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550.000 years of marine climate variability in the western Mediterranean Sea
revealed by cold-water corals

Cold-water corals (CWC) are common throughout the Alboran Sea (AS; western
Mediterranean Sea), however large coral mound provinces have only been discovered along
the Moroccan margin. During research cruise MSM36 "MoccoMeBo", the Bremen drill rig
MeBo successfully drilled 70 m long coral bearing cores, including the cores from the East
Melilla Coral Province (EMCP) presented here. Using the high precision U-series dating
method, the two cores presented here provided a unique insight into the mound evolution
over 550 ka. For the second time ever, a CWC mound has been fully penetrated and thus the
timing of the onset of coral growth in this location could be determined. The other mound,
potentially drilled to only half its height (70 m), may provide a first estimate of the basin-wide
onset of coral growth in the AS. However, the discontinuous temporal evolution of both
mounds revealed unprecedented complex age-depth profiles and thus two different mound
evolution models over several full glacial-interglacial cycles are proposed. The predominantly
interglacial evolution of CWC occurrence in the AS provided close constraints of the climate
conditions during interglacial periods facilitating vigorous coral growth. Changes in climate
conditions towards glacial periods determined the decline of flourishing coral growth, leading
to a glacial demise of CWC in the AS.

Based on the Li/Mg proxy, the past temperature variability of the near Bottom Water
Temperature (NBWT) was closely regarded. For the first time, a high-resolution nBWT record
in the AS was conducted and compared with published Sea Surface Temperatures (SST). The
observed variability in temperature suggests a common global driver of SST variability and
coral occurrence in the AS.

MSM36 “MoccoMeBo” was motivated by the hypotheses of a “Gibraltar seesaw pattern”,
describing the long-term development of predominantly glacial CWC growth in the Gulf of
Cadiz (GoC) and predominantly interglacial CWC growth in the AS. Combined U-series
records from both sides of the Strait of Gibraltar, may have revealed a common global driver
of the observed seesaw pattern and thus, may have unveiled a most possible onset of CWC
growth in the Mediterranean Region during the Mid-Pleistocene Transition.

Lastly, the evolution of seawater 623U, an indicator of the global weathering rate and crucial
for the high precision U-series dating method, was closely investigated. Contrary to the
general assumption of a global 8?**U, a Mediterranean Sea offset, compared to the Atlantic
824U, is presented. Furthermore, the combined Atlantic and Mediterranean records,
comprised of over 1500 published and unpublished data provide unique insights into the 824U
evolution over several full glacial-interglacial cycles.



550.000 Jahre mariner Klimavariabilitit im westlichen Mittelmeer aus der
Perspektive von Kaltwasserkorallen

Kaltwasserkorallen (CWC) sind im gesamten Alboran Meer (AS; westliches Mittelmeer)
verbreitet, jedoch wurden grofle, so genannte Korallen-Mound Provinzen nur am
marokkanischen Rand entdeckt. Wahrend der Forschungsschiffreise MSM36 "MoccoMeBo"
bohrte das Bremer Bohrgerat ,MeBo“ erfolgreich 70 m lange Kerne durch diese Korallen-
Mounds, darunter auch die hier vorgestellten Kerne aus der East Melilla Coral Province
(EMCP). Mithilfe der hochprézisen Uran-Thorium-Datierungsmethode gewahrten die beiden
Kerne einen einzigartigen Einblick tiber 550.000 Jahre in die Entwicklung der untersuchten
Korallen-Mounds. Zum zweiten Mal wurde ein untersuchter Mound vollstandig durchbohrt,
womit der Zeitpunkt des Beginns des Korallenwachstums an diesem Mound bestimmt werden
konnte. Fir den anderen Mound, der wahrscheinlich nur bis zur Halfte (70 m) durchbohrt
wurde, konnte eine erste Abschétzung fiir den Beginn von Korallenwachstum im gesamten
AS liefern. Die diskontinuierliche zeitliche Entwicklung beider Mounds ergab jedoch
beispiellos komplexe Wachstumsprofile und lieferte somit zwei verschiedene Mound-
Entwicklungsmodelle iiber mehrere vollstindige Eiszeit-Warmzeit-Zyklen. Die iiberwiegend
warmzeitliche Entwicklung von CWC im AS ermoglichte eine engere Einschrankung der
Klimabedingungen, welche fiir ein blithendes Korallenwachstum erforderlich sind. Eine
Veranderung der klimatischen Verhidltnisse wahrend Kaltzeiten verschlechterte die
Wachstumsbedingungen, fithrte zu einem Riickgang der blihenden Korallenriffe und leitete
ein kaltzeitliches Absterben der CWC im AS ein.

Basierend auf dem Li/Mg-Proxy wurde die vergangene Temperaturvariabilitit nahe des
Meeresbodens (nBWT) genau untersucht. Zum ersten Mal wurde eine hochauflosende nBWT-
Rekonstruktion im AS durchgefithrt und mit bereits veroffentlichten Meeresoberflachen-
temperaturen (SST) verglichen. Die beobachtete Variabilitdt der Temperatur lasst darauf
schlieflen, dass die SST-Variabilitat und das Vorkommen von Korallen im AS einen
gemeinsamen klimatologischen Ursprung besitzen.

Die Hypothese eines ,Gibraltar-Wippmusters“ motivierte die Forschungsschiffreise MSM36
~-MoccoMeBo“. Die Hypothese beschreibt die langfristige Entwicklung des tberwiegend
kaltzeitlichen CWC-Wachstums im Golf von Cadiz (GoC) und des iberwiegend
warmzeitlichen CWC-Wachstums im AS. Die Betrachtung aller verfiigbaren datierten
Korallen tiber 550.000 Jahre aus dem GoC und dem AS koénnte auf einen gemeinsamen
globalen Treiber des beobachteten Wippmusters hinweisen. Auf Grund dieser Erkenntnisse
wird der Beginn von Korallenwachstum im Mittelmeerraum wihrend dem Ubergang im
mittleren Pleistozian (MPT) vermutet.

Abschliefend wurde die Entwicklung des Meerwassers 623U betrachtet, einem Indikator fiir
die globale Verwitterungsrate und entscheidend fiir die hochprazise Uran-Thorium-
Datierung Methode. Entgegen der allgemeinen Annahme eines globalen 82*U-Wertes wurde
ein Unterschied zwischen Mittelmeer und dem Atlantischen Ozean entdeckt. Dariiber hinaus
bieten die kombinierten atlantischen und mediterranen §234U-Rekonstruktionen, die aus iiber
1500 verdffentlichten und unveréffentlichten Daten bestehen, einzigartige Einblicke in die
Entwicklung des 8%3*U-Wertes iiber mehrere vollstandige Eiszeit-Warmzeit-Zyklen.
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Chapter 1: Foreword

1 Foreword
The concern of a warming world led scientists beyond the daily pattern of the weather,

towards long-term climate observations and eventually to climate models, which can predict
the climate of the near future. These models are based on different earth systems, in particular,
the physics of ocean-atmosphere circulation and the chemistry of the carbon cycle
(Henderson 2002). Precise models are difficult to construct since both systems are very
complex and sensitive to changing conditions. To approach the sensitivity and complexity,
scientists rely on modern instrumental observations and paleoclimatological work with so-
called “proxies”. The latter aims for the often indirect, but quantitative, reconstruction of past
environmental conditions and climate (e.g. Wefer 1999).

Paleoclimate reconstructions can be carried out on a broad range of natural archives, like ice,
speleothems, tree rings, pollen, loess, marine and lacustrine sediments as well as tropical coral
reefs. More recently it was discovered that, in contrast to tropical coral reefs, which are
restricted to shallow water depth, cold-water corals can build unexpected large topographic
features on the deep seafloor throughout the global ocean (Roberts 2009, Freiwald et al. 2017).
Drilling such mounds provides piles of fossil corals that can serve as climate archives to study
past climate change in the mid-depth ocean. With 70% of the Earth’s surface being water, the
role of the ocean in the climate system is crucial. To retrieve its past changes is the aim of
paleoceanography, a field that has become central to paleoclimatology. One of the primary
archives utilized in paleoceanography are marine sediments used for nearly a century
(Hubbard and Wilder 1930, Schott 1938, Emiliani and Milliman 1966) and can potentially
provide continuous records of climate, spanning many millions of years (Bradley 2015).
However, common limitations are (i) low sedimentation rates at open ocean locations and
thus poor time resolution, (ii) the mixing of sediments by bioturbation, which may further
weaken time resolution. (iii) Locations with strong currents may either transport
allochthonous sediment towards the location or autochthonous sediment somewhere else,
which makes these locations almost unusable (Wefer 1999, Bradley 2015).

Since the 1970s, scientists have introduced cold-water corals (CWC) as an additional climate
archive (e.g. Weber 1973, Emiliani et al. 1978). Corals in general, warm- or cold-water, offer a
broad variety of advantages, which very few archives can keep up with. First CWC-pioneers
investigated stable isotopes in solitary CWC from the central North Atlantic to prove
profound changes in intermediate-water circulations coinciding with major climate changes
(Smith et al. 1997). The authors concluded that, using CWC as archives, previously

unavailable records of climate change might become accessible or new types of proxies may
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be developed (e.g. temperature, water mass tracer). Other pioneers discovered a major CWC
province which lead to the first long term record of discontinuous coral growth, spanning
over 2 million years (Henriet et al. 1998, Kano et al. 2007) and proved the possibility of ocean
ventilation reconstructions, using combined U-series and “C dating (Adkins 1998, Mangini et
al. 1998). Today, over two decades later, these visionary studies set the framework for intense
work on CWC ecosystems, their climate-related growth and dependency for certain
environmental parameters, leading to a better understanding of the climate system.

CWC as a climate archive stand out due to their global distribution and broad depth range,
from a mere few meters to abyssal depths and from the Norwegian Sea (70°N) to the Ross Sea
in Antarctica (78°24’S) (Freiwald et al. 2017). Longevity and temporal resolution provide
records on sub decadal level (potentially even higher) which span as much as 200 years on a
single sample. Due to the relatively high growth rates of some coral species, which range
from 2-26 mm/year (Gass and Roberts 2006, Henriques 2014, Biischer et al. 2017), corals may
provide a much higher time resolution than most other oceanic archives (Stanley and Cairns
1988, Adkins et al. 2004, Freiwald and Roberts 2005, Cairns 2007, Sherwood and Risk 2007,
Orejas et al. 2008). So-called framework forming CWC build reefs, which over long periods
with episodes of consecutive coral growth and sediment input, these reefs build up to CWC
mounds. Mounds can extend over several km in lengths, hundreds of m in width and height.
Several dating methods (e.g. U-series and *C dating) and multiple ocean parameter proxies
(e.g. Li/Mg temperature; eNd water mass tracer) were developed over the last decades,
applicable on both solitary and framework forming CWC.

The interest in CWC grew immensely, due to the many possibilities in climate reconstructions
they offered, resulting in a fast rising number of publications and numerous research cruises
(e.g. Ferdelman et al. 2006, Freiwald et al. 2009, Hebbeln et al. 2009, Hebbeln et al. 2015).
In 2014, one of these research cruises, MSM36 “MoccoMeBo”, was conducted in the
westernmost part of the Mediterranean Sea (MED), the Alboran Sea (AS), and in the Gulf of
Cadiz (GoC), which is connected via the Strait of Gibraltar (SoG; Hebbeln et al. 2015).
One major objective of the cruise was to gain detailed insight into coral mound initiation and
development over time in both locations (Hebbeln et al. 2015). The hypothesis of a
“seesaw” pattern, with glacial coral occurrence in the Gulf of Cadiz and interglacial coral
occurrence in the AS, was reinforced by long cores, revealing the proposed pattern over
several glacial-interglacial cycles (Krengel 2016). However, the initiation of corals and the
development of mounds and ridges in the AS remained elusive. Drilled with the MARUM drill

rig “MeBo”, a unique data set comprised of two 70 m long cores was recovered and builds the
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foundation of the work presented here. The following approaches, which provide important

information for the climate variability in this area, are investigated in this work:

This unique data set will be used to decipher the temporal evolution of coral growth
in the AS over 550 ka and the climatic drivers of vigorous coral growth and its decline
within the Mediterranean Region (Chapter 3).

Based on the Li/Mg proxy, the past temperature variability of the near Bottom Water
Temperature (nNBWT) will be regarded to conduct a high-resolution nBWT record to
unravel driver of SST variability and coral occurrence in the Alboran Sea (Chapter 4).
The long-term evolution of interglacial coral growth in the AS will be compared with
the glacial coral growth evolution of the GoC, to decipher the climatic drivers of the
Gibraltar seesaw pattern and to further constrain the timing of the onset of coral
growth in the AS (Chapter 5).

The evolution of seawater 824U is an indicator of the global weathering rates.
Especially in this marginal sea, valuable information for the Atlantic circulation and
turnover rates during climate changes is expected from the variability in coral 6%34U

(Chapter 6).
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2 Background and Methods

Cold-Water Corals (CWC) are nonsymbiotic-living animals. Some species, so-called
scleractinian CWC, produce calcium carbonite skeletons (Cairns 2007). These aragonite
skeletons are affected by the chemical composition of the seawater they live in. The prevailing
environmental parameters like pH and temperature are recorded in the chemical composition
of the skeletons (Smith et al. 2000, Ruggeberg et al. 2008, Case et al. 2010, McCulloch et al.
2012, Raddatz et al. 2013, Montagna et al. 2014, Raddatz et al. 2014). Upon death, the aragonite
skeleton is preserved, holding clues to the environmental conditions in which it formed in,
providing an exceptional archive. Alas, one cannot directly measure oceanic parameters or
other physical properties of a bygone world, a so-called proxy variable is therefore used
(short: proxy). A proxy is “a measurable property of an environmental/geological record
which, through mathematical or statistical treatment, can be related with a stated uncertainty
to one or a combination of physical, chemical, or biological environmental factors during its
formation” (Hillaire-Marcel and De Vernal 2007).

A number of diverse proxies exist which can be used to reconstruct seawater temperature
from cold-water corals. For example, reconstructions can be derived from the stable isotope
ratio of O and C (Smith et al. 1997), which however are strongly affected by the calcification
process itself (Adkins et al. 2002, Lutringer et al. 2005). Alternative approaches are, the
elemental composition of Li/Mg (e.g. Case et al. 2010, Hathorne et al. 2013, Raddatz et al. 2013,
Montagna et al. 2014), clumped isotopes (e.g. Ghosh et al. 2006, Eiler 2011) or Na/Ca
(Schleinkofer et al. 2019). Using proxies to detect environmental changes is a powerful tool if
however the age of a fossil coral can be precisely constrained by means of *C or U-series
dating. CWC incorporate large amounts of uranium into the aragonite skeleton (~2-5 ppm,
approximately a factor of 10° more than in seawater). Thus, through U-series dating, CWC
can be dated accurately (Mangini et al. 1998, Lomitschka and Mangini 1999, Cheng et al. 2000,
Hua et al. 2001, Frank et al. 2004, Frank et al. 2005, Schroder-Ritzrau et al. 2005, Frank et al.
2009, Frank et al. 2011, Wefing et al. 2017).

The following sections will give detailed insight into the geology, the present-day
hydrography of the Mediterranean Sea, Cold-water corals and their capacity to engineer coral
mounds as well as regarding the absolute dating method and the temperature reconstruction,

applied throughout this work.
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2.1 Geology of the Mediterranean Sea

The Mediterranean Sea (MED) is a semi-enclosed basin encompassing an area of
ca. 2.5 million km? (Lionello et al. 2004). Its average water depth is 1500 m albeit reaching
maximum water depth of up 5100 m in the Ionian Sea (Bethoux et al. 1999). Its only connection
to the open ocean is the narrow Straits of Gibraltar (SoG) (sill depth ~300 m, width ~13 km)
to the west which links the MED directly to the Atlantic Ocean (Malanotte-Rizzoli 2001).
An additional narrow and shallow connection exists between the MED and the Black Sea (Fig.

2.1) to the east through the Marmara Sea (Skliris 2014).

The geological evolution of the MED is characterized by phases of subduction, spreading,
rifting and collision of (micro-) plates since the Mesozoic (250-65 Ma) (Picotti et al. 2014). This
tectonic activity resulted in the formation of two major sub-basins: (1) the Eastern
Mediterranean Basin (EMS), and (2) Western Mediterranean Basin (WMS; Picotti et al. 2014).
Both major basins are further subdivided into smaller sub-basins: the EMS is subdivided,
starting counter-clockwise in the west, into the Ionian, Levantine, Aegean and the Adriatic
basin (Robinson et al. 2001). The spreading of the basins started earlier than in the WMS,
therefore the basins are generally older, of potentially pre-Jurassic to Cretaceous age
(>200 to 70 Ma), and deeper than the WMS, which is of Miocene to Pliocene age (23-3 Ma)
(Picotti et al. 2014). The WMS is also divided into sub-basins: to the west, the first sub-basin
is the Alboran and the Algerian (16-8 Ma) followed counter-clockwise by Tyrrhenian
(7-2 Ma), Ligurian-Provencal and the Balearic basin (20-15 Ma). The Strait of Sicily (SoS)
(width: ~35 km, sill depth: ~300 m) connects both major sub-basins (EMS and WMS) (Robinson
et al. 2001, Millot and Taupier-Letage 2005, Picotti et al. 2014).

2.2 Hydrography of the Mediterranean Sea

The modern hydrography of the MED is dominated by its evaporation-precipitation balance
and its exchange with the adjacent North Atlantic (Malanotte-Rizzoli 2001, Millot and
Taupier-Letage 2005). Across the MED, evaporation exceeds freshwater input from river run-
off and precipitation and thus causes a concentration in salinity (Skliris 2014). This buoyancy
drive facilitates the inflow of less dense Atlantic water (AW; see Chapter 2.2.1) at the surface
and the outflow of dense Mediterranean Outflow Water (MOW; see Chapter 2.2.3). In contrast
to its modern setting the MED was gradually cut off from the Atlantic Ocean during the
Messinian (7.2-5.33 Ma) which diminished the inflow of AW, resulting in basin-wide
evaporate depositions (Willett et al. 2006, Roveri et al. 2014). Since the reopening of the SoG
at the end of the Messinian Crisis (~5.33 Ma; Krijgsman et al. 1999, Roveri et al. 2014) the

6
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hydrographic conditions of the MED developed into its present-day form (Picotti et al. 2014).

In the following, the prevailing dominant water masses of the MED are discussed in detail.

Fig. 2.1: Map of the Mediterranean Sea: a) Surface water flow path. b) Intermediate water mass formation
sites and flow paths. c) Deep and dense water mass formation and flow path (Water mass formation and
flow paths modified after: Millot and Taupier-Letage 2005, Hernandez-Molina et al. 2006, Hernandez-
Molina et al. 2014). Red star: Location of the East Melilla Coral Province (EMCP). Important abbreviations:
Western Mediterranean Sea (WMS); Alboran Sea (AS); Strait of Gibraltar (SoG); Almeria-Oran-Front
(AOF).
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2.2.1  Surface Water Circulation

Forced by the anticyclonic surface circulation and the sinking sea level, due to evaporation,
in the Mediterranean Sea, Atlantic Water (AW) enters the Strait of Gibraltar (SoG). The AW
at SoG, with physical parameters of 15-16 °C, 36-37 psu, forms an up to 200 m deep jet with
an inflowing rate of ~1 SV. After entering the MED, the temperature and salinity of AW are
constantly modified while progressing through the MED through admixing of other surface
water masses, evaporation, air-sea interactions and thus becomes Modified Atlantic Water
(MAW). MAW is directed north-eastwards along the Spanish margin, describing a quasi-
permanent, clockwise gyre, the West Alboran Gyre (WAG) (Millot 1999). At the south-eastern
Spanish margin, inflowing MAW mixes with saltier and denser resident MAW outflowing the
Algerian basin along the eastern Spanish border (Fig. 2.1a). Both water masses are deflected
towards the south, where the mostly anticyclonic, East Alboran Gyre (EAG) is formed.
Entrained MAW flowing southwards, towards Algeria and then along the southern coast of
the Alboran Sea towards Melilla. On the eastern edge of EAG, where MAW and the older
resident MAW converge, the strong, geostrophic “Almeria-Oran-Front” (AOF) is formed
(Tintore et al. 1988).

The front is characterized by increased high primary productivity (Lohrenz et al. 1988, Tintore
et al. 1988). West of the AOF, the MAW becomes more saline (up to 37-38 psu) due to
enhanced evaporation and thus increases in density of 6=28-29. MAW resides into depths of
200 m in the centre of the Alboran basin, as shallow as 50 m along the Spanish coast and as
deep as 300 m at the AOF. At the Algerian coast, MAW deflects into two streams. The smaller
stream is entrained into the EAG, while the more important stream flows along the Algerian
coast towards the east and is called the Algerian Current (AC) (Millot 1985). Progressing east,
this narrow and often unstable current (30-50 km wide, 200-400 m deep) follows the slope
towards the SoS (Millot and Taupier-Letage 2005). The AC widens and thins out along its path
(Benzohra and Millot 1995) and generates either small and short-lived eddies or big open-sea
eddies called the Algerian Eddies (Millot 1999, Malanotte-Rizzoli 2001). At the SoS, MAW
splits into two pathways: (1) the Tyrrhenian vein passes the SoS and flows along Sicily and
the Italian Peninsula, where it continues along the northern slope of WMS (Millot and
Taupier-Letage 2005). (2) The second pathway flows through the SoS and along-slope of the
southern EMS. This Libyan vein traverses further east as the so-called Libyan-Egyptian
Current. The current creates small eddies at first, which are later replaced by well-structured
and energetic eddies (Millot and Taupier-Letage 2005). MAW, forced by the Libyan-Egyptian

Current, flows along slope the Levantine Basin where it is deflected in a north-western

8
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direction and thus forms smaller streams penetrating also into the Aegean Sea (Millot and
Taupier-Letage 2005). Further to the west, the MAW flows along the Greek shoreline, towards
the Italian peninsula, entraining into the Adriatic Sea. Along Sicily’s shoreline, MAW rejoins
the northward propagating Tyrrhenian vein (Millot 1999). The Tyrrhenian vein flows further
along the northern slope of the Ligurian, the Provencal, the Gulf of Lions (GoL) and the
Catalan. Bypassing Corsica to the west, the Tyrrhenian vein becomes the Northern Current
and is involved in the formation of Winter Intermediate Water (WIW) in the Liguro-Provencal
and involved in the formation of West Mediterranean Deep Water (WMDW) within the Gulf
of Lion (Millot and Taupier-Letage 2005). The Northern Current then flows along the Spanish
coast to conclude a basin-wide western gyre within the Alboran Sea providing the above-

mentioned resident MAW involved in the AOF.

2.2.2 Intermediate Water Circulation

The majority (90%) of the inflowing AW at the SoG is subsequently involved in intermediate
or deep-water formation whilst the remaining 10% are being evaporated (Millot and Taupier-
Letage 2005). In the EMS, roughly % of the MAW volume is transformed in intermediate and
deep-water masses, whereas only % is further transformed in the WMS as elucidated in this
section (Millot and Taupier-Letage 2005). The Levantine Intermediate Water (LIW) (Fig. 2.1b),
formed in the northern Levantine Basin is the warmest, saltiest and in volume greatest water
mass formed in the MED (Millot and Taupier-Letage 2005). It can be tracked as far west as the
SoG and is characterized by temperatures between 14.5 to 15.5 °C, salinities of ca. 39 psu and
densities of 6=29 (Lascaratos 1993, Millot and Taupier-Letage 2005). The formation of LIW is
driven by intense winter cooling of MAW which subsequently sinks isopycnally to depths of
100-500 m and thus forms LIW (Millot and Taupier-Letage 2005).

Forced by the Coriolis Effect, the newly formed LIW flows north-west, along the Cretan Arc
islands, passing the Adriatic Sea, the Italian peninsula and the SoS before entering the western
basin. The sills into the Aegean Sea and the Adriatic Sea are deep enough for LIW to also
partially flow into these sub-basin, where LIW mixes with MAW to form Aegean Deep Water
(AeDW) and Adriatic Deep Water (AdDW), respectively (Millot and Taupier-Letage 2005).
After passing the SoS, LIW flows around the Tyrrhenian Basin at 200-600 m water depth,
passing along the western slope of the islands of Corsica and Sardinia before joining a vein
of LIW that flows through the Channel of Corsica with a sill depth of 400 m (Millot and
Taupier-Letage 2005). Flowing underneath the Northern Current, the LIW constantly admixes
with overlying MAW continuously becoming fresher (Millot 2013). Further to the west, LIW

9
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flows along the northern slope into the Alboran Sea, where a portion of LIW is redirected into
the Algerian Basin, flowing below the Algerian Current (Millot 1999). However, the main LIW
vein flows towards the SoG along the northern Alboran Basin. With a sill depth of 300 m,
most LIW exits the MED, mixes with Mediterranean DW and flows as Mediterranean Outflow
Water (MOW) into the Atlantic Ocean.

Other intermediate water masses, such as the Cretan Intermediate Water and the Winter
Intermediate Water, originating in the Aegean and the Liguro-Provencal area respectively,
are difficult to differentiate from surrounding water masses, due to similar physical properties

and the low amount of formed water mass volume (Millot and Taupier-Letage 2005).

2.2.3 Deep Water Circulation

In total, four deep water masses can be recognized within the MED (Fig. 2.1c), two in each
Mediterranean basin. In the EMS, the Aegean Deep Water, also known as Cretan Deep Water
(AeDW) is warmer and saltier (14 °C and 38.9 psu) than the Adriatic Deep Water AADDW
(12.9 to 13.8 °C and 38.65-38-88 psu) (Gacic et al. 1996, Theocharis et al. 1999, Budillon et al.
2010). This is due to two aspects: (1) the overlying MAW is warmer and saltier in the Aegean
Sea and (2) the LIW is being formed in the vicinity of the Aegean and thus has undergone less
mixing (Millot and Taupier-Letage 2005). Both deep water masses, with similar densities of
0=29.15 and 6=29.2 respectively, cascade down into depths of similar density of the Levantine,
Cretan and Ionian Basin and keep circulating along the slope, forced by the Coriolis Effect
(Millot and Taupier-Letage 2005). The combination of the deep EMS basins (4000-5000 m) and
the shallow SoS limits the communication of AeDW/AdDW with the intermediate and deep
water masses in the WMS basins (Millot 1987, Astraldi et al. 2001).

Only the upper layers of both eastern deep-water masses pass through the SoS and
subsequently cascade down into the Tyrrhenian Sea, mixing with resident waters at depths
reaching 1900-2000 m (Sparnocchia et al. 1999). This leads to the formation of the Tyrrhenian
Dense Water (TDW) (12.97 °C; 38.495 psu; Fuda et al. 2002), which follows a basin-wide gyre
and enters the Algerian Basin at the Channel of Sardinia. It continues its path along the slope
Sardinia towards the Ligurian and the Provencal and into the Alboran and the Algerian Sea.
Within the WMS basin, the so-called Western Mediterranean Deep Water (WMDW) is formed
in the Gulf of Lions during wintertime, with physical properties of 12.7 °C, 38.40 psu and
0=29.1 (Skliris 2014). Winter cold spells facilitate MAW and LIW to significantly cool down
and traverse to depths of 2000-2500 m (Millot and Taupier-Letage 2005, Skliris 2014). Flowing

underneath the TDW, WMDW circulates through a basin-wide gyre, along the Catalan and
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into the Alboran Sea, where the less dense part of both water masses are uplifted and mix
with LIW (Millot 1999). This combined water mass then, further flows towards the SoG and
exits the MED as Mediterranean Outflow Water (MOW) (Hernandez-Molina et al. 2014). After
the SoG, the dense MOW cascades down the continental slope and flows along the Spanish
coast towards the North-East Atlantic (Hernandez-Molina et al. 2014). The more dense parts
of TDW and WMDW circulate along slope the deep Alboran Sea into the Algerian basin,
where it is partially trapped in depths exceeding 2700-2900 m (Millot and Taupier-Letage
2005b).
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2.3 Cold-Water corals: nomenclature, ecology and mound formation

2.3.1 Nomenclature
The Great Barrier Reef with over 400 different warm-water (tropical) coral species and over

thousands of other species has been discovered by James Cook in 1770 and is probably the
most known coral reef worldwide. However, roughly 65% of the known (as of 2007) 5160 coral
species dwell in depths greater than 50 m (Roberts 2009). These corals were not shallow warm-
water corals, but so-called “deep-sea corals” or “cold-water corals”. Since both names are
equally used in literature, the term CWC is used in this study. Defined by Cairns (2007) corals,
in general, are *animals in the cnidarian classes [...] that produce calcium carbonate (aragonitic
or calcitic) secretions resulting in continuous skeleton [...J'. This definition encompasses among
many other species, the in this study investigated species of Scleractinia (stony corals). The
differences between warm-water and cold-water corals are not only the water temperature in
which they thrive in or the depth they are generally found at, but also the dependency on the
symbioses with photosynthetic dinoflagellates (zooxanthellae). Warm-water corals, found in
maximal depths of up to 150 m, live in symbioses with zooxanthellae which are an important
source of the necessary energy for metabolism, growth and reproduction (Lohr et al. 2007,
Roberts 2009). CWC live non-symbiotic, so-called azooxanthellate, with 90% of the species

occurring in deep, up to abyssal depths waters, where photosynthesis is not possible anymore.

Some species live solitary, like the scleractinian species Desmophyllum dianthus. However,
most are colonial, like Lophelia pertusa (Desmophyllum pertusum) and Madrepora oculata.
Lophelia pertusa is molecularly and morphologically overwhelmingly similar to the genera
Desmophyllum (Addamo et al. 2016). It has been proposed to address the coral species as
Desmophyllum pertusum. In this thesis, the old denomination Lophelia pertusa will be used, to
be consistent with the cited publications and to avoid confusion, however, the new
denomination is added in brackets. Azooxanthellate species (n=711 species) are distinguished

by non-framework forming (n=693) and framework forming (n=18) (Roberts 2009).
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This study solely focuses on two species of the latter order, namely:

Lophelia pertusa (Desmophyllum pertusum) Madrepora oculata

Fig. 2.2: Drawings of the scleractinian CWC species L. pertusa (D. pertusum) (a, b) and M. oculata (c, d).
(a, c): formed coral framework. (b, d) Detailed close up of individual corallites. Scale bars: 10 mm (a-c),
4 mm (d). Modified after Roberts (2009).

