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Abstract 
 

Plasma treatment is considered as an easy and effective method for the modification of 

materials’ surface of electrodes for electrochemical energy storage and conversion devices to 

improve the performances. As a result, a disordered surface layer and atom vacancies could be 

formed after the high-power plasma treatment, which play significant roles on enhancing the 

performances of energy storage and conversion materials. In this work, hydrogen and nitrogen 

plasma are used to modify anode materials for lithium and sodium ion batteries (LIBs and 

SIBs), and electrochemical catalysts for the nitrogen reduction reaction (NRR), and the 

electrochemical application performances of these materials are tested. 

Firstly, WS2 nanoparticles are modified through hydrogen plasma treatment at 300 °C for 2 

hours, and the hydrogenated WS2 (H-WS2) nanoparticles demonstrate a clearly enhanced 

electrochemical performance as anode material for both LIBs and SIBs. The TEM investigation 

shows a disordered surface layer with thickness around 2.5 nm after the treatment, and this is 

also confirmed by the results of the Raman spectroscopy. The shift in the XPS peaks indicates 

the structure surface disorders are incorporated in the crystalline structure. The H-WS2 based 

LIBs and SIBs possess significantly higher specific capacity at different current densities. In 

addition, the electrochemical impedance spectroscopy (EIS) reveals a drastic decrease of the 

charge-transfer resistance for both LIB and SIB, which implies the plasma hydrogenated 

electrode is more favorable for the electron transportation during the electrochemical process. 

The improved rate performance of H-WS2 in both applications of LIBs and SIBs can be 

attributed to the largely reduced charge transfer resistivity at the disordered surface layer. 

Secondly, nitrogen doped TiO2 (N-TiO2) nanoparticles are prepared via nitrogen plasma 

treatment and investigated as anode material of SIBs. The N-TiO2 nanoparticles demonstrate a 

much better rate performance, yielding discharge capacities of about 621 mAh·g-1 at 0.1 C and 

75 mAh·g-1 at 5 C, as well as a clearly enhanced capacity retention (more than 98 % after more 

than 400 cycles) than the pristine TiO2. Different from the other nitrogen doped TiO2 reported 

in the literatures, a disordered surface layer with thickness of around 2.5 nm is formed in the 

N-TiO2 nanoparticles after the N2 plasma treatment. Both the doped nitrogen and the disordered 

surface layer play  
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significant roles on enhancing the sodium storage performance.   

Thirdly, we chose the TiO2-Au (P-TiO2-Au, gold nanoclusters supported by P25 TiO2 

nanoparticles, Au loading: ~ 2 wt %) as the electrochemical catalysts for the NRR. The material 

was modified with H2 plasma and then formed a blue-black H-TiO2-Au catalyst, it shown 

enhanced performance for the nitrogen reduction reaction (NRR) process comparing with the 

pristine sample. From the TEM investigations we could find some disordered positions on the 

surface, and also the Raman intensities of H-TiO2-Au is much lower than the pristine material 

which could be attributed to the disordered surface and the oxygen vacancies formation. What’s 

more, a small peak shift for the XPS could be found after the hydrogen plasma treatment. When 

the sample was used for the electrochemical NRR, the yield of NH3 of blue-black H-TiO2-Au 

is around 9.5 times higher than the pristine sample, while the highest faradaic efficiency of 2.7 % 

is also obtain at the potential of -0.1 V. The density functional theory (DFT) calculation results 

confirm that H-TiO2-Au with oxygen vacancies and disordered surface layer is much preferred 

for the NRR process. It further proves that the reduction process of H2 plasma treatment makes 

an important role on the improving of catalysts’ performances. It could be the first time that 

used the plasma technique to modify catalyst for electrochemical NRR processes.  
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Zusammenfassung 
 

Die Plasmabehandlung gilt als eine einfache und effektive Methode zur Modifikation der 

Materialoberfläche von Elektroden für elektrochemische Energiespeicher- und Umwandlungs-

vorrichtungen, um die Leistungen zu verbessern. Infolgedessen konnten nach der 

Hochleistungsplasmabehandlung ungeordnete Oberflächenschichten und Atomleerstellen 

entstehen, die eine wichtige Rolle bei der Leistungssteigerung von Energiespeicher- und 

Umwandlungsmaterialien spielen. In dieser Arbeit werden Wasserstoff- und Stickstoffplasma 

verwendet, um Lithium- und Natriumionenbatterien (LIBs und SIBs) Anodenmaterialien und 

elektrochemische Katalysatoren für die Stickstoffreduktionsreaktion (NRR) zu modifizieren, 

und die elektrochemischen Anwendungsleistungen dieser Materialien zu untersuchen. 

Erstens, werden WS2-Nanopartikel durch Wasserstoff-Plasma-Behandlung bei 300 °C für 2 

Stunden modifiziert, und die hydrierten WS2 (H-WS2)-Nanopartikel zeigen eine deutlich 

verbesserte elektrochemische Leistung als Anodenmaterial für Lithium-Ionen-Batterien (LIBs) 

und Natrium-Ionen-Batterien (SIBs). Die TEM-Untersuchung zeigt eine ungeordnete 

Oberflächenschicht mit einer Dicke von etwa 2,5 nm nach der Behandlung, was auch durch die 

Ergebnisse der Raman Spektroskopie bestätigt wird. Die Verschiebung der XPS-Peaks deutet 

an, dass die Oberflächenstörungen der Struktur in die kristalline Struktur integriert sind. Die 

H-WS2-basierten LIBs und SIBs weisen eine deutlich höhere spezifische Kapazität bei 

unterschiedlichen Stromdichten auf. Darüber hinaus zeigt die Untersuchung der 

elektrochemische Impedanzspektroskopie (EIS) eine drastische Verringerung des 

Ladungsübertragungswiderstands sowohl für LIB als auch für SIB. Das bedeutet, dass die 

plasmahydrierte Elektrode für den Elektronentransport während des elektrochemischen 

Prozesses vorteilhafter ist. Die verbesserte Leistung von H-WS2 in beiden Anwendungen von 

Li und Na Ionenbatterien ist auf den reduzierten Ladungsübertragungswiderstand an der 

ungeordneten Oberflächenschicht und die verbesserte elektronische Leitfähigkeit durch die 

Störungsoberfläche in der kristallinen Struktur zurückzuführen.    

Zweitens, werden stickstoffdotierte TiO2 (N-TiO2)-Nanopartikel durch Stickstoffplasma-

Behandlung hergestellt und als Anodenmaterial von Natriumionenbatterien (SIBs) untersucht. 

Die 
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N-TiO2-Nanopartikel weisen eine wesentlich bessere Ratenleistung auf und liefern 

Entladekapazitäten von etwa 621 mAh-g-1 bei 0,1 C und 75 mAh-g-1 bei 5 C sowie eine deutlich 

verbesserte Kapazitätserhaltung (mehr als 98% nach mehr als 400 Zyklen) als das unbehandelte 

TiO2. Im Gegensatz zu den anderen stickstoffdotierten TiO2, von denen in der Literatur 

berichtet werden, bildet sich in den N-TiO2-Nanopartikeln nach der N2-Plasmabehandlung eine 

ungeordnete Oberflächenschicht mit einer Dicke von etwa 2,5 nm. Sowohl der dotierte 

Stickstoff als auch die ungeordnete Oberflächenschicht spielen eine wichtige Rolle bei der 

Verbesserung der Natriumspeicherleistung.   

Drittens, haben wir das TiO2-Au (P-TiO2-Au, Goldnanocluster, unterstützt durch P25 TiO2-

Nanopartikel, Au-Belastung: ~ 2 wt%) als elektrochemische Katalysatoren für die 

Stickstoffreduktionsreaktion benutzt. Das Material wurde mit H2-Plasma modifiziert und 

bildete dann einen blau-schwarzen H-TiO2-Au-Katalysator, der eine verbesserte Leistung für 

den Prozess der Stickstoffreduktionsreaktion (NRR) im Vergleich zur unbehandelten Probe 

zeigte. Aus den TEM-Untersuchungen konnten wir einige ungeordnete Positionen an der 

Oberfläche finden, und auch die Raman-Intensitäten von H-TiO2-Au sind viel niedriger als das 

unbehandelte Material, das auf die ungeordnete Oberfläche und die Bildung von 

Sauerstoffleerstellen zurückzuführen ist. Darüber hinaus konnte nach der Wasserstoff-Plasma-

Behandlung ein kleiner Peak-Shift im XPS -Spektrum festgestellt werden. Wenn die Probe für 

die elektrochemische NRR verwendet wurde, ist die Ausbeute an NH3 von blau-schwarzem H-

TiO2-Au etwa 9,5 mal höher als die unbehandelte Probe, während die höchste faradaysche 

Effizienz von 2,7 % auch bei dem Potential von -0,1V erreicht wird. Die Ergebnisse der DFT-

Berechnung bestätigen, dass H-TiO2-Au bei Sauerstoffleerstellen und ungeordneter 

Oberflächenschicht für den NRR-Prozess sehr bevorzugt wird. Es zeigt außerdem, dass der 

Reduktionsprozess der H2-Plasma-Behandlung eine wichtige Rolle bei der Verbesserung der 

Leistung von Katalysatoren spielt. Es könnte das erste Mal sein, dass die Plasmatechnik zur 

Modifikation des Katalysators für elektrochemische NRR-Prozesse eingesetzt wurde.  
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                                        ZnO                                                    Zinc oxide 

                                        AgCl                                                  Silver chloride 

                                        KCl                                                     Potassium chloride 

                                        HCl                                                    Hydrogen chloride 

                                        NaOH                                              Sodium hydroxide 

                                        NaClO                                             Sodium hypochlorite 

                                        C5FeN6Na2O                     Sodium nitroferricyanide 
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1. Introduction 
 

In modern society, humans need to find some new high-efficient, low-cost, and environment 

friendly energy storage and conversion methods and materials because of the lack and non-

renewable of the fossil fuels. Electrochemical energy storage and conversion devices that can 

realize efficient, environmental friendly and versatile use of energy are strongly considered 

with the increasing demand of portable devices, consumer electronics and electric vehicles[1]. 

Nowadays, the most widely used energy storage and conversion technologies are secondary 

batteries (such as lithium and sodium ion batteries), solar-driven catalysts and electrochemical 

fuel cells. However, new materials for energy storage and conversion are still not reach the 

demanding yet.  

Since 2011, Chen and co-workers reported a novel hydrogenation treatment approach to 

generate hydrogenated TiO2 (black TiO2) nanoparticles with significantly enhanced optical 

absorption. And the new black TiO2 possesses a disordered surface layer and increased surface 

functional groups, and shown superior photocatalytic activity compared with normal white 

TiO2 [2]. And after this report, many works focus on the black TiO2 materials application, such 

as lithium ion batteries, supercapacitors, fuel cells, field emission, photocatalytic application, 

cancer photothermal therapy and microwave absorption, etc [3–10]. 

At this stage, for the energy storage materials (especially LIBs and SIBs electrodes), 

researchers have already made a lot of efforts on the new electrode materials. The first efficient 

method to prepare high performance materials is reducing the materials size to nanoscale which 

can not only provide a short diffusion distance for electrons and ions transfer, but also lead to 

increased lifespan by withstanding the volume change during the electrochemical reactions 

[11]. And another popular method to modify the energy storage materials is that preparing 

composited materials.  

Fuel cells, water electrolysis are another energy conversion and storage devices, and the 

performances of these devices are mainly limited by the electrochemical catalysts. Oxygen 

reduction reaction (ORR), hydrogen evolution reaction (HER), and oxygen evolution reaction 

(OER) are the most popular reactions that could be used for the water splitting process for the 

clean hydrogen energy preparation, but we didn’t focus on these. What we did is conversion of 
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atmospheric nitrogen into valuable substance such as ammonia because ammonia is considered 

as one of the most popular chemicals not only a very important source of nitrogen for fertilizer, 

exhibiting a strong foothold in agricultural, plastic and textile industries, but also a clean energy 

carrier and a potential transportation fuel [12–14]. Despite the high efficiency of Haber-Bosch 

(H-B) process, electrochemical nitrogen reduction reaction (NRR) to ammonia could be a good 

choice because of the mild reaction conditions without high temperature and high pressure.  

Despite all these achievements, we found that many of the hydrogenation process for materials 

modification is just focused on TiO2 or other oxides materials, and bare works about other 

kinds of materials or composite materials. In this dissertation, some new materials were 

prepared with different gases plasma treatment to gain the modified material with a disordered 

surface layer which could be used for different electrochemical applications. Chapter 4 

introduced the hydrogenated WS2 nanoparticles with an obvious disordered surface layer 

formation. When it is used as the anode materials for both lithium and sodium ion batteries, the 

electrochemical impedance spectroscopy (EIS) reveals a drastic decrease of the charge-transfer 

resistance for both LIB and SIB, which implies the plasma hydrogenated electrode is more 

favorable for the electron transportation during the electrochemical process. The improved rate 

performance of H-WS2 in both applications of Li and Na ion batteries can be attributed to the 

reduced charge transfer resistivity at the disordered surface layer and improved electronic 

conductivity due the disorder surface in the crystalline structure. Chapter 5 shows a nitrogen 

doped TiO2 (N-TiO2) nanoparticles are prepared via nitrogen plasma treatment and investigated 

as anode material of sodium ion batteries. What is different from the other nitrogen doped TiO2 

reported in the literatures is that a disordered surface layer with the thickness of around 2.5 nm 

is formed on the N-TiO2 nanoparticles surface after the N2 plasma treatment, which is barely 

found with normal nitrogen doping processes. Both the doped nitrogen and the disordered 

surface layer play significant roles on enhancing the sodium storage performance. In chapter 6, 

we chose TiO2-Au (P-TiO2-Au, gold nanoclusters supported by P25 TiO2 nanoparticles, Au 

load: ~ 2 wt %) as the electrochemical catalysts for the nitrogen reduction reaction. We 

modified the material with H2 plasma and then formed a blue-black H-TiO2-Au catalyst, it 

shown enhanced performance for the nitrogen reduction reaction (NRR) process comparing 

with the pristine sample. The DFT calculation results confirm that H-TiO2-Au with oxygen 

vacancies and disordered surface layer is much preferred for the NRR process. It further proves 

that the reduction process of H2 plasma treatment makes an important role on the improving of 

catalysts’ performances. Chapter 7 made a conclusion of all the works and gave an outlook of 
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the future plans as well. And we thought all the excellent performance improvements which 

are attributed to the plasma treatment with a disordered surface layer formation for energy 

storage materials is proved to be quite effective. We could use different gases which results in 

different elements doping and disordered surface at the same time, which show a double 

enhancement for the electrochemical application performances. 
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2. Fundamentals and review of state of the art 
 

2.1 Energy storage materials  
 

2.1.1 Lithium ion Battery 
 

Usually, a battery includes an anode, cathode, separator and electrolyte, as shown in Scheme 

2-1, during the discharge process, electrode reactions occur at the electrode and generated 

electrons flow through an external circuit to power load; during charge process, an external 

voltage is applied between electrodes driving electrode reactions occur reversibly. Nowadays 

the current cathode materials is represented by LiCoO2, LiMn2O4, LiFePO4 and 

Li[NixCoyMnz]O2 (x+y+z=1) [15,16]. And the electrolyte is usually as ionic and electronic 

conductor, which is mainly based on solutions of LiPF6 dissolved two or more organic 

carbonate solvents for the balance of fluidity and dielectric constant [17].  

