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Micro algae are diverse group of microscopic photo-autotrophic non-

vascular plants with photosynthesizing pigments. They are unicellular and 

sometimes form extended chains with simple reproductive structures. These 

unicellular primary producers are dispersed throughout the photic zones of the 

ocean and accomplish major share of the primary production in the marine 

environment and account half of the primary production in the earth. They 

belong to both prokaryotes (Blue Green algae, Cyanobacteria) and eukaryotes 

(True algae). The phylogeny of microalgae basically depends on the traditional 

morphological identification. Morphological identification, based on the 

structure and arrangement of cell organelles, has limited application when 

environmental condition like salinity, pH, light, temperature, nutrient 

condition can change the structure of the cell. Recently more research has been 

carried out in the field of algal taxonomy, wherein many exciting molecular 

and ultrastuctural evidences has emerged. Due to its diverse distribution, only 

about 40,000 to 60,000 species of microalgae have been described. There are 

many species yet to be described including the extremophiles (Norton et al., 

1996; Sastre and Posten, 2010). 

As primary producers, micro algae play a vital role in the Earth’s 

carbon cycle and it accounts for about 40-50% of the total global primary 

productions (Harlin and Darley, 1988; Van den Hoek et al., 1995; Graham and 

Wilcox., 2000). Ocean covers about 70% of the earth’s surface.  Marine 

microalgae contribute to most of the primary production by fixing carbon 

dioxide to organic matter hence they are the main regulators of global climatic 
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conditions (Raven and Falkowski, 1999). Micro algal culture was first started 

as live feed for early larval stages of shrimp, molluscs and fin fishes used in 

aquaculture. More than 40 species of microalgae are used as live feed and 

many of them like Chlorella, Scenedesmus, Spirulina etc. are also used in 

formulated animal feed (Becker, 2007; Cadoret et al., 2012). Since the early 

1950’s microalgae were studied for their nutritional and industrial application, 

relevance of micro algae in bioactive compounds, waste treatment, carbon 

sequestration, genetic engineering, agriculture and bio fuel production has 

recent origin. 

Blue green algae or Cyanobacteria are primitive groups which forms 

the transition stage between prokaryotes and eukaryotes. They form the 

descendent of the present day eukaryotic photosynthetic organisms including 

land plants (Yoon et al., 2004). The main photosynthetic pigments are 

chlorophyll a, carotenoids and phycobilins and starch form the main storage 

product. They have typical prokaryotic cell structure with only few membrane 

bound cell organelles so obvious in eukaryotes (Amos Richmond, 2008). 

Several species of cyanobacteria are capable of fixing atmospheric nitrogen to 

nitrates, ammonia and other reactive forms available for their metabolic needs. 

Nitrogen fixation takes place through the specialized cells called heterocyst. 

Cyanobacteria exhibit symbiotic association with other organisms and also 

live as epiphytes. Photosynthetic Blue green algae are important organism due 

to their vast application in the field of food, feeds, bio fuels, fertilizers etc. 

One of the important cynobacteria is spirulina which is extensively cultivated 

for nutrient supplement and which is known as “super food”  because of its 

high protein content and other nutritional values such as high gamma linolenic 

acid and vitamin B12 levels. The natural colouring agent, phycocyanin is high 
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in spirulina so is used in cosmetic and food industry. Cynobacteria, 

Aphanizomenon flosaquae is used as dietary supplement. 

Among the eukaryotic microalgae, green algae or chlorophycean algae 

has a significant role in algal biotechnology. Green algae are fast growing and 

the photosynthetic efficiency is high when compared to plants. Microalgae 

have the ability to synthesize long chain polyunsaturated fatty acids like 

gamma-linolenic acid (GLA), arachidonic acid (AA), eicosapentaenoic acid 

(EPA) and docosahexaenoic acid (DHA).  Terrestrial plants and animals lack 

the enzymes to synthesize these long chain fatty acids. Dietary supplement of 

PUFA has great beneficial effect on human health. The DHA content of 

marine stramenophile, Schizochytrium is very high up to 35- 45% when 

compared to the conventional omega 3 rich oils like walnut oil and canola oil 

which contain only 10% omega 3 fatty acids (Cadoret et al., 2012). 

Microalgae are rich source of natural pigment with antioxidant 

potential. The widely cultivated green algae such as Dunaliella and 

Haematococcus are rich source of β carotene and astaxanthin respectively. 

Besides β carotene and astaxanthin there are some other pigments such as 

leutein, alpha-carotene, lycopene and zeaxanthin which are also extracted from 

microalgae. The red microalga Porphyridium purpureum is a rich source of 

polysaccharide, which is used in industrial and health field (Huheihel et al., 

2002; Matsui et al., 2003; Gourdon et al., 2008). 

Micro algal Genomics 

Advancement of technologies like Next Generation Sequencing (NGS) 

with reduced cost revealed the genomic data of many of the important 

microalgae. As a model organism Chlamydomonas acquired great attention 

and its complete genome sequencing was completed in 2007 (Merchant et al., 
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2007). This study exposed the evolution of land plants, characterized the genes 

behind photosynthesis and flagellar function. Later on the applications of 

advanced genetic tools like microarrays, RNAi, genetic transformation, etc. 

helped to unravel the metabolic pathways and biological processes such as 

responses to stress, the circadian clock (Matsuo and Ishiura, 2011), 

photosynthetic electron transport chains (Hermsmeier et al., 1991), 

mechanisms of carbon concentration (Yamano and Fukuzawa, 2009) and 

flagellar assembly (Iomini et al., 2009). Along with Chlamydomonas some 

other microalgae with phylogenetic distribution, ecological importance and 

biotechnological applications were studied and these studies helped to identify 

specific metabolic pathways and associated genes. Further these sequence data 

may provide insight to post-genomic investigations and would reveal signal 

transduction pathways, adaptation related to environmental changes, cell 

physiology, life cycle and metabolisms. 

The genome structure of microalgae is complex and it size range from 

12.6 Mbp like in the smallest eukaryote Ostreococcus tauri to an estimated 

10,000 Mbp as seen in the Dinophyta, Karenia brevis. Due to complexity in 

genome structure full genome sequencing is difficult, so transcriptome 

approach has been adopted to make gene catalogue. There are around 39 

microalgal transcriptome which has been sequenced and some of the important 

algae with complete genome data available are green microalgae Chlorella 

vulgaris UTEX395 (Guarnieri et al., 2011), Ochrophyta Pseudochattonella 

farcimen, which is associated with fish mortalities (Dittami et al., 2011), 

Dunaliella salina (Zhao et al., 2011), D. tertiolecta (Rismani-Yazdi et al., 

2011) and the coccolithophore Emiliania huxleyi (Von Dassow et al., 2009). 

Genomic approach has significant impact on microalgal biotechnology. The 

molecular mechanisms behind the synthesis of valuable metabolites provide an 
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insight of genes and with the modification of these would enable the better 

production of many bioactive compounds. Genomic data unveiled many of the 

new bioactive compounds from microalgae, the Heterokonta Aureococcus 

anophagefferens genome revealed the enzymes involved in the synthesis of 

toxic isoquinoline alkaloid which was not reported from these harmful algae 

(Gobler et al., 2011). Molecular farming is a sustainable approach to produce 

pharmaceutical molecules. Microalgae have several advantages as potential 

expression system for the production of recombinant proteins. 

Extremophilic microalgae and their importance 

Extremophiles are organisms which thrive and flourish in extreme 

conditions like hypersaline (2-5M NaCl), high temperature (50ºC-120ºC) or 

lower temperature (-2 to -20ºC), either alkalinity (pH>8) or acidity 

(pH<4).The term extremophile was first described by MacElroy in 1974. 

Extremophiles have the ability to tolerate many stressful environments which 

would be detrimental to normal life. Many of the extremophile identified 

belongs to the domain archaea and recently works has been carried out to 

characterize eukaryotic Kingdoms and among these microalgae are significant 

because of their diverse distribution on the earth. Among the photosynthetic 

eukaryote Cyanidiales (red algae) and Chlorophyte are the predominant 

groups. The red algae have a higher tolerance level. But the ecologically 

important diatoms and prymnesiophytes (members of the Heterokont algae) 

and the dinoflagellates do not form extremophiles (Varshney., et al. 2014) 

with few exceptions such as diatom Pinnularia sp. found in low pH fresh 

water (Aguilera et al., 2006) and some psychrophilic diatoms (Seckbach, 

2007). Extremophiles are under-exploited resources and characterization of 

these organisms has potent application in the field of biotechnology. The 

enzymes produced by mesophiles have limited application at extreme 
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condition whereas the extremozyme produced by extremophile shows a 

greater stability under different harsh conditions. So they have better potential 

applications. Extremophilic microalgae have the ability to grow in fluctuating 

environmental conditions and also the extreme conditions prevent the growth 

of undesired organisms, so extremophilic microalgae have potential 

application in bio-resource engineering. Extremophiles are good source of 

desired genes that would enable recombinant production of active molecules 

and these genes can be used to produce stress tolerant plants through genetic 

engineering.   

Among Extremophiles, ample evidences are available for thermophiles 

because of the potent source of thermostable enzymes. Thermphilic algae can 

tolerate extreme conditions because of the accumulation of certain bioactive 

compounds like α- tocopherol, carotenoids, astaxanthin, etc. Thermophilic 

algae like Galdieria sulphuraria (a red alga) and Desmodesmus (a green alga) 

are used for the production of pigments. G. sulphuraria has potential 

application in waste water treatment. Thermostability under extreme condition 

is acquired through the physiological adaptation supported by molecular 

mechanisms by differential expression of certain genes. Thus gives stability to 

DNA and also show protein folding under extreme temperature. Application of 

thermophiles includes the characterization of these temperature tolerant genes 

for the genetic modification of economically important plants for survival 

under changing climatic conditions. 

Halophilic microalgae inhabit the hypersaline lakes and solar salt 

evaporation ponds. Hypersaline conditions are also subjected to high temperature 

and radiation. So microalgae which thrive in such conditions develop fascinating 

mechanism to adapt to these environments. The adaptive mechanisms to 

overcome this hyper osmotic pressure are through the production of some 
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osmotolerant compounds like glycerol, glycine betaine etc. inside the cell. The 

excess production of β- carotene prevents oxidative damage caused by high 

iridescence. These stress tolerance mechanism is advantageous for the culturing of 

one of the most halotolerant eukaryote, Dunaliella salina for the commercial 

production of β- carotene and glycerol. Global warming seriously affects the soil 

salinity through sea water intrusion which negatively affects the land productivity.  

Due to adverse climatic condition and increased population density there will be 

insufficient food supply to the growing population. To circumvent this problem 

and to acclimatize the plant to these changing climatic conditions, the immediate 

and advanced solution is the genetic modification of the candidate plant genomes. 

This can be achieved through desired genes that are actively involved in salinity 

tolerance. As a eukaryote, halophilic microalgae are good source of desired genes 

for salinity tolerance. Presently few microalgae have been selected for genetic 

characterization, so as to explore their potential biotechnological applications. 

Acidophiles are organisms which survive under high acidic conditions 

(usually at pH 2 or below). Large number of acidic environment covers the earth 

but the survivability of organisms to this extreme is limited. Low pH increases 

the solubility of metals which causes metal toxicity.  Acidophilic microalgae 

have the ability to tolerate metal toxicity through genetic or physiological 

modifications. So they are potential candidate for bioremediation. Among 

eukaryotes, photosynthetic microalgae have the ability to tolerate acidic 

conditions and the group Cyanidiaceae has a better tolerance level. Complete 

genome sequencing of the most acid tolerant cyanide, Galdieria sulphuraria has 

been carried out (Weber et al., 2004; Barbier et al., 2005). In the present 

scenario global warming has significant impact on the ocean pH. Increased 

carbon dioxide concentration reduces the ocean pH which has serious impact on 

marine biodiversity. Genetic characterization of marine acidophile offers an 
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insight to the molecular mechanism behind the acidic stress. Characterization of 

genes which give acid tolerance can be used as quantitative trait for the isolation 

of stress tolerant organisms for future applications.  

Abiotic stress tolerance mechanisms linked to different biological 

pathways are controlled by multiple genes. These stress tolerant gene products 

are mainly classified in to metabolic products which protect plant from stress, 

help in signal cascading and transcriptional controlling systems and also 

transport of ions and water. Engineering of genes involved in these pathways 

would enable plants to develop better tolerance under abiotic stresses. Success 

of the genetic transformation depends on the selection of suitable genes and 

their source. As a eukaryotic photosynthetic organism, extremophilic 

microalgae are a better source for the desired genes which would enable 

homologous expression in plant genome.  

There are wide ranges of techniques available for gene discovery. 

Expressed sequence tag (EST) is a common approach with an advantage of 

functional characterization if full length cDNA are cloned. Microarrays can be 

used for the expression profile of cloned cDNA. Differential Display Reverse 

Transcription (DDRT-PCR) is another technique which helps to analyze and 

compare changes in gene expression at mRNA levels. Advancement in Next 

generation sequencing (NGS) has been employed for sequencing cDNA 

libraries. Even though they are efficient for quantitative analysis, they are 

labour intensive and highly expensive (Sahebi et al., 2015).  Present study 

used the advantage of Suppression Subtractive Hybridization (SSH) technique 

for the identification of differentially expressed genes under various abiotic 

stresses. SSH is an effective molecular technique to identify genes with 

differential expression level under various biological processes including 

abiotic stresses. SSH is an effective method for enriching rare transcripts 
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(Neill and Sinclair, 1997). The principle of SSH is that selective amplification 

of target cDNA fragments and suppression of non-targeted cDNA fragment 

through the long inverted terminal repeats ligated to the 5’ ends of single-

strand cDNA fragments. The main distinguishing characteristics of SSH are 

the low false positives and target cDNA fragments are amplified selectively, 

whereas non-target cDNA fragments are suppressed from amplification 

(Diatchenko  et al., 1996, Morissette et al., 2008, Coetzer et al., 2010, Zhang et 

al., 2012, Sahebi et al., 2015).  

Objectives of the study 

1. Isolate, identify and culture extremophilic and extremotolerant 

microalgae. 

2. Transcriptomic profiling of these algae for differentially expressed 

genes under various abiotic stresses such as acidity, salinity and 

temperature. 

3. Complete characterization of important genes which tolerate various 

abiotic stresses. 

4. Functional validation of identified genes through acquired stress tolerance 

in E. coli by recombinant expressions. 

…………………… 
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1.1 Introduction 

Decreasing ocean pH is one of the major consequences of global warming 

which seriously damage marine organisms. Oceanic pH decreased 0.1 U due to 

the industrial revolution in the eighteenth century and it is further estimated to 

decrease 0.5 U and reaches around a pH of 7.7 by 2100. The main reasons for 

ocean acidification are anthropogenic activities which lead to uncontrolled 

emission of CO2 causing the formation of carbonic acid (H2CO3). The 

dissociation of carbonic acid produces bicarbonate (HCO3
-) and H+ ions, which 

reduces oceanic pH. The changing global climate will affect the distribution of 

organisms in the ocean (Poloczanska et al., 2013) and also affect the community 

structure and physiology of organisms (Perry et al., 2005; Somero, 2010). The 

tolerance of these extreme limits is through physiological adaptation supported by 
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modified gene expression. Recently, more attention has been focused on the 

evolutionary adaptation of organisms towards climate change in the marine 

environment. The immediate effect of ocean acidification is reflected in 

calcareous algae, coral reefs and other ocean life with calcium carbonate 

exoskeleton because low pH reduces the carbonate absorption (Feely et al., 2004). 

Among eukaryotic photosynthetic organisms, limited studies has been conducted 

in coccolithophores to find out the molecular mechanism involved under 

increased CO2 (Lefebvre et al., 2009; Richier et al., 2011; Rokitta et al., 2012 ).  

This study focused on the adaptive mechanism of organism by differential 

gene expression under experimental acidic stress. The tolerance level for acidic 

environment is varied from organism to organism and some algae have the ability 

to tolerate pH 3 or even below. Microalgae are diverse group of photosynthetic 

eukaryotic organism distributed almost everywhere on earth. We can find them 

even in extreme environment such as acidic thermal springs, hypersaline lakes, 

acidic lakes etc. They are responsible for the major primary production in the 

ocean and it accounts for half of the earth’s primary productivity. As a primary 

producer it is important to predict vulnerability of microalgae to varying climatic 

change by understanding the molecular mechanisms to compensate the effect of 

reduced ocean pH. A decreased pH reduces the photosynthetic efficiency of 

phytoplankton and thereby reduction in the ocean productivity is anticipated. 

Nutrition to coral reefs is mainly contributed by the symbiotically associated 

microalgae. Decreased ocean pH seriously affects associated algae which could 

be one of the reasons for phenomena such as coral bleaching. In the present study 

we have isolated euryhaline (wide range of salinity tolerance) microalgae, 

Dictyosphaerium ehrenbergianum (CMFRI-MBTD-S129) which grown under 

various salinity from 0‰ to 40‰ and also the saline acclimatized cells have the 
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ability to tolerate acidic environment up to pH 3. Multiple stresses enhance the 

expression of various genes to overcome these stressful environments. Earlier 

works mainly focused on the impact of ocean acidification on calcifying marine 

life because of the reduced absorption of carbonate under low pH. This study 

focused on the capability of organism to adjust with the changing climatic 

condition through the altered expression of functional genes to maintain 

homeostasis. Evolutionary adaptation is essential for the organism to persist in the 

changing environmental conditions. Among the evolutionary adaptations genetic 

adaptation has significant importance but the studies are scarce at molecular level.  

Molecular approach provides better understanding of organism’s response 

to changing climate. Suppression subtractive hybridization is a reliable molecular 

technique for the characterization of differentially expressed genes (Zhang et al., 

2012, Sahebi et al., 2015). A combination of SSH and quantitative validation 

using Real-Time PCR revealed many genes which have active role in acidic stress 

tolerance. These studies throw light on whether the genetic adaptations are 

sufficient for the organisms physiological functioning to withstand changing 

climate and other abiotic stresses. An organism’s adaptability depends on the 

functioning of protein because proteins control all cellular processes. Genetic 

modification is attained through the modification of proteins and these are 

achieved through gene mutation which gives tolerance to changing climate. 

1.2 Materials and Methods 

1.2.1 Isolation and Identification of algal strain 

Algal strain was isolated from the Cochin estuary (9º59.321’N and 

76º16.225’E) during monsoon season (July, 2010), where the salinity was very 

low (2 ppt). Water samples collected were enriched with f/2 medium and kept 
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at 25ºC with continuous illumination for a period of one week. Algal cells 

were isolated from the enriched sample by serial dilution. Further purification 

was carried out by streaking cells on agar plates enriched with f/2 media and 

supplemented with antibiotic mix to eliminate bacterial growth. It was then 

incubated at 25ºC with continuous illumination until visible colonies appeared. 

Single colony was picked and inoculated to 100 ml freshwater with f/2 media 

under sterile condition and kept at 25ºC with 30 µE m-2 s-1white fluorescent 

light. 

Identification of the isolated algae was carried out by analyzing 

morphological features like size, shape and colour of the cells, arrangement of 

chloroplast and other cellular organelles under phase contrast microscope. 

Morphological isolation was further confirmed with molecular technique by 

sequencing 18S rRNA gene and BLAST analyzed in NCBI gen bank. 

1.2.2 Culture Maintenance and Stress Treatment 

The observed growth in f/2 media was stagnant so the cells were 

inoculated to double strength of f/2 media and maintained under continuous 

illumination at 25ºC. The algal culture flourished in the f2 media were further 

screened to their tolerance levels under different salinities (0 ppt, 10 ppt, 20 

ppt and 40 ppt) and pH (pH 3, pH 4, pH 6 and pH 8). The cells acclimatized 

under different salinities were also screened for pH tolerance.  

1.2.3 RNA Isolation and Suppressive Subtractive Hybridization  

Total RNA was isolated from the algal culture grown at normal (pH 8) 

and stressed condition (pH 4) during the exponential growth phase by using 

TRI reagent (Sigma, USA). Total RNA was also isolated from short term acid 

shocked cells (6 hrs, 12 hrs, 24 hrs and 48 hrs) and pooled to fore mentioned 
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RNA. Isolated total RNA was quantified by Bio photometer plus (Eppendroff, 

Germany) and integrity was checked in 1.5% agarose gel electrophoresis. 