2.3.2  Ecology

CWPC are so-called suspension feeders, settling on hard ground substrate and prospering in
the presence of zooplankton and phytodetritus (Duineveld et al. 2004, Kiriakoulakis et al.
2004). The food supply is provided by both, the marine productivity at the ocean’s surface and
by a turbulent hydrodynamic regime (Duineveld et al. 2004, Mienis et al. 2007, White 2007)
delivering food particles to the coral polyps. CWC are commonly found on topographically
elevated positions, substantiating the necessity of high energetic regimes and strong bottom
currents (White et al. 2005, Dorschel et al. 2007). Certain physico-chemical properties have
shown to be crucial for flourishing CWC colonies. The occurrence of M. oculata (53-1950 m)
is associated with a temperature range of 4 to 13 °C with maximum temperatures of 25 °C
(Keller and Os’kina 2008). L. pertusa (D. pertusum) (39-2775 m) thrives at temperatures ranging
from 4 to 14 °C (Roberts et al. 2006, Freiwald et al. 2009) with maximum temperatures of 26 °C.
Salinities of 31.7 to 38.8 psu and dissolved oxygen values from 0.2 to 7.2 ml/I (Hanz et al. 2019),
yet flourishing conditions for L. pertusa between 3 and 5 ml/l (Freiwald 2002), have been
reported (Davies et al. 2008, Roberts 2009). Pycnoclines, formed along water mass boundaries
and resultant internal waves have shown to play an important role in ensuring continuous
coral growth. Along the boundary layer, particles are concentrated and energetic regimes
created, transporting food and sediment towards the corals (White et al. 2005, Mienis et al.
2007, Dullo et al. 2008, Flogel et al. 2014, Riiggeberg et al. 2016, Wang et al. 2019). Annual
growth rates for L. pertusa and M. oculata are estimated to range between 3 to 34 mm/a

(Roberts 2009 and references therein, Henriques 2014, Biischer et al. 2017).
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2.3.3 Coral mound formation
Carbonate mounds (Coral mounds) are elevated seafloor structures, comprised of “stratified

sequences of reef deposits separated by non-reef (typical seafloor) sedimentary units and erosion
surfaces” (Roberts 2009). At the beginning of every mound stands the settlement of individual
coral larvae on hard substrata (Roberts et al. 2006). If favourable environmental conditions
prevail, corals grow and form colonies simultaneously as new coral larvae settle (Roberts
2009). Growing colonies will eventually intermingle and form coral “thickets” (Squires 1964),
comprised of dead corals at the bottom and live corals at the top, they attract large biodiversity
of fish, sponges and other species as recently demonstrated in the Alboran Sea (Corbera et al.
2019). Bioerosion, sponges and fungi feeding on the dead corals at the base, is an important
factor in producing coral rubble which acts as new substrata for coral larvae to settle or is
incorporated to form packstones and stabilize the structure (Roberts 2009). Coral thickets only
grow into coppice and eventually reefs/mounds, if hemipelagic material gets trapped within
the coral framework as the reef grows (Roberts 2009). Reefs redirect bottom water currents
through the structure, increase turbulences and create small-scale eddies around it, resulting
in a reduced sediment-carrying capacity of currents around the corals. The deposition and
trapping of bedload and suspended sediment around and within the growing reef is enhanced
(De Mol et al. 2002, Huvenne et al. 2009, Titschack et al. 2015). Fliigel (2013) described this
increase in sediment accumulation, called baffling, as a crucial factor for a three-dimensional
relief. Therefore, coral mounds are restricted to the continental margins, where terrigenous

sediment is supplied (Hebbeln 2019).
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As mentioned above, coral mounds are ideally comprised of stratigraphic sequences of reef
deposits, separated by non-reef sedimentary units. With changing environmental conditions
over glacial-interglacial cycles or if the mound out grows optimal hydrographic conditions,
coral growth may become stagnate and the reef may die completely (Roberts 2009). The
remaining topographic seafloor structure then (i) can be buried by off mound sedimentation,
(ii) can be partially eroded or (iii) new coral larvae can resettle on the elevated structure to

form new colonies and reef structures (Fig. 2.3).

living corals

=3 first generation corals

/N non-reef sedimentary unit
isolated patch coral thickets

Fig. 2.3: Unfavourable coral growth conditions may lead to (i) isolated patches buried by off mound
sedimentation or (ii) partially eroded. Restored favourable conditions may lead to (iii) a resettlement of
coral larvae on previous grow periods.

Mounds can be found as an isolated feature or as part of a cluster of numerous mounds, so-
called Coral Mound Provinces (CMP) (De Mol et al. 2002, Wheeler et al. 2007, Wienberg et al.
2018). With repeated reef growth and sedimentation, mounds can span several thousand to
millions of years of discontinuous coral growth (Freiwald et al. 2004, Roberts et al. 2006, Kano
et al. 2007) and extend horizontally over several kilometres. Vertically, mounds and ridges
can range from a few meters up to >300 m and can potentially have multiple peaks (Mienis et
al. 2006, Roberts 2009). Ideally, mounds grow in conical shapes, however these are rarely
found in nature. More common are current-aligned, oval to arcuate and elongated shaped
mounds as found in the northeast Atlantic and the Mediterranean Sea (Fig. 2.7) (Wheeler et
al. 2007, Hebbeln 2019).

Today, flourishing coral colonies are observed in the Gulf of Mexico (Matos et al. 2017), on
the Angolan margin (Hebbeln et al. 2016), on the Norwegian shelf (Mortensen et al. 2001), and
on over 1000 mounds in the Northeast Atlantic along the Irish and British margins (Roberts
et al. 2006). Dead coral colonies, with merely a few patches of live corals, have been observed
off Mauritania, off Brazil, along the Atlantic-Moroccan margin and within the Alboran Sea
(Hebbeln et al. 2009, Wienberg et al. 2009, Mangini et al. 2010, Eisele et al. 2011, Hebbeln et
al. 2019).
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CWC colonies and mounds have been subject to many studies (e.g. De Mol et al. 2002,
Schréder-Ritzrau et al. 2003, Frank et al. 2004, Dorschel et al. 2005, Riiggeberg et al. 2005,
Dorschel et al. 2007, Kano et al. 2007, Wheeler et al. 2007, van de Flierdt et al. 2010, Wienberg
et al. 2010, Eisele et al. 2011, Raddatz et al. 2011, Fink et al. 2013). Age data, obtained from
fossil coral fragments, has linked the growth and demise of corals to variations in the climate
system (e.g. Kano et al. 2007). Flourishing mound growth during full interglacial periods was
found between 70°N and 50°N along the eastern Atlantic margin and within the
Mediterranean Sea (Frank et al. 2011 and references therein, Fink et al. 2013), whereas growth
during glacial periods was found between 50°N and 20°N (Frank et al. 2011 and references
therein). Frank et al. (2011) proposed an ice age paced north-south oscillation of
environmental conditions necessary for reef development, potentially co-occurring with
changes in the polar front, displacing cold, nutrient-rich intermediate waters and surface
productivity. The only known locations, with coral growth during full glacial-interglacial
cycles are on the Angolan margin, with documented coral growth since the last glacial period

up to the present-day (Hebbeln et al. 2016, Wefing et al. 2017).

2.4 Radiogenic age determination
Since the middle of the 20t century, radiogenic dating methods have been established and

used in different application areas. Rb-Sr dating, established by (Hahn et al. 1943) is commonly
used to date igneous rocks, meteorites, even lunar samples from the Apollo missions (Murthy
et al. 1971). This dating method is limited by a minimum sample age of some hundred
thousand years but can be used to date back to hundreds of millions of years (Faure 1977).
Another widely used and well-known method has been developed and used by Anderson and
Libby (1951). Radiocarbon dating, using the radioactive carbon isotope *C, is commonly used
for organic material such as bones, wood, shells and corals. Recent to young periods (from
1950 to 50 ka ago) can be precisely dated. Uranium-series (U-series) dating, the suitable
method for this study, is capable of precisely reconstructing calcitic samples for the past
600 ka, with the limit of application at 800 ka. This geochronological tool is based on a
systematic radioactive disequilibrium in the 238U decay chain (Barnes et al. 1956), decaying

from 238U to 23Th with a- and f-decays (Fig. 2.4).
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The residence time of U in seawater is estimated to be 380 ka, which is considerably longer,
then the ocean’s global mixing time (~1000 a). U is therefore distributed homogenously in the
oceans. On the other hand, Th is poorly soluble in water and highly particle reactive.
Consequently, it has a residence time in the ocean of only 40 a. It is removed from the water

column by adsorption or reverse scavenging processes (e.g. Vogler et al. 1998).
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Fig. 2.4: U-series decay chain with half-lives for ?*U and ?°Th. In this figure revised half-lives from Cheng
et al. (2013) are used. However, U-series ages in this study were done with half-lives from Cheng et al.
(2000).

The short-lived daughter nuclides 23#Th and ?34Pa are not considered in the following equation
as their half-lives are several orders of magnitude smaller than those of 233U and 234U (Fig. 2.4
[brackets]). Therefore, only the activity ratios of (?3°Th/?38U) and (?3*U/?38U) are necessary to
determine the age of the sample. The isotopic decay constants are noted as Ai. The initial
activity ratio in the sample carbonate is (***Th/?38U); and the measured activity ratio is
(239Th/23%8U), the sample age is given as t. Derived from (Ivanovich 1994), the marine age

equation is formed:

230 230 234
_Th =1+ _Th — 1| - e~A230t + u -1 & 1- 3(1234—1230)1—“)
238U . 238U . 238U . /1230 _ 1234

E2.1
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The ratio (***U/?38U) is often given in & notation (E2.2), expressing the deviation from

radioactive equilibrium in %.:

(234U/238U) _ (234U/238U) 2341y
5234y = < t eq) - 1000 = <<—> - 1> - 1000
t

(234U/238U)eq
E2.2
Natural geochemical processes, like oxidation/reduction, scavenging processes, adsorption or
crystallization cause isotopic and elemental fractionation in seawater, initiating a state of
disequilibrium between mother and daughter nuclides. These isotopic signatures and trace
elements are incorporated during growth when marine calcifiers precipitate CaCO3 from
surrounding seawater. In any U-bearing, naturally occurring calcite or aragonite, if it
remained unaltered, the disequilibrium can be measured and dated by using the U-series age
equation. Some 800 ka after formation a state of secular equilibrium is eventually established,
which marks the limits of this age determination method. During the formation of calcitic
tests (e.g. foraminifera or coccolithophores) or aragonitic skeletons (CWC), U atoms take up
slots in the crystal lattice structure. Calcite forms as rhombohedral crystals, whereas
aragonite forms as orthorhombic crystals. The dominant U molecule in seawater, uranyl
carbonate is in octahedral system and more compatible with the latter (Shen and Dunbar 1995,
Reeder et al. 2001). The different crystal lattices are responsible for varying U concentrations
in foraminifera tests of 0.02-0.05 ppm and 2-5 ppm in coralline skeletons (Ku 1965, Russell et
al. 1994). In addition, the ratio of U/Ca in coral skeletons is dependent on the pH and
controlled by the carbonate ion concentration in seawater (Anagnostou et al. 2011, Inoue et
al. 2011, Raddatz et al. 2014). Upon death, no more U is incorporated into the marine organism
skeleton and through the decay of 238U, 23Th increases.
As mentioned above, 23°Th is particle reactive and only resides on a short timescale in the
water column and is scavenged quickly. Yet reported values suggest an increase of 2*°Th in
depth from 23°Th/232Th values of 0-30 ranging from 0-400 m (Vogler et al. 1998, Cheng et al.
2000). Accordingly, the initial 23°Th concentration in coral skeletons cannot be assumed to be
zero, which consequently leads to a 23°Th correction for the amount of Th which did not

derive from radioactive decay in a closed system. The initial activity ratio of 23°Th/?3%¥U is

2307 2327p\ /2307
( 238[] ) = < 238[] > <232Th>,

accordingly adopted as:

E2.3
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Due to the long half-lives of #3?Th and #3%U, exceeding the coral age by several orders of
magnitude, the activity ratio (>32Th/?3U) since the formation of the sample material can be
assumed constant and (?30Th/232U); can be taken from water column measurements (Cheng et

al. 2000) or via isochron techniques.

As mentioned above, it is of utmost necessity for U-series measurements, that the sample
remains unaltered after death. Coral alterations comprise of carbonate dissolution, secondary
aragonite precipitation, boring organisms, pore fillings, recrystallization and ferromanganese
coatings on the skeleton (e.g. Lomitschka and Mangini 1999, Allison et al. 2007). These
alterations can affect the geological U-series clock when removing or adding additional U and
Th to the skeleton. Ferromanganese coatings, acquired on the surface of the skeletons contain,
in addition to U, a high concentration of 2*Th;. These coatings can be effectively removed
through physical and chemical cleaning and do not alter the skeleton itself. Other alterations

are difficult to quantify through microscopic studies of the skeleton or geochemical analyses.

One approach to confirm the samples closed system nature or open system behaviour, is the
seawater evolution curve (E2.5), depending on 8%*U (E2.2) and assuming (?*Th/?8U) = 0. In
the case of closed system behaviour, the sample follows the evolution curve throughout time,

whereas deviations from the curve reflect open system behaviour. (Fig. 3.3a and 3.5a).

() ][ -

230 _Az30,. (823U Az30—A234 . ( 6234U 234
—Th — 1 —e 2.234 ln(5234’Ui) _|_ A . (1 —e 1234 ln(5234ui)) . 6 U
2380 ], 1000

E2.4

A230 = A234
E2.5

Due to the a-recoil effect and chemical fractionation processes, 234U is preferably leached from
source rocks (Chabaux et al. 2003). Resulting in activity ratios of 234U/233U in rivers showing
large deviations from secular equilibrium, up to several hundred or thousand permille (Dunk
et al. 2002, Chabaux et al. 2003). River run-off into the ocean results in a present-day, globally
enriched activity ratios of 23U/?38U = 1.1468 or 6?%*U = 146.8%, (Andersen et al. 2010).
Henderson (2002) proposed this 623U value has been stable with a variation of + 15%., for the
past 360 ka. The long residence time of U in seawater (380 ka) suggests long feedback times
on external input of U. Robinson et al. (2004) investigated the effects of rainfall and
weathering on seawater 623U during glacial cycles. Simple mass balance models indicate a
variation of up to 10%. during the last 80 ka. Therefore Robinson et al. (2004) suggested a

revaluation of rejected data varying significantly from the established modern seawater §234U.
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Most importantly, various studies suggested lower seawater 824U values during the last
glacial (Cutler et al. 2004, Robinson et al. 2004, Esat and Yokoyama 2006, Thompson et al.
2011), as well as large and rather rapid changes of the U isotope budget over the last 30 ka
(Chen et al. 2016). Potential triggers for varying seawater 623U are changes in ocean mixing,
the reduction of weathering during glacial periods and the meltwater discharge during early
deglacial periods (Chen et al. 2016). Additionally, changes in weathering patterns, exposure
and the size of mangrove forests, which are known as reductive U storing environments, may

play a role (Robinson et al. 2004, Esat and Yokoyama 2006).
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2.5 Li/Mg temperature
In the scientific community, a growing number of studies developed temperature proxies, e.g.

S0, A47 (so-called clumped isotopes), Sr/Ca, Mg/Ca, U/Ca on carbonate skeletons of
biomineralizing organisms like foraminifera tests, tropical to temperate (warm-water) corals
as well as cold-water corals (Beck et al. 1992, Shen and Dunbar 1995, Mitsuguchi et al. 1996,
McCulloch 1999, Montagna et al. 2007, Saenger et al. 2012). The temperature of the oceans
controls, among other physical and chemical parameters, the ocean circulation and
dissolution of CO2, as well as a wide range of biogeochemical processes, determining the
structure of aquatic ecosystems and their food webs (Montagna et al. 2014). However, isotopic
and elemental ratio data of skeleton samples alike have been proven to be influenced by vital
effects, salinity or pH, resulting in the dilution of the primary environmental signal (Sinclair
2005, Sinclair et al. 2006, Hathorne et al. 2013).

The search for a temperature proxy less influenced by vital effects led Marriott et al. (2004) to
investigate the Li/Ca ratios on the tropical scleractinian coral species Porites, showing a
negative gradient of 4.9£1.8% per °C with seawater temperature. Compared to Sr/Ca, with a
gradient of only 0.7% per °C (Corrége 2006), another proxy used for paleothermometry, the
sensitivity of Li/Ca to seawater temperature changes is thus much greater in Li/Ca, therefore,
making it an ideal tool to reconstruct temperature variability during the geological past. Using
the well-established Mg/Ca proxy on benthic foraminifera combined with Li/Ca ratios, Bryan
and Marchitto (2008) significantly improved the correlation with seawater temperature. Based
on these findings, Case et al. (2010) presented Li/Mg ratios on corals, correlating with R?=0.62
with temperature allowing thus for a reconstruction precision as good as +1.6 °C on (paleo)-
temperatures. It was further demonstrated, that the skeleton Li/Mg ratio is independent of
salinity and carbonate ion concentration (Raddatz et al. 2013, Montagna et al. 2014). Further
studies have improved these earlier findings of the Li/Mg vs. water mass temperature
relationship, but also demonstrated that the Li/Ca as well as Mg/Ca ratios in aragonite lattice
are possibly influenced by the corals’ growth rate and calcification process in addition to
seawater temperature (e.g. Raddatz et al. 2013). Experimental work on inorganic calcite
precipitation by Fiiger et al. (2019) confirms this empirical bias when incorporating Li in
calcite at variable precipitation rate and pH. Since corals regulate pH internally (Adkins et al.
2003, McCulloch et al. 2012) and the global pH value in the ocean has changed only little by
0.3+0.1 since the last glacial period (Sanyal et al. 1995), the effect of pH on Li/Ca and Mg/Ca
ratios in coral skeletons can be considered small but may be considered individually on local

hydrographic scales.
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Combining the findings of the latter mentioned studies, Hathorne et al. (2013) investigated
Li/Mg ratios on Porites and presented a negative correlation with local seawater temperatures.
Further, a single exponential relationship between Li/Mg and seawater temperature, valid for
multiple biogenic aragonites has been proposed (Hathorne et al. 2013). Investigating 49 coral
specimen, from shallow to deep-water (8-880 m), from tropical to cold-water (0-26 °C) as well
as tank cultured specimen, Montagna et al. (2014) established a highly substantiated
interspecies, exponential negative correlation (R?=0.975) of Li/Mg with temperature, with a

typically achievable precision of +0.9 °C (Fig. 2.5).
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Fig. 2.5: Li/Mg temperature calibration curve (Montagna et al. 2014).
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In addition, Montagna et al. (2014) investigated the inter-skeletal, micro-scale variations and
differences of Li/Mg compared to Li/Ca and Mg/Ca in the thecal wall of L. pertusa (D.
pertusum). The latter two ratios are heavily influenced by crystal-growth and show elevated
values in the fast-growing centre of calcification (COC) compared to fibrous aragonite
overlying the COC (Case et al. 2010, Raddatz et al. 2013). The fibrous part of the thecal wall,
characterized by low Li/Ca and Mg/Ca potentially reflects lower growth rates, close to
thermodynamic equilibrium and likely shows unbiased environmental signals, being best
suited for geochemical analyses (Montagna et al. 2014).

The Li/Mg temperature proxy has been successfully applied on CWC specimens of the species
L. pertusa (D. pertusum) off the coast of Norway (Raddatz et al. 2016). Similar patterns were
found in reconstructed Li/Mg bottom water temperatures compared to the established
foraminifera (species: Neoglobquadrina pachyderma (sinistral) cold-water planktonic
foraminifera) Mg/Ca Sea Surface Temperature (SST) proxy and faunal assemblages (Raddatz
et al. 2014, Raddatz et al. 2016).

Recent studies have shown more structural difficulties concerning organic green bands and
diagenetic calcite deposits within the aragonite coral skeleton (e.g. Cuny-Guirriec et al. 2019
and references therein). The former, found in some tropical corals specimen, revealed
anomalously high Mg/Ca ratios and consequently low Li/Mg values, overestimating
temperatures by 15 °C. Whereas the calcite deposits have been found in CWC, affecting the
Li/Mg temperature sensitivity by ~1.5 °C/1% calcite (Cuny-Guirriec et al. 2019). Based on the
fundamental work of Montagna et al. (2014), a revised Li/Mg temperature calibration was
recently published by Cuny-Guirriec et al. (2019; Fig 2.6), confirming the findings of

Montagna et al. (2014) and refining the exponential calibration with a correlation of R?=0.99.
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Fig. 2.6: Revised Li/Mg temperature calibration curve (Cuny-Guirriec et al. 2019). Calibration curve is
comprised of warm water and cold-water corals.

The uncertainty of the temperature estimates increase with rising temperatures (+0.9 °C at
1°C,+1.5°Cat 12°C and 2.6 °C at 25°C), this results in highest uncertainties with temperature
reconstruction on corals from tropical areas. The interspecies overall uncertainty across
Antarctic to tropical environments is stated with a standard error of £1.0. Here, the improved
calibration was used to determine ambient water temperatures bathing the studied CWC

based on their skeleton Li/Mg ratios (see Chapter 4).
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2.6 Methods: Observation tools and coring gear
2.6.1 Multibeam Echosounder
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Fig. 2.7: (a) Overview map, including the location of EMCP in the Alboran Sea. (b) Multi-beam bathymetric
map of the EMCP with a 25 m grid resolution. Box (c) and (d) show a close up of the core locations
(GeoB18118-1, GeoB18118-2 and GeoB18116-2) and the mound topography. White stars indicate the
locations of CTD stations (GeoB18122-1 and GeoB18110-1) used in Chapter 4. Parasound profile (Fig. 2.8)
is indicated by black dashed line. (c) Topography of Brittlestar I (BR I) and on mound core locations
GeoB18118-1 and GeoB18118-2. (d) Topography of Dragon Mound (DM) and on mound core location
GeoB18116-2. Map is modified after (Hebbeln 2019).
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Highly resolved maps of the seafloor, revealing topographic features like coral mound
structures (Fig. 2.7), are produced by using a ship-mounted Multibeam Echosounder. The data,
used for Fig. 2.7 was produced during MSM36, where depending on deep or shallow to
medium water depths, low (12 kHz) and high (95 kHz) frequencies and pulse lengths between
0.2-2 ms were used to achieve resolutions as low as 2-8 m (Hebbeln et al. 2015). The seafloor
is then scanned in predefined grids. The result, as seen in Fig. 2.7 is a map with different
shaped structures of various sizes and their highly defined erosional moats around them

(Hebbeln 2019).

2.6.2 Parasound
Using parasound prior to the drilling verifies the coral bearing nature of seafloor structures.

Two primary high-frequency signals are emitted towards the seafloor. A secondary low
frequency, reflected from the seafloor is received by ship-mounted detectors (piezo-crystals).
Fig. 2.8 displays a parasound profile showing seafloor sediment structures and partially buried
coral mounds in the Alboran Sea. Undisturbed, homogenously deposited sediments show the
same reflection time (black areas) whereas inhomogeneous, disturbed sediments and coral

mounds, where parasound is deflected, are displayed in white.
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Fig. 2.8: Parasound Profile, shown by dashed line in the multi-beam map (Fig. 2.7). Multi beam map shows
elongated and partly buried mounds. Parasound reveals “christmas tree” like structures of the mound and
a complex pattern of erosion and sedimentation in off-mound sediments. The given depth is based on a
uniform sound velocity of 1500 m/s Modified after Hebbeln et al. (2015).
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2.6.3 Coring gear
Upon finding a suitable location, depending on the research question, various sampling

methods have been used in the last decades to retrieve coral samples. For an in-situ impression
of the seafloor and the state of corals on-site, Remotely Operated Vehicles (ROV) are deployed,
providing live-video transects of the location (Fig. 2.9a). Additionally, equipped with robotic
arms and sample boxes, ROVs can selectively collect single coral specimen (Fig. 2.9b). Using
a Van Veen Grab Sampler or box-corer, both devices close upon impact on the seafloor,
retrieve undisturbed surface samples of 20 to 50 cm depth below seafloor (Fig. 2.9¢). Studying
the spatial distribution of coral growth in mounds, commonly Gravity Corers (GC) are used
(Fig. 2.9d). A metal pipe (@12 cm) of various lengths (5-10-15 m) is attached to an up to 2 t
heavy weight (so-called “bomb”). The metal pipe is fitted inside with a plastic liner, which
after successfully deploying the GC contains a full of corals and/or sediment sequence. The
tip of the metal pipe is closed off by the core catcher, a sharp-bladed metal sheet. Hanging
outboard from a winch, the GC is released with up to 1 m/s towards the seafloor, where it
penetrates the coral mound. Depending on the density of the sediment and the speed of
penetration, the GC can over-penetrate or get stuck. Aboard, the liner is commonly cut in 1 m
segments and sawn into 2 halves, one for the archive and one for scientific analysis (Fig. 2.9f
and 2.9g).

As previously mentioned, coral mounds can built up 300 m or higher representing thousands
or even millions of years of coral growth. The first 5 to 10 m sampled by GCs, mostly reflect
the last reef growth phases of the mound but do not show the long term development of the
mound. To gain more insight and possibly drill to the base of a coral mound, one approach is
the use of a drillship, like the JOIDES RESOLUTION. During IODP Expedition 307, Challenger
Mound, on the Irish Margin was successfully drilled to the base (155 m) and revealed
discontinuous coral growth over 2.6 Ma (Kano et al. 2007). Another, less costly method with
less logistical effort, is the MARUM seafloor drill rig MeBo (MeeresbodenBohrgerat; Fig. 2.9¢)
(Freudentahl and Wefer 2010, Wefer and Freudentahl 2016), as used in the research cruise
MSM36 MoccoMeBo (Hebbeln et al. 2015). Equipped with two core barrel magazines, each
barrel, including a plastic liner within, has a length of 2.35 m and a drill head for coring
(Fig. 2.10). MeBo can drill 70-77 m with the old configuration (Hebbeln et al. 2015) or up to
200 m with the modern setup (MeBo2).
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Fig. 2.9: Variety of introduced sampling gear. (a) ROV used during M151. (b) live corals in the Alboran Sea
(Hebbeln et al. 2009). (c) Grab sampler used during M151. (d) Gravity Core (M151). (e) Opened coral
bearing gravity cores (MS36). (f) MeBo, recovered after deployment. (g) MeBo coring rods unopened
(MS36). (h) Opened coral bearing MeBo cores (MS36). Pictures were taken during different research cruises
(MS38 and M151). Copyright belongs to Volker Diekamp, Thorsten Klein, ROV Cherokee, MARUM.

MeBo is deployed from the back of a ship and lowered by a 2000 m long winch onto the
seafloor. Safely landing MeBo on a coral mound is difficult, since a flat angle of maximal 2° is
necessary to maintain an upright position for drilling (Freudentahl and Wefer 2010, Wefer
and Freudentahl 2016). Once landed and stabilized, a full 70 m drill takes up more than 24 h.
Changes in the sediment fraction towards finer sediment down the core and adjustments in
water pressure, necessary for the drilling process can lead to the loss of core material.

Individual core barrels show a recovery as low as 29% in GeoB18116-2 (Fig. 3.4) and 5.5% in
GeoB18118-2 (Fig. 3.6a and 3.6b).
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Back on board, the core barrel magazine is emptied. The plastic liners are cut in 1.2 m sections,
depending on the recovery of the individual liner. The CoreCatcher (CC) is stored in a short
liner piece (Fig. 210). If the core is bearing corals, it is frozen prior to sawing, to preserve the
core stratigraphy, while splitting it into two halves (Fig. 2.9g). During the research cruise
MSM 36, several coral mounds were drilled and a total of 382 m core material was retrieved

(Hebbeln et al. 2015).
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Fig. 2.10: Scheme of MeBo core handling. One core barrel is split in two parts of maximum 1.2 m. The
CoreCatcher (CC) is stored in an individual barrel. All core segments are labelled horizontally with Work
(W) and Archive (A) halves. Modified after the standard scheme for MeBo cores of the MARUM, used in
Hebbeln et al. (2015).

pilot
sleeve

A Conductivity-Temperature-Depth (CTD) profiler with 24 water bottle rosette (Fig. 2.9h) is
commonly used to determine the chemical properties of the water masses surrounding the
cored mound. Additional sensors beside the name-giving sensors, dissolved oxygen and
chlorophyll-a, are usually equipped as well.
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3 Climatic and paleoceanographic constraints on long-term cold-water coral
growth in the Alboran Sea

3.1 Introduction
Scleractinian framework-forming cold-water corals (CWC) are distributed all over the world’s

oceans (Roberts 2009, Freiwald et al. 2017) and can form extended geo-bioconstructions
known as coral mounds (Roberts et al. 2006, Wienberg and Titschack 2017). The most
prominent framework-forming species L. pertusa (D. pertusum) and M. oculata are capable of
tolerating a broad range of physico-chemical conditions in the ocean (Freiwald 2002, Roberts
et al. 2006, Keller and Os’kina 2008, Freiwald et al. 2009, Hanz et al. 2019). The most important
factors influencing the occurrence of CWC are food supply, temperature, salinity, oxygen
concentrations, water mass density, pH and aragonite saturation, as well as bottom water
dynamics and hard substrate (e.g. Freiwald 2002, Davies et al. 2008, Dullo et al. 2008, Davies
and Guinotte 2011, Flogel et al. 2014). Strong near-bottom hydrodynamics and enhanced
productivity benefit mound development (Dorschel et al. 2005, Riiggeberg et al. 2007,
Wienberg et al. 2010, Eisele et al. 2011, Matos et al. 2015), whereas low dissolved oxygen
concentrations appear to hamper coral mound formation (Wienberg et al. 2018). Another
important parameter in invigorating or limiting mound formation is the water column
structure and water mass circulations at intermediate depth (White and Dorschel 2010, Frank
et al. 2011, Raddatz et al. 2014, Matos et al. 2017, Wienberg et al. 2018). Due to the sessile
nature of CWC, food particles must be delivered from the surface or through advection by
ambient hydrodynamics (internal tides and waves, downwelling, geostrophic currents and
mixing processes) (White et al. 2005, Mienis et al. 2007, Davies et al. 2009, Taviani et al. 2016,
Wang et al. 2019). However recent studies suggested a rather seasonal diet for CWC than a
constant food supply (Van Engeland et al. 2019).

If favourable conditions predominate, successive generations of corals may build up to reefs
and consequently to coral mounds (Roberts 2009). However, only a sufficient supply of
sediment incorporated into the coral framework and thus supporting it can lead to the three-
dimensional structures of CWC mounds. Due to their dependency on sediment supply, coral
mounds are so far only recorded on the continental margins (Roberts et al. 2006, Roberts 2009,
Hebbeln et al. 2016, Wienberg and Titschack 2017). CWC mounds may form oval to elongated
shapes or even ridge-like structures, extending over several hundreds to thousands of meters
and may vary in height from a few to hundreds of meters (van Weering et al. 2003, Mienis et
al. 2007, Wheeler et al. 2007). In the Atlantic and the Mediterranean Sea, coral mounds, usually

found in water depths between 200 to 1000 m, are often arranged in clusters or coral mound
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provinces. Consisting of up to hundreds or thousands of mounds, these clusters and provinces
shape the seafloor topography (De Mol et al. 2002, Wheeler et al. 2007, Roberts 2009, Wienberg
and Titschack 2017, Hebbeln et al. 2019). Mound development can last over periods of
thousands to millions of years and provide a unique archive, containing a record of the hydro-
environmental variability that prevailed during coral growth and mound formation (Kano et
al. 2007, Frank et al. 2011, Raddatz et al. 2014). Distinct patterns of discontinuous coral growth
have been found in various mound provinces in the NE Atlantic, most likely the growth
patterns are closely related to major climate changes, such as glacial-interglacial variability
(Kano et al. 2007, Frank et al. 2011, Raddatz et al. 2014). In detail, CWC growth was
predominantly observed during interglacial and interstadial periods, whereas in the Gulf of
Cadiz and off Mauretania, CWC growth was predominantly observed during glacial periods
(Dorschel et al. 2005, Kano et al. 2007, Wienberg et al. 2010, Eisele et al. 2011, Frank et al.
2011).