In general, there are three different kinds of active anode materials for lithium ion batteries. (1) 

insertion /de-insertion materials, this mainly consists of carbonaceous materials [18–21] and 

Ti-based  oxides, such as TiO2 or Li4Ti5O12 [22–24]. This type of anode materials usually 

shows good cycling stabilities with low theoretical capacities. (2) Alloy/de-alloy materials, like 

Si, Ge, Sn, Zn, SnO2 and SiO2 [25–32]. Alloy anode materials possess high specific capacities 

and energy density, but usually show a large irreversible capacity and poor cycling 

performance. (3) Conversion materials, especially metal oxides (Fe2O3, Fe3O4, CoO, Co3O4, 

MnxOy, Cu2O/CuO, NiO, Cr2O3, RuO2, MoO2/MoO3) and metal phosphides/sulfides/nitrides 

(MXy; M=Fe, Mn, Ni, Cu, Co etc. and X = P, S, N) [11,33–40]. Conversion materials have the 

similar properties of alloy materials, high capacity, high energy, and also low cost, low 

operation potential and low polarization than counter oxides. However, the coulombic 

efficiency and poor cycle life limit the wide applications of them. 

Among all of these anode materials, graphite is the most commercial used anode material for 

the secondary batteries at this moment because of the flat and low working potential, low cost, 

long cycling life and so on [16]. However, carbon material has a big problem that the discharge 

voltage is much lower for the lithium ion batteries, and this may cause some safety problems 

for the battery 
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system. What’s more, the power density of carbon materials is quite low. There is an urgency 

to replace graphite anode to materials with higher capacities, energy and power densities.  

 

Scheme 2-1 Illustration of a lithium ion battery system. Reprinted from [41]. 

 

At this moment, all kinds of carbon and non-carbon anode materials for lithium ion batteries 

have already been researched a lot. Several strategies are developed to achieve high 

performance materials, firstly, nanostructured materials exhibit admirable properties when 

applied in the batteries compared to bulk materials, such as high specific surface area, 

controllable micro-morphology and high electronic and ionic conductivity and low diffusion 

distance [16,42]. Secondly, coating or combining the buffering matrix or conductive materials 

is another way to relieve the severe problems, especially improving the conductivities of the 

electrodes [43–46]. Various carbon materials like carbon nanotubes, graphite nanosheet have 

already been studied for the matrix and combining with other anode materials.  

Tremendous efforts have been made in searching for alternative anode materials. Several 

candidates such as metals, semimetals and metal oxide have been investigated. Among them, 

transitional metal dichalcogenides (TMD), especially WS2 and MoS2, have received enormous 
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attention owing to their unique physical and electrochemical properties [47–53]. Compared to 

MoS2, tungsten disulfide (WS2) has a much larger interlayer spacing of (002) facial (0.62 nm) 

and weak van der Waals interaction, this would highly favor the Li+ and Na+ intercalation/ 

deintercalation. Layered metal sulfides also behave better rate capacity and cycling 

performance than silicon or metal oxides. The mechanism has not been clearly identified till 

now. Nevertheless, since the two dimensions nanosheets are loosely stacked, layered metal 

sulfides can further accommodate volumetric expansion upon lithium storage and mitigate 

strain endured in the conversion or alloy reaction, leading to much enhanced cycling stability. 

In addition, properly designed nanostructure metal sulfides are capable of being deployed at 

high current densities. In contrast to intercalation electrodes as in the case of graphite anode, 

most of the transition metal sulfide anodes accommodate lithium ions through conversion 

reaction mechanism in voltage below 1.5 V vs. Li/Li+. The advantage of the conversion 

reaction mechanism is that it may deliver higher energy density than intercalation mechanism-

based compounds. Nevertheless, the significant disadvantage of the conversion reaction 

mechanism is to cause a large volume expansion of electrode materials during the 

discharge/charge process in the first cycle. This remains a serious issue leading to cracking, 

fracture, and electrical disconnection from current collectors, which have been recognized as 

the major causes for rapid capacity fading in LIBs. 

2.1.2 Sodium ion Battery 
 

Lithium ion batteries (LIBs) are much more popular at the moment because of the high energy 

density and long cycling performance. While there are still some shortcomings, especially the 

high cost of lithium will limit its wide application in the future. In the meantime, SIBs have 

attracted much attention because sodium is an abundant alkali element widely distributed in 

the world. Similar to lithium ion batteries, SIBs comprise of an anode(reductant), a 

cathode(oxidant) and an electrolyte-soaked-separator placed in between (Scheme 2-2). For the 

cathode materials of SIBs, layered Oxides, polyanion compounds, organic compounds play 

significant roles [10]. For anode materials, carbonaceous materials is an important choice 

which is very cheap, however carbonaceous materials show undesired properties with low 

capacities and /or poor cycle performance [54] Ti-based materials is a promising anode 

materials for sodium ion batteries , including Na2Ti3O7, Na0.66[Li0.22Ti0.78]O2, Li4Ti5O12, and 

TiO2 [10]. Moreover, other materials based on alloying reactions (such as Sn, Sb, P and their 

compounds e.g. inter-metallics, oxides, sulfides, and phosphides) and correction reactions 
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(oxides and sulfides, e.g. Fe2O3, Fe3O4, FeOOH, MoO3, CuO, Mn3O4, NiCo2O4 and MoS2) [10] 

attract some attentions as well. In addition, organic compounds are also potential anode 

materials for sodium ion batteries.  

 
Scheme 2-2 Illustration of a sodium ion battery system. Reprinted from [55]. 

 

However, the ion radius of Na ions are ~70% larger than that of Li ions, a big challenge for the 

development of SIBs is to find proper electrode materials with big interstitial space to 

accommodate sodium ions and allow reversible and rapid ion insertion/extraction [56]. TiO2 

has already been considered as one of the great energy storage materials due to its low cost, 

intrinsic safety, high power density and long cycle life. TiO2 has a lower average potential for 

Na storage (0.7V vs. Na/Na+), which is more beneficial to improve the sodium storage 

performance[57]. Until now, there are a lot of research works about TiO2 as anode for 

secondary batteries [58,59]. Poor electrical conductivity and low sodium ion diffusivity are the 

main limits for the wide application of TiO2 as anode for sodium ion batteries. The same as 

other materials, the first and most useful approach to solve the main problem of TiO2 electrical 

conductivity is trying to design nano-sized or morphology control TiO2, for example 

nanoparticles [60], nanotubes [61], nanofiber[62],  petal-like TiO2 [63]and nanorods [64], as 

the nanosized morphology or structure could effectively shorten the ion diffusion path and 

enlarge the active area of the material. Zhang et al. synthesized a novel flexible and 

freestanding oxygen-deficient TiO2-x nanocages anchored in N-doped carbon fibers, which 
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exhibited a high areal capacity and an outstanding stability for sodium storage [65]. He et al. 

reported a hierarchical rod-in-tube TiO2 with a uniform carbon coating as the anode material 

for sodium-ion batteries by a facile solvothermal method. The author claimed that this unique 

structure consists of a tunable nanorod core, interstitial hollow spaces, and a functional 

nanotube shell assembled from two-dimensional nanosheets[66]. Then surface coating could 

be another good method to improve the TiO2 conductivity, especially there are a lot of research 

works that introduced carbon additives to enhance the electrical conductivity of TiO2 for SIBs, 

like amorphous carbon, CNTs and graphene are widely introduced as conductive agents 

[65,67–71]. What’s more, heteroatom doping (N, S or Nb [72–76]) is also considered as an 

effective strategy to boost the conductivity, in which the produced oxygen vacancies or 

trivalent titanium species can be formed to improve the electrical conductivity. Yu et al. 

reported that the introduction of nitrogen into TiO2 could result a partial formation of Ti3+ 

associated with the oxygen vacancies, which lead to reduce sodium ion and electron transport 

diffusion resistance and improve the rate capacity [72]. A nitrogen-doped carbon layer coated 

yolk-like TiO2 electrode could offer a superior high capacity of 115.9 mAh·g−1 at 20 C (6700 

mA·g−1)[77]. It is clear that the key to improve the electrochemical performance of TiO2 is to 

combine strategies of shortening sodium-ion diffusion distance and improving electronic 

conductivity. However, all the researched work could not reach the high demanding of the 

novel SIBs electrodes yet, finding some easy operated and effective method for materials 

modifications is still a burning question. 

2.1.3 Electrochemical Catalysts for Nitrogen Reduction Reaction 
 

Ammonia is considered as one of the most popular chemicals not only a very important source 

of nitrogen for fertilizer, exhibiting a strong foothold in agricultural, plastic and textile 

industries, and also a clean energy carrier and a potential transportation fuel [12–14]. The 

reduction of N2 to produce NH3 is a great way for N2 fixation because of the unlimited sources 

of N2 from the air. However, as we all know that N2 has the extremely high bond energy (about 

940.95 kJ·mol-1), the reduction of N2 to NH3 is a kinetically complex and energetically 

challenging multistep reaction [78,79]. In general, ammonia was produced by the Haber-Bosch 

(H-B) process with the Fe-based catalyst for industry, which usually required a strictly 

conditions of high temperature and high pressure [80,81]. The strict demanding of H-B process 

of producing the ammonia impels researcher to creating some other alternative approaches for 

ammonia synthesis, for example biological methods, plasma-induced methods, methods  based 
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on metal-complexes, photocatalytic methods and electrochemical methods [82–87]. So far, 

numerous research work has already been done to pursuit a mild way for N2 fixation, but there 

are still many drawbacks, such as expensive electrolytes [88], harsh reaction conditions [85] 

and low yields [89]. 

Electrochemical reaction for ammonia synthesis has already attracted much attention because 

of several advantages such as requiring a mild condition instead of high temperature and 

pressure, enabling alternative energy sources and having appreciable energy efficiency. Also, 

it is a good method which can save more than 20 % of the energy consumption compared to 

the conventional H-B process [90]. At the present, there are kinds of catalysts which have 

already been synthesized for the application of the electrochemical reduction of N2 to ammonia. 

Firstly, biological catalysts are quite normal for the nitrogen fixation, because the biological 

nitrogen fixation processes occur naturally in diazotrophic microorganisms through the enzyme 

nitrogenase. Secondly, some transition metal oxides could be used for the electrochemical 

reduction of nitrogen, but only several NRR electrocatalysts have been researched, including 

MoO3 [91], Fe2O3/CNT [92] Bi4V2O11/CeO2 [93], etc. What’s more, noble metals, for example 

Au [94], Ru [85]and Rh [95], based catalysts show attractive activity for the NRR, but these 

are limited for wide using because of the high cost. Lastly, conducting polymers/metal-

phthalocyanine complexes have been reported for electrocatalytic NRR at ambient conditions 

[96]. What’s more, a majority of NRR researches report very low Faradic efficiency of <1% 

even at elevated temperature or pressure [92,97].  Although it is reported that notable Faradic 

efficiency of ~35 % for NRR has already been achieved, this requires an additional input energy 

to sustain the high temperature (200 ⁰C) and high pressure (>25 bar) [13] Another thing is that 

in theory, the electrochemical reduction of N2 gas will be proceed at negative potentials, which 

is similar to those required by the H2 evolution reaction related to the thermodynamics of N2 

and NH3. It would be a big problem about the unwanted HER reaction since most current 

densities observed in the experiments for the NRR were due to the hydrogen reduction reaction 

side reaction. In this case,  gold (Au) attract the most attentions as a good catalysts for NRR 

processes because of the low HER activity of gold [94]. Bao and co-workers demonstrated that 

the electrochemical reduction of N2 to NH3 at ambient conditions is indeed possible by using 

tetrahexahedral Au nanorods as an electrocatalytic catalyst, even without the aid of activating 

complexes in the electrolyte. The reduction product yield rates are found to be as high as 1.648 

and 0.102 µg h−1 cm−2 for NH3 and N2H4·H2O, respectively [98]. However, to effectively 

utilize the high cost and desired Au, preparing metal particles onto oxide supports to obtain a 
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well catalyst system has been proved to a great method for considerable catalytic performances. 

Thus, TiO2 could be a good choice due to the low cost and high stabilities. Further, black TiO2 

was consider valuable for photocatalysts [99–102], as well as secondary batteries [103] and 

supercapacitors[7],  because black TiO2 presents surface oxygen vacancies, disordered surface 

of point defects and sometime with Ti3+ ions, which could give great contributions when used 

as a electrochemical catalysts.  At this moment, there are seldom works which used black TiO2 

nanoparticles as the support for gold nanoclusters working as electrochemical nitrogen 

reduction reaction catalysts. 

2.2 Plasma treatment modification for energy storage and 

conversion devices materials 
 

Recently, it has been demonstrated that the performance of the semiconductor metal oxides 

nanomaterials, such as titanium dioxide (TiO2), zinc oxide (ZnO), tungsten trioxide (WO3), tin 

oxide (SnO2) and copper oxide (CuO) for the applications as electrode materials in energy 

conversion and storage or related field was clearly improved after the hydrogenation treatment 

[104–108]. This approach is usually based on thermal annealing in H2 gas, and has been proved 

that can incorporate a large amount of oxygen vacancies or Ti3+ species and introduce a 

disordered surface layer in the crystalline structure, resulting in an enhanced electrical 

conductivity and conversion rate [109]. In 2011, Chen and co-workers reported a hydrogenated 

TiO2 with enhanced performance as anode material for LIBs, and they argued that the surface-

disordered structure is beneficial to the charge-transfer process and the capacity retention of 

the electrodes. Because the charge transfer process with the conductive carbon and flexible 

structure in the disordered layer become faster and the smaller structural distortion can allow 

the larger capacity retention and longer lifetime of the electrode [110]. In addition, Yan et al. 

has used H2 plasma to induce the hydrogenation with dramatically enhanced efficiency, 

controllability and safety, and the hydrogenated TiO2 nanoparticles showed an excellent fast 

lithium storage performance. In this work it was claimed that the improved rate performance 

can be attributed to the enhanced contribution of the pseudocapacitive lithium storage at the 

surface, and the formed disordered surface layer and the incorporated Ti3+ species have played 

important roles in the enhanced pseudocapacitive lithium storage[103]. It is also reported that 

hydrogenation can improve the capacitance of ZnO electrode used in supercapacitors. The free-

carrier concentration and electrical stability can be improved via introduce hydrogen in the 

ZnO lattice as a shallow donor [111,112]. 
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What’s more, the plasma treatment method is mainly focused on semiconductor metal oxides 

nanomaterials, there is not too much work about other kind of materials. In addition, the big 

difference between plasma treatment and normal gas annealing process is that normal 

annealing process couldn’t form an ultra-thin disordered surface on the samples, and the 

disordered surface layer plays a significant role on enhancing the performances of the materials. 

And also, the varieties of plasma treatment gases are quite limited.  In order to prepared some 

extraneous element doping material with a disordered surface layer at the same time, we used 

nitrogen plasma treatment to modify energy storage materials, which could achieve a nitrogen 

doped materials and a disordered surface layer could be formed at the same time. Also, we 

tested the plasma treatment effect on transitional metal dichalcogenides (TMD) WS2 and 

composite TiO2-Au materials, all of them show a promising improvement for the energy 

storage applications after the plasma treatment with a disordered surface layer formation.   
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3. Experiments and Methods 
 

3.1 Synthesis of hydrogenated WS2 as anode for lithium and 

sodium ion batteries 
 

3.1.1 Samples preparation 
 

Commercial WS2 nanoparticles with average particle size of 90 nm were purchased from 

Graphene Laboratories, Inc. Because of the convenience of fabrication and almost no waste of 

material, drop casting was used to disperse the powder more homogeneously. Hereby, 0.10 g 

WS2 nanoparticles were dispersed in 30 ml ethanol with an ultrasonic condition and drop-cast 

onto a 6-inch Si wafer. The drop casting process was repeated several times to achieve WS2 

mass loading of 0.5-0.6 mg·cm-2 (sample mass loading should no more than 1.5 mg·cm-2 to 

avoid sample nanoparticles shedding from the surface of Si wafer in the hydrogenation process) 

[103]. Before each drop, the previous dropped ethanol must be volatilized totally so that a 

homogenous distribution of powder on the silicon wafer can be obtained. 

