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ABSTRACT

Seaweeds offer valuable bioactive molecules with antioxidative properties,

and are abundantly available in the Gulf of Mannar region of the Southeastern

coasts of India. This study aimed to evaluate the antioxidative properties of different seaweed

species available in this region and isolating the compounds with potential radical scavenging

activity. The methanol extract and solvent fractions (n-hexane, dichloromethane and ethyl

acetate) of the brown seaweeds Turbinaria conoides, Turbinaria ornata, Anthophycus

longifolius, Sargassum plagiophyllum, Sargassum myriocystum, Padina tetrastomatica,

Padina gymnospora and Stoechospermum marginatum and the red seaweeds Laurencia

papillosa, Gelidiella acerosa and Acanthophora spicifera collected from the Gulf of Mannar

region of Mandapam were screened for potential antioxidant properties by different model

systems. The antioxidant activities of these seaweeds have been evaluated using different

in vitro assays, viz 1,1-dipheny1–2-picrylhydrazyl (DPPH), 2,2’-azino-bis-

(3ethylbenzothiozoline-6-sulfonic acid) diammonium salt (ABTS), hydrogen peroxide (H
2
O

2
)/

hydroxyl radical (HO.) scavenging, ferrous ion (Fe2+) chelating ability, thiobarbituric acid

reactive species (TBARS) formation inhibition assay and reducing potential. A reversed-

phase high-performance liquid chromatography method hyphenated to diode-array detection

was also utilized to characterize the solvent extract fingerprints of phenolic acids in the

seaweed species. These seaweed-derived crude extracts have been purified by a series of

chromatographic purification steps based upon their antioxidant potential and further

chromatographically purified to yield the antioxidant secondary metabolites.

It was observed that the ethyl acetate fractions of seaweeds exhibited higher radical

scavenging potential and phenolic content as compared with the methanol extracts and

other solvent fractions. A higher phenolic content (283 GE/g), DPPH (97%, 1 mg/mL) and

ABTS (97%, 0.6 µg/mL) radical scavenging activities were recorded for the ethyl acetate

fraction of Laurencia papillosa. The ethyl acetate fraction of Padina tetrastomatica registered

higher hydroxyl radical potential (87%) followed by the dichloromethane fraction of Padina

gymnospora (85%, 0.6 mg/mL). The dichloromethane fraction of Padina gymnospora and

the ethyl acetate fractions of Turbinaria conoides and Acanthophora spicifera were proved to

be equally effective towards scavenging hydrogen peroxide (18%, 1 mg/mL). Thiobarbituric

acid reactive species formation was effectively hindered by the ethyl acetate fractions of

Gelidiella acerosa, Padina tetrastomatica and Sargassum myriocystum (> 5 MDAEC/kg, 2

mg/mL). Higher reducing abilities were recorded with the ethyl acetate fractions of
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Stoechospermum marginatum, Acanthophora spicifera, and Anthophycus longifolius (>1.48

A700nm, 1 mg/mL). The ethyl acetate fraction of Anthophycus longifolius registered higher Fe2+

ion chelating ability (88%, 0.6 mg/mL) followed by that of Stoechospermum marginatum

(82%, 0.6 mg/mL).

2, 5 dihydroxy benzoic acid (15 mg/g),  epicatechin (36 mg/g) and  epicatechin gallate (205

mg/g) were predominant in the methanol fraction of Turbinaria conoides, whilst chlorogenic

acid (43 mg/g), salicylic acid (8 mg/g) and gallic acid (65 mg/g) were the main components

in the ethyl acetate fraction of Turbinaria ornata. A higher amount of epigallocatechin gallate

(84 mg/g) was identified in the ethyl acetate fraction of Padina tetrastomatica, whereas the

methanol fraction of Padina gymnospora registered a higher amount of syringic acid (132

mg/g). Methanol fraction of Gelidiella acerosa exhibited a dominant amount of catechin (21

mg/g) than other seaweeds. Caffeic acid (12 mg/g), coumaric acid (21 mg/g), ferulic acid (27

mg/g) and quercetin (33 mg/g) were found to be predominant with the ethyl acetate fraction

of Stoechospermum marginatum.

Based upon the bioassay results the brown seaweeds Anthophycus longifolius and

Padina gymnospora and the red seaweeds Acanthophora spicifera and Laurencia papillosa

were selected for further isolation and chromatographic purification of antioxidant secondary

metabolites. Bioassy guided chromatographic purification of the methanol extract of

Anthophycus longifolius yielded (9H-fluoren-9-yl)methyl 1-(propoxycarbonyl) butylcarbamate

and 3-((2E,8E)-1,4,6,10,12-pentahydroxy-16-oxo-15,21,24-trioxa-bicyclo[17.3.2]tetracosa-

2,8-dien-9-ylamino)-22,23-(4-hydroxyphenyl)-2-methoxypropanoic acid as major antioxidant

secondary metabolites with higher DPPH (>76%, 0.1mg/mL) and ABTS (>30%, 0.1µg/mL)

radical scavenging abilities, and ion chelating potential (>26%, 0.1mg/mL). The methanol

extract of Padina gymnospora upon sequential bioassay guided chromatographic purification

yielded two antioxidant secondary metabolites 1-((4Z)-2,3,7,8-tetrahydrobenzo[b]oxepin-2-

yl)tetradecan-2-oxo-5-((E)-but-2-enyl)-dihydrofuran-2(3H)-one and (6Z)-methyl 8-(2-((E)-4-

ethyl-3-isopropyl-5-methylhept-1-enyl)-tetrahydro-6-oxo-2H-pyran-3-yl)-3,3-dimethylnon -6-

enoate (>70% DPPH and >23% ABTS radical scavenging activities, and >20% ion chelating

potential).  Two antioxidant secondary metabolites 3-hexyl-5,6-dihydro-6-undecylpyran-2-

one and butyl 4-acetyl-2-((E)-3,5-dimethylhex-2-enyl)benzoate were yielded by repeated

bioassay guided chromatographic purification of the methanol extract of the red seaweed

Acanthophora spicifera. The methanol extract of Laurencia papillosa upon continual bioassay

guided chromatographic purification yielded two antioxidant secondary metabolites 12-

tridecenyl 2-methylacrylate and 3-(1-butyl-7,12-dihydro-2-methoxy-7-oxo-10-((1E,5E)-3-
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oxohepta-1,5-dienyl)-6-pentyltetraphen-9-yl)-3-oxopropanal with >72% DPPH and >29%

ABTS radical scavenging activities and >21% ion chelating potential. The natural antioxidative

compounds identified from the seaweeds in the present study will serve as potential lead

molecule for newer synthetic routes.

The natural antioxidative compounds identified from the seaweeds in the present

study will serve as a potential substitute replacing the harmful synthetic alternatives and also

open up new horizons for the development of safe synthetic antioxidants. The study stands

as the first of its kind reported from the biodiversity rich habitat of Gulf of Mannar. We have

explored the seaweeds which are abundantly available and their abundance is independent

of seasonal variation. This Study will serve as the lead to understand the medicinal importance

of the seaweeds, which, in turn, will be the natural template for synthesis of highly active

molecules. The study also open up the importance of sea weed mariculture as the same will

stand as raw material for the isolation of natural compounds with antioxidant activity.
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CHAPTER 1

Introduction
1.1. Oxidative Stress

Free radicals are generated in the living cells due to many biological processes that

normally take place in our metabolic pool. These free radicals are highly reactive and can damage

the living cells in many ways. But our body possesses suitable defense mechanisms to detoxify

these deleterious radicals. When the production of these free radicals exceeds beyond a limit due

to excessive oxidation, the natural defense system of body fails. This causes a state called oxidative

stress which results in the denaturation of proteins, cellular membranes and genes. Oxidative

stress is associated with a wide variety of diseases like atherosclerosis, diabetes mellitus,

neurodegenerative disorders, cancers, rheumatic diseases, autoimmune disorders etc (Ilie &

Marginã 2012), and also leads to a general feeling of illness, lethargy, lack of enthusiasm, depressed

immune system leading to the loss in cell and organ functions (dedicated website

http://www.neurogenol.co.uk/oxidativestress.html). The oxidative stress can also have harmful

effects on foods as production of rancid flavours and odours, reducing the shelf-life, nutritional

quality, and safety of food products (Zainol et al. 2003; Chanwitheesuk et al. 2005).

1.2. Reactive Oxygen Species (ROS) and Health Implications

1.2.1 Reactive Oxygen Species (ROS)

Reactive oxygen species (ROS) are chemically reactive molecules derived from the

molecular oxygen. Superoxide anion (O
2

-z) hydroxyl radical (zOH), lipid peroxyl radical (LOOz),

hydrogen peroxide (H
2
O

2
) and singlet oxygen (1O

2
) are some common examples of ROS. These

reactive species originate from the environment, from other free radicals in chain reactions, and

from many normal biological processes in vivo. The free radicals will enter into our cellular system

through different endogenous and exogenous pathways. ROS are generated endogenously by

different processes such as mitochondrial electron transport, endoplasmic reticulum oxidation,

plurality of enzymatic activities, gluconolactone oxidase, prostaglandin synthesis, auto oxidation

of biomolecules with unsaturated and electron rich centers, which are predominant in several

biosynthetic path ways (Tandon et al. 2005). Exogenous sources such as drugs, halothene,

paracetamol, bleomycine, doxorubicin, metrenidazole, ethanol, CCl
4
, pesticides, transition metals,

radiations, and high temperature (Tandon et al. 2005) also contribute significantly towards the

generation of these deleterious free radicals.

The predominant types of ROS are distributed under the following heads

1.2.1.1. Superoxide Anion

The cellular processes like mitochondrial electron transport systems, microsomal electron

transport systems, xanthine oxidase, xanthine dehydrogenase etc. are considered to be the major

sources of superoxide anion molecule. They are also created by the cellular process where NADPH
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Figure 1.1. Schematic representation of the ROS formation and its mechanism of action
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REACTIONS

1, 2 and 3 : The superoxide anion radical is formed by the process of reduction of molecular
oxygen mediated by NAD(P)H oxidases and xanthine oxidase or non-
enzymatically by redox-reactive compounds such as the semi-ubiquinone
compound of the mitochondrial electron transport chain.

4 : Superoxide radical is dismutated by the superoxide dismutase (SOD) to
hydrogen peroxide.

5, 6, 7 and 8 : Generation of H2O2 from peroxisome, monoamines and haemoglobin,
sarcosine and the reaction between water and oxygen

9 : Hydrogen peroxide is most efficiently scavenged by the enzyme glutathione
peroxidase (GPx) which requires GSH as the electron donor.

10 : The oxidised glutathione (GSSG) is reduced back to GSH by the enzyme
glutathione reductase Gred) which uses NADPH as the electron donor.

11 :  Some transition metals (e.g. Fe2+, Cu+ and others) can breakdown hydrogen
peroxide to the reactive hydroxyl radical (Fenton reaction).

12 : The hydroxyl radical can abstract an electron from polyunsaturated fatty acid
(LH) to give rise to a carbon-centred lipid radical (L•).

13 : The lipid radical (L•) can further interact with molecular oxygen to give a lipid
peroxyl radical (LOO•). If the resulting lipid peroxyl radical LOO• is not reduced
by antioxidants, the lipid peroxidation process occurs (reactions 19–25 and
15–18).

14 and 15 : Formation of lipid alkoxyl radical (LO•) from lipid peroxyl radical (LOO•) and
polyunsaturated fatty acid (LH) through lipid hydroperoxide (LOOH) path way

16 : Lipid alkoxyl radical (LO•) derived for example from arachidonic acid undergoes
cyclisation reaction to form a six-membered ring hydroperoxide.

17 : Six-membered ring hydroperoxide udergoes further reactions (involving-
scission) to from 4-hydroxy-nonenal.

18 :  4-hydroxynonenal is rendered into an innocuous glutathiyl adduct (GST,
glutathione S-transferase).

19 and 20 : A peroxyl radical located in the internal position of the fatty acid can react by
cyclisation to produce a cyclic peroxide adjacent to a carbon-centred radical.

21 : This radical can then either be reduced to form a hydroperoxide (reaction not
shown) or it can undergo a second cyclisation to form a bicyclic peroxide
which after coupling to dioxygen and reduction yields a molecule structurally
analogous to the endoperoxide.

22 : Formed compound is an intermediate product for the production of
malondialdehyde.

23, 24, 25 : Malondialdehyde can react with DNA bases cytosine, adenine, and guanine
to form adducts M1C, M1A and M1G, respectively.
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oxidase reduces oxygen as the part of its defense mechanisms and the excess amount produced

are converted to hydrogen peroxide by the enzyme superoxide dismutase. Even though superoxide

anion is considered to be as a non-reactive species they are able to generate more reactive free

radicals by the reaction with other molecules.

1.2.1.2. Hydrogen Peroxide (H2O2)

H
2
O

2
 is may not be termed as a true species of free radical because it bears no unpaired

electrons. However being an oxidizing agent it can intensify and initiate the OH radical formation. They

are produced by the enzyme superoxide dismutase during the cellular processes and can occupy both

cytoplasmic and intracellular spaces in the body. They can also cross biological membranes by diffusion.

1.2.1.3. Hydroxyl Radical (OH)

Hydroxyl radicals are considered to be the most reactive free radical species formed in

the cells by the transition ion catalyzed reaction (Haber-Weiss reaction) of H
2
O

2
. Lipid-peroxidation

of microsomal, mitochondrial and cell membranes, modification of purines and pyrimidines (Fenton

1894; Haber 1934) or strand breakage (Oshima et al. 1996) are some of the major problems

caused by the hydroxyl radicals. Hydroxyl radicals react with the biological molecules by number

of ways viz, electron transfer, hydrogen transfer, addition to aromatic systems etc, to produce the

secondary reactive species, which are even more deleterious than the parent zOH radical.

1.2.1.4. Lipid Peroxide (LOOH)

Oxidation of fatty acids generated fatty acid free radicals, which can react with oxygen

to from the peroxyl radicals that further react with other fatty acids to produce lipid hydroperoxides.

The lipid hydroperoxides are considered to be more reactive as it can cause lipid peroxidation by

the production of the more reactive species like lipid peroxyl, lipid alkoxyl and malondialdehyde

(MDA) like compounds (Slater 1979).

1.2.1.5. Singlet Oxygen (1O2)

As H2O2, the singlet oxygen species is not a free radical in true sense, and is considered

as oxidant species, which can cause the tissue damage in the biological system. The singlet

oxygen species is formed by the spin reversal of electron present in the outer orbital of the O2

molecule by enzymatic catalyzed reactions. Due to its electrophilic nature, it can readily react with

the fatty acids and other molecules to produce peroxide radicals.

1.2.2. Effect of ROS on Body

The reactive oxygen species react with the protein molecules, unsaturated fatty acids,

nucleic acids, carbohydrates etc to cause their oxidative damage, thereby leading to severe health

problems. They are considered to be the major cause of inactivation of enzymes. The protein molecules

are fragmented by the attack of free radicals or their metal binding sites may be affected, or can

undergo many other modifications in their amino acid residues like proline, histidine, cysteine methionine,

tryptophan, tyrosine, phenylalanine etc. Lipids especially polyunsaturated type readily undergoes

peroxidation, leading to the formation of other free radicals, which act as chain propagators for further
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lipid peroxidation process. This will also lead to the rancidity or off flavor and spoilage of the food

products. Lipid peroxidation can also affect the cellular membrane functions. ROS are the primary

cause for several genetic defects caused by the radical induced nitrogenous base modification of

nucleic acids and mutations. Hyaluronic acid, a carbohydrate present in the synovial fluid can undergo

free radical induced depolymerisation leading to the joint inflammation (Grootveld et al. 1991). Other

macromolecules such as collagen, proteoglycans etc. are also fragmented by the action of free radicals.

1.3. Antioxidants

Our body possess innate defense mechanisms against these free radicals generated

through a series of mechanisms involving different biomolecular reactions such as enzymes, amino

acids, bioactive antioxidant molecules, selenium, vitamins etc to protect the cells from oxidative

damage (Wojcik et al. 2010; Samaranayaka & Li-Chan 2011). Antioxidant enzyms like superoxide

dismutases, catalase, glutathione peroxidase etc are the major common enzymes, which are

involved in scavenging free radicals like superoxide anion, hydrogen peroxide, lipid hydroperoxides

etc (Lobo et al. 2010). Ascorbic acid, glutathione, melatonin, tocotrienols, uric acid etc are the non

enzymatic compounds used by our body to prevent from oxidative damage (Lobo et al. 2010). As

these compounds are effectively used to scavenge free radicals they are called as antioxidants.

The antioxidants help to reduce the risk of free radical derived issues. Antioxidants

generally inactivate free radicals (alkoxyl, peroxyl and alkyl) by donating its H atom to form stable

compounds as illustrated below:-

LOOz  + AH –––––––––Æ LOOH + Az

LOOz + Az –––––––––Æ  LOOA

Where LOOz is a lipid peroxyl radical and AH is the representation of the antioxidant

molecule able to donate its H atom. Transition metals like iron and copper are capable of producing

very reactive hydroxyl radicals from peroxides, which can damage the living cells.

LOOH + Fe2+  –––––––––Æ LOz + OH- + Fe3+

1.3.1. Synthetic Antioxidants

Butylated hydroxy anisole (BHA), butylated hydroxy toluene (BHT), propyl gallate (PG),

teritiary butyl hydroquinone (TBHQ), octyl gallate (OG), 2,4,5-trihydroxy butapyranone,

nordihydroguaiaretic acid and 4-hexyl resorcinol are some of the common examples of synthetic

antioxidants (Carocho 2013, Aguillar et al. 2012, Gharavi & El-Kadi, 2005, Anton et al. 2004, Kubo

et al. 2001, Astill et al. 1959, Evan & Gardner 1979, Chen et al. 2004) (Figure 1.2). They are

extensively used to control rancidity in lipid-containing foods and formation of lipid oxidation or

peroxidation products, cosmetic and pharma industries.

1.3.2. Drawbacks of Synthetic Antioxidants

BHT was reported to react with other ingested substances to cause the formation of

carcinogens. BHT is banned in the UK (dedicated website: http://www.healthyeatingadvisor.com).
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TBHQ is banned in Japan and certain European countries (Shahidi 1997). Many countries like

Japan banned the production and use of BHA whereas some other countries like UK could not

implement the recommendations of the officials to ban the same due to pressure from the industries.

McDonald’s eliminated BHT from their US products by 1986 (dedicated website:

http://www.foodfigures.com/food_additive.htm). BHA and BHT are also known to cause cancer in

humans. Therefore, in recent years, interest in finding naturally occurring antioxidant compounds

in food or medicine to replace synthetic products has increased considerably, given that synthetic

ones are being restricted due to consumer preference for natural products and concern about the

potential toxic effects of synthetic medicines (Zheng et al. 2001).

1.3.3. Green Alternatives

Because of the possible harmful effects of synthetic antioxidants, the demand for a

natural alternatives are increasing. Hence the pharmaceutical and agri-food industries have been

concentrating in developing and marketing functional foods with green and natural antioxidant

alternatives as ingredients. Marine flora constitutes the potential natural sources with pluralities of

bioactive compounds having antioxidant properties. Seaweeds constitute a major share of marine

flora, and they were reported to possess structurally diverse compounds of various bioactivities

endowed with antioxidant, antibacterial, anti-inflammatory, and anticarcinogenic activities

(Kornprobst, 2005). Since there is an increased interest in the antioxidants of natural origin in

recent times in place of synthetic derivatives, it is rational to explore the seaweeds as natural

sources to isolate antioxidant principles for use as nutraceutical supplements. The potential

applications offered by these valuable resources as ingredients in functional foods are significant

because of their richness in bioactive principles, particularly antioxidants.

In high light environments like the sea, energy absorbs faster than it can be dissipated,

producing the free radicals and promoting lipid oxidation. Surprisingly the lack of structural damage

in seaweed cells even after the regular exposure to light and high oxygen, attribute to the role of

natural antioxidant compounds found in them in protecting the cell content (Swanson & Druehl,

2002; Burritt et al. 2002). Therefore, these marine floras may be considered as a potential resource

of unexplored natural antioxidant molecules, which need to be studied further. It was reported that

seaweeds are rich source of bioactive compounds, such as terpenoids, phloroglucinol phenolics,

fucoidans, sterols and glycolipids, and the extracts or isolated components from seaweeds posses

a wide range of pharmacological properties such as anticancer, antibacterial, antiviral, antifungal,

anti-inflammatory, antioxidant, hypoglycaemic, hypolipidemic, hepatoprotective and neuroprotective

activities (Liu et al. 2012; Chakraborty et al. 2013). Extracts from several brown and red seaweeds

harvested in France (Le Tutour, 1990), Spain (Jiménez-Escrig et al. 2001), Indonesia (Anggadiredja

et al.1997), Korea (Han et al. 1999), China (Yan et al. 1998) and Japan (Yan et al. 1999 and

Sekikawa et al. 1986) have demonstrated antioxidant activity in vitro. The solvent extracts of brown

seaweeds from Indian waters were reported to contain high levels of hydrophilic components,

such as polyphenols and soluble polysaccharides with strong antimicrobial and antioxidant activities

Chapter 1 - Introduction



Isolation and Characterization of Useful Secondary Metabolites with Antioxidant Activity from Seaweeds from Southeastern Coast of India

|    12



13    |

(Chandini et al. 2008; Ananthi et al. 2010; Rajauria et al. 2012; Chakraborty et al. 2013). Although

antioxidant properties of seaweeds have been demonstrated by numerous studies during the past

few decades, only scarce reports are available from the Gulf of Mannar region, rich in biodiversity

leading to the isolation and characterization of antioxidant secondary metabolites. The study was

planned based on the hypothesis that the seaweed species distributed in the Gulf of Mannar

region may have potential bioactive compounds with pharmaceutical and neutraceutical properties.

The study also anticipate to shortlist potential seaweed species with natural bioactive compounds.

Standard methodologies were followed to collect and screen seaweeds for natural

bioactive compounds. Antioxidant assays were used to find out the sea weeds species containing

potential natural products. The promising fractions were further purified by different chromatographic

procedures and the compounds purified to homogeneity were used to elucidate the structural

characteristics. Further, different spectroscopic methods like NMR, IR, GC-MS etc were employed

to decipher the structural confirmation.

Based on the previous studies demonstrating that the seaweeds are potential source of

antioxidative compounds, the present work has been focused based on the following objectives,

1. To evaluate the antioxidant potential of the crude extracts and solvent fractions

of seaweeds by a battery of in vitro reactive oxygen species scavenging assay.

2. To purify the molecules having potential antioxidant activity from the crude extracts

by using various chromatographic techniques based on their bioassay results.

3. To elucidate the structure of purified antioxidant molecules with potential

antioxidative activities by different spectroscopic techniques.

Based on these objectives the thesis has been divided into the following chapters

Chapter 1 - Introduction:  This chapter is dealt with the background and importance

of the study with objectives.

Chapter 2 - Review of literature: This chapter is dealt with detailed review of the

works carried out on the antioxidant effects of the seaweeds.

Chapter 3 - Antioxidant potential of the crude extracts and solvent fractions of

seaweeds: This chapter is dealt with the antioxidant potential of

seaweeds assayed by different methods, their correlation with total

phenolic contents, and identification of phenolic acids present therein.

Chapter 4 - Bioassay guided purification and structural characterization of potential

antioxidant compounds from seaweeds: This chapter is dealt with the

bioassay guided purification and spectroscopic characterization of the

active compounds.

Chapter 5 - Summary: This chapter is dealt with the sailent results of the study and

their practical application in the functional food industry.
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CHAPTER 1

Introduction
1.1. Oxidative Stress

Free radicals are generated in the living cells due to many biological processes that

normally take place in our metabolic pool. These free radicals are highly reactive and can damage

the living cells in many ways. But our body possesses suitable defense mechanisms to detoxify

these deleterious radicals. When the production of these free radicals exceeds beyond a limit due

to excessive oxidation, the natural defense system of body fails. This causes a state called oxidative

stress which results in the denaturation of proteins, cellular membranes and genes. Oxidative

stress is associated with a wide variety of diseases like atherosclerosis, diabetes mellitus,

neurodegenerative disorders, cancers, rheumatic diseases, autoimmune disorders etc (Ilie &

Marginã 2012), and also leads to a general feeling of illness, lethargy, lack of enthusiasm, depressed

immune system leading to the loss in cell and organ functions (dedicated website

http://www.neurogenol.co.uk/oxidativestress.html). The oxidative stress can also have harmful

effects on foods as production of rancid flavours and odours, reducing the shelf-life, nutritional

quality, and safety of food products (Zainol et al. 2003; Chanwitheesuk et al. 2005).

1.2. Reactive Oxygen Species (ROS) and Health Implications

1.2.1 Reactive Oxygen Species (ROS)

Reactive oxygen species (ROS) are chemically reactive molecules derived from the

molecular oxygen. Superoxide anion (O
2

-z) hydroxyl radical (zOH), lipid peroxyl radical (LOOz),

hydrogen peroxide (H
2
O

2
) and singlet oxygen (1O

2
) are some common examples of ROS. These

reactive species originate from the environment, from other free radicals in chain reactions, and

from many normal biological processes in vivo. The free radicals will enter into our cellular system

through different endogenous and exogenous pathways. ROS are generated endogenously by

different processes such as mitochondrial electron transport, endoplasmic reticulum oxidation,

plurality of enzymatic activities, gluconolactone oxidase, prostaglandin synthesis, auto oxidation

of biomolecules with unsaturated and electron rich centers, which are predominant in several

biosynthetic path ways (Tandon et al. 2005). Exogenous sources such as drugs, halothene,

paracetamol, bleomycine, doxorubicin, metrenidazole, ethanol, CCl
4
, pesticides, transition metals,

radiations, and high temperature (Tandon et al. 2005) also contribute significantly towards the

generation of these deleterious free radicals.

The predominant types of ROS are distributed under the following heads

1.2.1.1. Superoxide Anion

The cellular processes like mitochondrial electron transport systems, microsomal electron

transport systems, xanthine oxidase, xanthine dehydrogenase etc. are considered to be the major

sources of superoxide anion molecule. They are also created by the cellular process where NADPH
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REACTIONS

1, 2 and 3 : The superoxide anion radical is formed by the process of reduction of molecular
oxygen mediated by NAD(P)H oxidases and xanthine oxidase or non-
enzymatically by redox-reactive compounds such as the semi-ubiquinone
compound of the mitochondrial electron transport chain.

4 : Superoxide radical is dismutated by the superoxide dismutase (SOD) to
hydrogen peroxide.

5, 6, 7 and 8 : Generation of H2O2 from peroxisome, monoamines and haemoglobin,
sarcosine and the reaction between water and oxygen

9 : Hydrogen peroxide is most efficiently scavenged by the enzyme glutathione
peroxidase (GPx) which requires GSH as the electron donor.

10 : The oxidised glutathione (GSSG) is reduced back to GSH by the enzyme
glutathione reductase Gred) which uses NADPH as the electron donor.

11 :  Some transition metals (e.g. Fe2+, Cu+ and others) can breakdown hydrogen
peroxide to the reactive hydroxyl radical (Fenton reaction).

12 : The hydroxyl radical can abstract an electron from polyunsaturated fatty acid
(LH) to give rise to a carbon-centred lipid radical (L•).

13 : The lipid radical (L•) can further interact with molecular oxygen to give a lipid
peroxyl radical (LOO•). If the resulting lipid peroxyl radical LOO• is not reduced
by antioxidants, the lipid peroxidation process occurs (reactions 19–25 and
15–18).

14 and 15 : Formation of lipid alkoxyl radical (LO•) from lipid peroxyl radical (LOO•) and
polyunsaturated fatty acid (LH) through lipid hydroperoxide (LOOH) path way

16 : Lipid alkoxyl radical (LO•) derived for example from arachidonic acid undergoes
cyclisation reaction to form a six-membered ring hydroperoxide.

17 : Six-membered ring hydroperoxide udergoes further reactions (involving-
scission) to from 4-hydroxy-nonenal.

18 :  4-hydroxynonenal is rendered into an innocuous glutathiyl adduct (GST,
glutathione S-transferase).

19 and 20 : A peroxyl radical located in the internal position of the fatty acid can react by
cyclisation to produce a cyclic peroxide adjacent to a carbon-centred radical.

21 : This radical can then either be reduced to form a hydroperoxide (reaction not
shown) or it can undergo a second cyclisation to form a bicyclic peroxide
which after coupling to dioxygen and reduction yields a molecule structurally
analogous to the endoperoxide.

22 : Formed compound is an intermediate product for the production of
malondialdehyde.

23, 24, 25 : Malondialdehyde can react with DNA bases cytosine, adenine, and guanine
to form adducts M1C, M1A and M1G, respectively.
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oxidase reduces oxygen as the part of its defense mechanisms and the excess amount produced

are converted to hydrogen peroxide by the enzyme superoxide dismutase. Even though superoxide

anion is considered to be as a non-reactive species they are able to generate more reactive free

radicals by the reaction with other molecules.

1.2.1.2. Hydrogen Peroxide (H2O2)

H
2
O

2
 is may not be termed as a true species of free radical because it bears no unpaired

electrons. However being an oxidizing agent it can intensify and initiate the OH radical formation. They

are produced by the enzyme superoxide dismutase during the cellular processes and can occupy both

cytoplasmic and intracellular spaces in the body. They can also cross biological membranes by diffusion.

1.2.1.3. Hydroxyl Radical (OH)

Hydroxyl radicals are considered to be the most reactive free radical species formed in

the cells by the transition ion catalyzed reaction (Haber-Weiss reaction) of H
2
O

2
. Lipid-peroxidation

of microsomal, mitochondrial and cell membranes, modification of purines and pyrimidines (Fenton

1894; Haber 1934) or strand breakage (Oshima et al. 1996) are some of the major problems

caused by the hydroxyl radicals. Hydroxyl radicals react with the biological molecules by number

of ways viz, electron transfer, hydrogen transfer, addition to aromatic systems etc, to produce the

secondary reactive species, which are even more deleterious than the parent zOH radical.

1.2.1.4. Lipid Peroxide (LOOH)

Oxidation of fatty acids generated fatty acid free radicals, which can react with oxygen

to from the peroxyl radicals that further react with other fatty acids to produce lipid hydroperoxides.

The lipid hydroperoxides are considered to be more reactive as it can cause lipid peroxidation by

the production of the more reactive species like lipid peroxyl, lipid alkoxyl and malondialdehyde

(MDA) like compounds (Slater 1979).

1.2.1.5. Singlet Oxygen (1O2)

As H2O2, the singlet oxygen species is not a free radical in true sense, and is considered

as oxidant species, which can cause the tissue damage in the biological system. The singlet

oxygen species is formed by the spin reversal of electron present in the outer orbital of the O2

molecule by enzymatic catalyzed reactions. Due to its electrophilic nature, it can readily react with

the fatty acids and other molecules to produce peroxide radicals.

1.2.2. Effect of ROS on Body

The reactive oxygen species react with the protein molecules, unsaturated fatty acids,

nucleic acids, carbohydrates etc to cause their oxidative damage, thereby leading to severe health

problems. They are considered to be the major cause of inactivation of enzymes. The protein molecules

are fragmented by the attack of free radicals or their metal binding sites may be affected, or can

undergo many other modifications in their amino acid residues like proline, histidine, cysteine methionine,

tryptophan, tyrosine, phenylalanine etc. Lipids especially polyunsaturated type readily undergoes

peroxidation, leading to the formation of other free radicals, which act as chain propagators for further
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lipid peroxidation process. This will also lead to the rancidity or off flavor and spoilage of the food

products. Lipid peroxidation can also affect the cellular membrane functions. ROS are the primary

cause for several genetic defects caused by the radical induced nitrogenous base modification of

nucleic acids and mutations. Hyaluronic acid, a carbohydrate present in the synovial fluid can undergo

free radical induced depolymerisation leading to the joint inflammation (Grootveld et al. 1991). Other

macromolecules such as collagen, proteoglycans etc. are also fragmented by the action of free radicals.

1.3. Antioxidants

Our body possess innate defense mechanisms against these free radicals generated

through a series of mechanisms involving different biomolecular reactions such as enzymes, amino

acids, bioactive antioxidant molecules, selenium, vitamins etc to protect the cells from oxidative

damage (Wojcik et al. 2010; Samaranayaka & Li-Chan 2011). Antioxidant enzyms like superoxide

dismutases, catalase, glutathione peroxidase etc are the major common enzymes, which are

involved in scavenging free radicals like superoxide anion, hydrogen peroxide, lipid hydroperoxides

etc (Lobo et al. 2010). Ascorbic acid, glutathione, melatonin, tocotrienols, uric acid etc are the non

enzymatic compounds used by our body to prevent from oxidative damage (Lobo et al. 2010). As

these compounds are effectively used to scavenge free radicals they are called as antioxidants.

The antioxidants help to reduce the risk of free radical derived issues. Antioxidants

generally inactivate free radicals (alkoxyl, peroxyl and alkyl) by donating its H atom to form stable

compounds as illustrated below:-

LOOz  + AH –––––––––Æ LOOH + Az

LOOz + Az –––––––––Æ  LOOA

Where LOOz is a lipid peroxyl radical and AH is the representation of the antioxidant

molecule able to donate its H atom. Transition metals like iron and copper are capable of producing

very reactive hydroxyl radicals from peroxides, which can damage the living cells.

LOOH + Fe2+  –––––––––Æ LOz + OH- + Fe3+

1.3.1. Synthetic Antioxidants

Butylated hydroxy anisole (BHA), butylated hydroxy toluene (BHT), propyl gallate (PG),

teritiary butyl hydroquinone (TBHQ), octyl gallate (OG), 2,4,5-trihydroxy butapyranone,

nordihydroguaiaretic acid and 4-hexyl resorcinol are some of the common examples of synthetic

antioxidants (Carocho 2013, Aguillar et al. 2012, Gharavi & El-Kadi, 2005, Anton et al. 2004, Kubo

et al. 2001, Astill et al. 1959, Evan & Gardner 1979, Chen et al. 2004) (Figure 1.2). They are

extensively used to control rancidity in lipid-containing foods and formation of lipid oxidation or

peroxidation products, cosmetic and pharma industries.

1.3.2. Drawbacks of Synthetic Antioxidants

BHT was reported to react with other ingested substances to cause the formation of

carcinogens. BHT is banned in the UK (dedicated website: http://www.healthyeatingadvisor.com).
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TBHQ is banned in Japan and certain European countries (Shahidi 1997). Many countries like

Japan banned the production and use of BHA whereas some other countries like UK could not

implement the recommendations of the officials to ban the same due to pressure from the industries.

McDonald’s eliminated BHT from their US products by 1986 (dedicated website:

http://www.foodfigures.com/food_additive.htm). BHA and BHT are also known to cause cancer in

humans. Therefore, in recent years, interest in finding naturally occurring antioxidant compounds

in food or medicine to replace synthetic products has increased considerably, given that synthetic

ones are being restricted due to consumer preference for natural products and concern about the

potential toxic effects of synthetic medicines (Zheng et al. 2001).

1.3.3. Green Alternatives

Because of the possible harmful effects of synthetic antioxidants, the demand for a

natural alternatives are increasing. Hence the pharmaceutical and agri-food industries have been

concentrating in developing and marketing functional foods with green and natural antioxidant

alternatives as ingredients. Marine flora constitutes the potential natural sources with pluralities of

bioactive compounds having antioxidant properties. Seaweeds constitute a major share of marine

flora, and they were reported to possess structurally diverse compounds of various bioactivities

endowed with antioxidant, antibacterial, anti-inflammatory, and anticarcinogenic activities

(Kornprobst, 2005). Since there is an increased interest in the antioxidants of natural origin in

recent times in place of synthetic derivatives, it is rational to explore the seaweeds as natural

sources to isolate antioxidant principles for use as nutraceutical supplements. The potential

applications offered by these valuable resources as ingredients in functional foods are significant

because of their richness in bioactive principles, particularly antioxidants.

In high light environments like the sea, energy absorbs faster than it can be dissipated,

producing the free radicals and promoting lipid oxidation. Surprisingly the lack of structural damage

in seaweed cells even after the regular exposure to light and high oxygen, attribute to the role of

natural antioxidant compounds found in them in protecting the cell content (Swanson & Druehl,

2002; Burritt et al. 2002). Therefore, these marine floras may be considered as a potential resource

of unexplored natural antioxidant molecules, which need to be studied further. It was reported that

seaweeds are rich source of bioactive compounds, such as terpenoids, phloroglucinol phenolics,

fucoidans, sterols and glycolipids, and the extracts or isolated components from seaweeds posses

a wide range of pharmacological properties such as anticancer, antibacterial, antiviral, antifungal,

anti-inflammatory, antioxidant, hypoglycaemic, hypolipidemic, hepatoprotective and neuroprotective

activities (Liu et al. 2012; Chakraborty et al. 2013). Extracts from several brown and red seaweeds

harvested in France (Le Tutour, 1990), Spain (Jiménez-Escrig et al. 2001), Indonesia (Anggadiredja

et al.1997), Korea (Han et al. 1999), China (Yan et al. 1998) and Japan (Yan et al. 1999 and

Sekikawa et al. 1986) have demonstrated antioxidant activity in vitro. The solvent extracts of brown

seaweeds from Indian waters were reported to contain high levels of hydrophilic components,

such as polyphenols and soluble polysaccharides with strong antimicrobial and antioxidant activities
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(Chandini et al. 2008; Ananthi et al. 2010; Rajauria et al. 2012; Chakraborty et al. 2013). Although

antioxidant properties of seaweeds have been demonstrated by numerous studies during the past

few decades, only scarce reports are available from the Gulf of Mannar region, rich in biodiversity

leading to the isolation and characterization of antioxidant secondary metabolites. The study was

planned based on the hypothesis that the seaweed species distributed in the Gulf of Mannar

region may have potential bioactive compounds with pharmaceutical and neutraceutical properties.

The study also anticipate to shortlist potential seaweed species with natural bioactive compounds.

Standard methodologies were followed to collect and screen seaweeds for natural

bioactive compounds. Antioxidant assays were used to find out the sea weeds species containing

potential natural products. The promising fractions were further purified by different chromatographic

procedures and the compounds purified to homogeneity were used to elucidate the structural

characteristics. Further, different spectroscopic methods like NMR, IR, GC-MS etc were employed

to decipher the structural confirmation.

Based on the previous studies demonstrating that the seaweeds are potential source of

antioxidative compounds, the present work has been focused based on the following objectives,

1. To evaluate the antioxidant potential of the crude extracts and solvent fractions

of seaweeds by a battery of in vitro reactive oxygen species scavenging assay.

2. To purify the molecules having potential antioxidant activity from the crude extracts

by using various chromatographic techniques based on their bioassay results.

3. To elucidate the structure of purified antioxidant molecules with potential

antioxidative activities by different spectroscopic techniques.

Based on these objectives the thesis has been divided into the following chapters

Chapter 1 - Introduction:  This chapter is dealt with the background and importance

of the study with objectives.

Chapter 2 - Review of literature: This chapter is dealt with detailed review of the

works carried out on the antioxidant effects of the seaweeds.

Chapter 3 - Antioxidant potential of the crude extracts and solvent fractions of

seaweeds: This chapter is dealt with the antioxidant potential of

seaweeds assayed by different methods, their correlation with total

phenolic contents, and identification of phenolic acids present therein.

Chapter 4 - Bioassay guided purification and structural characterization of potential

antioxidant compounds from seaweeds: This chapter is dealt with the

bioassay guided purification and spectroscopic characterization of the

active compounds.

Chapter 5 - Summary: This chapter is dealt with the sailent results of the study and

their practical application in the functional food industry.
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CHAPTER 2

Review of Literature

2.1. Background

Antioxidants play an important role in controlling many of the free radical induced diseases

such as cancer, stroke, myocardial infarction, diabetes, septic and hemorrhagic shock, Alzhemer’s

and Parkinsons diseases (Chew et al. 2008). Currently, the reactive oxygen species and lipid

oxidation in the food industry are being controlled or minimized by the addition of synthetic

antioxidants (Gray et al. 1996). However, with the safety concerns about synthetic antioxidants

(Wichi et al. 1998), considerable interest has arisen in finding alternative sources of natural

antioxidants for use in food systems.

2.2. Why Seaweeds

Since there is an increased interest in the antioxidants of natural origin in recent times

in place of the synthetic derivatives, it is rational to explore seaweeds as natural sources to isolate

antioxidant principles for use as nutraceutical supplements. During the last few decades, agri-food

and nutraceutical industries have been at the origin of a great expansion in the demand of seaweeds.

Seaweeds constitute a major share of marine flora, and they were reported to possess structurally

diverse compounds of various bioactivities endowed with anticancer, antibacterial, antiviral,

antifungal, anti-inflammatory, antioxidant, hypoglycaemic, hypolipidemic, hepatoprotective and

neuroprotective activities (Liu et al. 2012; Chakraborty et al. 2013). The potential applications

offered by these valuable resources as ingredients in functional food are significant because of

their richness in bioactive principles, particularly antioxidants. In the high light environments like

the sea, energy absorbs faster than it can be dissipated, producing free radicals and promoting

lipid oxidation. Seaweeds as photosynthetic organisms are exposed to a combination of light and

high O2 concentration at the origin of the formation of free radicals and other oxidative reagents.

Surprisingly the lack of structural damage in seaweed cells even after the regular exposure to light

and high oxygen, attribute to the role of natural antioxidant compounds found in them in protecting

the cell content (Swanson & Druehl, 2002; Burritt et al. 2002). These soft-bodied sessile organisms

typically lack the protection and provide a rich environment to house defensive mechanisms as a

means to shield themselves from the oxidative stress conditions in oceanic ecosphere, and therefore,

natural product chemists are looking at alternative natural compounds to be used in health

supplements against stress induced disorders pharmaceuticals and health food against oxidative

stress-induced disorders. It is interesting to note that over the time of evolution and adaptation,
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these sessile organisms developed strategies to decompose the potentially harmful oxidants through

a cascade of biochemical reactions thereby preventing oxidative damage in their structural

components. The antioxidant properties of seaweeds could be effectively exploited to prevent free

radical accumulation and to promote the immune system in eliminating the proliferation of radicals

(Skibola 2004). Therefore, much research attention has been focused on the free-radical scavenging

activity of metabolites from seaweeds. Essentially, the antioxidative defenses of seaweeds include

water-soluble reductants (antioxidants) and fat-soluble reductants. The biofunction of small-molecule

antioxidants in the photophysiology of marine organisms is yet poorly understood. So, it is imperative

to explore the small biomolecules from seaweeds as potent antioxidants. Red and brown seaweeds

have been identified in both inter-tidal and deep water regions, which have proven to be rich

sources of structurally diverse bioactive compounds with valuable pharmaceutical and biomedical

potential (Tutour et al. 1998; Satoru et al. 2003). There is scanty information regarding structural

information of antioxidant molecules in seaweeds from Indian waters. The knowledge on the

structural features responsible for antioxidant activity will guide us to synthesize the molecules in

commercial scale, and enable to describe their mode of action. A systematic search for the

development of new sources of chemical compounds from seaweeds will be helpful for the design

and development of antioxidant molecules to be used for increasing the shelf life of food in the

functional food industry.

2.3. Type of Seaweeds

Seaweeds belong to a very diverse group of marine plants with no roots, leaves, and

stems, but a hold fast, blade and stipe instead and the complete body is called as a thallus. The

hold fast makes them to hold on the rocks or thick surfaces, the stipe provide support to seaweeds.

Even though all the cells are capable of photosynthesis, blades are the mainly designed region for

this. Most of the seaweeds also contain an air bladder called float which will enable them to float

and stay upright in the wavy waters to get exposed to sunlight.

Seaweeds belong to the three classes such as green (about 1500 species), brown

(about 1800 species) and red (about 6500 species) (dedicated website: http://www.seaweed.ie/).

The classification is based on pigmentation of the seaweeds.

2.3.1. Green Seaweed (Phylum Chlorophyta)

They contain photosynthetic pigments such as chlorophyll a, and b and carotenoids.

They also contain starch as storage product and cellulose as cell wall component. Ulva, Bryopsis

and Caulerpa are some common examples (Figure 2.1.).
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Bryopsis plumosa Caulerapa cetruloidis

Stoechospermum marginatum Sargassum wightii

Hypnia musciformis Kappaphycus alverazil

Figure 2.1.  Examples of green seaweeds

Figure 2.2.  Examples of brown seaweeds

Figure 2.3.  Examples of red seaweeds
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2.3.2. Brown Seaweed (Phylum Heterokontophyta: Class Phaeophyta)

They are brown because of the presence of carotenoid fucoxanthin. They contain

photosynthetic pigments chlorophyll a, and c. Laminarin is their major storage product and cellulose

is the major cell wall component. Sargassum, Padina and Stoechospermum are some common

examples (Figure 2.2).

2.3.3. Red Seaweed (Phylum Rhodophta)

The pigment phycoerythrin is the reason for its red colour. Its main photosynthetic pigment

is chlorophyll a, and major storage product is starch. Cellulose, agar and carrageenan are its

major cell wall product. Gelidiella, Hypnia and Kappaphycus are some common examples

(Figure 2.3).

2.4. Antioxidant Potential and Phenolic Contents of Seaweeds

Among the seaweed natural antioxidants, phenolic antioxidants (phenolic acids,

anthocyanins, hydroxycinnamic acid derivatives, and flavonoids) are in the forefront (Duan et al.

2006). The polyphenols in marine brown seaweed termed as phlorotannins are formed by the

polymerization of phloroglucinol (1,3,5-trihydroxybenzene) monomer units and known to act as

potent antioxidants (Ragan & Glombitza, 1986). Jiménez-Escrig et al. (2001), reported antioxidant

activity of fresh and processed edible seaweeds and indicated strong antioxidative activity of brown

seaweed Fucus vesiculosus using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging

assay. The antioxidant activity of the crude extract and sub fractions derived from a red seaweed,

Polysiphonia urceolata, was established using DPPH radical scavenging assay and the β-carotene–

linoleate assay systems (Duan et al. 2006). Antioxidant effect was observed with a sulfoglycolipid

fraction isolated from the red seaweed, Porphyridum creuntum, which was found to inhibit the

production of superoxide anion radicals (Bergé et al. 2002). There are some reports about

fucoxanthin-related compounds in Petalonia binghamiae having inhibitory activities against free

radicals (Murakami et al. 2002). Sargaquinoic acid isolated from the brown seaweed Sargassum

macrocarpum has been found to possess antioxidant activity (Tsang & Kamei 2004).