In the Mediterranean Sea, most coral mounds are found within the Alboran Sea, along the
Moroccan margin (Comas et al. 2009, Lo Iacono et al. 2014, Hebbeln et al. 2019). Parallel to
the margin and spanning an area of over 500 km? the Melilla Coral Province is found just
north of the Spanish enclave Melilla. The Coral Province is divided into the East and West
Melilla Coral Province (EMCP and WMCP; Van Rooij et al. 2013, Lo Iacono et al. 2014).
A growing number of studies provided information on CWC occurrence in the Alboran Sea
over the past 15 ka and provided first implications on environmental forcing, invigorating
and limiting coral growth in the area (Fink et al. 2013, Stalder et al. 2015, Stalder et al. 2018,
Wang et al. 2019, Feenstra et al. 2020). High CWC aggregation rates between 70-420 cm/ka
during the Belling-Allered interstadial and the Early Holocene were correlated: (i) enhanced
productivity in AS (Fink et al. 2013), (ii) cold/dense and well-oxygenated bottom water
conditions (Stalder et al. 2015). Thirdly (iii) a closer proximity to water mass boundaries,
supplying corals with food particles (Wang et al. 2019) and (iv) increased fluvial input,
supplying sediment and organic matter (Feenstra et al. 2020).

Although several studies closely investigated the last thriving growth period of CWC in the
Alboran Sea and provided possible environmental parameters for enhanced or suppressed
CWC growth, the question of a regional to global forcing mechanism remains. Since the
Alboran Sea provides vast CWC mounds under the influence of Atlantic and Mediterranean
exchange, this area provides a unique environment to study such phenomena. Consequently,
the aims of this study are (i) to provide a unique long-term growth history of CWC in the
EMCP over the last 550 ka, which is based on the possibility to assess drill cores and collect
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an unprecedented amount of U-series ages on pristine coral fragments. As well as (ii) to link
the derived temporal pattern of mound formation to basin-wide oceanographic and

atmospheric environmental changes over several full glacial-interglacial cycles.

3.2 Regional setting
The Alboran Sea is encompassed by North Africa in the south and by the Iberian Peninsula

in the north. In the west, through the narrow Strait of Gibraltar (SoG) (300 m sill depth), the
Alboran Sea is connected to the Atlantic Ocean and opens to the east into the Algerian Basin.
Three distinct water masses, the Modified Atlantic Water (MAW), the Levantine Intermediate
Water (LIW) and the West Mediterranean Deep Water (WMDW) are found in the Alboran
Sea (Millot and Taupier-Letage 2005). CTD data obtained close to the sample locations, match
the published physical parameters of MAW and LIW (Fig. 4.2) with water mass boundaries of
MAW/LIW residing in 250 and 160 m water depth. The core locations within the EMCP are
marked in Fig. 3.1a. Mound topography is shown in Fig. 3.1b and Fig. 3.1c.

The Mediterranean Sea is generally characterized as oligotrophic (Moran and Estrada 2001,
d'Ortenzio and Ribera d'Alcala 2009). The Alboran Sea, considered an exception, shows the
highest marine productivity and quasi-permanent areas of upwelling. These dynamics are
controlled by local hydrography, like vertical mixing along the northern edge of the West
Alboran Gyre (WAG), along the Almeria Oran Front on the eastern side of the East Alboran
Gyre (EAG) (Fig. 2.1) as well as atmospheric circulation, causing wind-induced upwelling
(Garcia-Gorriz and Carr 1999, Sarhan 2000, Dafner et al. 2003, d'Ortenzio and Ribera d'Alcala
2009). Biogenic material is transported both vertically and horizontally within the gyres in
the Alboran Sea (Sarhan 2000, Baldacci et al. 2001). Sediments found in the Alboran Sea are
comprised of aeolian dust, transported from the Sahara (Stuut et al. 2009, Terhzaz et al. 2018)
and fluvial input, originating primarily from the Iberian Peninsula and the Moroccan
hinterland (Fabres et al. 2002, Terhzaz et al. 2018). The largest Moroccan river, Moulouya
River, with a pre-dam sediment load of 12-13 megaton/year (Mt/a), enters the Alboran Sea
some 50 km east of the investigated location (Snoussi et al. 2002). The river drains
predominantly through sedimentary bedrocks of the high and low Atlas Mountains (Snoussi
et al. 2002).

Along the Moroccan margin, a large amount of CWC mounds were discovered over the last
decade (Comas and Pinheiro 2007, Lo Iacono et al. 2014, Lo Iacono et al. 2018). Based on the
geographical position from west to east three coral provinces, the West Melilla Coral Province

(WMCP), the most prominent East Melilla Coral Province (EMCP) and the Cabliers Mounds
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were created. Today, coral occurrence is limited to the EMCP with isolated patches of corals
and to the Cabliers Mounds with flourishing coral reefs (Hebbeln et al. 2009, Corbera et al.
2019). The EMCP within the grey box (Fig. 3.1a) is comprised of three subsections. In the
northern section (light blue star), predominantly large coral ridges were found (Fig. 3.1b).
The middle section is comprised of oval to arcuate coral mounds and in the southern section

(dark blue star, Fig. 3.1c) mainly elongated, partly buried ridges were found (Hebbeln 2019).
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Fig. 3.1: Map of the Alboran Sea and the core locations (a) General overview of the Alboran Sea with water
mass flow paths including surface to deep water. Green shaded areas show upwelling with high
productivity. (b) Topography of Brittlestar I (BR I) and on mound core locations GeoB18118-1 and
GeoB18118-2. (c) Topography of Dragon Mound (DM) and on mound core location GeoB18116-2. Map is
modified after (Hebbeln 2019).
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3.3 Material and Methods

3.3.1 Samples
In this study, three on-mound cores, collected in 2014 during MSM-36 “MoccoMeBo” cruise

aboard the RV Maria S. Merian (Hebbeln et al. 2015), are presented. Two cores GeoB18118-1
and GeoB18118-2 originate from Brittlestar Ridge I (Fig. 3.1b). The gravity core (GC)
GeoB18118-1 (35°26.139°N, 2°30.765’W), with a recovery of 873 cm is located in 332 m water
depth. In close proximity to the GC, in 329 m water depth is a 5298 cm long MeBo core
GeoB18118-2 (35°26.160'N, 2°30.810'W). The second location is south of Brittlestar I
GeoB18116-2 in 236 m water depth (Fig. 3.1c) is a 7147 cm long MeBo core on the partially
buried Dragon Mound (35°18.642'N, 2°34.933'W; Hebbeln 2019). Before cutting the cores
lengthwise with a saw, the cores were frozen for 24 hours to preserve the sediment and
therein embedded coral fragments in place. Based on qualitative visual core descriptions on
board, coral fragments were sampled for paleoceanographic multi-proxy analyses in the labs
at MARUM, Bremen.

Table 3.1: Metadata of sampling stations (GC — Gravity Corer; MeBo — Bremen drill rig) visited during
MSM36 in the Alboran Sea (EMCP — East Melilla Coral Province).

Station Area Gear Llatitude Longitude Waterdepth Recovery
[°N] ["W] [m] [cm]

GeoB18118-1 EMCP GC 35°26.139  2°30.765 332 873

GeoB18118-2 EMCP MeBo 35°26.160 2°30.810 329 5298

GeoB18116-2 EMCP MeBo 35°18.642  2°34.933 236 7147

3.3.2 U-series dating sample preparation
The conventional column chromatography method as described in Wefing et al. (2017) was

used to extract and purify U and Th from coral samples. The samples were bathed in an
ultrasonic water bath and mechanically cleaned, using a sandblaster and Dremel drill. The
clean sample material (~50-75 mg) was leached and dissolved in 7M HNOs3. A TriSpike,
containing the artificial isotopes 22°Th, ?33U and 236U, was added to the sample solution. The
extraction was done in 1.5 ml columns, filled with 250 pl UTEVA resin and washed with Milli-
Q. The column was loaded with 7M HNOs3 and the sample added, consequently the sample
was washed in 3 steps of 0.5 ml HNOs. The sample was eluted into the sample beaker by
washing the sample once with Milli-Q and eluted with 0.5 ml steps of 1.5 ml 1M HCI and
1.5 ml 3M HCL The column was filled with Milli-Q to keep it moist overnight, the sample
then was evaporated and re-dissolved in 300 pul 7M HNOs. Loaded with 7M HNOs3, the second

column was processed exactly like the first column with the exception of an additional final
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step. 1.5 ml of 1M HF was added in 3 steps and the sample evaporated afterwards. To prepare
the sample for the analysis on the Multi Collector-Inductively Coupled Plasma-Mass
Spectrometer (MC-ICP-MS), it was dissolved in 2 ml of 1% HNOs and 0.05% HF. Blanks were
proceeded in the same way as samples, excluding the washing procedure in the beginning
and blanks were dissolved in 0.3 ml 1% HNO3 and 0.05% HF solution for analysis. Analytical
blanks achieved values of 0.05 fg for #°Th, 0.3 fg for #*U and 0.005 ng for 23U
(80 measurements over 3 years; Heidelberg U-series CWC age database). The mean chemical

yield for U is at 98+4% and for Th at 88+8% (Wefing 2016).

Before 08/2015 samples (n=42) were measured on an iCap - Inductively Coupled Plasma
Quadrupole - Mass Spectrometer (iCap -ICP-Q-MS) and are marked with (*) in table 3.2. The
extraction protocol solely differs in the final dissolution of samples in 0.5M HNOs3, whereas

the blanks were treated the same.

3.3.3 Analysis
The isotopes 2°Th, 23°Th, 232Th, 233U, 234U, 23°U and 236U were measured on a Thermo Fisher

Neptune Plus MC-ICP-MS at the Institute for Environmental Physics, Heidelberg University
(Germany), using a standard bracketing technique (e.g. Arps 2017, Wefing et al. 2017) with
the HU-1 standard (Cheng et al. 2000). Achieved HU-1 standard reproducibility is
2341/238U = 0.9997+0.0003 and 23°Th/?38U= 1.002+0.005 (Arps 2017). Average precisions of 1%
for U ratios and 2.6%. for Th ratios were achieved (2 SD uncertainty). Coral ages were
calculated using the re-determined half-life values of 23°Th, 234U, 238U from (Cheng et al. 2000)

and references therein.

3.3.4 Quality control
Evaluating the measurement results, the first criteria of quality control is the amount of

measured 23?Th. Frank et al. (2004), measuring on a thermal ionization mass spectrometer,
suggested an upper limit of 10 ng/g for 2*2Th so that the age correction stays within the
uncertainty of the measurement. Since measurements in this study were mainly done on a
Neptune Plus MC-ICP-MS, a higher precision of sub-%. (i.e. e-) levels were achieved. Hemsing
(2017) suggested an upper limit of 1 ng/g for such an improved precision to minimize the
effect of 232Th age corrections for corals ranging from recent to 60 ka. However, Hemsing
(2017) used an artificial upper limit of 5 ng/g, since using an upper limit of 1 ng/g would have
led to a 50% loss of discussable data and the author’s samples showed no open system

behaviour. Regarding the range of ages (500 to 8 ka) presented in this study, a stepwise
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extension of the upper limit for 232Th appears to be necessary, which on first glance may
appear an awkward choice. Ages, from recent to 10 ka, show age corrections higher than the
measurement uncertainties for 2*2Th values as low as 1.12 ng/g. therefore an upper limit of
1 ng/g seems appropriate. Only one coral (78 ka) was dated in the age range (~60 ka) of
Hemsing (2017), with 232Th values of 3 ng/g, which still is within the uncertainty of the
measurement (£100 a), yet an upper limit of 2.5 ng/g seems to be more fitting for corals of
that age range with high e-precisions. Further obtained ages, with 2*Th values above the
proposed 1ng/g limit, show elevated Th values of up to 7.8 ng/g and range between 140 and
540 ka. Additionally, 232Th contamination is a residue from cleaning, not a strict indication of
diagenesis or CWC alteration. Discarded data with 2%2Th values > 10 ng/g - 20 ng/g show
corrections of 0.9 to 2 ka. The former proposed upper limit of 10 ng/g by Frank et al. (2004) is
a sensible limit for high e-precision measurements ranging between 100 ka and 550 ka. Since
elevated 23?Th values attest for not sufficiently clean coral samples, measurements above this
upper limit should be discarded nevertheless. Analysed samples in this study stay well below
10 ng/g. The stepwise increasing limits of 1 ng/g (<10 ka), 2.5 ng/g (<100 ka) and
10 ng/g (=100 ka) have been used for all samples presented in this study.

The second criteria of quality control is the seawater evolution curve of 623U and the activity
ratio 230Th/?38U (Fig. 3.3a and 3.5a). The curve is displayed with an initial 10%. variation of
seawater 823*U. CWC within the +10%. variation range are considered to show closed system
behaviour. After applying both quality control criteria 206 of 278 coral ages remain for

discussion, with over 85% below the mentioned 1 ng/g limit for 232Th.
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3.3.5 Mound Aggregation Rate
The Mound Aggregation Rate (MAR) is calculated by clustering dated coral fragments down

core. From each cluster, the oldest and youngest ages, as well as the highest and lowest depth

are taken to determine the MAR (cm/ka) (Fig. 3.2).
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Fig. 3.2: Simplified example of Mound Aggregation Rate (MAR). The deepest and shallowest depth, as well
as the oldest and youngest age of continuous coral growth, are subtracted and divided as shown in the
calculation. The result shows the vertical MAR in [cm/ka].

= 266.7 45

The gained rate reflects the vertical accumulated amount of sediment around framework
forming coral material in the selected period. MAR does not reflect coral growth directly,
since it is not calculated from coral to coral, ignoring minor inversions within the core. In

clusters, MAR represents an overall rate of mound aggregation.
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3.4 Results
The here presented data originates from up to 7000 cm long cores and is used to reconstruct

mound aggregations of the two drilled sites Dragon Mound and Brittlestar Ridge I. The given
depths of coral samples and coral clusters is given in cm below seafloor (cmbsf=short cm).

The presented data is found in the supplement (Table 3.2).

3.4.1 Mound aggregation of GeoB18116-2 on Dragon Mound
In total, 115 coral fragments from the coral bearing sediment core GeoB18116-2, were

analysed. After applying the quality control, 93 fragments remain to be discussed. Only one
coral was discarded due to its high 232Th value exceeding the upper limit (Fig. 3.3b), the other
21 discarded samples showed U-series open system behaviour (Fig. 3.3a and Table 3.2 in

supplement).
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Fig. 3.3a: 3*U seawater evolution curve for GeoB18116-2 over time. Black curve shows the standard
(Atlantic) evolution from the present-day value of 146.8%. back in time. Samples within the grey lines
(£10%o of the black line) are considered to show closed system behaviour. Note that values on the x-axis
start at 0.6. Dark blue rhombus are pristine coral samples revealing closed system behaviour, transparent
blue rhombus show open system behaviour and are discarded in further discussions. The red curve shows
a modified Mediterranean evolution curve with an assumed modern-day value of ~148.3%. (Chapter 6).
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Fig. 3.3b: %2Th values of CWC samples from core GeoB18116-2. For Samples older than 100 ka, an upper
limit of 10 ng/g ?*Th as part of the quality control was proposed (see text).

GeoB18116-2 core on Dragon Mound is 7075 cm long, with a recovery of 96%. The dominant
species is M. oculata with rare fragments of L. pertusa (D. pertusum). Since only the upper
61 m of the core are bearing corals, GeoB18116-2 is the second mound ever to be fully
penetrated. The entire age-depth profile over 450 ka is split into three clusters (Fig. 3.4). The
first cluster comprises of 56 coral fragments (n=56) and reveals a large scatter in age (420 to
260 ka; 6000 to 2500 cm). In the lower section of cluster 1 (6100 to 4000 cm), the observed age
scatter is larger with up to 90 ka than observed in the upper section (3800 to 2500 cm) where
age scatter, only ranging 35 ka, is lower. The overall MAR for Cluster 1 is 26 cm/ka.

Between the first and second cluster, missing coral occurrence spans circa 30 ka. The second
cluster (n=23), spanning 240 to 200 ka (2300 to 1100 cm) with an overall MAR of 49 cm/ka,
shows an age scattering in the lower section (n=8) coinciding with low MAR of 15 cm/ka,
comparable to cluster 1. The remaining upper section of Cluster 2 (n=15; 210 to 200 ka), as
well as the third and youngest cluster (n=14; 115-100 ka), appear to be in stratigraphic order
and show MAR as high as 81 cm/ka and 83 cm/ka respectively. Between the second and third
cluster, a possible hiatus of 85 ka is observed. Only one sample was dated at 171 ka during the

second gap.
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Fig. 3.4: GeoB18116-2 on Dragon Mound (dark blue rhombus). Red framed rhombus show coral ages from
individual barrels as explained in Chapter 3.5.1. Samples, originating from one barrel of 2.5 m, e.g.
segment S16, lack stratigraphic order with depth. Cluster 1, 2 and 3 show consecutive coral growth periods
with calculated MAR [cm/ka]. Dashed vertical bars indicate individual core barrels. Values on the right
side show the recovery of each core barrel (e.g. S13: 106.4%, S16: 100.5%, S23: 112%).

It should be noted, that coral ages within individual 235 cm drilled MeBo liners span as much
as 80 ka, as shown for individual Segments in Fig. 3.4 (red framed rhombus) and 3.6 (black
framed triangles). As shown in Fig. 2.10, the MeBo cores are split into three sections. From
core top to core bottom, the barrel segments are labelled 1, 2 and CoreCatcher (CC). As seen
in table 3.2, the distribution of age, depth and core number is not systematic in appearance.
Potential disturbances, like sample displacement during drilling or sampling processes, can

thus be ruled out.
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3.4.2 Mound aggregation of GeoB18118-1 and GeoB18118-2 on Brittlestar Ridge I
Sixty-two CWC fragments from Gravity Core GeoB18118-1 were dated. Six samples were

measured twice to reduce potential impurities on the sample, as seen by high 232Th values
and to achieve higher precision on §23*U. After applying the above-mentioned quality criteria,
a total of 56 samples remain for the discussion. For the adjacent MeBo core GeoB18118-2,
a total of 99 CWC were sampled and dated. Eleven samples have been replicated due to the
reasons mentioned above. Numerous samples were discarded during quality control due to
age-related diagenesis, such as skeleton corrosion and remaining contaminating surfaces,
leading to U-series open system behaviour, which is shown through comparison with the
closed system seawater evolution curve (Fig. 3.5a). A total of 53 samples remain after rigorous
quality control, hence only 60%.
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Fig. 3.5a: &3*U seawater evolution curve for GeoB18118-1 (open light blue triangles) and GeoB18118-2
(light blue triangles) over time. Black curve shows the standard (Atlantic) evolution from the present-day
value of 146.8%. back in time. Samples within the grey lines (+10%. of the black line) are considered to
show closed system behaviour. Light blue triangles and open triangles are pristine coral samples revealing
closed system behaviour, transparent light blue triangles show open system behaviour and are discarded
in further discussions. The red curve shows a modified Mediterranean evolution curve with an assumed
modern-day value of ~148.3%. (Chapter 6).
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Fig. 3.5b: %2Th values of CWC samples from core GeoB18118-1 (open light blue triangles) and GeoB18118-
2 (light blue triangles). Upper thresholds of “2Th concentrations were defined (see text): 1 ng/g (<10 ka),
2.5 ng/g (<100 ka) and 10 ng/g (=100 ka). Solid lines mark limits for the particular time slices.

The dominant reef-building species on Brittlestar I (GeoB18118-1 and GeoB18118-2), are
L. pertusa (D. pertusum) and M. oculata. With a recovery of 873 cm (72%), GeoB18118-1
revealed U-series ages ranging from 15.1 to 8.6 ka. No significant age inversions are observed
in the age-depth profile (Fig. 3.6a open blue triangle). The only sample, which does not appear
in stratigraphic order is at 11.6 ka in 580 cm depth. One sample of the same depth shows an
age of 13.4 ka, which is in good agreement with the other samples. This inversion can happen
during coring, sampling or analytical treatment and will not be further discussed. Other minor
inversions are well within the measurement uncertainties or within possible processes during
mound evolution. The here presented results (Fig. 3.6a) can be divided into three clusters. The
first cluster, comprised of 31 samples, ranges from 15.1 to 12.5 ka and reveals an overall MAR
of ~83 cm/ka, however, MAR as high as 213 cm/ka is observed between 14.7 to 13.4 ka followed

by a subsequent slowdown in aggregation towards a possible hiatus during the Younger
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Dryas event (YD). The second cluster (n= 8) ranges from the end of YD (11.7 ka) to 10.4 ka
with a MAR of 50 cm/ka. The third and last cluster (n=17), spans from 9.8 to 8.4 ka with an
overall MAR of 115 cm/ka. However, MAR as high as 210 cm/ka is observed until 9.1 ka,
followed by a slowdown in MAR of 21 cm/ka. No coral was dated younger than 8.4 ka in core
GeoB18118-1. The overall MAR, spanning from 15.1 to 8.6 ka, is as high as 130 cm/ka.

Age [ka]
0 5 20
O . 1 1 1 1 l 1 1 1 [l l
200
400 -
'g -
©, ": 213 cm/ka
< 600 — N
o
[0))] | Fve
()]
800
A GeoB18118-1 A
1000 — A
A GeoB18118-2
1200 "
YD BA

Fig. 3.6a: GeoB18118-1 (open light blue triangles) and GeoB18118-2 (light blue triangles) on Brittlestar I.
Cluster 1, 2 and 3 show consecutive coral growth periods with calculated MAR [cm/ka]. The apparent
temporal and spatial offset between GeoB18118-1 and GeoB18118-2 emerge due to two separate core
drillings.
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The 7075 cm long MeBo core GeoB18118-2 with a recovery of 73% reveals an age range
spanning from 538 to 8.3 ka, evidencing four age clusters (Fig. 3.6b). The age clusters are
separated by possible hiatuses, individually spanning up to 60 ka. The oldest cluster is
comprised of 8 coral fragments ranging from 538 to 376 ka and covers a core depth of 1600 cm
(7000 to 5400 cm). This cluster shows a large age scatter and several age inversions. Calculated
MAR is as low as 10 cm/ka for this cluster. Followed by a gap in the coral record, spanning
1300 cm (40 ka) only one coral was dated at 365 ka (4150 cm). The recovery of core segments
around this single coral is 37% (Fig. 3.6b). The second cluster (n= 12) ranges from 336 to 307 ka
and reveals a similar MAR of 17 cm/ka. During a 76 ka lasting gap of consecutive coral

occurrence (307-230 ka), two corals were dated at 286 ka and 242 ka.

The third cluster is comprised of 12 coral fragments and spans from 253 to 196 ka
(3000 to 1686 cm). The recovery in this cluster is relatively high (72%), though in the lower
section (up to 2000 cm) a larger scatter, e.g. 43 ka (253-210 ka) within 100 cm of the core can
be observed. MAR shows a similar magnitude as the second cluster with 25 cm/ka. The last
gap is observed from 196 to 15 ka. This gap has a high recovery of 67%, with two corals dated
at 145 and 142 ka (1350-1450 cm) and a single coral at 78 ka (1301 cm). The fourth and last
cluster, on the contrary, shows a low recovery of 31%. Nineteen coral fragments are dated
from 15.4 to 8.3 ka spanning the upper 1200 cm. MAR is calculated with values as high as
168 cm/ka. Over a timespan of over 550 ka, only a few corals show significant age inversions,
e.g. in the second cluster, the youngest coral with 286.5 ka (3900 cm) and a coral fragment in
3100 cm (336 ka, Fig. 3.6b), as well as one coral fragment in 232 cm (11.8 ka) in the fourth
cluster (Fig. 3.6a). Regarding the down core age distribution, an increasing age spread over
core depth is observed, e.g. the first (oldest) cluster shows a higher spread in ages than the
younger clusters (third and fourth).
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Fig. 3.6b: GeoB18118-1 (open light blue triangles) and GeoB18118-2 (light blue triangles) on Brittlestar L.
Black framed triangles show coral ages from individual barrels as explained in Chapter 3.5.1. Samples,
originating from one barrel of 2.5 m, e.g. segment S16, lack stratigraphic order with depth. Cluster 1, 2
and 3 show consecutive coral growth periods with calculated MAR [cm/ka]. Dashed vertical bars indicate
individual core barrels. Values on the right side show the recovery of each core barrel (e.g. S13: 99.2%, S16:
108.5%, 529: 106%).

The three presented cores (GeoB18116-2, GeoB18118-1 and GeoB18118-2) reveal a
discontinuous coral growth during predominantly interglacial periods. Stratigraphic order
can be observed in all three cores, which coincide with high MAR of up to 80 and 170 cm/ka
over the upper 1000 cm core depth respectively. With increasing depth, the two long MeBo

cores exposed increasing scatter.
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3.5 Discussion
During the following discussion, GeoB18118-1 and GeoB18118-2 will be referred to as

Brittlestar I (BRI), since both originate from the same ridge structure separated by only 1 km.
GeoB18116-2 is further referred to as Dragon Mound (DM).

3.5.1 Mound Evolution
The observed age-depth profiles of both sites clearly reflect the discontinuous nature of CWC

growth as previously observed on other coral mounds (Freiwald et al. 2004, Roberts et al. 2006,
Kano et al. 2007). The observed scatter within each growth phase and the vast spread of ages
within individual barrels is visualised by three segments, shown exemplarily for DM (Fig. 3.4,
red framed rhombus) and BRI (Fig. 3.6; black framed triangles). The age model of BR I reveals
a similar, yet less distinct scatter than observed at the age model of DM. The extent of the
observed differences in the patterns, might result from the number of dated corals per mound,
inflicting a small bias (DM: n=93; BR I: n=53). Both mounds however, show similar features
starting from a depth of circa 2000 cm downwards, which can commonly not be observed in

shorter gravity cores (up to 15 m).

The U-series age scatter at depth, observed on DM and partly on BRI, could have been caused
either by diagenetic alteration or by mound erosional processes ranging from minor age
inversions to mass wasting events. The time of exposure and thus the time for diagenetic
alteration increases with the sample age. Therefore, old samples are more prone to show
altered coral skeletons. Diagenetic alterations, including the addition or removal of U and Th
from the coral skeleton, lead to U-series open system behaviour as seen in Fig. 3.3a and
Fig. 3.5a. The Alteration of the coral skeleton may cause sample ages to appear younger or
older than their “real” age (e.g. Lomitschka and Mangini 1999, Cheng et al. 2000). However,
low 232Th levels, merely constant 23U concentrations of 4+1.5 pg/g, the physical preservation
of the fossil fragments, as well as the isotope ratios with the U-series closed system seawater
evolution reveals only minor scattering in the DM data and no systematic offset in the BR I

data.

The data is thus well within the expected U-series closed system boundaries and therefore,
suggests that the observed scatter is not caused by the diagenetic alteration of coral skeletons
or U-series open system behaviour. Alternatively, a sedimentological mound history needs to

be invoked which can explain the origin of the age scatter with depth.
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3.5.1.1  Mound Evolution Model: Dragon Mound
For the mound evolution of Dragon Mound, three main mound evolution processes are

proposed: (i) mass wasting events, reflected by large age scatters and a uniform youngest age
(timing of the event; Fig. 3.7b). (ii) Erosional processes, resulting in minor mixed-age layers
(Fig. 3.7¢) and lastly (iii) successive coral growth periods characterized by stratigraphic order

and elevated MARs (Fig. 3.7d).
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Fig. 3.7: Mound evolution scenario proposed for DM. (a) Initial mound built up with active coral growth.
(b) Collapsed mound flank created mixed-age layers. (c) Active coral growth and further erosion create
erosional layers with mixed-ages. (d) Active coral growth is diminished by enhanced sedimentation. The
core, drilled at the indicated position, would reveal mixed-age samples in the lower part (Cluster 1 and 2)
and stratigraphically ordered samples in the upper part (Cluster 3).

As seen on the multi-beam map of DM (Fig. 3.1c) and reported by e.g. Hebbeln et al. (2015),
most mounds in the EMCP have very distinct erosional moats, most likely due to strong
bottom currents and mound related turbulences (Comas et al. 1999). These moats may lead to
instability at the mound basis (Fig. 3.7a) and thus lead to a collapse of the weakened mound
slope (Fig. 3.7b). Landslides off the mounds flank could cause a stratigraphically disordered
relocation of coral mound material as observed in the first cluster of DM (Fig. 3.7b). Since no
age younger than 300 ka was dated in the first cluster (6100 to 3500 cm), however, multiple
samples dated at 300 ka are distributed throughout Cluster 1 (e.g. 5500, 4500 and 3500 cm),
a mass wasting event, centred around 300 ka is proposed to have caused the observed age
scatter at the base of DM. The upper part of Cluster 1 (3500 to 2900 cm) revealed a similar age
scatter, however to a smaller extent. Thus, the observed age scatter may as well reflect
a relocation of coral fragments by either a minor landslide or gravitational redistribution. The

first successive coral growth (290 to 260 ka) was observed at the top of Cluster 1 (2500 cm).

48



Chapter 3: Climatic and paleoceanographic constraints on long-term cold-water coral growth in the Alboran Sea

The lowest part of Cluster 2 (~2200 cm), similar to the upper Cluster 1, revealed minor age
scatter and thus is proposed to reflect erosional processes, resulting in a mixed-age layer
(Fig. 3.7c). The upper part of Cluster 2 and Cluster 3 (1900 to 0 cm) represent successive coral
growth with stratigraphic order and high MARs (up to 80 cm/ka; Fig. 3.7d). A more detailed

explanation of the mound evolution observed on DM is provided in the supplement.

3.5.1.2  Mound Evolution Model: Brittlestar Ridge I
Contrary to DM, no mass wasting events, here associated with core sections revealing large

age scatter and a uniform young age limit, were identified in the age-depth profile of BR L.
The core site, as shown in the multi-beam map of BRI (Fig. 3.1b), is located on the ridge top.
Since BRI spans several km in length and several hundred meter in width, one would expect
to find mass wasting like signatures in age-depth profiles along the flanks of the ridge, rather
than on the top.
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Fig. 3.8: Mound evolution scenario proposed for BR L. (a) Initial mound built up with active coral growth
and minor erosion from higher topography. (b) Active growth on top of the former mixed-age layer with
further minor erosion from higher topography. (c) Active coral growth after a long period of potentially
unfavourable growth conditions (Hiatus). (d) Present-day patchy coral growth. The core, drilled at the
indicated position, would reveal minor mixed-age samples in the lower part (Cluster 1, 2 and the lower
Cluster 3) and stratigraphically ordered samples (the upper part of Cluster 3 and Cluster 4).

However, the mound evolution of BR I is potentially comprised of (ii) erosional processes,
resulting in mixed-age layers and (iii) successive coral growth periods with elevated MARs.
Cluster 1 and 2 revealed minor age scatter (Fig. 3.6b, S29; S16) and low MARs (17-10 cm/ka),
potentially reflecting erosional processes, redistributing coral fragments rather than

successive coral growth (Fig. 3.8a). Mixed-age layers (2500 to 2000 cm) followed by successive
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coral growth (1900-0 cm) and MARs ranging between 25 and 168 cm/ka were observed in
Cluster 3 (Fig. 3.8b) and Cluster 4 (Fig. 3.8¢c) respectively.