Then the mRNA was purified with GenElute™ Direct mRNA Miniprep Kit 

(Sigma, USA). A total of 2 µg purified mRNA was used for synthesis of 

complementary DNA (cDNA) and subtractive hybridization was done using 

PCR Select cDNA subtraction kit (Clone tech, USA). Experiment started with 

the synthesis of first strand cDNA of both tester and driver using 2 µg purified 

mRNA, cDNA synthesis primer containing Rsa1 restriction site, dNTP mix 

(10mM each) smarts scribe reverse transcriptase at 42ºC. Both tester and 

driver first strand cDNA synthesized were immediately transferred to double 

strand DNA with a second strand enzyme cocktail (DNA polymerase I, RNase 

H and Escherichia coli DNA ligase and T4 DNA polymerase) followed by 

incubation at 16ºC. Double stranded DNA synthesized was further subjected 

to Rsa1 restriction digestion which created blunt end cDNA fragments. Rsa1 

digested tester DNA was taken into two separate tubes and labeled as T1 and 

T2 and each tester cDNA was ligated with two different adapters 

(Oligonucleotides supplied with kit) at 16ºC for 12 hours and driver cDNA 

was not ligated with adapters.  

Subtractive hybridization was carried out in two steps. During first 

hybridization an excess of Rsa1 digested driver cDNA was added to each tester 

cDNA and then incubated at 98ºC for 1.5 minutes. This was followed by 

annealing at 68ºC for 8 hours, leading to the enrichment of differentially 

expressed genes. Second hybridization was carried out by mixing both primary 

hybridized sample and fresh denatured driver cDNA which leads to further 

enrichment of differentially expressed genes. Polymerase chain reaction was 

carried out for selective amplification of differentially expressed genes under 
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acidic stress with adapter specific primers. Subtracted cDNA fragments amplified 

were cloned into pJET vector. cDNA clones obtained were screened with vector 

specific primers and insert size was analyzed by agarose gel electrophoresis. 

Positive clones were cultured, plasmids were isolated using GeneJET Plasmid 

Miniprep Kit (Thermoscientific, USA) and sequenced. The sequences were 

analyzed using both BLASTN and BLASTX for its homology with the available 

sequences (http://www.ncbi.nlm.nih.gov/BLAST/) 

1.2.4 Quantitative Validation of Selected Genes using Real-Time PCR 

Selected 11 genes of both functional and unknown genes were 

quantitatively validated using Real-Time PCR. Specific primers for both 

known and unknown genes were designed using Beacon Designer™software 

and synthesized. Total RNA was isolated from the normal and stressed cells as 

followed in the SSH procedure. Total RNAs isolated were quantified 

spectrophotometrically by using biophotometer (Eppendroff, Germany). DNA 

contamination was eliminated by treating with RNase free DNase (1U/µg). 

First strand cDNA was synthesized using Revert Aid Premium First Strand 

cDNA synthesis Kit (Thermoscientific, USA).  Real-Time PCR was carried in 

iQ5 thermal cycler (Biorad, USA) using SYBR green master mix (Biorad, 

USA). Normalization of expression was carried out with 18S rRNA reference 

gene (Kuchipudi et al., 2012). All the reactions were carried out in triplicate 

with a standardized procedure. Details of the primers used for the validation 

experiment is given in the Table.1.1 
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Table 1.1 List of primers used for the quantitative validation of acidic stress induced genes 

SL. No. Gene Primer Sequence Product 
size (bp) 

1 Ubiquitin 
S129_ubiqtn_QPF CTGACTACAACATCCAGAAGGAG 

138 S129_ubiqtn_QPR TACAGGGCTAGGTGGGATAC 

2 Cinnamyl alcohol dehydrogenase 
S129CAD_QPF GCAATGTGCCTACACAATGTT 

113 
S129CAD_QPR GGCTTGCACGTTCACAATG 

3 Thioredoxin 
S129thiordxn_QPF GCCGCCACCAATTCAATAC 

124 S129thiordxn_QPR TGAACGACAAGCAGGAGTT 

4 Sugar epimerase 
S129Sugrnucltdepimrse_QPF AGCTTCTCCAGGCCGTAT 

120 S129Sugrnucltdepimrse_QPR CATCCTCCGCTTGCATCTAC 

5 ATP synthase 
S129ATPsynthse_QPF TTTGATGGCGAGCTTCCT 

102 S129ATPsynthse_QPR GAAGAGTGTTCTCTCCCAGATG 

6 Major Facilitator Super family protein 
S129MFIT_QPF AGGAACCCAACTCCATACTTTATC 

115 S129MFIT_QPR ACGGTATCCAAGAAGCAGAATAC 

7 Multi copper ferroxidase 
S129MCF_QPF CCGTTACACTCTTTCAAACTTCTC 

81 S129MCF_QPR TCGGGATTCATGTAGTAAGGTATT 

8 Unknown 328 
S129_UN_328_QPF GGCAACAAGGCCTACTACAA 

141 S129_UN_328_QPR GGCATTAAACAGTGGCTTGTG 

9 Calmodulin 
S129calmdn_QPF CAACGGCACCATCGACTT 

110 S129calmdn_QPR CCGTCCTTGTCAAACACCTT 

10 Osmotically Induced protein 
S129OsMc_QPF CACAGTGGTTGTGGACAGAG 

109 S129OsMc_QPR CAATCAGGGCTCCTAAGAAGTG 

11 Unknown 541 
S129un_541_QPF GGAAGGCTTGTTGGGACAAT 

149 S129un_541_QPR AGACGCCGAAGCATGAAAC 

12 18S rRNA 
Univ18SRT1F GGGCTCGAAGACGATTAGATAC 

121 Univ18SRT1R GTGCTGGTGGAGTCATCAA 

1.3 Results 

1.3.1  Identification and Stress tolerance of Dictyosphaerium 

ehrenbergianum 

Isolated strain of microalgae was identified as Dictyosphaerium 

ehrenbergianum (MBTD-CMFRI-S129) using morphological features 

combined with molecular identification by sequencing 18 S ribosomal rRNA 

gene (NCBI Acc. No. JF708180). D. ehrenbergianum cells have the ability to 
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tolerate wide range of salinity from 0 ppt to 40 ppt and the saline acclimatized 

cells are also able to withstand low pH even at pH 3. There was a drastic 

change in the morphology when the cells were acclimatized to stress 

conditions. In the optimum conditions cells are round in shape and form 

colonies with extracellular mucilage. Under stressed conditions cells become 

single, oval in shape and rigid. These morphological changes may be due to 

the physiological adaptation to overcome stressful environment. 

  
   a)      b) 

Fig1.1. Dictyosphaerium ehrenbergianum a) Normal cells b) Stressed cells 

1.3.2  Assembly and analysis of differentially expressed genes under acidic 

stress 

Genes differentially expressed under acidic stress from euryhaline acid 

tolerant micro algae, D. ehrenbergianum were characterized using Suppressive 

Subtractive Hybridization. A total of 200 clones with an insert size range of 

0.2kb - 1kb were sequenced. All the sequence were edited and made in to 

contigs with overlapping sequence using Seqman sequence editor.  A total of 

78 contigs were formed from the differentially expressed gene sequence and 

these contigs were analyzed in NCBI gen bank using BLASTX and BLASTN 

programme. 
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Fig 1.2. Total RNA isolated from D.ehrenbergianumon 1.5% AGE, N- Normal RNA (pH 8), S- Stressed RNA (pH4) 

 
Fig 1.3  Colony PCR with pJET primers on 1.5% AGE, 1- 33 differentially expressed gene fragments, M- 

100bp Marker 

BLAST analysis revealed the identification of differentially expressed 

genes under acidic stress. Among the differentially expressed genes 55% 

showed sequence similarity with the functional genes which are actively 

involved in stress tolerance mechanisms as well as metabolic processes, 21% 

showed no significant similarity with the reported nucleotide and this may be 

treated as unknown genes with functional role under acidic stress and the 

remaining 24% showed a sequence similarity with ribosomal genes (Fig1.4). 

Details of the functional genes differentially expressed under acidic stress were 
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given in the table 1.2. All the identified genes directly or indirectly involved in 

the acid or abiotic stress tolerance mechanisms are actively involved in 

biological process of the cell. Functional genes are classified based on their 

cellular function such as photosynthesis, cell proliferation and DNA repair, 

metabolic processes, stress response and cellular transport of ions (Fig 1.5). All 

these genes are directly or indirectly involved in acidic stress and also other 

abiotic stresses such as salinity, drought, temperature stress and oxidative stress 

etc. 

 
Fig 1.4 Classification of differentially expressed genes under acidic stress 

 

Fig1.5.Functional classification of identified acid tolerant genes 
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Table 1.2 List of acidic stress induced genes showing significant similarity to known sequence in the 
public database 

Putative gene Annotation 
e-Value Functions Reference 

Multicopperferroxidase 3e-04 Cellular uptake of iron Lang et al.,2012;  
Crysten and Sabeeha, 2012 

Major Facilitator Super family protein 1e-57 Acid stress, Drought stress Remy et al.,2013; Xu et al., 2014 
Cinnamyl alcohol dehydrogenase 1e-10 Abiotic and biotic stresses Vidal et al., 2009; Jin et al., 2014 
ATP synthase beta chain 1e-44 ATP synthesis and hydrolysis, 

intracellular pH homeostasis drought, 
salt, cold and oxidative stress 

Harold et al., 1970, Legendre et al., 
2000;Breton et al. 2003; Tamura et al., 
2003; Cotter and Hill, 2003 

tRNA-splicing ligase RtcB 2e-14 stress-induced splicing of mRNA Popowet al., 2014 

20S proteasome alpha subunit A1 3e-45 Misfolded protein stresses and 
defenses  

Sahana et al.,2012 

ATP-dependent RNA helicase eIF4A 1e-164 Salt and cold stress Nakamura et al., 2004 
Vacuolar ATP synthase subunit D 2e-72 ATP synthesis , ion transport, Salt stress Golldack and Dietz,2001 

Oxygen evolving protein 6e-21 Photosynthesis, abiotic stress Koichi et al., 2000 
TBC-domain-containing protein 6e-10 protein-binding, GTPase activating Ishibashi et al., 2009 
Carbohydrate-binding module family 48 
protein 

5e-11 Carbohydrate metabolism Camilla et al., 2009 

RNI-like protein 2e-43 Protein binding, abiotic stress 
tolerance  

Jensen et al., 2013; Saeidm et al., 
2014 

Elongation factor alpha 2e-130 Protein synthesis, heat stress Bhadula et al., 2001 
Arginasedeacetylase 7e-27 Abiotic stress tolerance Shi et al., 2013 
NADP-dependent malic enzyme  MaeA 5e-63 Abiotic stress tolerance Laporte et al., 2002, Zeng-Hui et al., 

2010  
Ubiquitin 7e-38 Regulatory pathway and abiotic 

stress 
Lyzenga and Stone, 2011, Cui et al., 
2012 

Photosystem II 44 kDa protein 4e-73 Photosynthesis Kristen et al.,2009 
Glycine-rich RNA-binding protein 3e-13 Environmental stress and 

metabolism of mRNA 
Kim et al., 2007, Singh et al., 2011 

Phosphoglyceratemutase 3e-35 Glycolysis, Abiotic stress, oxidative 
stress 

Zhao and Assmann, 2011, Y et al., 
2014 

2-methyl citrate synthase 4e-37 Krebs cycle and plant stress 
tolerance 

Tong et al., 2009 

Sugar nucleotide epimerase 2e-83 Photosynthesis, growth regulation 
and osmotic stress 

Seifert et al., 2004; Li et al., 2011 

Thioredoxin domain 2 3e-30 Oxidative stress and other abiotic 
stresses 

Nancy A. Eckardt, 2006; Santos and 
Rey, 2006; Zagorchevet al., 2013, 

Calmodulin 6e-41 Stress signaling pathway  Pardo et al., 1998, Reddy et al., 2010 
Glutathione peroxidase 4e-23 Abiotic stress Faltin et al., 2010; Gaberet al., 2012 

Osmotically inducible protein C 2e-10 Oxidative stress and osmotic stress Park et al., 2008  
Elongation factor EF-3 7e-09 Protein synthesis, heat stress Ristica et al., 2007; Fu et al., 2012, 
Light-harvesting complex II protein 5e-39 Photosynthesis, photo protection and 

energy dissipation 
Siffel and Vacha, 1998; Barros and 
Kuhlbrandt, 2009;  Dittami et al.,2010 

Transposase 7e-67 Biotic and abiotic stress Marie-Angele Grandbastien,1998; 
Hidetaka Ito, 2013; Makarevitch et al., 
2015 

DNA helicase 7e-77 Plant growth and development, 
Salinity stress and oxidative stress 

Vashisht, 2005;  NarendraTuteja, 2010; 
Tuteja et al.,2014 
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1.3.3  Expression Pattern of Differentially Expressed Genes using Real–

Time PCR 

Quantitative validation of the expression pattern of differentially 

expressed genes was carried out using Real–Time PCR. Selected 11 gene 

fragments from both novel as well as functional genes were validated under 

acidic stress. All genes showed an upward regulation under acidic stress and 

the expression level varied from 1 to 2.5 fold greater than the control (pH 8).  

This expression profile also strengthens the efficiency of SSH for the 

identification of differentially expressed genes. Among the highly expressed 

genes H+ ATP synthase and major facilitator like ions transporter has 

significant roles in cell homeostasis. 

 

Fig 1.6. Expression profile of selected genes differentially expressed under acidic stress using Real-
Time PCR. Error bar indicates ± standard deviation (SD), Number of replicate (n)= 3. 
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1.4 Discussion 

This study has tried to elucidate the gene expression profile of 

euryhaline microalgae Dictyosphaerium ehrenbergianum under acidic stress 

and thereby analyze the effect of reduced ocean pH on marine life at molecular 

level. Microalgae are distributed almost everywhere on earth because of their 

inherent ability to tolerate extreme environment. These survival mechanisms 

under harsh conditions are attained through adaptive mutation. The adverse 

effect of ocean acidification is more pronounced in calcifying marine 

organisms where elevated CO2 is more sensitive. This study highlights the 

effect of reduced pH on marine life. Here we focused on the effect of acidic 

pH on vulnerability of marine life through physiological adaptation achieved 

by genetic modifications. Genetic adaptability is acquired through the 

combined action of number of genes to mitigate the climatic change, but still 

there have been limited studies in genetic effect of climatic change (Franks 

and Hoffmann, 2012). In the present scenario global climatic change reduce 

the ocean surface pH in a predicted rate of 0.1 to 0.5 units in the next century 

(IPCC, 2007). It is essential to analyze effect of ocean acidification on the 

physiological adaptation of marine living organisms.  

This study also revealed many genes which are actively involved in the 

tolerance mechanism under various stresses. The physiological adaptations are 

achieved through these differentially expressed genes. These functional genes 

were classified based on their functions to photosynthesis, cell proliferation 

and DNA repair, metabolic processes, stress response, cellular transport of 

ions.The homeostasis of the cell is achieved through the transport of ions 

across the membranes. During elevated pH acid-base balance is maintained by 

specific genes which control the ion regulatory pathways. Among the ions 

transporter proteins Major Facilitator Superfamily (MFS) has significant role 
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in homeostasis and provide tolerance to extreme acidic environment (Xu et al., 

2014). MFS are secondary or electro chemically gradient transporters 

functioning by the gradient generated through co-transported molecules 

(Petrasek et al., 2006; Wisniewska et al., 2006; Pfeil et al., 2012). The MFS 

proteins are coded by multiple genes and the Arabidopsis genome contain 

more than 120 genes to encode MFS superfamily (Ren et al., 2004). In plants 

only few MFS were characterized and these proteins are meant for the 

transport of sugar, oligonucleotides and nitrate (Buttner, 2007; Tsay et al., 

2007; Hamid and Parviz, 2014). The zinc induced facilitator transporter from 

Arabidopsis is involved in homeostasis and drought tolerance evidenced by 

the heterologous expression in yeast (Cabrito et al., 2009; Remy et al., 2013). 

In citrus plant induction of MFS was observed under salinity stress (Brumos et 

al., 2009) which indicates the response of this protein family under multiple 

stresses. The energy expenditure for tolerance mechanisms under extreme 

condition is acquired through increased ATP synthesis. In the present study, 

increased expression of H+ ATP synthase has helped to maintain homeostasis 

of cell as it works under proton motive force. Earlier works in bacteria and 

other micro organisms has proved the role of F1F0 ATPase which acts as a 

proton exporter under acidic conditions. (Harold et al., 1970; Cotter and Hill, 

2003). Along with ATP synthesis it has specific role in abiotic stresses like 

drought, salinity, temperature stress etc. (Legendre et al., 2000; Breton et al., 

2003; Tamura et al., 2003; Komatsu, 2010). The resistance of Streptococcus 

mutans under acidic condition is due to the over expression of ATP synthase 

as it extrude the H+ ions (Len et al., 2004). 

Iron is an essential element for the normal physiological functioning of the 

cell. In plants, algae and other photosynthetic organism’s iron function as co-

factor for photosynthetic electron transport chain.  Acidic condition reduces the 
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absorption and transportation of iron and hence there should be an effective iron 

uptake mechanism under acidic stress. Redox mediated iron uptake is a 

mechanism of iron uptake found in plants, yeast and algae and is under the control 

of multicopper feroxidase (Paz et al., 2007). During iron depreciation, an elevated 

expression of this gene enhances the iron absorption. In Chlamydomonas 

reinhardtii the regulation of iron transportation is by ferroxi reductase gene which 

is induced under iron starvation (Liping et al., 2013). 

The cellular stress response is a well developed and generalized 

mechanism under various stresses. During acidic stress large number of 

proteins involved in cellular stress response is over expressed.   All stress 

finally leads to oxidative damage to the cells. The over expression of 

antioxidative protein is essential to compensate all type of stress. The present 

study also showed differential expression of antioxidant genes such as 

thioredoxin, glutathione peroxidase, arginase deacetylase, etc. which were 

over expressed. In plants, thioredoxin (Trx) gene over expression is related to 

oxidative stress, which leads to increased ROS level (Nishinaka et al., 2001, 

Koharyova and Kollarova, 2008). Other than antioxidant function, thioredoxin 

is actively involved in DNA synthesis, sulfur assimilation, cell growth, 

inflammation reactions, apoptosis and transcription regulation. The trx gene is 

conserved in almost all organisms and their main function is oxidative stress 

response (Laloi et al., 2004). In plants numerous types of Trx has been 

identified compared to animals (Santos and Rey, 2006). Arabidopsis genome 

revealed 42 Trx gene and functional role of most of the Trx gene is not yet 

finalized. The over expression of Osmotically inducible protein C (OsmC) is 

also under defense mechanism and is actively involved in oxidative stress 

damage.  The first demonstration of this gene was carried out in bacteria under 

osmotic stress (Gutierrez and Devedjian, 1991). Mycoplasma genitalium 
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which showed an effective resistance against oxidative stress caused by host 

ROS is due to the expression of a novel OsmC gene which possesses 

hydroperoxide reductase activity (Zhang and Baseman, 2013). The over 

expression of arginase deacetylase exerts resistance to multiple abiotic 

stresses. Arginase deacetylase is actively involved in arginine metabolism 

which finally produces metabolite such as putrescine, which scavenges 

reactive oxygen species produced during oxidative stress (Wimalasekera et al., 

2011; Brauc et al., 2012). Argininine metabolism also leads to proline 

biosynthesis which is an important secondary metabolite to regulate cell 

membrane stability and osmotic compatibility under abiotic stress tolerance 

(Kishor et al., 2005). Over expression of this gene would enable resistance to 

oxidative stress caused by acidic stress and also confers tolerance to osmotic 

stress and membrane stability. The over expression of ubiquitin control 

regulatory proteins which are involved in adaptive response to various 

environmental stresses (Sophia L. Stone, 2014). During stress condition role of 

ubiquitin is to alter protein conformation in order to withstand the extreme 

condition. In Arabidopsis ubiquitin has active role in the regulation of salinity, 

cold, heat and drought stress tolerance (Lyzenga and Stone, 2011 and 2012; 

Cui et al., 2012).  