Seaweeds have protective enzymes and antioxidative molecules (phlorotannins, ascorbic

acid, tocopherols, carotenoids, phospholipids, chlorophyll related compounds, bromophenols,

catechins, mycosporine-like amino acids, polysaccharides, etc.), which are similar to those of

vascular plants (Fujimoto 1990; Le Tutour et al. 1998; Rupérez et al. 2002; Yuan et al. 2005; Pavia

& Aberg 1996), and were reported to possess antioxidant activities (Ragan & Glombitza 1986). A

water extract of a brown seaweed Scytosiphon lomentaria was reported to have antioxidant activity

(Kuda et al. 2005).
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Compounds of extracts from brown seaweed Petalonia binghamiae was reported to

have antioxidant activities due to phenolic compounds (Murakami et al. 2002). Brown seaweed

Fucus vesiculosus was known to have antioxidant importance and normalized lipid peroxidation

status, thereby preventing membrane injury and free radical formation (Veena et al. 2007). The

extracts of the brown seaweed Taonia atomaria were reported to exhibit high radical scavenging

activity (Mayer & Lehmann 2000). Hydrogen peroxide scavenging activity of many seaweed extracts

was predominant and those samples showed significant inhibitory effects against DNA damage

(Heo et al. 2005).

Among the crude solvent extracts prepared from the ten Phaeophyta species collected

from Brittany coasts, the crude extracts from Bifurcaria bifurcata, Cystoseira tamariscifolia, Fucus

ceranoides and Halidrys siliquosa, displayed higher antioxidant activity (Zubia et al. 2009). Extracts

of Japanese edible brown seaweeds, Eisenia bicyclis, Kjellmaniella crassifolia, Alaria crassifolia,

Sargassum horneri, and Cystoseira hakodatensis were reported to posses potential radical

scavenging activities (DPPH, peroxyl radical, and ABTS), and antioxidant activity in a liposome

system (Airanthi et al. 2011). Fabian et al. (2013) assayed the extracts of 16 species of seaweeds

collected along the Danish coasts for antioxidant activities, and found that Polysiphonia fucoides

and all the Fucus species showed higher radical scavenging activity, reducing power, and were

high in phenolic content.

Indu & Seenivasan (2013) assayed the antioxidant potential of Chaetomorpha linum,

Grateloupia lithophila and Sargassum wightii collected from the Mandapam coast in Rameswaram,

and identified that the ethanol extract of S. wightii as the best with highest antioxidant potential.

Vijayabaskar & Shiyamala (2013) identified that the methanol extract of the brown seaweed

Turbinaria ornata collected from the Mandapam coast exhibited good DPPH and hydroxyl radical

scavenging potentials.

Wang et al. (2009) studied the potential antioxidant activities of ten species of Icelandic

seaweeds and found that the extracts from three Fucoid species had the highest phenolic content,

radical scavenging activities and ferrous ion-chelating activity. Audibert et al. (2010) reported that

in Ascophylllum nodosum the fraction containing phenolic compounds appeared to be with high

antioxidant potential.

The antioxidant potential of methanol extracts of brown seaweeds collected from Galway

(Ireland), were assessed and found that Ascophyllum nodosum, Pelvetia canaliculata, and Fucus

serratus contained the higher phenol concentrations (O’Sullivan et al. 2011). The authors indentified

that the methanol extracts of Fucus vesiculosus and F. serratus exhibited the highest ferric reducing
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power, whlist F. vesiculosus and A. nodosum were highly effective towards scavenging DPPH

radicals and preventing β-carotene bleaching (O’Sullivan et al. 2011). The study made by Le Lann

et al. (2012) investigated 18 brown seaweed samples belonging to Turbinaria and Sargassum

from three archi-pelagos of the South West Pacific Ocean, and found that the phenolic content of

Turbinaria sp were higher than those of Sargassum sp tested.

The brown seaweed Sargassum sp collected from the coastlines at Java Island Indonesia,

Gunung Kidul (Yogyakarta) and Jepara (Central Java) and found higher phenolic content and

DPPH radical scavenging potential (Budhiyanti et al. 2012). The antioxidant activity of Eucheuma

cottonii, E. spinosum and Halymenia durvillaei, Caulerpa lentillifera, C. racemosa, Dictyota

dichotoma, Sargassum polycystum and Padina sp obtained from Sabah waters were determined

by Matanjun et al. (2008), and found that the methanol extracts of C. lentillifera, C. racemosa

and S. polycystum showed better radical-scavenging and reducing power ability, and higher phenolic

content.

The antioxidant activity of organic extracts of 37 seaweed samples, comprising of 30

species of Hawaiian seaweed from 27 different genera was determined and the extract of T.

ornata was found to be the most active Kelman et al. (2012). The bioassay-guided fractionation of

this extract led to the isolation of a variety of different carotenoid fucoxanthin as the active principles.

Mhadhebi et al. (2011) reported that the various organic (chloroform, ethyl acetate and

methanol) extracts of the brown seaweed Cystoseira crinite exhibited significant radical scavenging

activity and reducing power. Nahas et al. (2007) studied the radical scavenging potential of thirteen

seaweed species collected from the Aegean Sea and identified that the brown seaweed Taonia

atomaria exhibited higher potential. Nahas et al. (2007) further isolated taondiol, isoepitaondiol,

stypodiol, stypoldione, sargaquinone and sargaol, which possess the radical scavenging ability.

Aoun et al. (2010) reported that the organic extracts from Dictyopteris

membranacea collected from the Tunisian Mediterranean coast exhibited high radical scavenging

potential and reducing potential. It was found that the crude polyphenolic fractions of Ecklonia

cava exhibited high reducing power and the capacity to scavenge superoxide anion, hydrogen

peroxide and hydroxyl radical (Athukorala et al. 2006). Senevirathne et al. (2006) reported that the

methanol extract of Ecklonia cava showed significant antioxidant activities (DPPH, superoxide

anion, hydrogen peroxide, hydroxyl radical, ferrous ion chelating, reducing power and lipid

peroxidation inhibition and contained high phenolic content. There are other reports that showed

that the phlorotannin-rich extracts of Ecklonia cava showed significant antioxidant activities such

as DPPH radical scavenging, ferric ion reduction and inhibition of LDL oxidation (Shin et al. 2006).
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Kuda et al. (2006) reported that the extract of brown seaweed Petalonia binghamiae

showed high phenolic content and antioxidant activities as established by the reducing power,

DPPH radical and superoxide anion radical scavenging assays. Kuda et al. (2007) reported that

the total phenolic content and the antioxidant activities of E. stolorifera and E. kurome products

were higher than other seaweeds. Heo et al. (2005) reported that from the assayed enzymatic

extracts from seven species of brown seaweeds exhibited prominent effects in hydrogen peroxide

scavenging activity. Kindleysides et al. (2012) studied the effect of the addition of the extracts from

two brown seaweeds (Ecklonia radiata, Macrocystis pyrifera) and two red species (Champia sp.

and Porphyra sp.), to hoki (Macruronus novaezelandiae) oil, and assessed by the production of

oxidation products in an elevated temperature (60 °C) storage trial. They found that the extracts

from E. radiata performed best with significantly lower primary, secondary and total oxidation products,

and higher DPPH radical scavenging ability than the commercial antioxidant, BHT. The extracts of

Padina antillarum, Caulerpa racemosa and Kappaphycus alvarezzi were assayed for its phenolic

contents and antioxidant activity using various assays and found that P. antillarum was found to

have the higher phenolics, reducing power, and ferrous ion chelating ability (Chew et al. 2008).

Among the extract of four species of seaweed, Sargassum binderi, Amphiroa sp., Turbinaria conoides

and Halimeda macroloba, collected from the Gulf of Thailand, T. conoides extract showed the

higher phenolic content, ABTS and DPPH radicals antioxidation activity (Boonchum et al. 2011).

Zahra et al. (2007) reported that the extract of Sargassum boveanum exhibited high

phenolic content, inhibition of peroxidation of linoleic acid and high DPPH radical scavenging potential.

It was reported that the crude solvent extracts of Sargassum hystrix exhibited higher total phenolic

compound, radical scavenging activity, ferrous ion-chelating ability and singlet oxygen quenching

activity (Budhiyanti et al. 2011). Luo et al. (2010) evaluated the antioxidant activities of methanol/

chloroform extracts and fractions of five brown seaweeds (Sargassum fusiforme,

S. kjellmanianum, S. pallidum, S. thunbergii and S. horneri) collected from China, and found that the

methanol/chloroform extract of S. kjellmanianum showed higher DPPH/hydroxyl radical-scavenging

activity and reducing power. In an in vitro study conducted by Mori et al. (2003), it was observed that

the methanol extract, chloroform/methanol (3:1) extract and ethyl acetate fraction of brown seaweed

Sargassum micracanthum inhibited lipid peroxidation and DPPH radical scavenging potential. Seo

et al. (2004) isolated sargahydroquinoic acid, sargaquinoic acid and sargachromenol from Sargassum

thunbergii which exhibited peroxynitrite-scavenging activities. Among the lipophilic extracts from 16

species of seaweeds collected along the Qingdao coastline, it was found higher for Rhodomela

confervoides and Symphyocladia latiuscula and were comparable with that of the well-known

antioxidant butylated hydroxytoluene and greater than that of propyl gallate (Huang & Wang 2004).

Some of the common bioactive compounds isolated from seaweeds are given by Figure 2.4.

Chapter 2 - Review of Literature



Isolation and Characterization of Useful Secondary Metabolites with Antioxidant Activity from Seaweeds from Southeastern Coast of India

|    28

Figure 2.5. Structure of phenolic acids



29    |

2.5. Chromatographic Identification of Phenolic Acids from Seaweeds

Phenolic acids constitute a large group of naturally occurring organic compounds with a

broad spectrum of pharmacological activities and free radical scavenging activity. These groups of

compounds are hydroxylated derivatives of benzoic and cinnamic acids, which often occur in

plants as esters, glycosides and bound complexes and are rarely present in free forms (Germano‘

et al. 2006). Phenolic acids differ according to the number and position of hydroxylation and

methoxylation of the aromatic ring. There is a much higher quantity and diversity of

hydroxycinnamates than hydroxybenzoates and they consist of p-coumaric, caffeic, and ferulic

acids. Phenolic acids, which are considered to be a major class of phenolic compounds, were

reported to be present in abundance in seaweeds and other marine flora. Typical phenolics that

possess antioxidant activity are known to be mainly phenolic acids in seaweeds. A number of

studies showed that antioxidant phenolic compounds such as phlorotannins were isolated from

several brown seaweed families (Jormalainen & Honkanen, 2004, Koivikko et al. 2007). There are

also other reports that showed that red and brown seaweeds contain phenolic compounds such as

catechins, flavonols and flavonol glycosides (Santoso et al. 2002; Yoshie et al. 2000; Yoshie-

Starket al. 2003). Yoshie et al. (2002) identified the presence of catechin, epicatechin,

epigallocatechin gallate and gallic acid are reported in seaweed Halimada. Reverse-phase liquid

chromatographic study to analyse the polyphenols in various red and brown seaweeds collected

from the Atlantic coastal region in Galicia (North-Western Spain) revealed the presence of

polyphenolic compounds like catechin, epicatechin, epicatechin gallate, epigallocatechin,

epigallocatechin gallate, and gallic acid (de Quirós et al. 2010). The brown seaweed Stypocaulon

scoparium reported to exhibit potential antioxidant activity (López et al. 2011). Food products of

the seaweeds belonginging to Porphyra and Undaria pinnatifida also exhibited the presence of

protocatechuic acid, p-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, chlorogenic acid, caffeic

acid, p-coumaric acid, salicylic acid and cinnamic acid (Onofrejová et al. 2010). Some of the common

phenolic acids identified from seaweeds are given by Figure 2.5.

2.6. Antioxidative compounds isolated from seaweeds

Ayyad et al. (2011) isolated fucosterol and fucoxanthin from Sargassum sp and identified

that fucoxanthin could be used as antioxidant and antitumor compound. Ragubeer et al. (2012)

isolated four pure antioxidant compounds viz, sargaquinoic acid, sargahydroquinoic acid,

sargaquinal and fucoxanthin from marine brown seaweed, Sargassum elegans with good antioxidant

potential. Reddy & Urban, (2009) isolated three meroditerpenoids fallahydroquinone, fallaquinone

and fallachromenoic acid together with sargaquinone, sargahydroquinoic acid, sargaquinoic acid

and sargachromenol from southern Australian marine brown seaweed Sargassum fallax, from

which sargaquinoic acid and sargahydroquinoic acid displayed antitumour activity.
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Iwashima et al. (2005) isolated two plastoquinones (known 2-geranylgeranyl-6-

methylbenzoquinone and its hydroquinone) from the methanol extract of the brown seaweed

Sargassum micracanthum. Mori et al. (2005) isolated four plastoquinones from the methanol extract

of the brown seaweed, Sargassum micracanthum with significant antioxidant activities (inhibitory

effect on lipid peroxidation and radical scavenging effect) and some of them also showed cytotoxic

activity against cancer cell line. Fisch et al. (2003) isolated six new tetraprenyltoluquinol derivatives,

two new triprenyltoluquinol derivatives, and two new tetraprenyltoluquinone derivatives from the

brown seaweed Cystoseira crinita together with four known tetraprenyltoluquinol derivatives among

which hydroquinones were found to have powerful antioxidant activity. Seo et al. 2006 isolated

thunbergols, tetraprenyltoluquinols from the brown seaweed Sargassum thunbergii and found that

both of them exhibited significant scavenging activities on free radical species. Jang et al. (2005)

isolated sixteen new antioxidative meroterpenoids of the chromene classes from the brown seaweed

Sargassum siliquastrum collected from Jaeju Island, Korea. Nahas et al. (2007) isolated metabolites

taondiol, isoepitaondiol, stypodiol, stypoldione, sargaquinone and sargaol from Taonia

atomaria extract, and these compounds were found to possess marked radical-scavenging potential.

Abatis et al. (2005) isolated two novel cyclized meroditerpenoids atomarianones A, and

B from the organic extract of the brown seaweed Taonia atomaria collected at Serifos Island in the

Central Aegean Sea. 2, 7’-phloroglucinol-6,6’-bieckol isolated from Ecklonia cava exhibited radical

scavenging activities on DPPH, alkyl, hydroxyl, and superoxide radicals, and was effective to

inhibit H
2
O

2
 induced DNA damage (Kang et al. 2012). Kang et al. (2003) reported that the

polyphenolic compounds and complex mixtures isolated from brown seaweed species exhibited

DPPH radical scavenging activity and ferric reducing antioxidant power.

Fukuyama et al. (1989) isolated Eckol, a novel phlorotannin with a dibenzo-1,4-dioxin

skeleton, from the brown seaweed Ecklonia kurome Okamura as a potent and specific anti-plasmin

inhibitor. Fukuyama et al. (1990) isolated two phlorotannins from the polyphenol powder prepared

from the edible marine brown seaweed Ecklonia kurome which demonstrated antioxidant potential.

Zou et al. (2008) isolated three phlorotannins, including phloroglucinol, diphlorethohydroxycarmalol,

and 6,62-bieckol, from Ishige okamurae among which diphlorethohydroxycarmalol and 6,62-bieckol

which exhibited showed potential radical scavenging activities against the 2,2-diphenyl-1-

picrylhydrazyl , hydroxyl, alkyl, and superoxide radicals. Polymeric phlorotannins of the fucol and

fucophlorethol classes isolated from that Fucus spiralis exhibited antioxidant activity (Ce´rantola

et al. 2006). Fucosterol isolated from the marine seaweed Pelvetia siliquosa exhibited anti-oxidant

potential and also possess the hepatoprotective activities in rats (Lee et al. 2003). Parys et al.

(2010) isolated two phloroglucinol derivatives, belonging to the class of fucophlorethols, and the
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known fucotriphlorethol A from the ethanolic extract of the brown seaweed Fucus vesiculosus L.

Trifucodiphlorethol A, trifucotriphlorethol A and fucotriphlorethol A were identified as strong radical

scavengers (Parys et al. 2010).

A series of bromophenols and corresponding to the debrominated phenolic compounds

was prepared by isolation from red seaweed Tichocarpus crinitus and it was observed that the

most active free radical scavengers were the debrominated phenolic derivatives 3,4-dihydroxybenzyl

alcohol and 3,3’,4,4’-tetrahydroxydiphenylmethane (Lee et al. 2007). The seaweeds Caulerpa (Costa

et al. 2010), Canistrocarpus cervicornis (Camara et al. 2011), Dictyota mertensii (Costa et al.

2010), Dictyopteris delicatula (Magalhães et al. 2011), Dictyota menstrualis (Costa et al. 2010),

Fucus vesiculosus (Rupe´ rez et al. 2002), Laminaria japonica (Zhang et al. 2010; Wang et al.

2010; Hou et al. 2012), Lobophora variegate (Paiva et al. 2011), Turbinaria conoides (Chattopadhyay

et al. 2010) and Turbinaria ornata (Ananthi et al. 2010) were identified as potent radical scavengers

due to the presence of polysaccharides. The extract of  Laurencia undulata was reported to possess

two antioxidative sugars belonging to floridosídeo and D-isofloridosídeo (Yong-Xin et al. 2010).

Plastoquinones isolated from the methanol extract of the brown seaweed, Sargassum micracanthum

exhibited significant antioxidant activities such as an inhibitory effect on lipid peroxidation and

radical scavenging effect on 1, 1-diphenyl-2-picrylhydrazyl (Mori et al. 2005). Tang et al. (2002)

isolated two bioactive steroids from the brown seaweed Sargassum carpophyllum. Sheu et al.

(1999) isolated antioxidative oxygenated fucosterols from the brown seaweed Turbinaria conoides.

Seaweeds are reported to contain tocopherols, eckols, phlorotannins, catechins,

mycosporine-like amino acids, carotenoids etc, which are considered to be the reason for its

antioxidant potential (Yuan et al. 2005). Prenyl toluquinones isolated from Cystoseira crinite (Fisch

et al. 2003), eckstolonol isolated from Ecklonia stolonifera (Kang et al. 2003), sargothunbergol A

and monogalactosyldiacylglycerols isolated from Sargassum thunbergii (Seo et al. 2007, Kim et

al. 2007), fucodiphlorethol G isolated from Ecklonia cava (Ham et al. 2007) exhibited good radical

scavenging potential. Sesquiterpenes with antioxidant potential were isolated from the essential

oil of the red seaweed Laurencia dendroidea collected in the Brazilian coast (Gressler et al. 2011).

Rajendran et al. (2013) isolated biologically active compounds fucosterol and hexadec-

4-enoic acid from the crude extracts of Anthophycus longifolius collected from the Gulf of Mannar.

The biogenetic precursor of fucosterol, 24-methylene cholesterol, was found in significant amounts

in Padina vickersiae (Aknin et al. 1992) and in Padina gymnospora collected from the Qatar coast

(Al Easa et al. 1995). Cholesterol and fucosterol were identified as the main sterols present in

Padina pavonia (Kamenarska et al. 2002). Several oxidised sterol derivatives have been found in

some Padina species, 24-hydroperoxy-24- vinyl-cholesterol in Padina pavonia (Ktari & Guyot 1999),
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7-ketocholesterol in Padina tetrastromatica Hauck. (Parameswaran et al. 1994) and 7α-

hydroxyfucosterol in Padina crassa (Tan et al. 1992). Few terpenoids have been found in Padina

species. Halogenated terpenoids were identified in Padina tetrastromatica (Parameswaran et al.

1994, 1996). Loliolide was identified in P. tetrastromatica (Rao & Pullaiah 1982) and in Padina

crassa (Tan et al. 1992). Hexahydrofarnesylacetone was found in P. tetrastromatica (Rao & Pullaiah

1982). Dimethylsulfide and dimethyl-α-propiothetin were identified in Padina arborescens Holmes

(Iida et al. 1985). Pigments were investigated in Padina pavonia by Hegazi et al. (1998).The

characteristic brown algal polysaccharides (alginates and laminarans) were found in Padina pavonia

(Khafaji 1986) and P. tetrastromatica (Rao et al. 1984). In P. tetrastromatica two new sulphated

heteropolysaccharides, containing sugar and protein residues were also found (Rao et al. 1984).

Galactol was identified in P. tetrastromatica (Parameswaran et al. 1996). Ktari et al. (1999) isolated

oxysterol (1) from the dichloromethane extract of Padina pavonica. 18,19-epoxyxenic-19-methoxy-

18-hydroxy-4-acetoxy-6,9,13-triene and 18,19-epoxyxenic-18,19-dimethoxy-4-hydroxyl-6,9,13-

triene were also isolated from the 80% methanol extract of Padina pavonia (Awad et al. 2008).

Compounds like 5α-cholestane-3,6-dione, dipeptides, cholest-5-en-3α-ol, cholest-4-ene-

3a,6b-diol (Wahidulla et al. 1986, 1991,19998) cholest-4-ene-3-one (Wahidulla & Kamat 1991),

11a-hydroxy-5a-cholestane-3,6-dione (Prakash et al. 1989) quercetin, (-)- catechin ,acid derivates

and tiliroside (Wang et al. 1998, 2003), acanthophorin A and B (Zeng et al. 2001), and antheraxanthin

(Aihara and Yamamoto, 1968) were already been identified from A. spicifera. Halogenated cyclic

ether enynes and related allenes (Erickson et al 1983; Blunt et al 2006), sesquiterpenes, (Blunt et

al. 2008), diterpenes (Blunt et al. 2005), C15-acetogenins (Blunt et al. 2004; Wright et al. 1991;

Bittner et al. 1985; Howard and Fenical, 1976), calenzanol 6,8-cycloeudesmane sesquiterpenes

(Guella et al. 2001, 2002), cuparene sesquiterpenes , (E)-2-tridecyl-2-heptadecenal, bromolaurenisol

and laurinterol, cyclolaurane sesquiterpenes, (+)-α-isobromocuparene and (-)-α-bromocuparene

(Kladi et al. 2005, 2006, 2007), halogenated sesquiterpenoids, diterpenoids, triterpenoids, and C15

acetogenins (Erickson 1983; Suzuki & Vairappan 2005) etc were isolated from genus Laurencia.

Some of the common antioxidative compounds isolated  from seaweeds are given by Figure 2.6.

2.7. Role of Seaweeds in Food and Pharmaceutical Industry

Recently, efforts are underway to exploit the antioxidant leads from the natural origin for

use as food supplements in the food and pharmaceutical industry. These naturally derived antioxidant

leads are the preferred alternatives to the synthetic derivatives due to their safety, sustainability

and effectiveness. There are reports that the compounds derived from marine sources are endowed

with antioxidant properties and are therefore the potential candidates for use as food supplements

in the food industry (Rajauria et al. 2012). The regular consumption of seaweed derived diet can
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reduce the risks of cancer, diabetes and heart disease (Yang et al. 2010; Lee et al. 2010; Bocanegra

et al. 2008). The long history of the usage seaweeds in the part of their staple diet of the people

from Korea, Japan, China etc. demonstrates their nutritional and health supplementing qualities.

There are reports that different genera of seaweeds mainly belonging to Sargassum, Porphyra,

Ecklonia, Laminaria etc have been used in Chinese medicine to treat against different diseases

(Dharmananda 2002). Seaweeds, especially Laminaraia spp were used to treat against goitre

because of its richness in iodine in China and Europe (Kelly 1961). These studies demonstrate the

beneficial effect of seaweeds or seaweed derived compounds in food and pharmaceutical industry.

Keeping this facts as background information, the present study has attempted to develop

an optimized procedure for extraction and pluralities of in vitro reactive oxygen species scavenging

assay-guided chromatographic fractionation of seaweed-derived antioxidant lead molecules from

the most abundantly available red and brown seaweeds from the Gulf of Mannar region of

Mandapam. These seaweed-derived crude extracts have been purified by a series of

chromatographic purification steps based upon their antioxidant potential. These compounds so

purified have been assayed further for their antioxidative properties and based on the activities of

the compounds, the major compounds have been identified on the basis of their 1H NMR and

13C NMR spectra, including 2D NMR (COSY, HSQC, HMBC, NOESY etc.) infra-red, and mass

spectra.
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CHAPTER 3

Evaluation of the Antioxidant
Potential of Seaweeds

3.1. General

In this chapter seaweeds were evaluated for their total phenolic contents (TPC) and

antioxidant activities, and the antioxidative properties have been correlated with the phenolic compounds

responsible for the target activity. The antioxidant activities have been evaluated using different in vitro

systems, viz 1,1-dipheny1–2-picrylhydrazyl (DPPH), 2,2’-azino-bis-(3 ethylbenzothiozoline-6-sulfonic

acid) diammonium salt (ABTS), hydrogen peroxide (H
2
O

2
) / hydroxyl radical (HO.) radical scavenging,

ferrous ion (Fe2+) chelating ability, thiobarbituric acid reactive species (TBARS) formation inhibition

assay and reducing potential. A reversed-phase high-performance liquid chromatography method (RP-

HPLC) hyphenated to diode-array detection (DAD) were also utilized to characterize the solvent extract

fingerprints of phenolic constituents in the seaweed species. In order to understand the antioxidant

potential exhibited by the seaweed extracts and fractions in a better way, the seaweeds were grouped

into two or three and the results have been described in detail under different sub chapters.

3.1.1. Need for Conducting More than One Antioxidant Assay

It is difficult to predict the antioxidant capacity using one single assay, which may not lead

to a valid and correct conclusion, and therefore, different assays were used in this study to evaluate

antioxidant capacities of seaweed solvent extracts. We have focused to evaluate antioxidant action

based on different mechanisms and variable conditions to get the idea on the functional role of

antioxidants to inhibit oxidation process in a model system. The differential bioactivities obtained in

various antioxidative assays were reported to be influenced by the nature of oxidation substrate, the

components involved, and most importantly the method to measure oxidation (Huang et al. 2005). It is

apparent that the antioxidant activity as determined by any specific assay reflects the chemical reactivity

of the substrates under the particular conditions of that assay.

It is, therefore, that the antioxidant activity may not be generalized based on the results

obtained from a single assay. It is important to evaluate the extracts using different antioxidant assay,

which can give a more scientifically valid and correct idea about their antioxidant activities (Huang et

al. 2005). These led us to incorporate different antioxidant assays in our present study to evaluate the

bioactivities of the solvent extracts from the experimental seaweeds. The assays followed were (1)

quantification of phenolic compounds, (2) radical scavenging activities by different mechanisms viz.,

hydrogen transfer, electron transfer, hydroxyl, and peroxide radical scavenging activity, (3) ability to

inhibit lipid oxidation in model systems, (4) reducing, and (5) metal ion chelating abilities, in order to
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get a comprehensive idea of the antioxidant mechanism operating with the solvent extracts of seaweeds.

This enabled us to evaluate the seaweed extracts and fractions in different dimensions so that a better

understanding in view of their antioxidative properties may be obtained. In this study methanol extract

was selected as the extraction solvent because of the fact that methanol extract of many seaweed

species exhibited potential antioxidant activities (Yan et al. 1999).

3.2 Materials and Methods

3.2.1. Chemicals

All solvents used for sample preparation were of analytical grade (E-Merck, Darmstadt,

Germany). Analytical grade solvents were redistilled in an all-glass system. Doubly distilled water

was used throughout this work, while all reagents used were of analytical grade and purchased

from E-Merck. The chemicals 1,1-dipheny1–2-picrylhydrazyl (DPPH), 2-thiobarbituric acid (TBA),

trichloracetic acid (TCA), 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-42 ,42 -disulfonic acid sodium

salt (ferrozine), folin-ciocalteu reagent, and ABTS (2,2’-azino-bis-(3-ethylbenzothiozoline-6-sulfonic

acid) diammonium salt, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), gallic acid,

quercetin, acetyl acetone, ammonium acetate, ascorbic acid, ethylene diamine tetra acetic acid

(EDTA), ferrous ammonium sulfate, ferric chloride, potassium ferricyanide and ferrous chloride

were purchased from E-Merck and Sigma-Aldrich Chemical Co. Inc. (St. Louis, MO). All other

unlabeled chemicals and reagents were of analytical, spectroscopic or chromatographic reagent

grade and were obtained from E-Merck (Darmstadt, Germany). Water used for HPLC analysis

was of Milli-Q quality (Millipore Corp., Cork, Ireland). All solvents used for HPLC were of HPLC

grade. Stock solutions of standard were prepared in HPLC grade methanol for HPLC-DAD

identification and kept in a refrigerator at 20°C until use. Standards: chlorogenic acid (>99%),

syringic acid (> 95%), 2, 5 dihydroxy benzoic acid (>99%), 4- hydroxy benzoic acid (> 99%),

epigallocatechin gallate (EGCG, > 99%) (2000 ppm each) from Sigma-Aldrich. Caffeic acid

(> 98%), p-coumaric acid (> 98%), ferulic acid (99%), quercetin, salicylic acid (> 99%), gallic acid,

(+)-catechin, epicatechin, and epicatechin gallate (ECG, > 98% by HPLC) (1000 ppm each, >99%)

from Sigma-Aldrich.Stock solutions of the standards were prepared by dissolving the compounds

separately in HPLC methanol, and stored at 15°C until analysis of phenolic compounds by

RP-HPLC.

3.2.2. Instrumentation

A benchtop refrigerated high-speed microprocessor controlled centrifuge equipped with

asynchronous motor and programmable micro-controlled variable frequency controller (Superspin

PlastoCrafts R-V/Fm, Mumbai, India) were used for centrifugation. Crude solvent extracts were
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concentrated using a rotary vacuum evaporator (Heidolph Instruments GmbH & Co. KG Schwabach,

Germany). All spectrophotometric data were acquired using Varian Cary 50 conc UV-visible

spectrophotometer (Varian Cary, USA). Glass cuvettes (1 cm × 1 cm × 4.5 cm) were used for

visible absorbance measurements. Chromatographic analysis was carried out using high-

performance liquid chromatograph (Shimadzu SCL-10A vp, Shimadzu Co., Kyoto, Japan) equipped

with a vacuum degasser, a binary pump (LC–20AD), a thermostatted column compartment

(CTO–20A) and a diode array detector (SPD–M20A), connected to an LC solution software.

Chromatographic separation was carried out at 30°C on a reverse phase Luna C
18

 (250 mm x

4.6 mm, 5µm) phenomenex column.

3.3. Seaweed Material and Description of Study Area

The seaweeds were collected from the Gulf of Mannar of Mandapam region located

between 8o48' N, 78o9' E and 9o14' N, 79o14’E on the southeast coast of India (Figure 3.1). The

seaweed samples collected from various sites of Gulf of Mannar region (Figure 3.2) were washed

with distilled water, to remove salt, epiphytes and other unwanted materials, before being shade

dried, powdered and stored in airtight containers at room temperature for further work.

3.4. Preparation of Seaweed Extracts and Fractions

The ground and shade-dried seaweed samples were extracted with methanol and filtered

through sodium sulphate (Na
2
SO

4
)

. 
The filtrate thus obtained was evaporated (40oC) using rotary

evaporator under vacuum to dryness. This methanol extracts were mixed with an equal volume of

distilled water, and partitioned successively with n-hexane, dichloromethane (MDC), and ethyl

acetate (EtOAc) to furnish corresponding solvent fractions. The extracts were dried over anhydrous

sodium sulphate and evaporated under reduced pressure to furnish n-hexane, dichloromethane

and ethyl acetate fractions, respectively.

3.5. Determination of the Total Phenolic Content (TPC) and Antioxidant Potential of

the Methanol Extract and Solvent Fractions of the Seaweeds

3.5.1. Total Phenolic Content (TPC)

The amounts of total phenolics in the seaweed extracts and solvent fractions were

determined by the established method with suitable modification (Mcdonald et al. 2001). Gallic

acid was used as a standard, and a standard calibration curve was prepared by mixing a methanolic

solution of gallic acid (1 mL; 0.025–0.400 mg/mL) with Na2CO3 (4 mL, 0.7 M) and folin-ciocalteu

reagent (5 mL, diluted ten fold). The absorbance was measured at 765 nm. The methanol extract

(1 mL, 5 g/L) was mixed with the reagents as stated earlier and after an incubation period of 2 h the
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Figure 3.3 The reduction of the blue green ABTS.+ chromophore  to colourless ABTS in presence of antioxidants

Figure 3.4 The reduction of HPPH.  to  DPPH in presence of antioxidants
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absorbance was measured to determine total phenolic contents. All determinations were carried

out in triplicate. The total phenolic content was expressed as gallic acid equivalent (GE) in the mg

/ g sample, and was calculated by the following formula: T =[C X V]/ M, where the T=total content

of phenolic compounds, mg/g plant extract (Gallic acid equivalents, GAE); C=the concentration of

galic acid as established from the calibration curve (mg/mL); V= volume of extract (mL);

M=the weight of plant extract (g).

3.5.2. 2, 2’-Azino-bis-(3-ethylbenzothiozoline-6-Sulfonic Acid) Diammonium Salt (ABTS)

Radical Scavenging Activity (%)

The ABTS.+ assay (Re et al. 1999) was employed to measure the antioxidant activity of

the seaweed extracts. Briefly, ABTS.+was dissolved in deionized water to 7 mM concentration, and

potassium persulfate (K
2
S

2
O

8
) is added to a concentration of 2.45 mM. The reaction mixture was

left to stand at room temperature overnight (12-16 h) in the dark before use. The resultant intensly-

colored ABTS.+ radical cation was diluted with methanol to give an absorbance of ~0.70 at

734 nm. The test materials (seaweed extracts 50 µL) of different concentrations (0.1 – 0.6 µg/mL)

was diluted 100 times with the ABTS.+ solution to a total volume of 5 mL. Absorbance was measured

spectrophotometrically at different concentrations (0.1-0.6 µg/mL) for each extract results of the

assay were expressed as % radical scavenging ability. The assay was performed in triplicates.

Fresh stocks of ABTS.+ solution were prepared before analyses.

Chemistry

The blue green ABTS.+ chromophore (λmax734nm) is generated by the reaction between

ABTS and K
2
S

2
O

8
. Antioxidants which are capable of reducing ABTS.+ to ABTS by donating an

electron will lead to a decrease in absorbance at λmax734nm (Figure 3.3).

3.5.3. 1, 1-Diphenyl-2-Picryl Hydrazil (DPPH•) radical scavenging Activity (%)

The free radical scavenging activity of the crude solvent extracts of the seaweeds was

measured by 1, 1-diphenyl-2-picryl-hydrazil (DPPH.) using established method with suitable

modification (Shimada et al. 1992). In brief a solution of DPPH. (80 µg/mL, 2.5 mL) in methanol

was added to the equal volume of sample solution (2.5 mL) at different concentrations

(0.1-1mg/mL). The mixture was shaken vigorously and allowed to stand at room temperature for

30 min, and the absorbance was measured at 517 nm in various time intervals (1-5 h). The lower

absorbance of the reaction mixture indicated higher free radical scavenging activity. The percentage

of the DPPH. radical scavenging effect was calculated using the following equation: DPPH·

scavenging effect (%) = 100(A
0
 - A

1
/A

0
), where A

0
 was the absorbance of the control reaction and

A1 was the absorbance in the presence of the standard sample or crude extract.
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Figure 3.5. Formation of 3,5-diacetyl-2,6-dihydrolutidine with λmax412nm from the reaction  between formaldehyde
and Nash reagent
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Chemistry

DPPH. is a highly reactive free radical with λ
max

517nm. Antioxidants will readily reduce

DPPH. to DPPH by donating H. leading to a decrease in absorbance at λmax517nm (Figure 3.4).

3.5.4. Hydroxyl Radical Scavenging Activity (%)

The hydroxyl radical scavenging activity of the crude solvent extracts of the seaweeds

was measured using the established method with modification (Klein et al. 1981). Briefly, methanol

extracts of seaweeds (0.1-0.6 mg/mL) were placed in a test tube and evaporated to dryness. Iron-

EDTA solution (1 mL, 0.13% Mohr’s Salt (ferrous ammonium sulfate and 0.26% w/v ethyline diamine

tetra acetic acid), EDTA (0.5 mL, 0.018%), dimethyl sulfoxide (1 mL, 0.85% v/v, in phosphate

buffer (0.1 mol/L, pH 7.4), and ascorbic acid (0.5 mL of 0.22%) were added to each tube, which

were capped tightly, and heated in a water bath at 80–90°C for 15 min. The reaction was terminated

by adding ice-cold trychloro acetic acid (1 mL, 17.5% w/v). Nash reagent (3 mL, 75.0 g amonium

acetate 3 mL glacial acetic acid and 2 mL acetyl acetone were mixed and water was added to a

total volume of 1 L) was added to each tube and were left at room temperature for 15 min for color

development. The intensity of the yellow color formed was measured at 412 nm against a blank of

the reagent and expressed as percentage hydroxyl radical scavenging activity.

Chemistry

The OH.   radical generated using the ascorbic acid-ion EDTA oxidation reaction, will

react with DMSO to produce formaldehyde. The formaldehyde thus formed can further react with

Nash reagent which contain a diketone and ammonium acetate to form a condensation product

3,5-diacetyl-2,6-dihydrolutidine with λ
max

412nm (Figure 3.5) (Compton & Purdy 1980).  Antioxidants

present with the reaction mixture will deactivate the OH.  radical and thus the production of

formaldehyde leading to a decrease in absorbance maxima at 412nm.

3.5.5. Hydrogen Peroxide (H2O2) Scavenging Activity (%)

The ability of the solvent extracts of the seaweeds to scavenge hydrogen peroxide was

determined using established method (Ruch et al. 1989) with suitable modification. In brief, a

solution of H2O2 (40 mM) was prepared in phosphate buffer (pH 7.4) and the concentration of H2O2

was determined spectrophotometrically from absorption at 230 nm. Seaweed extracts

(3 mL, 0.1-1 mg/mL) in distilled water was added to a H
2
O

2
 solution (3 mL, 40mM) and the

absorbance of H2O2 at 230 nm was determined after 20 min against a blank solution containing in

phosphate buffer without H2O2. The percentage of scavenging of H2O2 of seaweed extracts was

determined by the following formula: % scavenged (H
2
O

2
) = [(A

0
 - A

1
)/A

0
] 100, where A

0
 was the
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Figure 3.6. Formation of TBA-MDA adduct (thiobarbituric acid reactive species) from the reaction between TBA
and MDA
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absorbance of the control and A1 was the absorbance in the presence of the sample of the solvent

fractions and standards.

Chemistry

The presence of H
2
O

2
 in phosphate buffer (pH 7.4) can be determined

spectrophotometrically by its characteristic absorbance at  λmax 230nm. Compounds with H2O2

scavenging potential will accelerate the decomposition of H
2
O

2 
into water by donating electrons.

This will lead to a decrease in absorbance at  λ
max 

230nm.

H2O2 + 2H+ + 2e- –––––––––Æ 2H2O

3.5.6. Lipid Peroxidation Inhibition Activity in Model System: Thiobarbituric Acid-Reactive

Species (TBARS) Formation Inhibitory Activity (MDAEC/kg)

The ability of the seaweed extracts to arrest lipid peroxidation was assessed by

thiobarbituric acid reactive substances assay (TBARS) as described by (Madsen et al. 1997) with

suitable modification. The model system used for this assay was lyophilized mussel (Perna viridis

L.) sample as a lipid source. The sample solutions (1mL, 0.1-2 mg/mL) were incubated with of the

mussel sample (10 mg), acetic acid (2 mL, 20 % v/v) and an aqueous solution of thiobarbituric acid

(TBA, 2 mL, 0.78 % w/v) at 95oC for 45 minutes. The resultant mixture (5 mL) was cooled to room

temperature and clarified by centrifugation (8000 rpm, 10 min). The absorbance of the supernatant

was recorded at 532 nm and the antioxidant capacity was expressed as equivalent mM of

malonaldehyde (MDA)/kg of sample. TBARS concentration was calculated using a standard curve

based on MDA.

Chemistry

Fatty acids will break down into aldehydes, particularly malonaldehyde (MDA) as a

result of oxidation. This can be measured by its reaction with thiobarbituric acid (TBA) leading to

the formation of a condensation product (TBA-MDA adduct) with λ
max

532nm. Antioxidants present

in the reaction mixture will hinder the lipid peroxidation thereby the formation TBA-MDA adduct,

leading to a decrease in absorbance at λmax532nm (Figure 3.6).

3.5.7. Evaluation of Reducing Ability (Ab700nm)

Total reduction capabilities of the solvent extracts of seaweeds were estimated by using

the method as described earlier (Oyaizu 1986) with modifications. The solvent extracts of seaweeds

(1 mL) in distilled water were added with phosphate buffer (2.5 mL, 0.2 M, pH 6.6) and potassium

ferricyanide (K
3
Fe (CN)

6
, 2.5 mL, 1% v/v) to be incubated at 50 °C for 20 min. A portion of

trichloroacetic acid (TCA, 2.5 mL, 10% v/v) was added to the mixture to terminate the reaction.
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The aliquot was thereafter centrifuged for 10 min at 8000 g. The upper layer of solution (2.5 ml)

was mixed with distilled water (2.5 mL) and FeCl
3
 (0.5 mL, 0.1%), and The absorbance of the

reaction mixture after incubation was measured at 700 nm by using a spectrophotometer. The

higher absorbance of the reaction mixture indicated greater reducing power.

Chemistry

Antioxidants with reducing power will react with potassium ferricyanide (K3Fe(CN)6)  and

ferric chloride (FeCl
3
)

 
to form potassium ferrocyanide (K

4
Fe(CN)

6
)

 
and ferrous chloride (FeCl

2
),

which then reacts with FeCl
3
 to form ferric ferrous complex with λ

max
700 nm (Arulpriya et al. 2010).

Higher the antioxidant potential, higher the Fe3+/Fe2+ complex formed leading to a higher absorbance.

   Antioxidants
K3Fe(CN)6 + FeCl3 –––––––––Æ K4Fe(CN)6 + FeCl2

K4Fe(CN)6 + FeCl3 –––––––––Æ Fe3+-Fe2+ Complex

3.5.8. Ferrous Ion (Fe2+) Chelating Activity (%)

The Fe2+ ion chelating potential by the seaweed extracts were estimated by the method

of (Dinis et al. 1994) with suitable modification. Briefly, the samples (0.1-0.6 mg/mL) were added

to ferrous chloride solution (0.05 mL, 2mM). The reaction was initiated by the addition of ferrozine

(0.2 mL, 5mM) with shaking, and the contents were left at room temperature for 10 min. After the

reaction mixture had reached equilibrium, the absorbance of the solution was measured

spectrophotometrically at 562 nm. The percentage of inhibition of ferrozine-Fe2+ complex formation

was given bellow formula: % inhibition = [(A0- A1)/A0] 100, where A0 was the absorbance of the

control and A
1
 was the absorbance in the presence of the sample of the sample and standards.

The control contains ferrous chloride and ferrozine, the complex forming molecules.

Chemistry

Red coloured ferrous-ferrozine complex with a λmax562nm will be formed by the reaction

between ferrous chloride and ferrozine. The complex formation will be hindered by the presence of

a chelating agent which can be monitored by a decrease in absorbance at 562nm.

FeCl2 + Ferrozine –––––––––Æ Fe2+/Ferrozine complex

3.5.9. Statistical Analysis

Statistical evaluation was carried out with the Statistical Program for Social Sciences

13.0 (SPSS Inc, Chicago, USA, ver. 13.0). Descriptive statistics were calculated for all the studied

traits. Analyses were carried out in triplicate and the means of all parameters were examined for
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significance (P<0.05) by analysis of variance (ANOVA). The Pearson correlation test was used to

assess correlations between means. The experiments were carried out in three different batches

of seaweeds. The mean variance in the data set was detected using principal component analysis

(PCA). All data were mean centered and scaled to equal unit variance prior to PCA. The selected

variables for PCA where the different antioxidant assays and phenolic content, as exhibited by the

methanol extract and different solvent fractions  of the seaweeds.

3.6. Preparation of the Seaweed Extracts and Solvent Fractions for HPLC Analysis

The pre-purification of methanol extract and ethyl acetate fractions from seaweeds were

accomplished using solid-phase extraction (SPE: Supelco LC
18 

mini-columns). These solid-phase

extractions were preconditioned for polyphenols by sequentially passing 2 mL of methanol, 2 mL of

50 % aqueous methanol (1:1) and finally 2 mL of water (this last step was repeated 3 times). The

sample was dissolved in 1 mL of aqueous methanol (70 %) on the minicolumn conditioned and

washed with 2 mL of distilled water. Finally, the sample was eluted with 2 mL of 90% methanol

(2 times) to recover the purified extract which was evaporated to dryness and dissolved in water/

methanol (1:1, v/v) for the HPLC identification. The sample was thereafter passed through a 0.25 µm

filter (Millipore, Westboro, MA) before being injected into the HPLC. Reverse phase HPLC to determine

phenolic compounds was performed using a Shimadzu HPLC (SCL-10A vp, Shimadzu Co., Kyoto,

Japan), equipped with a UV (SPD-20A, Shimadzu), a programmable wavelength diode array detector,

and manual injector. Separations were achieved on an analytical column packed with modified silicagel

(Phenomenex RPC18 Luna 150 X 4.6 mm i.d.; 5 µm particle size packing material) fitted with a C18

octadecylsilane guard cartridge (4 mm X 3 mm i.d., 5µm) (Phenomenex, Torrance, CA, USA).

3.6.1. Identification of the Phenolic Compounds by HPLC

The sample were dissolved in methanol and chromatographed under gradient conditions,

with a flow rate of 0.6 mL/min. An equilibration time of 15 min was maintained before injection. The

mobile phase was methanol: water with 0.2% acetic acid (65:35, v/v). The injection volume was 50

µL. The gradient elution was performed as follows: 0–2 min, 5% B isocratic; 2–10 min, linear

gradient 5–25% B; 10–20 min, linear gradient 25–40% B; 20–30 min, linear gradient 40–50% B;

30–40 min, linear gradient 50–100% B; 40–45 min, 100% B isocratic and 45–55 min, linear gradient

100–5% B. The time of HPLC run was over 50 min. Simultaneous monitoring of detection wavelength

were set at 324 nm for chlorogenic acid, caffeic acid, 2, 5-dihydroxy benzoic acid, coumaric acid,

ferulic acid, quercetin, salicylic acid and 277 nm for gallic acid, catechin, epigalocatechin galllate

(EGCG), epicatechin (EC), epicatechin gallate (ECG) and syringic acid. Individual phenolic acids

of seaweed extracts were identified by comparing their retention times with those of authentic

standards using the same HPLC operating conditions. Chlorogenic acid (8.12), caffeic acid (10.49),
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Figure 3.7 (A) HPLC chromatogram of standard polyphenolics detected at 324 nm: (1) chlorogenic acid (8.12);
(2) caffeic acid (10.49); (3) 2,5 dihydroxy benzoic acid(17.43); (4) coumaric acid (20.56); (5) ferulic acid
(24.19); (6) quercetin (37.9); (7) salicylic acid (44.92).

