obtained from amalgamation of remaining sequences yields a repetitive walk in
G which is a final contradiction with ϕ′ being a walk non-repetitive colouring
of G.
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For the next upper bound recall that α(G) is the notation for the indepen-
dence number of a graph G. The proof is similar to the proof of the previous
theorem.

Theorem 2.2. For all simple graphs G and H we have that

π(G ◦H) ≤ π(H) + (|V (G)| − α(G))|V (H)|.

Proof. Let M be an independent set of vertices in G of cardinality α(G). Colour
all H-layers corresponding to the vertices from M with the same set of π(H)
colours, so that the copy of a graph H in each H-layer is coloured non-repetitively
and for every two vertices w′, w ∈ M the colouring of w′[H] is the same as the
colouring of w[H]. All other vertices from (V (G) \ M) × V (H) are rainbow
coloured with a new set of colours. Obviously such a colouring uses π(H) +
(|V (G)| − α(G))|V (H)| colours. We claim that the obtained colouring, say ϕ, is
a non-repetitive colouring of G ◦H.

Assume that there exists a repetitive path P = v1 · · · vrvr+1 · · · v2r in G ◦H,
such that ϕ(v1) = ϕ(vr+1), . . . , ϕ(vr) = ϕ(v2r). Note that no vertex from (V (G)\
M) × V (H) is on P , since it has a unique colour. Thus for each j ∈ {1, . . . , 2r}
we have vj ∈ w[H] for some w ∈ M . Since every H layer is coloured non-
repetitively, not all vertices of P can be in the same H layer. Without loss of
generality suppose that v1 ∈ w1[H] and v2 ∈ w2[H] where w1 6= w2. As e = v1v2
is an edge in P , there exists an edge e′ = w1w2 in G, a contradiction with M
being an independent set of vertices. Hence, our hypothesis was wrong and ϕ is
non-repetitive.

The bounds from Theorems 2.1 and 2.2 can behave quite differently. For
instance πw(G) is bounded for paths or degree bounded trees by a constant,
see [2], and does not depend on |V (G)| as |V (G)| − α(G). On the other hand
it is easy to see that πw(G) = |V (G)| for complete multipartite graphs, where
|V (G)| − α(G) is better. It seems that the bound from Theorem 2.1 performs
better for sparse graphs and the bound from Theorem 2.2 is better for dense
graphs. Here we concentrate on the later class of graphs.

Before showing the sharpness of the bound for π(G ◦H) from Theorem 2.2,
we prove a result that is dealing with vertex list non-repetitive colourings. It is
easy to verify that the statement of Theorem 2.3 holds, as it was already observed
by several mathematicians. But for the sake of comprehensiveness we include its
proof as well.

Theorem 2.3. If G is a graph on n vertices, then the following statements hold.

(i) π(G) ≤ πch(G) ≤ n− α(G) + 1.

(ii) If G is a complete multipartite graph, then π(G) = πch(G) = n− α(G) + 1.
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Proof. (i) Let G be a graph on n vertices. As every non-repetitive k-colouring
of G can be considered as a non-repetitive list-colouring of G from identical lists
of size k, the first inequality (π(G) ≤ πch(G)) trivially holds.

To show the second inequality let M be a maximum independent set of ver-
tices from V (G) with |M | = α(G), and let L : V (G) → 2N be any list assignment
such that each list length is at least n − α(G) + 1. Colour the vertices belong-
ing to V (G) \M with pairwise different colours from their lists, and remove all
colours used by any of these vertices from the lists of the vertices of M . As
each list is of length at least n − α(G) + 1, at least one colour from the list of
each vertex x ∈ M remains, and this will be used to colour the vertex x. Now
consider the sequence of vertex colours of any path in G. The subsequence of
colours of this sequence which belong to the vertices of V (G) \ M constitute a
rainbow sequence, which is interrupted by single colours belonging to the vertices
of M . Hence, by Corollary 1.2 such a colouring is non-repetitive, which proves
that π(G) ≤ πch(G) ≤ n− α(G) + 1.

(ii) Let G be a complete multipartite graph of order n with partite sets
V1, . . . , Vm. To prove the statement it is sufficient to show that π(G) ≥ n −
α(G) + 1. This will be proven by a contradiction. Assume there is a non-
repetitive (n − α(G))-colouring ϕ of G. Because there are n vertices coloured
by n − α(G) different colours, by pigeon-hole principle the set M ={x ∈ V (G) :
∃ x′ ∈ V (G) \ {x} : ϕ(x) = ϕ(x′)} of vertices without unique colour consists of at
least α(G) + 1 vertices. Because all partite sets consist of at most α(G) vertices
there exist two vertices x and y of M belonging to different partite sets. Without
loss of generality we assume that x ∈ V1 and y ∈ V2. Since adjacent vertices must
receive different colours the colour ϕ(x) can only appear in V1 and the colour
ϕ(y) can only appear in V2. Hence, there must be a vertex x′ ∈ V1, x

′ 6= x, with
ϕ(x′) = ϕ(x) and a vertex y′ ∈ V2, y

′ 6= y, with ϕ(y′) = ϕ(y). But then the
colour sequence of the path P = (xyx′y′) is repetitive, a contradiction.