The drop-casted wafer was transferred into a chamber for plasma-enhanced hydrogenation 

treatment, and there an instrument of inductively coupled plasma (Plasmalab 100 ICP-CVD, 

Oxford Instruments) was used. Before hydrogenation, the chamber must be cleaned to make 

sure the development of a reproducible process and thus fewer impurities can be found in the 

reaction chamber. A preconditioning must be held afterwards at 300 °C to ensure the quality 

of plasma treatment. Then, the H2 plasma treatment was performed at 300 °C for 2 hours, the 

ICP power was 3000 W, the chamber pressure was 3.52-3.76 Pa, and the H2 flow rate was 50 

sccm. After this treatment, WS2 were obtained and scratched from Si wafer for further 

investigations.  

3.1.2 Electrochemical experiments 
 

For the electrochemical measurements of lithium and sodium ion batteries, 2032 type coin cells 

were assembled in an argon-filled glove box, where both the moisture and oxygen contents 

were < 0.5 ppm. The working electrode was prepared in the ratio of 80: 10: 10 (w/w) active 
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material/super carbon black/polyvinylidene difluoride (PVDF), to form a homogeneous slurry 

in N-methyl-pyrrolidone (NMP). The slurry was then deposited as a film with a thickness of 

100 μm on a copper foil using a coating machine from Zehntner Testing Instrument. The 

electrode was dried for 12 h at 120 °C under vacuum and the working electrode loading was 

about 2 mg·cm-2. Glass fiber (GF/D, Whatman) was used as a separator, and pure lithium foil 

(or sodium foil) (Aldrich) was used as the counter electrode. The electrolyte was 1 M LiPF6 

(or NaPF6) in a 50:50 w/w mixture of ethylene carbonate and dimethyl carbonate. A battery 

tester (Neware, Shenzhen, China) was used to conduct the galvanostatic measurement. Cyclic 

voltammetry (CV) was carried out over the potential range to 3.0 to 0.01 V using a potentionstat 

(VMP3, BioLogics, France). The AC impedance of the samples was determined using the same 

potentiostat, and impedance spectra were obtained by applying a sine wave with an amplitude 

of 5.0 mV over the frequency range of 100 kHz to 0.01 Hz after charging/discharging for 5 

cycles at a certain current density.  

3.2 Synthesis of nitrogen doped TiO2 as anode for sodium ion 

batteries 
 

3.2.1 Sample preparation  
 

Commercial TiO2 (P25) nanoparticles were purchased from Sigma-Adlrich and used without 

further purification. Because of the convenience of fabrication and almost no waste of material, 

drop casting was used to disperse the powder more homogeneously. Hereby, 0.10 g TiO2 

nanoparticles were dispersed in 30 ml ethanol with an ultrasonic condition and drop-cast onto 

a 6-inch Si wafer. The drop casting process was repeated several times to achieve TiO2 mass 

loading of 0.5-0.6 mg·cm-2 (sample mass loading should no more than 1.5 mg·cm-2 to avoid 

sample nanoparticles shedding from the surface of Si wafer in the nitrogen plasma treatment 

process) [8,107,108]. Before each drop, the previous dropped ethanol must be volatilized so 

that a homogenous distribution of powder on the silicon wafer can be obtained. The drop-casted 

wafer was transferred into a chamber for plasma-enhanced nitrogen plasma treatment, and there 

an instrument of inductively coupled plasma (Plasmalab 100 ICP-CVD, Oxford Instruments) 

was used. Before the plasma treatment process, the chamber must be cleaned to make sure the 

development of a reproducible process and thus fewer impurities can be found in the reaction 

chamber. A preconditioning must be held afterwards at 300 °C to ensure the quality of plasma 

treatment. Then, the N2 plasma treatment was performed at 300 °C for 30 minutes, the ICP 

power was 3000 W, the chamber pressure was 3.52-3.76 Pa, and the N2 flow rate was 30 sccm. 
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After this treatment, N-TiO2 were obtained and scratched from Si wafer for further 

investigations.  

 

3.2.2 Electrochemical experiments 
 

The electrochemical performances of the materials used as anode for sodium-ion batteries were 

tested via 2032 type coin half-cells, which were assembled in an argon-filled glove box, where 

the moisture and oxygen contents both were less than 0.5 ppm. The working electrode was 

immersed in a mixture, which consist of active material, super carbon black and polyvinylidene 

in ratio of 70: 15: 15, toward forming a homogeneous slurry in N-methyl- pyrrolidone (NMP). 

Then, the slurry was pasted onto stainless steel foil with a sample loading of about 1.8 mg·cm-

2. The handled electrode was dried for 12 h at 120 °C under vacuum. Glass fiber (GF/D, 

Whatman) and pure sodium foil (Aldrich) were respectively used as a separator and the counter 

electrode. The electrolyte was 1 M NaPF6 in a mixture of ethylene carbonate and diethyl 

carbonate, in a ratio of 50:50. For the galvanostatic measurement, a battery tester (Neware, 

Shenzhen, China) was used. Cyclic voltammetry (CV) was applied in a potential range from 

3.0 to 0.01 V at a scan rate of 0.5 mV·s-1 by a potentionstat (VMP3, BioLogics, France). 

Furthermore, the alternating current (AC) impedance of the samples were determined by a 

same potentiostat and the impedance spectra, which was acquired via a sine wave with an 

amplitude of 5.0 mV in a frequency range from 100 kHz to 0.01 Hz after charging/discharging 

for 5 cycles at a current density of 1 A·g-1.  

 

3.3 Synthesis of hydrogenated TiO2-Au nanoparticles as 

electrocatalyst for nitrogen reduction reaction 
 

3.3.1 Samples preparation 
 

The pristine TiO2-Au (P-TiO2-Au, gold nanoclusters supported by P25 TiO2 nanoparticles, Au 

load: ~ 2 wt %) was purchased from Particular GmbH (Germany) and used without any 

purification. 100 mg of P-TiO2-Au powder was dispersed into 30 mL ethanol under an 

ultrasonic condition to get a homogenous ink and then drop cast onto a 6-inch Si wafer. The 

drop-casted wafer was transferred into a chamber for plasma-enhanced hydrogenation 

treatment. The drop-casted wafer was transferred into the inductively coupled plasma 
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(Plasmalab 100 ICP-CVD, Oxford Instruments) chamber for plasma-enhanced hydrogenation 

treatment. Before hydrogenation, the chamber must be cleaned to make sure the development 

of a reproducible process and thus little impurities can be found in the reaction chamber. A 

preconditioning must be held afterwards at 300 °C to ensure the quality of plasma treatment. 

Then, the H2 plasma treatment was performed at 300 °C for 2 hours, the ICP power was 3000 

W, the chamber pressure was 26.5-28.3 mTorr, and the H2 flow rate was 50 sccm. After this 

treatment, hydrogenated TiO2-Au (H-TiO2-Au) were obtained and scratched from Si wafer for 

further investigations. The same modification was processed on the H2 and O2 plasma treated 

material (H-O-TiO2-Au) just an O2 plasma treatment for 5 minutes with a power of 100 W with 

a Tefal O2 plasma set up afterwords. The P-TiO2-Au was used as the control sample during the 

experiments.  

 

3.3.2 Electrochemical measurements  

1. Cathode preparation  

Typically, 4 mg samples and 5 μL of Nafion solution were dispersed in 100 μL ethanol and 

100 μL ultra-pure water by sonicating for 30 minutes to form a homogeneous ink. Then the ink 

was loaded onto a carbon paper (Toray 090) with an area of 2×2 cm and dried under vacuum 

at room temperature overnight. 

2. NRR electrochemical measurements 

The N2 reduction reaction electrochemical measurements were carried out with an 

electrochemical workstation using a three-electrode configuration with TiO2-Au working 

electrode, Pt foil counter electrode and Ag/AgCl (saturated KCl electrolyte) reference electrode, 

respectively. The electrolyte is 0.1 M HCl with N2 saturated for 30 minutes before the test. The 

reference electrode was calibrated on reversible hydrogen electrode (RHE). The calibration 

was performed in the high purity hydrogen saturated electrolyte with Pt foils as both working 

electrode and counter electrode in 0.1 M HCl electrolyte. Cyclic voltammetry tests were run at 

a scan rate of 0.5 mV·s-1, and the average value of the two potentials at which the H2 

oxidation/evolution curves crossed at I = 0 was taken to be the thermodynamic potential for 

the hydrogen electrode reactions. Thus, in 0.1 M HCl, E (RHE) = E (Ag/AgCl/saturated KCl) 

+ 0.28 V in my work. 
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3. Determination of ammonia 

The determination of the produced ammonia was carried by the indophenol blue method with 

some modification. Firstly, 2 mL of solution was removed from the electrochemical reaction 

vessel, and subsequently, 2 mL 1M NaOH solution containing 5 wt % salicylic acid and 5 wt % 

sodium citrate, followed by addition of 1 mL of 0.05 M NaClO and 0.2 mL of an aqueous 

solution of 1 wt % C5FeN6Na2O (sodium nitroferricyanide). After 2 h at room temperature, the 

absorption spectrum was measured using an ultraviolet-visible spectrophotometer. The 

formation of indophenol blue was determined using the absorbance at a wavelength of 655 nm. 

The concentration-absorbance curves were calibrated using standard ammonia chloride 

solutions, which contained the same concentrations of HCl as used in the electrolysis 

experiments. And then we used the UV-Vis spectrophotometer of every sample and the fitting 

calibration cur to gain the amount of the ammonia which was produced during the NRR process.  

 

4. Faradaic efficiency 

The Faradaic efficiency for NRR was defined as the quantity of electric charge used for 

synthesizing ammonia divide the total charge passed through the electrodes during the 

electrolysis. The total amount of NH3 produced was measured using colorimetric methods.  

Assuming three electrons were needed to produce one NH3 molecule, the Faradaic efficiency 

can be calculated as follows: Faradaic efficiency = 3F×cNH3×V/(17×Q), where F is the 

Faraday constant. The rate of ammonia formation was calculated using the following equation: 

vNH3= (cNH3×V)/(t×m), Where cNH3 is the measured NH3 concentration, V is the volume of 

electrolyte, t is the reduction reaction time and m is the catalyst mass. 

 

3.3.3 Calculation method 

 
The first-principle calculations were performed with the Vienna Ab initio Simulation Package 

(VASP). The ion-electron interactions were treated with the projected-augmented wave (PAW) 

method. The exchange-correlation interactions were calculated with the Perdew–Burke-

Ernzerhof (PBE) scheme. The energy cut-off was set to 400 eV, and the self-consistent 

convergence was set at criteria of 0.0001 eV/atom. The spin polarization was considered in the 

calculation.  

The Norskov’s computational hydrogen electrode (CHE) method was applied to calculate the 

reaction free energy (△G) for nitrogen reduction reactions (NRR). In the method, with the 
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standard conditions (pH=0, p = 1 bar, T = 298 K), the △G of the reaction: A* + H++ e-→ AH*, 

could be calculated from the reaction: A* + 1/2 H2→AH*, i.e., △G= G (AH*) –G (1/2 H2) –G 

(A*) + eU’. Here U is the electrode potential vs. SHE, and in alkaline condition, the formula 

between U’ and U is U’ = U + 0.059*(pH). 

 

3.4 Central analytics tools for materials characterizations 
 

The crystalline structure of the nanoparticles was characterized by X-ray diffraction (XRD, 

SIEMENS D5000) using Cu-Kα radiation. The samples were characterized by using 

transmission electron microscopy (TEM, Tecnai F20). Scanning electron microscopy (SEM) 

images were taken with a Hitachi S-4800 instrument, where also energy-dispersive x-ray 

spectrometry (EDS) was carried out. The optical absorption in the range from UV to the visible 

wavelength was measured by a diffuse reflectance accessory of a UV-Vis spectrometer (Cary 

5000 UV-Vis-NIR). The X-ray photoelectron spectroscopy (XPS) analysis was performed by 

a spectrometer (Kratos Axis Ultra XPS) with monochromatized Al-Kα radiation and an energy 

resolution of 0.48 eV. Raman spectra analysis was performed with a Renishaw In-Via System 

utilizing a 514.5 nm incident radiation and a 50 × aperture (N.A. = 0.75), resulting in an ~ 2 

μm diameter sampling cross-section. Electron paramagnetic resonance (EPR) spectra were 

recorded at the temperature of 77 K using a Bruker BioSpin CW X-band (9.5 GHz) 

spectrometer ELEXYS E500. Au LIII-edge extended X-ray absorption fine structure (EXAFS) 

data were acquired at the 1W1B beamline of the Beijing Synchrotron Radiation Facility, China. 

The electron beam energy of the storage ring was 2.5 GeV with a stored current of 200 mA. 

Au foil was used as reference sample and data were obtained in transmission mode, while data 

for the TiO2-Au catalysts were acquired in fluorescence mode. The data were processed and 

analyzed using the Demeter 0.9.25 software package. 
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4. Disordered Surface Formation of WS2 via Hydrogen 

Plasma with Enhanced Anode Performances for Lithium 

and Sodium Ion Batteries 
 

4.1 Introduction of transition metal dichalcogenides as anode 

materials  
 

Nowadays, high performance energy storage devices have attracted amount of attentions 

because of the growing power-supply demand in the fields of portable electronics, electric 

vehicles and grid energy storage systems[114–117]. Among these energy storage devices, 

rechargeable lithium ion batteries (LIBs) and sodium ion batteries (SIBs) are the most 

important groups due to their high energy densities, environmental friendly, memoryless effect 

and long cycle life [118–121]. LIBs are the wildest used energy storage method in the market 

now, what’s more, SIBs also own a high potential to apply in smart-grid because of the high 

abundance nature resources and low cost. However, because the radius of sodium ions is larger 

than the lithium ions, SIBs may have some greater disadvantages than LIBs, for example, a 

lower specific capacity and larger volume change during charging/discharging process 

[122,123]. For these reasons, considerable attention has been paid to investigate suitable 

electrode materials as anode materials for both lithium and sodium ion batteries with a higher 

rate and long cycling performances [121,124–127]. 

Among the lithium and sodium anode materials, transition metal dichalcogenides (TMD) 

nanoparticles attract much attention in recent lithium and sodium ion batteries (LIBs and SIBs) 

due to its layered structure, which act as host lattices when reacting with ions to yield 

intercalation compound. Transitional metal dichalcogenides (TMD), especially WS2 and MoS2, 

have received enormous attention owing to their unique physical and electrochemical 

properties [47–53]. Compared to MoS2, tungsten disulfide (WS2) has a much larger interlayer 

spacing of (002) facial (0.62 nm) and weak van der Waals interaction, this would highly favor 

the Li+ and Na+ intercalation/ deintercalation. In addition, WS2 has a relatively higher 

theoretical specific capacity of 432 mAh·g-1 than the commercial graphite for LIBs. Due to its 

great advantageous features, WS2 has already been studied as energy storage devices, 

transistors, catalysts and photo-sensor devices [128]. However, bottlenecks such as the reversal 

of decomposition in terms of 
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reactivity, mass transport and nucleation, the poor electronic conductivity and the substantial 

large volume change during charging-discharging process hinder the further development and 

application of tungsten disulfide in batteries [50,129–131]. Therefore, developing novel nano-

size structure materials to reduce the diffusion length of Li+ and Na+ is an effective way to 

increase the anode capacities and subsequent energy density of batteries [132,133]. Secondly, 

synthesizing some carbonaceous composite material is also a good way to increase the 

conductivity and reduce the volume change during the charging/discharging processes 

[38,131,134–138]. Despite these achievements, there are still many difficulties for researchers 

to get some novel WS2 materials without any other complicated materials which showed not 

only a considerable electrochemical performance, but also an easy operation method to modify 

the pristine materials. In this chapter, WS2 nanoparticles are modified through hydrogen plasma 

treatment at 300 °C for 2 hours, and the hydrogenated WS2 (H-WS2) nanoparticles demonstrate 

a clearly enhanced electrochemical performance as anode material for LIBs and SIBs. The 

TEM investigation shows a disordered surface layer with thickness around 2.5 nm after the 

treatment, and this is also confirmed by the results of the Raman spectroscopy. The shift in the 

XPS peaks indicates the structure surface disorders are incorporated in the crystalline structure. 