The genes which control the normal physiological function of the cell 

also showed an elevated expression. This may be due to the increased 

requirement of energy to adjust to the stressful conditions. The genes involved 

in photosynthesis like oxygen evolving protein, photosystem II protein and 

light harvesting complex II differentially expressed to meet the energy 

requirements. The enhanced expression of cinnamyl alcohol dehydrogenase 

(CAD) showed the stressed cells adaptability to overcome acidic stress by 

providing integrity to the cells through the synthesis of lignin. Cinnamyl 
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alcohol dehydrogenase is actively involved in the lignin biosynthesis in 

vascular plants. Even though true lignin was not observed in non-vascular 

plants some lignin like compound was reported in some primitive green algae 

and red algae (Gunnison et al., 1975; Delwiche et al., 1989; Martone et al., 

2009). During this study the stressed cells acquired a higher rigidity compared 

to normal cells (observed during RNA isolation) and this may be due to the 

over expression of CAD gene and the resultant formation of lignified cell wall. 

Stress induced lignifications and over expression of CAD gene was observed 

in melon and sweet potato (Kim et al., 2010; Jin et al., 2014). A study on the 

transcript profile of Arabidopsis thaliana under different abiotic stresses 

revealed the upward regulation of CAD gene (Ma and Bohnert, 2007). 

1.5 Conclusion 

In conclusion these study insights to various genes which are 

differentially expressed under acidic stress from acid tolerant microalgae, D. 

ehrenbergianum. Most of the genes differentially expressed have active role in 

normal physiological functioning as well as the tolerant mechanisms under 

various abiotic stresses. This differential gene expression profile gives an idea 

about the molecular mechanism lying behind the organism’s adaptability 

under decreased ocean pH. This genetic information can be used as molecular 

markers for the selection of potential candidate species for sustainable 

cultivation under changing global climate. The basic data generated in the 

present study, one of the first attempts using acid tolerant microalgal isolate 

from our sea water ecosystem would be useful for further generating plants 

with resistant to abiotic stresses. This would be a realistic possibility with 

coming future where climatic changes are increasingly visible.  

………… ………… 
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2.1 Introduction   

Changing climate develop adaptation mechanisms in living organisms to 
resist the determinant effect. These adaptation mechanisms alter normal 
physiological and biochemical processes through enhanced expression of 
functional genes involved in the complex stress tolerance mechanisms. 
Microalgae being unicellular eukaryote with wide distributional ranges are 
better candidates to study environmental stress tolerance mechanisms. They 
have the ability to tolerate wide range of extremities next to prokaryotes and 
these multiple stresses enhance expression of stress tolerant genes. ATP 
synthase is one of the functional genes with active roles in various abiotic stress 
tolerances. All living organisms posses ATP synthase which is a membrane 
protein located in mitochondria, chloroplast, and some other cell types like 
endothelial cells, keratinocytes and adipocytes (Hong and Pedersen, 2008). ATP 
synthase is a reversible multi subunit membrane associated enzyme which is 
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actively involved in synthesis of energy currency of the cell, ATP through 
phosphorylation of ADP by proton motive force generated through electron 
transport chain. In addition to ATP synthesis, the respiratory chain also 
regulates intracellular pH (Sun et al., 2012). It can also reversibly function by 
hydrolysis of ATP to ADP and thereby generation of proton gradient across cell 
membrane which assist the ion movements. The intracellular proton pump is 
mainly controlled by V-type ATPase and these are structurally similar to ATP 
synthase and working in the same principle. ATP synthase also called F0F1 
ATPase has complicated protein structure with a soluble catalytic F1 sector and 
F0 sector which is membrane bound and involved in the proton translocation.  

Plants possess a plant-specific subunit named FAD which has been 
extensively studied instead of F0 subunit (Heazlewood et al., 2003). ATP 
synthase is conserved from prokaryotes to eukaryotes and is subdivided in to 
different subunits (α, β, γ, δ, e, a, b2, c10-14) and these subunits vary from 
organisms to organisms (Cross, 1981, Senior and Wise, 1983; Walker et al., 
1984). More complex ATP synthase enzymes are found in bacteria which 
posses 15 different proteins. The membrane ATP synthase posses some 
supernumerary subunits and their functions are not clear or poorly defined. 
These supernumerary subunits are involved in cellular processes beyond ATP 
synthesis. The expression level of the sub unit ‘e’ is more during stress and 
other physiological changes. Living cells require energy for metabolic processes 
which include cellular biosynthesis, ion transport, cell division, DNA repair and 
mobility of cells. This energy is mainly acquired through synthesis of ATP. 
ATP synthesis increased during acidic stress in acid tolerant E.coli cells and 
ATP synthase plays an important role in acid tolerance (Fortier et al., 2003; Sun 
et al., 2012). The main reason for increased expression of ATP synthase gene 
may be due to membrane potential and pH gradient that drive ATP synthesis. As 
a substrate for many metabolic processes ATP requirement will be higher under 
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stressful conditions to tide over unfavorable conditions. Besides intracellular pH 
homeostasis ATP synthase has significant role in various abiotic stresses such as 
osmotic stress, drought, oxidative and cold stress. The over expression of ATP 
synthase gene in Arabdopsis and Yeast showed an increased tolerance to abiotic 
stresses (Zhang et al., 2008; Ghosh and Xu, 2014). 

The global climatic changes induce the organism’s adaptive 
mechanisms to habituate to the altered environment. The immediate reflection 
is by differential gene expression to cope with these stressful conditions. The 
present work focused on the role of microalgal H+ ATP synthase gene in acidic 
stress responses using candidate microalgae with proven acidic stress 
tolerance. Most of the studies on ATP synthase are focused on plants and 
higher organisms. Owing to eukaryotic and acidophilic origin De.H+ ATP 
synthase gene can be a better allele for development of stress tolerant plant for 
enhanced production in varying agro- climatic conditions. 

2.2 Materials and Methods 

2.2.1 Isolation and Identification of H+ ATP Synthase Gene using 
Suppressive Subtractive Hybridization 

A partial sequence of D.eherenbergianum H+ATP synthase 
(De.H+ATPase) gene was identified using SSH. Total RNA was isolated from 
algal cells grown under normal pH 8 (driver) and an acidic pH 4 (tester) 
during exponential growth phase. RNA was also isolated and pooled to the 
fore mentioned total RNA from acidic shocked (6 hr, 12 hr, 24 hr, and 48 hr) 
cells.  A total of 2µg mRNA was used for synthesis of first strand cDNA.  
Differentially expressed gene fragments amplified using suppression PCR 
were ligated to pJET vector and cloned to Top 10 competent cells. PCR 
screened positive clones were sequenced. Sequences were edited and made 
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into contigs with overlapping sequences using Seqman sequence analyzing 
software and BLAST analyzed in NCBI gen bank. 

2.2.2 Quantitative Validation of Expression Profile of H+ ATP Synthase 
under Acidic Stress by Real Time PCR 

Differentially expressed De.H+ATP synthase gene was validated for its 
expression level under acidic stress using Real-Time PCR. Gene specific 
primers were designed by Beacon Designer™software and synthesized. 
Primers were also designed and synthesized for 18S rRNA gene that serves as 
housekeeping gene. Details of primers used are given in Table 2.1 

Expression level of De.H+ATP synthase mRNA was estimated 
quantitatively by giving an acidic shock for a specific period of time intervals viz 
0hrs, 6hrs, 12hrs, 24hrs and 48hrs. Total RNA was isolated using TRI reagent and 
quantified using Bio photometer plus (Eppenroff, Germany). DNA contamination 
was eliminated by treating total RNA with RNase free DNase (1U/µg RNA) and 
incubated at 37ºC for 30 minutes. Then EDTA was added and heated at 65ºC for 
10 minutes to inactivate the DNase. The integrity of RNA was analyzed in 1.5% 
agarose gel electrophoresis. First strand cDNA was synthesized from 1µg of total 
RNA by using RevertAid Premium First Strand cDNA synthesis Kit (Fermentas, 
Germany). Real time PCR was carried out with 1X SYBR Green master mix 
(Biorad, USA), 10µM concentration of both forward and reverse primers and 2.5 
µl cDNA in a 25µl reaction mixture. Quantitative PCR was carried out in IQ5 
thermal cycler (Biorad, USA) under the following cycling conditions: Initial 
denaturation at 95ºC for 3min followed by 45 cycles of 95ºC for 30sec, 60ºC for 
30sec. and 72ºC for 20sec. Finally a 91 cycles of melt curve with an interval of 
30sec. was set from 50ºC to 90ºC. All the reactions were carried out in triplicates 
to reduce the standard error. 
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2.2.3 Full gene Amplification of H+ ATP Synthase by RACE PCR  

After validating expression level of De.H+ ATP synthase mRNA under 

acidic stress, the partial sequence was used for Rapid Amplification of cDNA 

Ends (RACE) PCR. Gene specific primers for both 5’ and 3’RACE was 

designed by using primer 3 plus software and synthesized. Details of the 

RACE primers are given in the table 2.1 

Total RNA was isolated from stressed algal culture using TRI reagent 

and mRNA was purified by using GenElute mRNA purification Kit (Sigma, 

USA). RACE was carried out using SMARTer RACE cDNA Amplification 

Kit (Clonetech, USA). Both 5’ and 3’ RACE ready cDNA were synthesized 

and RACE PCR was carried out under the following programme for 

touchdown PCR: 5 cycles: 94°C 30 sec, 72°C 3 min. 5 cycles: 94°C 30 sec, 

70°C 30 sec, 72°C 3 min. and finally 27 cycles: 94°C 30 sec, 68°C 30 sec, 

72°C 3 min.  Amplified products were ligated to pJET cloning vector and 

transformed to Top 10 competent cells. Transformed cells were grown over 

LB agar plates containing Ampicillin (100µg/ml) at 37ºC. PCR screening was 

carried out with vector specific primers. Positive clones with insert was 

isolated and cultured in LB broth supplemented with Ampicillin (100µg/ml). 

Plasmids were isolated from overnight grown cultures and sequenced with 

pJET specific primers. 

Table 2.1 List of primers used for the RACE PCR and recombinant expression of H+ ATP synthase 

SL. No. Gene Primer Sequence Product size (bp) 

1 H+ ATP Synthase 
S129_ATP_synthase_5'GSP GTGATCTCCTGCTCAGTGCTCTGCT 548 
S129_ATP_synthase_3'GSP GGGATACGTCAAGCAGGTGATTGGT 1554 

2 H+ ATP Synthase 
ATP.Syn_Nco1_F TACTTACCATGGCGATGCGGAGGGCAGCGG 

1617 ATP.Syn _Xho1_R TAATACCTCGAGCTGGTTGGCCATCTCACGGGCC 
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2.2.4 Sequence Analysis and Phylogenetic Tree Construction 

Sequences obtained from both 5’ and 3’ RACE were aligned and vector 

sequence was removed using Seqman software. Then the trimmed sequences 

were assembled to create contig with overlapping region. A single contig 

formed from both 5’ and 3’ regions were analyzed in NCBI using BLASTN 

and BLASTX programme to find the similarity with available sequences in the 

database. De.H+ ATP synthase gene sequence was translated to an amino acid 

sequence using the Expert Protein Analysis System (EXPASY) 

(http://www.expasy.org/) translate tool. Homologous H+ATP synthase gene 

sequences in other species were obtained from NCBI by BLAST analysis. 

Multiple sequence alignments were generated using Bio-Edit multiple 

alignment tool. Phylogenetic tree was constructed using Molecular 

Evolutionary Genetics Analysis (MEGA version 6) software with Neighbor-

Joining method (Tamura et al., 2013). 

2.2.5 Recombinant Expression of De.H+ ATP Synthase in E.coli 

2.2.5.1 Plasmid Construction and Transformation 

pET28b expression vector was used for recombinant expression of 

De.H+ATP synthase gene and BL21 E.coli cells were used as expression host. 

The ORF region of De.H+ATP synthase gene was amplified using specific 

primers with Nco1 and Xho1 restriction site to insert in multiple cloning 

region of the vector. Details of primers are given in table 2.1. The PCR 

product was analyzed in 1.5% agarose gel and amplification of gene was 

confirmed. Then the PCR product was purified using Quiaquick PCR 

purification Kit (Quiagen, Germany) and quantified spectrophotometrically 

using Biophotometer (Eppendroff, Germany). One microgram of purified PCR 

product was double digested with Nco1 and Xho1 restriction enzyme at 37ºC 
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and purified. The expression vector pET28b also double digested with the 

same enzymes and purified. Then ORF region of the gene was ligated to the 

vector. The resultant pET28De.H+ATPase construct was transformed to BL21 

E.coli cells. The transformed cells were plated on agar plates containing 

Kanamycin (50 µg/ml) and kept at 37ºC overnight.  

2.2.5.2 Analysis of the Expressed Protein using SDS-PAGE 

Transformed cells with pET28De.H+ATPase was isolated from the agar 

plate and inoculated to 2ml LB media (stock culture) containing antibiotic 

Kanamycin (50µg/ml) and kept overnight at 37ºC in a shaking incubator at 

225 rpm.  About 2% of stock culture was inoculated to 2ml LB media 

containing Kanamycin (50µg/ml). To induce  De.H+ ATP synthase gene 

expression a final concentration of 0.5 mM of isopropyl-β-D-thiogalacto 

pyranoside (IPTG) was added after 2 hours of growth when the cells reached 

an OD 600 ~ 0.6. It was kept further for 4 hours at 37ºC in a shaking incubator 

at 225 rpm. Uninduced cells were also kept in same conditions to verify the 

protein expression. 1ml of both induced and uninduced cultures were 

harvested by centrifugation at 12000 rpm for 5 min. Harvested cells were 

suspended in resuspension buffer and lysed with Cell LyticB solution (Sigma, 

USA). Protein expression was analyzed in 8% glycine SDS-PAGE.  

2.2.6  Expression of De.H+ ATP Synthase in E.coli improves Tolerance 

under Acidic pH 

Recombinant E.coli cells with Dictyosphaerium H+ ATP synthase gene 

and pET28b vector alone (control) was used to study pH tolerance. A starter 

culture was obtained by inoculating single colony of transformed cells to 1ml 

of  LB media containing 50µg/ml Kanamycin and kept at 37ºC in a shaking 

incubator at 225 rpm. 2% of the starter culture was inoculated to 10 ml of LB 
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media tubes with different pH (pH 4, pH 5, pH 6,) containing 50 µg/ml 

Kanamycin and 0.5 mM IPTG. All experiments were carried out in triplicates 

for both pET28De.H+ATPse and pET28b vector. The growth rate was 

monitored by taking OD 600 with an interval of 2 hours. 

2.3 Results 

2.3.1 Isolation and Identification of De.H+ ATP Synthase Gene 

H+ATP Synthase gene partial sequence was isolated and identified 

from D.eherenbergianum under acidic stress using Suppressive subtractive 

hybridization. The nucleotide information of De.H+ATP synthase gene partial 

sequence was used for full length amplification using RACE PCR method. 

Both 5’ and 3’ RACE was carried out to generate complete gene sequence. 

The 5’ RACE product was 548 bp and 3’ RACE product was 1554 bp.  Both 

sequences were aligned and created single contig of De.H+ ATP Synthase 

complete gene (NCBI Acc. No. KT875171). The isolated gene was identified 

using BLAST analysis in NCBI.  De.H+ATP Synthase gene has an ORF of 

1617bp encoding a protein with 538 deduced amino acids. The predicted 

molecular mass is 57.6 KDa. The 5’ UTR consists of 94 nucleotides and 3’ 

UTR contain 151 nucleotides. The protein contains 53 Strongly Basic(+) Amino 

Acids (K,R), 70 Strongly Acidic(-) Amino Acids (D,E), 208 Hydrophobic 

Amino Acids (A,I,L,F,W,V) and 107 Polar Amino Acids (N,C,Q,S,T,Y). 

2.3.2 Sequence Comparison and Phylogenetic Analysis 

The results of multiple sequence alignment of De.H+ATP Synthase gene 

showed homology with the photosynthetic organisms. H+ATP Synthase gene is 

highly conserved from fungi to higher plants with variation only in C-terminal 

region. In this study De.H+ATP Synthase showed the highest similarity with 

closely related green algae, Coccomyxa subellipsoidea (Acc. No.XP_005643804). 
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Fig 2.2  Phylogenetic tree of De.H+ATP Synthase. The amino acid sequences were subjected to Bootstrap test 

of phylogeny by the MEGA 6.0 program, using neighbour-joining method with 1000 replicates 
 

2.3.3 Quantitative Validation of De.H+ ATP Synthase Gene under Acidic 

Stress 

Quantitative validation of gene expression of De.H+ATP synthase was 

carried out by Real-Time PCR. The expression of De.H+ATP synthase under 

acidic stress was analyzed by subjecting cells grown under normal pH (8.2) to 

acidic stress of pH 4. At specific time intervals, 0 hrs, 6 hrs, 12 hrs, 24hrs and 

48 hrs, cells were harvested and analyzed for the gene expression. De.H+ATP 

synthase gene showed an upward regulation under acidic stress and which 

varied with exposure to acidic stress. The expression was maximum during 

initial shock after which it decreased till 24 hours. The expression reached 

more or less a stable condition afterward. 
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Fig 2.3  Expression pattern of De.H+ATP synthase under acidic shock at different time intervals. Error 

bar indicates ± standard deviation (SD), Number of replicate (n)= 3. 
 

2.3.4 Recombinant Expression of De.H+ ATP Synthase Gene in E.coli 

The recombinant expression of De.H+ATP synthase gene was carried 

out in BL21 cell with pET28b expression vector. The coding region of 

De.H+ATP synthase gene was amplified using gene specific primers with 

restriction sites. The amplified product of size 1617bp was ligated to pET28b 

expression vector. The resultant pET28De.ATPase construct was transformed 

to BL21 expression host. The expressed pET28De.H+ATPase protein had a 

molecular weight of 57.6KDa visualized in 8% glycine SDS-PAGE. 
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   a)     b) 

Fig 2.4 a) 1.cDNA amplification of De.H+ATPase gene (ORF), M-1kb marker b) Expression profile of H+ 

ATPase on 8% Glycine SDS PAGE, M-Marker U-Uninduced I- Induced 

2.3.5  Validation of Acid Tolerance Acquired by Recombinant E.coli with 

De.H+ ATP Synthase Gene 

The E.coli cell with pET28De.ATPase acquired acidic tolerance when 

compared to cells with pET28b plasmid alone. This tolerance mechanism 

achieved may be due to presence of De.H+ATP synthase genes which showed 

acidic tolerance even at pH 3. BL21 cells were tolerated up to pH6 below that 

cell growth was arrested. So the cells grown at pH6 were used for the 

validation of acidic stress tolerance. During initial growth phase (2-6hrs) the 

cells with H+ATPse genes showed increased growth rate compared to control 

cells. The acidic stress may not affect growth of recombinant E.coli due to the 

presence of De.H+ATPse gene which regulated internal homeostasis of the 

cell. The control cells took time to acclimatize to low pH medium. The 

expression level of De.H+ATPse gene in stressed algae also showed a similar 
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pattern during Real-Time validation. These results indicate that H+ATP 

synthase gene has instantaneous role in the stress tolerance mechanism by 

maintaining the homeostasis of the cells. 

 
Fig 2.5 Growth pattern of BL21 cells transformed with pET28De.H+ATPase and empty pET28b under acidic 

condition. Error bar indicates ± standard deviation (SD), Number of replicate (n) = 3. 
 