(B) HPLC chromatogram of standard polyphenolics detected at 277 nm: (8) gallic acid (5.38); (9) catechin
(6.82); (10) epigallocatechin gallate (8.13); (11) epicatechin(10.11); (12) epicatechin gallate (13.0);
(13) syringic acid (14.78).
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2,5 dihydroxy benzoic acid(17.43), coumaric acid (20.56), ferulic acid (24.19), quercetin (37.9)

and salicylic acid (44.92) were detected at 324 nm (Figure 3.7). Gallic acid (5.38), catechin (6.82),

epigallocatechin gallate (8.13), epicatechin(10.11), epicatechin gallate (13.0) and syringic acid

(14.78) were detected at 277 nm (Figure 3.7). The quantification of each compound was determined

based on peak area measurements, which were reported to calibration curves of the corresponding

standards. Purity of each peak was checked so as to exclude any contribution from interfering

peaks. The electronic descriptors viz., molecular polar surface area based on fragment contributions

(tPSA) and hydrophobic parameter log P as calculated by ChemDraw 12.0 (Chakraborty et al.,

2008, 2009) have been taken into consideration to understand the elution behaviour or relative

position of the phenolics in the HPLC spectra and their molecular characteristics guiding their

separation in the C
18

 HPLC column.

The phenolics with hydroxyl phenyl substituted chroman ring system as in epicatechin with

2-(3,4-dihydroxyphenyl)chroman-3,5,7-triol moiety (tPSA 110.38, log P 1.50), epicatechin gallate with

2-(3,4-dihydroxyphenyl)-5,7-dihydroxychroman-3-yl 3,4,5-trihydroxybenzoate moiety (tPSA 177.14, log

P 2.46), epigallocatechin gallate with 5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)chroman-3-yl 3,4,5-

trihydroxybenzoate moiety (tPSA 110.38, log P 1.50), and 4H-chromen-4-one ring system as in quercetin

with 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one (tPSA 127.45, log P 0.35) appeared

to be bonded strongly with the C18 matrix and therefore eluted later. Quercetin and epicatechin with

chroman ring system were reported to have a hydroxyl group at C-3 of the ring system (Figure 3.7).

3.6.2. Preparation of the Seaweed Samples for HPLC Analysis

The pre-purification of the seaweed crude extract before HPLC injection was

accomplished using solid-phase extraction (SPE: Supelco LC
18 

mini-columns). These SPE were

preconditioned for polyphenols by sequentially passing 2 mL of methanol, 2 mL of 50 % aqueous

methanol (1:1) and finally 2 mL of water (this last step was repeated 3 times). The extract was

dissolved in 1 mL of aqueous methanol (70 %) on the mini column conditioned and washed with 2

mL of distilled water. Finally, the extract was eluted with 2 mL of 90% methanol (2 times) to recover

the purified extract which was evaporated to dryness and dissolved in water/methanol (1:1, v/v) for

the HPLC identification. The extract was thereafter passed through a 0.25 µm filter (Millipore,

Westboro, MA) before being injected into the HPLC. Reverse phase HPLC to determine phenolic

compounds was performed using a Shimadzu HPLC (SCL-10A vp, Shimadzu Co., Kyoto, Japan),

equipped with a UV (SPD-20A, Shimadzu), a programmable wavelength diode array detector, and

manual injector. Separations were achieved on an analytical column packed with modified silicagel

(Phenomenex RPC18 Luna 150 X 4.6 mm i.d.; 5 µm particle size packing material) fitted with a C18

octadecylsilane guard cartridge (4 mm X 3 mm i.d., 5µm) (Phenomenex, Torrance, CA, USA).
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Figure 3A. T. conoides collected from the Gulf of Mannar

Figure 3A. T. ornata collected from the Gulf of Mannar
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CHAPTER 3A

Evaluation of the Antioxidant Potential of
Turbinaria conoides and Turbinaria ornata

3A.1. Introduction

The genera Turbinaria is well-known for its biological activities including antioxidant

properties (Zubia 2003), and their chemical defense mechanism is supposed to increase in species

from coral reef ecosystems where biodiversity, grazing, and competition for space and food are

considerably higher (Hay 1996). Among different seaweeds, the genera Turbinaria is well-known

for its biological activities including antioxidant and antimicrobial activities (Chakraborty et al. 2013;

Zubia et al. 2008). It was reported that the bioactive compounds derived from Turbinaria species

are endowed with high antioxidant and anti-inflammatory potential and could be considered as a

potential antioxidant and anti-inflammatory agent (Ananthi et al. 2010; Chattopadhyay et al. 2010).

Earlier reports indicated that the extracts of brown seaweeds belonging to Turbinaria sp. were

found to have antioxidant and anti-inflammatory activities (Zubia et al. 2009; Vijayabaskar et al.

2012).

The brown seaweeds contain a large assemblage of species that predominate in the

coastal shelf areas of the Gulf of Mannar region in the southeastern coast of the Indian subcontinent.

Among various seaweeds, Turbinaria conoides (J. Agardh) Kuzing (Family: Sargassaceae, Order:

Fucales) and Turbinaria ornata (Turner) J. Agardh (Family: Sargassaceae, Order: Fucales) are

abundantly available in this area throughout different seasons and therefore these species have

been shortlisted for the present study to evaluate antioxidant activities and total phenolic contents

to understand their beneficial value as human food or additives. In the present study, we have

evaluated the antioxidant properties of methanol extract (MeOH) and different solvent fractions(ethyl

acetate (EtOAc), dichloromethane (MDC), and n-hexane) of Turbinaria sp. by 2, 2’-azino-bis-

(3ethylbenzothiozoline-6-sulfonic acid) diammonium salt (ABTS) assay, 1, 1-diphenyl-2-picryl-

hydrazil (DPPH·) radical scavenging activity, total reduction capability, and Fe2+ ion chelating activity.

Assays for detection of scavenging of short-lived radicals were determined by HO. radical

scavenging activity and scavenging of H
2
O

2
. The ability to inhibit lipid oxidation in model systems

was carried out by thiobarbituric acid-reactive substances assay (TBARS). The content of phenolic

compounds considered to have antioxidant activities was also determined. The study was also

aimed to quantify the phenolic compounds present in these species by reverse phase HPLC and

determine the relationship between antioxidant activity and phenolic principles.
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Table 3A.1. Yields obtained for methanol extract (as % w/w of seaweed on dry weight basis) and solvent
fractions (as % of total MeOH extract) of T. ornata and T. conoides.

Seaweed species Methanol Solvent fractions obtained by partitioning
extract (%) methanol extract with solvents (%)

n-hexane MDC EtOAc

T. ornata 8.4 ± 0.36 3.0 ± 1.36 2.5 ± 0.62 1.7 ± 0.39

T. conoides 6.8 ± 0.07 2.5 ± 0.57 2.2 ± 0.44 1.2 ± 0.84
All the values were expressed as mean ± SD; SD: standard deviation. MDC: dichloromethane; EtOAc: ethyl acetate; and MeOH:
methanol solvent fraction.
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3A.2. Materials and methods

3A.2.1. Preparation of Seaweed Extracts and Fractions

The powdered shade-dried seaweed samples (200g) were extracted with methanol

(MeOH, 500 mL x 4) at an elevated temperature (40-45oC) for 3 h. The samples were then filtered

with Whatman filter paper no 1 to obtain the clarified filtrates (1.8 L), which were filtered, through

Na2SO4 (150 g), and evaporated (40oC) using a rotary evaporator under vaccum to dryness to give

a dark green viscous oily mass (100 mL) of MeOH extract. This dark green viscous oily mass

(100 mL) of MeOH extract was mixed with an equal volume of distilled water (100 mL) and partitioned

successively with n-hexane (200 mL x 3), MDC (200 mL x 3) and EtOAc (200 mL x 3) to furnish

n-hexane (600 mL), MDC (600 mL) and EtOAc fractions (600 mL) respectively. The water-free

extracts were dried over anhydrous Na
2
SO

4 
(100 g) and evaporated under reduced pressure to

furnish the crude fractions of varying polarity (Table 3A.1). Methanol was selected as the extraction

solvent because the methanol extract of many seaweed species exhibited a very good antioxidant

activity (Yan et al. 1999).

3A.2.2. Assays for Determination of  Phenolic Contents and Antioxidant Potential of

Seaweeds

The amount of total phenolics in the samples was determined by the established method

described by Mcdonald et al. (2001). The ABTS.+, 1, 1-diphenyl-2-picryl-hydrazil (DPPH.), hydroxyl

radical radical assasy, hydrogen peroxide scavenging ability, thiobarbituric acid reactive substances

assay (TBARS), reducing ability and Fe2+ ion chelating potential  were performed by the methods

described by Re et al. (1999), Shimada et al. (1992) and Klein et al. (1981), Ruch et al. (1989),

Madsen et al. (1997), Oyaizu (1986) and Dinis et al. (1994) respectively, with suitable modifications.

HPLC based chromatographic identification of the phenolic acid standards and the samples were

done as described by section3.2

3A.2.3. Statistical Analysis

Statistical evaluation was carried out by SPSS software (SPSS Inc, Chicago, USA,

ver. 13.0). Descriptive statistics were calculated for all the studied traits. Analyses were carried out

in triplicate and the means of all parameters were examined for significance (P<0.05) by analysis

of variance (ANOVA). A post-hoc test (Scheffe) was carried out when the differences shown by

data were significant (P<0.05). The Pearson correlation coefficient (r) was calculated (P<0.05) to

assess the strength of the linear relationship between two variables.
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Figure 3A.1. Total phenolic content (mg of GE/g of the sample) of methanol extract and different solvent fractions
of  T. conoides and T. ornata. Total phenolic content was expressed as gallic acid equivalent (GE) in
mg/g sample.
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3A.3. Results and Discussion

3A.3.1. Determination of Total Phenolic Compounds (TPC)

A number of studies have focused on the biological activities of phenolic compounds,

which are potent antioxidants and free radical scavengers (Sugihara et al. 1999). Phenolic

compounds are considered to protect the seaweed thallus from photo destruction caused by UV

radiation (Pavia et al. 1997), and to exhibit radical scavenging properties (Rice-Evans et al. 1997).

EtOAc fractions of both T. conoides and T. ornata registered a significantly higher (P<0.05) TPC

(105.97 & 69.63 mg GE/g, respectively) followed by the MDC fractions (51.47 & 12.72 mg GE/g

respectively) as compared to other solvent fractions and methanol extract (Figure 3A.1). The

methanol extract and all solvent fractions of T. conoides exhibited significantly higher TPC than

corresponding fractions of T. ornata (Table 3A.2). The n-hexane extract of T. ornata (1.07 GE/g)

registered lowest TPC than all other solvent fractions. Phenolic compounds are considered to

exhibit radical scavenging properties (Umayaparvathi et al. 2012). Several studies demonstrated

a significant correlation between the phenolic content and the antioxidant activity in seaweed

extracts (Ganesan et al. 2011). It is evident from the present observations that a higher percentage

of TPC was observed in the polar solvent fractions (EtOAc and MDC) of Turbinaria sp. indicate

their high antioxidant potential. Earlier reports indicated the presence of phenolic compounds viz.

catechin and epigallocatechin in EtOAc fraction of brown seaweeds, particularly Turbinaria sp.

(Kuda et al. 2005; Chandini et al. 2008). It was also reported that the aqueous fraction of

T. conoides is endowed with a higher phenolic content (Chandini et al. 2008).

3A.3.2. 2,2’ -Azino-bis-3-ethylbenzothiozoline-6-Sulfonic Acid Diammonium Salt (ABTS)

Radical Scavenging Activity (%)

The assay applied in this study was according to the improved technique described by

(Chakraborty & Paulraj 2010) for the generation of ABTS•-, which involves the direct production of

the blue/green ABTS•- chromophore though the reaction between ABTS and K2S2O8. All the seaweed

fractions and MeOH extracts displayed antioxidant activities as they were able to scavenge the

ABTS•+ radical cation. The sequence of antioxidant activity of the different solvent fractions of

seaweed T. ornata (0.6 µg /mL) as determined by ABTS assay was as follows: n-hexane (30.84 %)

> EtOAc (13.91 %) > MeOH (8.04 %) > MDC fraction (6.38 %) (Table 3A.2). MDC fraction of

T. ornata was realized with higher ABTS radical scavenging ability (17.57%) than other MeOH

extract and other organic fractions. The variation of ABTS radical scavenging activity with

concentration (0.1 – 0.6µg/mL) of the tested extract and fractions were described in figure 3A.3. It

can be observed from the figure that EtOAc fraction of T. conoides and MeOH extract of T. ornata
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Figure 3A.2. ABTS.+ radical scavenging activities (%) of EtOAc, MDC, n-hexane fractions and  MeOH extract of
T. conoides and T. ornata with concentration (0.1-0.6 µg/mL).

Figure 3A.3. DPPH radical scavenging activities (%) of EtOAc, MDC, n-hexane fractions and MeOH extract
(A, B, C and D) of T. conoides and T. ornata with time (1-5hrs)
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were more active than other fractions. The higher ABTS radical scavenging ability exhibited by the

n-hexane fraction may be explained due to the presence of carotenes/other pigments with long

hydrocarbon chain (Gupta & Abu-Ghannam 2011). There are reports which showed that hexane,

chloroform and methanol extracts of Porphyra yezoensis exhibited antioxidant activities (Nakayama

et al. 1999) attributed to the presence of β-carotene, chlorophyll analogues (pheophytin) and

amino compounds (leucine, phenylalanine and mycosporine- like amino acid, usujirene). There

are also other reports claiming that seaweeds contain antioxidant compounds which include some

pigments such as fucoxanthin and astaxanthin, polyphenols such as phlorotannins, chlorophyll

related compounds, phospholipids, flavonoids, bromophenols and polysaccharides (Gupta &

Abu-Ghannam  2011; Umayaparvathi et al. 2012).

3A.3.2. 1, 1-Diphenyl-2-Picryl Hydrazil (DPPH·) radical scavenging Activity (%)

DPPH has been used extensively as a free radical to evaluate reducing substances

(Cotelle et al. 1996) and is a useful reagent for investigating the free radical scavenging activities

of compounds (Duan et al. 2006). The free radical scavenging ability of various solvent extracts

from two Turbinaria species were evaluated with the change of absorbance caused by the reduction

of DPPH radical. EtOAc fractions of both the Turbinaria sp. registered significantly higher (P<0.05)

DPPH radical scavenging activities than MeOH extract and other fractions (Figure 3A.3). DPPH

radical scavenging activity of EtOAc fraction of T. ornata registered significantly higher (P<0.05)

(64%) than other solvent extracts (<3%, 1 mg/mL). MDC fraction of T. conoides (1 mg/mL) exhibited

a significantly higher (P<0.05) DPPH radical scavenging activity (34%) followed by EtOAc fraction

(23%) at the same dose (Table 3A.2). The potentially higher antioxidant activities of MDC fraction

may also be explained due to the presence of carotenes/other pigments with long hydrocarbon

chain and aminated compounds (Chew et al. 2008). This was supported by an earlier report,

indicating that n-hexane and CHCl3 extracts of Porphyra yezoensis exhibited antioxidant activities

attributed to the presence of mycosporine-like amino acid (Nakayama et al. 1999). Components,

such as low molecular weight polysaccharides, pigments, proteins or peptides also reported to

influence antioxidant activity (Siriwardhana et al. 2003). It is apparent that the organic polar solvent

fractions (EtOAc) of brown seaweeds may contain polyphenolic compounds with multiple –OH

groups/centers of unsaturation capable of deactivating DPPH free radical. This hypothesis is

reasonable, because of the fact that the radical scavenging capacities by DPPH assay is related to

the ability of the substrate (solvent extract) to donate electrons and H+ ions to DPPH free radical

thus neutralizing the latter. The compounds responsible may have polyphenolic group/s with multiple

-OH groups and/or center of unsaturation in their structural moieties to enable them to donate H to

DPPH (Ruberto et al. 2001). It was reported that active compounds from brown seaweeds with
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Figure 3A.4. OH radical scavenging activities (%) of EtOAc, MDC, n-hexane fractions and  MeOH extract of
T. conoides and T. ornata with concentration (0.1-0.6 mg/mL)

Figure 3A.5. H2O2 radical scavenging activities (%) of EtOAc, MDC, n-hexane fractions and  MeOH extract of
T. conoides and T. ornata with concentration (0.1-1 mg/mL).
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antioxidative properties are phlorotannins and fucoxanthin (Yan et al. 1999). The antioxidant property

exhibited in the present study may mainly be due to the presence of phlorotannins and fucoxanthin

or any other potential antioxidants with center/s of unsaturation present in them.

3A.3.4. Hydroxyl Radical Scavenging Activity (%)

The EtOAc fractions of T. ornata (IC
50

 0.47 mg/mL) and T. conoides (IC
50

 0.44 mg/mL)

were found to be highly effective to scavenge HO. radical followed by MDC (IC50 0.59 and 0.58 mg/

mL, respectively). The activities were found to be proportionately decreased with concentrations,

although EtOAc and MDC fractions of T. ornata exhibited significantly higher activities, even at

lower concentrations (Figure 3A.4). Also, the EtOAc and MDC fractions obtained from T. conoides

maintained their potential to inhibit formation of HO. radical at a much lower dose. Hydroxyl radical

scavenging activity assay was employed to understand the scavenging potential of methanol extract

and different solvent fractions from seaweeds against short-lived radicals, viz., HO. radicals. HO.

radicals were reported to abstract H- atoms from lipid membranes, and thus bring about peroxide

reactions of lipids. The HO. scavenging activities of brown seaweeds were reported to be due to

polyphenolic compounds such as phlorotannins which can act as electron traps and are responsible

for the multifunctional antioxidant properties such as scavenging of hydroxyl radicals, peroxy radicals

or superoxides (Gupta & Abu-Ghannam 2011). Ascorbic acid was also reported to be the principal

component responsible for HO. scavenging activities recorded in brown seaweeds (Abe et al.

1992). There are also other reports which showed that seaweed extracts are potential HO.

scavengers (Cho et al. 2011). In the present study EtOAc fractions of Turbinaria sp. realized

higher activities, thereby signifying the importance of using EtOAc to isolate potential antioxidant

molecules.

3A.3.5. Hydrogen Peroxide (H2O2) Scavenging Activity (%)

H
2
O

2
 is a non radical compound, and is of potential biological significance because of its ability to

penetrate biological membranes. H2O2 itself is not very reactive, but it can sometimes be toxic to

the cell because it may give rise to hydroxyl radical in the cells (singlet oxygen and HO. radicals)

(Ruch et al. 1989).

Thus, removal of H2O2 is essentially important to protect the biological system in general,

and food components, in particular. The measurement of H2O2 scavenging activity is one of the

useful methods, determining the ability of antioxidants to undermine the level of prooxidants viz.,

H2O2 (Czochra & Widensk 2002). In the present study the EtOAc fraction of T. conoides (IC50 1.49

mg/mL) was found to be highly effective to scavenge H2O2 followed by MDC (IC50 2.98 mg/mL).

The EtOAc fraction of T. ornata realized the lowest IC
50

 value (1.90 mg/mL) followed by MeOH
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Figure 3A.6. Lipid peroxidation inhibitory assay (MDAEC/kg) of EtOAc, MDC, n-hexane fractions and  MeOH extract
of T. conoides and T. ornata with concentration (0.1-2 mg/mL).
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extract (4.25 mg/mL), n-hexane (7.48 mg/mL), and MDC fraction (8 mg/mL) in descending order.

The activities of MeOH extract and n-hexane fraction were found to be significantly reduced at

lower concentrations (0.1-0.3 mg/mL) (Figure 3A.5). Earlier studies showed that seaweeds contained

polyphenolic compounds such as phlorotannins which can act as electron traps and are responsible

for the multifunctional antioxidant properties such as scavenging of hydroxyl radicals, peroxy radicals

or superoxides (Gupta & Abu-Ghannam 2011). It was reported that extracts of some brown seaweeds

registered more than 90% H2O2 scavenging activity (Heo et al. 2005), thereby supporting the very

fact that brown seaweeds are rich source of natural antioxidant compounds, which can scavenge

H
2
O

2
 radical. Many other species of seaweeds were also reported in literature to possess potential

H2O2 scavenging activity (Gupta & Abu-Ghannam 2011).

3A.3.6. Lipid Peroxidation Inhibition Activity in Model System: Thiobarbituric Acid-Reactive

Species (TBARS) Formation Inhibitory Activity (MDAEC/kg)

As a result of oxidation, unsaturated fatty acids (with > 2 olefinic double bonds) were

reported to break down into low molecular weight aldehydes causing off-flavors (rancid flavor) in

oils, and can react with the free amino groups of phospholipid, proteins, and nucleic acids, leading

to structural modifications, which induce dysfunction of immune systems (Chakraborty & Paulraj

2007). The fatty acid breakdown products essentially contain malondialdehyde (MDA), which was

measured through their reaction with thiobarbituric acid (TBA) (Ganhão et al. 2011). The lower

values in mille moles of MDA equivalent compounds formed/kg (MDAEC/kg) indicate a higher lipid

peroxidation inhibitory effect. The EtOAc and MDC fractions of T. ornata registered significantly

higher TBARS inhibition ability (6.78 and 8.91 MDAEC/kg, respectively) (P<0.05) at 2 mg/mL with

respect to inhibit lipid peroxidation (Table 3A.2) than MeOH and n-hexane fractions (18.36 and

18.14 mM MDAEC/kg, respectively), which were not significantly different (P>0.05). It is evident

from Figure 3A.6 that the TBARS inhibition ability is dose dependent and were found to be

proportionately decreased with concentrations. Accordingly, the IC
50

 value of the MeOH extract

and different organic solvent fractions revealed the order of activity as: EtOAc fraction

(0.21 mg/mL) > n-hexane fraction (0.24 mg/mL) > MeOH extract (0.26 mg/mL) > MDC fraction

(0.43 mg/mL). The lipid peroxidation inhibitory capacities of EtOAc and MDC fractions of T. conoides

(6.03 & 10.06 MDAEC/kg, respectively at 2 mg/mL) were significantly higher (P<0.05) than that

recorded for MeOH extract and n-hexane fraction (24.23 and 23.07 mM MDAEC/kg, respectively)

(Table 3A.2). The results obtained from TBARS assay indicate the effectiveness of different

Turbinaria sp. to prevent lipid oxidation in vitro. The results obtained from TBARS assay indicate

the effectiveness of both Turbinaria sp. to prevent lipid oxidation in vitro. Earlier studies revealed

that EtOAc and MDC fraction are the major fractions of seaweeds harboring the principle
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Figure 3A.7. Reducing ability assay (Ab700nm) of EtOAc, MDC, n-hexane fractions and MeOH extract of
T. conoides and T. ornata with concentration (0.1-1 mg/mL)

Figure 3A.8. Fe2+ ion chelating ability (%) of EtOAc, MDC, n-hexane fractions and  MeOH extract of T. conoides
and T. ornata with concentration (0.1-0.6 mg/mL)
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antioxidative components (Zubia et al. 2009). The inhibition of lipid peroxidation may be due to the

presence of polyphenolic antioxidants that were reported to disrupt free-radical chain reaction by

donating a proton to fatty acid radicals to terminate chain reactions, may have roles to inhibit lipid

peroxidation (Gupta & Abu-Ghannam 2011). There are other reports, which suggest that extracts

of brown seaweeds belonging to Turbinaria sp. are anticipated to be very got inhibitors of lipid

peroxidation (Vijayabaskar et al. 2012).

3A.3.7. Evaluation of Reducing Ability (Ab700nm)

The reducing abilities of chemical extracts and/or compounds generally depends on the

presence of reductones (Duh, 1998), which have been shown to impart antioxidant action by

breaking the free radical chain by donating a hydrogen atom (Gordon, 1990). The presence of

reductants (i.e. antioxidants) in the solvent fractions apparently reduces the Fe3+/ferricyanide complex

to its Fe2+ form, which can be monitored by measuring the formation of Perl’s Prussian blue at 700

nm (Gordon, 1990). A direct correlation was reported between antioxidant activities and reducing

power in a series of studies reported in the literature (Duh, 1998). The IC
50

 value of methanol

extract and different solvent fractions of T. conoides revealed the order of activity as: EtOAc

(60.59 mg/mL) > MDC (67.35 mg/mL) > n-hexane (236.46 mg/mL) > MeOH (543.98 mg/mL). The

same trend was apparent in lower concentrations (0.33-0.75 mg/mL). In T. ornata the IC
50

 value of

reducing activities of different organic solvent fractions and methanol extract revealed the order of

activity as: EtOAc = MDC (52.67 mg/mL) > MeOH extract (71.22 mg/mL) > n-hexane (79.70 mg/

mL). A dose dependency was observed in all the solvent fractions (Figure 3A.7). Results obtained

in the present study are in accordance with the earlier reports suggesting that brown seaweeds

collected from different regions were found to be endowed with potential reducing abilities and

antioxidant properties (Cho et al. 2011; Ganesan et al. 2011). It was also reported that  reducing

power exhibited by solvent extracts of seaweeds belonging to Turbinaria sp. was comparatively

higher than α-tocopherol (Chandini et al. 2008).

3A.3.8. Ferrous Ion (Fe2+) Chelating Activity (%)

The reduced form of iron (Fe2+) can stimulate and accelerate lipid peroxidation by

decomposing lipid hydroperoxides into peroxyl and alkoxyl radicals that can themselves abstract

hydrogen and perpetuate the chain reaction of lipid peroxidation (Costa et al. 2011). As a result

chelators of Fe2+ ion can be considered as potential inhibitors of lipid peroxidation. In present study

different fractions of Turbinaria sp. demonstrated a marked capacity for Fe2+ binding, suggesting

their ability as a peroxidation protector that relates to the iron binding capacity. In present study

different fractions of Turbinaria sp. demonstrated a marked capacity for Fe2+ ion binding, suggesting

their ability as a peroxidation protector that relates to the iron binding capacity. The EtOAc and
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Table 3A. 2. Total phenolic content and antioxidant activities of the different crude solvent fractions (MeOH,
n-hexane, MDC and EtOAc) of brown seaweeds belonging to Turbinaria spp

Seaweed species Solvent fractions of Turbinaria spp

MeOH n-Hexane MeOH EtOAc

Total reduction capability (A700nm)

T. conoides 0.26ap ± 0.00 0.35ap ± 0.01 1.07ap ± 0.02 1.07ap ± 0.01

T. ornata 0.79bp ± 0.01 0.83bp ± 0.01 1.14bp ± 0.03 0.28bp ± 0.00

Total phenolic content (mg of  GE)

T. conoides 16.64ap ± 0.10 19.26ap ± 0.68 51.47aq ± 0.99 105.97ar ± 1.47

T. ornata 3.42bp ± 0.35 1.07bp ± 0.05 12.72bq ± 0.62 69.63br ± 1.50

Scavenging of H2O2 (%)

T. conoides 5.28ap ± 0.50 3.49ap ± 0.30 9.40ap ± 0.30 18.76aq ± 0.82

T. ornata 6.57bp ± 0.18 3.44ap ± 0.28 3.57bp ± 0.24 14.31bq ± 0.43

Fe2+ ion chelating activity (%)

T. conoides 58.29ap ± 3.66 25.46aq ± 3.22 77.19ar ± 1.20 25.57aq ± 0.56

T. ornata 27.63bp ± 1.34 8.47bq ± 0.81 62.44br ± 2.49 68.67bs ± 0.56

Hydroxyl radical scavenging activity (%)

T. conoides 40.19ap ± 2.08 5.25aq ± 0.13 52.03ar ± 1.28 64.20as ± 0.92

T. ornata 30.04bp ± 1.17 4.45bq ± 0.31 49.82br ± 0.40 62.08bs ± 1.48

Lipid peroxidation inhibitory (TBARS) activity (MDAEC/kg)

T. conoides 24.23ap ± 0.34 23.07ap ± 0.79 10.06aq ± 0.28 6.03aq ± 0.52

T. ornata 18.36bp ± 0.99 18.14bp ± 0.15 8.91bq ± 0.45 6.78aq ± 0.49

ABTS radical scavenging activity (%)

T. conoides 12.20ap ± 0.59 12.94ap ± 0.56 17.57ap ± 1.51 13.06ap ± 0.08

T. ornata 8.04bp ± 0.55 30.84bq ± 0.68 6.38bp ± 0.35 13.91ar ± 0.42

DPPH· radical scavenging activity (%)

T. conoides 12.22bp ± 0.17 2.16ap ± 0.15 34.23aq ± 1.16 23.32ar ± 1.41

T. ornata ND 2.40aq ± 0.27 1.68bq ± 0.08 64.14br ± 1.66
Data are the mean values of triplicate and expressed as mean ± standard deviation. Row (p-s) and column values (a-c) with different
letters are significantly different (P<0.05). MDC: dichloromethane, EtOAc: ethyl acetate. The concentration of the crude solvent
fractions used were 1 mg/mL for DPPH radical scavenging activity, reducing capacity and H2O2 scavenging activity; 0.6 mg/mL for OH
radical scavenging activity and Fe2+ ion chelating activity; 2 mg/mL for TBARS assay and 0.6 µg/mL for ABTS radical scavenging
activity. ND: Non-detectable.
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MDC fractions of T. ornata (0.6 mg/mL) exhibited significantly higher Fe2+ chelating abilities and

accordingly, the IC
50 

values exhibited by different solvent fractions of this seaweed followed the

order: MDC (0.43 mg/mL) > EtOAc (0.46 mg/mL) > MeOH (1.03 mg/mL) > n-hexane (4.37 mg/

mL) fractions . The n-hexane fraction was found to be ineffective towards Fe2+ chelating abilities

(<10%, 0.6 mg/mL) (Table 3A.2). At lower concentrations (0.5-0.3 mg/mL), EtOAc and MDC fractions

of T. ornata realized significantly (P<0.05) higher Fe2+ chelating activity than MeOH extract. However,

it is interesting to note that the Fe2+ chelating abilities of the MDC fraction of T. conoides (0.6 mg/

mL) as observed in this study, registered significantly higher (P<0.05) (IC
50

 0.39 mg/mL) than

MeOH extract and other solvent fractions. No significant differences are apparent with respect to

Fe2+ chelating abilities between EtOAc (25.57%), and n-hexane fraction (25.46%) (Table 3A.2).The

scavenging activity exhibited a dose dependent behavior. Accordingly, lowest IC
50 

was registered

by MDC fraction of T. conoides (0.39 mg/mL) towards Fe2+ chelating abilities followed by the

MeOH extract (0.53 mg/mL). It can be observed from the figure that (Figure 3A.8) the MeOH

extract and solvent fractions of T. ornata showed higher ability to chelate Fe2+ ions than that exhibited

by the tested samples from T. conoides. It was reported that low-molecular compounds in the

dried brown seaweed Scytosiphon lomentaria with Fe2+ ion chelating activity (Kuda et al. 2005).

There are other reports that the phlorotannins, which are usually present in the polar solvent

fractions of brown seaweeds are strong chelators of heavy metals (Wang et al. 2012; Gupta et al.

2011). The Fe2+ chelating abilities of the seaweed fractions were also reported to be due to the

presence of non phenolic compounds like different types of polysaccharides present in the seaweed

extracts (Hu et al. 2010). A negative correlation observed between TPC and Fe2+ chelating abilities

proves that in this study chelating ability of algae could be due to the presence of compounds

other than phenolics and these seaweeds could be potential rich sources of natural antioxidants.

Molecules with hydroxyl, sulfhydryl, carbonyl, and phosphate groups were reported to possess

favorable structure–function configuration resulting in Fe2+ chelating abilities, and apparently

compounds, including phenolic acids, flavonoid quercetin, and phenolic glycosides are noted to

chelate transition metal ions like Fe2+ ion. These active compounds might have a synergistic effect,

playing an important role in antioxidant activity by the inhibition of oxidation and chelating effects.

3A.3.9. Correlations between Phenolic Contents and Different Antioxidant Activity Assays

The positive correlation observed between TPC and radical scavenging activities of

seaweed extracts is in agreement with the earlier literature data (Rajauria et al. 2010). Negative

correlation realized between TPC and TBARS assay apparently indicate that antioxidant activity

did not depend only on total phenol content, but also on other factors as there may be any active

metabolites other than phenolics such as polysaccharides capable of inhibiting the TBA-MDA
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Figure 3A.9. Correlation between antioxidant activity assays vis-à-vis solvent fractions of T. conoides (To) and
T. ornata (Tc) by scatter plot analyses (A-D). Scatter plot diagrams showing the correlation of TPC
vis-à-vis (A) hydroxyl radical scavenging assay (n = 8, r = 0.738, P<0.05), (B) H2O2 scavenging
activity (n = 8, r = 0.957, P<0.01), (C) lipid peroxidation (TBARS) inhibitory (n = 8, r = -0.717, P<0.05),
(D) Fe2+ ion chelating activity (n = 8, r2 = 0.047, P<0.01); (E) DPPH. scavenging assay (n=8,
r = - 0.054, P>0.05); and (F) ABTS radical scavenging assay (n=8, r = - 0.054, P>0.05)

A B

C D

E F
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adduct formation. Likewise, the total phenolic content and Fe2+ ion chelating activity exhibited a

negative correlation thus suggesting the presence of some compounds other than phenolics capable

of chelating transition metals (Figure 3A.9). Earlier studies conducted by other researchers also

showed that polysaccharides (e.g. alginates and fucoidan) and/or phytochelatins were more effective

than phlorotannins for the detoxification and resistance to copper accumulation in Ascophyllum

nodosum (Wang et al. 2012). In addition, some peptides as well as proteins found in seaweed

extracts have also been reported to possess the abilities to chelate metal ions (Cian et al. 2012).

The results lead to the conclusion that algal polyphenols are probably not strong chelators of

transition metals. However, further study is needed to elucidate the mechanism of antioxidant

action of different compounds in the seaweed extracts. No significant correlation between phenolic

contents and DPPH and ABTS radical scavenging activities in the seaweed extracts also indicated

the presence of compounds other than phenolics (small molecular weight polysaccharides,

pigments, proteins or peptides) to be involved in the antioxidant activity. Reports of previous studies

are also in agreement with our present findings that some seaweed extracts exhibited a lower

correlation between TPC and antioxidant activity (Kuda et al. 2009).

3A.3.10. Chromatographic Evaluation of the Phenolic Compounds in the Methanol extract

and EtOAc fraction of Seaweeds

The selected groups of phenolics in MeOH and EtOAc solvent extracts of T. conoides

and T. ornata were separated and identified by the RP-HPLC method, are shown in Table 3A.2. A

retention time (Rt) library of the standard phenolic compounds was constructed with detection at

Tmax 324 nm and 277 nm (Figure 3.5). The qualitative analysis of the seaweed extracts for phenolic

compounds were obtained and the retention time for individual peak was compared to the library

of standard phenolic compounds under the same HPLC conditions.The HPLC analysis indicated

that salicylic acid, gallic acid, quercetin, and syringic acid were the predominant phenolics in the

EtOAc fraction of Turbinaria conoides, whilst more polar chlorogenic acid and 2,5-dihydroxybenzoic

acid were the major phenolics in MeOH extract of Turbinaria conoides. Coumaric acid, ferulic acid,

epicatechin and epicatechin gallate were found to be ubiquitous in either of EtOAc fraction and

MeOH extract. Chlorogenic acid (R
t
 8.12) is one to elute first among other phenolic compounds

with a Rt value recorded as 8.12. HPLC profiling of the MeOH extract from T. conoides (TC-A)

identified four major peaks at Tmax 324 nm in similar Rt as that of the standard phenolics, which

include derivatives of hydroxy benzoic acid (gentisic acid) and hydroxy cinnamic acid (chlorogenic

acid, caffeic acid, p-coumaric acid, and ferulic acid). Similarly, two major peaks were observed at

Tmax 277 nm comprising of flavanols (epigallocatechin gallate and epicatechin gallate). It was

observed that gentisic acid (at 324 nm) and epicatechin gallate (at 277 nm) were the predominant
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Table 3A. 3. Major phenolic compounds (mg/g extract) identified in the MeOH (A) extract and EA (B) fractions of T.
conoides (TC) & T. ornata (TO) by HPLC.

Sl.No Phenolic acids Rt (minute) Phenolic compounds (mg/g extract) identified in the
MeOH extract (A) and EtOAc fraction (B)

324nm TC-A TC-B TO-A To-B

1 Chlorogenic acid 8.12 0.3±0.0 -  3.2±0.01 43.0±1.14

2 Caffeic acid 10.49 - -  4.4±0.11 8.2±0.05

3 2,5 dihydroxy benzoic acid 17.43  14.6±0.14 - - -

4 Coumaric acid 20.56  1.3±0.01 0.7±0.01  1.2±0.02 -

5 Ferulic acid 24.19  3.6±0.06 1.6±0.02 13.8±0.14 -

6 Quercetin 37.90 -  2.3±0.01 - 8.6±0.36

7 Salicylic acid 44.92 - 1.3±0.01 - 8.2±0.17

277nm

8 Gallic acid 5.39 - 21.4±0.25  9.6±0.08 64.8±1.32

9 Catechin 6.81 - - 8.6±0.06 5.9±0.05

10 EGCG 8.13  31.2±0.11 - - 14.3±0.84

11 Epicatechin 10.11  35.7±0.26 12.8±0.32 -  2.7±0.06

12 ECG 13.0 205.2±1.24 17.6±0.31 24.2±1.02 30.9±1.32

13 Syringic acid 14.78 - 73.5±2.11 15.1±0.09 15.3±0.79

Values are mean ± SD (n = 3)
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phenolic compounds in TC-A (Figure 3A. 10). The EtOAc fraction of T. conoides (TC-B) showed

major phenolic compounds at Tmax 324 nm (Figure 3A.10) as representatives of hydroxy benzoic

acid (salicylic acid), hydroxy cinnamic acid (ferulic acid), 4H-chromenone flavonol (quercetin), and

5-caffeoylquinic acid with cyclohexanecarboxylic acid derivative (chlorogenic acid). Four major

peaks were observed at T
max 

277 nm includes hydroxy benzoic acid derivative (gallic acid, syringic

acid) and flavanols (epicatechin, epicatechin gallate). Among these, ferulic acid (at 324 nm) and

syringic acid (at 277 nm) were the predominant phenolic compound in TC-B. Chlorogenic acid

(tR 8.12), caffeic acid (Rt 10.49), ferulic acid (Rt 24.19), and syringic acid (Rt 14.78) were the major

constituents in MeOH fraction of T. ornata, whereas the principle components in EtOAc fraction

were quercetin (R
t
 37.9) and salicylic acid (R

t
 44.92). Epicatechin and epicatechin gallate

(R
t
 13.0 min) with the chroman ring system were found to be ubiquitous in either of EtOAc and

MeOH fractions of Turbinaria ornata. Four phenolic compounds were identified in the MeOH extract

of T. ornata (TO-A) (Figure 3A, 11), which include hydroxy cinnamic acid derivatives (chlorogenic

acid, caffeic acid, p-coumaric acid, and ferulic acid) at Tmax 324 nm. At Tmax 277 nm, three hydroxy

benzoic acid derivatives (gallic acid, syringic acid) and epicatechin gallate were recorded. It was

observed that ferulic acid (at 324 nm) and epicatechin gallate (at 277 nm) were the predominant

phenolic compounds in TO-A. EtOAc fraction of T. ornata (TO-B) realized six major phenolic

compounds (Figure 3A. 11) including hydroxy cinnamic acid derivatives (chlorogenic acid, gentisic

acid, p-coumaric acid, ferulic acid), 4H-chromenone flavonol (quercetin), salicylic acid

(at Tmax 324 nm), chroman flavanols (catechin, epigallocatechin gallate and epicatechin) and hydroxy

benzoic acid derivative, syringic acid (at Tmax 277 nm).

Phenolic acids, which are considered to be a major class of phenolic compounds, were

reported to be present in abundance in seaweeds and other marine flora. Typical phenolics that

possess antioxidant activity are known to be mainly phenolic acids in seaweeds. Seaweeds have

previously been reported to be rich in phenolic acids, such as catechin, epicatechin, EGCG, caffeic

acid, quercetin and others (de Quirós et al. 2010; López et al. 2011). Phenolic acids constitute a

large group of naturally occurring organic compounds with a broad spectrum of pharmacological

activities, and free radical scavenging activity in particular. These groups of compounds are

hydroxylated derivatives of benzoic and cinnamic acids, which often occur in plants as esters,

glycosides and bound complexes and are rarely present in free forms (Germano‘ et al. 2006).

Phenolic acids differ according to the number and position of hydroxylation and methoxylation of

the aromatic ring. There is a much higher quantity and diversity of hydroxycinnamates than

hydroxybenzoates and they consist of p-coumaric, caffeic, and ferulic acids either.

The solvent extracts, which exhibited strong antioxidant activities, were found to contain

high amounts of total and individual phenolics that may contribute to antioxidative activity. Ethyl
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acetate solvent fraction is an efficient solvent system for extraction of a broad range of phenolic

compounds. Epicatechin gallate with 2-(3, 4-dihydroxyphenyl)-5, 7-dihydroxychroman-3-yl 3,4,5-

trihydroxybenzoate system recorded highest hydrophobicity (log P 2.46) among the phenolic

compounds under consideration and therefore retained strongly by the C
18

 hydrophobic matrix of

HPLC (Rt 13.0). Likewise, due to the fact that the hydrophobic parameter of salicylic acid

(2-hydroxybenzoic acid) is 2.27, retained strongly in the hydrophobic matrix of HPLC (Rt 44.92).

Interestingly, salicylic acid (R
t
 44.92) and quercetin (R

t
 37.9) appeared in ethyl acetate fraction of

Turbinaria ornata and T. conoides, and not in MeOH fraction. The lower hydrophobicity (log P 0.22)

and higher topological polar surface area (tPSA 144.52) of the 3-(3,4-dihydroxyphenyl)acryloyl)oxy)-

4,5-dihydroxycyclohexanecarboxylic acid system of chlorogenic acid are implemented to describe

the ready elution in HPLC column. Apparently pluralities of phenolic compounds with acrylic acid

moiety are ubiquitous in the EtOAc and MeOH extracts of Turbinaria sp. Caffeic acid with 3-(3, 4-

dihydroxyphenyl)acrylic acid, ferulic acid with 3-(4-hydroxy-3-methoxyphenyl)acrylic acid, and

coumaric acid with 3-(4-hydroxyphenyl)acrylic acid are similar type of compounds with various

hydroxyl and methoxyl substituents on the phenyl ring system. The close resemblance of their

polar (tPSA 58-78) and hydrophobic (log P 1.2-1.5) properties implicated their appearance in both

MeOH and EtOAc fractions.

Hydroxyl substituted benzoic acids such as gallic acid (with 3,4,5-trihydroxybenzoic

acid system), syringic acid (with 4-hydroxy-3,5-dimethoxybenzoic acid) and 2,5 dihydroxy benzoic

acid have close electronic (tPSA 76-98) and lipophilic properties (log P 0.5-1.4) thereby implicating

the presence of similar type of compounds in the seaweed MeOH and EtOAc solvent extracts.

The phenolics with hydroxyl phenyl substituted chroman ring system as in epicatechin

with 2-(3,4-dihydroxyphenyl)chroman-3,5,7-triol moiety (tPSA 110.38, log P 1.50), epicatechin gallate

with 2-(3,4-dihydroxyphenyl)-5,7-dihydroxychroman-3-yl 3,4,5-trihydroxybenzoate moiety (tPSA

177.14, log P 2.46), epigallocatechin gallate with 5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)chroman-

3-yl 3,4,5-trihydroxybenzoate moiety (tPSA 110.38, log P 1.50), and 4H-chromen-4-one ring system

as in quercetin with 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one (tPSA 127.45,

log P 0.35) appeared to be bonded strongly with the C18 matrix and therefore eluted later. Quercetin

and epicatechin with chroman ring system were reported to have a hydroxyl group at C-3 of the

ring system. Kim and Lee (2004) suggested structurally important role of the 3-OH group of the

chroman ring responsible for enhancement of antioxidant activity. Phenolic compounds with OCH3

substituted phenol ring or similar electron withdrawing groups as in hydroxyl substituted benzoic

acids or hydroxyl phenyl substituted chroman ring system and α-β-unsaturated carboxylic acid

group substituted to an aromatic phenolic ring as in substituted phenyl acrylic acid moiety were

found to be ubiquitous in Turbinaria sp..
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The results obtained in the present study don’t imply that the compounds indicated in

the standard are necessarily present in the seaweed solvent fractions, but gave a general idea

that the type of phenolic compounds belonged to substituted phenyl acrylic acid, hydroxyl substituted

benzoic acids, and hydroxyl phenyl substituted chroman ring system, leaving aside the chlorogenic

acid with cyclohexanecarboxylic acid moiety. It is apparent that the antioxidant potential of phenolic

compounds is dependent on the number and arrangement of the hydroxyl groups as well as the

presence of electron-donating substituents in the ring structure (Lapornik et al. 2005).

The retention behavior of the phenolic acids in the bonded phase C
18

 matrix of the

stationary phase of HPLC vis-à-vis the hydrophobic and electronic also have been described in

detail to understand the types of bioactive phenolics in the EtOAc and MeOH fractions of Turbinaria

sp. Due to the structural diversity of the phenolic acids, it is difficult to characterize every compound

by RP-HPLC, but it will provide with the general idea regarding the major groups of phenolic

compounds.

3A.4. Conclusions

 The ethyl acetate fraction of Turbinaria conoides exhibited significantly higher total

reduction capability (A
700nm

1.07, 1 mg/mL), total phenolic content (106 GE/g), scavenging of H
2
O

2

(>18%, 1 mg/mL) and hydroxyl radical scavenging activities (64%, 0.6 mg/mL) as compared with

Turbinaria ornata. The ethyl acetate fraction of Turbinaria ornata exhibited higher Fe2+ ion chelating

(>68%, 0.6 mg/mL), lipid peroxidation inhibitory (7 MDAEC/kg, 2 mg/mL), ABTS radical scavenging

(14%, 0.6 µg/mL) and DPPH· radical scavenging activities (64%, 1 mg/mL). The HPLC analysis

indicated that gallic acid (21 mg/g) and syringic acid (73 mg/g) were the predominant phenolic

acids in the ethyl acetate fraction of Turbinaria conoides, whilst epicatechin gallate (205 mg/g) was

the major phenolic acid identified in the methanol fraction. Epicatechin gallate (24 mg/g) and

syringic acid (15 mg/g) were the major constituents in the methanol fraction of Turbinaria ornata,

whereas the principle components in ethyl acetate fraction were gallic acid (64 mg/g) and chlorogenic

acid (43 mg/g).

Chapter 3A - Evaluation of the antioxidant potential of Turbinaria conoides and T. ornata
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Figure 3B. A. longifolius collected from the Gulf of Mannar

Figure 3B. S. plagiophyllum collected from the Gulf of Mannar

Figure 3B. S. myriocystum  collected from the Gulf of Mannar
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CHAPTER 3B

Evaluation of the Antioxidant Potential
of Anthophycus longifolius (= Sargassum

longifolium), Sargassum plagiophyllum
and Sargassum myriocystum

3B.1. Introduction

Sargassum sp constitute a major share of brown seaweeds, and are potential sources

of natural antioxidants, including phenolics viz., phlorotannins, and carotenoid viz., fucoxanthin,

and isoprenoids (Swanson & Druehl 2002). Earlier studies reported antioxidant activities of the

genus Sargassum, and was found that the various solvent extracts obtained from Sargassum sp

exhibited nutraceutical value as potent antioxidants via alleviations of radical-induced toxicities

(Heo et al. 2005; Kim et al. 2010), anti-obesity and blood GSH-Px properties (Matanjun et al.