The hydrogenated WS2 based LIBs and SIBs possess significantly higher specific capacity at 

different current densities. In addition, the electrochemical impedance spectroscopy (EIS) 

reveals a drastic decrease of the charge-transfer resistance for both LIB and SIB, which implies 

the plasma hydrogenated electrode is more favorable for the electron transportation during the 

electrochemical process. The improved rate performance of H-WS2 in both applications of Li 

and Na ion batteries can be attributed to the reduced charge transfer resistivity at the disordered 

surface layer and improved electronic conductivity due the disorder surface in the crystalline 

structure.        
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4.2 Results and discussion  
 

4.2.1 Characterizations 
 

 

Figure 4-1 (a) (c) SEM and TEM images of pristine WS2; (b)(d) SEM and TEM images of H-

WS2. 

 

The microstructures of the samples were investigated by the scanning electron microscopy 

(SEM) and transmission electron microscopy (TEM). As displayed in Figure 4-1, pristine and 

H-WS2 nanoparticles have typical sizes of around 100 nm. The morphology of the materials 

before and after hydrogen plasma treatment has no big differences. Figure 4-2 shows the HR-

TEM images of pristine and H-WS2 nanoparticles. In order to get further structural information, 

we zoom in the region near the edges. Both the pristine and H-WS2 nanoparticles are highly 

crystallized. Combing the results in the FFT images of the whole regain of the sample (insets), 

the lattice fringes with the d spacing are 0.617 nm and 0.627 nm before and after hydrogenation, 

respectively. These values correspond well to the (002) plane of WS2. It is interesting to notice 

that a disordered layer (~2.5 nm) was formed on the surface of H-WS2 nanoparticles along the 

c-axis after hydrogenation. The thickness of the formed disordered layer in the WS2 is clearly 
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larger than that (around 1.3 nm) reported in H-TiO2 [113]. The disordered surface layer could 

be formed more easily along the c-axis of the WS2 due to the weak van der Waals bonding. 

Also, the crossover of the fringes indicates a partially dislocation in the H-WS2 nanoparticles. 

However, we can’t conclude that whether the pristine WS2 nanoparticles or hydrogenated WS2 

nanoparticles has more dislocations due to the limitation of the images. 

 

Figure 4-2 (a) HRTEM image of pristine WS2 (inset is FFT image of the whole region); (b) 

TEM image of H-WS2 (inset is FFT image). 

 

Figure 4-3 shows the XRD patterns of the pristine and H-WS2, respectively. The background 

has already been subtracted. Two different phases of WS2 have been observed in the pristine 

nanoparticles: tungstenite-2H (PDF 84-1398), tungstenite-3R (PDF 84-1399). In addition, 

there was also little amount of contamination detected: tungstite (hydrous tungsten oxide) 

(PDF- 84-0886) and tungsten oxide (PDF 32-1395). The XRD patterns of both 2H and 3R 

phases of WS2 are still strong after the hydrogenation. However, the tungstite phase 

disappeared after hydrogenation, which could be reduced into the tungsten oxide, because the 

tungstate could be easily transformed into tungsten oxide at a high temperature annealing.  

The Rietveld refinement is one of the most successful quantitative analysis methods to model 

the diffraction pattern by duplicating the calculated pattern to the experiment one. TOPAS will 

be used for the quantitative analysis in this dissertation. And the goodness of the fit could be 

identified by the value of Rwp, and when Rwp < 10, the refinement can be accepted as good 

result. Figure 4-4 shows the results of Rietveld refinement, the blue curve is the observed value, 

the red curve is the calculated value and the gray curve is the difference between the observed 
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value and calculated value. The Rwp-value for pristine nanoparticles is 11.034, for 

hydrogenated nanoparticles it is 11.136. Both values show a convinced fitting result. Table 4-

1 shows the phase wt % of the two samples according to the results of Rietveld refinement. We 

could find that 3R (R denotes rhombohedral) phase wt % increased after hydrogenation 

whereas the 2H (H denotes hexagonal) phase decreased. Also, almost all the tungstite 

transferred to the triclinic tungsten oxide. Different stacking sequences of trigonal prismatic 

layer result in different symmetries. In our case, the phase transition induced by hydrogenation 

could results in disorders in the mixture phase, which indicates an evolution in electrochemical 

performance. On the other hand, the phase transition from the tungstite to tungsten oxide, which 

we thought comes from the high temperature during the plasma treatment process, but it is just 

3 % changing and could have little contributions to enhanced electrochemical performance.  

 

Figure 4-3 XRD patterns of pristine and H-WS2 nanoparticles. 

 

Table 4-1 Phase wt % of pristine and H-WS2 nanoparticles. 

Phases Tungstenite 2H Tungstenite 3R Tungstite Triclinic WO3 

Pristine WS2 56.17% 34.70% 3.42% 5.71% 

H-WS2 50.81% 40.01% 0% 9.17% 
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a)

 
b)  

 

Figure 4-4 Full pattern quantitative analysis in TOPAS. (a) Pristine WS2 nanoparticles; (b) H-

WS2 nanoparticles. 

 

Raman spectra of the pristine and H-WS2 nanoparticles are shown in Figure 4-5. Both of 

samples were excited by 780 nm line in area ambient environment. It is obvious that WS2 

consisted of the well-known in-plane E2g and out-of-plane A1g mode at 350 and 414 cm-1 [139], 

respectively. Typically, the frequency of E2g decreases while that of A1g peak increases with 

increasing layer number in TMD materials [140]. The blue-shift of the A1g peak results from 

the atom vibration which was suppressed by the interlayer Van der Waals force due to higher 

force constant [141]. On the contrary, E2g peak shows a red-shift with increasing layer. Lee. C. 

[142] have argued that stacking induced structure changes or long-range Coulombic interlayer 

interactions are the main reasons for the peak shift rather than the increased interlayer Van der 

Waals force. In our case, a slightly phase change from 2H to 3R doesn’t cause obvious 

frequency change of the vibrated atoms. Thus, no peak-shift was witnessed after hydrogenation. 

However, the peak intensities of both modes decrease after hydrogenation, and both vibration 

modes show broad peaks after hydrogenation. Hence, it could be speculated that hydrogenation 

has caused different scattering properties which were probably induced by the slightly phase 

transition and surface disorder due to the rearrangement of the atoms [143,144]. In addition, 

tungstite was found at 1347, 1409 and 1538 cm-1 in both cases. As discussed above, the Raman 

intensity could be influenced by the molecule concentration. Therefore, this result corresponds 
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well with the result in XRD analysis that most water molecules in hydrous tungsten oxide 

disappeared after hydrogenation. N2 adsorption/desorption isotherms were used to investigated 

the surface areas and pore structures of WS2 samples. The Brunauer-Emmett-Teller (BET) 

specific surface areas of pristine and hydrogenated WS2 were 6.7518 and 5.6153 m2·g-1, 

respectively (Figure 4-6 (a)(b)). We could see that both of the materials give very low surface 

areas. 

 

 

Figure 4-5 Raman spectrum of pristine and H-WS2 nanoparticles. 

 

 

The X-ray photoelectron spectroscopy (XPS) of WS2 before and after hydrogen plasma 

treatment was performed to examine the effect of hydrogenation on the chemical composition. 

Figure 4-7 shows the XPS survey spectra of the pristine and hydrogenated WS2 nanoparticles, 

tungsten, sulfur, carbon and oxygen can be observed in both samples. And there are no obvious 

differences between these two samples, and then the high-resolution spectra of tungsten and 

sulfur elements were investigated for more details. Depth resolved XPS measurements of both 

WS2 nanoparticles were used to compare the elemental profile of tungsten and sulfide. The 

normalized W 4f core level XPS spectra of pristine and H-WS2 was shown in upper panel of 

Figure 4-8 (a). The W 4f core level spectrum of the pristine WS2 nanoparticles shows three 
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peaks at ~32, ~34 and ~38 eV corresponding to W 4f7/2, W 4f5/2 and W 5p3/2 respectively, they 

demonstrated the 4+ valence state of W from WS2 phase [145,146]. In comparison to pristine 

WS2, the peaks of H-WS2 show a small positive shift in binding energy, suggesting the different 

bonding environment after hydrogenation. By subtracting the normalized W 4f spectra of H-

WS2 with pristine WS2 sample [108,147,148], we could find there are three peaks centered at 

32.88, 35.07 and 38.64 eV (show in the lower panel of Figure 4-8 (a)) which were related to 

the peaks shifting to the higher binding energy positions after the hydrogenation process. At 

this moment, there is no much work about the peaks shifting to higher energy on W for XPS 

investigations. We found a new research [149] about the defect WS2, the XPS results shown 

that the peaks shifted to a higher binding energy when annealed in a reductive atmosphere 

under 1000 °C. The authors claimed the reason could be some crystals surface structure 

disruption at the high temperature annealing but no more discussions. For our experiment 

results, we supposed that could be related to the formation of the disordered surface and maybe 

after the hydrogen plasma treatment, the formation of W-H or W-S-H bonds could change the 

peak position to higher energies. We thought this kind of hydrogenation process could result 

in the disordered surface formation and the amorphous layer makes an important role on 

enhancing the electrochemical performances of the materials for anode electrode of secondary 

batteries. On the other side, the S 2p core level spectrum of the pristine and hydrogenated WS2 

nanoparticles shows two peaks at ~161 and ~163 eV corresponding to S 2p3/2 and S 2p1/2 of 

S2- , as is shown in Figure 4-8 (b). The binding energy of the elements is consistent with W4+ 

and S2− in WS2 [150,151], which further confirm the WS2 phase. However, we could find two 

peaks that located at about 168.6 and 169.6 eV for S 2p of pristine WS2, which could be 

attributed to the sulfite and sulfate [152]. After hydrogenation process, the two peaks become 

weaker and only one left at about 168.8 eV, it may be for the sulfite. We think this was caused 

by the hydrogenation process, which we have already mentioned in the XRD part, the phase 

transition from the tungstite to tungsten oxide may cause the difference. 
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Figure 4-6 (a) N2 adsorption/desorption isotherms of pristine WS2; (b) N2 adsorption/ 

desorption isotherms of H-WS2. 
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Figure 4-7 XPS survey spectra of the pristine and H-WS2 nanoparticles. 

 

 

Figure 4-8 XPS spectra of (a) W 4f and W 5p and (b) S 2p for pristine and hydrogenated WS2. 
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4.2.2 Electrochemical Performance of LIBs 
 

After the characterization, we measured the electrochemical performances of the samples used 

as anode material for LIBs firstly. Figure 4-9 shows the cyclic voltammetry (CV) curves of 

pristine and hydrogenated WS2 for the first cycle between 0.01 and 3.0 V at a scan rate of 0.5 

mV·s-1. The small reduction peaks located at about ~1.03 V could be attributed to the lithium 

insertion into the interlayer space of WS2 to form LixWS2, as shown by Eq. (4-1):  

                                                 WS2 + xLi → LixWS2                                                            (4-1) 

The following wide plateaus at about 0.5 V could be ascribed to the subsequent conversion 

reaction of Eq. (4-2): 

                                           LixWS2 + (4 − x)Li+ →  2Li2S + W                                           (4-2) 

and accompanying with the irreversible decomposition of the electrolyte and formation of the 

gel like solid electrolyte interface (SEI) layer [129,133]. This step is the main reason for the 

irreversible capacity loss during the discharge process. For the first anodic scan, a small peak 

at ~1.25 V and a large oxidation peak located at ~ 2.5 V associated to the lithium extraction 

[123,129,153]. We could see the hydrogenated WS2 shows larger current peaks than the 

pristine samples during the processes. Figure 4-10 (a) indicates the CV curves from the 1st to 

5th cycles of H-WS2, from the second cycle, there are two new reduction peaks appeared at ~ 

1.77 and 2.03 V, these could be explained by the formation of a gel-like polymeric layer by of 

the dissolution of Li2S in the electrolyte [152,153]. The CV curves from the 2nd to 5th cycles 

are perfectly overlapped, indicating an excellent reversibility of the hydrogenated sample. 

While the pristine materials shown smaller peaks and irreversible results from the 2nd cycle for 

the CV curves (Figure 4-10 (b)).  

Figure 4-11 (a) shows the first discharge/charge profiles of the H-WS2 at a current density of 

0.1 A·g-1. The results could be greatly matched with the CV performance. There are three 

phases during the discharge process, a rapid voltage decreases during the first period from open 

circuit voltage (OCV) to 1.0 V, this is the intercalation of Li in WS2 (Eq.1); the second phase 

was the decomposition of LixWS2 to Li2S and W, which we have already mentioned in Eq. (2) 

of the CV  
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Figure 4-9 CV curves for the pristine and H-WS2 electrodes measured at a scan rate of 0.5 

mV·s-1. 

part. This process is the main reaction between the lithium and WS2, the first reason for the 

plateau is the subsequent conversion reaction of lithium with WS2, and another could be the 

formation of a solid electrolyte interlayer (SEI). And the phase III as a steep voltage drop [129]. 

When charged to 3.0 V, the reaction process could be described by Eq. (4-3) as following: 

                                                W + 2Li2S ↔ W + 2S + 4Li                                                (4-3) 

This means that the Li2S will be converted to S and the mental W remains inert. During the 

next subsequent cycles, the reversible reaction occurs between S and Li2S [128]. Depending 

on the above results, we know that the first discharging process of WS2 is different from the 

next cycles, the formation of LixWS2 between OCV and around 1V (Eq. 1) followed by the 

decomposition of LixWS2 to Li2S and W (Eq. 2) just happen for the first cycle, then the reaction 

of Eq. (3) will be the reversible reactions during the next cycles. From the CV results and the 

initial discharging/ charging curves of H-WS2 and pristine WS2, we find that the H-WS2 shows 

a much more obvious peak for CV and plateaus for the charging curves, it means there are 

much more Li2S and S reacted for the Eq. (3), leading to better performances during the 

following cycles. The main reason for the improvements could be attributed to the disordered 

surface. The first two steps become much easier for hydrogenated WS2 than pristine material 

because of the disordered surface, which could improve the electrical conductivity of H-WS2 

electrodes, as a resulting of the larger capacity retention and longer lifetime of the electrode 

could be obtained. 
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Figure 4-10 CV curves for the (a) H-WS2 and (b) pristine WS2 electrodes measured at a scan 

rate of 0.5 mV·s-1 at different cycles of lithium ion batteries. 