2.4 Discussion 

The determinant effect of reduced ocean pH has to be mitigated 

through the regulation of intracellular proton gradient. H+ ATPase is actively 

involved in various physiological processes meant for the maintenances of 

intracellular ion homeostasis. In the present study a proton donating H+ATP 

synthase gene from an acid tolerant microalgae was characterized and its 

expression validated under acidic stress. Sustainability of organisms under 

decreased pH is due to the physiological adaptation which is achieved through 

modification of gene expression. Homeostasis of cells are acquired through 

extracellular or intracellular ion transport. Various metabolic processes are 
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involved in the mechanism of acidic resistance (AR) like amino acid-

dependent systems, (Richard et al., 2004) nucleotide biosynthesis induced AR, 

various genes etc. (Foster et al., 2004). F0 F1 ATPase is actively involved in 

both synthesis and hydrolysis of ATP through proton gradient, (Cross and 

Muller, 2004; Rappas et al., 2004) involved in acid tolerance (Len et al., 2004) 

and other abiotic stress maintenance. Studies on E.coli showed that ATP is 

essential for maintenance of acidic homeostasis under reduced pH. Acidic 

stress decreased growth of the mutant cells deficient in purA, purB and adk 

gene that are essential for ATP synthesis. This indicates that many processes 

require increased ATP to overcome acidic stress. For example ATP-dependent 

DNA repair system is one among these (Sun et al., 2012). The gram positive 

organisms like Lactobacillus rhamnosus showed an up regulation of F0F1 

ATPase and also many ATP synthesis-coupled proton transport genes were 

up-regulated under acidic conditions. The survival of Streptococcus mutans 

under acidic conditions through up regulated expression of F0F1 ATPase 

extrude H+ to exterior and maintain internal homeostasis (Belli and Marquis, 

1991; Hamilton & Buckley, 1991; Dashper and Reynolds, 1992; Quivey et al., 

2001; Len et al., 2004). The role of ATP synthase is not restricted to acidic 

stress alone but is actively involved in different environmental stresses like 

osmotic, cold, drought and oxidation stresses (Zhang et al., 2006; Ghosh and 

Jian Xu, 2014). Limited studies have been conducted to investigate role of 

F0F1 ATP synthase subunits under environmental stresses. Oxidative stress 

decreased the expression of Arabidopsis ATP synthase gene expression 

(Sweetlove et al., 2002). However rice ATP synthase showed an enhanced 

expression during osmotic and salinity stresses. Similarly transgenic tobacco 

with rice ATP synthase acquired a better tolerance under salt and osmotic 

stress (Zhang et al., 2006). Increased NaCl induce expression of subunits A, B, 
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E and C of vascular ATPase. The expression level of these subunits varied 

with plant system and stress regimes (Dietz et al., 1996). The expression of 

ATP synthase is also induced by metal toxicity; in aluminium (Al) tolerant 

wheat (Triticum aestivum) variety, increased Al level enhanced the expression 

of ATP synthase (Christie et al., 2001). Zhang et al., (2008) investigated the 

role Arabidopsis ATP synthase small sub unit gene under various abiotic 

stresses and confirmed the enhanced expression through recombinant 

expression in Saccharomyces cerevisiae and Arabidopsis thaliana. Studies on 

algal ATPase and its functional roles in abiotic stress tolerance are inadequate. 

Investigation on diatoms V-type ATPase exposed multiple genes encode for 

its subunits which are actively involved in acidic and salt stress (Bussard and 

Lopez, 2014). Studies by Lis et al., (2007) investigated structural similarity of 

Chlamydomonad algae Polytomella sp. and Chlamydomonas reinhardtii and 

they found that both algae have structurally similar ATP synthase with an 

extension at their N- and C- terminal ends. The C-terminal region regulates 

ATPase activity which is induced by the physiological signals (Kinoshita and 

Shimazaki, 2002, Okumura et al., 2012). Investigation on plants, animals, 

bacteria and fungi showed significant structural similarity in the subunits of 

vascular ATPase (Binzel, 1995; Kluge et al., 1999). In the present study also 

D.ehrenbergianum showed conserved sequence with other chlorophytes and 

maximum similarity was observed with Cocomyces subsiloides, which also 

has the ability to tolerate acidic conditions. 

2.5Conclusion 

Previous works were less focused on role of algal ATP synthase in the 

environmental stress tolerance. Present study on ATP synthase mined from 

acid tolerant microalgae showed that it has active role in the mitigation of 

abiotic stresses. Significance of De.H+ATP synthase is even higher owing to 
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its extreme tolerance under acidic environment and eukaryotic origin. 

Acidification of land and water is a major constraint in primary productivity. 

Development of new improved plant varieties with high adaptability to 

changing climate is the key to mitigate this problem. Successful mining, 

transfer and expression of De.H+ATP synthase gene in the present study 

demonstrate the possibility of exploiting this versatile stress gene in 

developing crop varieties which can be grown in acidic or saline inhabited 

soils.  

………… ………… 
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3.1 Introduction 

Salinity is one of the severe abiotic stresses affecting plant productivity 

all over the world (Zhu et al., 2001; Shabala et al., 2007; Jamil et al., 2011; 

Pooja et al., 2014). Salinity is a major constraint in productivity both in 

terrestrial and aquatic habitat including anthropically modified environments 

(Fodorpataki and Bartha, 2004). Physiological functioning and metabolism 

require optimum salt concentration and any fluctuation leads to stress. 

Microalgae are organisms with diverse distribution and have the ability to 

tolerate wide range of extreme condition. Based on extent of salinity tolerance 

they are classified to halophilic and halotolerant. Halophilic algae require salt 

for optimum growth, where as halotolerant can tolerate salinity stress (Rao et 

al., 2007). Salinity stress affect normal physiological functioning which lead to 

alteration in the metabolisms like photosynthesis, ionic balance, 
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photorespiration, osmotic adjustment, etc. (Kawasaki et al., 2001; Ozturk et al., 

2002). The mechanism of salinity tolerance is diverse and depends on 

organisms. The salinity tolerance level of halophilic organisms is extremely 

high and this achieved through the morphological and physiological adaptations 

(Galvan and Testerink, 2011), biochemical modification (Chatzissavvidis et al., 

2008), maintenance of ion homeostasis (Zhu, 2003) and all these functions are 

controlled by differentially expressed genes (Gong et al., 2005). As a single 

celled eukaryote, microalgae serve as a model organism to investigate the 

complex physiological, biochemical and molecular processes under salt stress in 

higher plants (Fogg, 2001). 

Sustainable agriculture requires development of stress tolerant plant 

varieties. Due to long generation time and complex trait, conventional breeding 

programme has limited success in the development of stress tolerant plants. The 

viable solution for this problem is the development of crop varieties with high 

adaptability to this changing environment through genetic engineering. Though 

presently transgenic food crops are not permitted or raised in India. It’s going to 

be an unavoidable requirement in the near future. Successful generation of 

transgenic plant is requiring suitable genes with high abiotic stress tolerance. This 

can be achieved by the understanding of molecular mechanisms behind stress 

tolerance and characterization of potential salt tolerant genes. Many studies have 

been carried out to characterize gene response to salinity stress using different 

molecular approaches like cDNA libraries, T-DNA insertion mutation, miRNA 

microarrays, suppressive subtractive hybridization, homologous cloning etc, 

(Coetzer et al., 2010, Zhang et al.,2012, Sahebi et al., 2015). Advancement of 

molecular techniques created better understanding of stress tolerance in plants. 
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Most of these studies have been focused on glycophytes which shows limited 

adaptability to salinity stress. Marine and halophilic organisms have better 

adaptability to changing environment. As life originated in ocean, during 

evolution, organisms that shifted to land and fresh water lost their ability to 

tolerate fluctuating salinity. In this context microalgae and cyanobacteria have 

significant importance to study the mechanism of salinity tolerance since they 

inhabit diverse habitat including extreme environment (Kirroliaa et al., 2011). 

Among eukaryotes, hyperhaline microalgae show the extremity for salinity 

tolerance. Most of the molecular studies of stress tolerance in microalgae is 

concentrated on the most halotolerant eukaryote, Dunaliella salina (Chen and 

Jiang, 2009; Ramos et al., 2011; Gong et al., 2014). Apart from Dunaliella, 

hyperhaline environments are inhabited by diverse microalgae which show 

potential applications in biotechnology. Molecular mechanisms underlying stress 

tolerance in other hyperhaline microalgae will help to identify better alleles for 

development of stress tolerant plants. Tetraselmis is a dominant chlorophyte in the 

hyperhaline environment with substantial tolerance to hyperosmotic environment. 

Few studies have been carried out in different species of Tetraselmis to investigate 

the adaptation mechanism to various environmental stresses. In Tetraselmis 

viridis hyperosmotic stress induce the Na+ ATPase protein which is involved in 

cytosolic homeostasis during salinity stress (Pagis et al., 2003; Strizh et al., 2004). 

Due to the euryhaline and eurythermal nature of Tetraselmis it is widely used in 

the aquaculture field. However, its exploration in tropical region is very limited, 

especially molecular characterization. In the present study, characterization of 

differentially expressed genes in hyper osmotic stress from halophilic 

chlorophycean algae Tetraselmis indica, newly described from Indian salt pan 

(Arora et al., 2011) was carried out.  
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3.2 Materials and Methods 

3.2.1 Isolation Identification and Culturing of Algal Strain 

The candidate halophilic microalga was isolated from the hypersaline 

water of Pulicat Lake, Chennai, Tamil Nadu, India. Isolation was done by 

serial dilution followed by agar plating to obtain pure culture. Isolated cells 

were maintained in f/2 media with 1.5M NaCl concentration. The culture room 

temperature was set to 250 C and well illuminated by cool white fluorescent 

lamp. Salinity tolerance levels of the isolates up to 3M NaCl concentrations 

were analyzed. Identification of the isolate was carried out using traditional 

methods analyzing morphological characters such as size and shape of the cell, 

number and arrangement of flagella, chloroplasts and other cellular organelles. 

Identity of the species was confirmed using molecular methods by sequencing 

18S rRNA and chloroplast genes. 

3.2.2 RNA isolation and Suppressive Subtractive Hybridization 

Total RNA was isolated from the cells grown under 1.5M NaCl and 3M 

NaCl during exponential phase of growth using TRI reagent. Algal cells 

grown under 1.5M NaCl salinity were subjected to shock by increasing 

salinity to 3M NaCl for varied  durations of 6, 12, 24 and 48 hours. The total 

RNA was isolated and pooled as saline stressed RNA. Isolated RNA’s were 

quantified and analyzed in 1.5% agarose gel electrophoresis (AGE). Equal 

quantities of both stressed and normal RNA were used for the purification of 

mRNA using GenElute mRNA purification kit (Sigma, USA). Suppressive 

Subtractive Hybridization (SSH) was carried out with PCR select cDNA 

subtraction kit (Clonetech, USA) using mRNA isolated from stressed (3M 
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NaCl) cells and normal (1.5M NaCl) cells as tester and driver respectively to 

isolate differentially expressed genes under hyperosmotic stress. Differentially 

expressed gene fragments were amplified using substraction PCR with adaptor 

specific primers. Amplified products were ligated to pJET vector and 

transformed. Transformed cells were screened using colony PCR and the size 

range of gene fragments were analyzed in 1% AGE. Positive clones were 

selected; plasmids were isolated and sequenced using vector specific primers. 

The generated sequences were edited using Seqman Sequence analyzing 

software and made into contigs with overlapping sequences. The contigs 

generated were analyzed using BLASTN and BLASTX softwares. 

3.2.3 Quantitative validation of differentially expressed genes using 

Real-Time PCR 

Expression profiles of the selected gene fragments under hyperosmotic 

stress were carried out using Real-Time PCR. Specific primers for both known 

and unknown genes were designed using Beacon Designer™software and 

synthesized. Real-Time PCR was carried out with both stressed and normal 

cells and 18S ribosomal gene used as internal control to normalize the 

expression level. Real- Time PCR was carried in iQ5 thermal cycler (Biorad, 

USA) using SYBR green master mix (Biorad, USA). PCR conditions for all 

the primes were standardized and all the reactions were carried out in 

triplicates. Details of primers used are given in table.3.1 
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Table 3.1List of primers used for the quantitative validation of hyperosmotically induced genes 

SL. 
No. Gene Primer Sequence Product 

size (bp) 

1 Hydroxy pyruvate reductase 
S093HPR_QP_F TGCTCCAACGCCGTTATT 

118 
S093HPR_QP_R TTCCAAACAGGGTATCCTTGG 

2 Guanine Nucleotide Exchange protein 
S093GNEP_QPF TCTGGAAGAGGGTGCTTAGT 

140 
S093GNEP_QPR CCACCTCCACGAGTTCTTTC 

3 Glycine Serine 
hydroxymethyltransferase 

S093GHMTransfrse_QPF CGGGTGCAGACCATCTTG 
79 

S093GHMTransfrse_QPR GGGTTCATCGCACTCTTGT 

4 ATP synthase 
S093ATPsynthase_QPF AACCACGATGGTGTGGTC 

95 
S093ATPsynthase_QPR TGTATCTACGTTGCCGTTGG 

5 Inositol 3-phosphate synthase 
S093Insostl3phphtesynthse_QPF CATCGACCATCTACGCTCTTG 

85 
S093Insostl3phphtesynthse_QPR CCTCTCGATAGCATACTCAATCAC 

6 Glyceraldehyde 3-phosphate 
dehydrogenase 

S093GAPDH_QPF GAATCCTTGGCTACACTGAGG 
123 

S093GAPDH_QPR CAAGACACAAGCTTGACGAAAG 

7 MIF4G domain 
S093MIF4G_QPF TCCGAGTCCGATCGATGT 

115 
S093MIF4G_QPR TGAACGAGCGGCTCAAC 

8 Fructose I,6 bisphosphatealdolase 
S093FBA_QPF TTCGCAAGATAGCGTGGTC 

117 
S093FBA_QPR CCTGTTCGAGGAGACTCTGTA 

9 Na+K+ P-type ATPase 
S093Na+/K+ATPase_QPF CTTGTGGCGCATTGAAGATG 

106 
S093Na+/K+ATPase_QPR TGAGGACAAGGAAGGAGGT 

10 Alkane hydroxylase 
S093AHase_QPF GAAGGACAAGAACGGCAAGTA 

116 
S093AHase_QPR TGAGCGTGATGGTCTGAATG 

11 S93 Unknown 438 
S093un438_QPF TCCTGAGGAGGAAGCTGAT 

99 
S093un438_QPR CGGCTCATCGACCACAAA 

12 S93 Unknown 416 
S093un_416_QPF ACAGGAGTAGACCGTCTGTATT 

97 
S093un_416_QPR CCTGCATGAGCTTGACTTCT 

3.3 Results 

3.3.1Identification and Stress Tolerance of Isolated Halophilic Microalgae 

Micro algal strain isolated was identified as Tetraselmis indica, a newly 

described species from India. BLAST analysis of both 18S and rbCL gene 

sequence showed 100% similarity with T. indica (NCBI Acc.No.KM087972). 
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The isolated strain has the capacity to tolerate wide range of salinity from 0.5 

M NaCl to 3 M NaCl and optimum growth was observed at 1.5 M NaCl. 

 

 

Fig 3.1. Morphology of T.indica isolated from Pulicat Lake 

3.3.2  Assembly and Analysis of Differentially Expressed Genes under 

Hyperosmotic Stress 

Transcriptome profile of the T.indica under hyperosmotic stress was 

generated using SSH technique. The subtractive PCR amplified differentially 

expressed genes with a size ranging from 0.15Kb to 1Kb. A total of 182 

randomly picked colonies were sequenced. Seqman sequence editing software 

created 42 contigs from the overlapping regions of differentially expressed 

genes. All the contigs were analyzed using BLAST to identify the 

differentially expressed genes under hyperosmotic stress. 
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Table 3.2 List of hyperosmotically induced genes showing significant similarity to known sequence in the 
public database 

Putative gene Annotation e-
Value Functions Reference 

Hydroxy  pyruvate reductase 2e-55 Photosynthesis and oxidative 
stress response Wingleret al., 1999 

Fructose-1,6-bisphosphate aldolase 2e-75 oxidative stress response Lu et al., 2012 

Fructose-1,6-bisphosphatase 4e-63 Osmotic, high temperature and 
desiccation stress 

Kosovaet al., 2013,  Haidonget 
al., 2014 

Guanine nucleotide-exchange protein 2e-66 Signaling pathways including stress 
stimuli Tuteja and  Sopory, 2008 

TIM phosphate binding super family 3e-07 Amino acid biosynthesis, salt stress Colaiacovoet al., 2010, Fang et 
al., 2014 

Alkane hydroxylase 2e-64 Photosynthesis and osmotic stress 
response, bioremediation 

Bourdenxet al., 2011,  Nieet 
al.,2014 

F0F1 ATP synthase subunit alpha 8e-33 ATP synthesis, Oxidative stress, 
osmotic stress, drought stress etc 

Yildirimet al.,2011,  Lapailleet 
al., 2011 

Glycine serine hydroxyl methyl 
transferase 1e-05 Temperature, cellular detoxification  

and oxidative stress responses 
Moreno et al., 2005, Zhou et 

al.,2012, Sirisatthaet al, 2012 

MIF4G  (middle portion of eIF4G) domain 
containing protein 9e-05 Protein protein and protein RNA 

interaction Kmieciaket al., 2002 

Isocitratelyase 0.003 
Salt stress responses, Signal 

transduction, heat stress 
responses, descication 

Cytrynetal., 2007, Mizunoetal., 
2012 

Na+K+ P-type ATPase 5e-64 Photosynthesis, oxidative stress, 
osmotic stress 

HartmutGimmler, 
2000;Wiangnonet al., 2007; Lind 

et al., 2013 

Glyceraldehyde-3-phosphate 
dehydrogenase 6e-12 Salinity stress Jeonget al., 2001; Kosoavaet 

al., 2013; Cho et al., 2014, 

C2 super family/ protein kinase 0.29/ 4.49e-04 Hyperosmotic stress Kobayashi et al., 2004 

Inositol-3-phosphate synthase 9e-41 Abiotic stress Wang et al., 2011; Tan et al., 
2011;  Astuaet al., 2007 

Among the differentially expressed genes, 43% showed sequence 

similarity with functionally identified genes,  38%  uncharacterized genes which 

may have functional roles in salinity stress tolerance and the rest 19% having 

sequence similarity with ribosomal genes (Fig.3.2). Details of the differentially 

expressed genes under hyperosmotic stress are given in the table.3.2. Functional 
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genes are classified (Fig.3.3) based on the cellular functions such as metabolic 

process, stress responses, cellular transport of ions, cell proliferation and DNA 

repair. All these functionally identified genes are actively involved in other 

abiotic stresses such as drought, temperature and oxidative stress. 

 
    Fig 3.2 Classification of differentially expressed genes under hyperosmotic stress 

 

 
Fig 3.3 Functional classification of identified genes under hyperosmotic stress 
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3.3.3  Validation of Differentially Expressed Genes under Hyperosmotic 

Stress using Real-Time PCR 

The expression level of the differentially expressed genes under 

hyperosmotic stress was validated using Real-Time PCR. A representation of 

both novel and functional genes were quantitatively validated. Among the 12 

gene selected, 10 genes showed a significant upward regulation with 

hyperosmotic stress (Fig 3.4) GAPDH and MIF4G domain protein did not 

show significant upward regulation under salinity stress. Highest expression 

under salinity stress was shown by hydroxyl pyruvate reductase (HPR) and 

fructose-1, 6 bisphosphate aldolase (FBA) genes. 

 

Fig 3.4  Expression profile of differentially expressed genes in hyperosmotic stress using quantitative 
Real-Time PCR. Error bar indicates ± standard deviation (SD), Number of replicate (n)= 3. 

3.4 Discussion 
Salinity is one of the limiting factors for plant productivity worldwide. 

Climatic change has severe impact on ocean and land salinity. Halophilic 

organisms have fascinating mechanism to withstand high salinity. They have 
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adaptive mechanisms such as redox control, scavenging of radical oxygen 

species, metabolite accumulation and altered partitioning and ion homeostasis 

(Hasegawa et al., 2000). Earlier works have generated data regarding the 

physiological adaptations. Tolerance to abiotic stresses is a genetically 

determined trait and these catastrophic effects have mild or severe impact at 

any stage of plant development. Emergence of advanced technology in the 

field of molecular genetics and cell biology helps to reveal genetic 

determinants of salinity tolerance. Generation of EST and expression analysis 

strengthen the theory that the physiological mechanisms are under the control 

of genes. Transcriptomic profile under salinity stress provides useful 

information regarding the cell specific determinants of salinity tolerance. 

Present investigation focused on the analysis of gene expression of halophilic 

microalgae, T. indica under hyper saline conditions. This newly described 

strain has the ability to tolerate wide range of salinity from 0.5 M NaCl to 3 M 

NaCl. Most of the salinity tolerant studies have been carried out in the 

euryhaline microalgae, Dunaliella salina (Alkyal et al., 2010, Ramos et al., 

2011, Zhao et al., 2011). The characterization of T. indica may provide an 

insight into better alleles responsible for salinity tolerance. SSH can be 

efficiently used for the characterization of functional genes without any 

sequence information. The EST generated in this work has active role in the 

process of biological stress management.  