2010), DPPH radical scavenging ability, reducing power and metal-chelating activity (Prabhasankar

et al. 2009). It was reported that polysaccharides from the Sargassum genus have antitumor

activity (de Sousa et al. 2007). Sargassum fulvellum had been reported to inhibit oxidation

(Heo et al. 2005).

The brown seaweeds were found to be abundantly available along the Gulf of Mannar

off southeastern coast of the Indian subcontinent in all seasons. Anthophycus longifolius

(=Sargassum longifolium) (Turner) Kützing, S. plagiophyllum C. Agardh, and S. myriocystum

J. Agardh were selected in the present study to evaluate antioxidant activities and total phenolic

contents. Although antioxidant properties of seaweeds were proved by numerous studies from the

past two decades very few of them have been studied in detail from this very important delta

region; findings of antioxidant activity could potentially shortlist candidate species to isolate bioactive

fractions/principles to be used as nutraceuticals and/or functional foods, and candidates in combating

carcinogenesis and inflammatory diseases. Therefore, the objective of the present study was to

characterise the antioxidant properties of methanol (MeOH) extract and different solvent fractions

(ethyl acetate (EtOAc), methylene chloride (MDC) and n-hexane) of these experimental seaweeds

by different in vitro systems, to statistically evaluate the role of phenolic compounds responsible

for antioxidant activity and to identify and quantify the phenolic compounds present in these species

by reverse phase HPLC and determine the relationship between antioxidant activity and phenolic

principles.
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Table 3B.1. The yields obtained from the MeOH extract (as % w/w of seaweed on dry weight basis) and solvent
fractions (as % w/w of total MeOH extract) of A. longifolius, S. plagiophyllum and S. myriocystum

Seaweed species Methanol Solvent fractions
extract (%) n-hexane MDC EtOAc

A. longifolius 6.37 ± 0.21 30.42 ± 0.13 23.57 ± 0.57 26.52 ± 0.35

S. plagiophyllum 8.62 ± 0.52 24.62 ± 0.25 21.39 ± 1.10 29.37 ± 1.36

S. myriocystum 14.53 ± 1.62 33.13 ± 0.74 24.33 ± 2.20 21.36 ± 2.57
Solvent fractions were obtained by partitioning MeOH extract with hexane, MDC, and EtOAc, respectively. All the values were expressed
as mean ± SD; SD: standard Deviation. MDC: dichloromethane; EtOAc: ethylacetate
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3B.2. Matarials and Methods

3B.2.1. Preparation of Seaweed Extracts and Fractions

The ground seaweed samples (0.5kg) were extracted with MeOH (1 L x 3) at an elevated

temperature (40-45oC) for 3 h. The samples were then filtered with to obtain the clarified filtrates

(1.35 L), which were filtered, through Na
2
SO

4 
(100 g),

 
and evaporated (400C) using a rotary

evaporator (Buchii, Switzerland) under vaccum to dryness. This dark green viscous oily mass

(150 mL) of MeOH extract was mixed with an equal volume of distilled water (150mL), and partitioned

successively with n-hexane (150 mL x 3), MDC
 
(150 mL x 3), and EtOAc (150 mL x 3) to furnish

n-hexane (450 mL), MDC (450 mL), and EtOAc fractions (450 mL), respectively. The fractions

were dried over anhydrous Na
2
SO

4 
(65- 70 g), and evaporated under reduced pressure using a

rotary vacuum evaporator to furnish, the different solvent fractions of varying polarity. The yields of

each fraction have been illustrated under Table 3B.1.

3B.2.2. Assays for Determination of Phenolic Contents and Antioxidant  Potential of

Seaweeds

The amount of total phenolics in the samples was determined by the established method described

by Mcdonald et al. (2001). The ABTS.+, 1, 1-diphenyl-2-picryl-hydrazil (DPPH.), hydroxyl radical

radical assasy, hydrogen peroxide scavenging ability, thiobarbituric acid reactive substances

(TBARS) formation inhibition assay, reducing ability and Fe2+ ion chelating potential were performed

by the methods describey by Re et al. (1999), Shimada et al. (1992) and Klein et al. (1981),

Ruch et al. (1989), Madsen et al. (1997), Oyaizu (1986) and Dinis et al. (1994) respectively with

suitable modifications as described by section 3.5. HPLC based chromatographic identification of

the standards and the samples were done as described by section 3.6.

3B.2.3. Statistical Analysis

Statistical evaluation was carried out with the Statistical Program for Social Sciences

13.0 (SPSS Inc, Chicago, USA, ver. 13.0). Descriptive statistics were calculated for all the studied

traits. Analysis were carried out in triplicate, and the means of all parameters were examined for

significance (P<0.05) by analysis of variance (ANOVA). The Pearson correlation test was used to

assess correlations between means. The experiments were carried out in three different batches

of seaweeds. The mean variance in the data set was detected using principal component analysis

(PCA). All data were mean centered and scaled to equal unit variance prior to PCA. The selected

variables for PCA where the different antioxidant assays and phenolic content, as exhibited by the

MeOH extract and different solvent fractions (EtOAc, MDC and n-hexane) of the seaweeds.

Chapter 3B - Evaluation of the Antioxidant Potential of Anthophycus longifolius Sargassum plagiophyllum, and S. myriocystum
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Figure 3B.1. TPC (mg of GE/g of the sample) of methanol extract and different solvent fractions of A. longifolius,
S. plagiophyllum and S. myriocystum.

Figure 3B.2. ABTS.+ radical scavenging activities (%) of the EtOAc (A), MDC (B), n- hexane (C) fractions and MeOH
extract (D) of A. longifolius, S. plagiophyllum and S. myriocystum with concentration (0.1-0.6mg/mL).
Values are means of triplicate determinations and expressed with ± standard deviation.



91    |

3B.3 Results and Discussion

3B.3.1. Determination of Total Phenolic Compounds (TPC)

The EtOAc and MDC fractions of A. longifolius registered significantly higher total phenolic

contents (TPC) (236.4 and 166.1 mg GE/g, respectively, 5 g / L) than recorded in S. plagiophyllum

and S. myriocystum (<100 mg GE/g) (P<0.05) (Figure 3B.1). Phenolic compounds that were reported

to protect seaweed from photoxidation and to exhibit radical scavenging properties are reported in

brown seaweeds (Escrig et al. 2001). It has been reported that brown algal phenolic compounds

like phlorotannins with potential antioxidative activities are present in Sargassum sp. (Yan et al.

1996), suggesting the possibility of such compounds in our present study. Several studies focused

on the antioxidative activities of phenolic contents in brown algal extracts and demonstrated their

significant correlation (Chandini et al. 2008; Karawita et al. 2005). Phenolic antioxidants transfer

H-atom to lipid peroxyl radicals to disrupt free-radical chain reaction to quench the radical process

(Ruberto et al. 2001; Arbianti et al. 2007). A significant correlation was apparent between the

phenolic content and the antioxidant activities in seaweed extracts in our present study as reported

by earlier researchers (Chandini et al. 2008; Karawita et al. 2005).

3B.3.2. 2,2’ - Azino-bis-3-ethylbenzothiozoline-6-Sulfonic Acid Diammonium Salt (ABTS)

Radical Scavenging Activity (%)

EtOAc, MDC fractions, and MeOH extract of S. plagiophyllum contributed significantly

(P<0.05) towards ABTS•+ radical scavenging activity (19.56, 13.76, and 14.03 %, respectively)

than n-hexane fraction (6.75% at 0.6 µg/mL) (Figure 3B.2). EtOAc extract of A. longifolius was

found to exhibit higher ABTS.+ radical scavenging activity (18.53%) than its other solvent fractions

(Table 3B.2). The MeOH extract and n-hexane fractions of A. longifolius (0.6 µg/mL) exhibited

significantly higher (P<0.05) ABTS.+ radical scavenging activities (7.26 and 9.64 %, respectively)

than other seaweeds. A sample possessing ABTS. free radical-scavenging activity indicated that

its mechanism of action was as a hydrogen donor thereby terminating the oxidation process by

converting free radicals to more stable products. From these results it is apparent that EtOAc

fraction of A. longifolius exhibited highest ability to deactivate ABTS•+ radical. Earlier studies reported

that algal species including Sargassum sp contain potentially active compounds like sargaquinoic

acid, sargachromenol or fucosterol capable of deactivating ABTS radical (Wang et al. 2009; Ham

et al. 2010). The differences in scavenging activity of the extracts principally depend on the functional

-OH groups apparently due to its ability for hydrogen donating ability (Chakraborty & Paulraj,

2010). This result shows that EtOAc fraction of A. longifolius could be potential rich sources of

natural antioxidants.

Chapter 3B - Evaluation of the Antioxidant Potential of Anthophycus longifolius Sargassum plagiophyllum, and S. myriocystum
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Figure 3B.3. DPPH radical scavenging activities (%) of the EtOAc (A), MDC (B), n-hexane (C) fractions and MeOH
extract (D) of of A. longifolius, S. plagiophyllum and S. myriocystum with time (1-5hrs). Values are means
of triplicate determinations and expressed with ± standard deviation.

Figure 3B.4. Hydroxyl radical scavenging activities (%) of the EtOAc (A), MDC (B), n-hexane (C) fractions and MeOH
extract (D) of of A. longifolius, S. plagiophyllum and S. myriocystum with concentration (0.1-0.6mg/mL).
Values are means of triplicate determinations and expressed with ± standard deviation
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3B.3.3. 1, 1-Diphenyl-2-Picryl Hydrazil (DPPH•) radical scavenging Activity (%)

EtOAc fraction of A. longifolius (1 mg/mL) exhibited a significantly higher (P<0.05) DPPH

radical scavenging activity (89%) followed by MDC (79%) fraction (Table 3B.2), and the activities

were found to be significantly higher than other seaweeds. EtOAc fraction of S. myriocystum

exhibited significantly higher (P<0.05) DPPH free radical scavenging activity (82%) than other

fractions. The radical scavenging activity of the MeOH extract and the solvent fractions of seaweeds

with time are given by Figure 3B.3. In S. plagiophyllum n-hexane fraction (1mg/mL) recorded

significantly higher DPPH radical scavenging activity (78%) than the other solvent fractions (P<0.05).

A positive correlation with total phenolic content and DPPH assay, as realized by PCA analyses

infer the presence of phenolic compounds responsible for antioxidant activities. Seaweeds species

belonging to Sargassum sp. were reported to contain phenolic principles with multiple hydroxyl

groups to enable them to donate H to DPPH. radical by hydrogen atom transfer (HAT) to deactivate

the free radicals (Wang et al. 2009; Nakamura et al. 1996) and a positive correlation obtained

between TPC and DPPH activity of EtOAc extract of A. longifolius in our present study revealed

the role of phenolics present in the solvent fraction responsible for antioxidant activity.

3B.3.4. Hydroxyl Radical Scavenging Activity (%)

Hydroxyl radical scavenging activity was employed to understand the potential of different

seaweed extracts against short-lived radicals, viz., HO. radical. The EtOAc fraction of A. longifolius

(0.6 mg/mL) exhibited a significantly higher (P<0.05) HO. radical scavenging activity (83.20%)

than other seaweeds and solvent fractions (Table.3B 2). A reasonably good activity was recorded

for an MDC fraction of A. longifolius and S. plagiophyllum (57-63%, 0.6 mg/mL). The activities

were found to be proportionately decreased with concentrations, although EtOAc and MDC fractions

of A. longifolius exhibited significantly higher activities even at lower concentrations (Figure 3B.4).

The EtOAc and MDC fraction of S. plagiophyllum contributed significantly (P<0.05) towards H2O2

scavenging activity (IC
50

 0.39 and 0.41 mg/mL, respectively) than MeOH extract and n-hexane

fraction (IC50 2.49 & 77.79 mg/mL, respectively). Solvent fractions (0.6 mg/mL) of S. myriocystum

followed the same trend as exhibited by the solvent fractions of A. longifolius with IC50 values as:

EtOAc (IC
50

 0.71 mg/mL) > MDC (IC
50

 0.81 mg/mL) > n-hexane fraction (IC
50

 1.25 mg/mL) >

MeOH (IC50 1.39 mg/mL) extract, in increasing order. There are earlier reports showing that the

antioxidants from Sargassum sp. exhibited higher hydroxyl radical scavenging activity (Nakai et al.

2006). Heo and Jeon, 2009, reported that the intracellular ROS generated by exposure to UV-B

radiation, was significantly decreased by addition with various concentrations of fucoxanthin a

carotenoid isolated from Sargassum siliquastrum. Potential HO. scavenging activities of the brown

seaweed Sargassam fulvellum solvent extracts were reported in an earlier study (Heo et al. 2005).

Chapter 3B - Evaluation of the Antioxidant Potential of Anthophycus longifolius Sargassum plagiophyllum, and S. myriocystum
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Figure 3B.5. Hydrogen peroxide scavenging activities (%) of the EtOAc (A), MDC (B), n-hexane (C) fractions and
MeOH extract (D) of A. longifolius, S. plagiophyllum and S. myriocystum with concentration
(0.1-0.6mg/mL). Values are means of triplicate determinations and expressed with ± standard deviation

Figure 3B.6. TBARS formation inhibition assay (MDAEC/kg) of the EtOAc (A), MDC (B), n-hexane (C) fractions
and MeOH extract (D) of A. longifolius, S. plagiophyllum and S. myriocystum with concentration
(0.1-2mg/mL). Values are means of triplicate determinations and expressed with ± standard deviation.
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3B.3.5. Hydrogen Peroxide (H2O2) Scavenging Activity (%)

EtOAc and MDC fractions of A. longifolius (1 mg/mL) exhibited significantly higher

(P<0.05) H2O2 scavenging activities (15.08 and 12.6%, respectively) than other seaweeds

(Table 3B.2). EtOAc and MDC fractions of A. longifolius and S. plagiophyllum found to retain their

capacities to scavenge HO. even at lower concentrations (0.25 – 0.75 mg/mL) (Figure 3B.5). The

activities of EtOAc and MDC fractions were found to be significantly higher towards H2O2 scavenging

activity (P<0.05) (14.7 and 12.1%, respectively, 1 mg/mL) than MeOH extract (6.5%) and n-hexane

fraction (5.3%) of S. myriocystum. H
2
O

2
 is a reactive non radical prooxidant and is of potential

biological significance because of its ability to penetrate biological membranes. H2O2 itself is not

very reactive, but it may convert into more reactive species such as singlet oxygen and HO.

radicals. It is obvious that the H
2
O

2
 activity of seaweeds may possibly be due to phenolic compounds,

which are soluble with EtOAc, and, therefore exhibited higher scavenging activity than less polar

solvent fractions. Other researchers also observed high H2O2 scavenging activity (~96%) in the

EtOAc fraction of the brown seaweed Ishige camera (Heo et al. 2005) thus supporting the fact that

the more polar fraction of Sargassam sp. harbour rich source of natural antioxidant principles.

3B.3.6. Lipid Peroxidation Inhibition Activity in Model System: Thiobarbituric Acid-Reactive

Species (TBARS) Formation Inhibitory Activity (MDAEC/kg)

The TBA reactive substances formation inhibitory capacities of EtOAc and MDC fractions

(4.03 & 8.59 MDA equivalent compounds/kg or MDAEC/kg, respectively, 2 mg/mL) were significantly

higher (P<0.05) than that of MeOH extract (18.37 MDAEC/kg), and n-hexane (20.30 MDAEC/kg)

fraction of S. myriocystum (Figure 3B. 6). Similarly the EtOAc and MDC fractions of A. longifolius

were found to possess significantly higher activities (6.54 and 8.83 MDAEC/kg, respectively, 2 mg/

mL) (P<0.05) than their solvent fractions (Table 3B.2). It was established that lipid peroxidation is

a free radical (peroxides and hydroperoxides) mediated process in biological systems due to the

oxidation of unsaturated fatty acids, and is associated with cellular damage as a result of oxidative

stress. Antioxidants are able to trap free radicals, and terminate the chain reaction leading to lipid

oxidation. It is therefore imperative to determine the degree of lipid peroxidation, and to explore

the antioxidant activity of the seaweeds. The fatty acid breakdown products essentially contain

malondialdehyde (MDA), which was measured through their reaction with thiobarbituric acid (TBA).

The lower values in MDA equivalent compounds formed/kg (MDAEC/kg) indicate a higher lipid

peroxidation inhibitory effect. There are no significant differences between the activities between

different seaweeds except a few instances. The reduced levels of malonaldehyde, the monitor of

lipid peroxidation, and marked antioxidant activity exhibited by EtOAc fraction of seaweeds, exhibited

a positive correlation with phenolic contents as realized by PCA analyses. This indicates that the

Chapter 3B - Evaluation of the Antioxidant Potential of Anthophycus longifolius Sargassum plagiophyllum, and S. myriocystum
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Figure 3B.7. Reducing ability (Ab700nm) of the EtOAc (A), MDC (B), n-hexane (C) fractions and MeOH extract (D) of
A. longifolius, S. plagiophyllum and S. myriocystum with concentration (0.1-1mg/mL). Values are
means of triplicate determinations and expressed with ± standard deviation

Figure 3B.8.  Fe2+ chelating ability (%) of the EtOAc (A), MDC (B), n-hexane (C) fractions and MeOH extract (D) of
A. longifolius, S. plagiophyllum and S. myriocystum with concentration (0.1-0.6mg/mL). Values are
means of triplicate determinations and expressed with ± standard deviation
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inhibition of lipid peroxidation may be due to the presence of phenolic antioxidants that were

reported to disrupt free-radical chain reaction by donating a proton to fatty acid radicals to terminate

chain reactions, may have roles to inhibit lipid peroxidation (Karawita et al. 2005).

3B.3.7. Evaluation of Reducing Ability (Ab700nm)

The EtOAc fraction of A. longifolius (1 mg/mL) exhibited higher absorbance at 700 nm

(Ab
700nm

 1.4, 1 mg/mL) indicating a higher reducing power (Table 3B.2). The other fractions from

the species followed the order CH
2
Cl

2
 (0.95) > n-hexane (0.76) > MeOH (0.73) towards reducing

ability (Table 3B 1). Similarly, the reducing capacities of EtOAc and MDC fractions of S. plagiophyllum

(Ab
700nm

 0.96 & 0.81, respectively, 1 mg/mL) were found to be higher than that of MeOH extract

(Ab
700nm

 0.53) and n-hexane (Ab
700nm

 0.71) fraction (Figure 3B.7). However, it is interesting to note

that the antioxidant activities of MDC fraction, MeOH extract, and n-hexanic fraction of

S. myriocystum were found to be significantly higher (P<0.05) (Ab
700nm 

0.52, 0.50 and 0.47

respectively) than EtOAc fraction (Ab
700nm

 0.41). The potential reducing abilities of EtOAc fraction

generally depend on the presence of reductones, and a positive correlation between antioxidant

activities, total polyphenols and reducing power in this study (Figure 3B. 7), and those reported

earlier suggest EtOAc fractions of seaweeds to harbour phenolic compounds as reductones which

have been shown to impart antioxidant action by breaking the free radical chain by donating a

hydrogen atom (Duh 1998; Senevirathne et al. 2006). There are other studies reporting the presence

of reducing agents in different brown seaweeds including Sargassum species collected from different

regions (Karawita et al. 2005; Senevirathne et al. 2006). It can also be attributed from these

observations that these seaweed species may contain the presence of polyphenols which can act

as reducing agents.

3B.3.8. Ferrous Ion (Fe2+) Chelating Activity (%)

In the present study different fractions of Sargassum species demonstrated a marked

capacity for iron binding, suggesting their ability as a peroxidation protector that relates to the

Fe2+ binding capacity. EtOAc and MDC fractions of A. longifolius (0.6 mg/mL) exhibited significantly

high Fe2+ chelating ability (88 and 77%, respectively) (P<0.05) than n-hexane fraction (30%) and

MeOH extract (22%) (Table 3B.2). The EtOAc fraction of S. plagiophyllum exhibited a chelating

ability of 84% followed by its MDC fraction 74%. Likewise, the EtOAc and MDC fractions of

S. myriocystum exhibited significantly higher Fe2+ chelating ability (78 and 59%, respectively,

 0.6 mg/mL) than other solvent fractions (P<0.05). To sum up, among the seaweed species, EtOAc

fraction of A. longifolius exhibited significantly higher Fe2+ chelating activity than others (P<0.05).

Comparison of Fe2+ chelating activity of different solvent fractions (at 0.6 mg/mL) of A. longifolius,

S. plagiophyllum and S. myriocystum showed that the MDC and EtOAc fractions were more effective
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Table 3B.2 Total phenolic content and antioxidant activities of the MeOH extract and crude solvent fractions
(n-hexane, MDC and EtOAc) of the brown seaweeds

Seaweeds Solvent extracts

MeOH n-hexane MeOH EtOAc

Total phenolic content (mg of gallic acid equivalence (GE)/g)

A. longifolius 41.11ap ± 0.51 15.86aq ± 0.02 166.09ar ± 0.14 236.35as ± 0.21

S. plagiophyllum 7.48bp ± 0.02 36.33bq ± 0.18 82.16br ± 0.07 86.78br ± 3.62

S. myriocystum 8.71cp ± 0.17 7.50cp ± 1.00 14.20cp ± 3.99 66.75cq ± 3.38

ABTS radical scavenging activity (%)

A. longifolius 6.91ap ± 0.14 12.50aq ± 0.05 7.26ar ± 0.08 18.53aq ± 0.17

S. plagiophyllum 19.72bp ± 0.14 13.75bq ± 0.17 6.59bp ± 0.03 14.19br ± 0.15

S. myriocystum 7.26cp ± 0.14 9.64cp ± 0.23 6.46cp ± 0.20 6.16cp ± 0.07

DPPH· radical scavenging activity (%)

A. longifolius 34.04ap ± 0.20 NDaq 79.27ar ± 0.97 88.95as ± 0.89

S. plagiophyllum 38.19bp ± 0.65 38.09bp ± 0.07 77.39aq ± 1.34 46.60br ± 0.93

S. myriocystum 10.84cp ± 0.95 10.92cp ± 0.31 24.34bp ± 0.20 81.95cq ± 0.60

Hydroxyl radical scavenging activity (%)

A. longifolius 14.87ap ± 0.19 17.95ap ± 0.38 57.05aq ± 1.64 83.20ar ± 1.01

S. plagiophyllum 9.78bp ± 0.36 0.46bq ± 0.01 63.47br ± 0.66 67.82br ± 0.60

S. myriocystum 20.92cp ± 0.21 19.38cp ± 0.22 37.98cq ± 0.36 43.94cr ± 0.29

Scavenging capacity of H2O2 (%)

A. longifolius 4.68ap ± 0.21 8.63aq ± 0.21 12.64ar ± 0.34 15.08ar ± 0.26

S. plagiophyllum 2.30bp ± 0.03 0.23bp ± 0.02 12.94bq ±0.72 16.28bq ± 0.76

S. myriocystum 6.50cp ± 0.02 5.34cp ± 0.05 12.10cp ± 0.25 14.72cp ± 0.12

Total reduction capability (absorbance at 700nm)

A. longifolius 0.73ap ± 0.01 0.76ap ± 0.01 0.95ap ± 0.01 1.42ap ± 0.03

S. plagiophyllum 0.53bp ± 0.01 0.71bp ± 0.01 0.81bp ± 0.01 0.96bp ± 0.01

S. myriocystum 0.50cp ± 0.01 0.47cp ± 0.01 0.52cp ± 0.00 0.41cp ± 0.01

Lipid peroxidation (TBARS) assay (MDAEC/kg)

A. longifolius 18.69ap ± 0.22 19.92ap ± 0.34 8.83aq ± 0.27 6.54aq ± 0.19

S. plagiophyllum 16.65bp ± 0.51 17.86bp ± 0.24 15.82bp ± 0.07 8.62bq ± 0.59

S. myriocystum 18.37ap ± 0.45 20.30ap ± 0.74 8.59aq ± 1.03 4.03cq ± 0.02

Fe2+ ion chelating activity (%)

A. longifolius 22.19ap ± 0.74 29.45aq ± 2.38 77.42ar ±0.76 88.23as ± 0.46

S. plagiophyllum 25.81bp ± 1.18 24.33abp ± 2.38 74.85aq ±0.01 84.19br ± 0.58

S. myriocystum 35.60cp ± 1.79 32.16acp ± 1.58 59.74aq ±1.89 78.65cq ± 1.11
Data are the mean values of the triplicate and expressed as mean ± standard deviation. Row (p-s) and column values (a-c) with
different letters are significantly different (P<0.05). MDC: dichloromethane, EtOAc : ethyl acetate. The concentration of the crude
solvent fractions used were 1 mg/mL for DPPH radical scavenging activity, reducing capacity and H2O2 scavenging activity; 0.6 mg/mL
for OH radical scavenging activity and Fe2+ ion chelating activity; 2 mg/mL for TBARS assay and 0.6 µg/mL for ABTS radical scavenging
activity.
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than methanol extract and n-hexane fraction towards Fe2+ chelating activity (Figure 3B.8). Ferrozine

(disodium salt of 3-(2-pyridyl)-5, 6-bis (4-phenylsulfonic acid)-1, 2, 4-triazine) having –N=C-C=N-

moiety can quantitatively form complexes with reduced form of Fe2+ to give red colored complex

species, and in the presence of chelating agents, the formation of the red colored complex is

interrupted, resulting in reduction in intensity of the colour. Fe2+ ion is potentially capable to initiate

and accelerate lipid peroxidation to form peroxyl and alkoxyl radicals, which further abstract hydrogen

to perpetuate the chain reaction. In the present study different fractions of Sargassum species

demonstrated a marked capacity for iron binding, suggesting their ability as a peroxidation protector

that relates to the Fe2+ binding capacity. The significantly high Fe2+ chelating ability exhibited by

EtOAc and MDC fractions of A. longifolius suggesting their ability to deter Fe2+ dependent oxidation/

lipid peroxidation (Table 3B.2). To sum up, among the seaweed species, EtOAc fraction of

A. longifolius exhibited significantly higher Fe2+ chelating activity than others (P<0.05). Comparison

of Fe2+ chelating activity of different solvent fractions (at 0.6 mg/mL) of A. longifolius, S. plagiophyllum

and S. myriocystum showed that both MDC and EtOAc fractions are more effective than methanol

and n-hexane fractions towards Fe2+ chelating activity (Figure 3B.8). Significant positive correlations

between TPC and Fe2+ ion chelating ability, as realized by PCA analyses, indicated the presence

of phenolic compounds responsible for metal chelating ability. Earlier studies demonstrated that

polyphenols derived from brown seaweeds including Sargassum sp. are potential metal chelators

due to the presence of phenolics and polysaccharide fractions (Senevirathne et al. 2006;

Prabhasankar et al. 2009). Kuda et al. 2005 reported the presence of low-molecular compounds in

Sargassam lomentaria with Fe2+ ion chelating activity. Phenolic phlorotanins were reported to be

present in the polar solvent fractions of brown seaweeds, and were demonstrated to be strong

chelators of heavy metals (Toth & Pavia, 2000), and in this study the antioxidant activity of Sargassam

sp. could be due to the presence of these groups of compounds, playing an important role in

antioxidant activity by chelating effects.

3B.3.9. Correlations between Phenolic Contents and Different Antioxidant Activity Assays

The similarities and differences between different organic fractions of the three selected

Sargassum species and the relationships among different antioxidant activity assays were

statistically analyzed using PCA. The first two principal components explained 96.40%

(PC 1 – 56.41%; PC 2 – 41.36%) of the total variance in the data set (Figure 3B.9B). Total phenolic

content of EtOAc fraction was deduced to be significantly correlated with ABTS/DPPH/H
2
O

2
/OH.

scavenging potential, Fe2+ ion chelating/reducing activity, and inhibition of TBA-MDA adduct

formation. A negative correlation was realized between the total phenolic content of dichloromethane

(MDC) fraction and inhibition of TBA-MDA adduct formation/H
2
O

2
 scavenging potential as evident
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Figure 3B.9 Correlation between antioxidant activities vis-à-vis solvent fractions of experimental seaweeds by the
scatter plot (A1-A4), and (B) loading plot diagrams of various components in rotated space. Scatter
plot diagrams showing the correlation of TPC vis-à-vis (A1) DPPH. scavenging assay (n = 12,
r = 0.806, P<0.01); (A2) reducing ability (A700 nm) (n = 12, r = 0.869, P<0.001); (A3) Fe2+ chelating
ability (n = 12, r = 0.790, P<0.01); and (A4) lipid peroxidation (TBARS) inhibitory assay of different
solvent extracts of A. longifolius (SL), S. plagiophyllum (SP) and S. myriocystum (SM) (n = 12,
r = -0.628, P<0.05); (B) loading plot diagram (various components viz., PC-1 and PC-2 in rotated
space) of antioxidant activities of different solvent fractions from experimental seaweeds (1: MeOH
extract; 2: n-hexane extract; 3: MDC extract; and 4: EtOAc extract).

A1 A2

A3 A4
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from the principle component analyses. MDC and EtOAc fractions of A. longifolius (SL),

S. plagiophyllum (SP) and S. myriocystum (SM) exhibited high and significant correlation as

demonstrated by Pearson correlation analysis (r = 0.916, P<0.01) towards total phenolic content

and different antioxidant activities. The significant correlation observed between total phenolic

content with DPPH/ Fe2+ ion chelating and reducing activity, and a negative correlation with inhibition

of TBA-MDA adduct formation (Figure 3B.9A-D), indicating the presence of phenolic compounds

capable of inhibiting the radical formation and compounds other than phenolics responsible for

lipid peroxidation. This finding is in agreement with the earlier reports indicating a positive correlation

between total phenolic contents and antioxidant activities of seaweed extracts (Wang et al. 2009).

Other studies also observed a positive correlation between phenolic contents and antioxidant

activity of different seaweed extracts (Escrig et al. 2001; Karawita et al. 2005). The negative

correlation realized between the total phenolic content of dicloromethane (MDC) fraction and

inhibition of TBA-MDA adduct formation/H2O2 scavenging potential as evident from the principle

component analyses plot to demonstrated the role of non-phenolic antioxidants like polysaccharides

to inhibit the radical chain reaction and lipid peroxidation. MDC and EtOAc fractions of A. longifolius

(SL), S. plagiophyllum (SP) and S. myriocystum (SM) exhibited high and significant correlation as

demonstrated by Pearson correlation analysis (r = 0.916, P<0.01) towards total phenolic content

and different antioxidant activities suggests that the antioxidant activity exhibited by these fractions

may mainly be due to the presence of polar compounds. The MDC and EtOAc fractions exhibited

no correlation with hexane fraction, which further corroborate the above observation. From this

observation it may be inferred that polyphenols present in algal fractions are responsible for its

radical scavenging as well as chelating ability.

3B.3.10. Chromatographic Evaluation of the Phenolic Compounds in the Methanol extract

and EtOAc fraction of Seaweeds

The selected groups of phenolics in MeOH and EtOAc solvent extracts of A. longifolius

S. plagiophyllum, and S. myriocystum were separated and identified by the RP-HPLC method, are

shown in Table 3B.2.  A retention time (Rt) library of the standard phenolic compounds was

constructed with detection at T
max

 324 nm and 277 nm (Figure 3.5). The qualitative analysis of the

seaweed extracts for phenolic compounds were obtained and the retention time for individual

peak was compared with the library of standard phenolic compounds under the same HPLC

conditions. Chlorogenic acid (R
t
 8.12) is one to elute first among other phenolic compounds with a

Rt value recorded as 8.12. The HPLC analysis indicated that chlorogenic acid, caffeic acid, 2, 5

dihydroxy benzoic acid, coumaric acid, ferulic acid, gallic acid and syringic acid were the predominant

phenolics in the EtOAc fraction of A. longifolius whilst chroman flavanols (epicatechin gallate and
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Table 3B.3. Major phenolic compounds (mg/g extract) identified in the MeOH (A) extract and EtOAc (B) fraction of
A longifolius (AL), S. plagiophyllum (SP) & S. myriocystum (SM) by HPLC.

Sl.No Phenolic Rt Phenolic compounds (mg/g extract) identified in the

acids (minute) MeOH extract (A) and EtOAc fraction (B)

324nm AL-A AL-B SP-A SP-B SM-A SM-B

1 Chlorogenic acid 8.12 - 0.1±0.00 - - - -

2 Caffeic acid 10.49 12.14±0.14 1.01±0.01 1.25±0.02 1.11±0.01 2.06±0.04

3 2,5 dihydroxy - - - - - - -

benzoic acid 17.43 1.02±0.01 0.5±0.00 4.32±0.05 0.9±0.01 0.3±0.00 -

4 Coumaric acid 20.56 5.11±0.04 0.08±0.00 0.04±0.00 5.27±0.04 0.8±0.00 4.19±0.06

5 Ferulic acid 24.19 2.06±0.01 0.2±0.00 0.01±0.00 2.34±0.01 0.08±0.00 16.27±0.64

6 Quercetin 37.90 - - - 4.14±0.08 - -

7 Salicylic acid 44.92 - - - - - 6.66±0.11

277nm

8 Gallic acid 5.39 9.32±0.03 2.12±0.01 - - - -

9 Catechin 6.81 3.14±0.01 - - - - -

10 EGCG 8.13 - - - - 3.03±0.01 2±0.01

11 Epicatechin 10.11 - - 2.27±0.01 21.25±0.84 13.07±0.42 5.31±0.08

12 ECG 13.0 1.22±0.01 - - 17.41±0.37 - -

13 Syringic acid 14.78 24.30±0.84 23.31±0.77 26.47±1.01  52.14±1.32 82.71±2.10 0.4±0.01
Values are mean ± SD (n = 3).
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catechin) were also found in the MeOH fraction of A. longifolius. More over MeOH fraction of

A. longifolius did not show any traces of chlorogenic acid while it was present with the EtOAc

fraction of A. longifolius. Caffeic acid, 2,5 dihydroxy benzoic acid, coumaric acid, ferulic acid,

chroman flavanols (epicatechin) and syringic acid were found to be ubiquitous in either of EtOAc

and MeOH fractions of S. plagiophyllum. More than these the EtOAc fraction of S. plagiophyllum

was also found to contain 4H-chromenone flavonol (quercetin) and ECG. Both the EtOAc and

MeOH fractions of S. myriocystum were found to contain coumaric acid, ferulic acid, flavanols

(epigallocatechin gallate, epicatechin) and syringic acid. Salicylic acid was only present with the

EtOAc fraction of S. myriocystum where as its MeOH fractions contained the derivatives of hydroxy

cinnamic acid (chlorogenic acid and caffeic acid) which were absent with its EtOAc fraction.

The results showed that EtOAc is the best solvent system to extract phenolic acids from

the MeOH extract of seaweed species. The EtOAc fractions of Sargassum sp., which exhibited

strong antioxidant activities (in terms of scavenging DPPH. and ABTS.+ free radicals), were found

to contain high amounts of total and individual phenolics, thereby validating the fact that phenolic

compounds in these seaweeds contributed to the antioxidant activity. It has been reported that

free radical-scavenging activity is greatly influenced by the phenolic composition of the sample

(Cheung et al. 2003). Earlier results from our laboratory showed that EtOAc fraction of brown

seaweeds belonging to Turbinaria sp. are efficient scavengers of free radicals (Chakraborty et al.

2013).

There are other reports which showed that HPLC analysis of the crude extracts from a

brown seaweed Stypocaulon scoparium contained fourteen polyphenols, viz., gallic acid, catechin,

epicatechin, rutin, p-coumaric acid, myricetin, quercetin, protocatechuic, vanillic, caffeic, ferulic,

chlorogenic, syringic and gentisic acids (López et al. 2011). Reverse-phase liquid chromatographic

study to analyse polyphenols in various red and brown seaweeds collected from the Atlantic coastal

region in Galicia (North-Western Spain) revealed the presence of polyphenolic compounds like

catechin, epicatechin, epicatechin gallate, epigallocatechin, epigallocatechin gallate, and gallic

acid (de Quirós et al. 2010).

3B.4. Conclusions

EtOAc fraction of A. longifolius exhibited higher total phenolic content (mg of gallic acid

equivalence (236.35 GE/g), ABTS radical scavenging activity (18.53%), DPPH· radical scavenging

activity (88.95%), hydroxyl radical scavenging activity (83.20%), reduction capability (Ab700nm 1.42),

Fe2+ ion chelating activity (88.23%). EtOAc fraction of S. plagiophyllum exhibited higher H2O2

scavenging capacity (16.28 %) and that of S. myriocystum exhibited higher lipid peroxidation
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inhibition ability (4.03 MDAEC/kg). The HPLC analysis indicated that chlorogenic acid, caffeic

acid, 2, 5 dihydroxy benzoic acid, coumaric acid, ferulic acid, gallic acid and syringic acid were the

predominant phenolics in the EtOAc fraction of A. longifolius whilst chroman flavanols (epicatechin

gallate and catechin) were also found in the MeOH fraction of A. longifolius. Caffeic acid, 2,5

dihydroxy benzoic acid, coumaric acid, ferulic acid, chroman flavanols (epicatechin) and syringic

acid were found to be ubiquitous in either of EtOAc and MeOH fractions of S. plagiophyllum. Both

the of EtOAc and MeOH fractions of S. myriocystum were found to contain coumaric acid, ferulic

acid, flavanols (epigallocatechin gallate, epicatechin) and syringic acid. The present study provides

valuable information regarding the potential of these brown seaweeds especially A. longifolius and

S. plagiophyllum to develop natural alternatives over synthetic antioxidants as oxidative stress

induced disease curing remedy.
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Figure 3C. Stoechospermum marginatum collected from the Gulf of Mannar

Figure 3C. Padina tetrastomatica collected from the Gulf of Mannar

Figure 3C. Padina gymnospora collected from the Gulf of Mannar
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CHAPTER 3C

Evaluation of the Antioxidant Potential
of Stoechospermum marginatum, Padina
tetrastomatica and  Padina gymnospora

3C.1. Introduction

Brown seaweeds were reported to possess protective enzymes and antioxidative

molecules (phlorotannins, ascorbic acid, tocopherols, carotenoids, phospholipids, chlorophyll related

compounds, bromophenols, catechins, mycosporine-like amino acids, polysaccharides, etc.)

(Pavia et al. 1986). Solvent extracts from several brown and red seaweeds harvested in Spain

(Escrig et al. 2001), China (Yan et al. 1998) and Japan (Yan et al. 1999), have demonstrated

potential antioxidant activity in vitro thereby indicating the importance of these marine flora as

valuable health ingredient. Antioxidant and anticoagulant activity of phenolics and sulfated

polysaccharides have been identified from several brown seaweeds especially from Padina sp

(Matanjun et al. 2008). Alcoholic extracts from Padina australis were reported to possess DPPH

radical scavenging activity (Gunji et al. 2007). It was already reported that Stoechospermum

marginatum as an important alginophyte of India for use as food, fodder, and in dairy products and

rich in sulfated fucans with spasmogenic and antiherpetic activities (Mrugaiyan & Sivakumar, 2008).

The objective of the present study was to characterise the antioxidant properties of

methanol (MeOH) extract and different solvent fractions (ethyl acetate, methylene chloride and

n-heaxane) of Stoechospermum marginatum (C. Agardh) Kützing, Padina tetrastomatica Hauck,

and P. gymnospora (Kützing) Sonder by different in vitro systems, to statistically evaluate the role

of phenolic compounds responsible for antioxidant activity and to identify and quantify the phenolic

compounds present in these species by reverse phase HPLC and determine the relationship

between antioxidant activity and phenolic principles.

3C.2. Materials and Methods

3C.2.1. Preparation of Seaweed Extracts and Fractions

The ground and shade-dried seaweed samples (100 g) were extracted with MeOH

(500 mL x 3) and partitioned successively with n-hexane (100 mL x 2), MDC (100 mL x 2) and

EtOAc (100 mL x 2) to furnish n-hexane (200 mL), MDC (200 mL) and EtOAc fractions (200 mL),

respectively. The extracts were dried over anhydrous Na
2
SO

4 
(30 g) and evaporated under reduced

pressure to furnish n-hexane, MDC and EtOAc fractions respectively. The yield obtained for
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Figure 3C.1. TPC (mg of GE/g of the sample) of methanol extract and different solvent fractions of S. marginatum,
P. tetrastomatica and P. gymnospora

Figure 3C.2. ABTS.+ radical scavenging activities (%) of the EtOAc (A), MDC (B), n-hexane (C) fractions and
MeOH extract (D) of S. marginatum, P. tetrastomatica and P. gymnospora with Concentration
(0.1-0.6mg/mL). Values are means of triplicate determinations and expressed with ± standard deviation.
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methanolioc fraction of P. tetrastomatica was recorded to be higher (13.52 ± 1.36 % dw) than that

obtained for P. gymnospora (10.79 ± 0.59 % dw), and S. marginatum (7.73 ± 0.72 % dw). On

partitioning with n-hexane, MDC and EtOAc, the yield obtained for P. tetrastomatica was 30.79 ±

0.21%, 27.32 ± 3.27 %, and 16.33 ± 0.57 % (% w/w MeOH extract), respectively. The yields from

P. gymnospora were registered as 33.02 ± 0.47 %, 24.86 ± 1.36 %, and 20.16 ± 0.92 %, respectively

as % w/w of MeOH extract, and from S. marginatum as 27.94 ± 1.11 %, 22.36 ± 2.10 %, and

26.55 ± 1.17 % w/w of MeOH extract, in that order.

3C.2.2. Assays for Determination of Phenolic Contents and Antioxidant Potential of

Seaweeds

The amount of total phenolics in the samples was determined by the established method

described by Mcdonald et al. (2001). The ABTS.+, 1, 1-diphenyl-2-picryl-hydrazil (DPPH.), hydroxyl

radical radical assasy, hydrogen peroxide scavenging ability, thiobarbituric acid reactive substances

(TBARS) formation inhibition assay, reducing ability and Fe2+ ion chelating potential were performed

by the methods describey by Re et al. (1999), Shimada et al. (1992) and Klein et al. (1981), Ruch

et al. (1989), Madsen et al. (1997), Oyaizu (1986) and Dinis et al. (1994) respectively with suitable

modifications as described by section 3.5. HPLC based chromatographic identification of the

standards and the samples were done as described by section 3.6

3C.2.3. Statistical Analysis

Statistical evaluation was carried out with Statistical Programme for Social Sciences

13.0 (SPSS Inc, Chicago, USA, ver. 13.0). Descriptive statistics were calculated for all the studied

traits. Analyses were carried out in triplicate, and the means of all parameters were examined for

significance (P<0.05) by analysis of variance (ANOVA). Pearson correlation test was used to

assess correlations between means. The experiments were carried out in three different batches

of seaweeds. The mean variance in the data set was detected using principal component analysis

(PCA). All data were mean centered and scaled to equal unit variance prior to PCA.

3C.3. Results and Discussion

3C.3.1. Determination of Total Phenolic Compounds (TPC)

Phenolic compounds are one of the most effective antioxidants reported in brown

seaweeds (Escrig et al. 2001). EtOAc extract of S. marginatum (5 mg/mL) registered significantly

higher (P<0.05) total phenolic content (TPC, 231.49 mg GE/g extract) than other solvent extracts

(Figure 3C.1) It is apparent that n-hexane fractions of the seaweeds do not contain any phenolic

compounds. The polar EtOAc and MDC fractions of Padina sp and Stoechospermum marginatum
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Figure 3C.3. DPPH radical scavenging activities (%) of the EtOAc (A), MDC (B), n-hexane (C) fractions and MeOH
extract (D) of S. marginatum, P. tetrastomatica, and P. gymnospora with time (1-5hrs). Values are
means of triplicate determinations and expressed with ± standard.

Figure 3C.4. Hydroxyl radical scavenging activities (%) of the EtOAc (A), MDC (B), n-hexane (C) fractions and
MeOH extract (D) of S. marginatum, P. tetrastomatica and P. gymnospora with Concentration
(0.1-0.6mg/mL). Values are means of triplicate determinations and expressed with ± standard.
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exhibited higher phenolic content indicating their high antioxidant potential. Earlier studies illustrated

the antioxidant activity of phenolic compounds in brown seaweed Sargassum kjellmanianum

(Zubia et al. 2007). The phenolic contents of the solvent extracts of the seaweeds selected in this

study were found to be significantly higher than those reported in literature (Chew et al. 2008;

Escrig et al. 2001). Polyphloroglucinol phenolics (phlorotannins) were reported to be the major

antioxidantive phenolic components in brown seaweeds (Pavia & Aberg, 1996).

3C.3.2. 2,2’ -Azino-bis-3-ethylbenzothiozoline-6-Sulfonic Acid Diammonium Salt (ABTS)

Radical Scavenging Activity (%)

In general, the ABTS•+ radical scavenging activity exhibited by the MeOH extract and

n-hexane fractions were not significantly different (P>0.05) from each other, whereas MDC and

EtOAc fractions registered significant difference (P<0.05) from other solvent extracts. EtOAc fraction

of S. marginatum (0.6µg/mL) endowed with significantly higher (P<0.05) ABTS.+ radical scavenging

activity (60.08%) than other solvent fractions (Table 3C.1). A significantly higher activities towards

scavenging ABTS.+ radical (16-60%) (P<0.05) were apparent even at lower concentrations

(0.1-0.6 µg/mL) than other solvent extracts (Figure 3C.2). The ABTS.+ radical scavenging activity

of the solvent fractions and their IC
50

 values are shown in Table 2.  The differences in scavenging

activity of the extracts principally depend on the functional -OH groups apparently due to its ability

for H-donating ability (Chakraborty & Paulraj, 2010). However, it is interesting to note that the

antioxidant activity of the n-hexane fraction of P. gymnospora was significantly higher

(IC
50 

2.2 µg/mL). This may be explained due to the presence of carotenes/other pigments with long

hydrocarbon chain and aminated compounds. From these results it is apparent that EtOAc fraction

of S. marginatum exhibited highest ability to deactivate ABTS•+ radical, whereas MeOH fraction of

P. tetrastomatica was most effective. An earlier report indicates that radical-scavenging capacity

of MeOH extracts of brown seaweeds might be due to phenolic -OH groups (Ragan & Glombitza,

1986)

3C.3.3. 1, 1-Diphenyl-2-Picryl Hydrazil (DPPH•) radical scavenging Activity (%)

The fundamental principle of the DPPH method is the reduction of the DPPH radical in

alcoholic solution by an H-donator antioxidant (AH) to form the non-radical form (DPPH-H). In the

present study, the EtOAc fraction of S. marginatum registered significantly higher (P<0.05) DPPH

radical scavenging activity (77.51%) followed by MeOH (21.98%).  The EtOAc fraction of

P. tetrastomatica endowed with significantly higher (P<0.05) DPPHð scavenging activity (72.13%),

followed by MDC (50.26%) (Figure 3C.3). An earlier report indicated that sulphated polysaccharides

in brown seaweed P. tetrastromatica, contributed to the antioxidant activity (Chew et al. 2008).