Figure 4-11 (b) is the galvanostatic performance of the two samples at different current 

densities of 0.1, 0.5, 1.0, 2.0 and 4.0 A·g-1. The first discharge/charge specific capacities of the 

H-WS2 at 0.1 A·g-1 are 674.6/556.2 mAh·g-1, with a columbic efficiency (CE) of 82.2 %. While 

the discharge/charge capacities of pristine WS2 sample is 711.9/442.9 mAh·g-1 and with a 

lower columbic efficiency of 62.2 %. When the current densities are 0.1, 0.5, 1.0, 2.0 and 4.0 

A·g-1, the discharge capacities of H-WS2 are about 568.4, 463.5, 346.9, 189.6 and 82.9 mAh·g-

1, respectively. For the pristine WS2 sample, the discharge capacities are 364.3, 154.7, 106.2, 

65.3 and 28.9 mAh·g-1, respectively, they are much lower than the sample with H2 plasma 

treatment. Figure 4-12 (a) (b) shows the galvanostatic discharge/charge profiles of the WS2 

a) 

b) 
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Figure 4-11 (a) Initial discharge/charge curves of H-WS2 at 0.1 A g-1
 for the 1st cycle in the 

potential window of 0.01-3.0 V; (b) Rate performances of samples at different charging/ 

discharging rates. 

samples at different current densities. For the pristine WS2 sample, we could find that the 

discharge and charge plateaus are appeared at a low current density (0.1 A·g-1), with the 

increasing of the current densities, there is almost no obvious charge or discharge plateaus. In 

contrast, the plateaus are more prominent for the H-WS2 anode at different current densities. It 

means the H2 plasma treatment has a good influence for improving the electrochemical 

performance of the WS2 when used as the anode materials for LIBs. 

a) 

b) 
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Figure 4-12 (a) Initial discharge/charge curves of H-WS2 at different rate in the potential 

window of 0.01–3.0 V; (b) Initial discharge/charge curves of pristine WS2 at different rate in 

the potential window of 0.01–3.0 V of lithium ion batteries.  

Figure 4-13 is the long-term cycling performance of these two materials at a high current 

density of 2 A·g-1 for 60 cycles. The first discharge/charge capacities of H-WS2 are 595.8/500.9 

mAh·g-1 with a coulombic efficiency of 84.0 %, while the capacities of pristine WS2 sample 

are 614.1/ 384.2 mAh·g-1 with a first cycle coulombic efficiency of 62.56 %. After 60 cycles 

process, the discharge specific capacity of H-WS2 is about 180 mAh·g-1, just a little higher than 

the pristine WS2 sample (140 mAh·g-1). It means the stabilities of WS2 after treatment just 

improved a little. The next two figures (Figure 4-14 (a) (b)) are the discharge and charge 

profiles of the long-term performance from the 1st to 50th cycles. It is worth mentioning that 

there are obvious plateaus for the discharge/charge curves of H-WS2, while the pristine sample 

a) 

b) 
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shows a very fast capacity fading just after several cycles. The irreversible reaction during the 

discharge/charge process was depressed in the H-WS2 sample, which could be easily found 

from the initial curves from Figure 4-12 & 4-13. These results are quietly well matched with 

the CV and rate performances which we discussed before.  

 

Figure 4-13 Long term performances and the coulombic efficiencies of samples at 

charging/discharging rate of 2.0 A·g-1
 for 60 cycles.  

In order to investigate the resistance changing after H2 plasma treatment, electrochemical 

impedance spectroscopy (EIS) was carried out for the two electrodes in the frequency range of 

100 kHz to 0.01 Hz after discharge/charge for 5 cycles at a current density of 1 A·g-1. As we 

all know, the EIS plots of the electrode of a LIB are composed of one or two semi-circles in 

the high frequency region followed by a straight line with decreasing frequency. The depressed 

semicircle from high to medium frequency could be attributed to the charge transfer process 

and the formation of the SEI layer [154]. Rs represents the internal resistance of the capacitor. 

And the first semicircle in the high frequency range which is an ion migration resistance that 

related to the diffusion resistance of ions in the SEI layer. The fitted impedance (RSEI, fitted by 

Zview) of the pristine WS2 and H-WS2 were 132.4 and 3.817 Ω, respectively (Figure 4-15). 

And the second semicircle in the middle frequency is charge-transfer resistance (RC, fitted by 

Zview). The fitted impedance of H2 plasma treated WS2 (7.2 Ω) was also lower than that of the 

pristine WS2 (313.5 Ω). And the sloping line in the lower frequency, which is called Warburg 

impedance (WS). WS is related to the diffusion of the lithium ions in the LiPF6 particles. And 

CPE1 and CPE2 expressed the constants. The fitted impedance parameters are listed in Table  



4. H-WS2 with Enhanced Anode Performances for LIBs and SIBs 

35 
 

 

 

Figure 4-14  (a) Initial discharge/charge curves of H-WS2 at 2.0 A·g-1
 for different cycles in 

the potential window of 0.01-3.0 V; (b) Initial discharge/charge curves of pristine WS2 at 2.0 

A·g-1
 for different cycles in the potential window of 0.01–3.0 V of lithium ion batteries.  

 

4-2. The lower impedance of the ion diffusion in SEI layer and charge-transfer implied that the 

electrode is more favorable for the ion transport during the discharge/charge process [129]. The 

H-WS2 nanoparticles with a disordered surface have a strongly improved conductivity. What’s 

more, we think that the resistance of the SEI layer and the transfer resistance of H-WS2 are 

benefit from the disordered surface, the ion transportation within the electrode become much 

a) 

b) 
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easier and faster than the pristine material, and this is confirmed by the EIS measurements with 

clearly reduced charge transfer resistance. The semicircle size of the H-WS2 is much smaller 

than that of pristine WS2, implying that the disordered surface after hydrogenation can greatly 

enhance the charge transfer during the electrochemical reactions and leading to an 

improvement of the rate and cycling performance. 

Table 4-2 Fitted impedance parameters for the electrodes of LIBs. 

Electrode RS (Ω) RSEI (Ω) RC (Ω) 

Pristine WS2 2.93 132.4 313.5 

H-WS2 3.47 3.817 7.173 

 

 

Figure 4-15 Nyquist plots for pristine WS2 and H-WS2 for lithium ion batteries. 

 

4.2.3 Electrochemical performance of SIBs 
 

The pristine and H-WS2 were also tested as the anode electrodes of sodium ion batteries (SIBs). 

Figure 4-16 shows the first cyclic voltammetry of the pristine and H-WS2 for SIBs at the scan 

rate of 0.1 mV·s-1. From the first cathode scan of the H-WS2, there are three peaks located at 

0.9, 0.6 and 0.2 V, which could be attributed to the insertion of sodium ions into WS2 lattice to 
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form NaxWS2, conversion reaction of WS2 with sodium ions and the formation of SEI layer on 

the surface of the electrode. And it corresponds to the chemical reaction in Eq. (4-4) [155–157],  

                                           WS2 + 4Na+ + 4e− →  2Na2S + W                                            (4-4) 

and then for the anode scan, three peaks located at 1.9, 2.3 and 2.6 V could be viewed, which 

could be attributed to the sodium extraction from NaxWS2, as shown in Eq. (4-5) [49,122,155–

157].  

                                                 NaxWS2 → xNa+ WS2 +   xe−                                              (4-5) 

The peak positions of pristine WS2 are almost the same as H-WS2, but more significant peaks 

were obtained for hydrogenated material, indicating that better sodium storage ability was 

gained after H2 plasma treatment. In the following CV curves of H-WS2 (Figure 4-17), the 

reactions peaks become broad and less prominent.  

 

 

Figure 4-16 CVs for the pristine and H-WS2 electrodes measured at a scan rate of 0.5 mV s-1 

of sodium ion batteries. 

 Figure 4-18 (a) shows the first discharge/charge curves of two samples at a current density of 

0.1 A·g-1. It’s almost the same as the LIBs, the hydrogenated samples showed a higher sodium 

storage ability than the pristine WS2. For the first sodiation and de-sodiation process, the 

specific capacities of H-WS2 were 515.6 and 404.5 mAh·g-1, leading to an initial columbic 

efficiency of 78.45 %. While, the pristine WS2 had a discharge/charge capacities of 561.2/344.7 
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mAh·g-1 for the first cycle that to be with a lower CE of 61.42 %. As we mentioned in the LIBs 

performance part, the irreversible capacity may due to the irreversible reaction and the 

formation of the SEI layer. The rate capacities of the two samples are showed in Figure 4-18 

(b). For H-WS2, reversible specific capacities of 375.1, 325.7, 236.1, 138.9 and 63.2 mAh·g-1 

are achieved at current densities of 0.1, 0.2, 0.5, 1, 2 and 4 A·g-1, respectively. The capacity 

was returned to about 143.5 mAh·g-1 and decreased to be similar with the pristine sample when 

the current density came back to 0.1 A·g-1. Compared with the hydrogenated material, the 

pristine sample showed a very quick fading of the specific capacities, especially when it came 

to the high current densities.  

 

Figure 4-17 (a) H-WS2 and (b) pristine WS2 electrodes measured at a scan rate of 0.1 mV·s-1 

for different cycles of sodium ion batteries. 

a) 

b) 
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Figure 4-18 (a) Initial discharge/charge curves of H-WS2 at 0.1 A g-1
 for the first cycle in the 

potential window of 0.01-3.0 V; (b) Rate performances of samples at different discharge/charge 

rates. 

Furthermore, the long cycling performances of these two samples were showed in Figure 4-19. 

For the first 25 cycles, the hydrogenated sample showed a higher specific capacity than the 

pristine sample. After that, the stabilities of both samples are not so good. Because the sodium 

ions have a much larger size than lithium, the volume change during the sodiation and de-

sodiation process won’t be well accommodated compared with the lithiation and de-lithiation 

process. Figure 4-20 shown the charge and discharge profiles of the long-term performance 

from the 1st to 50th cycles. We could find that there are plateaus for the H-WS2 samples, while 

the pristine sample shows a very fast capacity fading just after several discharge/charge cycles. 

a) 

b) 
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We could say the hydrogenation process make some good effects on the performance for 

batteries. Subsequently, electrochemical impedance spectroscopy (EIS) measurements were 

performed on the WS2 nanoparticles for SIBs. The fitted impedance (RSEI, fitted by Zview) of 

the pristine WS2 and H-WS2 are 433.0 and 117.6 Ω, respectively (Figure 4-21). And the charge-

transfer resistance (RC, fitted by Zview) is reduced from ~1177 Ω for the pristine WS2 to ~260.5 

Ω for hydrogenated WS2. The same situation is achieved for the sodium ion batteries, so now 

we could make sure that the simple H2 plasma treatment could reduce the resistance of the 

anode materials and may improve the energy storage performances.  

 

Figure 4-19 Long term performances of samples at discharge/charge rate of 0.2 A·g-1
 for 60 

cycles. 

 

The cycling performances of the H-WS2 as anode materials for LIBs and SIBs from this work 

are compared to those of the related WS2 materials from literatures as shown in Table 4-3. The 

active materials, discharge capacities, current densities and cycling number of the electrodes 

are listed and compared. Firstly, most of the electrodes are carbonaceous compositions, and the 

carbon materials played an important role in improving the anode performance [136,156–160]. 

Secondly, some nanostructured or preferentially-oriented WS2 were prepared as anode 

materials, the higher surface areas and pore volume, the shorter ionic diffusion length and more 

active sites are good at enhancing the batteries performances as well 

[133,150,153,155,159,161]. On the contrary, our H-WS2 is a simply modified material without 

any other compositions and also no specials structures, but it still shown a great improvement 
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even at the high discharge current density of 2000 mA·g-1, and most of the reported WS2 anodes 

are limited less than 100 mA·g-1 [133,150,158,159,161]. What’s more, we measured the 

morphology of our electrodes after the rate performance test (shown in Figure 4-22), because 

of the low resolution of the figures, we couldn’t tell the differences between the pristine and 

H-WS2 anode, but the structures of the materials remain well as before the batteries testing. 

 

Figure 4-20 (a) Initial discharge/charge curves of H-WS2 at 0.2 A·g-1
 for different cycles in the 

potential window of 0.01-3.0 V; (b) Initial discharge/charge curves of pristine WS2 at 0.2 A·g-

1
 for different cycles in the potential window of 0.01–3.0 V of sodium ion batteries. 

 

a) 

b) 



4. H-WS2 with Enhanced Anode Performances for LIBs and SIBs 

42 
 

 

Figure 4-21 Nyquist plots for pristine WS2 and H-WS2 for sodium ion batteries. 

 

Figure 4-22 TEM images of (a) pristine WS2, (b) H-WS2 after rate performance testing of 

lithium ion batteries; TEM images of (c) pristine WS2, (d) H-WS2 after rate performance testing 

of sodium ion batteries. 
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Table 4-3 Comparison of WS2 anode material for batteries between current work and related 

references. 

Active 

material 

Discharge 

capacity 

(mAh/g) 

Current 

density 

(mA/g) 

Cycle 

Numbers

(n) 

Battery 

type 

 

Ref. 

H-WS2 596 / 515 2000 60 LIBs / SIBs Current 

work 

Sulfuration WS2 ~800 800 50 LIBs [53] 

Ordered mesoporous WS2 ~700 100 100 LIBs [133] 

Surface functionalized WS2 

sheets 

465 25 50 LIBs [150] 

WS2 nanowires 605.3 100 50 SIBs [155] 

3D porous WS2/C 267 500 300 SIBs [122] 

WS2-NC 450 1000 100 SIBs [157] 

WS2 composite 519 100 100 LIBs [158] 

Few-layer WS2 45 1000 50 LIBs [153] 

WS2 @NGr 455/289 1000 140/60 LIBs / SIBs [136] 

Graphene-like WS2 nanosheets 550 43.2 70 LIBs [161] 
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4.3 Conclusions 
 

In summary, WS2 nanoparticles are modified by H2 plasma treatment and the H-WS2 shows a 

clearly improved rate performance compared with the pristine WS2 nanoparticles when used 

as the anode materials for both lithium and sodium ion batteries. After the hydrogenated 

treatment, a disordered surface layer with a thickness of about 2.5 nm is formed. The disordered 

surface could be investigated by the TEM, Raman and the XPS results clearly. The H-WS2 

nanoparticles possess significantly higher specific capacity at different current densities. In 

addition, the electrochemical impedance spectroscopy (EIS) reveals a drastic decrease of the 

charge-transfer resistance for application in both LIBs and SIBs, which implies the plasma 

hydrogenated electrode material is more favorable for the electron transport during the lithium 

and sodium ion insertion/extraction process. We think after hydrogen plasma treatment, charge 

transfer of the electrode become easier and faster within the disordered surface than the 

crystalline phase. As a result, the larger capacity retention and longer lifetime of the electrode 

could be obtained. This is the main reason why we got a better performance for H-WS2, and 

hydrogen plasma treatment could be identified as an effective method to reduce the resistance 

of the electrode with the disordered surface layer formation. 
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5. N-doped TiO2 with Disordered Surface Layer Fabricated 

via Plasma Treatment as Anode with Clearly Enhanced 

Performance for Rechargeable Sodium Ion Battery 
 

5.1 Introduction of nitrogen doped TiO2 as anode materials for 

SIBs 
 

Lithium ion batteries (LIBs) and sodium ion batteries (SIBs) are two of the most popular 

secondary batteries on the social market now [162]. But LIBs are much more popular at the 

moment because of the high energy density and long cycling performance. While there are still 

some shortcomings, especially the high cost of lithium will limit its extensive application in 

the future. In the meantime, SIBs have attracted much attention because sodium is an abundant 

alkali element widely distributed in the world. However, the ion radius of Na ions are ~70 % 

larger than that of Li ions, so a big challenge for the development of SIBs is to find proper 

electrode materials with big interstitial space to accommodate sodium ions and allow reversible 

and rapid ion insertion/extraction [56].  