Photorespiration is a vital pathway essential for the normal 

physiological function of the plant cell (Bauwe et al., 2010). Hydroxypyruvate 

reductase (HPR) is an intermediate enzyme in the photorespiration pathway 

essential for the detoxification of 2-phosphoglycolate to glycerate, which 

enters the Calvin cycle. The increased expression of HPR was observed in 

barley (Hordeum vulgare) during drought stress which enhances the 
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photorespiration and thereby increased carbon fixation through photosynthesis 

(Wingler et al., 1999). Similar to drought, osmotic stress also leads to water 

deficit with interconnected protective mechanisms (Marcinska et al., 2013). 

This study revealed the enhanced expressions of the HPR gene in 

hyperosmotic stress which inturn enhance growth rate of T.indica. The 

fructose 1, 6 bisphosphate aldolase gene (FBA) which controls the glucose 

metabolism was found to be higher in the T.indica cDNA library. Calvin cycle 

is an initial pathway for the fixation of carbon through photosynthesis. Calvin 

cycle steps are under the control of different enzymes which control the carbon 

flux. FBA is one of the non-regulated enzymes involved in the glucose 

metabolism. Besides metabolic functions FBA actively involved in abiotic 

stress tolerance mechanisms (Uematsu et al., 2012). The expression patterns of 

eight FBA family genes in Arabidopsis and cotton showed an enhanced 

expression in various stresses like NaCl, Cadmium Abscisic acid, abnormal 

temperature and drought (Lu et al., 2012; Qaisar et al., 2015).Biochemical 

studies in maize showed an enhanced expression of FBA in salinity stress 

(Zorb et al., 2004). These studies indicate the significance of FBA for the 

development of crop varieties with increased abiotic stress tolerance. 

The intracellular ion homeostasis is maintained by P-type ATPase. 

Mostly plant cell posses H+ ATPase for the ion transport but here we identified 

a Na+/K+ ATPase for homeostasis in hyperosmotic stress. During the evolution 

of vascular plants they loss Na+/K+ ATPase as they shifted to fresh water 

condition (Graciadeblas et al., 2001; Pedersen et al., 2012). Existences of 

Na+/K+ ATPase observed in organisms exposed to marine environment 

strengthen its role in osmotic stress tolerance. Animal type Na+/K+ ATPase 

was functionally characterized from a marine red seaweed Porphyra yezoensis 

which impart salinity tolerance in rice plant (Kishimoto et al., 2013). As a 
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most euryhaline eukaryote this gene was not reported from Dunaliella salina 

(Gimmler, 2000) but studies in other marine microalgae like Tetraselmis, 

Heterosigma and Dunaliella maritima revealed the existence of salinity 

induced animal type Na+/K+ ATPase (Balnokin and Popova, 1994; Shono et 

al., 1996; Balnokin et al., 1997; Gimmler, 2000; Popova et al., 2005). Present 

study also revealed the occurrence of Na+/K+ ATPase in a new species of 

Tetraselmis which has the ability to tolerate hyperosmotic condition and 

further characterization of this gene would enable to understand the 

heterologous expression in other economically important agricultural crops.   

The high level expression of Glycine serine hydroxymethyl transferase 

during salt stress prevents cell death. It reduces the accumulation of reactive 

oxygen species through the correlated Na+/H+antiport activity (Moreno et al., 

2005; Zhou et al., 2012). Most of the studies in this gene have been carried out in 

higher plants, animals, and prokaryote (Chang, et al., 2007; Engel et al., 2011; 

Jiang et al., 2013). The over expression of this gene from halo tolerant 

cynobacteria Aphanothece halophytica in E.coli enhance the salinity tolerance 

(Sirisattha et al, 2012). The earlier works have not characterized this gene from 

microalgae. In the present study, we have identified a salinity induced Glycine 

serine hydroxymethyl transferase from halotolerant microalgae, T. indica.  

Quantitative validation also confirmed its enhanced expression in hyper osmotic 

stress. Isocitrate lyase (ICL), a glyoxylate pathway enzyme involved in oxidative 

stress and salinity stress was differentially expressed in hyperosmotic stress in 

T.indica. Its physiological function is the catalysis of conversion of isocitrate to 

succinate and glyoxylate.  Apart from this, it has active role in environmental 

stresses. Studies in Shewanella sp observed that an enhanced expression of ICL 

gene in salinity and acidic shock (Li et al., 2006) and low temperature induce it in 

Colwelliamaris (Watanabe et al., 2002). Bradyrhizobium japonicum, a symbiont 
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in soya bean showed an enhanced expression of ICL during desiccation stress 

(Jeonet al., 2015). Limited studies have been carried out to characterize algal ICL. 

Its role in carbon metabolism and oxidative stress was studied in 

Chlamydomonas.  A mutant of this alga without ICL showed reduced growth in 

both dark (heterotrophic condition) and light (mixotrophic condition) and also 

susceptible to oxidative stress (Plancke et al., 2014). In this context further 

characterization of algal ICL gene has great significance. 

The environmental stress stimuli in plants are transferred further 

downstream via network of signals. They are controlled by transcription factors 

and signal transducing GTPase, which is activated by guanine nucleotide 

exchange factors (GEF) (Schmidt and Hall, 2002). Osmotically induced 

T.indica cells also over expressed GEF, which activate the GTPase involved in 

salt stress mechanisms. Role of GTPase in salinity stress was investigated in 

Arabidopsis thaliana through the recombinant expression of Medicago falcata 

small GTPase gene. Transgenic Arabdopsis seedling showed a higher survival 

rate compared with wild types seedlings under salt stress (Wang et al., 2013). 

Other genes such as Glyceraldehyde 3-phosphae dehydogenase, alkane 

hydroxylase, inositol-3-phosphate synthase, phosphate binding superfamily, 

guanine nucleotide exchanger have direct or indirect role in various abiotic 

stresses including salinity stress. This study also revealed many novel genes 

having active role in osmotic stress which has to be further characterized. 

3.5 Conclusion  

In conclusion, the present work provides a detail understanding of 

differentially expressed genes essential for the survival of plants under 

osmotic stress. The EST generated in the present study seems to be either 

directly or indirectly involved in osmotic stress. Moreover these genes also 
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have active role in biological processes of cell apart from providing tolerance 

to osmotic stress. As the microalgae used in the study is a recently described 

halophilic species from tropical India, the differential gene expression profile 

threw light into the molecular mechanism of salinity tolerance. In depth 

studies on the complete characterization of novel/functional genes would 

unearth the physiological and molecular mechanisms involved in the abiotic 

stress tolerance. This would provide initial step in the development of 

economically important agriculture crops, which could grow in salinity 

inflated land area of India, in the near future. 

………… ………… 
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4.1 Introduction 

The osmotic tolerance mechanisms of plants varied from species to 
species some plants have the ability to tolerate wide range of salinity and some 
flourish in low salinity and some are very sensitive. Halophilic organisms have 
extraordinary mechanisms to withstand hyper osmotic stress. Among the 
halophiles, microalgae have special attention because of their eukaryotic 
origin, wide distribution and simplicity in cell structure. There are limited 
studies to find out molecular mechanisms behind osmotic adjustment and most 
of the studies have been done in euryhaline microalgae, Dunaliella salina. In 
the present study a potential osmotolerant gene, Fructose 1, 6 bisphosphate 
aldolase (FBA) differentially expressed under hyperosmotic stress from 
halophilic microalgae, Tetraselmis indica has been characterized. 

Fructose 1, 6 bisphosphate aldolase is a key enzyme actively involved in 
the metabolism of glucose. In glycolysis FBA take part in the aldol cleavage of 
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fructose-1, 6-bisphosphate to dihydroxyacetone phosphate and glyceraldehyde 

3-phosphate. FBA also participated in the anabolic process such as 

gluconeogenesis and photosynthesis. There are two closely related classes of 

FBA enzymes, class I and II but they differ in their action and also there is no 

sequence similarity (Sanchez et al., 2002). The class I enzyme posses lysine 

residue in the reaction site and form Shiffs base during reaction mechanism with 

substrate. The class II enzyme is a metallo enzyme which posses a divalent 

metal ion in the similar metabolic processes (Thomson et al., 1998). In animals 

the class I enzyme divided into three types, aldolase A found in muscle, 

alodolase B found in liver and aldolase C in brain (Rutter et al., 1965). The 

different enzymes also distributed in every organism with peculiar evolutionary 

lineage. Most of the animals, plants, and some protists contain class I enzyme 

and class II enzymes are characteristics of fungi (Marsh and Lebherz, 1992). 

Algae contain either class I or class II enzymes and both these genes found in 

Euglena garacilis (Nickol et al., 2000, Plaumann et al., 1997). These findings 

suggested that the same step of glycolysis and gluconeogenesis in different 

organisms are controlled by enzymes of different origin. Instead of glucose 

metabolism FBA has significant roles in different stress tolerance mechanisms 

(Lu et al., 2012). FBA take part in the normal growth and functioning and 

studies shown that reduced aldose activity reduce the photosynthetic activity and 

synthesis of starch and sugars there by inhibit  growth in potato plant (Haake et 

al., 1998). During abiotic stress some metabolite disrupts their normal 

physiological function and accumulates to compete with the elevated condition. 

Some form compatible solutes and some form important signal molecules (Baier 

et al., 2004; Cho and Yoo, 2011). Among this glucose has vital role in cell 

processes like germination, development of seedlings and environmental stress 

tolerance. During salinity stress microbial cells faces decreased water activity 

because of the loss of intracellular water, modifying ionic fluxes and 

intracellular accumulation of osmolites. Long term osmotic tolerance is 
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achieved through the intracellular production of osmolyte, glycerol. As a key 

enzyme in the glucose metabolism FBA has significant role in abiotic stress 

tolerance. Studies on the Calvin cycle enzymes suggested that sedoheptulose 

1,7-bisphosphatase (SBPase), transketolase (TK), and fructose 1,6-bisphosphate 

aldolase actively control the photosynthetic coefficient and thereby plant growth 

(Raines, 2003; Uematsu et al., 2012). As a non-regulated enzyme, over 

expression of aldolase increase the tolerance level of plants under abiotic 

stresses and enhance the growth through increased photosynthetic activity. 

4.2 Materials and Methods 

4.2.1 Identification and Quantitative Validation of Fructose 1, 6 

Bisphosphate Aldolase Gene  

A partial nucleotide sequence of Tetrselmis indica fructose 1, 6 

bisphosphate aldolase gene (Ti.FBA) was isolated using SSH method under 

hyperosmotic stress. Algal culture stressed with salinity (1.5M NaCl to 3M 

NaCl) was used as tester and normal salinity (1.5 M NaCl) was used as driver. 

Isolated sequences were analyzed using BLAST in NCBI data base. The 

expression profile of the Ti.FBA was quantitatively validated using Biorad 

IQ5 Real-Time thermal cycler. Specific primers were designed from the partial 

sequence of FBA gene using Beacon Designer™software and synthesized. 

Algal cells grown under optimum salinity (1.5M NaCl) were subjected to 

salinity shock by increasing salinity to 3M NaCl. Total RNA was isolated after 

a specified period of time (0hr, 6hr, 12hr, 24hr and 48hr) using TRI reagent 

(Sigma, USA). Isolated RNA was quantified spectrophotometrically using 

Biophotometer (Eppendroff, Germany) and the quality was analyzed in 1.5% 

agarose gel electrophoresis. DNA contamination was eliminated by treating 

RNA samples with RNase free DNase enzyme (1U/µg RNA, Fermentas). 1µg 

RNA was used for the synthesis of complementary DNA using Revert Aid 

Premium cDNA synthesis Kit (Thermo scientific, USA). Real-Time PCR was 
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carried out in 25µl reaction with SYBR green Mastermix (Biorad, USA). 18S 

rRNA gene was used as internal reference gene and both the reactions were 

conducted in triplicate. 

4.2.2  Full Length Amplification of Tetraselmis FBA gene using RACE 

PCR 

After analyzing expressions under hyperosmotic stress, Ti.FBA gene 

was completely amplified using RACE PCR method. Gene specific primers 

for both 5’ and 3’ RACE were designed using Primer3 Plus software and 

synthesized. Total RNA was isolated from the hyperosmotically stressed cells 

using TRI reagent (Sigma, USA) and mRNA was purified using GenElute 

mRNA Purification Kit (Sigma, USA). Rapid Amplification of cDNA Ends 

were carried out using SMARTer RACE cDNA Amplification Kit (Clonetech, 

USA). Both 5’ and 3’ RACE ready cDNA were synthesized and RACE PCR 

was carried out. Amplified products were analyzed in 1% agarose gel 

electrophoresis and purified using Quiaquick PCR purification Kit (Quiagen, 

Germany). Purified products were ligated to pJETcloning vector and 

transformed to Top 10 chemically competent E.coli cells.  Positive clones 

were screened using colony PCR. Plasmids were isolated from the positive 

clones and sequenced. 

4.2.3 Recombinant Expression of Ti.FBA in E.coli 

The ORF region of the Ti.FBA gene was amplified using specific 

primers with BbsI restriction site designed to produce cut ends compatible with 

NcoI digestion at the 5’ end and XhoI digestion. The amplified product was 

purified and digested with BbsI and ligated to pET28b expression vector double 

digested with NcoI and XhoI restriction enzymes. The resultant pET28TiFBA 

vector construct was transformed to BL21 expression host. Transformed cells 

were plated on agar plate containing Kanamycin (50 µg/µl) and kept at 37⁰C 

overnight. 
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Table4.1 List of primers used for the RACE PCR and recombinant expression of Ti.FBA gene 

SL. 

No 
Gene Primer Sequence 

Product 

size (bp) 

1 Fructose 1,6 bisphosphatealdolase 
S93_FBA_5’GSP GCTTAATGCCAGCCTCGGCCATCACAT 466 

S93_FBA_3’GSP CCTGTGAAGTCTGCTACGATGC 1232 

2 Fructose 1,6 bisphosphatealdolase 
>FBA_BbSI_F ATCGAAGAAGACACCATGGCAGCCGCACTCAAGAGC 

1161 
>R_FBA_BbSI GATGTCGAAGACACTCGAGATAAACATAGCCCTTCTCGAAC 

4.2.4  Analysis of Recombinantly Expressed Ti.FBA in E.coli using SDS-

PAGE 

The stock culture of recombinant E.coli with Tetraselmis FBA gene was 

inoculated to LB media containing Kanamycin (50µg/µl) and kept at 37ºC over 

night. Two percent of the stock culture was inoculated to 2ml LB media 

containing Kanamycin (50µg/µl) and kept at 37ºC. After 2 hours of growth, cells 

were induced with 0.5mM concentration of isopropyl-b-D-thiogalacto pyranoside 

(IPTG) for the expression of recombinant protein and kept for further 4 hours at 

37ºC. Control cells were also kept at the same condition without adding IPTG. 

After 4 hours of growth both induced and uninduced cells were harvested by 

centrifuging at 12000rpm for 5 minutes. Harvested cells were suspended in 

resuspension buffer and lysed with Cell LyticB solution (Sigma, USA). The over 

expressed recombinant protein were analyzed in 8% Glycine SDS-PAGE. 

4.2.5  Validation of Acquired Salinity Tolerance of Recombinant E.coli with 

Ti.FBA Gene 

  Acquired thermal tolerance of recombinant E.coli with Tetraselmis 

FBA gene and control cells with pET28b alone was monitored.  Transformed 

single colony was inoculated to 1ml LB media containing antibiotic Kanamycin 

(50µg/µl) and kept at 37ºC overnight. 2% of this stock culture was inoculated to 

10ml LB containing 50µg/ml Kanamycin and 0.5mM IPTG with 0.5M NaCl 

concentration. The growth rate was monitored by taking OD 600 at intervals of 2 

hours. All the experiments were carried out in triplicate. 
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4.3 Results 

4.3.1 Identification and Expression Validation of Tetraselmis Fructose 1, 6 

bisphosphate Aldolase Gene    

A differentially expressed FBA gene fragment under hyperosmotic stress 

was isolated using suppressive subtractive hybridization technique. The partial 

sequence obtained with a size of 305 bp was analyzed using BLAST. The 

analyses showed high sequence homology with chlorophyte, Scherffelia dubia 

fructose 1, 6 bisphosphate aldolase, which is actively involved in the glucose 

metabolism. The expression of Ti.FBA of both stressed (3M NaCl) and normal 

cells (1.5M NaCl) was validated using Real-Time PCR. Hyper osmotic stress 

induced the over expression of FBA gene in T. indica and it depended on the 

duration of stress (Fig 4.1). During initial stress, both stressed and normal cells 

showed an optimum expression but after 48 hours of hyper osmotic shock, over 

expression of FBA gene was induced. This may lead to the increased production 

of glycerol, an osmoprotectant which may help to sustain algal cells under hyper 

osmotic stress. 

 
Fig 4.1  Expression pattern of Ti.FBA gene under hyperosmotic stress at different time intervals. 

Error bar indicates ± standard deviation (SD), Number of replicate (n)= 3. 
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4.3.2 Full Gene Amplification of Ti.FBA using RACE PCR 

Complete sequence of the Ti.FBA gene was obtained by RACE PCR. 

Both 5’ and 3’ RACE was carried out to find out the complete sequence. The 

5’ RACE product was 466 bp and 3’ product was 1232bp and the overlapping 

regions of both the product were combined to create Ti.FBA gene sequence of 

1383 bp nucleotides. The ORF region consist of 1161 bp nucleotide with 387 

predicted amino acid translated to FBA protein with size of 41.4 KDa 

4.3.3 Sequence Comparison and Phylogenetic Analysis 

To analyze the evolutionary relationship of Ti.FBA, a phylogenetic tree 

was constructed using sequences of other species. The result indicated that 

Tetraselmis FBA has close similarity with various organisms and maximum 

was observed with chloroplast FBA of chlorophycean algae, Scherffelia dubia 

(similarity 77%, identity 79%). Based on the catalytic mechanisms FBA is 

classified in to Class I and Class II groups. Most of the plants contain Class I 

FBA with two isoforms namely plastid FBA and cytosol FBA. The sequence 

comparison of Ti.FBA showed maximum homology with plastidal Class I 

FBA than the cytoplasmic FBA which indicated that the Tetraselmis indica 

FBA belong to Class I plastidal isozyme. 
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Fig 4.3 Phylogenetic tree of Ti.FBA. The amino acid sequences were subjected to Bootstrap test of 

phylogeny by the MEGA 6.0 program, using neighbour-joining method with 1000 replicates 

 

4.3.4 Recombinant Expression of Ti.FBA in E.coli 

The differentially expressed Ti.FBA gene was recombinantly expressed in 

BL21 expression host through PET28b expression vector. The ORF region 

consisting of 1161 bp (Fig 4.4a) was amplified with specific primers and ligated 

to pET28b vector to create Ti.FBApET28 construct. The recombinant BL21 cell 

with Ti.FBApET28 construct over expressed the recombinant protein when 

induced with 0.5mM IPTG. The expressed protein with a molecular mass of 

41KDa was visualized in 8% Glycine SDS-PAGE (Fig 4.4b) 
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   a)      b) 

Fig 4.4. a) 1-cDNA amplification of Ti.FBA gene (ORF), M- 1 kb Marker b) Expression profile of Ti.FBA 

protein on 8% Glycine SDS PAGE M-Marker,U-Uninduced,I – Induced 
 

4.3.5  Enhanced Growth of Recombinant E.coli with Ti.FBA Gene under 

Hyper Osmotic Shock 

Recombinant E.coli with Ti.FBA gene acquired salinity tolerance under 

hyper osmotic shock when compared to E.coli cells with vector alone. 

Recombinant cells with Ti.FBApET28 and pET28 grown under normal 

conditions were subjected to a salinity shock (0.5M NaCl) and growth pattern 

monitored. Both the cells acclimatized to elevated salinity but the recombinant 

cells with Ti.FBA gene showed an enhanced growth rate compared to the 

control cells. The over expression of Ti.FBA gene in E.coli provide better 

tolerance thereby enhanced growth rate was observed in recombinant cells 

(Fig 4.5).  
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Fig 4.5 The growth pattern of BL21 cells transformed with TiFBApET28 and empty pET28b under 

hyperosmotic shock. Error bar indicates ± standard deviation (SD), Number of replicate (n) = 3. 