Interestingly, EtOAc fraction of P. gymnospora exhibited lower antioxidant capacity (11.66%),
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Figure 3C.5. Hydrogen peroxide scavenging activities (%) of the EtOAc (A), MDC (B), n-hexane (C) fractions and
MeOH extract (D) of S. marginatum, P. tetrastomatica and P. gymnospora with Concentration
(0.1-0.6mg/mL). Values are means of triplicate determinations and expressed with ± standard.

Figure 3C.6. TBARS formation inhibition assay (MDAEC/kg) of the EtOAc (A), MDC (B), n-hexane (C) fractions
and MeOH extract (D) of S. marginatum, P. tetrastomatica and P. gymnospora with Concentration
(0.1-2mg/mL). Values are means of triplicate determinations and expressed with ± standard.
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whereas MeOH extract was found to be ineffective to scavenge DPPH. (Table 3C.1). The activities

were found to reduce with decrease in concentration. It was reported that the DPPH. scavenging

capacities are significantly higher in EtOAc fraction of brown seaweed Ecklonia cava (Senevirathne

et al. 2006). It is apparent that EtOAc and MDC fractions of brown seaweeds contain polyphenolic

compounds with multiple –OH groups/centers of unsaturation capable of deactivating DPPH. radical.

3C.3.4. Hydroxyl Radical Scavenging Activity (%)

The scavenging activity of seaweed solvent fractions against the hydroxyl radical was

investigated using Fenton’s reaction (Table 3C.1). EtOAc fraction of S. marginatum (0.6 mg/mL)

exhibited significantly higher (P<0.05) highest HO. scavenging activity (62.91%) than other solvent

fractions (Table 3C.1). Accordingly, EtOAc fraction of S. marginatum registered the lowest IC
50

value (0.39 mg/mL) followed by MDC (0.48 mg/mL), MeOH (1.65 mg/mL) and n-hexane fraction

(1.47 mg/mL), in descending order (Table 3C.2). EtOAc fraction of P. tetrastomatica (0.6 mg/mL)

exhibited significantly higher (P<0.05) HO. scavenging activity (87.87%) than other solvent fractions

(Figure 3C.4). The HO. scavenging activities of brown seaweeds were found to be due to different

compounds, including ascorbic acid-like structure and phenolic compounds mainly phlorotannins

(Ahn et al. 2007).

3C.3.5. Hydrogen Peroxide (H2O2) Scavenging Activity (%)

The EtOAc fraction of P. gymnospora (1 mg/mL) exhibited a significantly higher (P<0.05)

H
2
O

2
 scavenging activity (18.02%) than other solvent fractions (Figure 3C.5). No significant

differences are apparent in H2O2 scavenging activity between MeOH and MDC fractions (10.43

and 8.47%, respectively at 1 mg/mL (Table 3C.1). The EtOAc and MDC fraction of S. marginatum

contributed significantly towards H2O2 scavenging activity (IC50 3.5 & 6.74 mg/mL, respectively)

than MeOH fraction (IC50 9.30 mg/mL), thereby signifying the importance of using EtOAc to isolate

potential antioxidant molecules. Solvent fractions (1 mg/mL) of P. tetrastomatica followed the same

trend as exhibited by the solvent fractions of P. gymnospora. These results indicated the presence

of polar compounds in EtOAc fraction capable to scavenge H2O2. Similar results were apparent in

the earlier studies reporting the significantly higher H2O2 scavenging activities (IC50 0.009 mg/mL)

of EtOAc fraction from E. cava indicating the potential of hydrophilic total phenolics to impart H2O2

scavenging activity (Senevirathne et al. 2006).

3C.3.6. Lipid Peroxidation Inhibition Activity in Model System: Thiobarbituric Acid-Reactive

Species (TBARS) Formation Inhibitory Activity (MDAEC/kg)

 In S. marginatum the different solvent fractions recorded an IC50 value of 0.72, 0.86,

0.96, and 1.33 mg/mL for EtOAc, MDC, n-hexane, and MeOH fractions, respectively, thereby
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Figure 3C.7. Reducing ability (Ab700nm) of the EtOAc (A), MDC (B), n-hexane (C) fractions and MeOH extract (D) of
S. marginatum, P. tetrastomatica and P. gymnospora with Concentration (0.1-1mg/mL). Values are
means of triplicate determinations and expressed with ± standard.

Figure 3C.8. Fe2+ chelating ability (%) of the EtOAc (A), MDC (B), n-hexane (C) fractions and MeOH extract (D) of
S. marginatum, P. tetrastomatica and P. gymnospora with Concentration (0.1-0.6mg/mL). Values
are means of triplicate determinations and expressed with ± standard.
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indicating the potentially higher activity of EtOAc fraction. Different solvent extracts of P. gymnospora

followed the same trend as shown by P. tetrastomatica thereby indicating the potentially higher

activity of EtOAc and MDC fractions to inhibit lipid peroxidation (Figure 3C.6). The inhibition in lipid

peroxidation may be due to the presence of polyphenolic antioxidants that were reported to disrupt

free-radical chain reaction by donating proton to fatty acid radicals to terminate chain reactions,

may have roles to inhibit lipid peroxidation (Karawita et al. 2005).

3C.3.7. Evaluation of Reducing Ability (Ab700nm)

The reducing capacities of EtOAc fraction of S. marginatum as exhibited by absorbance

at 700 nm (Ab700nm1.48, 1 mg/mL) were found to be higher than that of MDC (Ab700nm 1.11),

n-hexane (Ab
700nm

 0.96) and MeOH (Ab
700nm

 0.34) extracts (Figure 3C.7). However, it is interesting

to note that the antioxidant activities of n-hexane and MDC fractions of P. gymnospora were found

to be significantly higher (P<0.05) (IC50 101.23 & 28.85 mg/mL, respectively) than EtOAc (0.30 ±

0.01) and MeOH fractions (0.29 ± 0.01). This may be explained due to the presence of carotenes/

other pigments with long hydrocarbon chain and aminated compounds (Chew et al. 2008). The

MDC fraction of P. gymnospora contributed significantly towards ABTS•+ radical scavenging activity

(IC
50

 28.85 mg/mL) than other solvent fractions (IC
50 

>100 mg/mL) (Table 3C.2). It was reported

that Padina antillarum collected from a coral reef in Teluk Kumang, Malaysia exhibited 15.7 mg

GE/g for reducing Fe (III) (Chew et al. 2008).

3C.3.8. Ferrous Ion (Fe2+) Chelating Activity (%)

The Fe2+ ion can initiate lipid peroxidation by the Fenton reaction as well as accelerating

peroxidation by decomposing lipid hydroperoxides into peroxyl and alkoxyl radicals (Dinis et al.

1994). EtOAc and MDC fractions of S. marginatum realized significantly higher Fe2+ binding

capacities (82.06 & 72.59%, respectively at 0.6 mg/mL) (P<0.05) than MeOH (14.68%) and

n-hexane (25.94%) fractions (Figure 3C.8). EtOAc and MDC fractions of P. tetrastomatica (0.6

mg/mL) exhibited significantly high Fe2+ chelating ability (77 & 75%, respectively) (P>0.05) (Figure

3C.8). The EtOAc and MDC fraction of P. gymnospora contributed significantly towards ABTS•+

radical scavenging activity (IC
50 

0.54 & 0.86 mg/mL, respectively) than MeOH and n-hexane fraction

(IC50 1.7-2.8 mg/mL), thereby signifying the potential presence of antioxidant molecules in EtOAc

and MDC fractions (Table 3C.1). It was reported that Padina antillarum collected from a coral reef

in Teluk Kumang, Port Dickson, Malaysia possessed potentially high Fe2+ chelating ability (Chew

et al. 2008). The activities appeared to be due to the presence of compounds viz., phlorotanins,

carrageenan, and alginate, which are usually present in brown seaweeds, and are strong chelators

of heavy metals viz., Fe2+ (Toth & Pavia, 2000).
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Figure 3C. 9. Correlation between antioxidant activity assays of different antioxidant assays and between solvent
fractions of experimental seaweeds by scatter plot (A1-A6), and (B) loading plot diagrams of various
components in rotated space. Scatter plot diagrams showing the correlation of TPC vis-à-vis (A1)
ABTS.+ (n = 12, r = 0.689, P<0.05), (A2) DPPH (n = 12, r = 0.760, P<0.01), (A3) HO. radical scavenging
assays (n = 12, r = 0.662, P<0.05), (A4) lipid peroxidation (TBARS) inhibitory (n = 12, r = 0.705,
P<0.01), & (A5) Fe2+ ion chelating activities (n = 12, r = 0.672, P<0.05). (A6) Scatter plot showing
correlation between DPPH and ABTS radical scavenging activity assay (n = 12, r = 0.604, P<0.05).
(B) loading plot diagram (various components viz., PC-1 and PC-2 in rotated space) of antioxidant
activities of different solvent fractions from P. tetrastomatica, P. gymnospora and S. marginatum.



119    |

3C.3.9. Correlations between Phenolic Contents and Different Antioxidant Activity Assays

The similarities and differences among different organic fractions of P.tetrastomatica,

P. gymnospora and S. marginatum and the relationships among different antioxidant activity assays

were statistically analyzed using PCA. The first two principal components explained 98.37%

(PC 1– 57.13%; PC 2 – 41.24%) of the total variance in the data set (Figure 3C.10). Total phenolic

content assay registered significant correlation with ABTS, DPPH, and HO. scavenging activities;

TBARS assay, and Fe2+ chelating ability. A significant correlation was realized between the DPPH

and ABTS radical scavenging assays (Figure 3C. 9). From this observation it may be inferred that

polyphenols present in algal extracts are responsible for its radical scavenging, lipid peroxidation,

and metal ion chelating abilities. Earlier reports showed that (Toth and Pavia, 2000) phlorotanins

(brown seaweed polyphenolics), are strong chelators of heavy metals, which are believed to be

responsible for the chelating ability. Earlier studies indicated that seaweeds with high phenolic

contents are also good chelators of Fe2+ (Chew et al. 2008). It is believed that polyphenolic

antioxidants disrupt the free-radical chain reaction by donating their H atom to fatty acid radicals to

terminate chain reactions (Karawita et al. 2005). The marked antioxidant activity exhibited by

EtOAc and MDC fractions were found to be correlated with their high contents in phenolic compounds

as realized by PCA analyses. Phenolic compounds are thought to protect the seaweed thallus

against photodestruction by UV radiation (Escrig et al. 2001; Pavia & Aberg, 1996), and to exhibit

radical scavenging properties of Halidrys siliquosa extracts, suggesting that hydroquinols with

oxygenated diterpene side-chains (tocopherol-like compounds) could act as antiradical or antioxidant

molecules (Ragan & Glombitza 1986).

3C.3.10 Chromatographic Evaluation of the Phenolic Compounds in the Methanol extract

and EtOAc fraction of Seaweeds

The selected groups of phenolics in MeOH and EtOAc solvent extracts of S. marginatum,

Padina tetrastomatica and P. gymnospora were separated and identified by the RP-HPLC method,

are shown in Table 3C.2. A retention time (Rt) library of the standard phenolic compounds was

constructed with detection at Tmax 324 nm and 277 nm (Figure 3C.5). The qualitative analysis of

the seaweed extracts for phenolic compounds were obtained and the retention time for individual

peak was compared with the library of standard phenolic compounds under the same HPLC

conditions. It was found that all these seaweeds contain caffeic acid, 2, 5 dihydroxy benzoic acid,

coumaric acid, ferulic acid, and syringic acid as phenolic acids in either of their MeOH or EtOAc

extracts. Chlorogenic acid was found to be present only with the EtOAc fraction of P. tetrastomatica.

Similarly quercetin was found only with the EtOAc fraction of S. marginatum and catechin was

detected only in the EtOAc fraction of P. gymnospora. Both the MeOH and EtOAc fraction of
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Table 3C.1. Total phenolic content and antioxidant activities of the different crude solvent fractions (MeOH,
n-hexane, MDC and EtOAc) of the brown seaweeds P. tetrastomatica, P. gymnospora, and
S. marginatum

Seaweeds Solvent extracts

 MeOH  n-hexane   MDC   EtOAc

Total phenolic content (mg of GE)

P. tetrastomatica 22.18ap ± 4.52 4.17aq ± 0.32 27.77ar ± 1.57  165.39as ± 0.85

P. gymnospora 19.07ap ± 1.21 ND 95.168bq ± 0.23  43.25br ± 3.41

S. marginatum 53.39bp ± 5.10 26.12bq ± 1.39 132.85cr ± 3.08  231.49cs ± 5.64

ABTS assay (%)

P. tetrasatomatica 6.16ap ± 0.00 5.47ap ± 1.05 18.17aq ± 1.03 12.58ar ± 0.18

P. gymnospora 7.49bp ± 0.06 17.88bq ± 2.16 6.64bp ± 0.40 6.62bp ± 0.28

S.marginatum 16.15cp ± 0.10 11.05cpq ± 0.81 9.85cq ± 0.08 28.94cr ± 0.53

DPPH· radical scavenging activity (%)

P. tetrastomatica ND ND 50.26a ± 0.62 72.13a ± 1.74

P. gymnospora ND 6.47ap ± 0.31 51.85aq ± 0.58 11.66bp ± 1.17

S. marginatum 21.98p ± 0.23 0.46bq ± 0.02 4.12bq ± 0.15 77.51cr ± 1.36

Hydroxyl radical scavenging activity (%)

P. tetrastomatica 16.94ap ± 0.22 16.24ap ± 0.23 32.57aq ± 1.34 87.87ar ± 0.55

P. gymnospora 69.34bp ± 1.15 6.00bq ± 1.27 85.36br ± 0.05 51.67bs ± 3.05

S. marginatum 19.76ap ± 2.48 15.09ap ± 0.15 58.44cq ± 0.14 62.91cq ± 0.03

Scavenging of H2O2 (%)

P. tetrastomatica 3.50apq ± 0.05 1.74ap ± 0.03 8.07aq ± 0.08 12.29ar ± 0.34

P. gymnospora 10.83bp ± 0.88 2.12bq ± 0.01 8.47bp ± 0.12 18.02br ± 0.95

S.marginatum 3.18ap ± 0.02 2.15bp ± 0.04 4.64cp ± 0.04 8.04cp ± 0.26

Total reduction capability (A700nm)

P. tetrastomatica 0.29ap ± 0.01 1.23ap ± 0.03 1.37ap ± 0.02 0.30ap ± 0.01

P. gymnospora 0.45bp ± 0.01 0.52bp ± 0.01 0.87bp ± 0.01 0.41bp ± 0.01

S. marginatum 0.34cp ± 0.02 0.96cp ± 0.03 1.11cp ± 0.02 1.48cp ± 0.02

TBARS activity (mM of MDA equivalent compounds /kg)

P. tetrastomatica 20.87ap ± 0.04 14.54aq ± 0.24 3.25ar ± 0.08 4.08ar ± 0.09

P. gymnospora 18.95bp ± 1.13 15.34ap ± 0.02 5.53aq ± 0.16 7.79bq ± 0.13

S. marginatum 17.17cp ± 0.31 17.64bp ± 1.36 11.52bp ± 0.53 4.38aq ± 0.36

Fe2+ ion chelating activity (%)

P. tetrastomatica 29.88ap ± 0.27 48.52aq ± 0.77 74.62ar ± 1.00 77.33ar ± 1.83

P. gymnospora 16.39bp ± 1.05 10.70bq ± 0.82 27.25br ± 0.68 54.75bs ± 0.47

S. marginatum 14.68bp ± 0.59 25.94cq± 0.48 72.59ar ± 0.93 82.06cs ± 1.86
Data are the mean values of triplicate and expressed as mean ± standard deviation. Row (p-s) and column values (a-c) with different
letters are significantly different (P<0.05). MDC: dichloromethane, EtOAc: ethyl acetate. The concentration of the crude solvent
fractions used were 1 mg/mL for DPPH radical scavenging activity, reducing capacity and H2O2 scavenging activity; 0.6 mg/mL for OH
radical scavenging activity and Fe2+ ion chelating activity; 2 mg/mL for TBARS assay and 0.6 µg/mL for ABTS radical scavenging
activity. ND: Non-detectable.



121    |

P. tetrastomatica were found to contain caffeic acid, 2,5 dihydroxy benzoic acid and epicatechin

whereas coumaric acid, ferulic acid, ECG and syringic acid were only present in the MeOH fraction

and chlorogenic acid and EGCG were detected only in the EtOAc fraction of P. tetrastomatica. In

P. gymnospora Both the MeOH and EtOAc fraction were found to contain 2,5 dihydroxy benzoic

acid, coumaric acid and syringic acid whereas caffeic acid, ferulic acid and epicatechin were only

present in the MeOH fraction and catechin and EGCG were detected only in the EtOAc fraction of

P. gymnospora. Similarly both the MeOH and EtOAc fraction of S. marginatum were found to

contain caffeic acid, 2,5 dihydroxy benzoic acid, coumaric acid, ferulic acid and epicatechin whereas

ECG and syringic acid were only present in its MeOH fraction and quercetin and EGCG were

detected only in the EtOAc fraction of S. marginatum.

The selected groups of phenolics in MeOH and EtOAc solvent extracts of S. marginatum,

Padina tetrastomatica, and P. gymnospora were separated and identified by the RP-HPLC method,

are shown in Table 3C.2. A retention time (Rt) library of the standard phenolic compounds was

constructed with detection at T
max

 324 nm and 277 nm (Figure 3.5). The qualitative analysis of the

seaweed extracts for phenolic compounds were obtained and the retention time for individual

peak was compared with the library of standard phenolic compounds under the same HPLC

conditions. It was found that all these seaweeds contain caffeic acid, 2, 5 dihydroxy benzoic acid,

coumaric acid, ferulic acid, and syringic acid as phenolic acids in either of their MeOH or EtOAc

extracts. Chlorogenic acid was found to be present only with the EtOAc fraction of P. tetrastomatica.

Similarly quercetin was found only with the EtOAc fraction of S. marginatum and catechin was

detected only in the EtOAc fraction of P. gymnospora. Both the MeOH and EtOAc fraction of

P. tetrastomatica were found to contain caffeic acid, 2,5 dihydroxy benzoic acid and epicatechin

whereas coumaric acid, ferulic acid, ECG and syringic acid were only present in the MeOH fraction

and chlorogenic acid and EGCG were detected only in the EtOAc fraction of P. tetrastomatica. In

P. gymnospora. Both the MeOH and EtOAc fraction were found to contain 2,5 dihydroxy benzoic

acid, coumaric acid and syringic acid whereas caffeic acid, ferulic acid and epicatechin were only

present in the MeOH fraction and catechin and EGCG were detected only in the EtOAc fraction of

P. gymnospora. Similarly both the MeOH and EtOAc fractions of S. marginatum were found to

contain caffeic acid, 2,5 dihydroxy benzoic acid, coumaric acid, ferulic acid and epicatechin whereas

ECG and syringic acid were only present in its MeOH fraction and quercetin and EGCG were

detected only in the EtOAc fraction of S. marginatum.

Seaweeds have previously been reported to be rich in phenolic acids, such as catechin,

epicatechin, EGCG, caffeic acid, quercetin and others (de Quirós et al. 2010; López et al. 2011).

Phenolic acids constitute a large group of naturally occurring organic compounds with a broad

Chapter 3C - Evaluation of the Antioxidant Potential of Stoechospermum marginatum, Padina tetrastomatica, and  P. gymnospora



Isolation and Characterization of Useful Secondary Metabolites with Antioxidant Activity from Seaweeds from Southeastern Coast of India

|    122

Table3C.2. Major phenolic compounds (mg/g extract) identified in the MeOH extract (A) and EtOAc fractions
(B) of P. tetrastomatica (PT), P. gymnospora (PG) & S. marginatum (SM) by HPLC.

Sl.No Phenolic acids Rt (minute) Phenolic compounds (mg/g extract) identified in the
MeOH extract (A) and EtOAc fraction (B)

324nm PT-A PT-B PG-A PG-B SM-A SM-B

1 Chlorogenic acid 8.12 - 32.57 ±2.06 - - - -

2 Caffeic acid 10.49  6.05±0.25 26.34 ±2.97 6.04 ±0.85 - 4.36 ±0.36 12.15 ±1.27

3 2,5 dihydroxy benzoic acid 17.43 2.13 ±0.13 12.22 ±1.32 2.20 ±0.06 163 ±7.89 6.22 ±1.09 10.54 ±0.85

4 Coumaric acid 20.56 1.07 ±0.01 - 0.61 ±0.01 21 ±2.14 0.61 ±0.01 43.35 ±3.43

5 Ferulic acid 24.19 1.13 ±0.01 - 0.53 ±0.01 - 0.09 ±0.01 27.23 ±2.06

6 Quercetin 37.90 - - - - - 32.56 ±3.55

7 Salicylic acid 44.92 - - - - - -

277nm

8 Gallic acid 5.39 - - - - - -

9 Catechin 6.81 - - - 13 ±1.33 - -

10 EGCG 8.13 - 84.14 ±5.87 - 6 ±0.69 - 4.08 ±0.11

11 Epicatechin 10.11 94.28 ±5.62  112.65 ±8.13 43.23 ±2.47 - 2.10 ±0.08 6.11 ±0.18

12 ECG 13.0 19.17 ±2.11 - - - 1.08 ±0.03

13 Syringic acid 14.78 30.63 ±2.85 - 132.34 ±11.55 11 ±0.32 36.80 ±2.22
Values are mean ± SD (n = 3)
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spectrum of pharmacological activities and free radical scavenging activity in particular. These

group of compounds are hydroxylated derivatives of benzoic and cinnamic acids, which often

occur in plants as esters, glycosides and bound complexes and are rarely present in free forms

(Germano‘ et al. 2006). Phenolic acids differ according to the number and position of hydroxylation

and methoxylation of the aromatic ring. There is a much higher quantity and diversity of

hydroxycinnamates than hydroxybenzoates and they consist of p-coumaric, caffeic, and ferulic

acids either.

3C.4. Conclusions

EtOAc fraction of P. tetrastomatica exhibited higher total phenolic content (165.39

GE/g) hydroxyl radical scavenging activity (87.87%) and TBARS formation inhibition activity

(4.08 MDAEC /kg). Higher ABTS radical scavenging ability (28.94%), DPPH· radical scavenging

activity (77.51%), reduction capability (Ab700nm1.48) and Fe2+ ion chelating activity (82.06%) was

observed with its EtOAc fraction of S. marginatum. MDC fraction of P. gymnospora exhibited

higher hydroxyl radical scavenging activity (85.36%) and its EtOAc fraction exhibited higher H
2
O

2

scavenging potential (18.02%). It was found that all these seaweeds contain caffeic acid, 2, 5

dihydroxy benzoic acid, coumaric acid, ferulic acid and syringic acid as phenolic acids in either of

their MeOH or EtOAc extracts. Both the MeOH and EtOAc fraction of P. tetrastomatica were found

to contain caffeic acid, 2,5 dihydroxy benzoic acid and epicatechin whereas coumaric acid, ferulic

acid, ECG and syringic acid were only present in the MeOH fraction and chlorogenic acid and

EGCG were detected only in the EtOAc fraction of P. tetrastomatica. In P. gymnospora. Both the

MeOH and EtOAc fraction were found to contain 2,5 dihydroxy benzoic acid, coumaric acid and

syringic acid whereas caffeic acid, ferulic acid and epicatechin were only present in the MeOH

fraction and catechin and EGCG were detected only in the EtOAc fraction of P. gymnospora.

Similarly both the MeOH and EtOAc fraction of S. marginatum were found to contain caffeic acid,

2,5 dihydroxy benzoic acid, coumaric acid, ferulic acid and epicatechin whereas ECG and syringic

acid were only present in its MeOH fraction and quercetin and EGCG were detected only in the

EtOAc fraction of S. marginatum.
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Figure 3D. Laurencia papillosa collected from the Gulf of Mannar

Figure 3D. Gelidiella acerosa collected from the Gulf of Mannar

Figure 3D. Acanthophora spicifera collected from the Gulf of Mannar
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CHAPTER 3D

Evaluation of the Antioxidant Potential
of Laurencia papillosa Gelidiella

acerosa, and Acanthophora spicifera

3D.1. Introduction

Red seaweeds (division: Rhodophyta) (division: Phaeophyta) contain a large assemblage

of species that predominate in the coastal and continental shelf areas of tropical, temperate and

cold-water regions. Phytochemical studies of the red seaweed Acanthophora spicifera revealed

the presence of potentially high anticancerous and antioxidant activities (Wang et al. 1998). The

members of Gelidiaceae, the red seaweeds are of superior quality and widely used in a number of

preparations in biomedical, food, cosmetics and pharmaceutical industries (Armisen 1995). Gelidiella

acerosa is warm water tropical red seaweed occurring in the Indian, Pacific and Atlantic Oceans

(Rao 1972) and is the starting material to manufacture agar (Armisen 1995). A. spicifera and

G. acerosa are warm water tropical seaweeds occurring in the Indian and Pacific Rao Oceans

(Rao 1972) and are the major sources of raw materials for the manufacture of agar in several

countries, and widely used in a number of preparations in biomedical, food, cosmetics and

pharmaceutical industries (Armisen 1995). The ethanol extract and solvent fractions of L. papillosa

was also reported to have potential antifungal, nematicidal and hypolipidaemic activity and some

of these activities are attributed due to the presence of various fatty acid esters (Ara et al. 2005).

The red and brown seaweeds from a major share of the seaweed population around the

eastern coast of Indian Peninsula, and along the Gulf of Mannar area in particular and were

available in all seasons. Among different seaweed species, Laurencia papillosa (C.Agardh) Greville

(division: Phaeophyta, order: Ceramiales, family: Rhodomelaceae), Acanthophora spicifera (Vahl)

Børgesen (division: Rhodophyta, order: Ceramiales, family: Rhodomelaceae), and Gelidiella acerosa

(Forsskal) Feldmann & Hamel (division: Rhodophyta, order: Gelidiales, family: Gelidiellaceae)

were selected in the present study to evaluate antioxidant activities and total phenolic contents in

an attempt to understand their beneficial value as human food or additives. Findings of antioxidant

activity could potentially shortlist candidate species to isolate potent antioxidant molecules to be

used for increasing the shelf-life of food industry and as nutraceuticals and expand their dietary

market. Based on this background, the objective of the present study was to characterise the

antioxidant properties of methanol (MeOH) extract and different solvent fractions (ethyl acetate,

dichloromethane and n-hexane) of these experimental seaweeds by different in vitro systems, to

statistically evaluate the role of phenolic compounds responsible for antioxidant activity and to
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Table 3D.1. Yields obtained for methanol extract (as % w/w of seaweed on dry weight basis) and solvent

fractions (as % of total methanol extract) of L. papillosa, G. acerosa and A. spicifera.

Seaweed species Methanol Fractions obtained by partitioning methanol

extract (%) n-hexane MDC EtOAc

L. papillosa 32.12a±1.32 33.36a±2.14 23.17a±0.49 19.29a±0.32

G. acerosa 29.06b ±0.89 29.27b±1.27 19.33b±0.96 16.45b±0.79

A. spicifera 22.38c±1.17 30.16b±2.06 26.64c±1.84 17.81ab±1.10
All the values are mean ± SD (n =3); SD standard deviation. a,b column wise values with different superscripts are significantly
different (P<0.05). MeOH methanol, MDC dichloromethane, EtOAc ethyl acetate.

Table 3D.2. Total phenolic content and antioxidant activities of the methanol extract and different solvent
fractions (n-hexane, MDC and EtOAc) of the seaweeds L. papillosa , G. acerosa, and A. spicifera.

Scientific name Solvent extracts

Total phenolic content. (mg GE/g) methanol n-hexane MDC EtOAc

L. papillosa 30.32ap ± 0.68 28.62ap ± 0.71 47.70aq ± 3.58 283.00ar ± 1.68

G. acerosa 10.60bp ± 0.55 8.45bp ± 0.66 105.05bq ± 2.28 147.02br ± 3.49

A. spicifera 6.72cp ± 1.03 27.89aq ± 0.98 82.01cr ± 0.64 119.28cs ± 3.84

ABTS assay (%)

L. papillosa 28.31ap ± 1.04 9.25aq ± 1.11 38.83ar ± 0.91 97.24as ± 0.21

G. acerosa 11.95bp ± 1.51 18.08bpq ± 1.53 22.52bq ± 0.61 42.23br ± 0.29

A. spicifera 8.06cp ± 1.76 8.94ap ± 0.60 14.45cp ± 0.67 37.80cq ± 0.57

DPPH· radical scavenging activity (%)

L. papillosa 76.45ap ± 0.31 34.96aq ± 1.58 36.28aq ± 2.85 97.10ar ± 0.16

G. acerosa 44.66bp ± 1.90 0.00 68.11bq ± 1.36 77.12br ± 0.49

A. spicifera 51.73cp ± 1.95 0.00 72.31bq ± 0.42 81.99cr ± 0.56

Hydroxyl radical scavenging activity (%)

L. papillosa 39.19ap ± 0.54 26.99aq ± 0.82 42.62ap ± 0.41 75.42ar ± 0.25

G. acerosa 26.81bp ± 0.22 11.35bq ± 1.08 66.09br ± 0.35 78.87bs ± 0.78

A. spicifera 26.23bp ± 0.34 24.65ap ± 0.28 65.47cq ± 0.32 66.60cq ± 1.19

Scavenging of H2O2 (%)

L. papillosa 7.18ap ± 0.06 1.87ap ± 0.12 0.94ap ± 0.12 15.60aq ± 0.08

G. acerosa 1.35bp ± 0.02 5.48bp ± 0.02 7.16bp ± 0.04 16.09aq ± 0.68

A. spicifera 0.53cp ± 0.00 2.43cp ± 0.20 18.42cq ± 1.10 14.49aq ± 0.51

Total Reduction Capability (Ab700nm)

L. papillosa 0.53ap ± 0.01 0.81ap ± 0.01 0.48ap ± 0.01 1.14aq ± 0.01

G. acerosa 0.45bp ± 0.00 0.81ap ± 0.01 0.18bp ± 0.01 1.31abp ± 0.03

A. spicifera 0.54ap ± 0.01 1.12bp ± 0.06 1.28cp ± 0.08 1.46bp ± 0.13

TBARS assay (MDAEC /kg of the compound)

L. papillosa 6.43ap ± 0.50 20.04aq ± 0.43 5.05ap ± 0.21 3.35ap ± 0.13

G. acerosa 35.17bp ± 0.74 20.69aq ± 0.32 12.21br ± 0.31 3.26as ± 0.22

A. spicifera 22.76cp ± 0.13 33.16bq ± 0.21 11.26cr ± 0.35 4.21bs ± 0.22

Ferrous Metal Ions Chelating Activity (%)

L. papillosa 32.40ap ± 1.07 22.64aq ± 1.54 44.13ar ± 0.43 47.60ar ± 1.25

G. acerosa 18.07bp ± 2.01 12.08bp ± 1.71 63.48bq ± 2.80 36.07br ± 1.27

A. spicifera 17.83bp ± 0.87 26.25aq ± 0.60 31.08cq ± 1.44 61.58cr ± 2.87
Data are the mean values of triplicate and expressed as mean ± standard deviation. Row (p-s) and column values (a-c) with different
letters are significantly different (P<0.05). MDC: dichloromethane, EA: ethyl acetate. The concentration of the crude solvent fractions
used were 1 mg/mL for DPPH radical scavenging activity, reducing capacity and H2O2 scavenging activity; 0.6 mg/mL for OH radical
scavenging activity and Fe2+ ion chelating activity; 2 mg/mL for TBARS assay and 0.6 µg/mL for ABTS radical scavenging activity.
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identify and quantify the phenolic compounds present in these species by reverse phase HPLC

and determine the relationship between antioxidant activity and phenolic principles.

3D.2. Materials and Methods

3D.2.1. Preparation of Seaweed Extracts and Fractions

The ground and shade-dried seaweed samples (0.75 kg) were extracted with MeOH

(2 L x 3) at an elevated temperature (40-45oC) for 3.5 h. The samples were then filtered with

Whatman filter paper no 1 to obtain the clarified filtrates (2.50 L), which were filtered, through

Na2SO4 (200 g), and evaporated (400C) using a rotary evaporator under vaccum to dryness. This

dark green viscous oily mass (200 mL) of MeOH extract was mixed with an equal volume of

distilled water (250 mL), and partitioned successively with n-hexane (200 mL x 3), MDC
 
(200 mL x

3), and EtOAc (200 mL x 3) to furnish n-hexane (500 mL), MDC (450 mL), and EtOAc fractions

(450 mL), respectively. The extracts were dried over anhydrous Na2SO4 (100 g), and evaporated

under reduced pressure using a rotary vaccum evaporator to furnish the different solvent fractions

of varying polarity. The yields of each fraction have been illustrated under Table 3D.1.

3D.2.2. Assays for Determination of  Phenolic Contents and Antioxidant  Potential of

Seaweeds

The amount of total phenolics in the samples was determined by the established method

described by Mcdonald et al. (2001). The ABTS.+, 1, 1-diphenyl-2-picryl-hydrazil (DPPH.), hydroxyl

radical radical assasy, hydrogen peroxide scavenging ability, thiobarbituric acid reactive substances

(TBARS) formation inhibition assay, reducing ability and Fe2+ ion chelating potential were performed

by the methods describey by Re et al. (1999), Shimada et al. (1992) and Klein et al. (1981), Ruch

et al. (1989), Madsen et al. (1997), Oyaizu (1986) and Dinis et al. (1994) respectively with suitable

modifications as described by section 3.5. HPLC based chromatographic identification of the

standards and the samples were done as described by section 3.6

3D.2.3. Statistical Analysis

Statistical evaluation was carried out with the Statistical Program for Social Sciences

13.0 (SPSS Inc, Chicago, USA, ver. 13.0). Descriptive statistics were calculated for all the studied

traits. Analyses were carried out in triplicate, and the means of all parameters were examined for

significance (P<0.05) by analysis of variance (ANOVA). The Pearson correlation test was used to

assess correlations between means. The experiments were carried out in three different batches

of seaweeds. The mean variance in the data set was detected using principal component analysis

(PCA). All data were mean centered and scaled to equal unit variance prior to PCA. The selected
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Figure 3D.2. ABTS.+ radical scavenging activities (%) of the EtOAc (A), MDC (B), n-hexane (C) fractions and
MeOH extract (D) of L. papillosa, G. acerosa and A. spicifera with concentration (0.1-0.6µg/mL).
Values are means of triplicate determinations and expressed with ± standard deviation

Figure 3D.1. TPC (mg of GE/g of the sample) of methanol extract and different solvent fractions of L. papillosa, G.
acerosa and A. spicifera
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variables for PCA were the different antioxident assays viz., ABTS.+, DPPH· radical scavenging

activity, total reduction capability, Fe2+ ion chelating activity, HO. radical scavenging activity,

scavenging of H
2
O

2,
 thiobarbituric acid-reactive substances (TBARS) and phenolic content, as

exhibited by EtOAc, MDC, n-hexane fractions, and MeOH crude extracts of the seaweeds.

3D.3. Results and Discussion

3D.3.1. Determination of Total Phenolic Compounds (TPC)

The EtOAc extract of L. papillosa exhibited significantly higher (P<0.05) TPC (283mg of

gallic acid equivalence (GE)/g) than its MDC and MeOH extract (Table 3D.2). Both EtOAc and

MDC fractions of G. acerosa exhibited significantly higher (P<0.05) TPC (147.0 & 105.1 mg GE/g,

respectively) than its other solvent fractions. Similarly, EtOAc extract of A. spicifera recorded

significantly higher (P<0.05) phenolic content (119.2 mg GE/g) than its MDC, n-hexane and MeOH

extracts (Figure 3D.1). Apparently, EtOAc extract of L. papillosa exhibited a significantly higher

value in phenolic content than the corresponding solvent extracts of both G. acerosa and A. spicifera,

which signify the presence of rich phenolic compounds in the former. Among all the three seaweed

species EtOAc extract exhibited significantly (P<0.05) higher phenolic content than all other solvent

fractions indicating the presence of polar phenolic compounds in these seaweeds. Other researchers

also identified the presence phenolic compounds in red and brown seaweeds (Zubia et al. 2007,

Duan et al. 2006). A statistical correlation obtained between the content of phenolic compounds

and antioxidant activity in our present study infers that these seaweeds are rich natural resources

of potent phenolic antioxidant compounds (Wangensteen et al. 2004).

3D.3.2. 2,2’ -Azino-bis-3-ethylbenzothiozoline-6-Sulfonic Acid Diammonium Salt (ABTS)

Radical Scavenging Activity (%)

EtOAc extract of L. papillosa (0.6 µg/mL) exhibited significantly higher (P<0.05) ABTS.+

radical scavenging activity (97.2 %) compared with its other solvent fractions. Solvent fractions of

G. acerosa followed the order EtOAc extract (42.2 %) > MDC extract (22.2 %) > n-hexane extract

(18.1 %) > MeOH extract (11.9 %) respectively towards scavenging ABTS.+ radical (Table 3D.2). In

A. spicifera ABTS.+ radical scavenging activity of the different solvent fractions followed the order

EtOAc (37.8 %) > MDC (13.2 %) > n-hexane fraction (8.9 %) > MeOH (5.6 %) (Figure 3D.2).

Radical-scavenging capacity of seaweed extracts might be mostly related to their phenolic hydroxyl

group (Ragan et al. 1986). Statistical studies had shown a high correlation of TPC with ABTS. +

radical scavenging activity. This may be due to the high amount of polyphenolic constituents present

in the seaweeds (Pavia & Aberg 1996) which were capable of functioning as free radical scavengers.
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Figure 3D.4. Hydroxyl radical scavenging activities (%) of the EtOAc (A), MDC (B), n-hexane (C) fractions and
MeOH extract (D) of L. papillosa, G. acerosa and A. spicifera with concentration (0.1-0.6mg/mL).
Values are means of triplicate determinations and expressed with ± standard deviation

Figure 3D.3. DPPH radical scavenging activities (%) of the EtOAc (A), MDC (B), n-hexane (C) fractions and MeOH
extract (D) of L. papillosa, G. acerosa and A. spicifera with time (1-5hrs). Values are means of triplicate
determinations and expressed with ± standard deviation
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3D.3.3. 1, 1-Diphenyl-2-Picryl Hydrazil (DPPH•) radical scavenging Activity (%)

EtOAc extract of L. papillosa exhibited a significantly higher (P<0.05) DPPH radical

scavenging activity (97.1 %) followed by its MeOH extract at the same dose (Table 2). EtOAc

fraction and MeOH extract of L. papillosa exhibited an increase in DPPH radical scavenging activities

with time (Figure 3). Similarly, the EtOAc extract of A. spicifera exhibited significantly higher (P<0.05)

DPPH free radical scavenging activity (81.9 %) than its other fractions (Table 2). MeOH extract of

A. spicifera with the same dose had shown lesser value (51.7 %) than EtOAc and MDC fractions

whereas n-hexane extract was not at all effective in this concentration (1 mg/mL) to scavenge

DPPH free radical (Figure 3D.3). In G. acerosa higher polar organic fraction (EtOAc extract- 77.1%),

exhibited a significantly higher (P<0.05) DPPH free radical scavenging activity followed by the

next lower polar organic solvent extract (MDC extract - 68.1 %) and MeOH extract (44.6 %).  A

high correlation between DPPH radical-scavenging activities and total polyphenolics were already

reported by other researchers (Siriwardhana et al. 2003) as we also obtained from our statistical

correlation studies.

3D.3.4. Hydroxyl Radical Scavenging Activity (%).

Hydroxyl radical scavenging activity was employed to understand the potential of different

seaweed extracts against short-lived radicals, viz., HO. radical. The EtOAc fraction of G. acerosa

exhibited a significantly higher (P<0.05) HO. radical scavenging activity (78.8 %) than its other solvent

fractions (Table 3D.2).  A reasonably good activity was recorded for the MDC fraction followed by the

MeOH extract and n-hexane fraction in G. acerosa (Figure 3D.4). The EtOAc and MDC extract of

L. papillosa also contributed significantly (P<0.05) towards HO. scavenging activity than its MDC,

MeOH extract and n-hexane fractions thereby signifying the importance of using EtOAc to isolate

potential antioxidant molecules (Table 3D.2). The solvent fractions of A. spicifera followed the trend

as: EtOAc > MDC > n-hexane > MeOH extract (Figure 3D4) in increasing order towards scavenging

OH. radical, thereby signifying the highest activity of EtOAc fraction (Table 2). Earlier reports are

there to show the hydroxyl radical scavenging activity (%) of different solvent extracts obtained from

red and brown seaweeds. For example the HO. radical scavenging activity (%) of three red seaweeds

(Acanthophora spicifera, Gracilaria edulis, and Euchema kappaphycus (1000 µg) were more than

90% in MDC, butanol and aqueous fractions and a lower inhibition rate of 65.81% was observed in

solvent fraction of E. kappaphycus (Ganesan et al. 2008). Another study reported the enzymatic

extract of Sargassum fullvelum (a brown seaweed)  possessed little effect on scavenging the HO.

radical (Heo et al. 2005). But the results of our study indicated a higher activity in some cases could

be due to the fact that most of the enzymatic extraction is aqueous based and may not be as

effective in extracting the active principles like in the case of solvent extraction.
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Figure 3D.6. TBARS formation inhibition assay (MDAEC/kg) of the EtOAc (A), MDC (B), n-hexane (C) fractions
and MeOH extract (D) of L. papillosa, G. acerosa and A. spicifera with concentration (0.1-2mg/mL).
Values are means of triplicate determinations and expressed with ± standard deviation

Figure 3D.5. Hydrogen peroxide scavenging activities (%) of the EtOAc (A), MDC (B), n-hexane (C) fractions and
MeOH extract (D) of L. papillosa, G. acerosa and A. spicifera with concentration (0.1-0.6mg/mL).
Values are means of triplicate determinations and expressed with ± standard deviation
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3D.3.5. Hydrogen Peroxide (H2O2) Scavenging Activity (%)

H
2
O

2
 is a reactive non radical compound and is of potential biological significance because

of its ability to penetrate biological membranes. H2O2 itself is not very reactive, but it may convert

into more reactive species such as singlet oxygen and HO. radicals. MDC (18.4 %) and EtOAc

(14.4 %) fractions of A. spicifera exhibited significantly higher (P>0.05) H
2
O

2
 scavenging activity

than its n-hexane fraction and MeOH extract (Table 3D.2). MDC and EtOAc fractions of A. spicifera

found to retain their capacities to scavenge H2O2 even at lower concentrations (Figure 3D.5).

EtOAc fraction of G. acerosa exhibited significantly higher (P<0.05) H
2
O

2
 scavenging activity (16.1

%) than its MDC > n-hexane fraction> MeOH extract (Table 3D.2). The EtOAc fraction of L. papillosa

exhibited significantly higher (P<0.05) hydrogen peroxide scavenging activity (15.6 %) than its all

other solvent fractions. In general the EtOAc fraction of all the seaweeds were effective towards

scavenging H2O2, followed by the MDC fraction and MeOH extract indicating the presence of polar

compounds capable of scavenging H2O2. The lower values exhibited by the n – hexane fractions in

all the seaweed species further supports the fact polar groups present with the compound may be

the reason for their radical scavenging activity. Earlier studies conducted by other researchers

(Heo et al. 2006) also showed that the EtOAc fraction of seaweeds are good scavengers of H2O2,

which is similar to our present findings.

3D.3.6. Lipid Peroxidation Inhibition Activity in Model System: Thiobarbituric Acid-Reactive

Species (TBARS) Formation Inhibitory Activity (MDAEC/kg)

The TBARS formation inhibitory capacities of EtOAc and MDC fractions (3.26 &

12.21MDAEC/kg respectively) were significantly higher (P<0.05) than that of n-hexane fraction

and MeOH extract of G. acerosa (Table 3D.2). The EtOAc and MDC fractions of L. papillosa were

found to possess significantly higher activities (3.35 and 5.05 MDAEC/kg, respectively) (P<0.05)

at 2 mg/mL with respect to inhibit lipid peroxidation. Different solvent extracts of A. spicifera followed

the same trend as shown by the different solvent extracts of L. papillosa as EtOAc fraction > MDC

fraction > MeOH extract > n- hexane fraction (4.2, 11.3, 22.8 and 33.2 MDAEC/kg respectively)

towards TBARS inhibition (Figure 3D.6). Earlier reports show that marine macroalgae are a rich

source of various natural antioxidants, which play an important role in preventing lipid peroxidation

(Wang et al. 2009; Senevirathne et al. 2006). A negative correlation was observed between the

phenolic compounds and TBATRS assay indicated the presence of compounds other than phenolics

like poly saccharides or poly unsaturated fatty acids etc as responsible for its lipid peroxidation

inhibition activity.
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Figure 3D.8. Fe2+ chelating ability (%) of the EtOAc (A), MDC (B), n-hexane (C) fractions and MeOH extract
(D) of L. papillosa, G. acerosa and A. spicifera with concentration (0.1-0.6mg/mL). Values are means
of triplicate determinations and expressed with ± standard deviation

Figure 3D.7. Reducing ability (Ab700nm) of the EtOAc (A), MDC (B), n-hexane (C) fractions and MeOH extract
(D) of L. papillosa, G. acerosa and A. spicifera with concentration (0.1-1mg/mL). Values are means of
triplicate determinations and expressed with ± standard deviation
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3D.3.7. Evaluation of Reducing Ability (Ab700nm)

The EtOAc fractions of A. spicifera exhibited higher absorbance at 700 nm (Ab
700

),

(1.46) indicating a higher reducing power (Table 3D.2) and its other fractions of the same dose

followed the order MDC> n-hexane > MeOH towards reducing ability (Table 3D.2). The reducing

capacities of EtOAc and n- hexane fractions of G. acerosa as exhibited by absorbance at 700 nm

(Ab700nm 1.31 & 0.81, respectively) were found to be higher than that of its MeOH extract

(Ab700nm 0.45) and MDC (Ab700nm 0.18) fraction (Figure 3D.7). EtOAc fraction of L. papillosa registered

a significantly higher (P<0.05) reducing ability (Ab
700nm

 1.14) followed by the  n-hexane fraction

(Ab700nm 0.81). It is believed that antioxidant activity and reducing power are related as reductones

can inhibit lipid peroxidation by donating a hydrogen atom and thereby terminating the free radical

chain reaction (Shon et al. 2003). Earlier research works also showed that the MeOH extracts of

eight seaweeds obtained from Sabah waters exhibited reducing activity (Matanjun et al. 2008).