TiO2 has already been considered as one of the great energy storage materials due to its low 

cost, intrinsic safety, high power density and long cycle life [58,59]. And the main challenge 

of using TiO2 as anode for sodium ion batteries is its inherent low electrical conductivity. In 

order to solve this problem, the first and most useful approach is that trying to design nanosized 

TiO2, for example nanoparticles [60], nanotubes [61]  and nanorods [64], as the nanosized 

structure could effectively shorten the ion diffusion path and enlarge the active area of the 

material. Yuan et al. reported an ultra-small TiO2 nanoparticles grown on graphene which 

showed a superior performance for batteries [163]. The authors claimed that the excellent 

electrochemical performance was mainly attributed to the particle size effect and the enhanced 

conductivity due to the presence of graphene network. Then there are a lot of research works 

that introduced carbon additives to enhance the electrical conductivity of TiO2 for SIBs [65,67–

71]. Zhang et al. synthesized a novel flexible and freestanding oxygen-deficient TiO2-x 

nanocages anchored in N-doped carbon fibers, which exhibited a high areal capacity and an 

outstanding stability for sodium storage[65]. Another great strategy is preparing doped TiO2 

with N, S or Nb [72–76], in which oxygen vacancies or trivalent titanium species can be formed 

to improve the electrical conductivity.
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 Li showed a sulfur doped TiO2 nanotube arrays anode materials for SIBs, which demonstrated 

superior electrochemical capability and increased kinetic stability due to the structural 

advantage and the giant doping effect on the electronic properties[73]. Liang and coworkers 

reported a nitrogen doped TiO2 nanospheres which exhibited a stable capacity of 162 mAh·g-1 

at 1 A·g-1  over 1000 cycles, as well as a superior rate performance of SIBs[76]. Yu et al. 

reported that the introduction of nitrogen into TiO2 could result a partial formation of Ti3+ 

associated with the oxygen vacancies, which lead to reduce sodium ion and electron transport 

diffusion resistance and improve the rate capacity [72].  

Herein, nitrogen doped TiO2 (N-TiO2) nanoparticles are obtained through the N2 plasma 

treatment of the pristine TiO2 nanoparticles (commercial P25), and investigated as anode 

material of sodium ion batteries. Oxygen vacancies are found in the N-TiO2 due to the doping 

effect. In addition, a disordered surface layer with thickness of around 2.5 nm is formed after 

the plasma treatment. Such disordered surface layer is not observed in the N-TiO2 obtained 

from chemical synthesis from literatures [74,76,162]. Comparing with the pristine TiO2 

nanoparticles, the N-TiO2 nanoparticles obtained via plasma treatment, present a much better 

rate performance with discharge capacities of about 621 mAh·g-1 at 0.1 C and 75 mAh·g-1 at 5 

C, as well as an enhanced capacity retention of higher than 98 % after more than 400 cycles. 

The great enhancement of the rate performance can be attributed to largely reduced charge 

transfer resistance at the interface and the enhanced electrical conductivity due to the formed 

disordered surface layer and the doped nitrogen atoms as well. 
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5.2 Results and discussions  
 

5.2.1  Characterizations 
 

 

Scheme 5-1 Illustration of the sample preparation process and the basic structure of a sodium 

ion battery. 

 

The sample preparation process and the basic structure of a sodium ion battery is shown in 

Scheme 5-1. The morphology of white pure TiO2 and N-TiO2 were systematically characterized 

by transition electronic microscope.  Figure 5-1 shows the high-resolution TEM images of the 

two TiO2 samples. The interplane spacing of ordered lattices is measured to be closed to 0.35 

nm, corresponding to (101) planes of the anatase crystal phase (Figure 5-1 (a) & (c)).  All TiO2 

nanoparticles were highly crystallized but there are some crossovers of the fringes in the N-

TiO2. They may be a partially dislocation or defects on the surface. By zooming in the region 

near the edges, a disordered layer which thickness is about 2.5 nm was found on the surface of 

N-TiO2 as shown in Figure 5-1 (c). It’s noted that after nitrogen plasma treatment, the color of 

TiO2 powder has greatly changed from white (TiO2) to light yellow (N-TiO2) which are shown 

in Figure 5-2, which is caused by the nitrogen doping[164,165]. 
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Figure 5-1 HRTEM and TEM images of pristine TiO2 (a & b) and N-TiO2 (c & d). 

 

   

Figure 5-2 Photographs of (a)TiO2 and (b)N-TiO2. 

 

a) b) 

1 cm 1 cm 
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Figure 5-3 (a) UV-Vis absorption spectra of TiO2 and N-TiO2 and (b) Tauc plots to obtain the 

band gaps. 

Figure 5-3(a) shows the typical absorption spectra of pristine TiO2 and N-TiO2 electrodes. The 

absorption edge of original TiO2 appears at 410 nm, and the absorption edge of N-TiO2 shifted 

to the higher wavelengths, which confirms that N is successfully doped into the TiO2 crystal 

lattice[166]. Tauc plot is used to determine the band gap energies of the samples by 

extrapolating the linear region of the plot to intersect the photon energy axis. The calculated 

band gap for TiO2 is 2.98 eV (Figure 5-3 (b)), while after the N doping, it shows a slightly 

decrement to 2.86 eV. This band gap decrement could be attributed to the substitution location 

of N in the TiO2 lattice, in which an O (Ti) atom is replaced by a N atom[167–171]. 

X-ray diffraction (XRD) is used to reveal information about the crystal structure and chemical 

composition of materials. XRD patterns of the pristine and N-TiO2 nanoparticles are shown in 

Figure 5-4. An anatase characteristic diffraction peak appears at 25.28⁰ and a rutile diffraction 

peak shows at 27.35⁰, which are in well accordance with the (101) diffraction peak of anatase 

TiO2 (PDF 21-1272) and the (110) diffraction peak of rutile TiO2 (PDF 21-1276) [68][172]. 

Compared with the pristine material, there is no significant difference of XRD patterns between 

these two samples, except that slightly enhanced diffraction peak intensity at 2 Theta of 25.28°, 

can be observed for the N-TiO2 sample. This position was the plane (101) of anatase phase. 

There is no peak shift for the N-TiO2 sample, and this is due to the small amount of nitrogen 

doping content[173]. The crystallite size was calculated for both of the samples using the 

Scherrer equation, which is shown as follows: 

                                                          D = Kλ/βcosθ                                                            (5-1) 
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Where D is the average crystallite size of the sample, K=0.89, λ is X-ray wavelength (0.154 

nm), β represents the full width at half maximum (FWHM) of the sample, and θ is the 

diffraction angle. The calculated crystalline size is 16.41 and 16.43 nm for pristine TiO2 and 

N-TiO2, respectively.  

 

Figure 5-4 XRD patterns of pristine TiO2 and nitrogen doped N-TiO2. 

X-ray photoelectron spectroscopy (XPS) was employed to further investigate the surface 

bonding information of TiO2 samples. Figure 5-5 (a) shows the XPS survey spectra of pristine 

and N-TiO2. Oxygen (O), titanium (Ti) and carbon (C) can be observed in the samples. There 

were no significant differences in the XPS survey spectra of N-TiO2 compared with pristine 

TiO2. In order to get more detailed chemical binding information about all the elements, the 

high-resolution XPS spectra of Ti 2p and O 1s and N 1s of N-TiO2 were analyzed. As shown 

in Figure 5-5 (b), the Ti 2p XPS spectrum of pristine TiO2 shows two typical Ti 2p1/2 and 2p3/2 

peaks centered at 464.3 and 458.5 eV respectively, corresponding to the characteristic peaks of 

Ti4+. For the N-TiO2, the peaks positions just shifted 0.1 eV to the higher binding energy. That 

means the change of chemical environment of titanium is not obvious after nitrogen plasma 

treatment. The XPS spectrum of O 1s of pristine TiO2 is shown in the upper panel of Figure 5-

5 (c). There is only one characteristic peak centered at 529.7 eV, corresponding to O2-. For the 

spectra of N-TiO2, as shown in the lower panel of Figure 5-5 (c), except the same peak of TiO2, 

there are two new characteristic peaks which are centered at 530.3 and 532.1 eV, respectively. 

Especially, the binding energy of the left peak (532.1 eV) is very high and could be 
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corresponded to the presence of Ti-O-N bonds[174]. György et al [175] assigned this feature 

to the formation of oxidized Ti-N, which leads to the Ti-O-N bond. And the other extra peak 

centered at 530.3 indicating the nature of oxygen. In summary, these results manifest that the 

doping of nitrogen atoms into TiO2 can cause an increase of oxygen vacancies. 

And the high-resolution XPS spectrum of N 1s of N-TiO2 was shown in Figure 5-5 (d). 

According to the XPS results, the atomic concentration of nitrogen in N-TiO2 is about 0.48 %. 

Being affected by the noise, the reflection signal of nitrogen is weak, and we made a smoothing 

spectrum firstly. There are only two characteristic peaks which are centered at 399.4 and 409.8 

eV, respectively. The first peak (399.4 eV) can be attributed to interstitial N [174]. According 

to some previous work, NO or NO2 type species usually appear above 400 eV [175]. So, 

another peak (409.8 eV) belongs to this situation. Most researchers accept that an N 1s peak at 

≤ 397.5 eV is characteristic of O-Ti–N linkages, which result from doping of nitrogen atoms 

into a TiO2 lattice [176,177]. Therefore, changes of the nitrogen environment can produce 

significant differences in the N 1s XPS spectral region. From the above observations the 

chemical states of the nitrogen doped into TiO2 may be various and exist in the form of N-Ti-

O and Ti-O-N[176]. Many research works have reported that the role of N species on the 

electrical conductivity of TiO2 is mainly related to the decrement of the band gap, and this is 

matched well with the UV-Vis results, since the nitrogen doping can elevate the valence band 

maximum[177].  
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Figure 5-5 (a) The XPS survey spectra of TiO2 and N-TiO2; (b) Ti 2p spectra of TiO2 and N- 

TiO2; (c) O 1s spectra of TiO2 and N- TiO2; (d) N 1s spectra of N- TiO2.  
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5.2.2 Electrochemical performance for SIBs 
 

Coin cells were fabricated to investigate the electrochemical performances of the as-prepared 

TiO2 anode materials for sodium ion batteries. Cycle voltammetry (CV) plots are shown in 

Figure 5-6 (a)(b), which were evaluated at a scan rate of 0.5 mV·s-1 at the voltage range of 

0.01-3.0 V for 3 cycles of each sample. Both of  them exhibit the typical CV curves of TiO2 

anode for SIBs[60,178]. The irreversible broad cathode peaks in a wide potential range of 0.01-

0.5 V of the first cycle are observed for both electrodes, which are caused by the solid 

electrolyte interface (SEI) layer formation, irreversible sites for Na-ion insertion in the crystal 

lattice defects, electrolyte and other organic material decomposition[64,178]. From the second 

cycle on, the electrode shows only the peaks at around 0.78 and 0.85 V in the CV profiles 

(Figure 5-6 (a)(b)), which we attributed to the reversible insertion/de-insertion of Na into/from 

TiO2 and N-TiO2 electrodes. The large irreversible capacity likely originated from the 

electrolyte decomposition and SEI layer formation during the first cycle and disappeared from 

subsequent cycles. And except the first cycle, the CV curves overlapped well for the following 

cycles, demonstrating high reversibility and good cycling stability of the electrode. In addition, 

the peaks of the N-TiO2 are wider and stronger than those of the pristine TiO2 material, and it 

means N-TiO2 shows a better performance for the sodium storage application (Figure 5-7). 

The rate performance of the samples is shown in Figure 5-8 (a) (b), all of the samples were 

investigated at a current density of 0.1, 0.5, 1.0, 2.0 and 5.0 C for 4 cycles of every current 

stage, and then back to 0.1 C for 10 cycles of the last rate stage (1C= 335 mA·g-1). The first 

cycle discharge/charge specific capacities of the samples are 584.28/112.08, 621.59/132.86 

mAh·g-1 for pristine TiO2 and N-TiO2, respectively. Both of the materials show very low 

coulombic efficiencies of about 20 % for the first cycles. The loss of capacities was mainly 

caused by the occurrence of the side reactions to form a solid-electrolyte interface (SEI). When 

the current densities are 0.1, 0.5, 1.0, 2.0, 5.0 and 0.1 C, the discharge specific capacities of N-

TiO2 were 202.2, 129.2, 114.4, 86.4, 76.2 and 161.81 mAh·g-1, respectively; while for the 

pristine TiO2 electrode, they were 184.3, 104.3, 93.5, 63.8, 49.36 and 124.6 mAh·g-1, the N-

TiO2 shows an obvious improvement of the capacities. When the current density goes back to 

0.1 C, a charge capacity of about 161 mAh·g1 could be obtained for N-TiO2, while the pristine 

TiO2 is much lower,  
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Figure 5-6 CV curves for the electrodes measured at a scan rate of 0.5 mV ·s-1, (a) N-TiO2; (b) 

TiO2. 

 

around 125 mAh·g-1. Both of them show good recover of the specific capacities, this is due to 

the good stabilities of the TiO2 as anode materials for secondary batteries. Figure 5-9 (a) is the 

first discharge/charge curves of both electrodes at the current rate of 0.1 C. There is a long 

voltage plateau from 0.5 V to 0.01 V for the first discharge curves, consistent with CV results. 

From the galvanostatic discharge/charge curves, we could know that firstly, a higher first 

discharge specific capacity is achieved for the N-TiO2 than the pristine TiO2 material; secondly, 

the higher charge capacities are obtained for N-TiO2 when the charge voltage is over than 1.0 

V, it means that the reversible charge capacities of N-TiO2 are higher than the pristine TiO2 

a) 

b) 
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electrode. Furthermore, the galvanostatic discharge/charge curves of the electrode at different 

current densities show the similar results (Figure 5-9 (b)(c)), and N-TiO2 displays higher 

discharge/charge capacities and much slower performance fading at all different current stages. 

All these results give solid proofs of the considerable performance improvement of the N-TiO2 

electrode.  

 

Figure 5-7 CV curves of two TiO2 electrodes at a scan rate of 0.5 mV· s-1. 

 

To further understand the improved rate performance of the N-TiO2 electrodes, electrochemical 

impedance spectra (EIS) was evaluated in the frequency range of 100 kHz to 0.01 Hz (as shown 

in Figure 5-10). The Nyquist plots consist of an incline line in the low-frequency region and 

on semicircle in the high-frequency region. The incline line represents Warburg impedance 

(W1) corresponding to the sodium ion diffusion resistance in a solid electrode. The small 

intercept at the Z’ axis demonstrates the inter resistance of electrodes (Rs) while the semicircle 

corresponds the charge-transfer impedance on the electrode-electrolyte interface (R1)[179]. 

CPE1 represent a constant phase [180]. The charge transfer resistance (R1) of the pristine 

sample is about 137 Ω, while that of the N-TiO2 is less than half of the pristine TiO2 (ca. 50 

Ω), and higher value of R1 has been demonstrated as an important contributor to the capacity 

fading of active electrode.  The results clearly indicate that the plasma treatment results in a 

large reduction of the charge transfer resistance and a clear improvement of electrical 

conductivity due to incorporation of N doping atoms and formation of a disordered surface 

layer.  
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Figure 5-8 Rate performances of TiO2 and N-TiO2 at the current densities of 0.1, 0.5, 1.0, 2.0 

and 5.0 C, (a) Charge, (b)Discharge. 

To evaluate the long cycling stabilities of the materials, we cycled the materials at a current 

rate of 1 C for 400 cycles. As shown in Figure 5-11 (a)(c), the first cycle discharge/charge 

specific capacities of the pristine TiO2 and N-TiO2 electrodes are 304.7/64.2, 338.7/71.4 

mAh·g-1, respectively. Both of the materials show a very low coulombic efficiency of about 

21% in the first cycle. However, at such high current density, N-TiO2 still shows good long 

cycling specific capacities compared with other literatures’ report [57,71,75,181,182]. 