4.4 Discussion 

Salinity is one of the major abiotic stress factors affecting worldwide 

plant productivity. Plants have developed many adaptive mechanisms to 

overcome these stressful environments. This is achieved through the 

physiological, biochemical and molecular changes (Bray 1997; Hasegawa et 

al. 2000). Salt stress induce the over expression of many genes which involved 

in the cellular pathways (Rock, 2000; Shinozaki and Yamaguchi-Shinozaki, 

2000). In this study a hyperosmotically induced fructose 1, 6 bisphosphate 

aldolase (FBA) gene was characterized from a newly described halophilic 

microalgae, Tetrasemis indica. Most of the previous studies investigated the 

role of FBA in cellular metabolisms and abiotic stress tolerance in plants (Lu 

et al., 2012: Uematsu et al., 2012; Zeng et al., 2015). FBA genes are highly 

conserved among eukaryotes and the Ti.FBA showed sequence similarity with 

other related algal groups and photosynthetic plants. Genomic analysis of rice, 

spinach and chlamydomonas revealed the existence of single isogene where as 
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presence of two isogenes in pea and tobacco plants (Razdan et al., 1992, 

Yamada et al., 2000). As a chlorophycean algae T. indica posses one isogene 

which is actively involved in osmotic stress tolerance mechanisms. Studies on 

the acidophilic red algae, Galdieria sulphuraria showed that the two isozymes 

of aldolases are homologous to the higher plants (Gross et al., 1999).   

Increased aldolase activity enhances the photosynthetic activity through 

the RuBP regeneration. In cyanobacteria increased photosynthetic activity 

through the regeneration of RuBP by the over expression of aldolase was 

observed (Kang et al., 2005; Ma et al., 2007 and 2008; Uematsu et al., 2012). 

The role of FBA in the model plant Arabidopsis thaliana was investigated by 

Moon et al., 2012, and it was confirmed that this gene actively maintained the 

aldolase activity and NADPH level during abiotic stress. In mangrove plant 

Sesuvium portulacastrum salinity stress induce the over expression of FBA 

gene (Fan et al., 2009). The expression level of FBA in organisms inhabiting 

intertidal region was very high which indicate the active role of FBA in 

various environmental extremities (Tomanek, 2011).  These studies reported 

the role of FBA in abiotic stress tolerance. In the present study we have 

investigated role of FBA in microalgae during salinity stress, and previous 

studies on Dunaliella salina fructose-1, 6-diphosphate (FDP) 

aldolase (DsALDP) proved its role in osmotic stress tolerance. Recombinant 

expression of DsALDP in E.coli and tobacco plant showed better survivability 

under osmotic stress through the elevated expression of DsALDP (Zang et al., 

2002 and 2003). Our study in halophilic microalgae also confirmed the 

acquired salinity tolerance of E.coli cells through the recombinant expression 

of Ti.FBA gene (Fig.13). The rice FBA gene showed variation in expression 

with salt sensitive and salt tolerant rice varieties. In salt tolerant variety slight 

up regulation was observed after 24h and 7d of salinity stress. The expression 
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pattern was totally different in salt sensitive variety, the gene was down 

regulated during the initial stage of stress (24h) and then strongly expressed at 

3 d and 7 d stress (Jankangram and Theerakulpisut, 2012). In the present study 

also Ti.FBA was not significantly expressed during initial stress but the 

expression was very high at 48h of stress. Transcriptomic study of the red 

algae Gracilaria changii under hyper and hypoosmotic stress showed that the 

expression of FBA actively up regulated during hyperosmotic stress and low 

salinity down regulated the expression (Teo et al., 2009). Zeng et al. 

confirmed the role of CoFBA (Camellia oleifera FBA) gene in osmotic stress 

tolerance. The transgenic Brassica napus plant developed with CoFBA gene 

acquired better salinity tolerance than wild type (Zeng et al., 2015). 

Transgenic potatoes with co-expression of FBA, triosephosphate isomerase 

(TBI) and fructose bisphosphatase (FBPase) achieved higher photosynthesis 

efficiency (Fan et al., 2009). These studies depict the significance of FBA 

gene for the development of abiotic stress tolerant plant varieties with 

increased photosynthesizing efficiency as revealed in the present work. 

4.5 Conclusion  

In conclusion, Ti.FBA characterized in the present work is a better allele 

of FBA gene as it is characterized from halophilic chlorophycean algae, T. indica. 

Investigation of Ti.FBA gene revealed that they are actively involved in the hyper 

osmotic stress through elevated expression. Present study along with previous 

works on various FBA proved their role to impart hyperosmotic stress tolerance in 

other salt sensitive organisms through recombinant expression. As a eukaryotic 

extremophilic origin Ti.FBA has significant role in the development of stress 

tolerant plant varieties through homologous expression 

…………………… 
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5.1 Introduction 

Evolution of organisms on earth primarily depends on climatic conditions 

of particular region (Bradshaw and Holzapfel, 2006). The constantly changing 

climate forcefully exposes organisms to new stressed environments (Parmesan 

and Yohe, 2003; Gienapp et al. 2008). Some species adapt themselves to 

withstand these changing environments while many others change their 

geographical distributions. Unicellular organisms can be found everywhere, in 

almost all stress conditions. Organisms which can withstand and flourish in harsh 

environments are called as extremophiles.  Among extremophiles, thermophiles 

have great potential and are extensively studied (Valverde et al., 2012). Most 

organisms adapted to thrive under extreme conditions are identified to be either 

bacteria or archaea. However there are some eukaryotic micro algal species that 

successfully established in such conditions. Microalgae are diverse photosynthetic 

organisms adapted to thrive in highly diverse ecosystems. These unicellular 
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eukaryotes are distributed in a wide range of habitats including extreme 

environments such as thermal oceanic vents, acidic lakes, hyperhaline areas, hot 

springs, highly alkaline lakes etc., and are termed as extremophilic microalgae. 

These extremophilic algae have inherent ability to withstand extreme conditions 

by various physiological functioning and biochemical compositions regulated by 

differentially expressed genes. Among eukaryotes, unicellular red micro-alga 

Galdieria sulphuraria (Cyanidiales) was extensively studied by generating EST 

library (Weber et al., 2004). Gene expression analysis is an efficient tool for 

evaluation of organism’s response to different abiotic stresses including 

temperature stress. 

India has several hot springs but studies on utilization of its biotic 

potentials are limited. Microbial diversity in such habitats are employed in 

various biotechnological applications. Manikaran hot spring in H.P, India is 

identified as a unique environment with high water temperature of up to 96ºC 

and moderate salinity by the presence of NaHCO3Cl type and NaCaHCO3Cl 

type ions (Razdan et al., 2008). Studies on Manikaran quartzite fluids showed 

that salinity varies from 2.7 to 10.6 wt% NaCl equivalents (Sharma and Misra, 

1998). The chloride content of Manikaran water ranges between 50 to 150 

mg/l. Studies on hot spring micro biota were mainly restricted to archaea and 

prokaryotes (Murugan et al., 2014) however these habitats are also inhabited 

by thermophilic microalgae. 

Heat stress leads to retarded growth, development and finally to cell 

death. Thermal tolerance is responsible for the emergence of various 

mechanisms involved in antioxidant production, membrane thermal stability, 

accumulation of osmolytes and most importantly activation of stress related 

genes. The adverse effect of high temperature in crop plants can be mitigated 

by various approaches including transgenic technology. There are successful 
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attempts to develop temperature tolerant plants through plant breeding 

programmes however transgenic technology applications are limited. This may 

be due to unavailability of desired genes. As a eukaryote, thermophilc 

microalgae are potent source for tolerant genes for extreme conditions. 

Though mechanisms of stress tolerance in extremophilic prokaryotes 

are extensively studied, such studies on thermophilic eukaryotes are limited. In 

the present study we used an effective method termed as suppressive 

subtractive hybridization for isolation and characterization of differentially 

expressed genes under temperature stress. Here we used a combination of 

suppressive subtractive hybridization and quantitative Real-Time PCR for 

analysis of genes differentially expressed under temperature stress from 

thermophilic green algae, Scenedesmus sp., an isolate from Manikaran thermal 

spring, Himachal Pradesh. 

5.2 Materials and Methods 

5.2.1 Isolation, Identification and Culture Optimization of Algal Strain 

Temperature tolerant strain of green microalgae was isolated from 

Manikaran thermal springs at Himachal Pradesh, India. Sampling was done 

during December 2011 and water samples collected were enriched with ‘D’ 

medium (John et al., 1975) and kept at 42ºC in an air incubator with 30 µE m-2 

s-1white fluorescent light. Isolation of algal strain was done by serially diluting 

enriched sample with 10 ml ‘D’ medium in test tubes and kept at controlled 

conditions for growth. After one week of incubation, when growth was 

observed in all tubes and the tube with higher dilutions (10-5) were taken for 

purifying the isolate as monoculture. The isolate was further streaked on ‘D’ 

medium agar plates supplemented with antibiotics to eliminate associated 

microorganisms and plates were incubated at 42ºC. Single independent 
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colonies on agar plates were isolated and inoculated in 10ml ‘D’ medium and 

further incubated at (42ºC). Identification of isolated strain was done by 

analyzing morphological features such as cell size, shape, arrangement of 

chloroplast and other organelles under phase contrast microscope and further 

confirmed by sequencing partial 18S rRNA gene. 

 
Fig 5.1 Sampling site, Thermal spring at Manikaran, Himachal Pradesh 

5.2.2 Optimization of Culture Conditions and Temperature Stress 

Treatment 

Isolated algal strain was maintained in ‘D’ medium at 42ºC and as 

growth observed was weak further standardization of culture medium was 

done and Tris Acetate Phosphate (TAP) medium was selected. Algae grown 

under optimum temperature (42ºC) was acclimatized to lower temperature 

(22ºC) to give efficient heat shock. A further increase from optimum 

temperature may affect stability of mRNA which interrupts growth. 

Acclimatized cells were further maintained at 42ºC. mRNA from algal cells 

grown at 22ºC and 42ºC were used as driver and tester respectively for the 

characterization of differentially expressed genes under temperature stress.  
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5.2.3 RNA Isolation and Suppressive Subtractive Hybridization 

Total RNA was isolated from exponential phase of growth using TRI 

reagent (Sigma, USA). Isolated total RNA was quantified by Bio photometer 

plus (Eppendroff, Germany) and integrity was checked in 1.5% agarose gel 

electrophoresis. Then the mRNA was purified with GenElute™ Direct mRNA 

Miniprep Kit (Sigma, USA). A total of 2µg purified mRNA was used for 

synthesis of complementary DNA (cDNA) and subtractive hybridization was 

done using PCR Select cDNA subtraction kit (Clone tech, USA) according to 

the manufacturer’s directions. Subtracted cDNA fragments amplified were 

cloned to cloning vector- pJET. cDNA clones obtained were screened with 

vector specific primers and insert size was analyzed by agarose gel 

electrophoresis. Positive clones were cultured, plasmids were isolated using 

GeneJET Plasmid Miniprep Kit (Thermoscientific, USA) and sequenced. The 

sequences were analyzed using both BLASTN and BLASTX for its homology 

with the available sequences (http://www.ncbi.nlm.nih.gov/BLAST/) 

5.2.4  Quantitative Validation of the Expression Profile of Selected 

Genes under Heat Shock 

Quantitative Real-Time PCR was carried out to validate genes 

differentially expressed under temperature stress. Real-Time PCR was performed 

with selected 17 genes in triplicate and reference gene used was 18S rRNA with a 

stable expression. Isolated RNA was treated with RNase free DNase (1U/µg 

RNA) to eliminate genomic DNA contamination. The qPCR was performed with 

the cDNA prepared from normal cells and heat stressed cells using Biorad SYBR 

green master mix in Biorad iQ5 thermal cycler. Primer annealing temperature for 

all selected genes and the reference gene were 60ºC and the programme used was 

as follow: initial denaturation at 95ºC for 3 minutes followed by 45 cycles of 
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denaturation at 95ºC for 20 seconds, primer annealing at 60ºC for 10 seconds and 

primer extension at 72ºC for 20 seconds, followed by 91 cycles of melt curve. 

Details of primer used for the PCR given in the table. 5.1 

Table 5.1 List of primers used for the quantitative validation of thermal stress induced genes 

SL. No. Gene Primer Sequence Product 
size (bp) 

1 FKBP 12 
S154FKBP353_QPF CCTCACATGCTCACCAGACT 

96 
S154FKBP429_QPR GAGATCAGCTCCACGTCAAA 

2 S154UN463 
S154C3UN463_QPF GCTCTTGCCAAGTATGTGGG 

103 
S154C3UN463_QPR GTTTAGCCAACCCCGGAAAG 

3 S154UN343 
S154C13UN343_QPF TGATTGGTTGGGCTGAGAGA 

89 
S154C13UN343_QPR AGTTTTAGCAGAGCGTGGTC 

4 GlutamyltRNA synthase 
S154SenGltmyl-tRNA synthtse_QP_F CCCCCACTTCAGTCTTGGTA 

100 
S154SenGltmyl-tRNA synthtse_QP_R ACGCTCACAGACTTGGACTA 

5 Aminotransferase 
S154aminotrnsfrse_QPF CTGGGTGTATAAGGTCTGCTAAG 

122 
S154aminotrnsfrse_QPR GCTGCCAATGACTCAAGAAAG 

6 S154UN425 
S154C31UN425_QPF CAACTGAGCTGTGACCATGA 

89 
S154C31UN425_QPR CATGTAGGGTGTGGTGCAAT 

7 S154UN456 
S154C43UN456_QPF TGTGCTGTGCAGAAGTCAAG 

149 
S154C43UN456_QPR ATTTGCGCATGACAAGCAAC 

8 S154UN297 
S154C100UN297_QPF GATCAATGGGCCTGGTAGGA 

70 
S154C100UN297_QPR CCGAGGTACCGCTTCAGAT 

9 S154UN379 
S154C85UN379_QPF AGGTGGCAGTAGTTGTCCG 

98 
S154C85UN379_QPR GCCTGAGATATCACGCTGAC 

10 S154UN370 
S154C2UN370_QPF AACGGAGAGTGACACCAACT 

76 
S154C2UN370_QPR GCAGCTAACACTCAACCCTG 

11 S154UN196 
S154C122UN196_QPF GCCTGCAGAGCTCACACA 

89 
S154C122UN196_QPR ACGTGTGGGGAACTAGCG 

12 Ferredoxin-NADP+reductase 
S154ferxrdxn_QPF GGTCTGATGTGGGTGTTCAT 

121 
S154ferxrdxn_QPR TCACGGGATAGGGCATAGT 

13 Nucleoside diphosphate kinase 
S154NDPK_QPF CGACCTCAATGGCGTAGTC 

122 
S154NDPK_QPR CAGTTGTTGCCATGGTGTG 

14 ATP synthase 
S154ATPsynthse_QPF TTTGATGGCGAGCTTCCT 

119 
S154ATPsynthse_QPR TGGCAAAGATGACCGACTG 

15 Aldehyde dehydrognase 
S154ADH_QPF TGCGCATGCTCCTGAAA 

107 
S154ADH_QPR CTACATGCAGGTGAAGGCTATT 

16 S154UN1082 
S154_UN1082_QPF CCCTCAAAGGACAGTGGTATG 

121 
S154_UN1082_QPR TGGAAGCCCGTGTTGTATATC 

17 S154UN370 
S154_UN_370_QPF ATTCTGGCACCCACTCTTTC 

153 
S154_UN_370_QPR TGGTTGGCGGAACTTCTTT 
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5.3 Results 

5.3.1 Isolation, Identification and Culture Optimization of Algal Strain 

Algal strain isolated from Manikaran thermal spring was identified as 
Scenedesmus sp. by observing morphology of cells. This was confirmed with 
molecular analyzes of 18S rRNA sequence (NCBI Acc.No.KM087971). 
BLAST analyzes showed its similarity with Scenedesmus sequence submitted 
in NCBI data bank. Growth observed in TAP medium was very high so it was 
used as standard medium for Scenedesmus culture. 

5.3.2 Assembly and Analysis of Scenedesmus ESTs Generated by SSH.  

Isolation and characterization of temperature tolerant genes from 
thermophilic strain of chlorophycean microalgae, Scenedesmus sp. was carried 
out by forward subtractive hybridization. A total of 325 clones were randomly 
picked and fragments with a size range of 0.1kb to 1.1kb were sequenced. All 
sequences were edited using Seqman sequence editor; vector and adapter 
sequences were removed. Further they were assembled to form contigs with 
overlapping sequences. A total of 148 contigs were formed from 325 clones 
sequenced and these sequences were aligned with gen bank data using 
BLASTN and BLASTX programmes. 

BLAST analysis of differentially expressed gene contigs in NCBI gen 
bank revealed that out of 148, majority contigs (78%) has no significant 
similarity with reported sequences and it is kept as unknown genes with 
important functions in thermal tolerance. Thirteen clones showed sequence 
similarity with ribosomal gene and remaining contigs showed significant 
sequence homology with the functionally identified genes (Fig 5.2). Most of 
the differentially expressed gene fragments belonged to functional gene 
category that was directly or indirectly linked to temperature and other abiotic 
stresses. These functionally important genes have broad spectrum of cellular 
activity such as cell maintenance and development, signal transduction, energy 
metabolism, photosynthesis, transcription factors (Fig 5.3). 
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5.3.3  Expression Profile of Differentially Expressed Genes under Hyper 

Temperature Stress from Scenedesmus sp. 
Table 5.2 List of differentially expressed genes in hyper temperature stress showing 

significant similarity to known sequences in the pubic database 

Putative gene Annotation 
e-Value Functions Reference 

Light harvesting chlorophyll-ab binding 
protein 2e-55 Photosynthesis and oxidative 

stress response, 
Andersson et al., 2001; Dittamiet al., 2009; 

Xu et al., 2012; Liu et al., 2013, , 

Rhodanase Homology Domain (RHOD), 
Gonidia specific protein 2e-75 oxidative stress response 

Pantoja-ucedaet al,, 2004; 
Ceredaet al., 2009, 

chloroplast ribulose-1 5 bisphosphate 
carboxylase oxygenase 4e-63 Photosynthesis, water stress 

and oxidative stress response 
Cunaseker and Berkowiz,1993, Chen et al., 

2011 

sedoheptulose-1,7-bisphosphatase 2e-66 Photosynthesis, salt stress 
responses Feng et al., 2007 

glutamyl-tRNAsynthetase 3e-07 Protein synthesis, heat stress 
and oxidative stress responses 

Katz and Orellana, 2012, Linga and Solla, 
2009, Tianet al., 2009 

Rieske iron-sulphur protein 2e-64 Photosynthesis and stress 
response Maiwaldet al., 2003 

aldehyde dehydrogenase 8e-33 Oxidative stress, osmotic stress, 
drought stress 

Sunkaret al., 2003; Kotchoni and Bartels, 
2003;Gaoand Han, 2009; Xu, et al, 2013 

sulfotransferase domain protein 1e-05 
Temperature stress, cellular 
detoxification  and oxidative 

stress responses 

Sebastiaet al., 2008; Wasternack and 
Hause, 2013 

aurora like protein kinase 9e-05 chromosome segregation and 
cytokinesis Demidovet al., 2005 

Serine threonine protein kinase 0.003 
Salt stress responses, Signal 

transduction, heat stress 
responses 

Hardie,1999 ; Diedhiouet al., 2008 ; Kuliket 
al., 2011 ;  Pais et al., 2009 

chloroplast ATP synthase  7e-18 Heat stress responses Chen et al., 2011 

oxygen evolving protein of 
photosystem II 2e-08 Oxidative stress, Heat stress Kimura et al., 2002 ; Murataet al., 2007, 

2-oxoglutarate dehydrogenase 1.5 Heat stress resistance, oxidative 
stress, energy metabolism Tretteret al.,2005; Li et al., 2013 

acyl carrier protein 0.002 Drought, hypoxia Klinkenberget al,. 2014 
nitrile hydrates 2e-07 Abiotic stress Machingura and Stephen, 2014 

retrotransposon Ty3-gypsy 2e-26 Plant stress and defence Grandbastien, 1998; Echeniqueet al.,2002; 
Ubiquinol cytochrome c oxidoreductase 
biogenesis factor 1e-17 Electron transport and osmotic 

stress Jiaet al., 2004 

Carboxy methylene butenolidase 1e-26 Hydrolase, carbohydrate 
metabolism, abiotic stress Kim et al., 2009;  Yan Baglo, 2014 

nucleoside diphosphate kinase 7e-57 High temperature stress, salt 
stress, oxidative stress etc Tang  et al., 2008;  Li et al., 2011 

FKBP 12 3e-35 
Refolding of denatured proteins; 
Ca2+ channel regulation, abiotic 

stress 

Pemberton,2006; Geislerand Bailly,2007;  
Yu et al., 2012 

DNA dependent RNA-polymerase 5e-20 Transcription James et al., 1979 

branched-chain amino acid 
aminotransferase II 9e-10 Drought and heat strss Rizhskyet al., 2004 

ferredoxin-NADP+ reductase 2e-144 oxidative stress 
Rodriguez et al., 2007;  
Musumeciet al., 2012, 
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Fig 5.2.Classification of Scenedesmus genes differentially expressed under hyper temperature stress 

 
Fig 5.3.Functional classification of identified genes differentially expressed under hyper temperature stress 

5.3.4 Quantitative Validation of Gene Expression by Real-Time PCR 

To validate expression profile of the selected genes differentially 

expressed under temperature, we used qPCR method. A total of 19 genes were 

selected for the quantitative validation. Both known and unknown gene fragments 
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were selected for qPCR analysis. Among the selected gene fragments all showed 

an upward expression except one fragment (UN343), which did not show any 

significant expression under heat shock. As shown in figure 5.4 the mRNA 

transcript of the aldehyde dehydrogenase gene was highest in the stressed cells 

when compared to the normal cells. These results proved the reliability of SSH for 

isolation of differentially expressed genes under two different conditions. 