Erosional processes, like framework collapse, coral debris redistribution due to gravitational
deposition and mass wasting events like mound collapses, have been identified to cause age
reversals (e.g. Dorschel et al. 2005, Riiggeberg et al. 2007, Eisele et al. 2008, Frank et al. 2009).
However, for the first time, detailed mound evolutions spanning several hundreds of
thousands of years have been explored. For both mounds, although in relatively close
proximity, potentially different types of mound evolution have been identified. On the one
hand, BR I appears to be mostly in stratigraphic order, showing only minor erosional
influences. DM, on the other hand, shows various mixed-age layers, potentially resulting from
mass wasting events and erosional processes as proposed above. Although DM has been fully
penetrated, the age scatter observed in the lower sections (6100 to 4500 cm) and the proposed

mass wasting origin of the base cluster, suggests that parts of DM might be older than ~400 ka.

The observed differences in mound evolution processes however, may originate from the core
location as well. The core location on DM, on a junction between two mound branches and
merely 20 m above the seafloor, may be more exposed to coral fragment redistribution, than
the core location of BRI on the ridge top (329 m) surrounded by steep flanks, which reach
into depths of 400 to 500 m (Fig. 3.1). Therefore, multiple long drillings would be necessary to
better assess the 4 dimensional mound evolutions of both mounds. The mound evolutions
however, do not explain why coral occurrence is observed during some interglacial periods
(for DM: MIS 9, MIS 7, MIS 5 and BR I: MIS 9, MIS 7, MIS 1) and is missing during other
interglacial periods (for DM: MIS 1 and BR I: MIS 5). Thus, an oceanographic and atmospheric
approach to constrain the drivers of CWC growth in the AS needs to be regarded
(Chapter 3.5.3).
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3.5.2 Mound Aggregation Rates in the EMCP
Given the proposed scenarios of mound evolution, the calculated MARs for DM need to be

differentiated. Here, active aggregation rates represent the successive built-up of coral
framework, supported by baffled sediment over a certain time period, i.e. centimetre per
thousand years (cm/ka). If mass wasting events are responsible for the deposition of the older
clusters of DM (6100 to 3500 cm), the calculated MARs do not represent an active aggregation
rate, however a passive aggregation, since a mass wasting event would occur within a short

time.

As stated by Frank et al. (2009), MARs of >30 cm/ka reflect densely populated coral mounds
during ideal growth conditions, whereas MARs below 5 cm/ka reflect dormant coral reefs and
mounds. On DM, Cluster 1 revealed calculated MAR of 26 cm/ka and thus would reflect a
densely populated coral mound with successive coral growth over 100 ka (Fig. 3.4). However,
the proposed nature of mound aggregation suggests otherwise. The first assumed real coral
growth on DM, between 299 and 265 ka (MIS 8), with a calculated MAR of 12 cm/ka,
represents less active to dormant coral growth. For Cluster 2 (240 to 200 ka) and Cluster 3
(120 to 100 ka), MARs of 49 cm/ka and 83 cm/ka reflect flourishing, densely populated coral
mounds during ideal growth conditions. Similar high growth rates were reported e.g. in the
East Atlantic and the Alboran Sea during the Holocene (Frank et al. 2009, Fink et al. 2013,
Wefing et al. 2017, Wienberg et al. 2018).

Since BRI does not show major impacts of erosional processes, such as mass wasting events,
the calculated MARs more likely represent active mound aggregation. Cluster 1 on BR I
(530 to 380 ka), with an overall MAR of 10 cm/ka would thus be considered a less active
growth period. However, multiple growth periods may be reflected in Cluster 1 over a 150 ka
period, which is comprised of only 8 samples. Cluster 2 (360 to 290 ka) and Cluster 3
(250 to 200 ka) with overall MARs of 17 cm/ka and 25 cm/ka respectively, reflect enhanced
coral growth under less ideal growth conditions. However, considering individual growth
periods within these clusters, e.g. Cluster 2 (327 to 307 ka), MAR as high as 50 cm/ka can be
observed, reflecting a densely populated coral mound. Cluster 4 (15 to 8 ka) however, reflects
a flourishing coral mound with an overall MAR ranging between 126 to 168 cm/ka
(GeoB18118-1 and GeoB18118-2 respectively). Multiple studies have reported coral growth in
the AS during the last 15 ka, with MARs ranging between 100 to even 700 cm/ka (Fink et al.
2013, Stalder et al. 2018, Wang et al. 2019, Feenstra et al. 2020). The available data for the
Alboran Sea (EMCP and WMCP) is concurrent for the most recent growth period (15 to ~6 ka).
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Hemsing (2017) calculated average MARs (MARay) for CWC mounds located in the Atlantic
Ocean and the Mediterranean Sea from published data. The Atlantic MARay, based on 53 cores
with maximal ages ranging between 1 ka and 2.7 Ma, was calculated with 4.4 cm/ka, whereas
for the Mediterranean Sea, the author calculated a MARay of 27.2 cm/ka, based on 8 cores with
maximal ages between 5 and 520 ka. Hemsing (2017) included the here presented core
GeoB18118-2 with a maximal age of 520 ka and a MARay of 13.1 cm/ka. Excluding
GeoB18118-2 from the Mediterranean MARay, results in an overall Mediterranean MAR of
32.9 cm/ka, exclusively representing the coral growth period between 1.7 to 13.3 ka (Hemsing
2017). Thus, only the last 15 ka of coral growth on BR I can be directly compared with the
Mediterranean MAR.y. For the last 15 ka, GeoB18118-1 and GeoB18118-2 reveal MAR,y as
high as 126 and 168 cm/ka (Fig. 3.6a and 3.6b), which spectacularly exceed the Mediterranean
MAR.y of 32.9 cm/ka (27.2 cm/ka; Hemsing 2017).

The overall mound MARay for GeoB18118-2, with ages between 538 to 490 ka at the bottom
(6703 cm/ 7035 cm) and 8.3 ka at the top (15 cm), can be estimated to 13.7+0.4 cm/ka. If the
proposed mound evolution of DM is disregarded and a successive mound aggregation is
assumed for DM, an overall MARay of 14.940.6 cm/ka can be estimated, with a basal age
between 426 and 390 ka and a penetrated mound height of 61 m. Both mounds thus reveal
similar MARay of 14+1 cm/ka. However, this overall rate is the expression of rapid aggregation
over short periods (e.g. MIS 5 on DM or MIS 1 on BR I), followed by long periods of dormant
mound activities (e.g. MIS 8 or MIS 6 on DM) and possibly erosion, as discussed in detail for
coral mound aggregations in the NE Atlantic (Frank et al. 2009). However, the presented
mounds reveal higher MAR.y than observed in the Atlantic Ocean with MARay of 4.4 cm/ka
(Hemsing 2017). Nevertheless, for a meaningful comparison of Atlantic and Mediterranean
MAR.y, it is important to compare the same time interval in both locations, e.g. from 550 ka
to present.

Furthermore Hemsing (2017) calculated basal ages, based on MAR.y for different mound
heights in the Mediterranean Sea. According to the author, mounds of 40 m height and a
MAR.y of 27.2 cm/ka would reveal a basal age of 147 ka, whereas a basal age of 551 ka was
estimated for mounds of 150 m height using the same MARuy. In a previous work, Krengel
(2016), suggested a basal age of 1 MA 0.3 for BR I, based on preliminary calculated MARs
and a potential maximum height of 160 m (Hebbeln et al. 2015). BR I, is composed of an 80 m
elevation above the surrounding seafloor, from which the upper 70 m (GeoB18118-2) revealed
ages ranging between 538 to 490 ka and an additionally 80 m deep erosional moat, thus a

maximal mound height of 160 m can be estimated. However, it is unknown to which extent
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BR Iis comprised of coral framework. Thus, based on the MAR.y of BRI (13.7+0.4 cm/ka), the
basal age is re-estimated for a minimum height of 80 m and a maximal height of 160 m,
resulting in a potential onset of mound formation between 595+20 ka and 1190+50 ka
respectively. The onset of BR I would therefore coincide with the Mid-Pleistocene-Transition
(MPT; 1250 to 700 ka) and thus the onset of the 100 ka cyclicity of glacial-interglacial cycles
or shortly after.

3.5.3 Cold-water coral occurrence in the Alboran Sea
Several studies on CWC in the Alboran Sea have shown flourishing coral growth during the

last 15 ka (Schroder-Ritzrau et al. 2005, Fink et al. 2013, Lo Iacono et al. 2014, Fink et al. 2015,
Stalder et al. 2015, Stalder et al. 2018, Wang et al. 2019, Feenstra et al. 2020, Fentimen et al.
2020). Although Fentimen et al. (2020) provided individual ages older than 15 ka, no detailed
CWC growth history beyond 15 ka was yet provided. The here presented MeBo cores thus
present a unique data set, displaying discontinuous coral growth predominantly during each
interglacial of the past 550 ka, seemingly paced by a 100 ka cyclicity. However, distinct local
differences in coral occurrence are revealed in the age-depth profiles of DM and BRI (Fig. 3.4
and Fig. 3.6). DM shows enhanced coral presence in MIS 10, MIS 9, MIS 7 and MIS 5, with
additional minor coral presence during MIS 11 and MIS 8 and yet a lack of corals younger
than 100 ka (Fig. 3.4). For BR I, enhanced coral occurrence is observed during MIS 9, MIS 7
and the Holocene (MIS 1), with few coral fragments during MIS 13, MIS 12, MIS 11, MIS 8 and
MIS 5 (Fig. 3.6). Although, Termination T1 and the Holocene mark the period of most
flourishing CWC growth observed in the EMCP and WMCP (e.g. Fink et al. 2013, Stalder et
al. 2018, Wang et al. 2019, this study), no coral on DM younger than MIS 5 was found yet.
Hebbeln et al. (2015) and Hebbeln et al. (2019) presented multi-beam hydrographic maps of
the EMCP, revealing a belt of shallow, elongated coral mounds in the southern EMCP (~230 m
water depth), however, similar to DM, these mounds are partly buried. In close proximity to
these mounds, the Moulaya River enters the Alboran Sea, transporting sediment from the
Moroccan hinterland with an estimated sediment load of 12 Mt/a (Snoussi et al. 2002, Terhzaz
et al. 2018). Enhanced fluviatile sediment discharge could possibly have caused the burial of
these mounds. However if the shallow mound belt was buried within the same time interval,
a coherent demise of coral occurrence around 100 ka should be observable on the buried

mounds of the southern EMCP.

Hence, it is clear that the corals in the southern AS grew during each interglacial period of
the past 550 ka, similarities and differences in growth history of both mounds are most

possibly due to the water depth in which the corals have settled (DM: 236 m; BR I: 329 m), the
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local food supply and oxygen level, the bottom water current dynamic and continental runoff
of sediments from Morocco (e.g. Moulaya River), as shown by several studies for the Holocene
on CWC and associated taxa in the Alboran Sea (Fink et al. 2013, Stalder et al. 2015, Stalder et
al. 2018, Wang et al. 2019, Feenstra et al. 2020, Fentimen et al. 2020).

However, multiple studies focused their investigations on cores located on BR I (Fink et al.
2013, Stalder et al. 2018, Feenstra et al. 2020, Fentimen et al. 2020, this study). Ranging in depth
between 319 and 434 m, all investigated cores with recoveries between 338 and 926 cm,
revealed synchronised coral growth during MIS 1, as observed in the here presented cores
(GeoB18118-1 and GeoB18118-2). However, one core (recovery 926 cm; Fentimen et al. 2020)
additionally revealed coral fragments dated during MIS 9, MIS 8, MIS 7, MIS 5 and MIS 3. With
the only exception of MIS 3, where no corals were found in this study, the observed coral
occurrences by Fentimen et al. (2020) are concurrent with the combined U-series age record
of BR I and DM (Fig. 3.10). Even though, the drilled MeBo cores seemingly reveal a rough
outline of periods with flourishing and dormant coral growth, the combined age record is
considered to be representative to some degree for the general occurrence of corals within
the EMCP. Whereas a multi-core study on one mound would reveal stronger constraints on
the exact timing of coral growth and hiatuses on the investigated mound, as indicated by the
comparison of BRI cores from Fentimen et al. (2020) and this study. However, the presented
U-series age record unravels the general timing of CWC occurrence in the EMCP over the
past 550 ka. At present-day, the three known coral provinces in the AS reveal distinct
differences in their coral occurrences. In the WMCP, no living corals are found at present day,
whereas a merely patchy CWC occurrence in the EMCP was observed. However, flourishing
CWC growth was observed on the Cabliers Mounds to the east of the EMCP (Hebbeln et al.
2009, Corbera et al. 2019). Although this reveals distinct regional differences in coral growth,
most possibly caused by different environmental parameter, e.g. water depth, food- or
sediment supply and bottom current strength as well as the position of the AS gyre system,
concurrent coral occurrence, summarized in Fink et al. (2015), was observed over the last 15 ka
throughout the AS. Thus it is argued, that the presented age constraints of coral occurrences
on DM and BR I, encompassing major growth periods and diminished CWC occurrence in the

EMCP, are representative not only for the EMCP, but also for the southern AS.

Thus, in the next section, the general coral occurrence and the observed 100 ka cyclicity of
thriving coral growth is regarded in the context of oceanographic and atmospheric changes

during glacial-interglacial cycles of the past 550 ka.
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3.5.4 The impact of Mediterranean climate dynamics on cold-water coral occurrences in
the Alboran Sea
Interglacial periods are marked by the extent of the Northern Hemisphere ice sheets limited

to 60°N and are associated with high sea level as well as a similar ocean circulation as observed
today (Rohling et al. 2014, Bohm et al. 2015). Humid and wet climatic conditions are known
to have prevailed during the present and the last interglacial in the Mediterranean Region
(Gasse 2000, Gasse and Roberts 2004, Smith et al. 2004). Reinforced Mediterranean Outflow
volume, evoked by a combination of the deepened sill at the SoG and enhanced freshwater
input into the Mediterranean Sea (Rohling et al. 2002, Gasse and Roberts 2004, Alhammoud
et al. 2010, Rogerson et al. 2012), strengthened the Atlantic Jet (AJ) flowing into the
Mediterranean Sea (AS). Strong winds and a southward drift of the AJ entailed coastal and
offshore upwelling as well as a strong and stable AS gyre system and thus vertical mixing of
up to 200-300 m within the AS gyre system (Heburn and La Violette 1990, Sarhan 2000).
A reduced density gradient between inflowing Atlantic water and fresher Mediterranean
water certainly favoured a deeper vertical mixing, potentially making organic matter more
available for organisms like CWC, dwelling in intermediate depths. Although at present-day,
the East Alboran Gyre (EAG), recirculates westwards over the location of BRI (Fig. 3.1; Vitdez
and Tintoré 1995), neither the position nor the behaviour of the AS gyres are considered stable

(Tintore et al. 1988, Heburn and La Violette 1990, Perkins et al. 1990).

The enhanced freshwater input via river run-off was proposed to have increased the flux of
organic matter and terrigenous sediment into the Mediterranean Sea (Rossignol-Strick 1985,
Tjallingii et al. 2008, Revel et al. 2010, Terhzaz et al. 2018). Enhanced coral growth in the AS
has been correlated with increased fluvial input, as well as high surface productivity and
internal waves (Fink et al. 2013, Wang et al. 2019, Feenstra et al. 2020). Based on the benthic
foraminiferal assemblages and XRF Al-normalized elemental ratios in the EMCP, Fentimen et
al. (2020) proposed wet continental conditions, as described above for the interglacial periods
MIS 9 to MIS 1 and thus, as seen in the presented U-series age record favourable coral growth
conditions in the AS must have prevailed (Fig. 3.10). Although the U-series record clearly
shows enhanced CWC occurrence in the EMCP during the interglacials mid-MIS 11, MIS 9,
MIS 7, mid-MIS 5 and ranging from Termination T1 (transition MIS 2/MIS 1) to the early
Holocene, a clear decline of coral occurrence apparently coincides with sapropel layers
occurring in the EMS (Fig. 3.9 and Fig. 3.10). Sapropel layers in the EMS are induced by
enhanced freshwater input into the Mediterranean Sea, as seen for the past 150 ka by
enhanced African monsoonal systems and thus increased Nile river discharge (Fig. 3.9; Revel

et al. 2010, Ehrmann et al. 2016). Reduced salinity and thus reduced density in the surface
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waters led to a slowdown of the Mediterranean overturning circulation and therefore a
slowdown of LIW formation and consequently LIW velocities (Toucanne et al. 2012). CWC in
the southern AS reportedly dwell in the LIW water mass and are dependent on strong bottom

current velocities (e.g. Dorschel et al. 2007, Fink et al. 2015).

Furthermore, nutrient input, associated with river run-off, resulted in enhanced primary
productivity in the entire Mediterranean Sea (Barcena et al. 2001, Jimenez-Espejo et al. 2008,
Rohling et al. 2015). In consequence, this lead to dysoxic or anoxic conditions and the
deposition of organic-rich sapropel layers (S) in the EMS and Organic Rich Layers (ORL) in
the WMS (Cacho et al. 2002, Rogerson et al. 2008, Rohling et al. 2015). Consistently, based on
benthic foraminifera assemblages, eutrophic and less oxygenated conditions in the EMCP

were proposed during interglacial periods of the last 300 ka (Fentimen et al. 2020).
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Fig. 3.9: Combined U-series record of the presented locations Dragon Mound and Brittlestar I through time.
CWC samples are ordered by youngest to oldest ages. Nile River discharge (violet; Revel et al. 2010) and
clay mineral assemblages (purple; Ehrmann et al. 2016) indicate humid conditions with enhanced
freshwater input into the Mediterranean Sea. Two Relative Sea Level records (RSL, green; Rohling et al.
2014) indicate sea level variability over the last 150 ka. Black bars indicate sapropel layers (Ziegler et al.
2010, Konijnendijk et al. 2014, Rohling et al. 2015).
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During the last interglacial period, a lack in CWC occurrence is observed during S5 (Fig 3.9,
129 to 121 ka; Ziegler et al. 2010), coinciding with warm and wet conditions and most possibly
enhanced Nile River discharge (Revel et al. 2010, Blome et al. 2012, Ehrmann et al. 2016).
Enhanced CWC growth (DM: 115 to 111 ka; MAR: 228 cm/ka) is observed after the end of
sapropel conditions, marked by reduced rainfall in the EMS and thus reduced Nile River
discharge as well as an increase in the MOW strength, which correlates with a strengthening
in LIW formation and velocity (Bar-Matthews et al. 2003, Martrat et al. 2014, Bahr et al. 2015,
Ehrmann et al. 2016). A prominent increase in the Mediterranean Relative Sea Level (RSL) of
over 30 m, observed at 110 ka, suggests reinforced freshwater input into the EMS, reflected
by humid conditions and enhanced Nile River discharge, as well as reduced MOW strength
and thus reduced LIW formation (Blome et al. 2012, Rohling et al. 2014, Bahr et al. 2015,
Ehrmann et al. 2016). Consequently, coinciding with this renewed onset of sapropel
conditions (S4: 110 to 99 ka; Ziegler et al. 2010), a reduced or even diminished coral occurrence

can be observed in the EMCP.

The most recent period of successive coral growth (T1 to mid-Holocene) reveals a flourishing
abundance of CWC during different environmental conditions as observed for earlier
interglacials (Fig. 3.9 and Fig. 3.10). T1 is globally marked by the onset of the warm Bglling-
Allergd (B/A) interval (14.6 to 12.9 ka) and the meltwater puls 1A, leading to a fast sea level
rise and thus the deepening of the SoG sill, which therefore induced a higher volume of
fresher Atlantic Water into the Mediterranean Sea (Weaver et al. 2003, Sierro et al. 2005).
Enhanced productivity in the AS was observed coinciding with the onset of the Mediterranean
sea level rise (23-18 ka), with a clear decline in productivity during the B/A and a significant
decrease at circa 9 ka (Barcena et al. 2001, Cacho et al. 2002, Jimenez-Espejo et al. 2008, Fink
et al. 2013).

Although enhanced productivity prevailed since the LGM, the onset of CWC growth in the
AS reportedly started between 15.5-15 ka (Feenstra et al. 2020, this study). This temporal offset
might be due to a generally lower sea level in the Mediterranean Sea and reduced Atlantic
inflow, consequently a less stable gyre system would have prevailed. Several scenarios of the
gyre system have been discussed, including the disappearing of the EAG during weak SoG
exchange periods in winter (Tintore et al. 1988, Bormans and Garrett 1989, Heburn and La
Violette 1990, Perkins et al. 1990). Prior to 16 ka, an eastwards displacement of the WAG due
to prevailing westerlies and a low pressure system over the Mediterranean Sea was suggested
(Grazzini and Pierre 1991). Thus, it is argued that, although high productivity prevailed in the

AS, the gyre system was weak, displaced and potentially reduced to one gyre and hence, the
57



Chapter 3: Climatic and paleoceanographic constraints on long-term cold-water coral growth in the Alboran Sea

vertical mixing did not provide the CWC with sufficent organic matter in water depths of

230 to 330 m to sustain consecutive coral growth prior to 15.5 ka.

High MARs (up to ~600 cm/ka) and successive CWC growth were observed during the B/A,
however, a consistent clear decline of CWC growth can be observed in the AS during the YD
(Fink et al. 2013, Stalder et al. 2015, Stalder et al. 2018, Wang et al. 2019, Feenstra et al. 2020,
this study). Compared to the B/A or the Early Holocene, the YD was colder and dryer,
reflected in Mediterranean sea level of circa -20 m below present and a slow down of the
deglacial rate of sea level increase from 20 mm/a to only 4 mm/a. During this time, enhanced
and well ventilated LIW as well as a briefly reinforced primary productivity, was observed
(Sierro et al. 1998, Barcena et al. 2001, Toucanne et al. 2012, Rohling et al. 2014, Abdul et al.
2016). Although high productivity and well ventilated, strong LIW prevailed, which are
excellent conditions for coral growth, Fink et al. (2015) proposed that dynamic local variations
in the gyre system behaviour, e.g. reduced vertical mixing, might have caused the decline of
CWCs during the YD. Flourishing growth conditions returned by the end of the YD reflected
in high MARs (75 to 400 cm/ka) in the AS (e.g. Fink et al. 2013, Wang et al. 2019, this study).

In the AS, water column stratification and peak productivity rates resulted in ORL 1
(14.5-8.2 ka; Rogerson et al. 2008). The timing of ORL 1 clearly correlates with periods of
flourishing CWC growth in AS (15.5 to 12.7 ka and 11.6-9.0 ka ). However during the Early
Holocene, water column stratification and peak productivity rates in the EMS resulted in the
formation of sapropel S1 (10-6 ka; Rohling et al. 2015). Hence, poorly oxygenated bottom
waters (LIW) were observed in the AS. Furthermore, a significant drop in productivity in the
AS was observed at circa 9 ka, coinciding with a uniform cessation of successive CWC mound
growth in the EMCP (Fink et al. 2013, Stalder et al. 2015, Stalder et al. 2018, Feenstra et al.
2020, Fentimen et al. 2020, this study). However, in the WMCP, MARs of up to 500-700 cm/ka
were observed until 8 ka (Wang et al. 2019), potentially revealing local differences between
the two coral provinces. Nevertheless, mound formation more or less ceased with the onset
of the Mid Holocene. Although from the Angolan Margin, CWC reefs are known to thrive
under dysoxic conditions, compensating the lack of oxygen with higher food intake (Hanz et
al. 2019), the unfavourable conditions in the AS most possibly led to the demise of thriving
CWC growth, as productivity in the AS clearly declined and oxygen depletion progressed
throughout S1 (10-6 ka).
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Thriving CWC growth during interglacial periods in the AS is arguably dependent on a
combination of (i) the freshwater input into the Mediterranean Sea, which induces primary
productivity and transports sediment, yet causes a slowdown of the Mediterranean
overturning circulation and (ii) the strength and position of the AS gyre system, which

provides food particles into coral dwelling depths.

During T1, freshwater input was crucial to trigger initial primary productivity, which then
enhanced the exchange at the SoG. A stronger gyre system and a reduced density gradient
between Atlantic and Mediterranean water masses induced enhanced vertical mixing,
benefiting CWC in 330 m depth. However, sapropel conditions, with peak freshwater input
into the Mediterranean Sea, lead most possibly to poorly oxygenated and sluggish bottom
water currents and due to the stratification of the water column, to a reduced, shallower

vertical mixing. Hence, a decline of CWC can be observed.
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Fig. 3.10: Combined U-series record of the presented locations Dragon Mound and Brittlestar I through
time. CWC samples are ordered by youngest to oldest ages. LR04 stack (black; Lisiecki and Raymo 2005)
and the Relative Sea Level (RSL, green; Rohling et al. 2014) show global and Mediterranean sea level
variability. RSL indicates Mediterranean freshwater input. Black bars indicate sapropel layers (Ziegler et
al. 2010, Konijnendijk et al. 2014, Rohling et al. 2015). Red arrows indicate brief Mediterranean sea level
rise during glacial periods co-occurring with coral occurrence. Marine Isotope Stages (MIS) are shown in

transparent red shades.
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Concurrently to MIS 5 and MIS 1 (Fig. 3.9), the combined U-series record (Fig. 3.10) reveals
reduced CWC occurrence or even a lack of CWC during sapropel conditions of earlier
interglacial periods. Coinciding with high Mediterranean sea level, prolonged warm, wet and
sapropelic conditions were proposed for MIS 11c (420 to 398 ka; Emeis et al. 2000, Kandiano
et al. 2012, Konijnendijk et al. 2014, Rohling et al. 2014). Applicable with S5 and S4, a distinct
lack of CWC can be observed (420 to 390 ka), however, the available CWC record is scarce
between 550 and 390 ka with only seven investigated coral fragments. During MIS 9 and
MIS 7, low CWC occurrences are observed during analog warm conditions, leading to the

formation of sapropel layers (S10 to S7, Fig. 3.10).

Hence, during all sapropel layers of the past 450 ka (Fig. 3.10), thriving growth conditions
could not be maintained. Most possibly a combination of (i) a significant reduction of
productivity in the AS (as seen during MIS 1), (ii) changes in the gyre system behaviour, e.g.
shallower vertical mixing due to water column stratification and (iii) poorly oxygenated
bottom waters lead to the demise of CWC during these peak warm periods. However,
subsequent to sapropel conditions, flourishing CWC growth in the AS, observed during MIS 9.
MIS 7, MIS 5 co-occurred with reduced freshwater input. Hence the reduced freshwater input,
the Mediterranean overturning circulation reinvigorated and thus lead to the production of
strengthened and well-ventilated water masses (e.g. LIW). Although these periods are
associated with decreasing Mediterranean sea level as well as colder and more arid climate
conditions, compared to the peak warm sapropelic periods, a sufficient level of productivity

and vertical mixing in the AS must have prevailed to facilitate thriving CWC growth.

Contrary to interglacial periods and with the exception of MIS 10, CWC occurrences are
sporadic during glacial periods (MIS 12 to MIS 6) and limited to low MARs. Glacial periods
are characterized by a large global ice extent (e.g. Berger et al. 1999, Lisiecki and Raymo 2005)
and consequently, up to —140 m lower sea level, leading to a reduced sill depth of the SoG. In
the Northern Hemisphere, the ice sheet growth lead to changes in the Polar Front position
(PF). During interglacial periods, the PF in the North Atlantic resided north of 50°N and
migrated to a more southern position during glacial periods due to ice sheet build up, with a
maximal southern displacement towards ~45-40°N during the LGM (Ruddiman and McIntyre
1981, Grousset et al. 1993, Robinson et al. 1995, Rohling et al. 1998, Kageyama et al. 2006). The
glacial PF frequently induced cold, polar air outbreaks into the Mediterranean Region
(Rohling et al. 1998, Hayes et al. 2005, Moreno et al. 2005, Tjallingii et al. 2008). In the
Northeast Atlantic, glacial SST decreased dramatically as e.g. seen in the GoC and thus, via

Atlantic inflowing water, resulted in strongly reduced SST in the Alboran Sea and the
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Mediterranean Sea (Cacho et al. 2002, Martrat et al. 2004, Martrat et al. 2007, Martrat et al.
2014). The Atlantic Meridional Overturning Circulation (AMOC) is known to be sluggish
during these times (Vidal et al. 1997, McManus et al. 2004) adding to the overall climate
cooling of the East Atlantic and Mediterranean Region. The cool climate in the Mediterranean
Region is associated with arid conditions on the African Continent and the Iberian Peninsula
(e.g. Gasse 2000). Several studies on off- and on-mound cores in the AS showed that semi-
arid/arid climate conditions are reflected by enhanced aeolian sediment input originating
from the Sahara and reduced fluviatile sediment input and thus low river run-off
(Moreno et al. 2005, Sierro et al. 2005, Fink et al. 2013, Feenstra et al. 2020, Fentimen et al.
2020). Reduced SST, as well as cool and arid climate, certainly led to a reduction of evaporation
loss over the Mediterranean Sea. Thus, less inflowing water through the SoG was required to
balance the water budget. Within the AS, this most likely led to a weakened Atlantic Jet and
a weakened AS gyre system. During glacial periods a southern ITCZ position favoured low-
pressure systems in the Mediterranean Region (COHMAP-Members 1988) and thus a less
stable and possibly displaced AS gyre system, reducing vertical mixing and upwelling (Ausin
et al. 2015). On the other hand, the overturning circulation in the Mediterranean Sea
apparently stems from an increase of net evaporation towards the Eastern Mediterranean
Basin, similar to modern day winter conditions (e.g. Hayes et al. 2005, Kuhlemann et al. 2008).
Consequently, more saline surface waters lead to reinforced intermediate and deep water
formation, e.g. the enhanced formation of LIW in the Eastern Mediterranean Basin

(Toucanne et al. 2012).

Seemingly, the lack of sufficient freshwater input during cold and arid glacial periods does
not provide sufficient nutrients and thus primary productivity for CWC to thrive in. Although
glacial conditions in the Mediterranean Sea are marked by enhanced LIW velocities and thus
strong bottom currents, which are important for CWC (White et al. 2005, Dorschel et al. 2007),
the weakened AS gyre system and the resulting reduced and shallower vertical mixing, might
further be responsible for the scarce occurrence of glacial CWC in the AS (Fig. 3.4; 3.6b and
Fig. 3.10). However, glacial CWC occurrences in the AS coincide with interstadial periods,
marked by dominant Mediterranean sea level increases of circa 20-30 m as seen throughout
MIS 12 to MIS 6 (Fig 3.10, red arrows). Although the RSL reflects a Mediterranean wide sea
level, CWC occurrences evidence that for brief intervals during each glacial period, conditions
changed towards more favourable CWC growth conditions. Hence, these periods of rapid sea
level rises in the Mediterranean Sea are most possibly invoked by enhanced freshwater input

and thus most possibly provided increased primary productivity and sediment input.
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However the brief interstadial periods did not provide sufficient conditions to support
successive CWC growth, as reflected in the limited availability of CWC fragments and low
glacial MARs, e.g. MIS 8 on DM or MIS 6 on BRI (Fig. 3.4 and Fig 3.6b). Although only one
coral was dated during the last glacial period, one would expect similar CWC occurrence, as
seen during MIS 6 or MIS 8, coinciding with the Mediterranean sea level rise at circa 70 and
50 ka (Fig. 3.10; red question marks). Concurrently, a few CWC fragments, ranging around
7343 ka and 51+1 ka, were found on BR I (Fentimen et al. 2020).