Especially, it should be noted that our plasma treated N-TiO2 nanoparticles were not combined 

with any other carbon materials as composite electrode material, but showed a promising long 

cycling capacity as well. It is believed here that in addition to the N doping, the disordered 

a) 

b) 
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surface layer plays also an important role on enhancing the electrochemical performance. It has 

been reported that similar disordered surface layer on TiO2 nanoparticles formed after H2 

plasma treatment can clearly enhance the rate performance for LIB due to the enhanced 

pseudocapacitive storage contribution[113].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-9 (a) Discharge/charge curves of electrodes at current density of 0.1C; Discharge/ 

charge curves at different current densities (b)TiO2, (c) N-TiO2.  

 

a) 

b) c
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Figure 5-10 Nyquist plots for TiO2 and N–TiO2.  

 

After about 20 cycles, the N-TiO2 show about 25 % of capacity higher than the pristine TiO2. 

During the long cycling performance test, the two electrodes maintain good long cycling 

stabilities, the coulombic efficiencies are nearly 98 % after 50 cycles, and this great CE could 

be sustained to the last cycles of long cycling test (Figure 5-11(e)). This excellent cycle 

performance is believed to be due to the advantage of the structural stability of TiO2 itself.  

Remarkably, what we could notice from Figure 5-11 is that the N-TiO2 reached the stable high 

coulombic efficiency earlier than the pristine TiO2 material. After 400 cycles, the N-TiO2 

shown a discharge/charge specific capacities of 61.8/60.6 mAh·g-1, and it could be kept for 

around the last 300 cycles. While for the pristine TiO2 electrode, the discharge/charge specific 

capacities are only 47.40/46.44 mAh·g-1 at the 400th cycle, it also shown a great stability for 

the long cycling performance, but much lower discharge/charge capacities. Figure 5-10 (b) (d) 

display the galvanostatic discharge/charge curves of electrodes at different cycles of the long 

cycling test, the curves are quite similar for these two materials, but the capacities fading of N-

TiO2 is much slower than the pristine TiO2 material. The similar with the rate performance, the 

reversible charge capacities of N-TiO2 are higher than the pristine TiO2 electrode (The red 

circle in Figure 5-11 (d)). In general, most of the TiO2 anode materials are carbon composited 

which could increase the conductivity of the material a lot and improve the energy storage 

performance[70,74,181,183]. However, there are still some research which are just nitrogen 



5. N-doped TiO2 with Clearly Enhanced Performance for SIBs 

 

59 
 

doped TiO2 anodes. Liu and co-workers reported a nitrogen-doped TiO2 nanospheres for 

SIBs[76], which exhibited a stable capacity of 162 mAh·g-1 over 1000 cycles at 1 A·g-1. The 

nitrogen content in the sample was calculated from the XPS results to be about 1.75 wt % 

(Another nitrogen-doped ordered mesoporous anatase TiO2 nanofibers anode with a nitrogen 

atomic content of 1.86 % was reported by Wu[184], which shown  good rate and cycling 

performances as well. The authors claimed that the improvements can be attributed to the 

nanosized particles and pores which could shorten the diffusion length of Na ions in TiO2 and 

also allow sufficient infiltration of electrolyte and allow fast diffusion of Na ions. Compared 

to these works, our specific capacity is not that good, but in our situation, the content of nitrogen 

is just around 0.48 At % and also without any special nanostructure. After the nitrogen plasma 

treatment, the improvement of our anode material is quite promising. Here, we believe that the 

nitrogen plasma treatment could serve as a model for simple modification of other oxides which 

could result in a nitrogen doping and also the formation of the disordered surface layer. 
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Figure 5-11 Long term cycling performances of electrodes at a current rate of 1 C (a) discharge; 

(c) charge; Discharge/charge curves of electrodes at different cycles (b) TiO2; (d) N-TiO2. (e) 

Coulombic efficiencies for long cycling performances of TiO2 and N-TiO2. 
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5.3 Conclusions 
 

In summary, N-TiO2 nanoparticles have been synthesized via high power N2 plasma treatment. 

Comparing with other synthesis methods, a disordered surface layer is formed in addition to 

the N doping after the treatment. Both disordered surface layer and N doping have a collective 

effect on the rate performance enhancement when used as the anode materials for sodium-ion 

batteries. What’s more, when the samples are tested for the anode materials of SIBs, the N-

TiO2 shows a great cycling stability. In addition, the electrochemical impedance spectroscopy 

(EIS) reveals a drastic decrease of the charge-transfer resistance from 137 Ω (pristine TiO2) to 

about 50 Ω (N-TiO2), which implies the plasma treatment for electrode material is more 

effective method for enhancing the electron transport during the sodium ion 

insertion/extraction process.  
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6. Hydrogen Plasma Treated TiO2-Au Composite with 

Enhanced Performance Used for Electrochemical 

Reduction of Nitrogen  
 

6.1 Introduction of TiO2-Au for NRR electrocatalysts 
 

As NH3 serves an attractive hydrogen storage medium and a renewable energy sector, also a 

significant source of nitrogen for fertilizer, finding an easy, economic and cleaning method for 

the ammonia producing is quite urgent for modern society. Electrochemical nitrogen reduction 

reaction under room temperature and ambient pressure is considered as a good choice for the 

nitrogen fixation to ammonia. At this moment, for the nitrogen fixation electrochemical 

catalysts, there are already a lot of works have been carried out [92,185–188].  Unfortunately, 

in most of the studies, the efficiency of ammonia production is quite low. To progress toward 

achieving both high-performance and selective electrochemical catalysts at ambient 

temperature and pressure for NRR is a great challenge for us now. Because of the low HER 

activity of gold(Au) particles [94,189], Au is a good choice for NRR processes. However, to 

effectively utilize the high cost and desired performances of Au, preparing metal particles onto 

oxide supports to obtain a well catalyst system has been proved to a great method for 

considerable catalytic performances. Thus, TiO2 could be a good choice due to the low cost 

and high stabilities. Furthermore, black TiO2 was consider valuable for photocatalysts[99–102], 

as well as secondary batteries [103,190] and supercapacitors [7],  because black TiO2 presents 

surface oxygen vacancies, disordered surface of point defects and sometime with Ti3+ ions, 

which could give great contributions when used as a electrochemical catalysts.  What’s more, 

the interactions between metals and supports, especially the strong metal−support interaction 

(SMSI), are widely proposed as a key factor in determining catalytic performances toward 

important chemical reactions[191]. The SMSI changes the catalytic activity and selectivity of 

the metal particles because the it influences the electronic properties and the morphology of 

metal particles, and causes the modification of metal particles with reduced supports (e.g., TiO2) 

generated by H2 treatment at high temperature[192]. Thus, we wonder how will the hydrogen 

plasma treatment change the surface structure between TiO2 support and Au 
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nanoparticles. Also, to our best knowledge, there is seldom works which used black TiO2 as 

the support for gold particles working as electrochemical nitrogen reduction reaction catalysts.  

In this research, we chose the TiO2/Au (gold nanoclusters supported by P25 TiO2 nanoparticles, 

Au load: ~ 2 wt %) and hydrogenated TiO2/Au as the electrochemical catalysts for the nitrogen 

reduction reaction. The pristine TiO2/Au has purple red color due to the plasmonic effect of Au 

nanocluster. After H2 plasma treatment, the sample color is changed to blue-black, and shows 

enhanced performance for the NRR process comparing with the original sample. From the 

TEM investigations we could find some disordered positions on the layer surface, and a strong 

metal−support interaction could be observed from the TEM results. Then the Raman intensities 

of H-TiO2-Au is much lower than the pristine material which could be attributed to the 

disordered surface and the oxygen vacancies formation. What’s more, a small peak shift for 

the XPS could be found after the hydrogen plasma treatment. The formation of the disordered 

surface makes an important role on improving the performances of catalyst. The yield of the 

NH3 is about 9.5 times increasing of the blue-black H-TiO2-Au compared with the pristine 

TiO2-Au. What’s more, after the hydrogenation process, the surface of the sample is very 

different from the control sample. As a comparison, we also used O2 plasma treated the 

hydrogenated material (H-O-TiO2-Au) and test the catalyst activity of H-O-TiO2-Au, as what 

we expected, the lightly oxidized material shows worse performance for the NRR, while it is 

better than the pristine materials. This improvement could be attributed to the disordered 

surface formation which comes from the hydrogen plasma treatment, which we could find from 

the TEM and XPS characterizations. This could be the first time that used the plasma technique 

to modify catalyst for NRR process. We hope this work could give some reminder for future 

electrochemical NRR catalysts. 
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6.2 Results and discussions 
 

6.2.1 Characterizations 
 

The XRD patterns of samples are shown in Figure 6-1 (a). For all samples we could find two 

different TiO2 diffraction peaks: anatase TiO2 marked with “A” and rutile TiO2 marked with 

“R”. The characteristic diffraction peaks corresponding to anatase TiO2 (101), (004), (200), 

(105), (211), (204), (220) and (301) reflections can be found at 2θ = 25.28, 37.80, 48.05, 53.89, 

55.06, 62.69, 70.31 and 76.02⁰ (PDF card 21-1272), respectively. While the peaks located at 

2θ=27.43, 36.08, 39.19, 41.24, 54.32, 56.62, 69.00 and 76.53⁰ could be attributed to (110), 

(101), (200), (111), (211), (220), (301) and (202) diffractions of rutile TiO2 (PDF card 75-

1754). And because the deposition of gold is very low, we can just find some small peaks at 

around 38.18, 44.38 and 64.57⁰ for the (111), (200) and (220) reflections for Gold (PDF card 

65-2870). Compared the diffraction results before and after hydrogenation, nearly there is no 

obvious differences could be observed.  

Raman spectroscopy is a powerful tool for the investigation of various phase of TiO2. To future 

reveal some more details of P-TiO2-Au after hydrogenation process, Raman spectroscopy is 

carried out to measure the changes of the obtained specimens, which was performed in the 

range of 50-1000 cm-1, and the results are shown in Figure 6-1 (b). The observed Raman peaks 

at 151.43, 202.81, 391.77, 515.85 and 632.32 cm-1 could be attributed to anatase TiO2. In 

general, there will be two peaks at around 448 and 800 cm-1 which will be attributed to the 

rutile TiO2. But in our results, the peaks are not obvious enough to be observed. What’s more, 

we could find there is no much information about gold maybe because of the low loading of 

gold particles. However, comparing with the pristine TiO2-Au sample, the intensity of the 

peaks decreased a lot after the plasma treatment. The color of the samples changed a lot after 

the hydrogen plasma treatment process. From Figure 6-2, we know the original TiO2-Au is 

purple red, after hydrogenation, it changed to blue-black. And the black color turned a bit 

lighter after the O2 plasma process.  
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Figure 6-1 (a) XRD patterns and (b) Raman spectrum of P-TiO2-Au, H-TiO2-Au and H-O-

TiO2-Au. 

The high-resolution transmission microscopy images of the three samples were shown in 

Figure 6-3. Gold particles with average size of 20 nm were observed for all samples. Compared 

the TEM photographs, we see some differences on the surface of Au and TiO2 particles. From 

Figure 6-3 (a), we could see that the Au metal particle shown clear particle boundaries, while 

after hydrogen plasma treatment, the boundaries become a bit blurry, which is because of the 

interaction between the support and the metal [192]. When the sample was oxidized by the O2 

plasma a bit, the disordered surface was decreased a little (Figure 6-3 (d)), so we could know 

that the influences of the plasma treatment for the samples are quite obvious. Figure 6-4 told 

a) 

b) 
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us the EDS patterns of P-TiO2-Au, H-TiO2-Au and H-O-TiO2-Au, Ti, O and Au elements could 

be found for all samples。 

 

Figure 6-2 Photographs of (a) P-TiO2-Au, (b) H-TiO2-Au and (c) H-O-TiO2-Au. 

To investigate the optical properties of the TiO2-Au samples, the absorbance spectra were 

measured by applying UV-Vis spectroscopy. Figure 6-5 (a) shows the absorbance spectra of 

the P-TiO2-Au (green line), H-TiO2-Au (purple line) and H-O-TiO2-Au (red line), it clearly 

shows that the P-TiO2-Au has a typical absorption behavior associated with the strong 

absorption in the UV range, and a big absorption peak at the wavelength of 550 nm. The 

appearance of the peak at 550 nm is due to the surface plasmon resonance effect[193]. The 

plasmon band at 550 nm can be ascribed to gold nanodots[194,195].  After the hydrogen plasma 

treatment, both of the H-TiO2-Au and H-O-TiO2-Au shown a very strong absorption in the UV 

range, but also the absorption in the whole visible region are quite strong compared to the P-

TiO2-Au sample. We calculated the optical band gap of the TiO2-Au samples from a Tauc plot, 

shown in Figure 6-5 (b), as a plot of the (𝑎ℎ𝑣)2 versus hv curves. 

                                                     ahv = A(hv − Eg)m                                                      (6.1) 
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Here, 𝛼 is an absorption coefficient, A is a constant, hv is the incident photon energy, Eg is the 

optical band gap, and the value m is 2 for indirect transitions. The calculated band gaps for the 

P-TiO2-Au, H-TiO2-Au and H-O-TiO2-Au are 3.02, 2.85 and 2.82 eV respectively. Obviously, 

after the plasma treatment process, a decrease of the band gap could be found, which we could 

attribute to the plasma treated disordered surface and the oxygen vacancies formation[196].  

 

 

Figure 6-3 HRTEM images of (a) P-TiO2-Au; (b), (c) H-TiO2-Au and (d) H-O-TiO2-Au. 

 



6. H-TiO2-Au with Clearly Enhanced Performance for NRR 

 

69 
 

   

 

Figure 6-4 The acquired EDS patterns from TEM of P-TiO2-Au, H-TiO2-Au and H-O-TiO2-

Au.  

The XPS spectrum of the samples is showed in Figure 6-6. From the full spectrum, we could 

see that Ti, O and Au elements could be found. And we almost didn’t find any differences 

before and after hydrogenation. The high resolution spectrum of Ti 2p was shown in Figure 6-

7 (a), there are two prominent peaks which located at around 458 and 464 eV, they could 

corresponding to the binding energies of the Ti 2p3/2 and Ti 2p1/2  to the Ti4+  of the TiO2 

[197,198]. From the spectrum we could find that after hydrogenation process, the peaks of Ti 

2p shown a small shift to higher energy position compared to the original sample. The sample 

with hydrogen plasma treatment (H-TiO2-Au) shown a higher shift than the sample which was 

treated by hydrogen and oxygen plasma (H-O-TiO2-Au). For this shift we think that because 

of the hydrogenation process which could give some disordered surface and some oxygen 

vacancies on the samples[198].And then the high-resolution spectrum of O 1s is shown in 

Figure 6-7 (b), there is a peak at about 530 eV, which is due to the Ti-O bond. We could find 

a) 

c) 

b) 
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the same situation compare with the Ti 2p spectrum, H-TiO2-Au shown a higher binding energy 

than the original one, because the hydrogenated sample has much more OH species than others. 

From Table 6-1 we could know that after hydrogenation process, the ratio of O: Ti decreased 

a bit, so we thought that there is less oxygen atoms. 

 

Figure 6-5 (a)UV-Vis absorption spectra of the TiO2-Au samples and (b) Tauc plots to obtain 

the band gaps. 

a) 

b) 
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Figure 6-6 Full XPS spectrums of P-TiO2-Au, H-TiO2-Au and H-O-TiO2-Au. 

