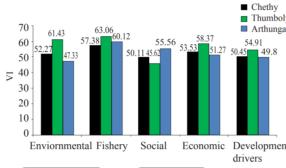
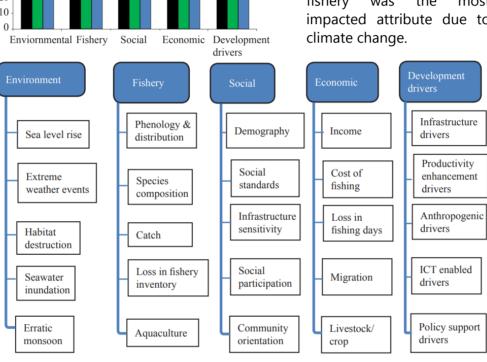

Life Cycle Assessment

- As per the marine fisheries Census 2010, there are about 21,800 crafts operating along the coast of Kerala
- 4,700 are mechanised, 11,200 are motorised and 5,800 are non mechanised.

 Emission intensity is marginally higher along Kerala coast compared to southeast coast, with mechanised boats contributing 1.60 kg CO₂ equivalents/kg of fish caught and motorised boats 0.48 kg CO₂ equivalents/kg of fish caught.



Mechanized and motorized crafts deployed along the Kerala coast


- Active gears (eg. trawlers) consume more fuel resulting in high emission. Fleet size of such gears should be reduced and replaced by passive gears (eq. qill netters).
- Eliminating overcapacity and old fleets are other means for reducing emissions.

Integrated District Level Adaptation and Management (IDLAM)

- IDLAM provides a framework to assess the climate change vulnerability status of resource users and develops adaptation and mitigation plans in order to combat the effects of climate change.
- Of the 9 coastal districts of Kerala Allapuzha has the highest vulnerability, followed by Kozhikode and Trivandrum.

- Vulnerability of 318 fisher households in Allapuzha district was assessed using PARS methodology.
- According to fisher folk, fishery was the most impacted attribute due to climate change.

- Greater awareness of fisher folk on climate change by involvement in disaster preparedness and planning process
- avocations Alternative across different fishing villages need to improved.

Climate change significantly impacts vulnerable coastal areas.

Prepared by: P.U. Zacharia, T.M. Najmudeen, Shyam S. Salim, Somy Kuriakose V.H. Sajna, Roshen George Ninan, Dawn T. Mathew, Liya V. Benjamin, G. Rojith

For more information contact:

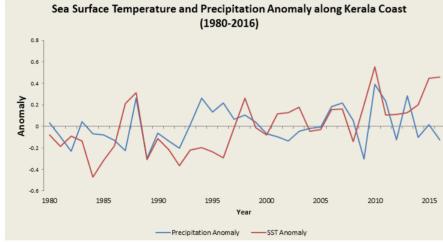
The Director, Central Marine Fisheries Research Institute (Indian Council of Agricultural Research), P.O. Box 1603, Ernakulam North P.O., Kochi 682018, India

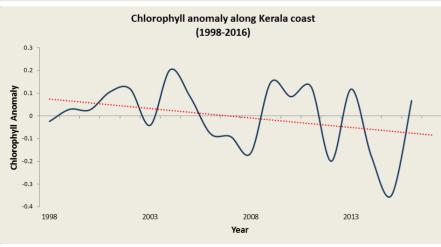
Marine climate and fisheries scenario of Kerala Climcard - 3 **Position** 8°.17'.30" N -12°. 47'.40" N 74°.27'47" E -77°.37'.12" E **Total Area** 38.863 km² **Notable Geographical Landmarks** Arabian Sea to the west, Western Ghats to the east. **Important Ecosystems** Mangroves, wetlands, mud banks

National Innovations in Climate Resilient Agriculture

Indian Council of Agricultural Research

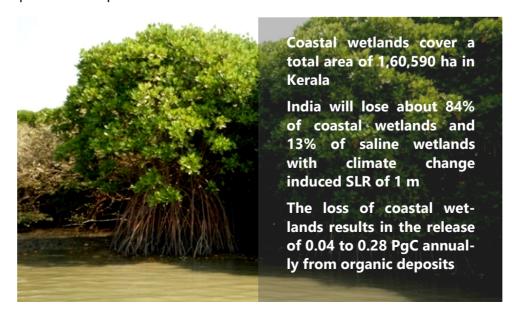
CENTRAL MARINE FISHERIES RESEARCH INSTITUTE www.cmfri.org.in



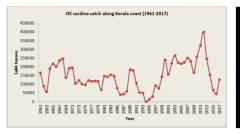

The marine climate

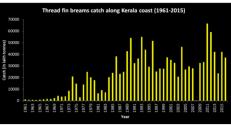
- The coastal regions of Kerala are highly susceptible to gale force winds, storm surges, and torrential downpours.
- Extreme weather events have been increasing in frequency and intensity with the effects of climate change. The Ockhi cyclone in 2017 is an example.
- Annual average rainfall of 3,107 mm, which is highly dependent on the southwest monsoon.
- Over a period of 50 years the annual average SST has shown a definite increasing trend (0.2°C), while chlorophyll has shown a decreasing trend.
- Warming sea temperatures are likely to impact coastal habitats and resources.

The marine ecosystems


Low Lying Coastal Areas

- 590 km long coastline
- 9 of 14 districts in Kerala are coastal.
- The Fifth Assessment Report of the Inter-governmental Panel on Climate Change predicted a sea level rise of 21-71 cm in the year 2070 due to thermal expansion of Oceans.
- Studies of shoreline change rate reveal the 2nd highest rates of coastal erosion occur in Kerala (Mohanty et. al, 2012).
- The average shoreline erosion characteristic of Kerala is 63.02%.

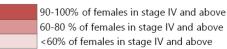



Wetlands

- Rich in biodiversity.
- Anthropological activities: urbanization; land use changes; drainage to agricultural use; infrastructure development and pollution from domestic and industrial effluents are major causes of concern in Kerala
- Mangroves provide protection to coastal areas during times of cyclonic storms. Their continual destruction mitigates their ability to provide this protection.

The marine fishery

- In 2016, Kerala contributed 5.22 lakh tonnes of total marine fish production in India.
- Decline in last three years was due to reduction in oil sardine catch during 2013-16 from 1.55 lakh tonnes to 43,492 tonnes, whereas in 2017 oil sardine catch increased to 1.27 lakh tonnes.
- After 2012 the oil sardine catch decreased by 90% but in 2017 it increased to 81.9%. After 2011 Thread fin bream catch reduced to 44%.


Changes in environmental conditions influence spatial distribution of marine fishes and cause phenological changes and changes in fish production.

Shift in spawning period of Sardinella longiceps

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1979-85								7.0				
1986-90						0.0		333	70			
1991-95												
1996-00												
2001-05												
2006-10	7.0							100	7.0			
2011-16	100						-					1

- Even a 1°C rise in temperature may significantly affect the distribution and phenology of fish.
- Oil sardine shows an early onset of spawning period from June (1980-'00) to May (2005-'16).

Shift in spawning period of threadfin breams

 Thread fin breams also shows a shift in peak spawning period from September–October (1969-99) to August (2000 onwards).