The CWC occurrence in the AS is seemingly depended on sufficient primary productivity and
the availability of food particles in coral dwelling depths. Food particles most possibly only
reached CWC dwelling depths during an enhanced and strong AS gyre system and deep
vertical mixing. One major driver of CWC growth thus appears to be the freshwater input
into the Mediterranean Sea. Freshwater, not only influences the Mediterranean overturning
circulation and the Mediterranean sea level, thus freshwater input indirectly also influences
the AJ and the AS gyre system, freshwater further provides nutrients, inducing primary
productivity and transports sediments, necessary to aggregate coral mounds and preserve the

coral fragments pristinely over 550 ka, as presented in this study.
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3.6 Conclusion
For the first time, CWC mounds in the Alboran Sea were drilled beyond the reach of gravity

corer. Using the MeBo drilling rig, cores as long as 70 m were retrieved. Two MeBo cores and
one gravity core from two different locations in the EMCP have been presented. The BR I core
revealed coral occurrence over 70 m length with a basal age of 520 ka. However, with a high
probability, coral occurrence on BR I is suspected beyond the drilled 70 m. The shallower DM
was fully penetrated at 61 m and revealed a basal age of approximately 400+20 ka. After
applying rigorous quality control methods, both mounds yield a total of 202 coral ages, which
were used for individual and combined age-depth models, covering the past 550 ka. BR I
showed a quasi-stratified age-depth model with minor age inversions and mixed-age layers,
most likely resulting from erosion. In contrast, DM revealed a complex age-depth model with
severe signs of erosion and potential mass wasting events, creating extended mixed-age
layers. The presented age models are unparalleled in the number of dated coral fragments and
therefore reveal detailed insight in the growth history of EMCP coral mounds. Based on the
average MARs and the potential basal depth of BR I (80 to 160 m), a possible onset of coral
growth in the Alboran Sea was calculated between 595 and 1190 ka and thus during the Mid

Pleistocene Transition.

However, to test the mound evolution theory and to verify the onset of coral growth on BRI,
additional long cores from both locations are required (Fig. 3.11). Additional long cores on
BR I are only possible on the ridge top, due to its steep morphology. Although long cores from
the flanks would be equally interesting, in Fig. 3.11 three ridge top positions are proposed.
With the modern MeBo (200 m), new long cores could identify the basal mound age and
therefore the onset of BRI, as well as the actual mound height, which could provide an overall
Mound Aggregation Rate. For the elongated DM, three additional drill holes, as indicated by
white open stars in Fig. 3.11, are suggested. The base of the presented core GeoB18116-2 most
possibly consists of reworked coral fragments, originating from erosional processes. Hence,
additional cores on DM might reflect a different, less disturbed and less inverted age model

and coral fragments, potentially older than 400 ka.

The occurrence of CWC over the last 550 ka is observed predominantly during interglacial
periods. However, peak climate warm periods, coinciding with sapropel layers, are barely
represented in the presently available CWC record, which provides a first hint that these
periods result in a limitation of coral growth. Furthermore, the flourishing coral growth co-
occurring with the onset of T1 and brief coral occurrences during glacial periods

(interstadials) constitute exceptions to this observation.
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Fig. 3.11: Proposed MeBo drillings to verify the proposed mound evolution scenario. Full stars indicate core
location introduced in this study. Open stars mark proposed new drillings.

Coral growth in the EMCP was tightly linked to freshwater input into the Mediterranean Sea.
Enhanced freshwater input evoked primary productivity via the supply of nutrients and
transported sediment, necessary for mound growth. Consequently to enhanced freshwater
input, the Mediterranean sea level rose, the Atlantic inflow increased and thus strengthened
the AS gyre system. Hence, enhanced vertical mixing into coral dwelling intermediate depths
(230-300 m) made food available for the CWC. Three different “growth” scenarios, during
which more favourable conditions for coral growth prevailed, were pointed out. (i) The most
prominent mode was observed post-sapropelic conditions during interglacial periods. During
declining Mediterranean sea levels and thus most possibly colder and drier climate, reduced
freshwater input still provided sufficient nutrients and sediment to facilitate flourishing CWC
growth. However, the thereof consequently reduced water column stratification enabled a
more vigorous Mediterranean overturning circulation, resulting in well-ventilated bottom
waters and a stronger AS gyre system. (ii) The second mode was observed during Termination
T1 and thus during a period of a general warming climate and rising sea level. Enhanced
freshwater input during the LGM triggered enhanced primary productivity prior to observed
CWC growth. With rising Mediterranean sea level and thus a strong AS gyre system, CWC
recolonized the AS. However, a clear decline during sapropel conditions was observed. (iii)
The third and last mode could be identified during the interstadials of glacial periods, when
intense but brief sea level rises occurred in the Mediterranean Sea, most possible induced by
enhanced freshwater discharges. With vigorous LIW velocities, freshwater induced primary
productivity and sediment input as well as a potentially favourable AS gyre system position.

These brief intervals provided favourable conditions with active coral growth.
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4 Cold-water corals as archives for past intermediate water temperatures in
the Alboran Sea

4.1 Introduction
Over the last decades, several studies in the Mediterranean Region, contributed to a better

understanding of the climate evolution during the Holocene and the last glacial period (e.g.
Cacho et al. 1999, Barcena et al. 2001, Martrat et al. 2004, Rogerson et al. 2004, Moreno et al.
2005, Voelker et al. 2006, Voelker et al. 2010, Martrat et al. 2014, Bahr et al. 2015, Toucanne et
al. 2015, Kaboth et al. 2017, Catala et al. 2019). Severe changes in oceanographic parameters
have been linked to the positioning of the polar and subtropical fronts and the displacements
of storm tracks (Rogerson et al. 2004, Voelker et al. 2010, Fletcher et al. 2013, Martrat et al.
2014, Singh et al. 2015, Toucanne et al. 2015), as well as the Atlantic Meridional Overturning
Circulation (AMOC) (Thornalley et al. 2009, Colin et al. 2010, Repschlager et al. 2017). The
majority of water in the Mediterranean Sea, inflowing or outflowing, traverses through the
Alboran Sea (AS), which is an important connector between the Atlantic and the
Mediterranean Sea. Therefore, the AS is very susceptible to changes in Atlantic Ocean inflow
conditions (Catala et al. 2019).

One approach to tackle this potential Atlantic-Mediterranean connection is the evolution of
the Sea Surface Temperature (SST). Predominantly the Holocene and the last glacial period
were investigated intensively by several authors (Cacho et al. 2001, Martrat et al. 2004, Martrat
et al. 2014, Ausin et al. 2015, Jiménez-Amat and Zahn 2015, Catala et al. 2019). However, these
records differ in the used temperature proxies. Several studies applied the UK’37 index,
measured on alkenones (Cacho et al. 2001, Martrat et al. 2004, Martrat et al. 2014, Ausin et al.
2015), which potentially reflects average annual temperatures. Other studies used the Mg/Ca
ratio, measured in planktonic foraminifera, which reflects a more seasonal biased temperature
signal (Jiménez-Amat and Zahn 2015, Catala et al. 2019).

In recent years, a new thermometer has been established to determine mid-depth
temperatures using the Li/Mg ratio of CWC. In the AS, CWC dwell in the Levantine
Intermediate Water (LIW). LIW is fed by Atlantic Water, which is modified (MAW)
throughout its pathway from the SoG to the Levantine Basin (East Mediterranean Basin),
where it sinks to intermediate depths due to increased density (Chapter 2.2; Millot and
Taupier-Letage 2005). While flowing westwards, through all Mediterranean Basins, LIW is a
major component in most water mass formations and contributes up to 70% to the
Mediterranean Outflow Water (MOW), leaving the Strait of Gibraltar (Millot and Taupier-
Letage 2005, Millot 2009, Millot 2014).
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For the first time the temperature of LIW is measured directly, using CWC from two mound
provinces in the Alboran Sea, which today bath in LIW, but in the past may have been bathed
in more Atlantic type water according to Wang et al. (2019). Given the importance of LIW in
the Mediterranean Sea recirculation and its warmth and salt ejection into the Atlantic (MOW),
unprecedented measures of LIW water mass temperature during the peak growth periods of
CWC in the Alboran Sea are provided, spanning the past 550 ka. Furthermore, one may expect
a tied link between SST and mid-depth water temperature due to the SST in the mid-depth
water mass formation region. Moreover, the comparison of local SST (AS) and LIW bottom
water temperature provides hints on the thermal water mass stratification in the AS, which
however today, is less important if compared to the salinity induced stratification. Hence,
similarities and differences in short- and long-term temperature variabilities can be explored,

spanning the Holocene and previous glacial and interglacial periods.
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4.2 Regional setting
The oceanography of the Alboran Sea is comprised of three distinct main water masses.

Atlantic surface water, inflowing through the Strait of Gibraltar, is mixed rapidly with
resident Mediterranean water and thus called MAW. Below MAW (0-200 m), LIW resides in
water depths between 200 to 600 m. Underlying LIW is the WMDW (Millot and Taupier-
Letage 2005, Catala et al. 2019).

Generally, the Mediterranean Sea is considered oligotrophic, however, the Alboran Sea shows
the highest marine productivity due to quasi-permanent areas of upwelling. Basin-wide gyre
systems, like the West Alboran Gyre (WAG) and the East Alboran Gyre (EAG) and
atmospheric circulation cause vertical mixing and wind-induced upwelling, transporting
biogenic material both vertically and horizontally (Garcia-Gorriz and Carr 1999, Sarhan 2000,
Baldacci et al. 2001, Dafner et al. 2003, d'Ortenzio and Ribera d'Alcala 2009). Sediments found
in the Alboran Sea are comprised of aeolian dust, transported from the Sahara (Stuut et al.
2009, Terhzaz et al. 2018) and fluvial input, originating primarily from the Iberian Peninsula

and the Moroccan hinterland (Fabres et al. 2002, Terhzaz et al. 2018).

Over the last decades, several hundred CWC mounds were discovered along the Moroccan
margin (Comas and Pinheiro 2007, Lo Iacono et al. 2014, Lo Iacono et al. 2018). Based on the
geographical position from west to east three coral provinces, the West Melilla Coral Province
(WMCP), the most prominent East Melilla Coral Province (EMCP) and the Cabliers Mounds
were created. Today, coral occurrence is limited to the EMCP with isolated patches of corals
and to the Cabliers Mounds with flourishing coral reefs (Hebbeln et al. 2009, Corbera et al.
2019). The EMCP, shown in Fig. 4.1a is comprised of three subsections. In the northern section
(c), predominantly large coral ridges were found (Fig. 4.1c). The middle section is comprised
of oval to arcuate coral mounds and in the southern section (Fig. 4.1d) mainly elongated,

partly buried ridges were found (Hebbeln 2019).

67



Chapter 4: Cold-water corals as archives for past intermediate water temperatures in the Alboran Sea

4.3 Material and methods

43.1 Samples
In this study, the Li/Mg temperatures of five on-mound cores, collected in 2014 during

MSM-36 “MoccoMeBo” cruise aboard the RV Maria S. Merian (Hebbeln et al. 2015), are
presented. From the first location, a vast ridge structure called Brittlestar Ridge I, two cores
GeoB18118-1 and GeoB18118-2 were investigated (Fig. 4.1c). The gravity core (GC)
GeoB18118-1 (35°26.139°N, 2°30.765’W), is located in 332 m water depth. In close proximity to
the GC, GeoB18118-2 (35°26.160'N, 2°30.810'W) was taken in 329 m water depth. The second
location is in the south of the EMCP. In 236 m water depth the core GeoB18116-2 was taken
from a partially buried mound, called Dragon Mound (35°18.642'N, 2°34.933'W; Fig 2.1;
Hebbeln 2019). The corresponding age model to both locations was presented in Chapter 3.
Two cores, originating from the WMCP, which have been published in Wang et al. (2019),
were additionally investigated for Li/Mg temperature. GeoB18127-1 (35°28.96'N, 3°04.641'W)
was taken in 365 m water depth with a recovery of 563 cm. GeoB18130-1 (35°28.099'N,
3°08.747'W) is located at 379 m depth and has a recovery of 148 cm. In total, 15 samples were

investigated.

Additionally, two CTD stations were taken during the “MoccoMeBo” cruise (Fig. 4.1b; white
stars). In close proximity to BR I and over a 12-hour tide cycle, 11 casts were conducted on
the so-called Yoyo-CTD GeoB18122-1. Another single cast CTD, GeoB18110-1, was conducted
some 10 km to the east of DM.

Table 4.1: Metadata of sampling stations (GC — Gravity Corer; MeBo — Bremen drill rig) visited during
MSM36 in the Alboran Sea (EMCP — East Melilla Coral Province; WMCP — West Melilla Coral Province).

Station Area Gear Latitude Longitude Waterdepth Recovery
[°N] W] [m] [cm]

GeoB18118-1 EMCP GC 35°26.139  2°30.765 332 873

GeoB18118-2 EMCP MeBo 35°26.160 2°30.810 329 5298

GeoB18116-2 EMCP MeBo 35°18.642  2°34.933 236 7147

GeoB18127-1 WMCP  GC 35°28.960 3°04.641 365 563

GeoB18130-1 WMCP  GC 35°28.099  3°08.747 379 148

68



Chapter 4: Cold-water corals as archives for past intermediate water temperatures in the Alboran Sea

‘
“  Western
@ Mediterranean
Sea

; Alboran
Atlantic Sea

* Ocean
GeoB18122 1

250 r
300

35°25’'N

water depth (m)
w
(93}
o

=
o
o

=
53]
o

"GeoB18110-1

[
]
=]

£
=
g
< 375
3
g

w
=]
=]

Fig. 4.1: (a) Overview map, including the location of EMCP in the Alboran Sea. (b) Multi-beam bathymetric
map of the EMCP with a 25 m grid resolution. Box (c) and (d) show a close up of the core locations
(GeoB18118-1, GeoB18118-2 and GeoB18116-2) and the mound topography. White stars indicate the
locations of CTD stations (GeoB18122-1 and GeoB18110-1). (c) The topography of Brittlestar I (BR I) and
on mound core locations GeoB18118-1 and GeoB18118-2. (d) The topography of Dragon Mound (DM) and
on mound core location GeoB18116-2. Map is modified after (Hebbeln 2019).

69



Chapter 4: Cold-water corals as archives for past intermediate water temperatures in the Alboran Sea

4.3.2 Li/Mg chemistry
Coral fragment aliquot of each U-series sample was used for the Li/Mg analysis. After

mechanical cleaning, the samples were dissolved in 10 ml 0.5M HNOs. Assuming the coral
skeleton is purely made of CaCOs3, the solution (500 pg/ml Ca) is further diluted with 0.5M
HNO:3, to obtain a solution of 10 pg/ml Ca.

43.3 Analysis
All samples were measured on an iCap Q™ ICP-MS with an upstream desolvating nebulizer

system Apex HF (ESI) at the Institute of Environmental Physics, Heidelberg, Germany. The
reliability of in-house measurements were confirmed by reconstructing the calibration curve
of Montagna et al. (2014) using coral samples younger than 100 a (Lausecker 2015) and inter-
laboratory measurements of sample aliquots at LSCE (Laboratoire des Sciences du Climat et
de 'Environnement, Gif-sur-Yvette, France) (Krengel 2016). In-house standard ICECTD-20
PL501-6 C4 was used to monitor and correct the instrumental drift. The main factors of error
of Li/Mg measurements are sample heterogeneity, analytical and calibration curve

uncertainties, which amount to an error of 1 °C (Lausecker 2015).

434 Quality control
Coral samples were preselected by U-series dating quality control. In total 201 samples, which

passed the U-series dating quality control, were analysed, 93 samples originate from Dragon
Mound (DM) and 109 samples on Brittlestar Ridge I (BRI). A total of 193 samples (DM: 91; BR
I: 102) remain after removing samples, exceeding a measurement uncertainty of 1 °C or
showing unphysically negative temperatures. The 15 samples, originating from the WMCP
(GeoB18127-1 and GeoB18130-1) were treated accordingly.
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4.4 Results
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Fig. 4.2: Reconstructed Li/Mg temperature for the past 550 ka. The younger segment from 18 to 0 ka
contains the cores GeoB18118-1 (BR I; open light blue triangles), GeoB18118-2 (BR I light blue triangles)
and the cores GeoB18127-1 and GeoB18130-1 (open black stars) from the WMCP (Wang et al. 2019). The
Li/Mg temperature trend is indicated in red. The second section from 570 to 80 ka contains the cores
GeoB18118-2 (BR L light blue triangles) and GeoB18116-2 (DM; dark blue rhombus). The general
temperature trend (3-point running mean) is indicated in red. Red arrows indicate modern day water
temperature at core location.

The presented data is found in the supplement (Table 4.2).
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44.1 Seawater temperature derived from Li/Mg on Dragon Mound
According to the strategy taken in Chapter 3.4, the results are considered in three clusters

(Fig. 3.4 and 3.6). Cluster one, with n=55 samples, covers the period ranging from
400 to 250 ka. Temperatures in this cluster range between 12.7 and 4.4 °C. A predominantly
decreasing temperature trend (12 to 4 °C) is observed between 400 and 350 ka with brief but
intense warming phase of 7 °C between 373 to 354 ka. A second pronounced warming phase,
lasting from 337 to 305 ka can also be observed with temperatures rising from 7 °C towards
11.4 °C within 12 ka (341-329 ka). These warm periods display small but frequent temperature
variations between 11.6 and 9 °C. The youngest part of cluster one reveals temperatures as
low as 8.5 °C. The second cluster (n=22; 230 to 200 ka) reveals a temperature range of 11 to
4 °C and a generally decreasing trend in temperature from 9.5 to 7 °C over this time interval.
The third cluster (n=13) ranges from 115 to 102 ka and is characterized by reducing

temperatures from 10.4 to 7.7 °C.

4.4.2 Seawater temperature derived from Li/Mg on Brittlestar Ridge I
Similar to DM, the proposed cluster scheme of chapter 3.4 is used. The first cluster

(n=9; 538 to 366 ka) is characterized by relative stable temperatures between 11.8 and 8.9 °C.
Cluster 2 with n=10 samples ranges in age from 327 to 307 ka and temperatures from 11.0 to
8.7 °C. This interval highlights a general cooling trend of ~2 °C (10.5 to 8.4 °C). The third cluster
(n=8; 242 to 210 ka) varies between 10.3 and 8.20 °C, revealing another decreasing temperature
trend of ~2 °C. Between the third and fourth cluster, 4 fragments were measured at 8.6, 4, 5.5
and 6.8 °C allocated to 178, 145, 142 and 78 ka respectively. The fourth cluster (n=70, 15.12 to
8.5 ka) ranges in temperature from 13 to 4.5 °C. A general warming trend, from ~4 °C (at 15 ka)
towards 10 °C (at 13 ka) can be observed. During the YD event, only 3 fragments were
measured, revealing temperatures as low as 5.2 and 3.8 °C. Starting from 11.4 ka towards

8.5 ka another general warming trend with a large scatter can be observed (12.7 to 8.6 °C).
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443 Seawater temperature derived from Li/Mg on GeoB18127-1 and GeoB18130-1 in the
WMCP
Samples from GeoB18127-1 (n=9), range in age between 14.1 to 5.3 ka. During the Bolling-

Alleregd (B-A) period, 3 samples reveal temperatures of 8.2, 8.9 and 7.8 °C (at 14.1, 13.5 and
13.4 ka). At the end of the Early Holocene, observed temperatures range between 10.4 and
12.5°C (at 10.2 to 8.3 ka). The two youngest samples, at 7.6 and 5.3 ka during the Mid Holocene

revealed temperatures of 12.3 and 10.9 °C.

For GeoB18130-1 n= 6 samples, ranging from 9.4 to 5.1 were investigated. During the Early
Holocene, 4 samples average around 12.3+1 °C with temperatures from 12.9 to 11.9 °C. Two

samples during the Mid Holocene show cooler temperatures of 10.6 °C at 7.9 and 5.1 ka.

4.5 Discussion
The reliability of CWC Li/Mg temperatures was previously tested on L. pertusa (D. pertusum),

originating from a Norwegian reef, ranging in age between 10.30-0.02 ka (Raddatz et al. 2016).
With temperatures derived from faunal assemblages and Mg/Ca ratios of the foraminifera
species N. pachyderma (s), a comparison of SST/sub-SST (100 m water depth) and the
reconstructed Li/Mg bottom water temperature revealed a striking similarity (Raddatz et al.

2016).

4.5.1 Constraining the predominant water mass in coral dwelling depths
Considering today’s oceanography (Chapter 2.2), the core locations are situated in the LIW,

as indicated in Fig. 4.3. CTD data, taken in 2014 during the Mocco MeBo cruise (Hebbeln et
al. 2015), provides temperatures and salinity data in close proximity to DM (GeoB110-1; Fig.
4.3a) and at the core location of BRI (GeoB18122-1; Fig. 4.3b). Both CTD casts, shown in Fig.
4.1, indicate surface water properties in January 2014 (winter) of circa 15 °C and 36.8 psu.
At the depth of DM (236 m) and BRI (329-332 m) temperatures of 13.2 °C and salinity of 38.4
psu prevail. The measured SST value (Fig. 4.3) represents the annual minimum temperature
and is in good agreement with published modern mean winter temperatures in the AS of
15.5 °C (Shaltout and Omstedt 2014). According to Shaltout and Omstedt (2014), the annual
mean SST in the AS is 19.01+4.0 °C, which is 4 °C above the measured CTD value (Fig 4.4).
A distinct difference, however, can be noticed in the thermocline (halocline) depths. At the
shallower CTD location, close to DM, MAW can be identified into depths of circa 100 m and
LIW at depths of 180-190 m, with a strongly expressed 80 m mixed water layer. At the CTD
location on BRI, MAW can be identified down to depths of circa 130 m and LIW is recognized

in 210 m water depth, separated by 80 m thick mixed layer. In summer, the depth gradient of
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temperature in the AS further increases as highlighted in the annual mean temperature cross-

section shown in Fig. 4.4.
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Fig. 4.3: Temperature and salinity depth profiles at the core sites GeoB18110-1 (a) and GeoB18122-1 (b).
CTD station locations are shown in Fig. 4.1. Salinity (black) and Temperature (red) are shown vs depth.
CTD data was taken in January 2014 during MSM36 (Hebbeln et al. 2015).

74



Chapter 4: Cold-water corals as archives for past intermediate water temperatures in the Alboran Sea

Temperature [degC]

20

500 17.5
1000 18
P—
g
£ 1500 .
% .
Q
2000
s 10
Q
3
2500 $
5P 7.5
g
3000 ‘ 8
8w 6°w ~w 2°w 0°
Temperature [degC]
0 s 20
100 17.5
_ 15
200
E I
£
a 12.5
& 300
3 10
5
400 g
i 7.5
1 5
500 s
8w 6w oW 2°w 0°

Fig. 4.4: Ocean Data View transect (Schlitzer 2018) using the WOA13 data set and spanning from the Gulf
of Cadiz to the eastern end of the Alboran Sea (a). The deep section (b) reveals that temperatures below
12.5 °C are only found to the west of the SoG. The shallower section (c) shows the temperature gradient
between surface water, exceeding 17 °C and LIW (~13 °C). Core locations are indicated by previously used
symbols.

Based on the modern hydrography, both locations in the EMCP (BR I and DM) are influenced
by LIW today. Assuming that the production and flow of LIW is a hydrological feature that
existed also during previous interglacial periods (Chapter 2.2), changes in environmental
conditions, such as temperature, would predominantly reflect variations of the LIW
composition. However, during glacial periods with reduced sea levels of down to -140 m, DM
(236 m water depth) did reside shallower within the water column and was possibly within
the mixed layer, or even within MAW. Therefore, for interglacial periods, both EMCP core
locations are combined into one temperature record, while for glacial periods, this seems not

reasonable. Today, LIW in the Alboran Sea resides in water depths between 200 and 600 m,
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with its core at 400 m (Millot 2009), thus a predominant LIW influence was assumed for the

cores GeoB18127-1 (365 m) and GeoB18130-1 (379 m) (Wang et al. 2019).

However, 813C data suggests that on glacial-interglacial levels, a water mass change might
have taken place (Wang et al. 2019). This indication comes from the epibenthic foraminifera
species Cibicidoides mundulus and Cibicidoides pachyderma, which was used to trace past
water column structure in the WMCP (Wang et al. 2019). Based on a change in §!3C values
and a coinciding increase in grain size during the Early Holocene, Wang et al. (2019) proposed
dominant influence of MAW prior to the B/A (813C= 0.8-1.1%.), a gradual change with strong
fluctuations from MAW to LIW influence between the B/A and the Mid Holocene (13.3-7.6 ka)
and finally a LIW dominated influence (53C= 0.3-0.6%.) since the Mid-Holocene. Similar
values were observed in the EMCP, at an off-mound sediment core south-west of BR I (Fink
et al. 2013). The most enhanced mound aggregation in the WMCP (14.1-12.9 ka; 11.6-7.6 ka)
with high MARs (113-176 cm/ka; 75-107 cm/ka) coincides with the timing of gradual changes
in water mass dominance (13.3-7.6 ka). Thus Wang et al. (2019) proposed that the investigated
WMCP coral mound resided within the interface between MAW and LIW and thus within a
layer of strong hydrodynamics and high food availability.

This change in water mass dominance is somewhat contradicting to the observed nBWT
evolution as presented over the last 16 ka (Fig 4.2 and Fig 4.5). If a change in water mass
dominance occurred, one would expect warmer nBWT, more similar to observed SST prior to
13 ka and colder temperatures during a predominant LIW influence (Mid Holocene), as seen
in the modern water column structure (Fig. 4.3 and Fig. 4.4c). However, consecutive warming
of the prevailing water mass is observed (Fig. 4.5). Additionally, nBWT, derived from Mg/Ca
data from benthic foraminifera on cores from the WMCP (Hebbeln et al. 2019), revealed a
similar warming trend in nBWT evolution as observed here, in the Li/Mg CWC temperature.
Thus, both nBWT reconstructions (EMCP: this study and WMCP: Hebbeln et al. 2019) can not
confirm this change in water mass influence. The observed '3C range (0.8-1.1%o) prior to the
B/A coincides with modern 33C values (0.9%.) observed within the AS and the WMS (Pierre
1999).

Within the WMS, periods of depleted 8'3C were reported to coincide with enhanced organic
detritus input during warm interglacial intervals and thus coinciding with ORL and sapropel
layers (Toucanne et al. 2015). The timing of the Organic Rich Layer 1 (ORL; 14.5-8.2 ka;
Rogerson et al. 2008) and the sapropel S1 (10-6 ka; Rohling et al. 2015) agree with the timing
of the depletion in 3!3C reported by Wang et al. (2019). Thus, enhanced productivity in the

entire Mediterranean Sea and increased in-sediment organic matter mineralization could be
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the driving force in the observed 8!3C depletion. However, a close proximity of the coral
mounds to the MAW-LIW interface as proposed by Wang et al. (2019), creating internal waves
and enhanced turbulence and thus supplying the corals with particulate material, like organic
matter and sediments is still most likely (White et al. 2005, Mienis et al. 2007, Wang et al.
2019). Hence, during interglacial periods, it is argued, that both coral provinces (EMCP and
WMCP) dwell within the same water mass (LIW) and therefore should reveal concurrent
nBWT (Fig. 4.5).

Analog to the modern-day hydrography (Chapter 2.2), with approximately 90% of inflowing
Atlantic Water involved in the formation of intermediate and deep water masses in the EMS
and WMS (Millot and Taupier-Letage 2005), one would expect a prominent temperature
influence of inflowing Atlantic water on e.g. LIW during past glacial and interglacial periods.
To investigate such influence, high-resolution SST records in the AS over the past 16 ka are
compared to the obtained Li/Mg nBWT record. A high-resolution Mg/Ca SST record derived
from the foraminifera species Globigerina bulloides, is shown in Fig. 4.5 (Catala et al. 2019).
G. bulloides is reported to have its major growth season during spring in the Mediterranean
Sea (Catala et al. 2019), with modern spring mean temperatures of 18 °C (Shaltout and Omstedt
2014). Additionally SST records based on alkenone temperature reconstructions from the AS,
spanning several climate cycles (Martrat et al. 2014) are used for comparison. The SST
variability in the Alboran Sea is very susceptible to atmospheric and oceanic changes in the
Atlantic Ocean (Cacho et al. 1999, Sierro et al. 2005, Frigola et al. 2008, Toucanne et al. 2012,
Martrat et al. 2014, Catala et al. 2019).

The presented Li/Mg data and SST records show the highest resolution during T1 and the
Early-Holocene. Therefore, temperatures will be discussed from the most recent growth

period (16 to 4 ka) to 550 ka.
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4.5.2 Intermediate water mass temperature during the deglaciation and Holocene
The youngest investigated climate period ranges from the deglaciation to the end of the Mid

Holocene (16 to 4 ka) and is represented by a total of n= 87 Li/Mg temperatures. The samples
from the WMCP (n= 16; 14.1 to 5 ka) are complementary to the EMCP samples (15 to 8.5 ka)
and extend the temperature record towards 5 ka. Both coral reefs are situated within the LIW
water mass, which is represented by a constant temperature with depth. Hence, assuming
both sites to reflect LIW over the time interval from 15-5 ka, one would expect a concurrent
temperature with time. The data from both mounds perfectly match within an uncertainty of
1 °C, which thus most likely confirms a persistent presence of LIW through time at the coral
sites (Fig. 4.5).

During the deglaciation, a major Northern Hemisphere ice sheet instability drove the cold
event, called Heinrich Event 1 (H1). The release of freshwater into the North Atlantic and the
southward transport of IRD is well attested (Heinrich 1988, Bard et al. 2000, Toucanne et al.
2010, Martrat et al. 2014). In addition, the North Atlantic overturning circulationwas reduced
(Bohm et al. 2015), causing the Northern Hemisphere and in particular the northeast Atlantic
to cool dramatically at the surface due to the lack of northward heat transport by the North
Atlantic Current (Eynaud et al. 2009). Along the Iberian Margin, H1 is associated with reduced
occurrence of temperate and humid pollen, reflecting cold and arid climate, an enhanced
occurrence of the subpolar planktic foraminifera species N. pachyderma (s), indicating
predominant subpolar water (Cacho et al. 1999, Sierro et al. 2005, Voelker et al. 2006, Desprat
et al. 2007, Martrat et al. 2014). Consequently, subpolar waters were penetrating into the GoC
and into the Alboran Sea, resulting in a massive cooling of the sea surface by more than 8 °C
compared to today (Martrat et al. 2007, Martrat et al. 2014). Reconstructed alkenone
temperatures are about 11 °C compared to 19 °C at the early Holocene. The Mg/Ca
temperature record shows a similar strong cooling during H1 if compared to the early
Holocene, while strong differences between both methods appear across the YD cold reversal
and throughout the Holocene. The damping of temperature changes observed in the Mg/Ca
record was interpreted as the resilient capacity of G. bulloides to develop in changing growth
seasons, which would have allowed to compensate for the large deglacial SST warming. The
obvious difference has been consequently linked to a relatively mild upwelling season during
the cold reversal of the YD and a cold upwelling in the AS today (Catala et al. 2019). In the
nBWT record, the end of the H1 is marked by two temperature values ranging from 4.5 and
7.3 °C (~15 ka). Those values are 8.5 to 6.5 °C colder than present, but the minimum

temperatures during H1 remain unknown due to the lack of CWCs between 17 and 15 ka.
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Hence, within the uncertainty, the apparent LIW temperature changes at the end of H1 match
the ones of the surface layer.