 

For Au 4f spectra, there are two peaks centered at about 83 and 86 eV, which could be attributed 

to Au 4f7/2 and Au 4f5/2, respectively. The same, after hydrogenation, a light shift to higher 

binding energy was shown, which could be influenced by the support oxygen vacancies on the 

surface. Table 6-1 shows the contents of elements O, Ti and Au in all three samples. First, the 

Au contents are the same for these three samples, and the ratios of O: Ti is a bit different. For 

the original sample, the ratio of O: Ti is about 2.05, after the hydrogenation process it became 

a bit lower (around 2.03), it means that there is less oxygen atoms in the H-TiO2-Au sample. 

When we used the O2 plasma treatment, the O ratio increased and became higher than the other 

two samples. 
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Figure 6-7 XPS spectrums of (a) Ti 2p,( b) O 1s and (c) Au 4f of P-TiO2-Au, H-TiO2-Au and 

H-O-TiO2-Au. 

 

Table 6-1 The concentrate of O, Ti and Au atoms and the ratios of O : Ti. 

Sample O 1s At %  Ti 2p At %  Au 4f At %  O: Ti 

P-TiO2-Au 47.79 23.28 0.11 2.05 

H-TiO2-Au 48.07 23.05 0.11 2.03 

H-O-TiO2-Au 48.99 23.55 0.11 2.08 

 

b) a) 

c) 
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Figure 6-8 (a) The electron paramagnetic resonance (EPR) spectrum of all the samples; (b) 

Fourier transform (FT) of the Au L3-edge of X-ray absorption spectrum. 

And the electron paramagnetic resonance spectra of the three samples are shown in Figure 6-8 

(a) to determine the possible unpaired electrons from the hydrogenation process. There is a big 

peak for the three sample which centered at g=2.004 could be attributed to the surface Ti3+ 

[101,199] , and single O2
- radical trapped by O2 adsorbed at oxygen vacancy [200]. The H-

TiO2-Au sample shown the highest intensity of the EPR signal, while the intensity of H-O-

TiO2-Au decreased a bit compared with the P-TiO2-Au and H-TiO2-Au. It means the oxygen 

vacancy is reduced after oxidation process. And we could say that the high-power hydrogen 

plasma treatment is an efficient method to introduce Ti3+ oxygen vacancies on the material 

surface. The X-ray absorption spectrum of the samples are displayed in Figure 6-8 (b), which 

a) 

b) 
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shows the short-range local structure of gold in the as prepared materials. We could find an 

obvious Au-O shell (R=1.5 Å) [201] for H-TiO2-Au and H-O-TiO2-Au, and the P-TiO2-Au 

also shows an Au-O shell but the intensity is slightly weaker than the plasma treated materials. 

Compared with the other materials, H-O-TiO2-Au gives us a new Au-O shell (R=2.02 Å), 

which could be attributed to the oxygen plasma treatment effect. And the main gold structure 

is Au-Au (R=2.45 and 2.98 Å) according to the Au foil spectrum. From the XAS results, we 

know that the hydrogen plasma treatment process didn’t shown any kinds of new H-bonds, but 

the electronic atmosphere of the Au is changed which we could attributed to the metal-support 

interactions between Au particles and TiO2 supporting materials, which we could see from the 

changes of TEM images.  

6.2.2 Electrochemical nitrogen reduction reaction performance 
 

After the materials characterizations, we used the TiO2-Au composites as the catalyst for an 

electrochemical nitrogen reduction reaction. TiO2-Au catalyst was used as cathodic catalysts, 

and NRR is initiated at different potentials versus RHE under N2 saturation at room temperature 

and atmospheric pressure. During this experiment, N2 gas is supplied in a feed gas stream to 

the cathode, where protons transported through the electrolyte (pH =1 HCl aqueous solution) 

reacted with N2 to produce NH3. From Figure 6-9 (a) we could know the yield of NH3 during 

the NRR process at different voltages. When the reaction voltage is -0.1 V vs. RHE, the 

catalysts shown the best activities for nitrogen reduction reactions. The yield of H-TiO2-Au is 

about 0.19 μmol·mgcat.
-1, while after a light oxygen plasma treated process, the yield of H-O-

TiO2-Au decreased to about 0.07 μmol·mgcat.
-1, it means after the oxidized process, with the 

decreasing of the disordered surfaces, the activity of the catalyst decreased a lot. While, the 

pristine sample (H-TiO2-Au) without any modifications has the lowest NH3 yield, just around 

0.02 μmol·mgcat.
-1

 , it was just about first of nine of the NH3 yield compared with H-TiO2-Au 

catalyst. When we change the potential from -0.1 to -0.2, -0.3 and -0.4 V respectively, we find 

that the yield of NH3 product decreased a lot for all the three samples, which could be attributed 

to the competitive adsorption of N2 and hydrogen species on the electrode surface[94]. As the 

catalytic potential moves below −0.1 V versus RHE, the hydrogen evolution reaction (HER) 

will become the primary process in this catalytic system[84], which could be the main reason 

for a super low NH3 production with a lower potential. Especially at the high potentials such 

as -0.3 and -0.4 V, the pristine TiO2-Au (H-TiO2-Au) didn’t show any activity for the NH3 
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producing, while the modified sample still worked well somehow, even the yield of NH3 was 

quite low.  

 

Figure 6-9 Electrocatalytic NRR of TiO2-Au. (a) Yield rate of NH3 with different catalysts at 

different potentials room temperature and ambient pressure; (b) Faradaic efficiency at each 

given potential. 

 

Figure 6-9 (b) tells us the faradaic efficiency (FE) of the catalysts for NRR. The same results 

were obtained for these three catalysts, the highest FE of 2.7 % is obtained for H-TiO2-Au at -

0.1 V, while the H-O-TiO2-Au just has a FE of about 0.9 % at -0.1V. For the original sample, 

P-TiO2-Au only gave a faradaic efficiency of around 0.4 % for the electrochemical nitrogen 

reduction reactions. With the increasing of the reaction potential, the faradaic efficiencies 

a) 

b) 
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decreased quite fast for all the three samples. However, the plasma treated H-TiO2-Au 

composite still give us better performances than the other two materials.  

For practical application, the durability of the catalysts for improved nitrogen reduction 

reaction is critical. To determine the durability, chronoamperometric tests were conducted. 

Figure 6-10 shows the chronoamperometry results of the three samples at different potentials. 

When the potential is -0.1 and -0.2 V, we could find that the current of H-TiO2-Au and H-O-

TiO2-Au are just slightly higher than the P-TiO2-Au particles, while the H-O-TiO2-Au displays 

the highest current density. What’s more, all of the three samples shown a very good NRR 

stability for the duration of 3600 s because of the high stability of TiO2. When the potentials 

come to -0.3 and -0.4 V, the differences between before and after plasma treated materials are 

more significantly. At these potentials, the materials with plasma treatment show quite similar 

current density, and both of them are much higher than the pristine materials. Then we could 

conclude that the hydrogen plasma treatment process improved the electrochemical 

performances of the TiO2-Au nanoparticles a lot, the reaction current is considerable improved.  

Therefore, there are almost no other productions except the NH3 during the electrochemical 

reactions. In our present work, there is no N2H4 has been detected in the final products. It is 

quite similar with the work of D. Bao and co-workers[189]. They explained the mechanical of 

the NRR as an associative alternating pathway[202]: first, N2 is much easier to be absorbed on 

the surface of gold particles because of the positive charge status, and the N2-Au bond will be 

formed. Secondly, the active protons in the electrolyte will be active to form a N-H bond to 

break the N≡N triple bond. Finally, hydrogenation of the N2 is carried out by adding H atoms 

one-by-one from the electrolyte and an electron from the electrode surface. The whole reaction 

process could be described in Figure 6-11. 

In this case, NH3 will be the major product of this reaction, and we could know that the TiO2-

Au catalyst has a great selectivity of producing NH3 than other productions. According to the 

characterization results of TEM, UV-Vis, XPS and EPR, we are almost sure that the oxygen 

vacancies and disordered surface layer are existed after the hydrogen plasma treatment. And 

now we wonder how the oxygen defects could affect the performance of the sample as 

electrochemical reduction reactions catalyst. To further determine the NRR mechanism, 

density functional theory (DFT) was used to analyze the catalysts process[14,203]. The free 

energy changes(ΔG) and relative free energy of the elementary reactions are established in 

Figure 6-13. From Figure 6-13(a), for the first step, the N2 absorbed ΔG of the H-TiO2-Au is 
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lower than the P-TiO2-Au, it means the first step of the NRR reaction is easier to be processed 

for the H-TiO2-Au. Then, according to the calculation results (Figure 6-13 (b)), the formation 

of the -NNH intermediate is the rate-determining step of the whole NRR process，and the 

relative G of H-TiO2-Au is lower than P-TiO2-Au at this step, it makes the reaction to be 

preferred to happen. From this step on, all the step reactions of H-TiO2-Au are exothermic 

reactions, while the forth step of P-TiO2-Au (from -NHNHH+3/2*H2 to -NHHNHH+H2) is 

an endothermic reaction, it will need more energy to make this step to be processed. Figure 6-

12 shows the structures of each reaction step on Au of the H-TiO2-Au catalysts for NRR process. 

The hydriding pathway to produce NH3 is clearly illustrated in the picture. Then the DFG 

calculation results tell us that the plasma treated materials with oxygen vacancies and 

disordered surface layer is proved to be a greater catalyst for the NRR process.  

 

Figure 6-10 Chrono-amperometry results of the three samples at the corresponding potentials:  

(a)-0.1 V; (b) -0.2 V; (c)-0.3 V; (d) -0.4 V. 
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Figure 6-11 Hydriding pathway for NRR on Au catalysts at equilibrium potential.  

 

 

Figure 6-12 Illustration of structures on Au of the H-TiO2-Au catalysts for NRR process. The 

6 main intermediates shown the procedure of the NH3 producing: (a)-NNH; (b)-NHNH; (c) -

NHNHH; (d)-NHHNHH; (e)-NHH+NH3; (f) NH3. 
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Figure 6-13 (a) Free energy changes of diagram and alternating hydriding pathway for NRR 

process of H-TiO2-Au and P-TiO2-Au; (b) Relative Free energy and alternating hydriding 

pathway for NRR process of H-TiO2-Au and P-TiO2-Au. 

 

 

 

 

 

a) 

b) 
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6.3 Conclusions 

A hydrogenated blue-black TiO2-Au (H-TiO2-Au) composite is synthesized with an enhanced 

plasma treatment process. The plasma treated materials not only shown a very strong 

absorption in the UV range, but also the absorption in the whole visible region are stronger 

compared to the pristine TiO2-Au sample. From the TEM investigations we could find some 

disordered positions on the surface, and also the Raman intensities of H-TiO2-Au is much lower 

than the pristine material which could be attributed to the disordered surface and the oxygen 

vacancies formation. What’s more, a small peak shift for the XPS could be found after the 

hydrogen plasma treatment. When the sample was used for the electrochemical nitrogen 

reduction reactions, the hydrogenated catalysts shown much better improved activities for the 

NH3 production. And the yield of NH3 of blue-black H-TiO2-Au is around 9.5 times higher 

than the original sample, while the highest faradaic efficiency of 2.7 % is also obtain at the 

potential of -0.1V. The DFT calculation results confirms that the plasma treated material with 

oxygen vacancies and disordered surface layer is much preferred for the NRR process. The 

reduction process of H2 plasma make an important role on the improving of catalysts’ 

performances. 
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7. Summary and Perspective 
 

In summary, different materials with different gases of plasma treatment modification methods 

for energy storage and conversion application were prepared and the electrochemical 

performance are tested. We used hydrogen and nitrogen as high-power plasma treatment gas, 

both of them created a disordered surface layer, which plays a significant role on enhancing 

the electrochemical performances of the materials. What’s more, except metal oxides, we 

choose transition metal dichalcogenides (WS2) for the plasma treatment process and it shown 

a promising improvement for anode materials of LIBs and SIBs as well. And not only for the 

single materials, we modified TiO2-Au composite materials with hydrogen plasma, which 

resulted in a considerable improvement for the electrochemical catalysts performance of 

nitrogen reduction reaction.  

Firstly, WS2 nanoparticles are modified by H2 plasma treatment, and the H-WS2 shows a 

clearly improved rate performance compared with the pristine WS2 when used as the anode 

materials for both lithium and sodium ion batteries. After the hydrogenated treatment, a 

disordered surface layer with a thickness about 2.5 nm is formed. The disordered surface could 

be investigated by the TEM, Raman and also the XPS results clearly. The H-WS2 nanoparticles 

possess significantly higher specific capacity at different current densities. In addition, the 

electrochemical impedance spectroscopy (EIS) reveals a drastic decrease of the charge-transfer 

resistance for application in both LIBs and SIBs, which implies the plasma hydrogenated 

electrode material is more favorable for the electron transport during the lithium and sodium 

ion insertion/extraction process. We think after hydrogen plasma treatment, charge transfer of 

the electrode become easier and faster within the disordered surface than the crystalline phase. 

As a result, the larger capacity retention and longer lifetime of the electrode could be obtained. 

This is the main reason why we got a better performance for H-WS2, and hydrogen plasma 

treatment could be identified as an effective method to reduce the resistance of the electrode 

with the disordered surface formation. 

Secondly, N-TiO2 nanoparticles have been synthesized via high power N2 plasma treatment. 

Comparing with other synthesis methods, a disordered surface layer is formed in addition to 

the N doping after the treatment. Both disordered surface layer and N doping have a collective 

effect on the rate performance enhancement when used as the anode materials for sodium-ion 

batteries. 
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What’s more, when the samples are tested for the anode materials of SIBs, the N-TiO2 shows 

a great cycling stability. In addition, the electrochemical impedance spectroscopy (EIS) reveals 

a drastic decrease of the charge-transfer resistance from 137 Ω (pristine TiO2) to about 50 Ω 

(N-TiO2), which implies the plasma treatment for electrode material is more effective method 

for enhancing the electron transport during the sodium ion insertion/extraction process.  

Thirdly, a hydrogenated blue-black TiO2-Au composite is synthesized with an enhanced 

plasma treatment process. When the sample was used for the electrochemical nitrogen 

reduction reactions, the hydrogenated catalysts shown much better improved activities for the 

NH3 production. And the yield of NH3 of blue-black H-TiO2-Au is around 9.5 times higher 

than the original sample, while the highest faradaic efficiency of 2.7 % is also obtain at the 

potential of -0.1V. From the TEM and the XPS results, we find some disordered surfaces were 

formed after the hydrogenation process, we could say that the reduction process of H2 plasma 

make an important role on the improving of catalysts’ performance.  

Based on the present results, in the further research, the relation between disordered surface 

layer and the performance improvement haven’t been investigated clearly enough, we should 

try more effective characterization methods, like nuclear magnetic resonance (NMR), and 

positron annihilation lifetime spectroscopy (PALS) to get more details about the differences 

before and after plasma treatment.  

Secondly, we could focus on more different of materials which could be used for the plasma 

treatment process, and a deep understanding of microstructure and some other new applications 

could be tried as well. Firstly, various materials, like nanostructured Ni/TiO2, NiO2, and more 

composite materials could be tested with different plasma treatment. Secondly, different kinds 

of electrochemical applications could be tested as well, such as hydrogen evolution reaction 

(HER), oxygen evolution reaction (OER). What ‘s more, some photo-electrocatalyst 

performances could be tested as well, because the nanostructure and also plasma treatment 

could make the light absorption of materials improved a lot. We believe that the plasma 

treatment method holds great promise for prepare new energy storage materials.   
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