3D.3.8. Ferrous Ion (Fe2+) Chelating Activity (%)

Ferrous ion binding capacities of MDC fraction (63.48 %) were significantly higher

(P<0.05) than that exhibited by the EtOAc fraction of G. acerosa. EtOAc fractions of A. spicifera

exhibited a significantly higher (P <0.05) ferrous ion chelating ability (61.58 %). The other fractions

of the same dose followed the order MDC> n- hexane > MeOH extract towards ferrous ion chelating

ability (Table 3D.2). In L. papillosa the EtOAc fraction (47.60 %) and MDC fraction (44.13 %) were

shown no significant difference(P>0.05) with each other (Figure 3D.8). Some studies have

demonstrated that polyphenols derived from seaweeds are potent ferrous ion chelators

(Senevirathne et al. 2006; Toth & Pavia 2000; Chew et al. 2008) and metal chelating potency of

phenolic compounds is dependent upon their unique phenolic structure and the number and location

of the hydroxyl groups (Santoso et al. 2004). In our present study same results were emerged by

getting a high correlation between TPC and ferrous ion chelating activity.

3D.3.9. Correlations between Phenolic Contents and Different Antioxidant    Activity Assays

The similarities and differences between different organic fractions of L. papillosa , G.

acerosa and A. spicifera and the relationships among different antioxidant activity assays were

statistically analyzed using PCA. The first two principal components explained 99.78 % (PC 1 –

94.04 %; PC 2 – 5.74 %) of the total variance in the data set (Figure 3D.10). TPC assay showed

significant correlation with DPPH radical scavenging activity, ABTS.+ radical scavenging activity,

hydroxyl radical scavenging activity, H2O2 scavenging activity and ferrous ion chelating ability (Figure

3D.10). From this observation it may be inferred that polyphenols present in algal extracts are

responsible for its radical scavenging as well as chelating ability. It was reported earlier that,
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Figure 3D.9. Scatter plot showing the correlation of TPC with A1) ABTS.+ radical scavenging activity assay (n = 12,
r = 0.905, P<0.01), A2) DPPH radical scavenging activity assay (n = 12, r = 0.707, P<0.05), A3)
hydroxyl radical scavenging assay (n = 12, r = 0.836, P<0.01), A4) H2O2 scavenging assay (n = 12,
r = 0.733, P<0.01), A5), ferrous ion chelating activity (n = 12, r = 0.625, P<0.05), A6) TBARS formation
inhibition assay (n = 12, r = 0.640, P<0.01) and B) scatter plot showing the correlation between DPPH
and ABTS.+ radical scavenging activity assay (n = 12, r = 0.602, P<0.05)
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seaweeds with highest TPC are also good chelators of ferrous ion (Toth & Pavia 2000). This

observation was in contradiction with the study of Wang et al. (2009) in which it was reported that

the algal polyphenols are probably not strong chelators of transition metals. From a negative

correlation observed between TPC and TBARS assay (Figure 3D.9), it can be speculated that the

antioxidant activity did not depend only on the total phenol concentration, but also on their polarity

and molecular structure (Hernández et al. 2009) or there may be some active metabolites other

than phenolics such as polysaccharides capable of inhibiting the TBA-MDA adduct formation

(Muzzarelli 1997).

3D.3.10. Chromatographic Evaluation of the Phenolic Compounds in the Methanol Extract

and EtOAc Fraction of Seaweeds

The selected groups of phenolics in MeOH and EtOAc solvent extracts of L. papillosa,

G. acerosa and A. spicifera were separated and identified by the RP-HPLC method, are shown in

Table 3D.2. A retention time (R
t
) library of the standard phenolic compounds was constructed with

detection at T
max

 324 nm and 277 nm (Figure 3D.5). The qualitative analysis of the seaweed

extracts for phenolic compounds were obtained and the retention time for individual peak was

compared with the library of standard phenolic compounds under the same HPLC conditions.

A higher amount of syringic acid (23.6mg) was observed with the methanol extract of L. papillosa

where as its EtOAC fraction registered higher amount of ECG (33.17mg) than other tested phenolic

acids. Ferulic acid, epicatechin and ECG were found to be common with both these extracts. The

HPLC analysis indicated that caffeic acid was the predominant phenolics in the EtOAc fraction of

G. acerosa, whilst more polar chlorogenic acid was the major phenolics in its MeOH fraction.

Catechin and epicatechin gallate (at 277 nm) were also present copiously among both these

extracts. In A. spicifera both MeOH and EtOAc extracts contain phenolic acids epicatechin gallic

acid, caffeic acid and 5-caffeoylquinic acid with cyclohexanecarboxylic acid derivative (chlorogenic

acid R
t
 8.12). A high amount of epicatechin was found with the MeOH fraction of A. spicifera where

as hydroxy benzoic acid derivative (gallic acid) and hydroxy cinnamic acid (caffeic acid) was dominant

with its EtOAc fraction.

The EtOAc fractions of both G. acerosa and A. spicifera which exhibited strong antioxidant

activities (in terms of scavenging DPPH. and ABTS.+ free radicals), were found to contain high

amounts of total and individual phenolics, thereby validating the fact that phenolic compounds in

these seaweeds contributed to the antioxidant activity. It has been reported that free radical-

scavenging activity is greatly influenced by the phenolic composition of the sample (Cheung et al.

2003). There are other reports which showed that HPLC analysis of the crude extracts from red

and brown seaweeds contained fourteen polyphenols, viz., gallic acid, catechin, epicatechin, rutin,
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Table 3D.3. Major phenolic compounds (mg/g extract) identified in the MeOH (A) extract and EtOAc (B) fractions
of L. papillosa (LP), G. acerosa (GA) & A. spicifera (AS) by HPLC

Sl.No Phenolic acids Rt (minute) phenolic compounds (mg/g extract) identified in the MeOH extract (A)

and EtOAc fraction (B)

324nm LP-A LP-B GA-A GA-B AS-A AS-B

1 Chlorogenic acid 8.12 - 0.1±0.0 27.08±0.16 5.03± 0.14 0.4± 0.01

2 Caffeic acid 10.49 - 8.11± 0.23 11.40± 0.36 3.11± 0.06 2.22± 0.02

3 2,5 dihydroxy benzoic acid 17.43 -  10.2±0.10 - - - -

4 Coumaric acid 20.56 -  0.3±0.01 - - - -

5 Ferulic acid 24.19 1.2±0.01  0.6±0.01 - - - -

6 Quercetin 37.90  0.3±0.01 - - - - -

7 Salicylic acid 44.92 1.4±0.01 - - - - -

277n m

8 Gallic acid 5.39 11.4±0.51 - - - 7.33± 0.17 3.17± 0.04

9 Catechin 6.81 - - - 21.36± 1.25 9.25± 0.35 -

10 EGCG 8.13 - 23.2±1.06 28.19± 2.64 8.26± 1.03 - -

11 Epicatechin 10.11 2.8±0.33  24.7±2.34 8.21± 0.27 1.02±0.02 14.13± 1.10 0.6±0.01

12 ECG 13.0 14.6±0.33 33.17±1.57 - - - -

13 Syringic acid 14.78 23.6±2.18 - - - - -

Values are mean ± SD (n = 3).

Figure 3D.10. Loading plot of different antioxidant activity assays of different solvent fractions from the L. papillosa
(Lp), G. acerosa (GA) and A. spicifera (AS) (MeOH - Methanol extract; Hex - n-hexane fraction;
MDC- dichloromethane fraction; EA - ethylacetate fraction)
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p-coumaric acid, myricetin, quercetin, protocatechuic, vanillic, caffeic, ferulic, chlorogenic, syringic

and gentisic acids (de Quirós et al. 2010, López et al. 2011, Namvar et al. 2012 ,Wang et al. 2013).

3D.4. Conclusions

EtOAc fraction of L. papillosa exhibited higher total phenolic content (283GE/g), ABTS

(97.24 %) as well as DPPH· radical scavenging activities (97.10%). Higher hydroxyl radical

scavenging activity (78.87%) and TBARS inhibition ablity (3.26 MDAEC /kg) was observed with

the EtOAc fraction of G. acerosa whereas higher ferrous metal Ions chelating activity (63.48%)

was observed with its MDC fraction. MDC fraction of A. spicifera exhibited higher H
2
O

2
 scavenging

ability (18.42%) and a higher reducing capability (1.46 Ab700nm) was observed with its EtOAc fraction.

A higher amount of syringic acid (23.6mg) was observed with the methanol extract of L. Papillosa

where as its EtOAC fraction registered higher amount of ECG (33.17mg) than other tested phenolic

acids. Ferulic acid, epicatechin and ECG were found to be common with both these extracts. The

HPLC analysis indicated that caffeic acid was the predominant phenolics in the EtOAc fraction of

G. acerosa, whilst more polar chlorogenic acid was the major phenolics in its MeOH fraction. In A.

spicifera both MeOH and EtOAc extracts contain phenolic acids epicatechin gallic acid, caffeic

acid and 5-caffeoylquinic acid with cyclohexanecarboxylic acid derivative (chlorogenic acid R
t
 8.12).

These results indicated a significant correlation of TPC in EtOAc fractions of seaweeds with ABTS.+,

DPPH, HO. scavenging activity, and reducing ability, apparently indicating that polyphenols present

in seaweed extracts, particularly in EtOAc fraction are responsible for radical scavenging ability.

The present study provides valuable information regarding the potential of these seaweeds

especially L. papillosa and G. acerosa as candidate species to develop natural sources of antioxidant

compounds to include in food supplements and as nutraceuticals for disease curing remedy.
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CHAPTER 4

Isolation and Characterization
of Antioxidant Secondary Metabolites

from Seaweeds

The isolation was carried out as bioassay guided and pure compounds were obtained

by repeated purification done with the aid of various chromatographic techniques. The structural

characterization was done with the aid of various spectroscopic techniques. The pure compounds

were further assayed to document its antioxidant and ion chelating potential. Among the different

seaweeds, Anthophycus longifolius (Turner) Kützing (Sargassum longifolium), Acanthophora

spicifera (M. Vahl) Børgesen, Padina gymnospora (Kützing) Sonder, and Laurencia papillosa

(C. Agardh) Greville were found to be abundantly available and were demonstrated to possess

potential antioxidant activity. Some of the seaweeds exhibited potentially high radical scavenging

activity as discussed in chapter 3. However on purification the column fractions were found to lose

their activity. It is therefore the seaweeds as mentioned above have been reported for isolation

and characterization of antioxidant molecules. These seaweeds also found to be abundantly

available as the availability was found to be independent of seasonal variations.   The representative

bioactive compounds separated from these species have been described below.

4.1. Materials and Methods

4.1.1. General Experimental Procedures

Fourier Transform Infra Red spectrometer (FTIR) spectra of the compounds under KBr

pellets were recorded in a Thermo Nicolet, Avatar 370. The scanning was conducted in to mid IR

range, i.e., between 4000-400cm-1. UV spectra were obtained on a Varian Cary 50 UV-VIS

spectrometer (Varian Cary, USA). Thin layer chromatography was carried out on the precoated

silica gel 60F254 plates (E-Merck, Germany). A flash column chromatograph (Biotage SP Flash

Purification System, SP1-B1A, Biotage AB, Sweden) was used with a collection UV wavelength at

236 nm and monitoring wavelength at 227 nm using the flow rate of 12 mL/min. The fractionation

on the flash chromatograph has been performed using the flash silica gel cartridge (Biotage No.

25+M 0489-1). The 1H and 13C NMR spectra were recorded on a Bruker AVANCE III 500 MHz

(AV 500) DRX 500 NMR spectrometer (Bruker, Karlsruhe, Germany) in CDCl3 as aprotic solvent at

ambient temperature with TMS as the internal standard (δ 0 ppm) equipped with 5 mm probes.

The number of attached protons for the 13C NMR signals was determined from DEPT experiments.

Standard pulse sequences were used for DEPT, 1H–1H COSY, two-dimensional NOESY, HSQC,

and HMBC experiments. Liquid chromatography–mass spectrometry experiments were performed
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Figure 4.1. Anthophycus longifolius collected from Kelaikkarai of Gulf of Mannar
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on an Applied Biosystems QTrap 2000 (Applied Biosystems, Darmstadt, Germany) coupled to an

Agilent 1100 HPLC system (Agilent, Waldbronn, Germany) using a Luna 5 µ C
18

 column (100 A,

100 × 4.6 mm, Phenomenex, Aschaffenburg, Germany) or a Luna 3 µ C
18

 column (100 A, 50 × 1.0

mm, Phenomenex, Aschaffenburg, Germany) and a gradient of solvents A (0.1% HCOOH) and B

(CH
3
CN + 0.1% HCOOH; gradient 0% B to 100% B in 10 min) with a flow rate of 1.5 mL/min or

60 µL/min, respectively. The GC-MS analyses were performed in electronic impact (EI) ionization

mode in a Varian GC (CP-3800) interfaced with a Varian 1200L single quadruple Mass Spectrometer.

ESI-MS spectra were acquired in the positive and negative modes with a turboionspray voltage,

curtain gas, turbo temperature, and nebulizer gas of -4500 V, 30 psi, 500 °C, and 50 psi (positive

mode) at a flow rate of 1.5 mL/min. Elemental analysis of the compounds was carried out using a

Euro Vector elemental analyzer (model no. EA3011).  All compounds were of analytical, spectroscopic

or chromatographic reagent grade, and were obtained from E-Merck (Darmstadt, Germany). All

reagents and chemical solvents used for products isolation were of analytical grade or higher.

4.2. Isolation and Characterization of Antioxidant Secondary Metabolites from

Anthophycus longifolius (Turner) Kützing

4.2.1. Bioassay Guided Chromatographic Purification of the Methanol Extract of

Anthophycus longifolius

The MeOH extract of A. longifolius (1260 mg) collected from Gulf of Mannar (Figure 4.1)

was chromatographed over silica column (60-120 mesh) with a stepwise gradient of solvents from n-

hexane, n- hexane:EtOAc and finally EtOAc:MeOH. Collected fraction were concentrated under vacuum

and TLC evaluated and fractions with same TLC profile were pooled together to furnish eight fractions

(Al
1-8

). The column fractions obtained from Al/MeOH extract was evaluated for its antioxidant activity

by measuring its ability to scavenge DPPH (0.1 mg/mL) and ABTS (0.1 µg/mL) radicals and to chelate

Fe2+ ion (0.1mg/mL). The sub fractions Al5 which exhibited high radical scavenging ability as obtained

from its DPPH radical scavenging ability (57.04%), ABTS radical scavenging ability (24.17%) and Fe2+

ion chelating ability (16.92%) was further chromatographed over silica column (60-120 mesh) with a

stepwise gradient of solvents from n- hexane, n- hexane:EtOAc and finally EtOAc:MeOH. Collected

fractions were concentrated under vacuum and TLC evaluated and fractions with same TLC profile

were pooled together to furnish six sub fractions (Al5, 1-6).

The sub fraction Al5,4 which exhibited 60.27% DPPH, 21.37% ABTS radical scavenging

potential and 16.74% ion chelating ability was chromatographed over silica column (60-120 mesh)

with a stepwise gradient of solvents from n- hexane, n- hexane: EtOAc and finally EtOAc : MeOH

to collect another six sub fractions (Al5,4,1-6) of which Al5,4,1 and Al5,4,3 exhibited higher radical scavenging

and ion chelating potential and selected for further purification (Figure 4.2).
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Figure 4.2. Schematic diagram representing the chromatographic purification of the MeOH extract of A. longifolius
(Al). CC: column chromatography, PTLC: preparative thin layer chromatography
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The sub fraction Al5,4,1 which exhibited good DPPH (63.35%), ABTS (26.17%) radical

scavenging potential and Fe2+ ion chelating ability (18.41%) was re-purified using preparative thin

layer chromatography over Si gel GF
254

 (particle size 15 µm) (25% EtOAc: n- hexane) to obtain

three sub fractions of which the sub fraction Al5,4,1,3 exhibited higher antioxidative potential. The

pure and active compound Al
5,4,1,3,1

 ((9H-fluoren-9-yl)methyl 1-(propoxycarbonyl) butylcarbamate)

(65.50% and 23.48% for DPPH and ABTS radical scavenging ability respectively, and 20.01% ion

chelating potential) was obtained by the preparative thin layer chromatography purification of Al5,4,1,3

over Si gel GF
254

 (particle size 15 µm) (30% EtOAc: n- hexane).

The crude sub fraction Al5,4,3 which showed high radical scavenging (66.56% and 26.73%

for DPPH and ABTS radical scavenging ability respectively) and ion chelating potential (19.75%)

upon preparative thin layer chromatography  purification over Si gel GF
254

 (particle size 15 µm)

(30% EtOAc: n- hexane) resulted in three sub fractions of which Al5,4,3,3 (3-((2E,8E)-1,4,6,10,12-

pentahydroxy-16-oxo-15,21,24-trioxa-bicyclo[17.3.2]tetracosa-2,8-dien-9-ylamino)-22,23-(4-

hydroxyphenyl)-2-methoxypropanoic acid) was pure and active (76.40% and 30.00% for DPPH

and ABTS radical scavenging ability respectively, and 26.02% ion chelating potential).

The structural characterization were carried out be detailed spectroscopic techniques  and are

discussed in following sections (4.2.2 and 4.2.3)

4.2.2. Structural Characterization of ((9H-fluoren-9-yl)methyl 1-(propoxycarbonyl)

butylcarbamate

(9H-Fluoren-9-yl)methyl 1-(propoxycarbonyl) butylcarbamate: Amorphous yellow solid;

UV (MeOH) λ
max

 (log ε ): 247 nm (3.91); TLC (Si gel GF
254

 15 mm; CHCl
3
/MeOH 10:90, v/ v) R

f
:

0.55; GC (Elite – 5 capillary column 30 m x 0.53 mm i.d.; oven temperature ramp: 60oC for 10 min,

rising at 5oC /min to 220oC; 1 mL injection volume/CHCl3) Rt: 7.20 min.; Elemental analysis found:

C,72.42;H,7.13;N,3.67;O,16.78; IR (KBr, cm-1) ν
max

 721.40cm-1 γ
r
(C-H alkanes), 1034.84 cm-1

ν(C-N), 1168.90 1313.57 1377.22 cm-1 γr(C-H), 1464.02 cm-1 δ(C-H of alkanes), 1600.97 1665.59

δ(N-H), 1741.78 cm-1 ν(C=O), 2728.40, 2852.81, 2924.18, 2956.01 cm-1 ν(C-H alkanes). 1H NMR

(CDCl
3
, 500 MHz, δ ppm) and 13C NMR (CDCl

3
,125MHz, δ ppm) data, see Table 4.2; EIMS m/e

(rel. int. %): 382 [M+1]+ (24), 336(70), 264(48), 203(28), 196(34), 166 (12), 97(72), 64(96), 55(100);

HRMS (ESI) m/e: calcd. for C23H27NO4 381.4814; found 381.4891 [M+H]+.

(9H-Fluoren-9-yl) methyl 1-(propoxycarbonyl) butylcarbamate (Figure 4.3), a new

derivative of the fluorens was isolated as yellowish amorphous solid upon chromatography over

silica columns. The IR absorption bands (in MeOH) have been detailed in the methodology section.

Its mass spectrum exhibited a molecular ion peak at m/e 382, which in combination with its 1H and
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Table: 4.1. Antioxidant and Fe2+ ion chelating potential (%) of the column fractions obtaines by the
chromatographic purification of the methanol extract of A. longifolius.

Sample ID ABTS Radical DPPH Radical Fe2+ ion Chelating
Scavenging Scavenging Ability  (%)
Activity (%) Activity (%)

Al/MeOH

Al1 18.81±0.25 45.54±0.61 13.75±0.18

Al2 21.67±0.29 54.40±0.73 16.19±0.21

Al3 15.81±0.21 39.36±0.53 11.34±0.15

Al4 17.11±0.23 42.28±0.57 12.73±0.17

Al5 24.17±0.32 57.04±0.77 16.92±0.22

Al6 14.81±0.20 35.54±0.48 9.874±0.13

Al5

Al5,1 7.445±0.10 17.71±0.24 5.033±0.06

Al5,2 21.33±0.28 50.34±0.68 13.98±0.18

Al5,3 14.30±0.19 36.61±0.49 10.89±0.14

Al5,4 21.37±0.28 60.27±0.81 16.74±0.22

Al5,5 9.841±0.13 27.75±0.37 7.708±0.10

Al5,6 8.577±0.11 21.18±0.28 6.195±0.08

Al5,4

Al5,4,1 26.17±0.35 63.35±0.85 18.41±0.24

Al5,4,2 14.11±0.19 35.43±0.48 10.21±0.13

Al5,4,3 26.73±0.36 66.56±0.90 19.75±0.26

Al5,4,4 18.79±0.25 46.43±0.62 13.81±0.18

Al5,4,5 20.04±0.27 47.30±0.64 14.29±0.19

Al5,4,6 15.08±0.20 36.20±0.49 10.90±0.14

Al5,4,1

Al5,4,1,1 6.977±0.09 16.60±0.22 4.613±0.06

Al5,4,1,2 9.504±0.12 22.42±0.30 6.501±0.08

Al5,4,1,3 31.50±0.42 74.98±1.01 21.12±0.28

Al5,4,1,3

Al5,4,1,3,1 23.48±0.35 65.50±0.84 20.01±0.24

Al5,4,1,3,2 5.059±0.06 12.49±0.16 3.601±0.04

Al5,4,1,3,3 14.95±0.20 35.29±0.47 10.26±0.13

Al5,4,3

Al5,4,3,1 6.787±0.09 17.30±0.23 5.151±0.06

Al5,4,3,2 17.22±0.23 42.55±0.57 11.82±0.16

Al5,4,3,3 30.00±0.27 76.40±0.76 26.02±0.21

Data are the mean values of the triplicate and expressed as mean ± standard deviation. The concentration of the solvent fractions
used were 0.1 mg/mL for DPPH radical scavenging activity, and Fe2+ ion chelating activity; and 0.1 µg/mL for ABTS radical scavenging
activity.
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Figure 4.3. (9H-Fluoren-9-yl) methyl 1-(propoxycarbonyl) butylcarbamate

Figure 4.4.  Mass fragmentation pattern of (9H-fluoren-9-yl) methyl 1-(propoxycarbonyl) butylcarbamate
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Table 4.2. NMR spectroscopic data of (9H-fluoren-9-yl) methyl 1-(propoxycarbonyl) butylcarbamate in CDCl3.
a

Carbon no. 13C NMR H δδδδδ1H 1H-1H COSY HMBC(1H-13C)
(DEPT) NMR(int.,

mult., J in Hz)b

1 86.9 H-1 1.60(t) H-11 C-5,C-6a

1a 139

1b 131

2 130 H-2 7.72(m) C-3

3 128 H-3 7.72(m) H-4 C-1b

4 129 H-4 7.52(m) H-3

5 129 H-5 7.52(m) C-1a,C-1

6a 139.38

6b 131

7 130 H-7 7.72(m) H-8 C-10

8 128 H-8 7.72(m) H-9

9 129 H-9 7.25(m) H-8 C-10,C-11

10 129 H-10 7.52(m) H-9

11 47.9 Ha-11,Hb-11 Ha-11at2.04(d), C-12

Hb -11at2.96(d)

12 163.83

N H 4.31(s)

13 33.9 H-13 2.3 (t) H-13a C-14,13a

13a 24.7 H-13a 1.58(q) H-13,13b C-14,13b

13b 22.7 H-13b 1.30(m) H-13a,H-13c C-14,13c

13c 14.2 H-13c 0.91(t) H-13b

14 177.28

15 65.7 Ha-15,Hb-15 Ha -15at3.3(t), H-16 C-14,

Hb-15, 4.1(t)

16 19.69 H-16 3.2(q) H-15,H-17 C-15,17

17 14.1 H-17 0.88(t) H-16 C-15
a NMR spectra recorded using Bruker AVANCE III 500 MHz (AV 500) spectrometers.
bValues in ppm, multiplicity and coupling constants (J¼ Hz) are indicated in parentheses. Assignments were made with the aid of the
1H-1H COSY, HMQC, HMBC and NOESY experiments.
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Figure 4.5. 2D NMR correlations as observed in (9H-fluoren-9-yl)methyl 1-(propoxycarbonyl) butylcarbamate.
The key 1H-1H COSY couplings have been represented by the bold face bonds; The HMBC couplings
are indicated as double barbed arrow
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Figure 4.7. Proton NMR spectra of (9H-fluoren-9-yl)methyl 1-(propoxycarbonyl) butylcarbamate (A - full view, B -
expanded view)

A

B
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Figure 4.8. 13C spectra of (9H-fluoren-9-yl)methyl 1-(propoxycarbonyl) butylcarbamate (A - full view,
B & C - expanded view)
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Figure 4.10. 1H-1H-COSY spectrum of (9H-fluoren-9-yl)methyl 1-(propoxycarbonyl) butylcarbamate

Figure  4.9. DEPT spectrum of (9H-fluoren-9-yl)methyl 1-(propoxycarbonyl) butylcarbamate
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Figure 4.11. HMBC spectrum of (9H-fluoren-9-yl)methyl 1-(propoxycarbonyl) butylcarbamate

13C NMR data (Table 3) indicated the elemental composition of C
23

H
27

NO
4
. The molecular ion peak

at m/e 382 appeared to undergo elimination of C3H9+ (45) to yield m/e 336 (C6H12O2), which

undergoes fragmentation to afford the fragments with m/e 264, 201 etc (Figure 4.4). These signature

peaks established the presence of the (9H-fluoren-9-yl) methyl 1-(propoxycarbonyl) butylcarbamate

moiety.

The ν(C-H) vibrations were assigned by the signals at around 2800-2900 cm-1. Absorbance around

1700 cm-1 is assigned due to ν(C=O)  vibrations. Bands of about 1420 cm-1 is due to νs(C=O)

vibrations. ν(C-N) vibrations were observed at 1034.84 cm-1 and bands around 1600.97 1665.59

cm-1 are due to δ(N-H) vibrations (Figure 4.6).

The 1H NMR in conjugation with 13C-NMR recorded the presence of the methine groups

CH δ 7.3-7.7, which are assigned to be due to fluoren (Figure 4.7), whereas the methine group

attached to the side chain appeared at δ 2.30 is a part of the methyl 1-(propoxycarbonyl)

butylcarbamate system, and the downfield shift (about δ 0.6 ppm) of the –CH group is due to the

presence of beta -O-C=O from the methane group (Figure 4.8 & 4.9). The methylene groups at δ

3.3 and 4.1 ppm appeared significantly downfield due to the presence of alpha -OC(=O)N and

alpha -OC(=O)-C moieties in the methyl 1-(propoxycarbonyl)butylcarbamate side chain. The
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Figure 4.12. 3-((2E,8E)-1,4,6,10,12-pentahydroxy-16-oxo-15,21,24-trioxa-bicyclo[17.3.2]tetracosa-2,8-dien-9-
ylamino)-22,23-(4-hydroxyphenyl)-2-methoxypropanoic acid

Figure 4.13. Mass fragmentation pattern of 3-((2E,8E)-1,4,6,10,12-pentahydroxy-16-oxo-15,21,24-trioxa-
bicyclo[17.3.2]tetracosa-2,8-dien-9-ylamino)-22,23-(4-hydroxyphenyl)-2-methoxypropanoic acid
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methylene protons at δ 2.04, 2.96 ppm flanked between the fluoren group and carbamate group of

the side chain, whereas the methylene protons appeared at δ 1.58 and 1.30 ppm is a part of the

methyl butylcarbamate moiety of the side chain. The other methylene groups at δ 3.3 and 4.1 ppm

also corroborated with the deduced structure and part of the side chain attached with the fluoren

group. The peak at δ 4.31 ppm is due to the secondary amide group. The methine group at

appeared downfield at δ 2.3 ppm deduced to be due to the electron withdrawing groups alpha -N-

C=O and alpha -C(=O)OR in the carbamate and propyl hydrogen carbonate moieties. The two

methyl signals at 0.88 and 0.91 ppm are due to the terminal methyl groups in (1-

(propoxycarbonyl)butyl)carbamate acid moiety in the side chain. Peaks at C-14 (δ 177.28) and C-

12 (δ 163.83) indicate two carbonyl groups and C13 peaks with high intensity at δ 139,131,130,129,

and 128 showed the presence of the aromatic carbons giving the HSQC correlation with H-2,3 (δ

7.72), H-4,5(δ 7.52), and H-9(δ 7.25), whilst all are coupled with the neighboring protons forming

the multiplets to give the proton integration value as 8H (Figure 4.10).

The protons at H-4, and H-8 showed HMBC correlation with C-1, which indicate that C-

1 is situated between two aromatic rings (Figure 4.11). C-1 gives HSQC correlation with H-1(δ

1.60) to demonstrate a triplet. The H-1 showed 1H-1H COSY correlation with H-11 (δ 2.04), which

showed HMBC correlation with C-12(δ 163.83). The carbon at C-15(δ 65.7) exhibited DEPT signal

for methylene group, and its downfield shift demonstrates the presence of highly electronegative

group at its close proximity. The bunches of carbons at C-13, 13a, 13b, 13c are linearly aligned as

established by 1H-1H COSY correlation results. The 1H-1H COSY correlations at H-13(δ 2.3) with

H-13a (δ 1.58), H-13b (δ 1.30), and H-13c (δ 0.91) are the prominent ones. These protons at H-

13a, 13b and H-13 showed HMBC correlation with C-14. One singlet proton at δ 4.31 showed

HMBC correlation with C-14 and C-12, and therefore, is situated to middle of these two. The

proton doesn’t show any HSQC correlation with any C13 peak, and that it connected to N confirmed

by the CHNS analysis result. The 1H-NMR spectrum showed four exchangeable hydroxyl protons,

which disappeared upon addition of D2O. The 13C NMR spectrum of the purified compound in

combination with DEPT experiments indicated the occurrence of 23 carbon atoms in the molecule.

The position of the hydroxyl groups was further confirmed from the 1H–1H COSY, HSQC, HMBC,

and NOESY spectra. In the 1H–1H COSY spectrum, couplings were apparent as described in the

figure support the presence of the established skeleton.

Earlier studies reported the isolation of a new compound, 1,4,5-trihydroxy-7-methoxy-

9H-fluoren-9-one, together with two known fluorenones, dendroflorin and denchrysan A, from the

whole plant of Dendrobium genus, used as a health-food (Chen et al. 2008). There are other

reports that dimeric diazofluorenes known as the lomaiviticins are produced by the marine bacterium

Salinispora pacifica DPJ-0019 (Woo et al 2013).
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Table 4.3. NMR spectroscopic data of 3-((2E,8E)-1,4,6,10,12-pentahydroxy-16-oxo-15,21,24-trioxa-
bicyclo[17.3.2]tetracosa-2,8-dien-9-ylamino)-22,23-(4-hydroxyphenyl)-2-methoxypropanoic acid in
CDCl3.

a

Carbon no. 13C NMR H δδδδδ1H 1H-1H COSY HMBC(1H-13C)
(DEPT) NMR(int.,

mult., J in Hz)b

1 139.36

2 129.72

3 130.1

4 132.29 4-H 7.53(m) 6-H C-5,3,28

5 131.2

6 129.72 6-H 7.71(m) 4-H C-1,7,8,29

7 31.92 7-Haat 1.727-Hb 1.72(s)

at 1.61

8 167.73

9 33.91 9-Haat 2.34,9-Hb 2.34(m) 10-H C-8,11

at 2.22

10 29.36 10-H 1.63(q) 11-H C-9,11

11 33.9 11-H,-OH 2.02(m),3.4(s) 10-H

12 31.92 12-H 1.29(t) C-13,15

13 29.36 13-Ha,13-OH 13-Haat1.85(t) 12-H C-15

13-OH at 4.28(s)

14 130.2

15 N 4.25(t)

16 34.3 16-H 1.61(d) 17-H C-17,18,

17 33.5 17-H 2.3(t) 16-H

18 178.65 -OH 10.2(s)

19 51.44 19-H 3.66(s) C-18,17,16

20 114 20-H 4.99(t) 21-Hb

21 37.23 21-Ha,21-Hb 21-Haat1.8421-Hb C-15,20,23

at2.01(dt)

22 29.36 22-H,-OH 1.86(m),5.3(s) C-24

23 31.92 23-H 1.24(m) 22-H

24 25.62 24-Ha,24-Hb 24-Haat2.81,24-Hb 23-H C-25,26,22

at2.06(m)

25 131.1 25-H 5.82(q) 24-Hb C-26,29

26 128.83 26-H 5.79(d) 25-H C-27,25

27 37.23

28 68.16 28-H 4.22(s)

29 65.53 29-H 4.30(s) C-8,7,2

a NMR spectra recorded using Bruker AVANCE III 500 MHz (AV 500)
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Figure  4.14. 2D NMR correlations as observed in 3-((2E,8E)-1,4,6,10,12-pentahydroxy-16-oxo-15,21,24-trioxa-
bicyclo[17.3.2]tetracosa-2,8-dien-9-ylamino)-22,23-(4-hydroxyphenyl)-2-methoxypropanoic acid. The
key 1H-1H COSY couplings have been represented by the bold face bonds; The HMBC couplings are
indicated as double barbed arrow

Figure 4.15. IR spectrum of 3-((2E,8E)-1,4,6,10,12-pentahydroxy-16-oxo-15,21,24-trioxa-bicyclo[17.3.2]tetracosa-
2,8-dien-9-ylamino)-22,23-(4-hydroxyphenyl)-2-methoxypropanoic acid
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Figure 4.16. Proton NMR spectra of 3-((2E,8E)-1,4,6,10,12-pentahydroxy-16-oxo-15,21,24-trioxa-
bicyclo[17.3.2]tetracosa-2,8-dien-9-ylamino)-22,23-(4-hydroxyphenyl)-2-methoxypropanoic acid
(A - full view, B - expanded view)

A

B
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Figure 4.17. 13C NMR spectra of 3-((2E,8E)-1,4,6,10,12-pentahydroxy-16-oxo-15,21,24-trioxa bicyclo
[17.3.2]tetracosa-2,8-dien-9-ylamino)-22,23-(4-hydroxyphenyl)-2-methoxypropanoic acid (A - full view,
B - expanded view)

A

B
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Figure 4.18. DEPT spectrum of 3-((2E,8E)-1,4,6,10,12-pentahydroxy-16-oxo-15,21,24-trioxa-bicyclo[17.3.2]
tetracosa-2,8-dien-9-ylamino)-22,23-(4-hydroxyphenyl)-2-methoxypropanoic acid

Figure  4.19. 1H-1H COSY spectrum of 3-((2E,8E)-1,4,6,10,12-pentahydroxy-16-oxo-15,21,24-trioxa-
bicyclo[17.3.2]tetracosa-2,8-dien-9-ylamino)-22,23-(4-hydroxyphenyl)-2-methoxypropanoic acid
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Figure 4.20. (A) HSQC and (B) HMBC spectra of 3-((2E,8E)-1,4,6,10,12-pentahydroxy-16-oxo-15,21,24-trioxa-
bicyclo[17.3.2] tetracosa-2,8-dien-9-ylamino)-22,23-(4-hydroxyphenyl)-2-methoxypropanoic acid

A

B
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4.2.3. Structural Characterization of 3-((2E,8E)-1,4,6,10,12-pentahydroxy-16-oxo-15,21,24-

trioxa-bicyclo[17.3.2]tetracosa-2,8-dien-9-ylamino)-22,23-(4-hydroxyphenyl)-2-

methoxypropanoic acid

3-((2E,8E)-1,4,6,10,12-pentahydroxy-16-oxo-15,21,24-trioxa-bicyclo[17.3.2]tetracosa-

2,8-dien-9-ylamino)-22,23-(4-hydroxyphenyl)-2-methoxypropanoic acid : Light yellow semisolid;

UV (MeOH) λmax (log ε): 256 nm (4.81); TLC (Si gel GF254 15 mm; CHCl3/MeOH 40:60, v/ v) Rf:

0.50; GC (Elite – 5 capillary column 30 m x 0.53 mm i.d.; oven temperature ramp: 60oC for 10 min,

rising at 5oC /min to 220oC; 1 mL injection volume/CHCl
3
) R

t
: 8.20 min.; Elemental analysis

found:C,56.28;H,6.58;N,2.34;O,34.80; IR (KBr, cm-1) νmax 720.44 cm-1 γw (N-H), 812.06 971.19

1305.85 1376.26 cm-1 γr(C-H alkanes), 1463.06 cm-1, ν(C=C aromatic), 1740.81 cm-1 ν(C=O),

2337.80 cm-1 ν(C-N), 2359.98 cm-1 ν(C-N), 2853.78, 2926.11 cm-1 ν(C=O carboxylic acids); 1H

NMR (CDCl3, 500 MHz, δ ppm) and 13C NMR (CDCl3,125MHz, δ ppm) data, see Table 4.3; EIMS

m/e (rel. int. %): 598 [M+1]+ (15), 567(31), 480(6), 260(12), 184(52),142 (3), 119.121(65), 94

(100), 90 (22), 89(28); HRMS (ESI) m/e: calcd. for C
28

H
39

NO
13

 597.6214; found 597.6265 [M+H]+.

The mass spectral pattern showed the molecular ion peak at 597. The molecular ion

loses the methoxy group (m/e=31) to furnish the peak at m/e=567. The other signature mass

peaks appeared at m/e= 119 (C4H9NO3), C8H8O5 (m/e=184), m/e=94, 90, and 89, which supports

the molecular structure (Figure 4.13).The peak around 1740cm-1 is due to νas (C=O) vibrations of

-COOH group and also the bands around 2800-2900 cm-1 are due to ν(C=O carboxylic acids).

A ν(C-N)  band was observed around 2337.80cm-1 and γw (N-H) vibrations were observed at

720.44cm-1. An aromatic ν(C=C) vibration was observed at 1463.06cm-1.Bands at 812.06 971.19

1305.85 1376.26 cm-1 are mainly assigned due to C-H vibrations of alkane groups (Figure 4.15).

The aromatic signals appeared at δ 4.5-7.7 ppm (Figure 4.16). Among the five methine signals,

two appeared downfield at δ 1.85 and 2.02 ppm due to the electron withdrawing effects of alpha -

C=C and alpha –O groups in the heptenediol moiety of the compound. The other two methine

groups at δ 1.86 and 2.81 ppm are due to the deshielding effects of alpha O- and beta C=C groups

in the octa-1,7-diene-3,5-diol moiety. The –NH and hydroxyl groups appeared as broad singlets at

about 4-5 ppm. The phenolic proton appeared at 5 ppm due to the deshielding effect of the aryl

ring system. The carboxylic –OH appeared downfield at δ 10.2 ppm. This carboxyl group is at the

terminal position of 3-amino-2-methoxypropanoic acid side chain system of the compound. Three

olefinic protons appeared at δ 4.99-5.82 ppm as established by integrating the number of protons.

The methylene group protons at δ 2.34 ppm are due to the presence of 2-(3-hydroxyphenyl)

acetate group. The downfield shift is due to aryl ring system and alpha -C(=O)O-C group. The –

CH
2
 group at δ 2.34 appeared downfield due to the presence of alpha -OC(=O)-C moiety in the 3-
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Figure 4.21. Padina gymnospora collected from Thonithurai of Gulf of Mannar
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hydroxybutyl acetate part of the compound. Two magnetically equivalent –CH
2
 groups appeared

at δ 4.2, 4.3 ppm, and demonstrated to be a part of (Z)-6, 7-dihydro-5H-1, 4-dioxepine ring system of

the 3, 4-dihydro-2H-benzo[b] [1, 4] dioxepine-3, 7-diol moiety of the compound. The –CH
2
 signals at

δ 1.61 ppm is at the side chain 3-amino-2-methoxypropanoate group, and is deshielded due to the

presence of alpha –N and beta -C(=O)O moieties. The methyl signal at 3.66 ppm is apparently

deshielded due to the close proximity of an electronegative group such as oxygen, and is demonstrated

to be a part of 3-amino-2-methoxypropanoate moiety. The four methylene groups appeared at δ 1.7-

2.3 ppm are the part of the 19-hydroxy-5, 21, 23-trioxa-bicyclo [17.3.2] tetracosa-1(22), 11, 17-trien-

4-one ring system of the compound. The 13C spectra displayed signal at δ 167.7 ppm and 178.6 ppm

showed two carbonyl compounds. The 13C NMR spectrum of the purified compound in combination

with DEPT experiments indicated the occurrence of 28 carbon atoms in the molecule (Figure 4.17 &

4.18). The position of the hydroxyl groups was further confirmed from the 1H–1H COSY, HSQC,

HMBC (Figure 4.19 & 4.20), and NOESY spectra. In the 1H–1H COSY spectrum, couplings were

apparent as described in the figure support the presence of the established skeleton.

A novel trioxa-bicyclo phenolic compound, 4-(2,4,7-trioxa-bicyclo[4.1.0]heptan-3-yl)

phenol with potent antibacterial and antifungal activity was isolated from an endophytic fungus

Pestalotiopsis mangiferae, (Subban et al. 2012). Another novel bicyclic diterpenoid, (-)-3α-acetoxy-

6β-hydroxy-15,16-dinorlabd-8(9)-ene-13-yne-7-one with coagulant activity by shortening the

activated partial thromboplastin time, prothrombin time, and thrombin time, and increasing the

fibrinogen levels was isolated from biennial herbaceous plant Leonurus japonicus Houtt. (Lamiaceae)

widely distributed and cultivated in China (Peng et al. 2013). Compounds with bi-bicyclic and bi-

tricyclic ring systems were also reported to be isolated from stems of Dendrobium thyrsiûorum

(Zhang et al. 2005).

4.3. Isolation and Characterization of Antioxidant Secondary Metabolites from Padina

gymnospora (Kützing) Sonder

4.3.1. Bioassay Guided Chromatographic Purification of the Methanol Extract of P.

gymnospora

The MeOH extract of P. gymnospora (1.2 g) collected from the Gulf of Mannar (Figure

4.21) was chromatographed over silica column (60-120 mesh) with a stepwise gradient of solvents

from n-hexane, n-hexane: EtOAc and finally EtOAc: MeOH and the collected fractions were

concentrated under vacuum and TLC evaluated and fractions with same TLC profile were pooled

together to furnish nine fractions (Pg1-9). The column fractions obtained from Pg/MeOH extracts

were evaluated for its antioxidant activity by measuring its ability to scavenge DPPH (0.1 mg/mL)

and ABTS (0.1 µg/mL) free radicals and to chelate Fe2+ ion (0.1mg/mL). The fractions Pg 4, Pg 7
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Figure 4.22. Schematic diagram showing the purification of the MeOH extract of P. gymnospora (Pg).
CC: column chromatography, PTLC: preparative thin layer chromatography
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Table: 4.4. Antioxidant and Fe2+ ion chelating potential (%) of the different fractions obtained by the chromato-
graphic purification of the MeOH extract of P. gymnospora.

Sl NO Sample ID Solvent Yield (g) ABTS DPPH Fe2+ ion
System Radical Radical Chelating

Scavenging Scavenging Ability (%)
Activity (%) Activity (%)

Pg

1 Pg 1 1.5 164 20.74±0.28 50.40±0.68 14.60±0.19

2 Pg 2 5 26 17.63±0.23 44.26±0.60 13.17±0.17

3 Pg 3 13 15 13.13±0.17 30.98±0.42 9.19±0.12

4 Pg 4 22 148 25.21±0.34 62.27±0.84 18.75±0.25

5 Pg 5 50 117 11.48±0.15 28.59±0.38 8.24±0.11

6 Pg 6 100 125 7.69±0.10 18.46±0.25 5.12±0.06

7 Pg 7 0.1 180 22.88±0.31 55.39±0.75 16.73±0.22

8 Pg 8 1 175 25.04±0.33 59.60±0.80 16.93±0.22

9 Pg 9 5 76 15.40±0.20 36.36±0.49 10.10±0.13

Pg4

1 Pg 4,1 4 18 7.91±0.10 19.32±0.26 5.44±0.07

2 Pg 4,2 10 95 10.76±0.14 26.58±0.36 7.77±0.10

3 Pg 4,3 18 43 23.11±0.31 65.18±0.88 18.10±0.24

4 Pg 4,4 13 31 20.95±0.28 51.75±0.70 15.40±0.20

Pg 4,3

1 Pg 4,3,1 1 24 22.56±0.44 48.80±1.06 16.90±0.31

2 Pg 4,3,2 5 20 28.45±0.25 69.32±0.62 24.34±0.18

3 Pg 4,3,3 9 17 24.19±0.49 51.42±1.15 20.80±0.34

Pg 7-8

1 Pg 7-8,1 0.2 45 22.28±0.30 52.59±0.71 15.37±0.20

2 Pg 7-8,2 2 36 21.11±0.39 54.53±1.01 16.17±0.28

3 Pg 7-8,3 5 76 14.63±0.19 35.70±0.48 10.38±0.14

4 Pg 7-8,4 10 125 21.38±0.28 60.30±0.81 17.37±0.23

5 Pg 7-8,5 20 54 11.23±0.15 27.75±0.37 8.38±0.11

Pg 7-8,4

1 Pg 7-8,4,1 0.1 24 10.15±0.13 24.68±0.33 7.11±0.09

2 Pg 7-8,4,2 0.3 27 14.88±0.20 42.56±0.57 12.82±0.17

3 Pg 7-8,4,3 0.9 15 15.63±0.21 36.90±0.50 10.63±0.14

4 Pg 7-8,4,4 2.1 53 21.64±0.29 55.42±0.75 15.39±0.20

Pg 7-8,4,4

1 Pg 7-8,4,4,1 0.1 16 21.54±0.29 53.20±0.72 15.46±0.20

2 Pg 7-8,4,4,2 0.3 14 19.55±0.40 43.35±1.13 13.68±0.32

3 Pg 7-8,4,4,3 0.9 19 23.30±0.31 70.14±0.95 20.81±0.28
Data are the mean values of the triplicate and expressed as mean ± standard deviation. The concentration of the solvent fractions
used were 0.1 mg/mL for DPPH radical scavenging activity, and Fe2+ ion chelating activity; and 0.1 µg/mL for ABTS radical scavenging
activity.
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Figure 4.23. (6Z)-methyl 8-(2-(E)-4-ethyl-3-isopropyl-5- methylhept-1-enyl)-tetrahydro-6-oxo-2H-pyran-3-yl)-3,3-
dimethylnon-6-enoate

Figure 4.24. Mass fragmentation pattern of (6Z)-methyl 8-(2-((E)-4-ethyl-3-isopropyl-5- methylhept-1-enyl)-
tetrahydro-6-oxo-2H-pyran-3-yl)-3,3-dimethylnon-6-enoate
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Table 4.5. NMR spectroscopic data of (6Z)-methyl 8-(2-((E)-4-ethyl-3-isopropyl-5-methylhept-1-enyl)-tetrahydro-

6-oxo-2H-pyran-3-yl)-3,3-dimethylnon-6-enoate in CDCl3.
a

Carbon no. 13C NMR H δδδδδ1H 1H-1H COSY HMBC(1H-13C)
(DEPT) NMR(int.,

mult., J in Hz)b

1 61.02 1-H 4.5(t) C-1'

1' 130.20 1'-H 5.26(dt) 1-H C-2

2 33.5 2-H 2.24(m) C-3,4

2a 25.54 2a-H 2.73(ddt) C-6,7,8

2' 129.72 2'-H 5.29(m) 1'-H, 3'-H

3 33.81 3-H 2.28(t) C-5,4

3a 24.51 3a-H 1.43(m) 3'-H C-3b,3c

3b 13.98 3b-H 0.80(m) 3a-H

3c 19.51 3c-H 0.77(m)

3' 27.19 3'-H 3.46(m) 2'-H

4 25.6 4-H 1.6(dt) C-5,7,8

4' 32.79 4'-H 2.21(dd) 3'-H, 5'-H, 4a-H C-4a,3'

4a 22.71 4a-H 0.91(m) 4b-H

4b 14.10 4b-H 0.80(m)

5 179.41

5' 24.79 5'-H 1.54(m) 5''-H, 6'-H C-5'',6'

5'' 24.68 5''-H 0.94(m) 5'-H

6 37.02 6-H 0.97(m)

6' 39.22 6'-H 1.05(m) 7'-H, 5'-H

7 130.01 7-H 5.16(t) 8-H, 2a-H C-2,3,8

7' 20.54 7'-H 0.94(t) 6'-H C-6',5'

8 128.23 8-H 5.08(t) 9-H C-7

9 39.69 9-H 1.94(m) 10-H C-7,8,10

10 29.06 10-H 1.25(m) C-8,9

11 24.51

11a 27.97 11a-H 1.56(s)

11b 29.06 11b-H 1.71(d)

12 37.71 12-H 4.01(s) C-13,11,14

13 179.37

14 51.31 13-H 3.6(s) C-13
a NMR spectra recorded using spectrometers. Bruker AVANCE III 500 MHz (AV 500)
bValues in ppm, multiplicity and coupling constants (J¼ Hz) are indicated in parentheses. Assignments were made with the
aid of the 1H-1H COSY, HMQC, HMBC and NOESY experiments.
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Figure 4.26. IR spectrum of (6Z)-methyl 8-(2-((E)-4-ethyl-3-isopropyl-5-methylhept-1-enyl)-tetrahydro-6-oxo-2H-
pyran-3-yl)-3,3-dimethylnon-6-enoate

Figure 4.25. 2D NMR correlations as observed in (6Z)-methyl 8-(2-((E)-4-ethyl-3-isopropyl-5-methylhept-1-enyl)-
tetrahydro-6-oxo-2H-pyran-3-yl)-3,3-dimethylnon-6-enoate. The key 1H-1H COSY couplings have been
represented by the bold face bonds; The HMBC couplings are indicated as double barbed arrow
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Figure 4.27. Proton NMR spectra of (6Z)-methyl 8-(2-((E)-4-ethyl-3-isopropyl-5-methylhept-1-enyl)-tetrahydro-6-
oxo-2H-pyran-3-yl)-3,3-dimethylnon-6-enoate) (A - full view, B - expanded view)
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Figure 4.28. 13C NMR spectra of (6Z)-methyl 8-(2-(E)-4-ethyl-3-isopropyl-5-methylhept-1-enyl)-tetrahydro-6-oxo-
2H-pyran-3-yl)-3,3-dimethylnon-6-enoate) (A - full view, B - expanded view)
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Figure 4.29. DEPT spectrum of (6Z)-methyl 8-(2-((E)-4-ethyl-3-isopropyl-5-methylhept-1-enyl)-tetrahydro-6-oxo-
2H-pyran-3-yl)-3,3-dimethylnon-6-enoate)

Figure 4.30. 1H-1H COSY spectrum of (6Z)-methyl 8-(2-(E)-4-ethyl-3-isopropyl-5-methylhept-1-enyl)-tetrahydro-6-
oxo-2H-pyran-3-yl)-3,3-dimethylnon-6-enoate) (A - full view, B - expanded view)

Chapter 4 - Isolation and Characterization of Antioxidant Secondary Metabolites from Seaweeds

A

B



Isolation and Characterization of Useful Secondary Metabolites with Antioxidant Activity from Seaweeds from Southeastern Coast of India

|    178

Figure 4.31. HMBC spectrum of (6Z)-methyl 8-(2-((E)-4-ethyl-3-isopropyl-5-methylhept-1-enyl)-tetrahydro-6-oxo-
2H-pyran-3-yl)-3,3-dimethylnon-6-enoate)
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and Pg 8 exhibited good radical scavenging and chelating ability so that they were selected for

further purification. These fractions showed higher DPPH and ABTS radical scavenging ability (>

50% and > 20% respectively) and Fe2+ ion chelating ability (> 14 %) than other corresponding

fractions.