Hence, the temperature difference between surface and LIW was similarly strong at the end
of H1 compared to today. However, possible biases regarding growth season of corals and
foraminifera remain unknown and actual measures during peak cooling of H1 are unknown.
Nevertheless, an equally well-stratified water column in terms of temperature (and possibly
salinity), compared to today, is observed. Therefore, the origin of LIW temperature changes
are likely to be expected in the LIW formation region in the eastern Mediterranean, which is
comparable to today.

Following on H1, as the PF moved northwards during the Belling-Allered (B/A) period, the
influence of polar waters vanished, accompanied by an SST increase of 2-6 °C (Cacho et al.
1999, Martrat et al. 2014, Catala et al. 2019). In contrast, CWC Li/Mg temperatures increase
by only 2 °C during the B/A warming with a mean value of 8 °C, still 5 °C lower than present
(Fig. 4.5). Hence, the temperature in the formation region of LIW must have remained colder
for this time interval, which increased the thermal stratification of the water column in the
AS.

The general warming trend towards the Early Holocene peak SST maximum of 18-19 °C
approximately 10.5 ka ago, was briefly interrupted by the YD cold event (12.7-11.7 ka). The
alkenone SST record of core ODP 976, nicely shows this event with a massive surface cooling
of up to 7 °C compared to the Holocene thermal maximum. The CWC temperatures also
demonstrate a dramatic cooling by 4 °C towards temperatures of as low as 4 °C between
12.5 to 11.5 ka (Fig. 4.5). Hence, once again CWC temperatures mirror the SST changes at the
SoG, but now the amplitude is damped by a factor of two, compared to the surface, indicating
a less dramatic colling in the LIW formation region. Note that the Mg/Ca SST does not show
a YD cooling, which has been interpreted as a lack of adaption of the foraminifera species to
its growing season, damping the cooling through mild autumn upwelling in the AS. The data
conflicts with this interpretation, given the very low temperatures of LIW. To solve this
disagreement, one may assume a different growing season between CWC and foraminifera,
which is reasonable since corals feed on advected organic matter, possibly derived from
surface or lateral sources. The excellent synchronicity of alkenone temperature and CWC
Li/Mg temperature may imply a similar timing of alkenone production and CWC calcification.
Note, that the origin of the YD cooling has been suggested as a consequence of a reoccurrence
of a southward movement of the PF, reaching SoG latitudes, similar to H1 (Cacho et al. 2001).

These findings are derived along the Iberian Margin, from a reduced occurrence of temperate
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and humid pollen and enhanced occurrence of N. pachyderma (s), reflecting cold, arid and
most possibly subpolar conditions. Following upon the YD, all records demonstrate maximum
temperatures comparable to today, considering the growing season, during the early
Holocene at circa 10.5 ka. Enhanced freshwater injections into the Atlantic Ocean induced a
strong stratification of the North Atlantic, south of Iceland, which was interpreted as a stable
but weak subpolar gyre circulation (Thornalley et al. 2009). Nd-isotope data on thermocline
ocean dwelling CWC from Rockall Bank confirmed a reinvigoration of the circulation, leading
to a strong and stable subtropical gyre by circa 9 ka (Colin et al. 2010). Simultaneously a
reduced heat transport from the subtropical gyre towards the North Atlantic was proposed
for lower latitudes (Repschldger et al. 2017). However, the period of maximum SST coincides
with a strong phase of stratification in the western Mediterranean Sea as well, associated with
the last stage of ORL 1 (Catala et al. 2019). Hence, a contribution of warmer subtropical waters
flowing into the Mediterranean Sea or enhanced stratification of the AS was suspected to be
accountable for the observed maximum in SST (Catala et al. 2019).

The Early Holocene SST and LIW temperatures in the AS thus seem influenced by the
dynamics of the Atlantic gyres and show a similar thermal gradient (AT= 3-6 °C) compared
to today (AT= 2-5 °C). The end of the Early Holocene and the Mid Holocene (~9 to 4 ka) reveal
a general cooling trend in Mg/Ca SST reconstruction, while alkenone SST remains constant
(Fig 4.5). Diminishing meltwater flux in the North Atlantic caused the enforcement of the
subpolar gyre, which likely extended towards the southeast (Thornalley et al. 2009, Colin et
al. 2010), which promoted the transport of polar waters into the subtropical gyre, resulting in
an increase in seasonality of the inflow, but also the general atmospheric circulation of the
northeast Atlantic. CWC reveal a moderate temperature oscillation around a mean value of
11.5 °C, which is 1.5 °C lower than the present-day LIW temperature. The amplitude of 1.5 °C
is within 2 sigma uncertainty of the reconstruction and thus not significant. Solely two
temperature values that have been measured at ~10 ka ago, when temperatures suddenly drop
by 4 °C for several centuries are significantly different. This event has no counterpart in other
records and therefore stands out. Since no information on possible changes in the LIW
formation region or dramatic changes of the Atlantic inflow is available, a reasonable
explanation for those two temperature values, which certainly need to be confirmed, cannot

be provided.
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Fig. 4.5: Near Bottom Water Temperature (nBWT) derived from Li/Mg ratios from GeoB18118-1 (light blue
open triangles), GeoB18118-2 (light blue triangles) and core locations in the WMCP (black open stars;
Wang et al. 2019). Red line shows the combined 3-point running mean of Li/Mg derived temperatures
during the Holocene. SST records derived Mg/Ca values on foraminifera (orange; Catala et al. 2019) and
alkenone values (purple; Martrat et al. 2014) are shown in the upper section. Note that the transparent
purple record (MD95-2043) is located closer to the EMCP. The purple record (ODP-976) however, was
conducted in a higher resolution but is closer to the WMCP. Relative Sea Levels are given at the top (green;
Rohling et al. 2014). Bottom black boxes show the number of dated corals per 1 ka.

Lastly, corals grow over short periods, while the SST records, especially alkenone derived
records, reflect an average over many growth seasons of surface-dwelling organisms (e.g.
Laepple and Huybers 2013). Therefore, the increasing variability of LIW temperature and the
very cold temperatures, observed prior to the B/A warming and throughout the YD, may in
fact speak for an influx of either polar Atlantic waters, as seen briefly in the Gulf of Cadiz
during H1 (Voelker et al. 2006) or a direct, regional influence of melt-water and river discharge
on the LIW formation temperature. However, at present-day the mean annual Atlantic inflow
at the SoG is estimated with 0.81+0.06 Sv (Soto-Navarro et al. 2010), whereas a combined

freshwater inflow, comprised of groundwater -, river - and the Black Sea input was estimated
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to comprise just 0.025 Sv (Bethoux and Gentili 1999, Ludwig et al. 2009, Ollivier et al. 2011,
Rodellas et al. 2015; Border et al., in prep.). For the past 50 ka, SoG exchange was assessed to
have ranged between 0.6 and 0.5 Sv during the glacial period (Rogerson et al. 2012, Simon
2017). No assessment of the enhanced freshwater input during periods of increased freshwater
discharge is available, therefore a maximum of 0.075 Sv, triple of the modern value, is
assumed. Since the inflow at the SoG is by far larger than the input of freshwater, it is argued,
that the observed temperature variability in the CWC derived LIW record originates from the
temperature variability of inflowing Atlantic Water, since the temperature of discharged
freshwater would only show a minor influence on SST variability in the LIW formation

region.

Cold temperatures as seen during H1 and YD are related to a positioning of the PF close to
the SoG inducing southward transport of subpolar waters along the Iberian Margin into the
Mediterranean Sea (Cacho et al. 2001, Voelker et al. 2006, Desprat et al. 2007). In contrast,
maximum temperatures as today, and during the Early Holocene, are related to the northward
displacement of the PF (Cacho et al. 2001, Voelker et al. 2006) and thus inducing warm

subtropical water into the Mediterranean Sea.
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4.5.3 Intermediate water mass temperature development over the past 550 ka
The interglacial MIS 5 revealed SST temperatures, based on alkenones, between 18-23 °C,

with the warmest period between 127 ka and 121 ka (Martrat et al. 2014). Coinciding with the
SST maximum, organic-rich layers (132-129 ka) and sapropelic layers (S5: 127-121 ka) are
observed (Martrat et al. 2014). Since no corals were dated prior and during the peak

MIS 5 (127-121 ka), direct measures of the water column thermal structure are not available.

Subsequently, SST decreased from 23 to 18 °C (121-114 ka), followed by a brief but distinctive
cold event with SST as low as 12.5 °C (111£1 ka). During this period (115-102 ka; Fig. 4.6), ten
CWC samples were dated (Fig. 4.6) and yield nBWT between 9.0 to 10.4 °C (nBWTay= 9.7 °C).
Therefore, the temperature gradient amounts to circa 7 °C between the surface and LIW,
which is surprisingly similar to the observed temperature gradient (5.5-7.5 °C) in the early
Holocene and deglaciation. The LIW temperature is thus similar to the B/A period during this
period of Mediterranean and Northern Hemisphere cooling and ice sheet growth (Fig. 4.6).
High resolution terrestrial and marine proxy records off the Iberian Margin revealed a
reduction of tree pollen and an increase in the subpolar foraminifera species N. pachyderma
(s), indicating cold, dry and subpolar conditions along the Iberian Margin during the glacial
inception, which were interpreted as similar to Heinrich Events (Pailler and Bard 2002,
Sanchez Goiii et al. 2005, Tzedakis 2005). Equivalent to H1 and to some extent similar to the
YD, both periods have been linked to a southern position of the PF (Cacho et al. 2001, Voelker
et al. 2006). During such phases, CWC seem to vanish in the WMCP and EMCP.
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Fig. 4.6: Near Bottom Water Temperature (nBWT) derived from Li/Mg ratios between 100 and 250 ka.
GeoB18118-2 (light blue triangles) and GeoB18116-2 (dark blue rhombus) are displayed. Red line shows
the combined 3-point running mean record during this period. The dark red record shows an SST record
derived from alkenones (Martrat et al. 2004). Green record shows Relative Sea Level (RSL; Rohling et al.
2014). Bottom black boxes show the number of dated corals per 5 ka.

During MIS 6, SST reconstruction reveals a general decrease from 180 ka towards 150 ka from
18 °C to a minimum of 10 °C, which is reached at 140 ka, when the global ice volume was
highest and the sea level reached a minimum. For this entire time span solely four CWC are
available, which however cover the initial warmer phase at 180 to 170 ka with a nBWT of
9+1°C and the coldest time to 145 ka with a nBWT of 5+1 °C (Fig. 4.6). Similar low
temperatures of circa 4 °C were observed only at the end of H1 (~15 ka) and the YD (~12 ka),
when SST values also reached a minimum at ~10 °C (Fig. 4.5). Consequently, the nBWT again
mimics the SST trend with a warm period offset of up to 8 °C and a minimum offset during
the coldest period of ~5 °C. Note, that between 180 to 170 ka, corals of both mounds show

once again similar temperatures at sea levels of -80 to -60 m, indicative of both sites bathing
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in the same water mass (here most likely LIW). The gradient between SST and nBWT thus

reveals the previously observed values ranging between 8+1 to 5+1 °C.

Further back in time, the SST record, of MIS 7 from 245 to 190 ka, varies strongly and
systematically through time. The temperature spans over 10 °C with highest values over 20 °C
and lowest values being close to glacial minimum values of 10 °C. Three prolonged warm SST
maxima (245 ka, 215 ka and 195 ka) and three shorter glacial type periods (stadials) are
identified (221 ka, 200 ka and 190 ka; Fig. 4.6; Martrat et al. 2004). However, the observed
glacial type periods in SST are not reflected in the Mediterranean RSL (Rohling et al. 2014). In
contrast to this SST record, the reconstructed nBWT shows overall little variability and ranges
from 8 to 10.5 °C between 245 to 190 ka. Several corals have been dated synchronous to the
observed SST minima, but do not show major cooling. Hence, the nBWT does no longer seem
to follow the reconstructed SST values. During the second cold period around 211 ka, the
CWC temperatures reveal a dramatic excursion to near glacial values of 4 °C in two corals,
while others remain at the mean value of 10 °C. Hence, there is an indication of short cold
spells recorded also in the nBWT and therefore possibly in the LIW, but the record is less well
constrained in its timing as the SST record (Fig 4.6). During this time, temperate and humid
tree pollen indicate a gradual decrease towards cold and arid climate from 210 to 200 ka,
however, the maximum of the cold period is expected at 198-196 ka (Martrat et al. 2004,
Tzedakis et al. 2004, Desprat et al. 2006, Desprat et al. 2007). In contrast, the dated CWC,
which show a glacial type temperature would date this event to 21045 ka. Given the individual
character of each coral, the possibility of short age reversals in the coral bearing sediments
does not further allow to constrain the timing of the one cold spell recorded. Overall multiple
CWC were dated spanning MIS 7, but age errors increase to partly as large as +4 ka. Therefore,
these corals may not cover the short glacial type stadials recorded in the SST record. On the
other hand, the few corals indicating the possibility of a basin-wide cold spell through a
decrease of the nBWT to near glacial values, infer a moderately earlier timing of these events

around 210 ka.

The third short glacial type cold spell in the SST record is once again not represented in the
nBWT record. Therefore, regarding MIS 7, it can be concluded, that the nBWT and therefore
most likely the LIW was generally in a colder state with temperatures of solely 8 to 10 °C on
average. Additionally, the close coupling of SST and nBWT observed in more recent
interglacials is not traced, which either reflects the decreasing precision of U-series ages or a
mechanism of LIW formation that decouples the SST of Atlantic inflow from the SST at the

LIW production site. For the latter process, a reasonable explanation has not yet been found,
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but one may speculate that a stronger west-east temperature gradient must have existed
throughout the Mediterranean Sea with average colder temperatures in the East as compared
to today increasing the thermal gradient of MAW and LIW to up to 10 °C, while during cold
spells (glacial type stadials) the temperature gradient almost vanished, except for the one at

210 ka.

The AS-SST reconstruction only covers the past 245 ka, thus for the further discussion, other
sources of SST values are necessary to refer to. For the discussion of SST and nBWT beyond
240 ka, an alkenone SST record from the GoC is used, which is closely related to the SST
variability within the AS (Fig. 4.8; Martrat et al. 2007). However, for the period of overlap
between both records, during peak warm climate the GoC SST is estimated 1-2 °C lower as
the AS SST, while during peak glacial (low sea level) the SST is also up to 2 °C colder than the
one in the AS. Additionally, the RSL from the Mediterranean Sea (Rohling et al. 2014) is used
to guide through the general climate trend (Martrat et al. 2004, Martrat et al. 2007).
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Fig. 4.7: Near Bottom Water Temperature (nBWT) derived from Li/Mg ratios between 250 and 400 ka.
GeoB18118-2 (light blue triangles) and GeoB18116-2 (dark blue rhombus) are displayed. Red line shows
the combined 3-point running mean record during this period. Gulf of Cadiz SST reconstruction derived
from alkenones (grey record; Martrat et al. 2007). Green record shows Relative Sea Level (RSL; Rohling et
al. 2014). Bottom black boxes show the number of dated corals per 5 ka.
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Regarding the time span from 400 to 250 ka, the record covers MIS 10, MIS 9 and MIS 8. The
GoC SST record nicely follows the global climate trend as given in the sea level
reconstruction, with SST ranging from up to 20 °C during the warm climate of MIS 9 to as
low as 6 °C during peak ice extent and lowest sea level of MIS 10 and MIS 8 (Fig 4.7). In
particular, during the peak glaciations, SST of the GoC appears more variable with prominent
cooling events of down to 6 °C at 345+5 ka and 270+5 ka. Overall, the glacial-interglacial
variability of GoC SST follows a saw tooth shape with rapid warming during terminations
and slow cooling during glacial inceptions as expected from the global climate trends. The
nBWT reconstruction, which is based on individual dated corals now reveals substantially
larger errors for the individual coral ages, which thus limits the possibility to distinguish the
timing of nBWT changes. As during previous interglacials, corals are not representing the

peak warm period with highest sea level, hence the period equivalent to present-day climate.
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Overall, nBWT and thus LIW temperatures span similar ranges compared to previous glacial-
interglacial cycles with values ranging from up to 12 °C during the late MIS 9 to values as low
as 4 °C during peak glaciation (MIS 10). Both mounds deliver however identical values
through time, which certainly highlights the existence of a LIW type water mass, which is
well stratified underneath the Atlantic inflow. Since the observed range of nBWT and SST
(note that GoC SST is during peak values up to 2 °C lower than the one in the AS) are similar
and somewhat synchronous (considering the large uncertainty in CWC ages), thus one can
certainly assume that the coupling between Atlantic inflow (SST) and temperature at the LIW

formation site is similar to the past 140 ka.
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Fig. 4.8: Near Bottom Water Temperature (nBWT) derived from Li/Mg ratios between 70 and 560 ka.
GeoB18118-2 (light blue triangles) and GeoB18116-2 (dark blue rhombus) are displayed. Red line shows
the combined 3-point running mean record during this period. The dark red record shows an alkenone
derived SST record (Martrat et al. 2004). Gulf of Cadiz SST reconstruction derived from alkenones (grey
record; Martrat et al. 2007). Patterns of both long-term SST records generally match, thus the GoC SST can
be substituted for the AS SST record exceeding 250 ka. Green record shows Relative Sea Level (RSL; Rohling
et al. 2014).
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The final time segment, between 550 and 420 ka, covers MIS 13 (492 to 478 ka) and MIS 12
(478 to 424 ka) with solely 7 CWC samples (Fig. 4.8). The CWC derived nBWT once again
span ranges, similar to the ones of previous interglacials with an average of roughly 10+2 °C.
No indication of glacial LIW temperatures are found and corals did certainly not occur during
peak sea level and thus expected warmest SST and nBWT. Thus the oldest studied CWC
confirm the average value of nBWT but do not yet provide an opportunity to study temporal

changes of LIW formation temperatures.

Overall, it can be concluded, that CWC derived peak glacial nBWT values are a rare or
potentially even absent case in the AS, due to the lack of CWC occurrence. However, three
times during MIS 10, MIS 6 and during a cold spell within MIS 7, spectacular low values of as
low as 4 °C are reconstructed. Such values are similar to present-day temperatures observed
south of Iceland or within the Norwegian Sea at similar shallow depth but do not exist in the
Mediterranean Sea. Since CWC dwell in a water temperature range between 4-14 °C (Freiwald
et al. 2009, Roberts 2009) and glacial LIW temperatures of 4 °C were observed, it is unlikely
that LIW temperatures dropped below the comfort zone of CWC (<4 °C) within these short
glacial peaks. Hence, a temperature-driven demise of CWC during peak glacial periods is

unlikely.

The water, bathing both coral locations and thus at 100 m depth distance, shows a persitent
thermal stratification with the surface layer and a persistent thermal gradient of at least 3 °C.
Therefore, the water bathing the CWC likely originated in the eastern Mediterranean Sea
forming a LIW type water mass during the past 7 glacial-interglacial cycles. This water mass
must have been substantially colder during peak glacial periods. On the other hand, equally
rare CWC occurrences are found during peak sea level, i.e. peak climate warm phases (MIS 5,
MIS 11, MIS 13) when SST values in the AS reach values as high as 20 °C. During such peak
interglacials, nBWT values are expected to reach 13 °C as today. In fact, such high values are
solely observed today, during the early Holocene and during MIS 9. Assuming, that the LIW
temperature reconstructions are accurate within a precision of 1 to 2 °C, the modern
temperature of the LIW seems a rare case in the evolution of the Mediterranean Sea over the
past 550 ka. The observed interglacial temperature values suggest a significantly lower mean
value of 10+2 °C for the interior of the Mediterranean Sea. This implies that the Atlantic inflow
must have been on average colder, presuming a tied coupling of AS-SST and LIW temperature
or alternatively that the formation of the LIW was related to stronger winter cooling in the

eastern Mediterranean and possibly a less important salt injection from loss of evaporation.
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In any case, the temperature reconstruction demonstrates a strong coupling of AS-SST and
underlying water, with a persistent temperature stratification over the past 550 ka. This
implies that the Mediterranean Sea interior water mass formation responds to the changes in
the Atlantic, driven by the latitudinal displacement of PF and AF. These changes are linked to
changes in atmospheric circulation and freshwater runoff into the Mediterranean Sea,
affecting the nutrient cycle, regional upwelling and thus the conditions the corals live in, as

discussed in the previous chapter.
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4.6 Conclusion
Near bottom water temperatures, recorded by Li/Mg ratios in CWC from the Alboran Sea

were used to trace the thermal history over 7 entire climate cycles. nBWT from the shallow
DM (236 m) and the deeper BR I (329 m) are consistent over the interglacial periods of the

past 550 ka and thus reveal a coherent, predominant water mass, most possibly LIW.

The last deglaciation and the Holocene are studied at an unprecedented temporal resolution
and revealed a temperature evolution of LIW from cold conditions at the end of Heinrich
Event 1 to similar as present warm conditions at the early Holocene. The LIW temperature
closely follows the temporal evolution of the AS-SST based on alkenone-SST reconstructions.
Mg/Ca SST reconstructions, which are thought to reflect a seasonal upwelling signal, do not
show a YD cold reversal which was thought to reflect upwelling of warmer LIW. The Li/Mg
temperatures contradict this theory since a strong cooling of the LIW is observed during the
YD, with values far below the alkenone SST reconstructions. Temperature reconstructions
demonstrate the existence of a persistent thermal gradient in the upper water column of the

AS, with MAW at the surface and LIW underneath, but with variable thermal depth gradients.

The Holocene with an unprecedented fine temporal resolution revealed a distinct difference
in the temperature gradient between two SST reconstructions, based on Mg/Ca from
foraminifera and alkenones and the nBWT reconstruction. The Mg/Ca SST record suggests a
gradual decrease in temperature-driven stratification between MAW and LIW, whereas the
alkenone derived SST record suggests a persistent strong temperature gradient. Since the
season of calcification cannot influence this observed difference in the evolution of the
temperature gradient, a small annual variability in LIW temperatures over the past 15 ka

within the AS is suggested.

The nBWT reconstruction of LIW, over the last 550 ka, revealed an overall temperature range
from 6 to 13 °C during interglacial periods (MIS 9 to MIS 1) and the glacial periods MIS 12 and
MIS 8. Cold, glacial-like LIW temperatures (< 6 °C) are limited to short time intervals, as seen
during MIS 10 (350 ka), MIS 7 (200 ka), MIS 6 (145 ka) and during the termination 1 (H1 and
YD). The observed temperature range over the last 550 ka suggests that the modern-day
temperature of LIW (13.2 °C) at the core locations within the EMCP (BR I and DM) is almost
unprecedented. The Li/Mg data implies significantly colder water mass temperatures than
today, with an average of 9.4+4 °C over the last 550 ka. Within the Alboran Sea, modern-day
temperatures do not fall below 12 °C, even at water depths of 3000 m. Close to modern-day

temperatures were solely reached around 320 ka (12.5+1 °C) and at 9.4+1 ka (12.5+1 °C).
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Values, most possibly exceeding modern-day temperatures would be expected for the
warmest period during MIS 11 (390-430 ka) and during MIS 5 (127-121 ka), however, so far
no CWC were found during these periods.

During glacial periods, where CWC occurrence is restricted, nBWT of both locations show
coherent temperatures of 9.5+1 °C at MIS 10 (370 ka), MIS 8 (285 ka) and MIS 6 (180 ka), during
reduced Mediterranean sea levels between -40 to -80 m. Although glacial data with co-
occurring corals from both locations is scarce, it is assumed that up to a Mediterranean sea
level reduction of -80 m the same water mass is predominant. However, comparisons during
full glacial conditions, with temperatures of 6-4 °C, are not possible.

Based on terrestrial and marine records along the Iberian Margin, within the GoC and the AS,
a clear correlation of (i) cooling events in SST, cold and arid climate in the Mediterranean
Region and sub-polar planktic foraminifera species during interglacial periods and (ii) the
coincident reduction and demise of CWC occurrence in the AS could be established. Glacial
periods in the Mediterranean Region are associated with cold and arid conditions and a
southern position of the PF towards ~45-40°N (Ruddiman and McIntyre 1981, Grousset et al.
1993, Robinson et al. 1995, Rohling et al. 1998, Kageyama et al. 2006) as well as a general lack

of CWC occurrence as shown in Chapter 3.

92



Chapter 5: The “Gibraltar seesaw pattern”

5 The “Gibraltar seesaw pattern”: Implications of atmospheric-oceanic
interplay on CWC growth in the Alboran Sea and the Gulf of Cadiz

The research cruise MSM 36 ,MoccoMeBo® in 2014 was motivated by previously observed,
distinct differences in the temporal evolution of CWC mounds in the Gulf of Cadiz and the
Alboran Sea recorded for the past climate cycle (e.g. Wienberg et al. 2009, Wienberg et al.
2010, Fink et al. 2013). The abbreviation “CWC” stands here for the most important reef
forming species L. pertusa (D. pertusum) and M. oculata. Other local species may behave
differently. For example, other Dendrophyllia corals are known to occur during the Holocene
in the GoC. During the last glacial period, flourishing CWC growth was observed in the GoC,
followed by a complete demise of CWC activity circa 10 ka ago (Wienberg et al. 2009,
Wienberg et al. 2010). Contrasting to this finding, CWC started to colonize the AS around
~14ka (Fink et al. 2013) and populate reefs until present in some regions of the AS.
Productivity was identified as the most important factor steering the observed timing of CWC
growth on both sides of the SoG (Wienberg et al. 2010, Fink et al. 2013), but the mechanisms
of the distinct timing remain unknown. This surprising finding was identified as the “(most
likely climate-driven) Gibraltar-seesaw pattern” (Hebbeln et al. 2015) from which three work
hypotheses were formulated by Dierk Hebbeln and his coworker (Hebbeln et al. 2015):

“(1) The Gibraltar-seesaw pattern describing the LGM-Holocene development of CWC along the
Moroccan margins on both sites of the Strait of Gibraltar is a long-lasting productivity-driven
feature spanning at least the last glacial-interglacial cycle.

(2) The long-term development of the Moroccan CWC mounds is characterized by a major change
in growth patterns as proposed by several mound development models.

(3) The initiation of the Moroccan coral mounds on both sides of the Strait of Gibraltar is triggered

by major large-scale paleo-environmental change(s).”

Although the available U-series age data does not permit to judge on hypothesis (2),
comparing the overall maximum Mound Aggregation Rates (MARs) on both sides of the SoG,
similar maximum MARs, ranging between 122-66 cm/ka (GoC; Hemsing 2017) and 168-126
cm/ka (AS; this study) can be observed. However, the mound formation patterns differentiate
severely. Whereas, in the GoC, thousands of mainly small mounds were found, with a mean
height of 18 m (Hebbeln et al. 2019), multiple steep ridges of up to 150 m height and hundreds
of elongated and arcuate mounds of up to 40 m height were found in the AS (Hebbeln 2019).
To address the above work hypotheses (1) and (3), the published U-series age data from the
GoC (Wienberg et al. 2009, Wienberg et al. 2010, Frank et al. 2011, Dubois-Dauphin et al. 2016,

Krengel 2016, Hemsing 2017) and AS (Fink et al. 2013, Fink et al. 2015, Wang et al. 2019,
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Feenstra et al. 2020, Fentimen et al. 2020, this study) have been compiled, spanning over the

past 550 ka, i.e. 7 climate cycles.

Moreover, Li/Mg temperature reconstructions from both sides of the SoG may point out
changes of physical properties and stratification of the water column, i.e large scale paleo-
environmental changes. Note, that U-series age data from the GoC, conducted prior to 2016,
was measured on different mass spectrometer generations (ICP-QMS, MC-ICPMS, TIMS) and

thus shows significant differences in the quality of the age measurements.
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5.1 Favourable CWC growth conditions during interglacial and glacial periods in
the AS and GoC over the past 550 ka
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Fig. 5.1: Compiled U-series records from the Alboran Sea and the GoC over 550 ka. Blue triangles mark AS
CWC, whereas grey triangles represent the GoC CWC record. The dark red record shows an alkenone
derived AS SST record (Martrat et al. 2004). GoC SST reconstruction (grey record) is derived from alkenones
as well (Martrat et al. 2007). Patterns of both long-term SST records generally match over time, thus the
GoC SST is used as substitute for the AS SST record exceeding 250 ka. The green record shows Relative Sea
Level (RSL; Rohling et al. 2014). Sapropel layers are shown at the bottom (Ziegler et al. 2010, Konijnendijk
et al. 2014, Rohling et al. 2015). Blue vertical bars show cold stadial conditions at the Iberian Margin,
coinciding with Greenland Stadials (GS) and Heinrich Events (H) (Desprat et al. 2007). Red vertical bars
indicate interglacial Marine Isotope Stages (MIS).

The compiled U-series age data from the GoC and the AS over the past 150 ka (Fig. 5.1),
strongly indicates a Gibraltar-seesaw pattern of predominantly glacial CWC in the GoC and
interglacial CWC in the AS, as formulated in hypothesis (1). Furthermore, the observed CWC
growth pattern over the past 550 ka provides a good foundation to speculate, that the
Gibraltar-seesaw pattern is very likely for earlier glacial-interglacial cycles as well. However,
it remains best resolved during the last glacial-interglacial cycles up until 250 ka, due to the
significant differences in the quality of the age measurements older than 250 ka in the GoC.
Thus, further investigation may be necessary to strengthen the argument on a long-term

scale.
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Hence, the productivity-driven nature of the Gibraltar-seesaw pattern (1) is discussed in the
following, focussing on atmospheric and oceanographic changes on a regional scale,
surrounding the SoG. Glacial-interglacial cycles are expressed in the form of dramatic SST
changes and sea level fluctuations due to the global ice volume changes (Fig. 5.1). Regional
changes in precipitation and a north-south oscillation of the PF and AF are known as well

(Fig. 5.2 and 5.3; Eynaud et al. 2009, Denton et al. 2010, Clark et al. 2012).