 

 
Fig 5.4 The expression profile of selected ESTs generated from SSH library using Real-Time PCR. 

Error bar indicates ± standard deviation (SD), Number of replicate (n)= 3. 

5.4 Discussion 

Temperature stress is one of the important abiotic stresses in arid 

tropical countries. High temperature adversely affects normal functioning of 

cellular enzymes and thereby reduces its productivity. The present study tried 

to elucidate important genes differentially expressed under temperature stress 

from a thermophilic micro alga, Scenedesmus sp. The mechanism of stress 

tolerance is complex and controlled by a combination of genes expressed 
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under stress condition. The mechanism was extensively studied among 

microalgae but only few studies in thermophilic algae. In the present study we 

have isolated a thermophilic strain of green microalgae, Scenedesmus sp. and 

characterized genes differentially expressed under temperature stress using a 

powerful molecular method termed, Suppressive Subtractive Hybridization 

(Machida et al., 2008; Fan et al., 2012). The reliability of the SSH was further 

investigated by performing quantitative expression of selected genes by using 

Real-Time PCR. 

High temperature adversely affects photosynthetic activity of plants by 

degrading photosystem II of the thylakoid region. Light-harvesting chlorophyll 

a/b-binding protein (LHCP) is an abundant protein and functionally involved in 

dissipating light energy to photosynthetic reaction centers in the chloroplast (Xia 

et al., 2012). There are various allelic forms of LHCP present in photosynthetic 

organisms and their level of expression varies under different abiotic stresses. 

The present study also identified different forms of LHCP gene fragments 

differentially expressed under elevated temperature. Dittami et al., (2009) 

studied the thirty light-harvesting chlorophyll a/b-binding proteins from brown 

algae and reported. Most of them showed a down regulation while three genes 

showed an up regulation under hyperhaline, hypohaline and oxidative stresses. 

In Antarctic diatom, Chaetoceros neogracile, temperature shock induced 

upward regulation of five and downward regulation of ten LHC proteins 

(Hwang et al., 2008). Similar result was observed in Sueda salsa, a halophytic 

plant which showed an up regulation of LHC protein during heat and salt shock 

(Li et al., 2011). 

High temperature causes accumulation of reactive oxygen (ROS) species 

in algal cells which leads to the cellular damage and cell death. In the present 

study also we have identified many differentially expressed genes which are 
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directly or indirectly involved in oxidative stresses. Aldehyde dehydrogenase is 

one of the important enzymes actively involved in oxidative stress to detoxify 

aldehydes generated during the peroxidation of lipids. In the present study 

aldehyde dehydrogenase was over expressed in stressed cells when compared to 

normal cells. Besides temperature, other environmental stresses such as high 

salinity, drought and abscisic acid application also induce expression of 

aldehyde dehydrogenase (Gao et al., 2009). Glutamyl tRNAsynthatase gene 

which is differentially expressed under heat stress is also actively engaged in 

oxidative stress. The quantitative validation using Real-Time PCR also proved 

its elevated expression under temperature shock. It acts as key enzyme involved 

in protein synthesis by establishing genetic code through single aminoacylation 

reaction. Role of Glutamyl tRNAsynthatase in temperature stress was first 

reported among plants, in a thermal adapted grass Agrostis scabra, where 

elevated expression of Glutamyl tRNAsynthatase conferred long term tolerance 

under heat stress (Tian et al., 2009). 

In the present study, we identified a temperature tolerant gene FKBP 

type peptidyl prolylcis-trans isomerase. The classification of FKBP is mainly 

based on molecular weight. In the present study differentially expressed FKBP 

have a molecular weight of 12 KDa and thus it belongs to FKBP12 category 

and this is the lowest form with only one substrate binding domain. FKBP is 

directly involved in protein folding by cis/trans isomerization of proline imidic 

peptide bonds (Lang et al.,1987; Wang et al., 2010). Sometimes they are not 

essential for normal physiological functioning of the cell but actively 

expressed under challenging environments (Pemberton; 2006). Study on some 

FKBPs reported their elevated expression pattern under different stress 

conditions (Geisler and Bailly, 2007) which include wounding stress, salt 

stress (Vucich and Gasser., 1996), heat and cold shock (Aviezer-Hagai et 
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al.,2007), water stress (Ahnet al., 2010), light stress (Luan et al., 1994) and 

malondialdehyde treatment (Weber et al., 2004). 

Nucleoside diphosphate kinase (NDPK) has significant role in stress 

tolerance mechanisms of plants. This enzyme is actively involved in 

maintenance of intracellular dNTPs except ATP and also takes part in signal 

transduction pathways involved in oxidative stress (Otero, 2000), heat stress 

(Escobar et al., 2001) etc. In Arabdopsis, the over expression of NDPK2 

enhanced the tolerance level under multiple environmental stresses (Moon et 

al., 2003). In our study we have identified a temperature tolerant form of 

NDPK gene differentially expressed under heat stress from thermophilic 

microalgae, Scenedesmus sp. The quantitative validation of the expressed 

NDPK gene fragment also showed an elevated expression under temperature 

shock. Among microalgae, identification and expression of NDPK was done 

in Dunaliella tertiolecta (Anderca et al., 2002) and there was no more 

functional characterization of micro algal NDPKs. So it is important to 

functionally characterize them from microalgae because of their high diversity 

and adaptability to thrive under extreme environmental conditions. 

Ferredoxin-NADP(H) Reductase (FNR) is actively involved in the key 

step of electron transport during photosynthesis. Over expression of this 

enzyme during heat stress will reduce damage caused due to oxidation at 

higher temperatures. This was evidenced from enhanced tolerance to photo 

oxidative stress in transgenic tobacco with over expressed pea (Pisums ativum) 

FNR gene (Rodriguez et al., 2007). The thermophilic strain of Scenedesmus 

sp. also showed a differential expression of FNR gene under heat stress and it 

was further confirmed with the quantitative validation using Real-Time PCR. 

Other genes which are differentially expressed during this study were also 

directly or indirectly involved in enhancing the stress tolerance mechanisms. 



Chapter 5 Analysis of differentially expressed genes under temperature stress from thermophilic …… 

84 

The serine threonine protein kinase was highly expressed in plant during 

environmental stresses (Kulik et al., 2011).  

5.5 Conclusion 

Development of transgenic crops with desired capabilities will be the 

prime requirement in nearby future. This is especially important to feed the 

growing human population confronted with climate change issues. Transfer of 

extreme climate tolerant genes to crop plants will help to utilize and convert 

tropical arid waste land and flooded wet lands and marshes into fertile lands. 

This will help in global poverty alleviation also. In this context our present 

investigations of temperature tolerant genes in thermophilic Scenedesmus sp. 

offers scope and hope for transgenic crop plants. 

………… ………… 
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6.1 Introduction 

The threat of global warming is real and imminent. Environmental 

consequences of climate changes are rising temperature, low pH, drought, sea 

level rise, increased salinity etc., and these changes will greatly affect the food 

production systems such as agriculture, animal husbandry and aquaculture 

(Adams et al., 1998; Smit et al., 1988; Sirohi and Michaelowa, 2007; Gornall 

et al., 2010; Yazdi and Shakouri, 2010; Naqvi and Sejian, 2011; Lobell and 

Gourdji, 2012). Development of transgenic crop varieties capable of growing 

and producing optimally under conditions of increased temperature and 

salinity would be a feasible approach to mitigate this threat, especially in 

coastal and estuarine areas where effects of climate change will be profound 

(Jewell et al., 2010; Hemantaranjan et al., 2014).  Identification of a suitable 

gene or set of genes that can be used to impart the properties of salinity and 
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temperature tolerance to the crop would be one of the preliminary steps 

towards transgenic improvement of a crop for stress tolerance. Organisms that 

live and thrive in environments of high temperature and salinity would be the 

natural choice for screening for such genes.  

Manikaran hot springs offers such a unique environment where the 

temperature ranges from 32ºC to 96ºC, and is also saline due to the presence of 

Na-HCO3-Cl type ions (Chandrasekharam et al., 2005 and 2008). A 

chlorophycean microalga Scenedesmus sp. was isolated from this dynamic 

environment where the pool formed by the hot spring mixes partially with the 

flowing cold water of the stream, the candidate algal isolate lives in an 

environment where sudden temperature changes in the range of 10ºC to 65ºC 

happens. The organism would have developed molecular adaptations to 

survive the sudden changes in temperature and salinity of its immediate 

environment. Suppressive subtractive hybridization technique was employed 

to identify and mine out genes that were differentially expressed by 

Scenedesmus sp. during high temperature. Among the many genes identified 

there was a chaperone known as peptidyl-prolylcis-trans isomerase. 

Peptidyl-prolylcis-trans isomerases are a group of chaperones 

belonging to a family of unique proteins known as cyclophilins that are found 

in all classes of organisms. They forms one of the largest protein family, most 

of the higher forms occur in plants and are involved in several biochemical 

processes including signal transduction, protein folding and development. 

They are also known as FK506 binding protein (FKBP) due to their ability to 

bind immunosuppressive drugs like FK506, cyclosporine, rapamycin etc.  

Recent studies revealed that they have specific role in stress tolerance 

mechanisms, protein transportation and apoptosis through their molecular 
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interactions with receptors or proteins. The interaction between Small 

Ubiquitin like Modifiers (SUMO) and PPIase have important function in 

protein folding and the process of aggregation of protein is minimized by 

molecular chaperons under stress conditions (Mueller et al., 2006). PPIase 

accelerate the slow rate-limiting isomerisation step in refolding of proteins 

(Vierling E, 1991; Boston et al., 1996; Miernyk, 1999; Asadulghani et al., 

2004). The sub cellular localization of FKBPs within the cell is diverse and are 

localized among cytoplasm, nucleus rough ER, plastid stroma and 

mitrochondrial matrix (He et al., 2004). FKBP are classified based on their 

molecular weight. There are various forms of FKBP comprising size range 

from 12 KDa (Faure et al., 1998) to 135 KDa in plants (Kurek et al., 2002b; 

Galat A, 2003). These different forms of FKBP are characterized by the 

presence of at least one FK506 binding domain (FKBd). Higher forms of the 

plant FKBP posses functional domain in addition to the obligatory FKB 

domain, and common among these are tetra tricopeptide repeat (TPR) units, 

Calmodulin (CaM)-binding domains (CaMBds). Plant FKBP posses different 

functions which depends on the functional domains. Isoforms of the 

multidomain FKBP62 (ROF 1) and FKBP65 (ROF 2) are actively involved in 

the long term tolerance of high temperature stress. This is achieved through 

the modulation and expression of several small heat shock proteins (sHSPs) 

involved in recovery from heat stress (Hagai et al., 2007).  

FKBP 12, a canonical member of the FK506 binding protein is the 

basic domain of the FK506 binding proteins, which show PPIase activity. 

These canonical members function as molecular chaperones and are associated 

with the protein folding and modulation of oxidative stress (Kang et al., 2008). 

FKBP 12 is also involved in regulation of cell cycle through interaction with 

various protein partners (Aghdasi et al., 2001; Vespa et al., 2004). FKBP12-
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rapamycin-associated protein (FRAP) plays an important role in intracellular 

signaling network which ensure normal growth (Desai et al., 2002). Among 

the FKBP protein family FKBP 12 has been extensively studied and it posses 

only a single FK506 binding domain (FKBD) comprised of 108 amino acid. 

FKBP complexes formed with ligands are more resistant to proteolytic 

cleavage and form an appropriate site binding to CaN and mTOR (mammalian 

target of rapamycin) (Harrar et al., 2001; Kurek et al., 2002b). FKBP 12 has 

ryanodine receptors (RyRs) and modulates it in the absence of FK506, which 

is one of the major Ca2+ -releasing channels in the sarcoplasmic reticulum 

(Brillantes et al., 1994; Breiman and Camus, 2002; Wang et al., 2004). 

Together with the above properties of FKBP it is suggested that it has 

important role in the activities of cellular partners.  

As consequences of global climatic change the temperature increases 

which indirectly affect soil salinity through the intrusion of saline water 

because of sea level rise. High temperature, salinity and other forms of stress 

results in misfolded proteins that tend to disrupt vital cellular functions. 

Organisms that live in harsh environments have developed distinct molecular 

mechanisms to adapt and thrive; they have proteins with altered structure to 

withstand and function in extreme environment, and also express stress 

responsive chaperones that enable proper folding of proteins and refolding of 

misfolded proteins. In this study we have completely characterized a stress 

responsive molecular chaperone, FKBP type peptidyl-prolylcis-transisomerase 

from thermophilic algae, isolated from the hot springs of India. This gene has 

exhibited tolerance to temperature and salinity. Hence is an ideal gene 

candidate for raising stress tolerant crop plant for the sustainable production in 

the changing global climate. 
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6.2 Materials and Methods 

6.2.1 Sequence Analysis of Sce.FKBP 12 

The Open Reading Frame (ORF) of ScenedesmusFKBP12 gene was 

identified and the amino acid sequence predicted using Editseq of Laser gene 

software. Homologous FKBP12 gene sequences in other species were 

obtained from NCBI by BLAST query. Multiple sequence alignments were 

generated using Bio-Edit multiple alignment tool. Phylogenetic trees were 

constructed using Molecular Evolutionary Genetics Analysis (MEGA version 

6) software with the Neighbour-Joining method (Tamura et al., 2013). 

6.2.2 FK506 Sensitivity Assay 

Growth of Scenedesmus cells on TAP (Tris Acetate Phosphate) media 

containing different concentration of immunosuppressant drug, FK506 was 

assayed by spotting 5µl of normalized cultures in different dilution (100mM, 

200mM, 500mM and 1000mM) during the exponential phase of growth.  

Spotted plates were incubated at 25ºC under a cool white fluorescent light. 

6.2.3  Quantitative gene Expression of Sce.FKBP 12 under Temperature 

and Osmotic Stress 

Gene expression profile of the isolated FKBP-type peptidyl-prolylcis–

transisomerase gene was analyzed using Bio Rad IQ5 Real-time Thermal 

cycler. Quantitative validation of Sce.FKBP 12 gene under various 

temperatures and osmotic stresses were carried out.  Algal cells grown at 

lower temperature was subjected to a heat shock (22ºC to 42 ºC) for specified 

time (0 Hrs, 6Hrs, 12Hrs, 24Hrs and 48Hrs). Osmotic stress was given by 

treating cells with 0.5M NaCl with same duration followed in the temperature 

stress treatment. All RNA samples were quantified spectrophotometrically 
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using Bio photometer plus (Eppendroff, Germany) and the integrity of the 

samples were analyzed in 1.5% agarose gel electrophoresis. Quantified RNA 

samples were treated with RNAse free DNAse 1(1u/µg RNA, Fermentas) to 

remove the genomic DNA contamination. First strand cDNA was synthesized 

using Revert Aid Premium cDNA synthesis Kit (Thermo scientific, USA). The 

resultant cDNA was used as template in 25µl PCR reaction mixture with 

Power SYBR Green Master Mix (Applied Biosystem, USA) and gene specific 

primers designed from the ORF of Sce.FKBP12 gene. The 18S rRNA gene 

was chosen as an internal reference gene for determining the RT-PCR 

amplification efficiency among different reactions. Details of primers used are 

given in table 5.1. PCR amplification was carried out using the following 

programme: 94 ºC for 3 min followed by fifty cycles at 94ºC for 10s, 62ºC for 

30 s and 72ºC for 20s and final melt curve of 90 cycles 50-90ºC . The 

specificity of the reactions was verified by melting curve analysis. PCR 

conditions were standardized for both FKBP and 18S rRNA reference genes.  

6.2.4 Recombinant Cloning and Expression of Sce.FKBP12  

The coding sequence of the FKBP gene was amplified using the 

oligonucleotide forward primer 5’ ACTGTAACCATGGGAGTCACCAAGG 

AGACTG (>FKBP_F) and oligonucleotide reverse primer 

CGTGGAGCTGATCTCAATCTCACTCGAGAGTTGTA (>R_FKBP) and 

cloned into NcoI and XhoI site of pET28b expression vector (Novagen, USA) 

and was termed pET28Sce.FKBP12.  pET28Sce.FKBP12 construct was 

transformed to E.coli BL21 (DE3) competent cells. Transformed colonies were 

inoculated to LB broth supplemented with Kanamycin (50µg/ml) and grown at 

37ºC with continuous shaking at 225rpm. The expression of the FKBP gene was 

induced at OD 600 ~ 0.6 using 0.5mM isopropyl-β-D-thiogalactopyranoside 

(IPTG) for 4 hours. The induced and uninduced (control) cultures were 
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harvested by centrifugation at 8000rpm for 5 min and protein expression 

analyzed in 15% tricine gel SDS-PAGE.  

6.2.5  Temperature and Salinity Tolerance of Recombinant E. coli cells 

with Sce.FKBP12 Gene 

The E.coli cells (BL 21) transformed with pET28Sce.FKBP12 gene and 

with pET28b vector alone (control) were used for the tolerance study under 

temperature and salinity stress. A starter culture was prepared by inoculating 

single colony from both the transformed cells in LB broth with Kanamycin 

(50µg/ml) and kept overnight at 37 ºC in a shaking incubator. 2% stock culture 

was inoculated in 10ml LB broth containing 50µg/ml Kanamycin and 0.5mM 

IPTG. Initial OD600 was taken after inoculation and the tubes kept in a shaking 

incubator with an rpm of 225 at 45ºC. For studying salinity tolerance cultures 

were inoculated into LB media containing different concentration of NaCl (0.5M, 

1M, 1.5M and 2M NaCl) and 0.5mM of IPTG and kept at 37ºC with an rpm of 

225. Both the cultures were made as triplicate to reduce the standard error. The 

growth rate was monitored by taking OD600 with an interval of 2 hours. 