Repurification of Pg
4 
(Figure 4.22) using preparative thin layer chromatography over

silica gel GF254 (particle size 15 µm) (20 % EA: n-hexane) resulted in four sub fractions Pg (4,1-4,4).

The sub fraction Pg 4,3 which exhibited good DPPH (65.18%), ABTS (23.11%) radical scavenging

potential and Fe2+ ion chelating ability (18.10%) was re purified again using preparative thin layer

chromatography over Si gel GF254 (particle size 15 µm) (20 % EA: n-hexane) to get the pure and

active compound Pg 4,3,2(69.32% and 28.45% for DPPH and ABTS radical scavenging ability

respectively, and 24.34% ion chelating potential).

The two sub fractions with almost similar TLC profile and radical scavenging potential

Pg
 7-8 

were pooled together and purified over silica column (60-120 mesh, 3.5x15cm) with a stepwise

gradient of solvents from CHCl
3
:MeOH and pooling up of similar fractions with same TLC profile to

get five sub fractions Pg 7-8,1-5. The sub fraction Pg7-8,4 which exhibited good DPPH (60.30%), ABTS

(21.38%) radical scavenging potential and Fe2+ ion chelating ability (17.37%) was again purified

using preparative thin layer chromatography (3% MDC: MeOH) to get another four fractions

(Pg 7-8,4,1-4). The repeated purification of Pg 7-8,4,4 (55.42%, 21.64%, 15.39% for DPPH, ABTS radical

scavenging ability and ion chelating potential respectively) by preparative thin layer chromatography

method (3% MDC: MeOH) to get the pure and active compound Pg 7-8,4,4,1 (70.14% and 23.30% for

DPPH and ABTS radical scavenging ability respectively, and 20.81% ion chelating potential).

The structural characterization were carried out be detailed spectroscopic techniques

and are discussed in following sections (4.3.2 and 4.3.3)

4.3.2. Structural Characterization of (6Z)-methyl 8-(2-((E)-4-ethyl-3-isopropyl-5-

methylhept-1-enyl)-tetrahydro-6-oxo-2H-pyran-3-yl)-3,3-dimethylnon-6-enoate

(6Z)-Methyl 8-(2-((E)-4-ethyl-3-isopropyl-5-   methylhept-1-enyl)-tetrahydro-6-oxo-2H-

pyran-3-yl)-3,3-dimethylnon-6-enoate: Yellow amorphous solid, UV(MeOH) λ
max

 246(3.14),

276(2.81)nm TLC (Si gel GF254 15 mm; CHCl3/MeOH 40:60, v/ v) Rf: 0.65; GC (Elite – 5 capillary

column 30 m x 0.53 mm i.d.; oven temperature ramp: 60oC for 10 min, rising at 5oC /min to 220oC;

1 mL injection volume/CHCl
3
) R

t
: 7.42 min.; Elemental analysis found:C,75.58;H,10.99;O,13.42;

IR (KBr, cm-1) νmax 720.44 cm-1 γr(C-H alkanes), 810.13 cm-1 δ(C-H), 1152.51 cm-1 δ(C-H), 1306.82

1376.26 cm-1 γr(C-H), 1462.09 cm-1 δ(C-H alkanes), 1600.97 1663.66 1740.81 cm-1 ν(C=O), 2727.44

cm-1, ν(C-H alkanes), 2853.78 cm-1, ν(C-H  alkanes), 2926.11 cm-1, ν(C-H  alkanes), 2954.08 cm-
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1 ν(C-H alkanes). It has degree of unsaturation is 5; 1H NMR (CDCl3, 500 MHz, δ ppm) and 13C

NMR (CDCl
3
,125MHz, δ ppm) data, see Table 4.5; EIMS m/e (rel. int. %): 478 [M+1]+ (12), 449(11),

310 (26), 226 (52), 182 (34), 170(19), 158(73), 100(100), 74(62), 60 (51); HRMS (ESI) m/e: calcd.

for C30H52O4 476.7545; found 476.7593 [M+H]+.

The molecular ion peak was observed at m/e=477. The peak at m/e=449 is due to the

elimination of methoxy group (m/e=28) or by the elimination of a C2H5 (m/e=28) side chain. Peak at

m/e 182 and m/e 100 are due to the fragments C11H18O2 (m/e=182) and C5H8O2 (m/e=100). The

mass fragments at m/e=158, 74, and 60 are the characteristic signature peaks of the proposed

structure (Figure 4.24). The vibration bands around 1152.51, 2727.44, 2853.78, 2926.11 and

2954.08cm-1 are assigned due to ν(C-H alkane chain). A strong δ(C-H alkane chain) was observed

at1462.09 cm-1. ν(C=O) were observed at around 1600.97 1663.66 and 1740.81 cm-1 (Figure 4.26).

The methylene group protons appeared at δ 1.6 and 2.28 ppm are assigned to be the part of

valerolactone (Figure 4.27). The other methine protons at the valerolactone moiety appeared at δ

4.5 and 2.24 ppm, and are present at the alpha and beta position to the -C=C of the valerolactone

group. The signature peaks of 13C NMR at δ 179.41 and 174.37 indicate the presence of two

carbonyl compounds (Figure 4.28 & 4.29). The signals in olefinic protons appeared at δ 130.20,

130.01, 129.71 and 128.23 ppm, which give HSQC correlation with the protons at 5.26, 5.16, 5.29

and 5.08 ppm, respectively. The linear 1H-1H COSY correlations were apparent between the protons

at δ 1.6 ppm (C-4), 2.28 ppm (C-3), 2.24 ppm (C-2) and 4.5 ppm (C-1) that supports the valerolactone

moiety (Figure 4.30). These protons showed the HMBC correlation with the carbonyl carbon at C-

5 (δ 179.41 ppm), which also support the cyclic valerolactone structure. The proton at C-1 (δ 4.5

ppm) shows 1H-1H COSY correlation with the olefinic proton at δ 5.26 ppm (C-1’), which, in turn

realized the 1H-1H COSY correlation with the olefinic proton at δ 5.29 ppm (C-2’). This established

the tetrahydro-6-(prop-1-enyl) pyran-2-one moiety of the compound. The proton at C-1’ (δ 5.26

ppm) gives triplet, which established the presence of one proton each at its either end. The J

values of 14Hz, 7Hz of olefinic carbons C1’-C2’ conformed the olefinic bond as ‘E’-type. The C-2’

proton (2’-H, δ 5.29 ppm) correlates with the signal at δ 3.46 ppm (3’-H) as established by the 1H-

1H COSY experiment. The 3’-H proton (δ 3.46 ppm) further showed linear 1H-1H COSY correlations

with 3a-H (δ 1.43 ppm) and 4’-H (δ 2.21 ppm), which established the presence of the tetrahydro-6-

((E)-3-methylbut-1-enyl)pyran-2-one moiety. The proton at 4’-H (δ 2.21 ppm, dd) exhibited 1H-1H

COSY correlations with the ethyl group of 4a-H (δ 0.91 ppm) and 4b-H (δ 0.80 ppm), isopropyl

group at C5’ (δ 1.54 ppm), C5’’ (δ 0.94 ppm), C6’ (δ 1.05 ppm) and C7’ (δ 0.94 ppm). The proton at

2-H (δ 2.24 ppm) showed 1H-1H COSY correlation to 6-H (δ 0.97 ppm, m), which showed linear 1H-

1H COSY correlation to 7-H (δ 5.16 ppm). The triplet with J value of 5 Hz indicates ‘Z’ type of

olefinic bond, whereas the 1H-1H COSY correlation continued with 8-H (δ 5.08 ppm). The proton at
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Figure 4.32. 1-((4Z)-2,3,7,8-tetrahydrobenzo[b]oxepin-2-yl)tetradecan-2-oxo-5-((E)-but-2-enyl)-dihydrofuran-2(3H)-
one

Figure 4.33.  Mass fragmentation pattern of 1-(4Z)-2,3,7,8-tetrahydrobenzo[b]oxepin-2-yl)tetradecan-2-oxo-5-((E)-
but-2-enyl)-dihydrofuran-2(3H)-one
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8-H exhibited 1H-1H COSY correlation it with 9-H (δ 1.94 ppm) and 10-H (δ 1.25 ppm), and HMBC

correlation with C-11 carbon (δ 24.51 ppm) (Figure 4.31). This established the presence of 5-((Z)-

hept-3-en-2-yl)-tetrahydropyran-2-one moiety of the compound. The carbon at C-12 showed HSQC

correlation with 11-H (δ 4.01 ppm) and HMBC correlation with C-13 (δ 179.31 ppm), which was

established to be connected with the methyl acetate group at C-14 (δ 179.37ppm).

4.3.3. Structural Characterization of 1-((4Z)-2,3,7,8-tetrahydrobenzo [b]oxepin-2-

yl)tetradecan-2-oxo-5-((E)-but-2-enyl)-dihydrofuran-2(3H)-one

1-((4Z)-2,3,7,8-tetrahydrobenzo[b]oxepin-2-yl)tetradecan-2-oxo-5-((E)-but-2-enyl)-

dihydrofuran-2(3H)-one: White semisolid; UV (MeOH) λmax (log ε ): 246 nm (3.71); TLC (Si gel

GF
254

 15 mm; CHCl
3
/MeOH 40:60, v/ v) R

f
: 0.45; GC (Elite – 5 capillary column 30 m x 0.53 mm

i.d.; oven temperature ramp: 60oC for 10 min, rising at 5oC /min to 220oC; 1 mL injection volume/

CHCl3) Rt: 9.20 min.; Elemental analysis found: C: 77.21, H 9.07, O: 13.7; IR (KBr, cm-1) νmax

723.33 cm-1 γr(=C-H), 812.06 cm-1 (2 neighbouring aromatic C-H), 1377.26 cm-1 γr(C-H), 1464.02

cm-1 ν(C=C), 1564.91 cm-1 δ(C-H alkenes ), 1683.21 cm-1 ν(α, β unsaturated), 1742.96 cm-1 ν(C=O

5-membered ring),   2873.74 cm-1, ν(C-H), ν(C-H alkanes), 2957.04 cm-1, ν(C-H  alkanes). 1H

NMR (CDCl
3
, 500 MHz, δ ppm) and 13C NMR (CDCl

3
,125MHz, δ ppm) data, see Table 4.6; EIMS

m/e (rel. int. %): 468 [M+1]+ (16), 266(13), 230(8), 218(16), 206(29), 212(85), 170(100), 146(74),

100(68); HRMS (ESI) m/e: calcd. for C30H42O4 466.6422; found 466.6483 [M+H]+.

The strong ν(C-H) vibrations observed at 2873.74 and 2957.04cm-1 are due to long

alkane chain. The band at1464.02 cm-1 arise due to ν(C=C) . A ν(C=O 5-membered ring)  was

observed at 1742.96 cm-1.  Band observed around 812.06 cm-1 is assigned due to 2 neighboring

aromatic C-H vibrations (Figure 4.35).

The molecular ion peak was observed at m/e=467. The peak at m/e=146 is due to the

fragment C
11

H
15

. Peak at m/e 212 and m/e 72 are due to the fragments C
14

H
26

O (m/e=212) and the

alkane fragment C5H12 (m/e=72). The mass fragments at m/e=218, 206, and 100 are the

characteristic signature peaks of the proposed structure (Figure 4.33). The methine protons

appeared at 3.6 ppm, connected to the tertiary carbon (δ 51.38 ppm), and is a part of the substituted

dihydrofuran-2(3H)-one ring system (Figure 4.36). The downfield shift of the proton is due to the

electronegative -O-C=O group as established by their HMBC connectivities (Figure 4.40).

The presence of a beta -C=C to the carbon at δ 3.6 ppm is established by the linear 1H-

1H COSY connectivity (Figure 4.39). The results have been recorded in the following table. The

protons at δ 7.71 and 7.53 are typical of the aryl ring system. The proton connectivity with carbon

as established by the HSQC spectrum (13C at δ 128.7 and 130.7 ppm) established the aromatic
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Table 4.6. NMR spectroscopic data of 1-((4Z)-2,3,7,8-tetrahydrobenzo[b]oxepin-2-yl)tetradecan-2-oxo-5-((E)-
but-2-enyl)-dihydrofuran-2(3H)-one in CDCl3.

a

Carbon no. 13C NMR H δδδδδ1H 1H-1H COSY HMBC(1H-13C)
(DEPT) NMR(int.,

mult., J in Hz)b

1 147.75
2 139.23
3 132.25
4 130.91
5 130.73 5-H 7.53(dd) 6-H C-7,1,8
6 128.70 6-H 7.71(dd) 5-H C-13
7 213.08
8 51.38 8-H 3.6(t) 9-Ha C-9,
9 36.80 9-Ha9-Hb 1.28(dt)1.62(dt) C-1,2,3
10 114.04 10-H 4.98(q) 9-H
11 129.83 11-H 5.14(m) 12-H
12 22.65 12-H 2.27(d) 11-H C-11
13 114.16 13-H 5.53(dd) 14-H C-14
14 125.06 14-H 5.81(m) 15-Hb

15 30.67 15-Ha15-Hb 1.72(m)2.02(m) 14-H C-17,14
16 65.53 16-H 4.33(m) 15-Ha,17-H C-17,18
17 34.02 17-H 2.33(d) 16-H C-18,19
18 176.16
19 33.16 19-H 2.07(t) 20-H C-18,17
20 31.89 20-H 1.36(m) 21-H C-22
21 31.4 21-H 1.26(m) 22-H C-23
22 30.17 22-H 2.75(p)
23 29.66 23-H 2.14(m) 22-H
24 28.92 24-H 2.03(m) 25-H C-25,26
25 26.44 25-H 1.9(m) 26-H C-26,28
26 24.73 26-H 1.69 27-H C-28
27 22.66 27-H 1.30(m)
28 20.85 28-H 1.45(m) 29-H C-29
29 19.9 29-H 0.97(m) 30-H
30 14.09 30-H 0.88(m) 29-H C-27,29
a NMR spectra recorded using spectrometers. Bruker AVANCE III 500 MHz (AV 500)
bValues in ppm, multiplicity and coupling constants (J¼ Hz) are indicated in parentheses. Assignments were made with the
aid of the 1H-1H COSY, HMQC, HMBC and NOESY experiments.
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Figure 4.34. 2D NMR correlations as observed in 1-((4Z)-2,3,7,8-tetrahydrobenzo[b]oxepin-2-yl)tetradecan-2-
oxo-5-((E)-but-2-enyl)-dihydrofuran-2(3H)-one. The key 1H-1H COSY couplings have been
represented by the bold face bonds; The HMBC couplings are indicated as double barbed arrow

Figure 4.35. IR spectroscopic data of 1-(4Z)-2,3,7,8-tetrahydrobenzo[b]oxepin-2-yl)tetradecan-2-oxo-5-((E)-but-
2-enyl)-dihydrofuran-2(3H)-one
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Figure 4.36. Proton NMR spectra of 1-(4Z)-2,3,7,8-tetrahydrobenzo[b]oxepin-2-yl)tetradecan-2-oxo-5-((E)-but-2-
enyl)-dihydrofuran-2(3H)-one (A - full view, B - expanded view)

A

B
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Figure 4.37. 13C NMR spectra of 1-(4Z)-2,3,7,8-tetrahydrobenzo[b]oxepin-2-yl)tetradecan-2-oxo-5-((E)-but-2-enyl)-
dihydrofuran-2(3H)-one (A - full view, B - expanded view)
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Figure 4.38. DEPT spectrum of 1-(4Z)-2,3,7,8-tetrahydrobenzo[b]oxepin-2-yl)tetradecan-2-oxo-5-((E)-but-2-enyl)-
dihydrofuran-2(3H)-one

Figure 4.39. 1H-1H COSY spectrum of 1-(4Z)-2,3,7,8-tetrahydrobenzo[b]oxepin-2-yl)tetradecan-2-oxo-5-((E)-but-
2-enyl)-dihydrofuran-2(3H)-one
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Figure 4.40. HMBC spectrum of 1-(4Z)-2,3,7,8-tetrahydrobenzo[b]oxepin-2-yl)tetradecan-2-oxo-5-((E)-but-2-enyl)-
dihydrofuran-2(3H)-one

system in the compound. The structure of the 3-methylisobenzofuran-1(3H)-one system has been

established by the HMBC correlation analyses. The structure of (Z)-2,3-dihydrobenzo[b]oxepine

has been established by the 1H-1H COSY and HMBC analyses and calculation of the coupling

constants (J) of the protons at δ 5.53 and 5.81 ppm, which confirm the Z-configuration of the

olefinic system. The characteristic olefinic signals were present at δ 114.04 and 129.83 ppm and

the olefinic protons at δ 5.14 and 4.98 ppm are linearly 1H-1H COSY correlated with the methylene

protons at δ 1.68 ppm and the methine proton at δ 3.6 ppm. The coupling constant values have

been calculated to be in conformity with the E-configuration. This established the structure of 5-

((E)-but-2-enyl)-dihydrofuran-2(3H)-one system. The proton at 13-H (δ 5.53 ppm) showed 1H-1H

COSY correlation to 14-H (δ 5.81 ppm), which showed linear 1H-1H COSY correlation to 15-H (δ

2.02 ppm) and 16-H (δ 4.33 ppm). The methine proton at δ 4.33 ppm appeared downfield, and has

been established due to the presence of a beta—C=O(CH2)- group. Strong 1H-1H COSY correlation

between the proton signals (methylene) at δ 2.07, 1.36, 1.26, 2.75, 2.14, 2.03, 1.90, 1.69, 1.30,

1.45, and 0.97, which in combination of mass spectroscopic analyses established the tetradecanone

moiety. The 13C NMR spectrum of the purified compound in combination with DEPT experiments

indicated the occurrence of 30 carbon atoms in the molecule (Figure 4.37 & 4.38). In the 1H–1H

COSY and HMBC spectra, couplings were apparent as described in the figure support the presence
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Figure 4.41. Acanthophora spicifera collected from Puthumadom of Gulf of Mannar
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of the established skeleton of 1-((4Z)-2,3,7,8-tetrahydrobenzo[b]oxepin-2-yl)tetradecan-2-oxo-5-

((E)-but-2-enyl)-dihydrofuran-2(3H)-one.

Anjaneyulu et al. (1984) isolated l,7-dlhydroxy-3-methoxy-2-methyl-dibenzo(2,3-6,7)

oxepin from the heartwood of Bauhiniaracemosa. Greca et al. (1993) isolated a novel

dihydrodibenzoxepin from Juncus effuses. A dihydrodibenzoxepin from Bauhinia variegate was

isolated from the root bark of Bauhinia variegata (Reddy et al. 2003), 10,11-dihydro-

dibenz[b,f]oxepin-2,4-diol, and 10,11-dihydro-4-methoxy-dibenz[b,f]oxepin-2-ol were isolated from

the chloroform soluble fraction of Dioscorea opposite (Yang et al. 2009).

4.4. Isolation and Characterization of Antioxidant Secondary Metabolites from

Acanthophora spicifera (M.Vahl) Børgesen

4.4.1. Bioassay Guided Chromatographic Purification of the Methanol Extract of A.

spicifera

The MeOH extract of A. spicifera (2g) collected from the Gulf of Mannar (Figure 4.41)

was chromatographed over silica column (60-120 mesh) with a stepwise gradient of solvents from

n-hexane, n-hexane: EtOAc and finally EtOAc: MeOH and the collected fractions were concentrated

under vacuum and TLC evaluated and fractions with same TLC profile were pooled together to

furnish six fractions (As
1-6

).The sub fraction AS
1
 which showed good antioxidant activity (65.62%

DPPH and 27.11% ABTS scavenging ability) and Fe2+ ion chelating ability (19.82%) was further

purified using preparative thin layer chromatography (20% EtOAc: n-hexane) to furnish three sub

fractions (AS1,1-3). The sub fraction AS1,2 exhibited a higher radical scavenging potential and ion

chelating ability than other corresponding sub fractions, was further purified using preparative thin

layer chromatography (20% EtOAc: n-Hexane) to furnish four sub fractions (AS1,2,1-4). AS1,2,3 ((6Z)-

methyl 8-(2-(E)-4-ethyl-3-isopropyl-5-methylhept-1-enyl)-tetrahydro-6-oxo-2H-pyran-3-yl)-3,3-

imethylnon-6-enoate) was obtained as a brown oily compound with a  significantly higher (P<0.05)

DPPH (72.62%) and ABTS (30.77%) radical scavenging potential and Fe2+ ion chelating ability

(21.94%) than the other corresponding sub fractions.

The active crude sub fraction AS8 (78.46% DPPH and 32.96% ABTS scavenging ability

and 22.29% Fe2+ ion chelating ability) was purified using column chromatography using silica

column (60-120 mesh) with a stepwise gradient of solvents from CHCl3, CHCl3: MeOH and finally

with MeOH (Figure 4.42). Collected fractions were concentrated under vacuum and TLC evaluated

and fractions with same TLC profile were pooled together to furnish six fractions (AS8,1-6). The

crude sub fraction AS
8,6

 with high potential (75.53%, 30.95%, 22.41% for DPPH and ABTS radical

scavenging ability and Fe2+ ion chelating ability respectively) was further purified using preparative

thin layer chromatography (5% MeOH: MDC) to furnish AS
8,6,6

 (1-((4Z)-2,3,7,8-
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tetrahydrobenzo[b]oxepin-2-yl)tetradecan-2-oxo-5-((E)-but-2-enyl)-dihydrofuran-2(3H)-one.) a

brown oily compound with a radical scavenging potential of >78% DPPH and > 29% ABTS free

radical scavenging potential and > 20% ion chelating potential.

The compounds belonging to 1-3-[3, 5-dimethyl-2-hexenyl] phenyl-1-ethanone have

been separated with the hexane/CHCl
3 

gradient, and the one with propyl acetate group at the

fourth position of 1-(3-((E)-3, 5-dimethylhex-2-enyl) phenyl) ethanone moiety was demonstrated

to possess potent antioxidative activity. The presence of 3, 5-dimethylhex-2-ene, propyl acetate,

and 1-(3-(3, 5-dimethylhex-2-enyl) phenyl) ethanone groups have been confirmed by detailed

NMR and mass spectroscopic experiments.

The structural characterization were carried out be detailed spectroscopic techniques

and are discussed in following sections (4.4.2 and 4.4.3)

4.4.2. Structural Characterization of  3-Hexyl-5, 6-dihydro-6-undecylpyran-2-one

3-Hexyl-5,6-dihydro-6-undecylpyran-2-one: White semisolid; UV (MeOH) λ
max

 (log ε):

226 nm (3.61); TLC (Si gel GF254 15 mm; EtOAc/n-hexane20:80, v/v); Rf: 0.75; GC (Elite – 5

capillary column 30 m x 0.53 mm i.d.; oven temperature ramp: 60oC for 10 min, rising at 5oC /min

to 220oC; 1 mL injection volume/CHCl3) O, 6.20 Rt: 24.22 min.; Elemental analysis

found:C,78.51;H,11.97;O,9.52. IR (KBr, cm-1) νmax 723.33 cm-1 γr(long chain methyl), 812.06 cm-1

δ(=C-H out of plane ), 1377.22 cm-1 γr(C-H), 1464.02 cm-1 δ(C-H alkanes), 1564.32 cm-1 ν(C–C

stretch), 1653.05, 1683.91, 1742.74 cm-1 ν(C=O), 2361.91,  2728.40, 2873.07, 2957.94 cm-1 ν(C-

H alkanes). 1H NMR (CDCl3, 500 MHz, δ ppm) and 13C NMR (CDCl3,125MHz, δ ppm) data, see

Table 4.8; EIMS m/e (rel. int. %): 337 [M+1]+(13), 98(100), 28(72), 252(53), 337(48), 45(45), 142

(21), 254 (12), 251(08), 253(6), 22(8). HRMS (ESI) m/e: calcd. for C22H40O2 336.5543; found

336.5586 [M+H]+.

The molecular ion peak appeared at m/e= 336, which underwent fragmentation to result

the fragment peaks at m/e=86 (C6H13), 155 (C11H23), 98 (C5H6O2) established the structure. The fragment

peak at m/e= 98 is a base peak with a cyclic structure (5, 6-dihydropyran-2-one) (Figure 4.44).

The IR band at 723.33 cm-1 is due to long chain ν(methyl group). The ν(C-H long alkane

chain) was observed at 2361.91, 2728.40, 2873.07 and 2957.94 cm-1. The strong band at 1464.02cm-

1 is also due to δ(C-H alkanes). The bands at 1653.05 1683.91and 1742.74 cm-1 are assigned due

to ν(C=O vibrations) (Figure 4.46).

The C13 NMR spectra displayed a signal at δ 179.20 ppm indicating that the compound

has a carbonyl functional group (Figure 4.48 & 4.49). The 13C signals at δ 130.88 and 128.80
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Table 4.7. Antioxidant and Fe2+ chelating potential (%) of the different fractions obtained by the purification

of the MeOH extract of A. spicifera

Sl NO Sample ID Solvent Yield (g) ABTS DPPH Fe2+ ion
System Radical Radical Chelating

Scavenging Scavenging Ability (%)
Activity (%) Activity (%)

1 AS1 3 148 27.11±0.36 65.62±0.88 19.82±0.26

2 AS2 10 153 21.66±0.29 54.38±0.73 16.18±0.21

3 AS3 16 275 12.82±0.17 30.25±0.41 8.978±0.12

4 AS4 22 212 24.46±0.33 60.42±0.81 18.20±0.24

5 AS5 50 260 8.999±0.12 22.40±0.30 6.458±0.08

6 AS6 1 180 18.06±0.24 43.35±0.58 12.04±0.16

7 AS7 3 252 25.70±0.35 62.47±0.85 22.29±0.28

8 AS8 10 324 32.96±0.44 78.46±1.06 22.29±0.30

AS1

1 AS1,1 5 35 11.39±0.15 29.17±0.39 8.683±0.11

2 AS1,2 12 81 25.61±0.34 62.50±0.84 17.60±0.23

3 AS1,3 19 26 15.38±0.20 43.38±0.58 12.05±0.16

AS1,2

1 AS1,2,1 2 22 25.70±0.34 65.53±0.88 18.61±0.25

2 AS1,2,2 5 15 20.08±0.27 48.60±0.65 14.13±0.19

3 AS1,2,3 14 18 30.77±0.41 72.62±0.98 21.94±0.29

4 AS1,2,4 18 20 15.04±0.20 37.76±0.51 10.88±0.14

AS8

1 AS8,1 0.1 23 12.41±0.16 37.37±0.50 10.86±0.14

2 AS8,2 0.5 29 21.66±0.34 53.41±0.99 17.15±0.28

3 AS8,3 1 21 23.08±0.31 54.48±0.73 16.45±0.22

4 AS8,4 3 32 14.61±0.46 48.61±1.20 16.37±0.35

5 AS8,5 10 121 20.65±0.28 48.73±0.66 14.68±0.19

6 AS8,6 20 85 30.95±0.41 75.53±1.02 22.41±0.30

AS8,6

1 AS8,6,1 0.2 18 24.11±0.44 53.81±1.09 21.44±0.30

2 AS8,6,2 0.5 29 19.69±0.40 43.72±1.13 15.07±0.27

3 AS8,6,3 0.6 24 31.91±0.43 78.82±1.06 24.17±0.32

4 AS8,6,4 1.8 42 20.50±0.27 52.28±0.70 13.44±0.18

Data are the mean values of the triplicate and expressed as mean ± standard deviation. The concentration of the solvent fractions
used were 0.1 mg/mL for DPPH radical scavenging activity, and Fe2+ ion chelating activity; and 0.1 µg/mL for ABTS radical scavenging
activity.
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indicate the olefinic carbons, whilst the signal at δ 130.88 ppm doesn’t have any HSQC signal

thereby indicating the presence of a quaternary carbon atom. The 13C-NMR signal at δ 128.80

ppm gives a downfield proton signal at δ 7.42 ppm as established by HSQC experiment. These

results also indicate that the position of the proton at δ 7.42 ppm is at the trans position with

respect to the carbonyl compound. The 13C signal at C-5 (δ 68.17 ppm) is attached to the oxygen

of the 5,6-dihydropyran-2-one ring system. The C-5 signal at δ 68.17 ppm shows HSQC signal at

H-5 (δ 4.3 ppm). the downfield shift of C-5 appeared to be due to the alpha—OC(=O) group in the

5,6-dihydropyran-2-one system. The C-4 (δ 29.66 ppm) exhibited the HSQC correlation with the

proton signal at δ 1.6 ppm (H-4), whilst the proton at δ 4.3 ppm (H-5) displayed 1H-1H COSY

correlation with the signal at δ 2.28 ppm (H-6). The proton at δ 4.43 ppm (5-H) showed strong 1H-

1H COSY correlation to 6-H (2.3 ppm), which showed linear 1H-1H-COSY correlation to 7-H (δ 1.31

ppm) and 8-H (δ 1.3 ppm) (Figure 4.50). Strong 1H-1H-COSY correlation between the proton signals

(methylene) at δ 1.35, 1.20, 1.32, 0.81, and 0.85 (Figure 4.47 & 4.50), which in combination of

mass spectroscopic analyses established the dodecane moiety attached with the 5,6-dihydropyran-

2-one group. The 13C NMR spectrum in combination with HSQC, HMBC and DEPT experiments

indicated the occurrence of 22 carbon atoms in the molecule. In the 1H–1H COSY and HMBC

spectra (Figure 4.51), couplings were apparent as described in the figure support the presence of

the established skeleton of 3-hexyl-5,6-dihydro-6-undecylpyran-2-one.

There are several reports that compounds with pyran related structures are isolated

from various sources such as (-)-5,6-dihydro-6-undecyl-2H-pyran-2-one, and (-)-5,6-dihydro-6-

tridecyl-2H-pyran-2-one were isolated from the methanol extract of the stem bark of Horsfieldia

superb (Al-Mekhlafi et al. 2013), prenylated pyran-2-one have been isolated from the roots of

Thapsia transtagana (Rubal et al. 2007), 2-methyl-pyran-4-one-3-O-b-D-glucopyranoside isolated

from leaves of Punica granatum (Balwani et al 2011) etc.
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Figure 4.43. 3-Hexyl-5,6-dihydro-6-undecylpyran-2-one

Figure 4.44. MS splitting of 3-hexyl-5,6-dihydro-6-undecylpyran-2-one
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Table 4.8. NMR spectroscopic data of 3-hexyl-5, 6-dihydro-6-undecylpyran-2-one in CDCl3.
a

Carbon no. 13C NMR H δδδδδ1H 1H-1H COSY HMBC(1H-13C)
(DEPT) NMR(int.,

mult., J in Hz)b

1 179.20

2 130.88

2a 38.73 2a-H,2a’-H 1.3,1.6 2b-H C-1,3,4

2b 29.65 2b-H 1.2 2a’-H

2c 29.59 2c-H 1.2

2d 30.36 2d-H 1.6 2d-H C-1,2

2e 29.24 2e-H 1.2 2c-H

2f 24.70 2f-H 1.2

3 128.80 3-H 7.4

4 29.66 4-H,4’-H 1.6

5 68.17 5-H 4.3

6 33.94 6-H,6’-H 2.28,2.25 5-H C-1,5

7 29.68 7-H 1.31 C-5,4

8 29.66 8-H 1.58 7-H

9 31.92 9-H 1.56 8-H C-10,5

10 29.59 10-H 1.2 11-H

11 29.43 11-H 1.2

12 29.35 12-H 1.32

13 23.24 13-H 1.2 14-H C-12

14 22.98 14-H 0.81 13-H C-13

15 22.68 15-H 0.8 15-H

16 14.11 16-H 0.85 C-15,14
a NMR spectra recorded using spectrometers. Bruker AVANCE III 500 MHz (AV 500)
bValues in ppm, multiplicity and coupling constants (J¼ Hz) are indicated in parentheses. Assignments were made with the
aid of the 1H-1H COSY, HMQC, HMBC and NOESY experiments.
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Figure 4.46. IR spectrum of 3-hexyl-5,6-dihydro-6-undecylpyran-2-one

Figure 4.45. 2D NMR correlations as observed in 3-hexyl-5, 6-dihydro-6-undecylpyran-2-one. The key 1H-1H COSY
couplings have been represented by the bold face bonds; The HMBC couplings are indicated as
double barbed arrow



199    |

Figure 4.47. Proton NMR spectra of 3-hexyl-5,6-dihydro-6-undecylpyran-2-one (A - full view, B - expanded view)

Chapter 4 - Isolation and Characterization of Antioxidant Secondary Metabolites from Seaweeds
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Figure 4.48. 13C NMR spectrum of 3-hexyl-5,6-dihydro-6-undecylpyran-2-one

Figure 4.49. DEPT spectrum of 3-hexyl-5,6-dihydro-6-undecylpyran-2-one
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Figure 4.50. 1H-1H-COSY spectra of 3-hexyl-5,6-dihydro-6-undecylpyran-2-one (A - full view, B - expanded view)
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Figure 4.51. HMBC spectra of 3-hexyl-5,6-dihydro-6-undecylpyran-2-one (A - full view, B - expanded view)
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4.4.3. Structural Characterization of 3-hexyl-5,6-dihydro-6-undecylpyran-2-one and butyl

4-acetyl-2-((E)-3,5-dimethylhex-2-enyl)benzoate

Butyl 4-acetyl-2-((E)-3,5-dimethylhex-2-enyl)benzoate: Light yellow semisolid; UV

(MeOH) λmax (log ε ): 267 nm (4.61); TLC (Si gel GF254 15 mm; CHCl3/MeOH 40:90, v/ v) Rf: 0.45;

GC (Elite – 5 capillary column 30 m x 0.53 mm i.d.; oven temperature ramp: 60oC for 10 min, rising

at 5oC /min to 220oC; 1 mL injection volume/CHCl3) Rt: 9.45 min.; Elemental analysis

found:C,76.16;H,8.63;O,15.22; IR (KBr, cm-1) νmax  721.40 cm-1 γr(C-H alkanes), 1377.22 cm-1

γr(C-H), 1457.27 cm-1 δ(C-H alkanes), 1558.54 cm-1 1717.67, 1739.85 cm-1 ν(C=O stretchig),

2727.44, 2852.81, 2925.15, 2954.08 cm-1 ν(C-H alkanes). 1H NMR (CDCl3, 500 MHz, δ ppm) and

13C NMR (CDCl3,125MHz, δ ppm) data, see Table 4.9; EIMS m/e (rel. int. %): 316 (8) [M+1]+,

274.36(21), 230.35(17), 120.15(100), 188.35(75), 112.21(46), 103.13(6), 91.13(62), 72.61(62);

HRMS (ESI) m/e: calcd. for C20H27O3 315.4424; found 315.4468 [M+H]+.

The molecular ion peak appeared at m/e= 316, which underwent fragmentation to result

the fragment peaks at m/e=230 (C
16

H
22

O) with the elimination of propyl hydrogen carbonate (C
4
H

8
O

3
,

m/e=104). The peak at m/e=230 further fragmented to yield m/e=118.13 (C5H10O3) assigned to be

as (E)-3, 5-dimethylhex-2-ene and the base peak (C8H8O, m/e 120), assigned to be acetophenone

(Figure 4.53).

The IR band at 721.40 cm-1 is due to long chain ν(methyl group). The ν(C-H long alkane

chain) was observed at 2727.44, 2852.81, 2925.15 and 2954.08 cm-1. The strong band at 1457.27cm-

1 is also due to δ(C-H of alkanes). The bands at 1558.54, 1717.67 and 1739.85 cm-1 are assigned

due to ν(C=O vibrations) (Figure 4.55).

The 13C NMR spectrum of the purified compound in combination with DEPT experiments

indicated the occurrence of 21 carbon atoms in the molecule (Figure 4.57 & 4.58). The C13 NMR

spectra displayed a signal at δ 179.20 ppm indicating that the compound has a carbonyl functional

group. The 13C signals at δ 130.88 and 128.80 indicate the olefinic carbons, whilst the signal at δ

130.87 ppm doesn’t have any HSQC signal thereby indicating the presence of a quaternary carbon

atom. The 13C -NMR signal at δ 140.69 ppm gives no HSQC signal to conclude the carbon as

quaternary. The presence of acetyl group attached to the aryl ring system is established by the

typical proton shift of the CH3 group at δ 2.3 ppm and the corresponding HSQC correlation of the

carbon (at 40.6 ppm) and proton (at δ 2,3 ppm). The carbonyl proton of the acetyl group appeared

at δ 179.8 ppm, and no HSQC signal confirmed this assignment. The 13C signal at δ 179.8 ppm

also established the presence of another carbonyl group and its attachment with the aryl ring

system has been assigned by the strong HMBC correlation with the aryl proton at δ 7.76 ppm

(Figure 4.60).
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Figure 4.52. Butyl 4-acetyl-2-((E)-3,5-dimethylhex-2-enyl)benzoate

Figure  4.53. GC-MS Splitting patteren of butyl 4-acetyl-2-((E)-3,5-dimethylhex-2-enyl)benzoate
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Table 4.9. NMR spectroscopic data of butyl 4-acetyl-2-((E)-3,5-dimethylhex-2-enyl)benzoate in CDCl3.
a

Carbon no. 13C NMR H δδδδδ1H 1H-1H COSY HMBC(1H-13C)

(DEPT) NMR(int.,

mult., J in Hz)b

1 130.87

1a 179.8

1b 65.57 1b-H 4.18,2.4(dt) 1c-H C-1c,1d

1c 42.3 1c-H 1.7(m) 1b-H C-1d

1d 23.7 1d-H 0.91(m) 1c-H

2 140.69

3 126.73 3-H 7.46(dd) C-4a

4 130.0

4a 179.81

4b 40.58 4b-H 2.3(s) C-4a

5 128.8 5-H 7.74(m) 6-H C-4a,4b

6 129.7 6-H 7.76(m) C-1a,1b

1’ 68.16 1’-H 4.3(d) 2’-H C-2,2’,3’’

2’ 130.20 2’-H 5.3(t)

3’ 121.73

3’’ 35.8 3’’-H 2.1(s) C-5’’

4’ 57.49 4’-H 2.6 1.3(dd) 5’-H C-6’,5’’,2’

5’ 37.46 5’-H 1.2(m) 4’-H

5’’ 32.04 5’’-H 1.5(d) 5’-H

6’ 33.78 6’-H 1.31(d) 5’-H
a NMR spectra recorded using spectrometers. Bruker AVANCE III 500 MHz (AV 500)
bValues in ppm, multiplicity and coupling constants (J¼ Hz) are indicated in parentheses. Assignments were made with the aid of the
1H-1H COSY, HMQC, HMBC and NOESY experiments.
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Figure 4.54. 2D NMR correlations as observed in butyl 4-acetyl-2-((E)-3,5-dimethylhex-2-enyl)benzoate. The key
1H-1H COSY couplings have been represented by the bold face bonds; The HMBC couplings are
indicated as double barbed arrow

Figure 4.55. IR spectral details of butyl 4-acetyl-2-((E)-3,5-dimethylhex-2-enyl)benzoate
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Figure 4.56. Proton NMR spectrum of butyl 4-acetyl-2-((E)-3,5-dimethylhex-2-enyl)benzoate
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Figure 4.57. 13C NMR spectra of butyl 4-acetyl-2-((E)-3,5-dimethylhex-2-enyl)benzoate (A - full view, B - expanded
view)
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Figure 4.58. DEPT spectra of butyl 4-acetyl-2-((E)-3,5-dimethylhex-2-enyl)benzoate (A - full view, B, C & D -
expanded view)
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Figure 4.58. DEPT spectra of butyl 4-acetyl-2-((E)-3,5-dimethylhex-2-enyl)benzoate (A - full view, B, C & D -
expanded view)
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Figure 4.59. 1H-1H-COSY spectra of butyl 4-acetyl-2-((E)-3,5-dimethylhex-2-enyl)benzoate (A - full view, B -
expanded view)
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Figure 4.60. HMBC spectra of butyl 4-acetyl-2-((E)-3,5-dimethylhex-2-enyl)benzoate (A - full view, B - expanded
view)
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The downfield shift of the methylene proton at δ 4.18 ppm (Figure 4.56) led us to conclude

the presence of a adjacent electronegative group (oxygen) as a part of a strong electron withdrawing

–C=O group. The 13C-NMR spectrum also confirmed the presence of the –C=O group at δ 179.8

ppm. Strong 1H-1H-COSY correlation between the proton signals (methylene) at δ 4.18, 1.70, and

0.91 ppm, which in combination of mass spectroscopic analyses established the butyl acetate

moiety attached with the acetophenone ring system. The methylene signal at δ 4.3 ppm (d) showed

1H-1H-COSY correlation with the olefinic proton at δ 5.3 ppm. The HMBC correlation of the proton

at δ 4.3 ppm exhibited strong correlation with the 13C signal at δ 126.7 ppm (aromatic) and the

querternary carbon at δ 130.87 ppm, to indicate that this proton at δ 4.3 ppm is attached with the

aryl ring system. The olefinic carbon at δ 121.7 ppm did not show any HSQC correlation thereby

indicating that this carbon is of quaternary type. The dimethylheptene structure has been confirmed

by the 13C NMR spectrum in combination with HSQC, HMBC and DEPT experiments. The (E)-

configuration of the olefinic bond has been confirmed by the coupling constant calculation.

Several benzoate derivatives are reported to be isolated from the seeds of Cucurbita

pepo (Tanaka et al. 2013), roots of Zeyhera digitalis (Ferreira aet al. 1995) etc. There are another

report which showed that the the chromatographic separation of the hexane soluble fraction of the

methanol extract of the aerial parts of Solidago virga-aurea var. gigantea Mie. (Compositae) led to

the isolation of a new benzylbenzoate together with four known benzylbenzoates and their structures

were determined as 2-methoxybenzyl-2-hydroxybenzoate, benzyl-2-hydroxy-6-methoxy- benzoate,

2-methoxybenzyl-2,6-dimethoxybenzoate, 2-methoxybenzyl-2-methoxy-6- hydroxybenzoate, and

benzyl-2,6-dimethoxybenzoate (Choi et al. 2005).