As an immediate corollary we obtain several infinite subclasses of complete
multipartite graphs, where the graph parameters π and πch coincide. These
results on π(G) and πch(G) are well known.

Corollary 2.4. The following statements hold.

(i) π(Kn) = πch(Kn) = n for the complete graph Kn on n vertices.

(ii) π(Sn) = πch(Sn) = 2 for a star Sn on n+ 1 vertices.

(iii) π(Km,n) = πch(Km,n) = min{m,n}+1 for a complete bipartite graph Km,n.

For a lower bound we strongly suspect that the following is true.

Conjecture 2.5. For all simple graphs G and H we have that

π(H) + (π(G)− 1)|V (H)| ≤ π(G ◦H).
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This conjecture is true for π(Pn ◦ Ek) and for π(Pn ◦ Kk) by Theorem 1.2
and Theorem 1.4, respectively, of [10]. Moreover, it is sharp for π(Pn ◦ Ek) for
n ≥ 4 and k > 2, but not for π(Pn ◦ Kk) for n ≥ 28 by the same theorems.
We show that Conjecture 2.5 holds also for the lexicographic product of the
complete multipartite graph Kn1,...,nk

with any graph H. This represents another
good reason to believe that Conjecture 2.5 is true: namely paths are very sparse
graphs while complete multipartite graphs represent dense graphs with respect
to the number of edges.

Theorem 2.6. For a complete multipartite graph G and an arbitrary graph H
we have that

π(H) + (π(G)− 1)|V (H)| ≤ π(G ◦H).

Proof. Let G be a complete multipartite graph Kn1,...,nk
, where V1, . . . , Vk form

a partition of V (G) with |V1| = n1, . . . , |Vk| = nk and n1+ · · ·+nk = n. Towards
a contradiction suppose that there exists a non-repetitive colouring ϕ of G ◦ H
using less than π(H)+ (π(G)− 1)|V (H)| colours. Since π(H) ≤ |V (H)|, we have
less than π(G)|V (H)| colours for ϕ. Hence there exist two vertices in G ◦ H,
say (g, h) and (g′, h′) with the same colour. We may assume that ϕ(g, h) = 1 =
ϕ(g′, h′). Clearly g and g′ belong to the same set Vi, say with i = 1, since they
are nonadjacent. If there exists g′′ ∈ V (G) \ V1 with two different vertices in
g′′[H], say (g′′, h1) and (g′′, h2), of the same colour, then we have a repetition
on (g, h)(g′′, h1)(g

′, h′)(g′′, h2), which is a contradiction. Therefore for every g′′ ∈
V (G) \V1 the layer g′′[H] must be rainbow coloured. Let now g1, g2 ∈ V (G) \V1,
g1 6= g2. If there are vertices of the same colour in g1[H] and in g2[H], say
(g1, h3) and (g2, h4), then we have again a repetition (g, h)(g1, h3)(g

′, h′)(g2, h4),
which is not possible. Thus for all pairs of different vertices g1, g2 ∈ V (G) \ V1

all colours in g1[H] and g2[H] must be pairwise different. This means we have
used |(V (G) \ V1) × V (H)| colours on (G − V1) ◦ H. By Theorem 2.3, π(G) =
n−max{n1, . . . , nk}+1. Considering the number of colours in ϕ and the number
of colours we have used for (G− V1) ◦H, the number of available colours for the
layer g[H] is less than

π(H) + (π(G)− 1) · |V (H)| − |(V (G) \ V1)| · |V (H)|

= π(H) + (n−max{n1, . . . , nk}+ 1− 1) · |V (H)| − (n− n1) · |V (H)|

= π(H) + (n−max{n1, . . . , nk} − n+ n1) · |V (H)|

= π(H) + (n1 −max{n1, . . . , nk}) · |V (H)| ≤ π(H).

This yields a final contradiction, since there are less than π(H) colours left for
g[H], which results in a repetition in the H-layer g[H].
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The family of complete multipartite graphs is one that establishes the tight-
ness of the bounds for G ◦H given by Theorem 2.2 and Theorem 2.6.

Theorem 2.7. Let G be a complete multipartite graph. Then

π(H) + (π(G)− 1)|V (H)| = π(G ◦H) = π(H) + (|V (G)| − α(G))|V (H)|.

Proof. Theorem 2.3 shows that π(G) = n−α(G)+1, where α(G) is the indepen-
dence number of G being a complete multipartite graph on n vertices. The thesis
of Theorem 2.7 then directly follows from Theorem 2.2 and Theorem 2.6.

Theorem 2.7 and Corollary 2.4 then give the following corollary.

Corollary 2.8. For any graph H we have that

(i) π(Kn ◦ H) = π(H) + (n − 1)|V (H)|, where Kn is a complete graph on n
vertices;

(ii) π(Sn ◦H) = π(H) + |V (H)|, where Sn is a star on n+ 1 vertices;

(iii) π(Km,n◦H) = π(H)+min{m,n}·|V (H)|, where Km,n is a complete bipartite

graph on m+ n vertices.
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