Glacial periods are globally marked by large ice sheet build-ups and a southern position of
the PF between 45°N and 40°N (Grousset et al. 1993, Robinson et al. 1995, Rohling et al. 1998,
Kageyama et al. 2006, Eynaud et al. 2009). Due to polar air residing at temperate latitudes,
cold polar air outbreaks were frequently induced into the western Mediterranean Region,
potentially triggering enhanced cyclogenesis within the Western and the Central
Mediterranean Basin, creating a meridional geostrophic circulation (Rohling et al. 1998, Hayes
et al. 2005, Kuhlemann et al. 2008), possibly distributing aeolian dust over the Mediterranean
Region and into the GoC (Fig. 5.2). The environmental conditions around the western
Mediterranean Region were of predominantly cold, semi-arid to arid climate, with low river
run-off and low fluvial sediment input, yet enhanced Saharan dust input (Martrat et al. 2004,
Sierro et al. 2005, Fink et al. 2013, Terhzaz et al. 2018, Feenstra et al. 2020).

During glacial periods, when SST in the AS and GoC ranged between 8 to 15 °C (Fig. 5.1;
Martrat et al. 2004, Martrat et al. 2007), minor glacial CWC occurrences in the AS revealed
coralline Li/Mg nBWT between 4 to 6 °C over the past 550 ka (340 ka, 200 ka, 140 ka, 15 ka,
12 ka; Chapter 4, this study). In the GoC, however, flourishing glacial coral growth over the
past 70 ka revealed coralline Li/Mg temperatures ranging between 0 to 6 °C (Hemsing 2017).
Thus, during glacial periods, a temperature-driven demise of the investigated CWC species in
the AS is highly unlikely.

Hence, reduced productivity and reduced, shallow vertical mixing represent unfavourable
conditions for sustained coral growth within the AS. Thus, only minor CWC occurrences
were observed during most glacial periods (MIS 12 to MIS 2), however, dominant CWC
growth during MIS 10 was observed. The AS CWC occurrences during glacial periods in the
AS coincide with brief increases of the Mediterranean sea level (Rohling et al. 2014), as well
as rapidly increasing SST. These interstadial conditions were observed in the AS SST as well
as GoC SST records and are most likely associated with a brief retreat of the PF to a more
northern position (Martrat et al. 2004, Martrat et al. 2007). Hence, a brief return to more
interglacial-like conditions, providing freshwater input and thus more productivity and

vertical mixing than during full glacial periods is suggested. However, due to the scarcity of
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the GoC CWC record beyond 70 ka, it remains uncertain if CWC growth in the GoC was
reduced during these interstadial interceptions.

During glacial periods, the reduced freshwater input into the Mediterranean Sea and therefore
reduced Nile River discharge resulted in the formation of more dense LIW with higher flow
speed (Revel et al. 2010, Toucanne et al. 2012). Consequently, in the GoC, denser MOW was
recognized in greater depths with higher velocities (Voelker et al. 2006, Bahr et al. 2014, Bahr
et al. 2015, Kaboth et al. 2016, Kaboth et al. 2017). It has been shown, that MOW strength and
density positively influences the strength and the position of the Azores Current within the
GoC via the B-plume effect (Xu et al. 2007, Volkov and Fu 2011, Kaboth-Bahr et al. 2018) and
thus most possibly enhancing eddy energy within the GoC. Furthermore, the glacial Azores
Front, associated with enhanced productivity, resided within the GoC (~35°N; Alves and Colin
de Verdiere 1999, Rogerson et al. 2004).

Hence, strong offshore winds and aeolian dust input from the arid Mediterranean Region and
enhanced productivity due to local upwelling in the GoC represent favourable conditions for
glacial CWC growth within the GoC (Wienberg et al. 2010). Consequently, CWC occurrences
were found during the glacial periods MIS 6 and MIS 4 -2. Although the amount of CWC in
the GoC, measured with insufficient quality, is scarce, CWC most possibly grew during

MIS 12, MIS 10 and MIS 8.
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Fig. 5.2: Sketch of the postulated atmospheric and oceanographic parameters during glacial periods. Major
ice sheets reside as south as circa 50°N (indicated by white area). Southerly Polar Front position induces
polar air outbreaks into the western Mediterranean Sea (blue arrows). Enhanced cyclonic systems and an
arid and cold climate (yellow dunes) causing enhanced aeolian Sahara dust input into the Mediterranean
Sea and most likely into the GoC. A more northern position of the Azores Front provides enhanced
productivity in the GoC, marked by small particles. Flourishing CWC growth in the Gulf of Cadiz is
indicated by the coral symbol.

Globally, interglacial periods are marked by rising temperatures, enhanced precipitation, the
retreat of ice sheets and glaciers as well as a northern position of the PF (Fig. 5.3; Eynaud et
al. 2009, Denton et al. 2010, Clark et al. 2012). During warm climate periods, the Mediterranean
Region is considered temperate/warm and humid, reflected in pollen records, warm SST,
enhanced freshwater input as seen in African Monsoon activity and Nile River discharge
(Martrat et al. 2004, Desprat et al. 2007, Revel et al. 2010, Ehrmann et al. 2016). A strong
evaporation loss due to warm temperatures leads to a massive eastward salt increase and
strong winter overturning, which thus, results in a stronger Atlantic inflow and
Mediterranean outflow via the SoG. Although, enhanced freshwater input into the
Mediterranean Sea leads to reduced density-driven LIW formation and thus reduced

overturning velocity, rising sea levels and thus higher sill depths strengthen the overturning
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volume (Rogerson et al. 2012, Simon 2017). During periods of peak freshwater input, water
column stratification increased and thus caused further slow down in LIW velocity, resulting
in a decrease of the outflow velocity and less dense MOW (Toucanne et al. 2012, Bahr et al.
2014, Kaboth et al. 2017). Consequently to these climatic changes in the Mediterranean Region
and thus during all warm stages since 300 ka, while beyond dating is not sufficiently precise
anymore to constrain the age of corals to a particular cold- or warm climate stage, the CWC
in the GoC clearly vanished (Fig. 5.1). The significant decrease in aeolian dust input and the
decrease in upwelling induced productivity, most possibly represent unfavourable growth
conditions in the GoC (Wienberg et al. 2010). In the Mediterranean Sea however, enhanced
freshwater input, transporting nutrients and sediment, lead basin-wide to high primary
productivity and locally to vigorous vertical mixing, transporting food particles into coral
dwelling depths, as seen in the AS (Heburn and La Violette 1990, Sarhan 2000, Barcena et al.
2001, Jimenez-Espejo et al. 2008, Fink et al. 2013, Rohling et al. 2015). Thus, the most abundant
warm climate CWC occurrence in the AS can be observed during interglacial periods MIS 9,

MIS 7, MIS 5 and from Termination T1 throughout MIS 1 (14 to 0 ka; Fig. 5.1).

However, peak climate warm periods are barely represented in the presently available AS
CWC record, which provides a first hint that these periods result in a limitation of coral
growth. One may suspect that temperatures rose above critical values for L. pertusa (D.
pertusum) and M. oculata, i.e. 14 °C (Roberts et al. 2006, Freiwald et al. 2009) or that further
increased primary productivity lead to a deoxygenation of the bottom waters through the
remineralization of organic matter (e.g. Fink et al. 2013). Indications for de-oxygenation are
the sapropel events in the Mediterranean Sea, when organic matter is preserved in the
sediment due to the lack of bottom water oxygen. In fact, CWC growth is very limited during
such periods of low oxygen (Fig. 5.1). However, the compilation is solely well resolved for the
last known sapropel S1, when a general decline of AS CWC is observed. During earlier climate
states and partly more intense organic sediment preservation events the data is not

sufficiently well resolved to prove a major change of CWC activity during these events.

Therefore, it is assumed, that the production hypothesis emitted by Wienberg et al. (2010) and
Frank et al. (2011) holds for several climate cycles and that warm climate stages represent
solely weak upwelling activity in the GoC. In addition, the GoC CWC grew under the
influence of different water masses as compared to the AS. The AS CWC habitats are clearly
dominated by the presence of LIW (e.g. Fink et al. 2013, Wang et al. 2019, this study), while
in the GoC, multiple predominant water masses like the MOW, the Eastern Atlantic Central
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Waters (EACW) and the East Antarctic Intermediate Water (EAAIW) reside in coral dwelling
depths between 600 to 1000 m water depths, as explained in more detail in Hemsing (2017).

Fig. 5.3: Sketch of the postulated atmospheric and oceanographic parameters during interglacial periods.
Ice sheets (indicated by white areas) and the Polar Front reside at circa 60 °N or at higher latitudes.
Predominant warm and wet climate in the Mediterranean Region is indicated by vegetation and clouds.
Enhanced freshwater input, transporting sediment and biogenic material is indicated by rivers, areas with
high productivity are indicated by small particles. Flourishing CWC growth during interglacial periods in

the Eastern North Atlantic and the Mediterranean Sea are indicated by coral symbols.

Favourable AS CWC growth conditions apparently declined during cold stadials within warm
climate periods, when AS CWC habitats show a minor activity or even absent CWC
developments, documented in the stadials of MIS 5 and most likely during stadials of earlier
warm climate periods (e.g. MIS 9 and MIS 7; Fig. 5.1). Cold stadials are marked by significant
decreases in the AS and GoC SST records as well as a decline of warm and humid pollen along
the Iberian Margin (Martrat et al. 2004, Desprat et al. 2007, Martrat et al. 2007) and can most
possibly be associated with a southward advance of the PF. Thus, regarding the minor AS

CWC growth activity, cold stadials appear to reflect a counter situation to the observed AS
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CWC occurrence during warm interstadials during cold climate periods. However, a brief
onset of GoC CWC growth during cold stadials cannot be clearly identified due to the scarcity
of dated GoC CWC. Although, to some extent GoC CWC growth was observed coinciding
with cold stadials over the past 300 ka (MIS 9, MIS 7 and MIS 5), the amount and quality of

dated CWC from these glacial periods remains tenuous.

The observed Gibraltar-seesaw pattern appears concomitant with glacial-interglacial
atmospheric and oceanographic changes. Thus, the observed seesaw coral growth pattern is
proposed to be driven by the dynamic frontal system of the PF. Although productivity, as
hypothesized (1), is one main driver of CWC growth as evidenced by multiple studies (White
et al. 2005, Mienis et al. 2007, Taviani et al. 2016, Hanz et al. 2019, Wang et al. 2019), the
Gibraltar-seesaw pattern seemingly is driven by the south-north oscillation of the PF,
controlling the oceanic and climatic conditions of the Mediterranean Region and thus
provides the necessary productivity in either location to facilitate sustainable CWC growth.
However, distinct deviations from a strict glacial-interglacial seesaw pattern are evidenced
by minor CWC growth activities during stadial and interstadial periods in the AS and
presumably in the GoC. Further investigation on GoC CWC growth activities may be
necessary to conclude on a concurrent GoC growth pattern during these periods.

Lastly, a closer look on the CWC ages from both, the AS and GoC, spanning the past 50 ka
(Fig. 5.4) reveals abundant CWC and active reef forming throughout most of MIS 3 and a
further increase of CWC abundance during the LGM. However, with the onset of termination
T1, a significant decrease of CWC activity is observed at circa 19 ka. During H1 (18.0-14.6 ka),
concurrently with reduced surface productivity in the GoC, a southern PF position as south
as the SoG was observed (Colmenero-Hidalgo et al. 2004, Voelker et al. 2006, Wienberg et al.
2010). The climatic and environmental changes during H1 are accompanied with a lack of
dated corals in the GoC and thus a potential demise of CWC in the GoC (~18-15 ka) during
H1 (Fig. 5.4). Subsequent to H1, during the onset of the interglacial MIS 1, only minor CWC
occurrences were found in the GoC until circa 12 ka, where CWC activities in the GoC ceased
by the end of the YD cold event. In the AS however, the onset of CWC growth (~15 ka)
coincides with the end of H1. During the subsequent warming period (B/A), an increase in AS
CWC abundance with high MARs of up to 160 cm/ka were found throughout most of the
Early and Mid-Holocene, however during the YD cold event, AS CWC occurrences
diminished severely (Fig. 5.4).

101



Chapter 5: The “Gibraltar seesaw pattern”

MIS 1 MIS 2 MIS 3 ] 50
H1 H2 H3 H H

b GoCCWC | ’ 120 _

A ASCWC 140 E
O — RSL record 4 60 a
S e B
Q p
% = R > [ B> o ] -100
5 - - - 20
(o]
2 0 10 20 30 40 50

Age [ka]

Fig. 5.4: CWC growth of the past 50 ka in the GoC (grey triangles) and the AS (blue triangles). Seemingly,
H1 with a PF position at SoG latitudes restrict productivity during glacial periods in the GoC and thus
coral growth. Mediterranean sea level is shown in green (RSL; Rohling et al. 2014). Blue vertical bars show
Heinrich Events (H).

The observed lack of CWC during H1 gives rise to speculations, that strong H events
accompanied by a PF position at SoG latitudes pose unfavourable growth conditions for GoC
CWC. Regarding the GoC CWC activities over the past 50 ka, reduced activities seemingly
coincide with H2 and H3. However, the GoC record is too scarce to judge CWC activities on
H4 and H5. Thus, further investigation of GoC CWC activities during H events need to be
conducted. Conclusively, the question remains, where CWC in the Mediterranean Region
found refuge during short periods of unfavourable conditions on both sides of the SoG. In the
Eastern Mediterranean Region, flourishing CWC occurrences during the YD cold event and
individual glacial corals, found east of the Strait of Sicily in the Ionian Sea, the Adriatic Sea
and the Eastern Mediterranean Sea might provide an indication of a potential glacial refuge

for the Mediterranean Region (Taviani et al. 2005, McCulloch et al. 2010, Fink et al. 2015).
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If the origin of the observed coral - climate relationship is driven by the position of the polar
front, one might expect that the origin of the CWC growth Gibraltar-seesaw pattern might
be related to the initiation of this frontal dynamic system. During 1250 and 700 ka, the so-
called “mid-Pleistocene transition” (MPT), the global climate changed significantly.
A reduction in the North Atlantic SST, as well as an increase of aridity and the monsoon
intensity in Africa, was observed (Clark et al. 2006). Furthermore, global climate variability
changed from the dominant 41 ka orbital cyclicity to a 100 ka orbital cyclicity (Hays et al.
1976, Pisias and Moore Jr 1981, Clark et al. 2006). As seen in e.g. the benthic 6!80 stack LR04
(Lisiecki and Raymo 2005), over the past 800-700 ka, the 100 ka orbital cyclicity determined
the pace of glacial-interglacial cycles. Prior to MIS 22 (900 ka), mild glacial and lukewarm
interglacial periods were observed, however, the onset of full glacial-interglacial conditions
are reported for MIS 22 (Elderfield et al. 2012). Hence, the position of the PF is determined by
the size of North Hemisphere ice sheets, an onset of coral growth during the MPT or shortly
after is highly possible.

However, hypothesis (3), regarding “the initiation of the Moroccan coral mounds on both sides
of the Strait of Gibraltar” is, based on the available long-term data, difficult to asses. Two
mounds from the GoC have been fully penetrated (Wulle Mound and MeBo Mound; Hebbeln
et al. 2015, Krengel 2016), revealing basal ages of 350+20 ka (Wulle) and 450+50 ka (MeBo).
However, corals from multiple studies in the GoC revealed mound surface ages ranging
between 4 and 345 ka (Frank et al. 2009, Wienberg et al. 2009, Wienberg et al. 2010, Frank et
al. 2011, Krengel 2016, Hemsing 2017). Since several thousand exposed and buried coral
mounds have been found in the GoC (Hebbeln et al. 2019), finding the oldest mound,

representing the onset of CWC growth in the GoC, may prove difficult.

For the AS however, three large ridges, namely Brittlestar Ridge I, IT and III may provide an
answer for the onset of mound initiation in the AS. The oldest sample on BR I was dated at
538+28 ka, however BRI was not fully penetrated in a depth of 70 m. Dependent on the actual
mound height between 80 to 160 m and based on the calculated overall MARgr 1, BR I may
reveal a basal age of 595+20 ka (base at 80 m) or 1190+50 ka (base at 160 m). The onset of BR
I thus would lie well within the MPT or shortly after.
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5.2 Conclusion
The compiled U-series age data from the GoC and the AS strongly indicates a Gibraltar-

seesaw pattern, spanning over at least the last glacial-interglacial cycles (MIS 6 to MIS 1) and
most likely over earlier glacial-interglacial cycles up to 550 ka. The Gibraltar-seesaw pattern
was associated with glacial-interglacial atmospheric and oceanographic changes, most
possibly driven by the dynamic frontal system of the PF. The south-north oscillation of the
PF, during glacial-interglacial cycles potentially affects the oceanic and climatic conditions of
the Mediterranean Region and is thus proposed to trigger the necessary primary productivity
in either location to facilitate sustainable CWC growth. However, distinct deviations from a
strict glacial-interglacial seesaw pattern are evidenced by minor CWC growth activities
during stadial and interstadial periods in the AS and presumably in the GoC. However, further
investigation of GoC CWC growth activities may be necessary to conclude on a concurrent
GoC growth pattern during these periods. Concurrently with the H1 event, when the PF
supposedly resided at SoG latitudes, CWC in the GoC vanish for over two millennia. At the
end of H1, which is associated with the retreat of the PF to a more northern position, minor
CWC growth briefly returned to the GoC, whereas at the same time in the AS, the onset of

flourishing CWC growth was observed.

If the origin of the observed coral - climate relationship is driven by the position of the polar
front, the potential onset of CWC growth in the Mediterranean Region might have started
during the MPT (1250-700 ka). During the MPT, (i) climate variability changed from a 41 ka
orbital cyclicity to a 100 ka orbital cyclicity and (ii) mild glacial to lukewarm interglacial
conditions changed to full glacial-interglacial conditions. Hence, the position of the PF is
determined by the size of North Hemisphere ice sheets and the south-north oscillation is
driven by the glacial-interglacial cyclicity. An onset of CWC in the Mediterranean Region
during the MPT coincides with the calculated maximum basal age of BR I, ranging between

595+20 and 1190+50 ka.
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6 New constraints on the evolution and potential drivers of seawater 624U
over the last 400 ka

Over the past decade, several studies have pointed out temporal and spatial changes of the
natural 234U/?38U ratio in the world oceans. This is a stunning observation since U is a
conservative element with a residence time of 380.000 years in the oceans. The detection of
small %.-variations in the 234U/2%U activity ratio became feasible, thanks to ever-increasing
analytical precision of mass-spectrometric U-isotope measurements. Regional isotopic
differences came to light, in particular in semi-enclosed ocean basins (Andersen et al. 2010).
First evidence were found for small but measurable changes of the world ocean U-isotopic
composition through climate change. Cold-water corals (CWC) provide a unique, well-
preserved archive to study the oceans 23*U/238U ratio. In a recent study, it was proposed that
isotopic differences, evidenced between the equatorial Pacific and Atlantic, are related to
ocean circulation (Chen et al. 2016). Through the study of Mediterranean Sea CWC (AS), the
novel findings further contribute to the history of seawater 23#U/?38U variations. Moreover, a
unique U-series database from numerous Atlantic coral provinces is compiled here, for a

better constraint of the global patterns over the past climate cycles.

6.1 Introduction
In the oceans, the concentration of the salt like element Uranium is controlled by its sources

and sinks and its chemical behaviour. Due to the weathering of continental crusts, U is
released into meteoric waters as U(VI)-ion. In absence of oxygen, U is reduced to its
oxygenation state U(IV), in which it remains particle reactive and mostly insoluble.
Consequently, the major U sources to the ocean are rivers, groundwater and direct transport
of particles via aeolian dust. Most of the discharged U is stored in the oxygen-depleted (and
reducing) sediments of coastal zones, which thus act as strong sinks of U (even to the ocean),
but can act as a source if sediments are oxygenated (e.g. Ivanovich and Harmon 1992, Dunk
et al. 2002). Other sources, such as hydrothermal vents and the weathering of marine crusts
are however, not well constrained, thus overall large uncertainties remain in the global U
budget (Dunk et al. 2002).

Further sinks are suboxic and anoxic sediments and the precipitation of biogenic carbonates
(Dunk et al. 2002). Via the sources, U with different activity ratios of 23*U/?38U (ARuy) is
released into the ocean. Since solely small deviations from the secular radioactive equilibrium
occur in the ocean the %.-deviation from radioactive equilibrium in 6?**U is commonly used,
e.g. 6234U= (ARy-1)*1000. Due to the alpha recoil process, 2>*U can be weathered more easily

from mineral surfaces. Hence the ARy is elevated in meteoric waters if compared to the
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secondary equilibrium. This is nicely demonstrated in the ARy of 38 most important rivers,
contributing freshwater to the world ocean. The river ARy varies between 1.070 to 2.030, i.e.
in 234U notation, between 70 and 1030%. (Dunk et al. 2002).

Differences in the host rock and the weathering process determine the sources U
concentration and 8%4U (Kronfeld and Vogel 1991, Palmer and Edmond 1993, Dunk et al.
2002). Physical weathering, like the mechanical breakdown of rocks via vegetation or ice,
exposes fresh surfaces and thus increases the surface area, predominantly releasing 234U from
damaged crystal lattice and through alpha recoil. Rivers influenced by predominantly physical
weathering show high 334U of up to 1000%.. On the other hand, with predominantly chemical
weathering, lower values as low as 100%. are found in rivers (Kronfeld and Vogel 1991, Dunk
et al. 2002, Henderson 2002). Robinson et al. (2004) could demonstrate in the runoff from New
Zealand mountains that climate changes can influence the relative rate of physical and
chemical weathering and thus the relative release of excess ?*U to the ocean. Based on the
compilation of 38 rivers, Dunk et al. (2002) estimated a global mean river input of 824U = 170
to 260%. and a mean groundwater input of 623U = 200 to 2000%.. Note, the giant uncertainty
of the groundwater isotopic composition, which related to the few existing measures of direct
groundwater discharge to the ocean. A further possible source of excess 23U are pore waters
in marine sediments, which according to Ku (1965) may contribute as much as 50% to the
oceanic excess of 234U.

Due to the constant flux of enriched 23U waters towards the ocean and due to the long
residence time of U in the ocean (~380 ka) modern seawater carries an elevated 634U value of
146.8+0.6%0, which is ~15% above the secondary equilibrium (Andersen et al. 2010). Assuming
a steady-state isotopic composition of the world ocean, the constant input of excess 24U
counteracts the decay of excess 234U and thus prevents a return to the secular equilibrium.
Whether or not the U cycle is in steady-state is not known, but strong evidence of near steady-
state is provided by the long-term stability of the world ocean 234U/?%U isotopic ratio
(Henderson 2002) and the small deviations observed in different ocean basins (<1%.)
(Andersen et al. 2010). Consequently, detecting deviation from the present state of U cycling
requires either very high precision or archives closely related to regional sources (or sinks,

assuming isotopic fractionation during the removal process).
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The removal of U via anoxic sediments (e.g. sapropel layers in the Mediterranean Sea) or
biogenic carbonates (e.g. corals) does however not significantly fractionate the isotopes 234U
and 238U and therefore does not have a measurable influence on seawater 62**U (Henderson
2002). Amongst other biogenic carbonates, corals capture the 623U from seawater during
growth in their skeleton. The initial U isotope ratio, at the time of skeleton formation, is
crucial for U-series dating. This is because the seawater evolution is used as one quality
control criteria to determine U-series open or closed system behaviour in age data. Mostly a
constant 234U/238U ratio identical to modern seawater 6234U is assumed. Especially corals older
than 100 ka, show initial §234U;, which deviate significantly from the modern value and are
usually considered diagenetically altered, thus unreliable. Consequently, such ages may be
discarded. As pointed out by Henderson (2002), this rejection approach suggests a constant
seawater 623U throughout the last one million year of the Pleistocene. However, assuming a
one-box model for the 8?**U distribution in the ocean, Henderson (2002) proposed a 15%.
variation in 8?*4U from its present-day value over the past 360 ka to be within reasonable
ranges. Additionally, a maximum of riverine input variation of 65%. over a period of 100 ka
was suggested to ensure the limited seawater variation of 15%. (Henderson 2002). Over the
last 800 ka, Henderson (2002) published samples with predominantly lower 623U than
modern seawater, the author thus proposed, that the rate of physical weathering over the past
800 ka was not higher than present-day.

A more recent study (Chen et al. 2016) presented well-constrained 6?**U records from the
equatorial Atlantic and Pacific over the last 30 ka. The Atlantic and Pacific record clearly
showed a low glacial 83U seawater value of ~144%., which rapidly increased within the
Equatorial Atlantic to 150%. during the Heinrich Event 1 (H1, 18.0-14.6 ka). Based on the
timing of this increase, the authors pinpointed the variation in 623U towards external sources
with excess 23U, like the retreat of Northern Hemisphere ice sheets. The lack of
homogenisation in the global oceans was related to reduced North Atlantic overturning
circulation and thus global ocean mixing (Chen et al. 2016).

The Atlantic Meridional Overturning Circulation (AMOC) was proposed to have three states
of operation (B6hm et al. 2015). Over the last 125 ka, the warm mode, mainly active between
MIS 5 (125 to ~70 ka) and MIS 1 (~10 ka) was characterized by strong deep water formation
and thus a homogenous seawater 623U in the ocean. This is similar today, with U being very
well homogenous throughout the world ocean. Following the warm mode, a near shutdown
of the North Atlantic Deep Water (NADW) formation and circulation is proposed as the “off

mode”. The warm mode gradually changed into the off mode between 70 to 20 ka and was
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present between 20 and 15 ka. An isolated circulation of the upper Atlantic (~2 km) dominated
this cold climate state, which was at least active during termination TII (prior to 125 ka) and
H1 (18.0-14.6 ka). Periods of ice sheet instability (H2, H3, etc.) are suspected to cause such
weak or absent deep ventilation.

CWOC, used in this study originate from a depth within the upper 2 km. During these periods,
the isolated upper Atlantic is more sensitive to changes in excess ?**U due to the reduced
volume (at least 50%) of water participating in active mixing and overturning. However, the
origin of the excess 23*U and the driving force of this glacial to interglacial variation is still
unknown but is suspected in the Nordic Sea related to freshwater release. Since the
Mediterranean Sea is closely linked to the subtropical and polar Atlantic surface inflow and
runoff from ice sheets, records from this semi-enclosed basin may help find a prominent
region of excess 23U release. On the other hand, ever more constrained seawater 823U records
over glacial-interglacial cycle will help improve the criteria for U-series quality control and
open system behaviours to augment the quality and precision of chronologies. Lastly,
variability in the relative rate of physical and chemical weathering could be seen by higher
than present-day 63U values. CWC have been shown to be valuable archives to study the
oceanic 231U ratio. Here, over 1.500 pristine coral ages from the Atlantic (n=1.288) and the
Mediterranean Sea (n=322), spanning from 400 ka to present-day, were compiled. In the first
part, similarities and difference between the Mediterranean and the Atlantic are discussed
with a close focus on the last 15 ka. The second part of this study concentrates on the overall

variation of the combined records spanning 400 ka.
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6.2 Regional setting
The regional setting of the Alboran Sea and the EMCP are introduced in Chapter 3.2.

6.3 Material and methods
The here investigated and presented coral samples were introduced in the previous Chapter 3.

Sample origins and quality control have been discussed in the same chapter. Published data
used in Chapter 6.4.3 were treated the same, as far as additional data was available. Samples

exceeding an analytical uncertainty of 26> 5%, were removed from discussion (Table 3.2)

6.4 Results

6.4.1 823U from coral ages located on Dragon Mound (GeoB18116-2)
The oldest samples found on DM (426+12 ka) revealed 623U of 141.7+5.4%.. Exceeding

20> 5%, this sample is not displayed in Fig. 6.1. The second oldest sample, dated within MIS 11
(390.8+10 ka) revealed a high 823U of 151.2+5.1%. and is displayed in Fig. 6.1. During MIS 10
(n=19), the 234U values average around 148.2+3.6%, with minimum and maximum values of
139%. and 156%., showing a high variability in the data. The subsequently following MIS 9 is
represented with 25 samples, which show values again ranging between 135.5%, and 156%..
The average of 149.2+3.5%, is comparable within uncertainty to the previous ones.
With n= 5 samples during MIS 8 a similar mean value of 148.5+2.0%. as observed during
MIS 10 and MIS 9, although minimum and maximum values are less variable and enclosed in
the previous ranges with 141%. to 154%.. MIS 7 is represented by n= 22 samples and averages
around 144.4+2.1%. with an overall range in values from 139 to 155%.. With only n=2 samples,
MIS 6 shows 623U values between 137 and 141%.. The youngest coral occurrence (n=14)

during MIS 5 ranges from 145 to 151.4%. with an average of 148.5+1.3%..

109



Chapter 6: New constraints on the evolution and potential drivers of seawater 623U over the last 400 ka

6.4.2 823U from coral ages located on Brittlestar Ridge I (GeoB18118-1 and GeoB18118-2)
The oldest sample found in BR I reveals severe measurement errors in age (538.2+28 ka) and

823U value 169.1£13.6%.. For MIS 13, n=2 samples were measured with 823U of 156+6.4%.
and 150+8.5%.. The samples, older than MIS 12 exceed an analytical uncertainty of 26> 5%
and are thus not displayed in Fig. 6.1. Coral occurrence on BR I is observed in all subsequent
MIS to a minor amount (Fig. 5.1). MIS 12 is represented by n=1 (432+10 ka) and a 8%%U of
150%. with errors as high as 4.9%.. MIS 11 and MIS 10 are represented by n=2 and n=1 samples
respectively, ranging around 148.6%3.7%., 141+2.5%. and 152.6%£2.7%.. MIS 9 is strongly
represented with n=9 samples, ranging between 142 and 158%.. Samples show generally high
values, resulting in an average 623U value of 152.4+2.4%.. The glacial MIS 8 (n=1) shows a
low value of 139.9+2.1%.. MIS 7 (n=6) reveals a general declining trend in §?**U values from
155 to 144%. (average: 148.8+2.1%0) towards the subsequent MIS 6 (n=2). With one value as
low as 140.3+1.1%. at the start of MIS 6, a general inclining trend is observed towards the end
of MIS 6 with values at 153.7+0.6%.. One value at 149.5+1%. was measured for the end of MIS 5
(n=1). The youngest cluster of coral occurrence during MIS 1 is represented with
n=80 samples. During Termination 1, at 15.1 ka, 6?3U values are as high as 153.7+1%. and
decline towards 147.6%. at 14.2 ka. With minor variations ranging between 148 and 151%.
values decline towards 12.7 ka and the beginning of the Younger Dryas event (YD: 12.7 to
11.7 ka). During the YD only three samples were found between 148 and 149%.. Between 11.7
to 9.8 ka, 6?34U values appear relatively stable, ranging from 147 and 150%. with an average
of 148.9+0.6%.. The last segment towards 8.5 ka reveals higher values with an average of
150.3%0.7 %o, ranging from 149.3 to 151.6%.. The youngest measured coral in this record has
high errors in 234U with 146.2+2.3% at 8.3 ka.

110



Chapter 6: New constraints on the evolution and potential drivers of seawater 623U over the last 400 ka

1 A Brittlestar Ridge |
- 4 Dragon Mound

-

l_ol |l |
2,
- !
= i
% ) 8 5
WO 140- +
: 14
135-
IMis1 miss MIS 7 MIS 9 MIS 11 B
130 LU I LI L I LI I L l UL | L I LU I LI L L I LI ] 1T TT |
0 50 100 150 200 250 300 350 400 450 500

Age [ka]

modified MedSea seawater 524U

modern seawater 524U

5'80 [%o]

Fig. 6.1: All 53U wvalues originating from Brittestar Ridge I and Dragon Mound in the EMCP,
Mediterranean Sea. The black dotted line represents the modern seawater &3*U, whereas the red dotted
line represents the modified Mediterranean Sea seawater 6**U as explained in Chapter 6.5.1. The global

680 stack LR04 (Lisiecki and Raymo 2005) indicates global climate variations over time.