4.5. Isolation and Characterization of Antioxidant Secondary Metabolites from

Laurencia papillosa (C. Agardh) Greville

4.5.1. Bioassay Guided Chromatographic Purification of the Methanol Extract of L.

papillosa

The MeOH extract (2.9g) of L. papillosa collected from Gulf of Mannar (Figure 4.61)

was chromatographed over silica column (60-120 mesh) with a stepwise gradient of solvents from

n- hexane, n- hexane: EtOAc and finally EtOAc:MeOH. Collected fractions were concentrated

under vacuum and TLC evaluated and fractions with same TLC profile were pooled together to get

six fractions (LP
1-6

). The sub fraction LP
3
 which exhibited good DPPH (56.52%), ABTS (23.26%)

radical scavenging potential and Fe2+ ion chelating ability (16.77%) was purified further over silica

column (60-120 mesh) with a stepwise gradient of solvents from n- hexane, n- hexane: EtOAc and

finally EtOAc:MeOH, to get six more sub fractions (LP
3,1-4

) (Figure 4.62). The active sub fraction
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Figure 4.61. Laurencia papillosa collected from Mandapam of Gulf of Mannar
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LP3,4 thus obtained was repurified to furnish another six sub fractions of which LP3,4,2 (12-tridecenyl

2-methylacrylate) was found to be pure and active (64.94% DPPH, 26.29% ABTS radical scavenging

ability and 18.45% ion chelating potential).

Another sub fraction LP3,4,4 thus obtained also exhibited high radical scavenging potential

and thus chromatographically purified further to obtain five sub fractions of which 3-(1-butyl-7,12-

dihydro-2-methoxy-7-oxo-10-((1E,5E)-3-oxohepta-1,5-dienyl)-6-pentyltetraphen-9-yl)-3-

oxopropanal (57.02% and 20.22% for DPPH and ABTS radical scavenging ability respectively and

15.84% ion chelating potential) was found to be pure and endowed with antioxidant potential.

The structural characterization were carried out be detailed spectroscopic techniques

and are discussed in following sections (4.5.2 and 4.5.3)

4.5.2. Structural characterization of 2-Tridecenyl 2-methylacrylate

2-Tridecenyl 2-methylacrylate: Amorphous yellow semisolid; UV (MeOH) λ
max

 (log ε ):

247 nm (3.91); TLC (Si gel GF
254

 15 mm; CHCl
3
/MeOH 10:90, v/ v) R

f
: 0.55; GC (Elite – 5 capillary

column 30 m x 0.53 mm i.d.; oven temperature ramp: 60oC for 10 min, rising at 5oC /min to 220oC;

1 mL injection volume/CHCl
3
) O, 7.20 R

t
: 24.22 min.; Elemental analysis

found:C,72.42;H,7.13;N,3.67;O,16.78 (C31H44O7 requires C, 70.427; H, 8.388; O, 21.19); IR (KBr,

cm-1) νmax  720.44 cm-1 γr(C-H alkanes), 1152.51 cm-1 ν (C-O), 1306.82 1376.26 cm-1 γr(C-H),

1462.09 cm-1 δ(C-H alkanes), 1600.97, 1663.66 1740.81 cm-1 ν(C=O), 2727.44 cm-1 ν(C-H  alkanes),

2853.78 cm-1 ν (C-H alkanes), 2926.11 cm-1 ν(C-H  alkanes), 2954.08 cm-1 ν(C-H alkanes). 1H

NMR (CDCl3, 500 MHz, δ ppm) and 13C NMR (CDCl3,125MHz, δ ppm) data, see Table 4.11; EIMS

m/e (rel. int. %): 267 (15) [M+1]+ 184.22(13), 182.16(62), 156.52 (44), 111.42(53), 98.46 (100),

85.28(48), 70.14(65), 56.32(72), 42.18(89). HRMS (ESI) m/e: calcd. for C17H30O2 266.4318; found

266.4354

The molecular ion peak appeared at m/e 267, (C
17

H
30

O
2
), which has been fragmented

to m/e 85 (C4H5O2). The fragment peaks at m/e 184 (C11H20O2), m/e 182 (C13H26), m/e 112 (C8H16)

and m/e 111 (C7H16) established the structure. The other mass spectroscopic signals have been

demonstrated to be present at m/e 156, 237, 124, 94, 71, 57, and 28 support the structure (Figure

4.64).

The absorbance at 720.44 cm-1 is due to long chain ν(methyl group). The ν  (C-H long

alkane chain) was observed at 2727.44, 2853.78, 2926.11 and 2954.08cm-1. The strong band at

1462.09cm-1 is also due to δ(C-H alkanes). The bands at 1600.97, 1663.66 and 1740.81cm-1 are

assigned due to ν(C=O  vibrations). Bands at 720.44, 1306.82 and 1376.26cm-1 are assigned due

to γr(C-H alkanes). A ν(C-O band) around 1152.51cm-1 was also observed.
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Figure 4.62. Schematic diagram representing the purification of MeOH extract of L. Papillosa (LP). CC: column
chromatography, PTLC: preparative thin layer chromatography
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Table 4. 10. Antioxidant and Fe2+ ion chelating potential (%) of the different fractions obtained by the

chromatographic purification of the MeOH extract of L. Papillosa (LP)

Sl NO Sample ID  Yield (mg) Solvent ABTS DPPH Fe2+ ion
System Radical Radical Chelating

Scavenging Scavenging Ability (%)
Activity (%) Activity (%)

LP/MeOH
1 LP1 150mg 4% E 17.79±0.24 44.29±0.60 13.38±0.18
2 LP2 390mg 20 E% 17.83±0.24 42.79±0.58 12.73±0.17
3 LP3 855mg 50%E 23.26±0.31 56.52±0.76 16.77±0.22
4 LP4 325mg 100% E 19.03±0.25 45.30±0.61 13.64±0.18
5 LP5 475mg 10% M 19.02±0.25 44.90±0.60 12.93±0.17
6 LP6 625mg 100% M 15.07±0.20 38.58±0.52 10.71±0.14
LP3
1 LP3,1 50mg 20% E 9.324±0.12 22.75±0.30 6.594±0.08
2 LP3,2 90mg 60% E 7.676±0.10 21.64±0.29 6.150±0.08
3 LP3,3 112mg 100% E 17.36±0.23 42.89±0.58 11.91±0.16
4 LP3,4 396mg 10% M 23.11±0.31 58.93±0.79 17.53±0.23
5 LP3,5 75mg 50% M 10.68±0.14 25.85±0.35 7.283±0.09
6 LP3,6 125mg 100% M 12.89±0.17 32.37±0.43 8.992±0.12
LP3,4
1 LP3,4,1 39mg 22% E 23.29±0.32 47.32±0.77 12.76±0.22
2 LP3,4,2 65mg 35% E 29.69±0.40 72.16±0.97 21.80±0.29
3 LP3,4,3 62mg 60% E 20.32±0.27 50.61±0.68 14.71±0.19
4 LP3,4,4 142mg 100% E 24.55±0.33 58.93±0.79 16.98±0.23
5 LP3,4,5 29mg 10%M 19.69±0.40 52.16±0.97 20.80±0.29
6 LP3,4,6 52mg 30% M 21.22±0.28 50.51±0.68 15.03±0.20
LP3,4,4
1 LP3,4,4,1 20mg 10% E 18.04±0.24 42.59±0.57 12.63±0.17
2 LP3,4,4,2 40mg 26%E 8.378±0.11 21.44±0.29 6.460±0.08
3 LP3,4,4,3 12mg 40% E 8.543±0.11 20.84±0.28 6.007±0.08
4 LP3,4,4,4 36mg 80% E 20.22±0.27 57.02±0.77 15.84±0.21
5 LP3,4,4,5 25mg 10 % M 19.63±0.26 48.50±0.65 14.06±0.19

Data are the mean values of the triplicate and expressed as mean ± standard deviation. The concentration of the solvent fractions
used were 0.1 mg/mL for DPPH radical scavenging activity, and Fe2+ ion chelating activity; and 0.1 µg/mL for ABTS radical scavenging
activity.
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Figure 4.63. 2-Tridecenyl 2-methylacrylate

Figure 4.64. GC-MS Spliting pattern of 12-tridecenyl 2-methylacrylate.
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Table 4.11. NMR spectroscopic data of 12-tridecenyl 2-methylacrylate in CDCl3

Carbon no. 13C NMR H δδδδδ1H 1H-1H COSY HMBC(1H-13C)

(DEPT) NMR(int.,

mult., J in Hz)b

1 177.41 2-H

2 139.28

3 128.83 3-H 5.72(s) 6-H C-6,5

4 33.89 4-H 2.39

5 65.58 5-Ha/5-Hb 4.31/4.1 6b-H C-3,5,6

6 30.57 6-H 1.7 7-H

7 33.69 7-H 3.2 6-H C-6

8 28.52 8-H 2.3 7-H

9 33.81 9-H 1.5 8-H

10 28.94 10-H 0.91 11-H, 9-H

11 29.68 11-H 1.23 C-9,10

12 29.08 12-H 1.10 10-H

13 30.02 13-H 1.9 10-H

14 29.35 14-H 1.6

15 29.24 15-Ha/15-Hb 2.1/2.03

16 130.91 5.82 15-H

17 114.05 4.98 C-14,16
a NMR spectra recorded using spectrometers. Bruker AVANCE III 500 MHz (AV 500)
bValues in ppm, multiplicity and coupling constants (J¼ Hz) are indicated in parentheses. Assignments were made with the aid of the
1H-1H COSY, HSQC, HMBC and NOESY experiments.

Figure 4.65. 2D NMR correlations as observed in 12-tridecenyl 2-methylacrylate. (A) The key 1H-1H COSY
couplings have been represented by the bold face bonds; The HMBC couplings are indicated as
double barbed arrow

Chapter 4 - Isolation and Characterization of Antioxidant Secondary Metabolites from Seaweeds



Isolation and Characterization of Useful Secondary Metabolites with Antioxidant Activity from Seaweeds from Southeastern Coast of India

|    220

Figure 4.66. Proton NMR spectra of 12-tridecenyl 2-methylacrylate (A - full view, B - expanded view)

A
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Figure 4.67. 13C NMR spectrum of 12-tridecenyl 2-methylacrylate

Figure 4.68. DEPT spectrum of 12-tridecenyl 2-methylacrylate
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Figure 4.69. 1H-1H-COSY spectrum of 12-tridecenyl 2-methylacrylate

Figure 4.70 HMBC spectrum of 12-tridecenyl 2-methylacrylate
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The tridecenyl system has been established by the linear 1H-1H-COSY correlation of

the–CH2 protons, to infer that these methylene groups are adjacent to each other (Figure 4.69).

The methylene protons appeared at 2.1 ppm (Figure 4.66) are due to the deshielding effect of the

olefinic –CH=CH- group. The methylene protons at δ 1.7 and 4.30 have been found to be further

deshielded apparently due to the methyacrylate moiety adjacent to these –CH
2
 groups. The olefinic

group as in methyacrylate have been established by the proton chemical shift at δ 7.71 ppm;

whereas those at δ 5.82, and 7.52 support the presence of the –CH=CH2 group at the terminal

position of the compound (Figure 4.67 & 4.68). The olefinic proton at δ 7.71 ppm established that

the -C(=O)O-R moiety of the methacrylate is responsible for the downfield shift. The presence of

the olefinic protons has been supported by the 13C-chemical shift at δ 139.28 and 128.83 ppm,

which have been assigned to be as –C(Me)=CH2– and -C=C- moieties. The olefinic carbon at

139.28 ppm has been assigned as quaternary because no HSQC correlation is apparent. The

presence of carbonyl group has been confirmed by the presence of the quaternary carbon atom at

δ 177.41 ppm with no HSQC correlation.

lactucin-8-O-methylacrylate was reported to be isolated from the chloroform extract of

the dried fruits of Parmentiera edulis (Perez et al. 2000). Another compound 4,15-isoatriplicolide

methylacrylate was also isolated from the chloroform-soluble subfraction of a methanol extract of

the whole plant of Helianthus tuberosus (Pan et al. 2009).

4.5.3. Structural characterization of 3-(1-Butyl-7,12-dihydro-2-methoxy-7-oxo-10-((1E,5E)-

3-oxohepta-1,5-dienyl)-6-pentyltetraphen-9-yl)-3-oxopropanal

3-(1-Butyl-7,12-dihydro-2-methoxy-7-oxo-10-((1E,5E)-3-oxohepta-1,5-dienyl)-6-

pentyltetraphen-9-yl)-3-oxopropanal: Amorphous yellow semisolid; UV (MeOH) λmax (log e ): 247

nm (3.91); TLC (Si gel GF254 15 mm; CHCl3/MeOH 10:90, v/ v) Rf: 0.55; GC (Elite – 5 capillary

column 30 m x 0.53 mm i.d.; oven temperature ramp: 60oC for 10 min, rising at 5oC /min to 220oC;

1 mL injection volume/CHCl3) Rt: 7.20 min.; Elemental analysis found:C,72.42;H,7.13;N,3.67;O,16.78

(C
31

H
44

O
7
 requires C, 70.427; H, 8.388; O, 21.19); IR (KBr, cm-1) ν

max
 723.33 cm-1 γr(C-H alkanes),

1377.22 cm-1 γr(C-H), 1464.02 cm-1 δ(C-H alkanes), 1711.88 cm-1 ν(C=O), 2852.81, 2924.18,

2953.12 cm-1 (C-H ν  of alkanes). 1H NMR (CDCl3, 500 MHz, δ ppm) and 13C NMR (CDCl3,125MHz,

δ ppm) data, see Table 4.12; EIMS m/e (rel. int. %): 580 (12) [M+1]+ ,547(6), 385(18), 356(72),

244(100), 196(26), 144(56), 128 (8), 110(69), 98(52), 71(42); HRMS (ESI) m/e: calcd. for C28H42O5

578.7544; found 578.7572.

The presence of tetraphenone, nonadienone, 3-(tetrahydro-1-oxonaphthalen-7-yl)-3-

oxopropanal, and 3-(dihydrooxotetraphenyl)-3-oxopropanal groups have been confirmed by detailed

NMR and mass spectroscopic experiments. The compound 3-(1-butyl-7, 12-dihydro-2-methoxy-7-
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Figure 4.71. 3-(1-Butyl-7,12-dihydro-2-methoxy-7-oxo-10-((1E,5E)-3-oxohepta-1,5-dienyl)-6-pentyltetraphen-9-yl)-
3-oxopropanal

Figure 4.72. GC-MS Splitting patteren of 3-(1-butyl-7,12-dihydro-2-methoxy-7-oxo-10-((1E,5E)-3-oxohepta-1,5-
dienyl)-6-pentyltetraphen-9-yl)-3-oxopropanal
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Table 4.12 NMR spectroscopic data of 3-(1-butyl-7,12-dihydro-2-methoxy-7-oxo-10-((1E,5E)-3-oxohepta-1,5-
dienyl)-6-pentyltetraphen-9-yl)-3-oxopropanal in CDCl3.

a

Carbon no. 13C NMR H δδδδδ1H 1H-1H COSY HMBC(1H-13C)

(DEPT) NMR(int.,

mult., J in Hz)b

1 179.63

1a 147

1b 132.32

2 51.0 2-H 5.91(s) C-1,1a,1b

2a 110

2b 120

3 128 3-H 8.08(m) C-4,4a,4b,4c

4 135

4a 197

4b 59 4b-H 6.51(s) C-4a,4c

4c 179 4c-H 10.1(s)

5 127

5a 142 5a-H 6.60(d) C-4,5

5b 138 5b-H 6.91(d)

5c 174

5d 41 5d-Ha,5d-Hb 5d-Ha at3.7(d) 5c-H C-5c,5e,5f,5b

5d-Hbat 2.9(d)

5e 129 5e-H 5.6(q)

5f 114

5g 21

6 137

6a 35 6a-H 2.28(t) 6b-H C-6,6b,1,7

6b 31 6b-H 1.92(m)

6c 29 6c-H 1.52(m) 6b-H C-6a,6b,6d

6d 19 6d-H 0.91(t)

7 128.46 7.52(m) C-6,6a,1a

8 129.38

9 130.15

10 119.07

10a 39 10a-H 1.36(t) C-9,10,10b

10b 34 10b-H 1.26 (m) 10a-H

10c 32 10c-H 1.22(m) 10b-H

10d -R'

11 126.96

12 128.4 12-H 7.10(m) 13-H C-13,8,9,

13 126.3 13-H 7.16(m) 12-H C-8,10,14

14 51.6 14-H 3.6(s)
a NMR spectra recorded using spectrometers. Bruker AVANCE III 500 MHz (AV 500)
bValues in ppm, multiplicity and coupling constants (J¼ Hz) are indicated in parentheses. Assignments were made with the aid of the
1H-1H COSY, HMQC, HMBC and NOESY experiments.
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Figure 4.74. IR spectra of of 3-(1-butyl-7,12-dihydro-2-methoxy-7-oxo-10-((1E,5E)-3-oxohepta-1,5-dienyl)-6-
pentyltetraphen-9-yl)-3-oxopropanal

Figure 4.73. 2D NMR correlations as observed in 3-(1-butyl-7,12-dihydro-2-methoxy-7-oxo-10-((1E,5E)-3-oxohepta-
1,5-dienyl)-6-pentyltetraphen-9-yl)-3-oxopropanal (A) The key 1H-1H COSY couplings have been
represented by the bold face bonds; The HMBC couplings are indicated as double barbed arrow
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Figure  4.75. Proton NMR spectra of 3-(1-butyl-7,12-dihydro-2-methoxy-7-oxo-10-((1E,5E)-3-oxohepta-1,5-dienyl)-
6-pentyltetraphen-9-yl)-3-oxopropanal (A - full view, B - expanded view)

Chapter 4 - Isolation and Characterization of Antioxidant Secondary Metabolites from Seaweeds

A

B
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Figure 4.76. 13C NMR spectrum of 3-(1-butyl-7,12-dihydro-2-methoxy-7-oxo-10-((1E,5E)-3-oxohepta-1,5-dienyl)-
6-pentyltetraphen-9-yl)-3-oxopropanal

Figure 4.77. DEPT spectrum of 3-(1-butyl-7,12-dihydro-2-methoxy-7-oxo-10-((1E,5E)-3-oxohepta-1,5-dienyl)-6-
pentyltetraphen-9-yl)-3-oxopropanal
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Figure 4.78. 1H-1H-COSY spectrum of 3-(1-butyl-7,12-dihydro-2-methoxy-7-oxo-10-((1E,5E)-3-oxohepta-1,5-dienyl)-
6-pentyltetraphen-9-yl)-3-oxopropanal

Figure 4.79. HMBC spectrum of 3-(1-butyl-7,12-dihydro-2-methoxy-7-oxo-10-((1E,5E)-3-oxohepta-1,5-dienyl)-6-
pentyltetraphen-9-yl)-3-oxopropanal

Chapter 4 - Isolation and Characterization of Antioxidant Secondary Metabolites from Seaweeds
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oxo-10-((1E,5E)-3-oxohepta-1,5-dienyl)-6-pentyltetraphen-9-yl)-3-oxopropanal assigned to possess

tetraphen-7(12H)-one group.

The mass spectral pattern showed the molecular ion peak at 580. The base peak at

m/e=244 due to C18H12O and peaks at m/e=366, 356, 110 and 98 supports the molecular structure

(Figure 4.72). The aromatic protons appeared at δ 6.8-7.4 ppm, expect one signal appeared

downfield at δ 8.1 ppm, which led us to conclude that the aromatic proton is adjacent to a conjugated

system (Figure 4.75). The conjugated system assigned to be due to (Z)-4-hydroxybut-3-en-2-one

or its keto form as 3-oxobutanal. The Z-configuration has been assigned by calculating the coupling

constant of the olefinic protons at δ 6.60 and 6.91 ppm. The other side chain attached to the

tetraphen system is (E)-hepta-1,5-dien-3-one as deduced by detailed 2D experiments. The presence

of the pentane and butane side chain alongwith the tetraphen moiety has been confirmed by 1H-1H

COSY experiments. 1H-1H COSY correlations are apparent between the olefinic protons at δ 6.60

ppm and 6.91 ppm, which in turn exhibited 1H-1H COSY correlation with the protons at δ 3.72

(DEPT methylene signal at δ 41 ppm) and the olefinic protons at δ 5.6 and 5.2 ppm (Figure 4.76,

4.77 & 4.78). This results confirmed the linear structure of the (2E, 6E)-octa-2, 6-dien-4-one side

chain attached to the tetraphen moiety. The E-form of the olefinic protons has been assigned by

calculating their coupling constants, which support the assigned configuration. One methylene

proton appeared downfield at δ 6.51 ppm (13C δ 59 ppm) to indicate the presence of electronegative

centers or conjugated system at close proximity. This methylene group appeared as singlet at δ

6.51 ppm and based on the detailed HMBC and 13C –NMR data (Table 4.12) the structure of 3-

oxobutanal linked to the tetraphen has been assigned. The structure of the tetraphen ring system

has also been supported by the earlier literature. One singlet methyl group appeared downfield at

δ 3.7 ppm has been assigned due to the –OCH
3
 group, and the HMBC correlation with the aromatic

carbon at 126.96 ppm established that the methoxy protons are linked to the tetraphen ring system

(Figure 4.79). The 13C-and 2-D NMR assignments have been enlisted in the Table 2. The molecular

ion peak appeared at m/e 578, and the carbonyl attached to C7 branch form cyclic structures

C7H8O (m/e 108). The peaks were observed at m/e 71 (due to C5H11), which also corroborate the

structure. The peaks observed at 523,344,110,71,28,97,401,512 also support the structure.

The IR band at 723.33 and 1377.22cm-1 are due to long chain ν(methyl group) . The

ν(C-H of long alkane chain) was observed at 2852.81, 2924.18 and 2953.12cm-1. The strong band

at 1464.02cm-1 is also due to δ(C-H alkanes). The band at 1711.88 cm-1 is assigned due to ν(C=O

vibrations) (Figure 4.74).
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4.6. Conclusions

The compounds (9H-fluoren-9-yl) methyl 1-(propoxycarbonyl) butylcarbamate and 3-

((2E,8E)-1,4,6,10,12-pentahydroxy-16-oxo-15,21,24-trioxa-bicyclo[17.3.2]tetracosa-2,8-dien-9-

ylamino)-22,23-(4-hydroxyphenyl)-2-methoxypropanoic acid were isolated from the methanol extract

of A. longifolius. (6Z)-methyl 8-(2-((E)-4-ethyl-3-isopropyl-5-methylhept-1-enyl)-tetrahydro-6-oxo-

2H-pyran-3-yl)-3,3-dimethylnon-6-enoate and 1-((4Z)-2,3,7,8-tetrahydrobenzo[b]oxepin-2-

yl)tetradecan-2-oxo-5-((E)-but-2-enyl)-dihydrofuran-2(3H)-one were isolated from the methanol

extract of P. gymnospora. Methanol extract of A. spicifera upon chromatographic purification yielded

propyl 4-acetyl-2-[(E)-3, 5-dimethyl-2-hexenyl] benzoate and 3-hexyl-5,6-dihydro-6-undecylpyran-

2-one. 3-(1-butyl-7,12-dihydro-2-methoxy-7-oxo-10-((1E,5E)-3-oxohepta-1,5-dienyl)-6-

pentyltetraphen-9-yl)-3-oxopropanal and 12-tridecenyl 2-methylacrylate were obtained by the

bioassay guided purification of the methanol extract of L. papillosa. All these compounds exhibited

potential redical scavenging and Fe2+ ion chelating activities and therefore hence it can be concluded

that these compounds may serve as the promising synthetic leads for the development of new

generation drug candidates.
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CHAPTER 5

Summary

Reactive oxygen species (ROS) are considered to be the major unstable molecules

generated due to excessive oxidation. These ROS cause denaturation of cellular machinery and

results in ailments such as cancer, atherosclerosis, cardiovascular disorders, inflammation, diabetes

mellitus etc, and can also cause ageing. The free radicals can also have harmful effects on foods

as production of rancid flavours and odours, reducing the shelf-life, nutritional quality, and safety

of food products. The harmful effects of radical associated oxidative stress can be overcome by

using antioxidants. Keeping in mind the multiple adverse effects of synthetic antioxidants, there is

a need to follow our attention towards natural antioxidants.

Seaweeds are commercially available species, and constitute a major share of marine

flora. These species grow under the stressed oceanic conditions, and therefore, are gifted with

valuable bioactive molecules with respect to antioxidant properties. It is therefore rational to explore

the seaweeds as natural resources to isolate the antioxidant principles. Different seaweeds from

the Gulf of Mannar region of Mandapam have been screened for potential antioxidant properties

by different model systems. Bioassay guided sequential chromatographic purification yielded an

array of pure compounds, which have been assayed for their antioxidant activities. Based upon

the results, the compounds exhibiting higher antioxidant potential have been shortlisted for detailed

structural characterization.

In this study the seaweeds have been studied based on their abundance in the Gulf of

Mannar area. The different brown seaweeds, Turbinaria conoides, Turbinaria ornata, Anthophycus

longifolius, Sargassum plagiophyllum, Sargassum myriocystum, Padina tetrastomatica, Padina

gymnospora and Stoechospermum marginatum have been taken into account to evaluate their

antioxidant properties. The red seaweeds shortlisted in this study were Laurencia papillosa, Gelidiella

acerosa and Acanthophora spicifera. The antioxidant activities of the methanol extract and solvent

fractions (n-hexane, dichloromethane and ethyl acetate) of these seaweeds have been evaluated

using different in vitro systems, viz 1,1-dipheny1–2-picrylhydrazyl (DPPH), 2,2’-azino-bis-(3-

ethylbenzothiozoline-6-sulfonic acid) diammonium salt (ABTS), hydrogen peroxide (H2O2)/hydroxyl

radical (HO.) scavenging, ferrous ion (Fe2+) chelating ability, thiobarbituric acid reactive species

formation inhibition assay and reducing potential. A reversed-phase high-performance liquid

chromatography method hyphenated to diode-array detection was also utilized to characterize the

solvent extract fingerprints of phenolic acids in the seaweed species.
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 The ethyl acetate fraction of Turbinaria conoides exhibited significantly higher total reduction

capability (A
700nm

1.07, 1 mg/mL), total phenolic content (106 GE/g), scavenging of H
2
O

2
 (>18%, 1

mg/mL) and hydroxyl radical scavenging activities (64%, 0.6 mg/mL) as compared with Turbinaria

ornata. The ethyl acetate fraction of Turbinaria ornata exhibited higher Fe2+ ion chelating (>68%,

0.6 mg/mL), lipid peroxidation inhibitory (7 MDAEC/kg, 2 mg/mL), ABTS radical scavenging (14%,

0.6 µg/mL) and DPPH· radical scavenging activities (64%, 1 mg/mL). The HPLC analysis indicated

that gallic acid (21 mg/g) and syringic acid (73 mg/g) were the predominant phenolic acids in the

ethyl acetate fraction of Turbinaria conoides, whilst epicatechin gallate (205 mg/g) was the major

phenolic acid identified in the methanol fraction. Epicatechin gallate (24 mg/g) and syringic acid

(15 mg/g) were the major constituents in the methanol fraction of Turbinaria ornata, whereas the

principle components in ethyl acetate fraction were gallic acid (64 mg/g) and chlorogenic acid (43

mg/g).

The ethyl acetate fraction of Anthophycus longifolius exhibited higher total phenolic content

(236 GE/g), ABTS radical scavenging (>18%, 0.6 µg/mL), DPPH· radical scavenging (>88%, 1

mg/mL), hydroxyl radical scavenging (>83%, 0.6 mg/mL), reduction capability (Ab700nm1.4, 1 mg/

mL) and Fe2+ ion chelating activities (>88%, 0.6 mg/mL). The ethyl acetate fraction of Sargassum

plagiophyllum exhibited higher H
2
O

2
 scavenging capacity (16 %, 1 mg/mL) and that of Sargassum

myriocystum exhibited higher lipid peroxidation inhibition ability (4 MDAEC/kg, 2 mg/mL). The

HPLC analysis indicated that gallic acid (2 mg/g) and syringic acid (23 mg/g) were the predominant

phenolics in the ethyl acetate fraction of Anthophycus longifolius. Caffeic acid (<1.3 mg/g), 2,5

dihydroxy benzoic acid (<4.4 mg/g), coumaric acid, ferulic acid, chroman flavanols (epicatechin)

and syringic acid (<52 mg/g) were found to be ubiquitous in either of ethyl acetate and methanol

fractions of Sargassum plagiophyllum. Both the ethyl acetate and methanol fractions of Sargassum

myriocystum were found to contain coumaric acid, ferulic acid (<16 mg/g), flavanols (epigallocatechin

gallate, epicatechin) and syringic acid (<82 mg/g).

In Padina tetrastomatica, the ethyl acetate fraction exhibited higher total phenolic content

(165 GE/g), hydroxyl radical scavenging (87%, 0.6 mg/mL) and TBARS formation inhibition activities

(4 MDAEC /kg, 2 mg/mL). Higher ABTS radical scavenging (29%, 0.6 µg/mL), DPPH· radical

scavenging (>77%, 1 mg/mL), reduction capability (A700nm1.48, 1 mg/mL) and Fe2+ ion chelating

activities (82%, 0.6 mg/mL) were observed with the ethyl acetate fraction of Stoechospermum

marginatum. Dichloromethane fraction of Padina gymnospora exhibited higher hydroxyl radical

scavenging activity (>85%, 0.6 mg/mL) and its ethyl acetate fraction exhibited higher H2O2

scavenging potential (18%, 1 mg/mL). It was found that these seaweeds contain caffeic acid, 2, 5

dihydroxy benzoic acid, coumaric acid, ferulic acid, and syringic acid as phenolic acids in the
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methanol and ethyl acetate fractions. Epicatechin (112 mg/g) was the major phenolic acid identified

in the ethyl acetate fraction of Padina tetrastomatica. The ethyl acetate fraction of Padina

gymnospora registered higher amount of 2,5 dihydroxy benzoic acid (163 mg/g), whereas the

methanol fraction of this species recorded higher amount of syringic acid (132 mg/g). The dominant

phenolic acid present in the ethyl acetate fraction of Stoechospermum marginatum was coumaric

acid (43 mg/g) where as higher amount of syringic acid (36 mg/g) was found in the methanol

fraction.

The ethyl acetate fraction of Laurencia papillosa exhibited higher total phenolic content

(283 GE/g), ABTS (97%, 0.6 µg/mL) as well as DPPH· radical scavenging activities (97%, 1 mg/

mL). Higher hydroxyl radical scavenging (78%, 0.6 mg/mL) and TBARS inhibition abilities (3 MDAEC

/kg, 2 mg/mL) were observed with the ethyl acetate fraction of Gelidiella acerosa, whereas higher

ferrous metal ion chelating activity (63%, 0.6 mg/mL) was observed with its dichloromethane fraction.

Dichloromethane fraction of Acanthophora spicifera exhibited higher H2O2 scavenging ability (18%,

1 mg/mL), whereas a higher reducing capability (Ab
700nm

1.46, 1 mg/mL) was observed with the

ethyl acetate fraction. A higher amount of syringic acid (23 mg/g) was observed with the methanol

extract of Laurencia papillosa where as its ethyl acetate fraction registered higher amount of

epicatechin gallate (33 mg/g) than other phenolic acids. The HPLC analysis indicated that caffeic

acid (11 mg/g) was the predominant phenolics in the ethyl acetate fraction of Gelidiella acerosa,

whilst more polar chlorogenic acid (27 mg/g) was the major phenolics in its methanol fraction. In

Acanthophora spicifera both methanol and ethyl acetate extracts contain phenolic acids such as

epicatechin gallic acid, caffeic acid and 5-caffeoylquinic acid with cyclohexane carboxylic acid

derivative (chlorogenic acid).

Based on the abundance and bioassay results obtained for the column fractions, two brown

seaweeds (Anthophycus longifolius and Padina gymnospora) and two red seaweeds (Acanthophora

spicifera and Laurencia papillosa) were shortlisted for further isolation, purification and

characterization of antioxidant secondary metabolites.

Bioassay guided chromatographic purification of the methanol extract of Anthophycus

longifolius yielded (9H-fluoren-9-yl)methyl 1-(propoxycarbonyl) butylcarbamate and 3-((2E,8E)-

1,4,6,10,12-pentahydroxy-16-oxo-15,21,24-trioxa-bicyclo[17.3.2]tetracosa-2,8-dien-9-ylamino)-22,23-(4-

hydroxyphenyl)-2-methoxypropanoic acid as major antioxidant secondary metabolites with higher

DPPH (>76%, 0.1 mg/mL) and ABTS (>30%, 0.1 µg/mL) radical scavenging abilities, and ion

chelating potential (>26%, 0.1 mg/mL).

(9H-Fluoren-9-yl) methyl 1-(propoxycarbonyl) butylcarbamate (C23H27NO4 m/e= 381.4814),

a new derivative of the fluorens was isolated as yellowish amorphous solid with 85% purity. The
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molecular ion peak at m/e 382 appeared to undergo elimination of C3H9+ (45) to yield m/e 336

(C
6
H

12
O

2
), which undergo fragmentation to afford the fragments with m/e 264, 201 etc. The IR

spectrum recorded absorbance around 1700, 1034 and 1600cm”1 due to ν(C=O), ν(C-N) and

δ(N-H) vibrations. The 1H NMR in conjugation with 13C-NMR recorded the presence of the methine

groups CH δ 7.3-7.7 ppm, which are assigned to be due to fluoren and the downfield shift (about

δ 0.6 ppm) of the –CH group is due to the presence of β -O-C=O from the methine group. The

methylene groups at δ 3.3 and 4.1 ppm appeared significantly downfield due to the presence of

alpha -OC(=O)N and alpha -OC(=O)-C moieties in the methyl 1-(propoxycarbonyl)butylcarbamate

side chain. The protons at H-4, and H-8 showed HMBC correlation with C-1, which indicate that

C-1 is situated between two aromatic rings. The carbon at C-1 gives HSQC correlation with H-1

(δ 1.60 ppm) to demonstrate a triplet. The H-1 showed 1H-1H COSY correlation with H-11 (δ 2.04

ppm), which showed HMBC correlation with C-12(δ 163.83 ppm). The carbon at C-15(δ 65.7 ppm)

exhibited DEPT signal for methylene group, and its downfield shift demonstrates the presence of

highly electronegative group at its close proximity.

3-((2E,8E)-1,4,6,10,12-pentahydroxy-16-oxo-15,21,24-trioxa-bicyclo[17.3.2]tetracosa-2,8-

dien-9-ylamino)-22,23-(4-hydroxyphenyl)-2-methoxypropanoic acid, a llight yellow semisolid with

molecular formula C28H39NO13 (m/e= 597.6214) was isolated with 82% purity. The signature mass

peaks appeared at m/e= 119 (C
4
H

9
NO

3
), m/e=184 (C

8
H

8
O

5
), m/e=94, 90, and 89, which supported

the molecular structure. The IR spectrum recorded νas (C=O) vibrations (1740cm”1) of -COOH

group, ν(C=O carboxylic acids), ν(C-N) band and γ
w
 (N-H) vibrations. The –NH and hydroxyl groups

appeared as broad singlets at about 4-5 ppm in proton NMR spectra. The phenolic proton appeared

at δ 5 ppm due to the deshielding effect of the aryl ring system. The carboxylic –OH appeared

downfield at δ 10.2 ppm. Three olefinic protons appeared at δ 4.99-5.82 ppm as established by

integrating the number of protons. Two magnetically equivalent –CH
2
 groups appeared at δ 4.2,

4.3 ppm, and demonstrated to be a part of (Z)-6, 7-dihydro-5H-1, 4-dioxepine ring system of the 3,

4-dihydro-2H-benzo[b] [1, 4] dioxepine-3, 7-diol moiety of the compound. The 13C spectra displayed

signal at δ 167.7 ppm and δ 178.6 ppm showed two carbonyl compounds to confirm the structure.

The position of the hydroxyl groups was further confirmed from the 1H–1H COSY, HSQC, HMBC,

and NOESY spectra. In the 1H–1H COSY spectrum, couplings were apparent as described in the

figure support the presence of the established skeleton.

The MeOH extract of Padina gymnospora upon sequential bioassay guided chromatographic

purification yielded two antioxidant secondary metabolites 1-((4Z)-2,3,7,8-tetrahydrobenzo[b]oxepin-

2-yl)tetradecan-2-oxo-5-((E)-but-2-enyl)-dihydrofuran-2(3H)-one and (6Z)-methyl 8-(2-((E)-4-ethyl-

3-isopropyl-5-methylhept-1-enyl)-tetrahydro-6-oxo-2H-pyran-3-yl)-3,3-dimethylnon -6-enoate with

>70% DPPH and >23% ABTS radical scavenging ability, and >20% ion chelating potential.
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(6Z)-Methyl 8-(2-((E)-4-ethyl-3-isopropyl-5-methylhept-1-enyl)-tetrahydro-6-oxo-2H-pyran-

3-yl)-3,3-dimethylnon -6-enoate was isolated as a yellow amorphous solid with molecular formula

C
30

H
52

O
4
 (m/e= 476.7545). The molecular ion peak was observed at m/e=477. The mass fragments

at m/e=158, 74, and 60 are the characteristic signature peaks of the proposed structure. The IR

spectrum exhibited characteristic bands for ν(C-H alkane chain), δ(C-H alkane chain) and ν(C=O)

vibrations to support the structure. The signature peaks of 13C NMR at δ 179.41 and 174.37 ppm

indicate the presence of two carbonyl compounds. The signals in olefinic protons appeared at δ

130.20, 130.01, 129.71 and 128.23 ppm, which give HSQC correlation with the protons at 5.26,

5.16, 5.29 and 5.08 ppm, respectively. The linear 1H-1H COSY correlations were apparent between

the protons at δ 1.6 ppm (C-4), 2.28 ppm (C-3), 2.24 ppm (C-2) and 4.5 ppm (C-1) that support the

valerolactone moiety. These protons showed the HMBC correlation with the carbonyl carbon at C-

5 (δ 179.41 ppm), which also support the cyclic valerolactone structure. The proton at C-1 (δ 4.5

ppm) shows 1H-1H COSY correlation with the olefinic proton at δ 5.26 ppm (C-1’), which, in turn

realized the 1H-1H COSY correlation with the olefinic proton at δ 5.29 ppm (C-2’). This established

the tetrahydro-6-(prop-1-enyl) pyran-2-one moiety of the compound.

1-((4Z)-2,3,7,8-tetrahydrobenzo[b]oxepin-2-yl)tetradecan-2-oxo-5-((E)-but-2-enyl)-

dihydrofuran-2(3H)-one was isolated as a white semisolid with molecular formula C30H42O4

(m/e=466.6422). The IR spectrum exhibited ν(C-H) vibrations, ν(C=C) and ν(C=O 5-membered

ring) which supported the proposed structure. The molecular ion peak was observed at m/e=467

and the peak at m/e=146 is due to the fragment C11H15. The peaks at m/e 212 and m/e 72 were

due to the fragments C14H26O (m/e=212) and the alkane fragment C5H12 (m/e=72). The methine

protons appeared at 3.6 ppm, which is connected to the tertiary carbon (δ 51.38 ppm), was

established to the part of the substituted dihydrofuran-2(3H)-one ring system. The downfield shift

of the proton is due to the electronegative -O-C=O group as established by their HMBC

connectivities. The presence of a beta -C=C to the carbon at δ 3.6 ppm is established by the linear

1H-1H COSY connectivities. The structure of the 3-methylisobenzofuran-1(3H)-one system has

been established by the HMBC correlation analyses. The structure of (Z)-2,3-

dihydrobenzo[b]oxepine has been established by the 1H-1H COSY and HMBC analyses and

calculation of the coupling constants (J) of the protons at δ 5.53 and 5.81 ppm, which confirm the

Z-configuration of the olefinic system. The coupling constant values have been calculated to be in

conformity with the E-configuration. This established the structure of 5-((E)-but-2-enyl)-dihydrofuran-

2(3H)-one system.

Two antioxidant secondary metabolites 3-hexyl-5,6-dihydro-6-undecylpyran-2-one and butyl

4-acetyl-2-((E)-3,5-dimethylhex-2-enyl)benzoate were yielded by repeated bioassay guided

chromatographic purification of the methanol extract of the red seaweed Acanthophora spicifera.
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3-Hexyl-5, 6-dihydro-6-undecylpyran-2-one was isolated as a white semisolid with molecular

formula C
22

H
40

O
2
 (m/e=336.5543). The molecular ion peak appeared at m/e= 336 and the fragment

peak at m/e= 98 as a base peak with a cyclic structure (5, 6-dihydropyran-2-one) supported the

structure. The IR spectrum registered bands at 723, 1464, 1742 and around 2800 cm-1, which are

assigned due to ν(methyl group), ν(C-H long alkane chain), ν(C=O vibrations) and δ(C-H alkanes),

respectively. The C13 NMR spectra displayed a signal at δ 179.20 ppm indicating that the compound

has a carbonyl functional group. The 13C signals at δ 130.88 and 128.80 indicate the olefinic

carbons, whilst the signal at δ 130.88 ppm doesn’t have any HSQC signal thereby indicating the

presence of a quaternary carbon atom. The 13C signal at C-5 (δ 68.17 ppm) is attached to the

oxygen of the 5,6-dihydropyran-2-one ring system. The downfield shift of C-5 appeared to be due

to the α—OC(=O) group in the 5,6-dihydropyran-2-one system. Strong 1H-1H-COSY correlation

between the proton signals (methylene) at δ 1.35, 1.20, 1.32, 0.81, and 0.85 ppm, which in

combination of mass spectroscopic analyses established the dodecane moiety attached with the

5,6-dihydropyran-2-one group.

Butyl 4-acetyl-2-((E)-3,5-dimethylhex-2-enyl)benzoate was isolated as a light yellow

semisolid with molecular formula C20H27O3 (m/e= 315.4424). The molecular ion peak appeared at

m/e= 316 and the peak at m/e 104.10 (C
4
H

8
) was assigned to be as (E)-3, 5-dimethylhex-2-ene.

The base peak at m/e=120 (C8H8O) was assigned to be due to acetophenone. The IR bands at

721, 1457 and 1739 are assigned due to ν(methyl group), δ(C-H of alkanes) and ν(C=O vibrations).

The C13 NMR spectra displayed a signal at δ 179.20 ppm indicating that the compound has a

carbonyl functional group. The presence of acetyl group attached to the aryl ring system is

established by the typical proton shift of the CH3 group at δ 2.3 ppm and the corresponding HSQC

correlation of the carbon (at δ 40.6 ppm) and proton (at δ 2,3 ppm). The 13C signal at δ 179.8 ppm

also established the presence of another carbonyl group and its attachment with the aryl ring

system has been assigned by the strong HMBC correlation with the aryl proton at δ 7.76 ppm. The

13C-NMR spectrum also confirmed the presence of the –C=O group at δ 179.8 ppm. The olefinic

carbon at δ 121.7 ppm did not show any HSQC correlation thereby indicating that this carbon is of

quaternary type. The (E)-configuration of the olefinic bond has been confirmed by the coupling

constant calculation.

Bioassay guided chromatographic purification of the methanol extract of Laurencia papillosa

yielded two antioxidant secondary metabolites 12-tridecenyl 2-methylacrylate and 3-(1-butyl-7,12-

dihydro-2-methoxy-7-oxo-10-((1E,5E)-3-oxohepta-1,5-dienyl)-6-pentyltetraphen-9-yl)-3-

oxopropanal with >72% DPPH and >29% ABTS radical scavenging ability and >21% ion chelating

potential.
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2-Tridecenyl 2-methylacrylate was isolated as an amorphous yellow semisolid with molecular

formula C
17

H
30

O
2
 (m/e= 266.4318). The molecular ion peak appeared at m/e 267, (C

17
H

30
O

2
) and

the fragment peaks at m/e=184 (C
11

H
20

O
2
), m/e=182 (C

13
H

26
), m/e=112 (C

8
H

16
) m/e=111 (C

7
H

16
)

and m/e=85 (C4H5O2) established the structure. The IR spectra registered bands due to ν(C-H

long alkane chain), δ(C-H alkanes), ν(C=O vibrations), γr(C-H alkanes) and ν(C-O band) support

the structure. The methylene protons appeared at δ 2.1 ppm are due to the deshielding effect of

the olefinic –CH=CH- group. The olefinic group as in methyacrylate have been established by the

proton chemical shift at δ 7.71 ppm; whereas those at δ 5.82, and 7.52 ppm support the presence

of the –CH=CH
2
 group at the terminal position of the compound. The olefinic proton at δ 7.71 ppm

established that the -C(=O)O-R moiety of the methacrylate is responsible for the downfield shift.

The presence of carbonyl group has been confirmed by the presence of the quaternary carbon

atom at δ 177.41 ppm with no HSQC correlation.

3-(1-Butyl-7,12-dihydro-2-methoxy-7-oxo-10-((1E,5E)-3-oxohepta-1,5-dienyl)-6-

pentyltetraphen-9-yl)-3-oxopropanal was isolated as an amorphous yellow semisolid with molecular

formula C28H42O5 (m/e =578.7544). The mass spectral pattern showed the molecular ion peak at

580 and the base peak at m/e=244 (due to C18H12O). The peaks at m/e=366, 356, 110 and 98

support the molecular structure. The IR bands registered the presence of ν(methyl group), ν(C-H

of long alkane chain), δ(C-H alkanes) and ν(C=O vibrations). The aromatic protons appeared at δ

6.8-7.4 ppm, expect one signal appeared downfield at δ 8.1 ppm, which led us to conclude that the

aromatic proton is adjacent to a conjugated system. The Z-configuration has been assigned by

calculating the coupling constant of the olefinic protons at δ 6.60 & 6.91 ppm. The other side chain

attached to the tetraphen system is (E)-hepta-1,5-dien-3-one as deduced by detailed 2D

experiments. 1H-1H COSY correlations are apparent between the olefinic protons at δ 6.60 ppm

and 6.91 ppm, which in turn exhibited 1H-1H COSY correlation with the protons at δ 3.72 (DEPT

methylene signal at δ 41 ppm), and the olefinic protons at δ 5.6 and 5.2 ppm. This results confirmed

the linear structure of the (2E, 6E)-octa-2, 6-dien-4-one side chain attached to the tetraphen moiety.

One singlet methyl group appeared downfield at δ 3.7 ppm has been assigned due to the –OCH3

group, and the HMBC correlation with the aromatic carbon at δ 126.96 ppm established that the

methoxy protons are linked to the tetraphen ring system.

Seaweeds as a renewable natural resource of antioxidative compounds stand as potential

new generation alternatives to the synthetic antioxidants used in food, pharmaceutical and cosmetic

industries. The present study revealed candidates seaweed sp with potential lead molecules for

medicinal use. Gulf of Mannar area of Mandapam is considered to be the habitat of diverse seaweeds

and identified as a hot spot for searching ocean drugs. Hence the technical programme aimed to
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identify prospective species of seaweeds and to characterize the natural lead molecules with

antioxidant properties were worked out. The study succeeded in identifying seaweed species with

naturally occurring antioxidant compounds and also in characterizing the purified fractions with the

modern spectroscopic techniques. The study stands as the first of its kind to establish the bioactive

data of the vast majority of eleven seaweed sp abundantly available in this very important region

with respect to their antioxidative potential. Bioactivity guided characterization of antioxidative

molecules from the selected seaweed sp will serve as the potential synthetic leads for further

exploration in healthcare industries and for newgeneration food additives to increase their shelf

life.
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