6.3 Results 

6.3.1 Isolation and Sequence Analysis of FKBP-type Peptidyl-prolyl cis–

Trans Isomerase 

Suppressive subtractive hybridization technique was adopted to reveal 

differentially expressed genes under temperature stress from thermophilic 

micro algae, Scenedesmus sp. The SSH clones were sequenced and contig 

aligned. The contigs were screened using NCBI blast query search 

(http://www.ncbi.nlm.nih.gov/BLAST/), one contig showed high similarity to 

FKBP type peptidyl-prolylcis–transisomerase. The Sce.FKBP12 contig (NCBI 

Acc. No. KR908645) contained the complete open reading frame (ORF) of 
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327bp for the gene and encoded a 108 amino acid protein with a predicted 

molecular mass of 12kDa. FKBP type protein families are mainly classified 

based on their molecular weight so the identified PPIase gene from 

Scenedesmus belongs to FKBP 12 family. FKBP 12 is the lowest form of the 

identified FKBPs, which have only one domain for substrate binding. To study 

the evolutionary relationship of FKBP 12 from different organisms a 

phylogenetic tree was constructed using neighbour joining method with 1000 

replicates of bootstrap analysis for statistical reliability. As shown in the 

fig.6.3 the Scenedesmus FKBP 12 gene sequence shows highest phylogenetic 

similarity with closely related Chlamydomonas FKBP 12. The identity 

between the Scenedesmus FKBP12 and homologs in other organisms ranges 

from 69% to 79% at amino acid level. Analysis of the Sce.FKBP 12 amino 

acid sequence showed a single amino acid deletion of glutamic acid at 56th 

position as compared with its orthologs from other related organisms.  

 
Fig 6.1cDNAand deduced amino acid sequences of FKBP 12 gene from Scenedesmus sp. 
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Figure 6.2  Alignment of deduced amino acid sequences of FKBP12 from Scenedesmus sp. and 

orthologs of other eukaryotic organisms. Conservation of amino acid residues with 
similarity 90% and above are shown by colour shadings. Accession numbers of 
sequences for FKBP 12 proteins are: XP_001693615 (Chlamydomonasreinhardtii), 
NP_201240 (Arabidopsis thaliana), NP_004107  (Homo sapiens),  NP_037234 
(Rattusnorvegicus), NP_032045(Musmusculus), AAI02339 (Bos Taurus), NP_014264 
(Saccharomyces cerevisiae), NP_001239119 (Canis lupus), AFN85815 (Pierisrapae), 
CAA88904(Drosophila melanogaster),XP_004083389 (Oryziaslatipes), ABK15648 
(Bombyxmori), M3WX41 (Feliscatus) and O04287(Viciafaba) 
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Fig 6.3 Phylogenetic tree of FKBP 12. The amino acid sequences were subjected to Bootstrap   test of 

phylogeny by the MEGA 6.0 program, using neighbour-joining method with 1000 replicates 

6.3.2 Influence of FK506 on Growth of Scenedesmus Cells 

The growth rate of Scenedesmus cells grown on TAP medium plate 

supplemented with different concentration of FK506 drug and also control 

plates without the drug was monitored. After 10 days of incubation plates were 

investigated for the growth and found that there was no significant difference 

in the growth of FK506 Scenedesmus cells in FK506 treated plates as 

compared to the control plates (Fig 6.4). The effect was negligible even at 

higher concentration (1000nM) which is about 10 times the concentration 

inhibiting yeast growth (Gollan and Bhave, 2010). This result shows that 

FK506 has no significant effect on the growth of Scenedesmus cells.  The drug 

binding capacity of the FBKP depends on the hydrophobic pockets formed by 

several amino acid residues. Among this glutamic acid at position 54 or 

surrounding area is essential for high affinity towards the immunosuppressant 

drugs. The inability of FK506 to inhibit the cell growth may be due to the 
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deletion of glutamic acid at 56th amino acid position in Scenedesmus FKBP12 

which may affect the affinity of FKBP12 towards the immunosuppressant 

drugs, or it may also be due to the high expression of duplicate forms under 

stress conditions (Gollan and Bhave, 2010).  

 
Figure 6.4 Effect of FK 506 on growth of Scenedesmussp. ThermophilicScenedesmus cells at different 

dilutions were spotted onto TAP plates containing the indicated concentrations of FK 506. 
Plates were incubated at 25ºC under continuous illumination. 

6.3.3  Expression Profile of FKBP 12 under Temperature and Osmotic 

Stress 

Expression pattern of the isolated FKBP 12 gene was analyzed using 

real time PCR. Specificity of the PCR reactions for both FKBP 12 and 18S 

rRNA genes were confirmed with real time dissociation curve.  The 

expression of Sce.FKBP12 gene under temperature shock (22ºC to 42ºC) and a 

hyper osmotic stress at different time interval (0 hr, 6 hr, 12 hr, 24 hr and 48 h) 

were analyzed. Both the thermal and osmotic stress showed a significant 

variation in the level of expression of the FKBP 12 gene with the duration of 

time and there was an upward regulation of Sce.FKBP12 gene under 

temperature and salinity shock. The expression profile was highly significant 
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with duration of heat and osmotic shock that there was a rapid change of 

mRNA transcript level at 24 hours and it increased at 48 hours, after which the 

expression data was not taken (Fig 6.5 and 6. 6). 

 
Fig 6.5  Expression pattern of ScFKBP 12 gene under heat shock at different time intervals. Error bar 

indicates ± standard deviation (SD), Number of replicate (n)= 3. 

 
Fig 6.6  Expression pattern of Sce.FKBP 12 gene under osmotic stress at different time interval. Error 

bar indicates ± standard deviation (SD), Number of replicate (n) = 3. 
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6.3.4 Recombinant Expression of Sce.FKBP 12 Gene in E. coli 

The coding sequence of the Sce.FKBP12 gene was cloned to pET28b 

expression vector and was transformed to BL21 E. coli cells. The expressed 

recombinant Sce.FKBP12 (rSce.FKBP12) protein was visualized in 15% tricine 

gel SDS-PAGE (Fig.6.7b) with size near 14 kDa (including the C terminal His 

tag)  

                             
   a)                            b) 

Fig 6.7.a) 1-cDNA amplification of FKBP 12 gene (complete CDS), M-100bp marker b) Expression profile of 
FKBP12 protein on 15% SDS-PAGE 

6.3.5  Temperature and Salinity Tolerance of Recombinant E. coli cells 

with Sce.FKBP12 Gene 

The recombinant E.coli cells were initially grown under normal 

temperature (37ºC) was subject to a temperature stress (42 ºC) and the growth 

rate was monitored by measuring OD600 at 2 h. intervals. It was observed that 

both the transformed cells acclimatized to elevated temperature but the growth 

rate was higher in the E.coli transformed with pET28Sce.FKBP12 compared 

to the control E.coli cells transformed with empty pET28b vector (Fig 6.8).  
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Fig 6.8 The growth pattern of BL21 cells transformed with pET28FKBP12 and empty pET28b under hyper 

temperature. Error bar indicates ± standard deviation (SD), Number of replicate (n) = 3. 

Hyperosmotic stress retarded the growth rate of pET28 (control), but 
the Sce.FKBP12 gene transformed BL21 cell acquired a better growth rate 
when compared to the control cells under elevated salinity. An enhanced 
growth rate was observed in the cells with Sce.FKBP12 gene when compared 
to the pET28 vector alone transformed cells at 0.5 M NaCl (Fig.6.9). 
pET28Sce.FKBP12 transformed E.coli cells acquired temperature and salinity 
tolerance when compared to the empty pET28b transformed cells.  

 
Fig.6.9  Growth curve of recombinant BL 21 E.coli cells with pET28FKBP12 gene and   pET28 (control) under 

hyper osmotic stress. Error bar indicates ± standard deviation (SD), Number of replicate (n)= 3. 
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6.4 Discussion 

In the present research work temperature and salinity responsive form of 

FKBP 12 gene was isolated and characterized from thermophilic green algae, 

Scenedesmus sp. This is the first report of temperature and salinity tolerant 

FKBP 12 gene cloned and functionally characterized. Phylogenetic analysis of 

the Scnedesmus FKBP 12 gene showed a close relationship with 

Chlamydomonas FKBP 12 gene, both the algae belongs to same family 

chlorophyceae. In vitro study on the effect of immunosuppressant drug, FK506 

on the growth of Scenedesmus showed that there is no significant effect on the 

growth as compared to Chlamydomonas, which is sensitive to 

immunosuppressant drugs (Crespoet al., 2005). Compared to other eukaryotes, 

plants are insensitive to immunosuppressant drug due to the inability of plant 

FKBP12 to bind immunosuppressant drugs (Xu et al., 1998). Multiple 

alignment of Sce.FKBP 12 protein with other FKBPs revealed a single amino 

acid mutation, absence of Glu at position 56, which would significantly reduce 

the binding of immunosuppressant drugs. This result is in agreement with the 

yeast complement assay done by Crespo et al. with mutant FKBP 12s where the 

presence of Glu either at position 54 or surrounding area significantly increased 

drug binding. The reason behind the high affinity of immunosuppressant drug 

on this Glu residue is the establishment of additional hydrogen bond with 

immunosuppressant drugs, as reported by Choi et al., (1996). This insensitivity 

may also be due to the high expression of duplicate forms under stress 

conditions (Gollan and Bhave, 2010). Stress conditions modulate the formation 

of CsA and FK506-insensitive FKBP with PPIase activity, thus suggesting that 

it may also be involved in stress adaptation (Sharma and Singh, 2003). We also 

investigated the reliability of subtractive hybridization by validating the 
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expression pattern of FKBP 12 gene under elevated temperature at different 

time intervals using Real Time PCR.  

In plants, FKBPs are regulators of normal growth and development and 

provide a tool for enhancement of crop yield under stress conditions (Sharma 

and Singh, 2003). Study on some FKBPs reported their elevated expression 

pattern under different stress conditions which include wounding stress, salt 

stress (Vucich et al., 1996), heat and cold shock (Kang et al., 2008), water 

stress (Ahnet al., 2010) and light (Luan et al., 1994). In the present study 

Sce.FKBP12 gene was recombinantly expressed in E.coli. The recombinant 

cells over expressing ScFKBP12 acquired increased tolerance to temperature 

and salinity stress, the recombinant E.coli with Sce.FKBP 12 gene revealed a 

better growth when compared to E.coli transformed with empty pET28b 

vector. Trivedi et al. showed similar results in E.coli with PPIase gene from 

Piriformos poraindica, which enhance the growth rate of recombinant cells 

with PiCyPA under multiple abiotic stresses (Trivedi et al., 2013). This result 

strengthened the role of FKBP in temperature and salinity tolerance 

mechanisms. In higher plants multi- domain FKBPs are involved in heat stress 

responses (Yu et al., 2012), however here we report a single-domain 

ScFKBP12 which has significant up regulation under temperature and salinity 

stress. In higher eukaryotes even though the FKBP family is large but each 

member has its unique biological role and one member cannot completely 

complement the absence of another one (Breiman and Camus, 2002).There has 

been substantial progress in the past few years towards the characterization of 

FKBPs participating in stress responses in Arabidopsis (Vucich and Gasser, 

1996; Hagai et al., 2007), rice (Ahn et al., 2010) and wheat (Blecher et al., 

1996; Reddy et al., 1998; Kurek et al., 2002b; Dwivedi et al., 2003).  
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6.5 Conclusion 

As a eukaryote, extremophilic microalgae are suitable source for 

“candidate genes”, as they can survive unfavourable condition which cannot 

be sustained by normal life. Studies on algal FKBPs are rare and it is 

important to characterize each FKBP from microalgae because of their diverse 

distribution, abundance and simple cell structure. Our investigation on 

thermophilic green algae, Scenedesmus sp. isolated from thermal spring for 

identifying genes differentially expressed during temperature stress provided 

us with a temperature and salinity tolerant FKBP12 gene. It was seen that 

Scenedesmus FKBP12 showed up regulated expression in conditions of both 

increased temperature and salinity. When Scenedesmus FKBP12 was 

recombinantly expressed in E. coli the cells gained temperature and salinity 

tolerance, the gene now needs to be further validated in model plant systems 

before exploiting the gene for development of transgenic crop, which could be 

cultivated in higher saline/ and high temperature habitat.    

………… ………… 
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As a eukaryote, extremophilic and extremotolerant microalgae have 

potential application in the field of biotechnology and genomics. Microalgae 

can be used as model organism for the study of complex cell processes of 

plants because of their diverse distribution, simplicity in cell structure and 

convenience of raising and maintaining the culture in laboratory environments. 

Extremophilic organisms flourish in the adverse condition through special 

mechanisms like osmolite accumulation, physiological and biochemical 

adaptation, etc. Abiotic stress tolerance mechanism is a complex polygenic 

trait with allelic variations. Extremophilic microalgae have the inherent ability 

to with stand adverse climatic condition through the altered gene expression. 

Characterizations of these genes and their expression in suitable system have 

potential application for the development of stress tolerant plant varieties 

through genetic engineering. Apart from this extremophilic microalgae are 

good source of bioactive compounds which have potential applications in 

biotechnology. Global warming has serious impact on earth climate which 

greatly affect both land and ocean productivity. Among the various abiotic 

stresses salinity, temperature and pH has the maximum impact. To mitigate 

this problem it is necessary to develop food producing plants and other 

organisms which tolerate the changing climatic conditions. Previous 

approaches depend mainly on traditional selective breeding, but it is time 

consuming and has limited application. Advancement of biotechnological 
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methods like Next Generation Sequencing provides an insight to molecular 

mechanisms underlying stress tolerance. Transcriptomic profile of crop 

varieties has revealed the genes involved in various cascades of enzymatic 

action during abiotic stress tolerance. Alterations of specific pathways with a 

better allele of an extremophilic origin can enhance the tolerance level of 

sensitive species. In this context, characterization of functional genes 

differentially expressed under extreme condition from these algae have 

significant application for the development of crop varieties with better 

tolerance in varying agro-climatic conditions.  

In India there are vast stretches of land unutilized due to the extreme 

abiotic conditions such as salinity temperature and pH. We need to explore 

ways to bring these unutilized areas for raising food crops. Hence we have to 

explore modern tools in biotechnology such as gene mining, expression and 

their use in the development of agricultural crops which could grow in 

extreme conditions. In the present research work, we have looked into the 

possibility of gene mining from extremophilic and extremotolerant microalgae 

from diverse Indian ecosystems with special reference to acidity, salinity and 

temperature. 

Major Achievements of Present study are as follows 

 This study focuses on the extremophilic and extremotolerant 

microalgae which tolerates various extremities like hyperosmotic, 

acidic and thermal conditions. Isolation of the algal strain was carried 

out from various habitats like salt lakes, salt pans, thermal springs, 

coastal areas and estuaries. 
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I. Acid tolerant gene mining, characterization and expression 

 A euryhaline acid tolerant microalgae D. Ehrenbergianum was isolated 

and characterized from the Cochin estuary.  Isolated strain with wide 

range salinity (0-40 ppt) and pH (3-8.5) tolerance was used for the 

characterization of differentially expressed genes in acidic stress.  

 Suppressive subtractive hybridization (SSH) generated a differential 

trancriptome under acidic stress. A total of 200 transcripts of 

differentially expressed gene fragments were analysed. All the 

identified genes are directly or indirectly involved in the acid or abiotic 

stress tolerance mechanisms and are actively involved in biological 

process of the cell. Among the gene fragments analysed 55% showed 

sequence similarity with functional genes, 21% unknown genes which 

may have functional roles in abiotic stress and the remaining 24% 

contributed to ribosomal genes. 

 Quantitative validation of selected gene fragments showed upward 

regulation in acidic condition. Some of the selected gene which showed 

substantial upward regulation include H+ATP synthase, major-facilitator-

like ion transporter, thioredoxin, calmodulin, osmotically inducible 

protein, glutathione peroxidase, cinnamyl alcohol dehydrogenase etc.  

 Full gene amplification of a proton donating H+ ATP synthase was 

carried out using RACE PCR.  The amplified De.H+ATPase gene has 

an ORF of 1617 bp encoding 538 amino acid protein with a predicted 

molecular mass of 57.6 KDa. 

 De.H+ATPase gene was recombinantly expressed in E.coli (BL21) 

with pET28b expression vector. Acquired tolerance of recombinant 

E.coli with DeH+ATPase in acidic pH was analysed. 
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II. Saline tolerant gene mining characterization and expression 

 A halophilic microalga, Tetraselmis indica was isolated from Pulicat 

Lake which tolerates up to 3M NaCl concentration. Characterizations 

of saline responsive genes were carried out from this algae using SSH.  

 A total of 182 differentially expressed transcripts were sequenced. 

Among the differentially expressed genes 43% showed sequence 

similarity with functionally identified genes, 38% unknown gene 

which may have functional roles in salinity stress tolerance and the 

remaining 19% showed sequence similarity with ribosomal genes. 

 Expression profiles of selected 12 genes were carried out using Real-

Time PCR. All the genes showed an upward regulation except 

GAPDH and MIF4G domain. Maximum expression was observed for 

the genes hydroxyl pyruvate reductase (HPR) and fructose-

1,6bisphosphatealdolase (FBA). 

 Among the highly expressed genes fructose-1,6 bisphosphate aldolase 

(FBA) was fully amplified by RACE PCR. The full gene with an ORF 

of 1161 bp nucleotide with 387 predicted amino acids was translated to 

FBA protein of size 41.4 KDa. 

 Recombinant expression of Ti.FBA imparts salinity tolerance in E.coli 

under hyperosmotic stress. 

III. Thermotolerant gene mining characterization and expression 

 Isolation of thermophilic microalgae Scenedesmus sp. was carried out 

from Manikaran hot spring at Himachal Pradesh, India. Manikaran hot 

spring is unique for its high temperature and moderate salinity. 
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 A differential gene expression profile was created by analysing 325 gene 

fragments differentially expressed under hyper temperature stress. Among 

the gene fragments analyzed 78% has no significant similarity with the 

reported sequences and it is assigned as unknown genes with important 

functions in thermal tolerance. Thirteen clones showed sequence 

similarity with ribosomal gene and the remaining contigs showed 

significant sequence homology with the functionally identified genes. 

 Quantitatively validated selected genes using Real-Time PCR showed 

an upward regulation under heat shock.  

 Among the differentially expressed genes, a molecular chaperone 

called peptidyl-prolyl-cis-trans isomerase was obtained with complete 

ORF of 327 bp, encoding a 108 amino acid protein with a predicted 

molecular weight of 12 KDa. 

 Molecular characterization and recombinant expression of PPlase gene 

was carried out. As a chaperon this gene has roles in various abiotic 

stresses. This study proved its role in temperature and salinity stress 

through recombinant expression and validation in E.coli 

Conclusion 

Abiotic stress has severe impact on plant productivity worldwide. Among 

the various abiotic stresses salinity, temperature and acidity has significance 

because of the global warming. This study helps to understand the molecular 

mechanism of stress tolerant microalgae under acidic, hyperosmotic and hyper 

temperature condition through the differentially expressed genes. Most of the 

genes differentially expressed in these conditions have active role in various 

abiotic stresses. Some genes uniformly expressed in one or more stress 

conditions has proved their role in multiple stresses. In the present study all 



Chapter 7                 Summary and Conclusion 

107 

the three stressors, namely salinity, low pH and temperature induced the over 

expression of ATP synthase gene in all the three different microalgae studied. 

One of the osmotic stress tolerance mechanisms is through the elevated 

synthesis of different osmolites. FBA is an important enzyme in the 

production pathway of glycerol, a vital osmolite produced during 

hyperosmotic stress. Apart from thermal stress PPlase has significant role in 

the various stresses because of its role in protein aggregation and refolding. 

All the abiotic stress finally leads to oxidative damage, so the expression of 

genes involved in antioxidant mechanisms were observed in all these stresses. 

Genes like thioredoxin, aldehyde dehydrogenase, peptidylprolyl-cis-trans 

isomerase, ferredoxin-NADP+reductase, nucleoside diphosphate kinase, 

glutathione peroxidase etc. are actively involved in oxidative stress tolerance 

mechanisms. Recombinant expression of De.H+ ATP synthase, Ti.FBA and 

Sce.FKBP12 in E.coli impart resistance to low pH, osmotic stress and 

temperature stress respectively. In addition to temperature stress Sce.FKBP12 

recombinant cells acquires osmotic stress tolerance also. Bioprospecting of 

FKBP12 with versatile tolerance to temperature and salinity and their 

functional validation in cell system is a major achievement of present work. 

The gene constructs developed in the present study should be further 

characterised and validated using model eukaryotic organisms like 

Arabidopsis, Tobacco etc., for its suitability as a transgene for imparting stress 

tolerance in higher eukaryotes. After validation, if found suitable, it can be 

used for generating stress tolerant transgenics of agriculturally and 

economically important species for enhancing growth and productivity under 

various abiotic stresses. 

………… ………… 
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