In the EMCP, both locations show coeval 623U values and an overall variation of ~148+7%.

throughout the last 400 ka. The limited glacial data (n= ~20) indicates generally low 623U of

~141%., whereas interglacial data (n= >250) show predominantly higher 623U between 145

and 153%.. MIS 9 and MIS 5 show significantly higher values of 150 to 153%. compared to the

modern global ocean mean value of seawater (146.8%.), which however is similar to the early

B/A deglacial value, observed 15 ka ago.
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6.43 The Mediterranean and the Atlantic §?**U records
CWC should show a uniform 3%3*U driven by the isotopic composition of the Atlantic and

thus the global ocean, due to the relatively short residence time of circa 50-100 of water in the
Mediterranean Sea (Millot and Taupier-Letage 2005). The inflowing AW is mixed rapidly with
Mediterranean water masses like the Levantine Intermediate Water (LIW) and thus called the
Modified Atlantic Water (MAW) (Millot and Taupier-Letage 2005, Catala et al. 2019). Given
the rapid overturning and mixing of discharged freshwater throughout the Mediterranean
Sea, it is assumed, that Mediterranean Sea water may have a homogenous isotopic
composition. This composition may however moderately differ from the global ocean, or
Atlantic, due to regional runoff of 23U enriched freshwater. With this assumption, one may
combine in first order all available measurements of the U-isotopic composition from CWC
of the entire Mediterranean Sea, which dwelled in intermediate or deep water masses. This
allows establishing a 8?**U(t) Mediterranean Record. The above-presented data is here
combined with published and unpublished data from the entire Mediterranean Sea (Schroder-
Ritzrau et al. 2005, McCulloch et al. 2010, Wang et al. 2019, Feenstra et al. 2020, Fentimen et
al. 2020, this study). The resulting Mediterranean 24U -Record (MUR) spans over 400 ka and
is comprised of 322 8%3%U values. This record will be compared to an Atlantic 8?3*U -Record
(AUR), established on numerous published and unpublished values from the Heidelberg U-
series CWC age database, including presently 1288 83U values (Adkins 1998, Cheng et al.
2000, Frank et al. 2004, Frank et al. 2005, Lindberg and Mienert 2005, Schroder-Ritzrau et al.
2005, Eltgroth et al. 2006, Robinson et al. 2006, Robinson et al. 2007, de Haas et al. 2008, Frank
et al. 2009, Mangini et al. 2010, Wienberg et al. 2010, Eisele et al. 2011, Frank et al. 2011,
Montero-Serrano et al. 2011, Copard et al. 2012, Douarin et al. 2013, Raddatz et al. 2014, Chen
et al. 2015, Glogowski et al. 2015, Matos et al. 2015, Chen et al. 2016, Dubois-Dauphin et al.
2016, Raddatz et al. 2016, Riiggeberg et al. 2016, Victorero et al. 2016, Matos et al. 2017, Wefing
et al. 2017, Bonneau et al. 2018, Wienberg et al. 2018, Elliot et al. 2019). In general, used
unpublished data is part of ongoing research and therefore only available on request
(Heidelberg U-series CWC age database, Prof. Norbert Frank). Both the MUR and AUR still
contain large time gaps, but general patterns are appearing. Note that inter-laboratory
differences are minimal as all data have been adjusted to Cheng et al. (2000) half-lives and

most of the data (n= 873) has been measured in Heidelberg on the MC-ICP-MS infrastructure.
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For the period between 400 and 125 ka, the MUR and AUR records are combined (5 ka bins)
due to the low amount of samples (n=158). The combined 8?**U record reveals a general
declining trend from 400 ka (6?34Uay: ~152%o) towards 130 ka (6?34Uay: ~147%o). The interglacial
periods MIS 11 and MIS 9 (8%3*Uayv: ~152 to 150%o) reveal generally higher 234U values than
the glacial periods MIS 10 and MIS 8 (8%3*Uay: ~149-148%; Fig. 6.2). However, MIS 7 and MIS 6

reveal similar values of 8234U,y: ~147.5%.
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Fig. 6.2: All available **U values (transparent, half-filled squares) for the Mediterranean Sea (green) and
the Atlantic (black). Both records are binned separately in 1 ka (0-30 ka), 2 ka (30-125 ka) and shown in
green (Mediterranean Sea) and black (Atlantic). The combined record (blue) is binned in 5 ka from 125 to
400 ka. Light red shades indicate interglacial periods.
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With limited data availability during the penultimate interglacial period and the early LGM,
for MUR and AUR, each data set was merged in 2 ka bins from 125 ka to 30 ka. Both records
have the highest resolution between 30 and 0 ka. AUR, with an average of 48 234U values per
1 ka and MUR, with up to 30 6?**U values per 1 ka (Fig. 6.2). Both records were each merged
in 1 ka bins during this period.

During MIS 5, the AUR (n=57) reveals large variations, ranging between 136 and 153%.
(6234Uay: ~147%0). Between the onset of MIS 4 and the beginning of MIS 2, the AUR reveals a
prominent decrease in 824U from 147.7%. (63 ka) to 143%. (51 ka; Fig. 6.2 and Fig. 6.3, black
line). Followed by a well-resolved increase of 3.8%., 8*3*U briefly reaches the highest values
of 146.8%. (modern-day value) during MIS 3. Towards 28 ka, 8?3*U values gradually decrease
with 0.2%./ka to 143.5%.. During the LGM, up until 20 ka, %3*U slowly increases with 0.2%./ka.
Between 20 ka and 15 ka, values as high as 148.7%. can be observed. During the last 15 ka,
8234U values gradually decrease towards the modern value of 146.8%., however, during a brief
period within the Early Holocene (8+2 ka), the AUR reveals a higher variability in 623U
around 147.5%.

During MIS 5, the MUR (n=35) revealed similar values of 8?**Uay: ~147%. compared to AUR,
however, a smaller variation ranging between 140 and 151%. can be observed. The last glacial
period (MIS 4 to MIS 2) is represented by only n=12 samples in the MUR. Values range
between 142 to 147%. with an overall lower 8234U,y: of 145.0%.. During the deglaciation and
the Holocene, a rapid increase from glacial low values towards 148%. (17.5 ka) and towards
150%o0 (14.5 ka), with a brief significant increase at 15.5 ka (n=2) with maximum values of
153.8%0, can be observed. During the last 15 ka, 623U values range between 149-150%. (6.5 ka)

and decrease towards 1 ka (n=17) with values around 148.2%o..
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6.5 Discussion

6.5.1 The Mediterranean offset
Derived from the Mediterranean coral data, the modern Mediterranean 8234U wvalue

(~148.3£0.5%o) is elevated by ~1.7%. compared to the modern Atlantic 8?3*U of 146.8%. and has
been higher throughout the Termination T1, the Holocene and potentially the penultimate
interglacial period. This unprecedented observation contradicts the general assumption, that
modern 824U is homogeneously distributed throughout the world’s oceans with differences,
no larger than 0.4%. (Andersen et al. 2010) and that the Mediterranean Seawater mirrors the
global ocean (Delanghe et al. 2002). Moreover, it requires an adjustment of the evaluation of
U-series dating of marine Mediterranean samples. In Fig. 3.5a and 3.6a (Chapter 3) and Fig.

6.1 (this chapter) an adjusted Mediterranean Seawater Evolution curve and modern value have

been added.

Comparing both, the Atlantic and Mediterranean Sea record, it is evident that over the last
16 ka, the AUR represents the baseline for §?3*U values in the Mediterranean Sea. However,
within the Mediterranean Sea, sources of higher 623U values imprint a constant offset in
8234U. The offset to the Atlantic can be observed in corals spanning from the Alboran Sea (AS)
in the western basin (Krengel 2016, Wang et al. 2019, Feenstra et al. 2020, Fentimen et al. 2020,
this study) to corals from the Ionian Sea (I0S) in the eastern basin (this study). Both locations
dwell directly (AS) or are indirectly influenced (IoS) by the intermediate water mass LIW. This
suggests a basin-wide elevated value of ?3*U. The inflowing Atlantic Water is instantly mixed
with Mediterranean water masses (Catala et al. 2019) and thus a measurable offset should be

imprinted after entering through the SoG as well.

According to Dunk et al. (2002), three sources, with a significant amount of U can supply the
oceans. (i) River run-off, with worldwide 8**U values ranging between 70 to 1030%. is the
biggest source, followed by (ii) direct groundwater discharge and (iii) aeolian crustal dust
(Dunk et al. 2002). At present-day, there are no studies published, concerning either source,
providing an answer for the constantly elevated 6?3*U value in the Mediterranean Sea,
however, results from ongoing work in assessing groundwater discharge into the
Mediterranean Sea show discharges with dissolved §2*4U values as high as 1200%. (Border et
al., in prep). During glacial periods, with arid and dry climate, river run-off and groundwater
discharge were probably severely reduced. Yet enhanced glacial Saharan dust fluxes were
recognised by several studies (Moreno et al. 2002, Larrasoafia et al. 2003, Moreno et al. 2005,
Catala et al. 2019). During the LGM, both, the AUR and MUR records show similar low &23*U

values (Fig. 6.3). Due to the limited data availability and elevated errors, a distinct difference,
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as seen during the Holocene or the lack of difference between both records cannot be
demonstrated. However, one would assume that, with the lack of high 623U sources flowing

into the Mediterranean Sea, both records would mirror each other in terms of §234U.

During T1 and the early Holocene, with enhanced meltwater production and run-off via rivers
and groundwater discharge into the Atlantic and the Mediterranean Sea, both records show
increasing 8#34U values, with the climax at 16 to 14 ka and highest values of up to 148.7%o
(AUR) and 151.2%. (MUR) (Chen et al. 2016, this study). The observed offset in the MUR might
be due to the semi-enclosed geology of the Mediterranean Sea, as seen in studies from the
semi-enclosed deep Arctic Ocean, which reported present-day 8*3*U= 147.3+0.1%. (Andersen
et al. 2010). Surrounded by land in a warming and wetter climate with enhanced meltwater
production, rivers like the Ebro, Rhone, Po, Tiber, Drin, Evros, Nile and Moulaya, as well as
direct groundwater discharges potentially supplied a large amount of freshwater with
enhanced 323U due to intense physical weathering during the previous glacial period (Chen
et al. 2016). Another potential source of enhanced 623U to the Mediterranean Sea is the

connection to the Black Sea via the Marmara Sea.

During glacial periods with low sea level of up to -120 m, both, the Black Sea and the Marmara
Sea, were disconnected from the Mediterranean Sea due to low sea levels and shallow sill
depths (Aksu et al. 2002, Major et al. 2002, Eris et al. 2011, Soulet et al. 2011). Amongst rivers,
the Fennoscandian and Alpine ice sheets are known sources of meltwater flowing into the
Black Sea (e.g. Major et al. 2002), potentially bearing high dissolved 8%*U as suggested and
shown by Henderson et al. (2006) and (Chen et al. 2016). Several studies have discussed late-
glacial overspills from the semi-freshwater Black Sea “Lake” into the Marmara Sea and further
into the Mediterranean Sea (Major et al. 2002, Soulet et al. 2011). Although, the frequency and
amount of glacial overspill are still controversially debated. With rising sea level, the
Mediterranean Sea reconnected with the Marmara Sea (~12.8 to 10.5 ka) and with the Black
Sea (~9.5-8.5 ka) (Aksu et al. 2002, Kaminski et al. 2002, Major et al. 2002, Yanko-Hombach
2003, Soulet et al. 2010, Eris et al. 2011). The timing of frequent water mass exchange,
respectively a reconnection of the Black Sea to the Mediterranean Sea coincides with a

renewed increase in 6?3*U in the MUR (Fig. 6.3; 10-7 ka).

The decreasing difference in the MUR offset from 2%. to 1.5%., as seen in Fig. 6.3 and stated
in Chapter 6.4.3, may have multiple reasons. (i) Since 0.5%. decrease lies within the
measurement error of the samples, it might simply be an over-interpretation of the data.

However a decrease in the offset is plausible, due to (ii) higher sea level and thus more
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exchange through the SoG, (iii) reduced river run-off and groundwater discharges today,
compared to the B/A and Early Holocene. (iv) With higher physical weathering during glacial
periods and reduced physical weathering at present-day, higher dissolved 82**U would have
been discharged into the Mediterranean Sea with the onset of meltwater releases. (vi) Lastly,
Chen et al. (2016) have proposed, that the reduction of AMOC has caused a rise of 83U in
the North to Equatorial Atlantic. Hence, the North Atlantic feeds the Mediterranean Sea, the
latter received a significant excess amount of 23U during the deglaciation, which vanished

only upon the restart of deep convection, circa 15 ka ago.

The exact source and intensity of increased 3%3*U input remains yet unknown. However,
potential candidates are rivers, submerged groundwater and large water bodies (e.g. glacial
drainage of inactive aquifers and small basins like the Black Sea), connected to the

Mediterranean Sea.

6.5.2 024U variability over time
Over the last 125 ka, high variability in 6?34U, ranging from 143 to 151%. can be observed in

the presented records (Fig. 6.2). During MIS 5, samples from both records show an average of
8234U= 148.5+1%.. Henderson (2002) suggested that during the last 800 ka, the rate of physical
weathering over an extended period was never higher than at the present. This assumption
was based on the lack of samples showing seawater 6?**U above modern values or more
precisely, the rejection of data above modern values as a possible subject of sample alteration.
However, both records imply a higher rate of physical weathering during MIS 5 with §%4U

exceeding modern-day seawater.

The subsequent MIS 4 to MIS 2 show glacial low values of ~143%. at 51 and 27 ka, as reported
by Chen et al. (2016) for the last glacial period around 25 ka. However, during MIS 3
significantly elevated 3%3*U are observed, with close to modern-day values of ~146.7%.. At the
end of the LGM, a stepwise increase of 8?3*U is observed from 28 ka (143%.) towards ~20 ka
(145%0) and a maximum at 14.6 ka (~148%.). As stated previously by Chen et al. (2016), the
observed increases do neither coincide with global sea-level rise and the subsequent potential
re-dissolution of high 8%3*U bearing shelf- or mangrove sediments nor the re-oxygenation of

organic layers in deep-sea sediments.
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Fig. 6.3: The Mediterranean &***U record (MUR, dark green) revealed a distinct offset of ~2%. compared to
the Atlantic 5*U record (AUR, black). Ti/Ca in sediment cores indicates variability in the terrigenous
influence of subglacial meltwater activity (light green). Pa/Th values represent the strength of the AMOC.
Bottom columns show the number of CWC used to comprise the Mediterranean Sea record (dark green)
and the Atlantic record (black).
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The influence of changing riverine U flux into the oceans has been discussed by Dunk et al.
(2002) and Henderson (2002). The authors concluded that changes in seawater 623U most
likely reflect changes in the average river 6?*U rather than a change in riverine
U concentration. Over the last 400 ka, the compiled data confirms a broadly constant
U concentration ([U]= 2-5 pg/g; Supplement, Table 3.2), as previously observed in CWC and
other marine organisms (Broecker 1971, Robinson et al. 2006, Frank et al. 2011, Wefing et al.
2017). Chen et al. (2016) proposed subglacial meltwater releases as one potential source of
high 8234U values. Enhanced rates of physical weathering during glacial conditions produce
predominately high 8%3*U values as observed in an Antarctic lake, thought to be
hydrologically connected to nearby ice sheets with 623U of up to 4000%. (Henderson et al.
2006, Mikucki et al. 2015). This implies, a terrigenous source with high 8?34U values is

necessary to increase glacial 623U in the Atlantic significantly, as seen in MIS 3.

During glacial periods, multiple large ice sheets covered the Northern Hemisphere. Subglacial
meltwater releases via glacial drainage networks could have supplied the seawater with
excess 234U. One of these networks, the “Fleuve Manche”, connected the southern North Sea
basin with the Bay of Biscay via the English Channel and delivered terrigenous sediment into
the Atlantic during each glacial period of the last 350 ka (Toucanne et al. 2010). Enhanced
fluviatile distribution, with up to 20 g/cm?ka, can be observed between 65-55 ka, at ~40 ka,
~25 ka and 15 ka. Over the last 65 ka, enhanced terrigenous sediment input into the Bay of
Biscay coincides with high seawater 8?*U. However, at ~25 ka, when enhanced input is
observed in the Bay of Biscay, seawater 6?3*U remains low. Regarding the last 350 ka of
“Fleuve Manche” discharge, the combined records of AUR and MUR do not correlate with the
terrigenous input record from the Bay of Biscay (Fig. 6.4). This, however, might be due to the
record being binned in 5 ka and thus short term variations are averaged out, as seen in a direct

comparison of Fig. 6.3 and 6.4, during MIS 5 to MIS 2.

Another potential driver of the observed 6%3*U evolution is ocean mixing in the Atlantic (Chen
et al. 2016). The off and cold mode of the AMOC, were respectively characterized by the near
shutdown of the NADW formation and an isolated upper circulation (B6hm et al. 2015). The
switch from warm towards off and cold mode co-occurred with rapid changes in seawater
82U (Fig. 6.3; Bohm et al. 2015). Although the AMOC signal is less clear due to high
variability in the AMOC record and cannot account for the increase in 83U (Chen et al. 2016),
the AMOC still can play a role in respect of the active volume redistributing 82**U throughout

the worlds ocean.
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6.5.3 The combined Mediterranean and Atlantic 82**U record
The 234U value over the last 120 ka varies by circa 146.8+5 %.. The observed close correlation

of AUR and MUR with a maximal deviation between both records of ~+3%. allows, that both
records can be combined into one long-term record, spanning over 400 ka. Applying the
observed 5%, variation in 83U during the last 120 ka to the combined record (Fig. 6.3), over
90% of the data lies well within this range. However, older samples show a larger scatter in
824U, potentially due to a reduction in measurement precision caused by minor

contaminations or diageneses processes.

Previous studies, conducted on 67 U-rich sediments samples from the Bahamas, suggested a
15%. variation of seawater 623U over the last 800 ka, more specifically over the last 360 ka
(Henderson 2002). The here compiled record, comprised of over 1.600 accurate U-series ages,
is well constrained over the first 125 ka with 11.6 samples/ka, however, less constrained with
0.6 samples/ka until 400 ka. Nevertheless, a climate-related tendency of high 6?**U during
interglacial periods (MIS 11, MIS 9, MIS 5 and MIS 1) and low 8%%U during glacial periods
(MIS 10, MIS 8, MIS 4 and MIS 2) can be observed.
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Fig. 6.4: Top: Global 60 stack LR04 (Lisiecki and Raymo 2005). The combined 5 ka binned Mediterranean
and Atlantic record (blue) over 400 ka reveals generally higher 6°**U than observed in modern seawater
&34U (blue dashed line). Times of increased terrigenous input during glacial periods is shown by Ti/Ca of
the “Fleuve Manche” from the Bay of Biscay. Bottom: Number of used CWC (5 ka bins).
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The tendency is less clear in some stages: MIS 8, revealed decreasing 6%3*U as would be
expected for glacial periods, however, mid-MIS 8 (280 ka) a significant increase of 6 %. from
146 to 153%. is observed. Coinciding with major discharges from “Fleuve Manche” (Fig 6.3
and 6.4; Toucanne et al. 2010), the increase suggests early subglacial meltwater activities, as
seen during the last 30 ka. For MIS 7, MIS 6 the observed tendency is almost reversed, MIS 7
reveals predominantly low 62**U (~@ 145%.) compared with other interglacial periods
(i.e. MIS 9 and MIS 5). MIS 6 reveals predominantly high 8?3*U values with (~@ 150%.) and
roughly coincides with terrigenous input from the ice sheets (Fig. 6.3). MIS 3 with
predominantly glacial features shows a clear increase in 8?*U towards modern values. The
increase can be explained with the enhanced terrigenous input from Northern Hemisphere
ice sheets as shown by (Toucanne et al. 2010).

For a more constrained long-term record and a more precise assessment of glacial-interglacial
variability, a higher data resolution is urgently required. The presented record already limits
the range of variability over the last 400 ka from 15%. (Henderson 2002) to a mere 8%..
However, the included data is carried together from several publications. E.g. the oldest used
data set is over 20 years old, the samples were measured by on various instruments like TIMS,
ICP-MS and MC-ICP-MS, using various methods. The partial lack of supplied data prevents
uniform quality control. Additionally, with only 0.6 samples/ka regional biases or the impact

of diageneses can not be ruled out strictly.
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6.6 Conclusion
The presented 824U values, ranging from the last 15 ka to present-day, with values from

151.2 to 148.3+0.5%. contradict the long presumed homogenous distribution of U isotopes in
the oceans water with a modern &%4U value of 146.8+0.4%. (Andersen et al. 2010). The
Atlantic- Mediterranean Sea offset is so far only observed during interglacial periods MIS 5
and MIS 1 and is not quantifiable, given the low amount of samples with additionally high
uncertainties during the LGM, which suggests that sources like rivers, groundwater and the
Black Sea, with potentially increased 5234U, cause the observed offset in the Mediterranean
Sea. According to (Dunk et al. 2002), rivers and groundwater discharges supply the oceans
with large amounts of excess 2*4U. Aeolian dust, revealing an overall low excess ?3*U signal,
is predominantly supplied to the Mediterranean Sea during glacial periods and most possibly

only shows minor impact to the 523U MUR.

Over the past 125 ka, seawater 8%3*U revealed predominantly high values during MIS 5, MIS 3
and MIS 1 and predominantly low values during MIS 4 and MIS 2. Increasing 63U values
have been correlated with subglacial meltwater activities of the Northern Hemisphere ice
sheets. The “Fleuve Manche” is one potential source, supplying the Atlantic Ocean with
terrigenous sediments and excess 234U during these periods. The Mediterranean and Atlantic
U-records show close correlation with a small Mediterranean offset of maximum 3%.. With
an overall variation of circa 5%, during the past 125 ka, both records were combined into one
record spanning over several glacial-interglacial cycles (400 ka). Previous studies suggested
an overall variation in 6?3*U of 15%. over the last 360 ka, with over 1.600 data points the

variation was constrained to a mere 8%o..

The rate of physical weathering, responsible for high excess 234U and thus higher 83U was
believed to have never exceeded modern rates. However, the combined record demonstrated
that the average seawater 623U during MIS 5 was increased by at least 2%, und thus the rate
of physical weathering must have been higher than today. Other periods show even higher
823U, suggesting higher physical weathering rates, e.g. MIS 9, MIS 8 and MIS 6. However, the
precision of the combined record is limited by the amount of available data between

125 and 400 ka.
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7 Conclusion and outlook
Using the Bremen drill rig MeBo, for the first time, CWC mounds in the Alboran Sea were

successfully drilled beyond the reach of gravity corer. Based on two 70 m long coral bearing
cores from two different mounds in the EMCP, a vast number of dated coral fragments (n=202)
revealed discontinuous coral growth over 550 ka during predominantly interglacial periods.
The BRI core revealed coral occurrence over 70 m length with a basal age of 520 ka. However,
with a high probability coral occurrence on BR I is suspected beyond the drilled 70 m. The
shallower DM was fully penetrated at 61 m and revealed a basal age of approximately
400+20 ka. However, the age-depth profiles of both mounds revealed complex mound
histories with severe signs of erosion and potential mass wasting events, creating extended
mixed-age layers. The presented, complex long-term mound evolutions are so far
unprecedented. In order to further investigate the newly observed mound evolution on DM,

several long cores along DM would be necessary.

Based on the assumption that BR I has a minimum mound height of 80 m and a maximum
mound height of 160 m, the calculated overall mound aggregation rate of BR I revealed a
potential onset of coral growth in the Alboran Sea between 595 and 1190 ka and thus during
the Mid Pleistocene Transition. Several hundred exposed and buried coral mounds were
reported in the AS. Within the EMCP three different types of coral mound morphologies were
found. DM in the southern EMCP belongs to a belt of partly buried coral ridges. Since coral
growth on DM started approximately 400 ka ago and stopped 100 ka ago, investigating other
mounds of the southern EMCP could reveal a similar mound history of onset and cessation
of coral occurrence. In the northern EMCP, at least two more large coral ridges like BR I have
been found (BR II and BR III). Using the new MeBo 200, capable of drilling 200 m long cores,
could potentially fully penetrate through these three large structures and reveal a conclusive

timing of the CWC growth onset.

Changing climatic conditions in the Mediterranean Region over full glacial-interglacial cycles
and the combined CWC growth record revealed a tight link to freshwater input into the
Mediterranean Sea. Enhanced freshwater input evoked primary productivity via the supply
of nutrients and the transport of sediments, necessary for flourishing coral and mound
growth. The strengthened AS gyre system, fortified by enhanced freshwater input, enabled
enhanced vertical mixing into intermediate, coral dwelling depths (230-330 m) and made food

available for the corals.
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Using the Li/Mg temperature proxy, a reconstruction of the nBWT over 550 ka was conducted.
nBWT of the shallow DM (236 m) and the deeper BR I (329 m) are consistent over the
interglacial periods of the past 550 ka and thus reveal a coherent, predominant water mass,
most possibly LIW. During glacial periods, when Mediterranean sea level reduction ranges
between -40 to -80 m, nBWT of both locations show coherent temperatures, suggesting

predominant LIW in both locations during these low stand sea levels.

During interglacial periods, based on terrestrial and marine records along the Iberian Margin,
within the GoC and the AS, a clear correlation of (i) cooling events in SST, cold and arid
climate in the Mediterranean Region and sub-polar planktic foraminifera species and (ii) the
coincident reduction and demise of CWC occurrence in the AS could be established. Glacial
periods in the Mediterranean Region are associated with cold and arid conditions, a southern
position of the PF towards ~45°N-40°N and a general lack of CWC occurrence. Thus it is
argued, that the lack of CWC during cooling events occurring in interglacial periods is evoked
by unfavourable climatic conditions, ultimately caused by a southward shift of the PF or a
southward extension of the polar vortex, as seen by multiple authors during Heinrich Events

and Greenland Stadials.

Comparing the available data of several long MeBo cores from the GoC and the AS confirmed
the existence of the so-called “Gibraltar-seesaw pattern” over the last 150 ka and most possibly
during earlier glacial-interglacial cycles as well. The Gibraltar-seesaw pattern, observed in
discontinuous CWC growth during predominantly interglacial periods in the AS and during
predominantly glacial periods in the GoC, seemingly depends on the north-south oscillation
of the PF. A northern position of the PF results in warm and wet climate in the Mediterranean
Region with enhanced freshwater input, transporting nutrients and sediment, hence,
facilitating CWC growth in the AS. A southern position of the PF induces cold and arid
climate in the Mediterranean Region, enhancing productivity in the GoC and thus facilitating
CWC growth in the GoC. However, distinct deviations from a strict glacial-interglacial seesaw
pattern were observed during stadial and interstadial periods. If the origin of the observed
coral — climate relationship is driven by the position of the polar front, the potential onset of
CWC growth in the Mediterranean Region might coincide with the MPT, where a dominant
change in the orbital cyclicity and major ice sheet build up occurred. Using multiple on- and
off- mound cores from both basins to conduct a multi-proxy analysis of foraminiferal
assemblages, productivity and temperature proxies could result in a better understanding of

the climatic variability affecting coral growth on both sides of the SoG.
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Contradicting the long presumed homogenous distribution of U isotopes in the oceans,
a Mediterranean offset (~3.5-1.5%0) from the Atlantic was observed during MIS 5 and MIS 1,
with values ranging between 151.2 to 148.3%.. During interglacial periods, the amount of
freshwater from sources with increased 234U, e.g. rivers, groundwater and the Black Sea,
most possibly control the observed offset in the Mediterranean Sea. However, during glacial
periods, when freshwater inflow was reduced, the input of aeolian dust, carrying an overall

low excess 234U signal is thus proposed to show only minor impact to the 6234U offset.

Comparing the Mediterranean and the Atlantic record, consistent predominant high 834U
values were observed during the interglacial periods MIS 5, MIS 3 and MIS 1, whereas
predominantly low values were observed during the glacial periods MIS 4 and MIS 2.
Increasing 623U have been correlated with subglacial meltwater activities of the Northern
Hemisphere ice sheets. The “Fleuve Manche” is one potential source, supplying the Atlantic
Ocean with terrigenous sediments and excess 23*U during these periods. The Mediterranean
and Atlantic 823%U-records show close correlation, with a small Mediterranean offset of
maximum 3%.. Over the past 125 ka, an overall variation of circa 5%. in 6?3*U was observed
in the presented records, thus both records were combined into one record spanning over
several glacial-interglacial cycles (400 ka). With over 1.600 data points, the variation was

strongly constrained to a mere 8%, over the past 400 ka.

Furthermore, the rate of physical weathering, responsible for high excess ?**U and thus higher
823U was believed to have never exceeded modern rates. However, the combined record
demonstrated that the average seawater 6?3*U during MIS 5 was increased by at least 2%, und
thus the rate of physical weathering must have been higher than today. Other periods show
even higher 8%3%U, suggesting higher physical weathering rates, e.g. MIS 9, MIS 8 and MIS 6.
However, the precision of the combined record is limited by the amount of available data
between 125 and 400 ka. With sufficient data coverage and higher resolution, this interval
could be more constrained and contradicting periods like MIS 7 and MIS 6 could be better
resolved. The presented record is a mere start in providing global-scale information on
continental weathering rates and could lead to a more precise U-series geochronology of

marine organisms of the last 400 ka.
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Supplement Text A:
Mound Evolution: Dragon Mound:

On DM, three different stages of mound formation can be identified. The lower part of cluster
one (6100 to 3800 cm) reflects a large scatter of coral ages of up to 90 ka within an individual
core barrel (Fig. 3.4; S23: red framed rhombus). The oldest coral of section S23 is dated at 390
ka (5200 cm) whereas the youngest age is dated at 305 ka (5400 cm). A similar range in age
scatter from 390 to 300 ka can be observed in depths of 4300 cm as well. The distribution of
ages, overall spanning 100 ka on 2000 cm core length, indicates that this part of the mound
does not reflect actual coral growth but coral rubble and fragments, potentially deposited at
the core location after a mass wasting event of a coral mound (e.g. mound collapse). The core
location on DM between a northward-directed coral mound and a west/north-west directed
extending foothill (Fig. 3.1c) suggests that, since no information on DM other than the
presented age-depth profile is available to date, either side could be the source of the coral
rubble and fragments. However, between the mound base (6100 cm) and 3800 cm, no age
younger than 300 ka was dated, thus marking the potential time of deposition (Fig. 3.7b). To
deposit ages ranging from 426 to 300 ka over 2000 cm height almost simultaneously, the
source mound(s) needed to be of a certain height and thus potentially older than the presented

mound base of circa 380 ka (Fig. 3.7a and Fig. 3.7b).

The second part of cluster one ranges from 3800 to 2700 cm and reveals ages between 333 to
265 ka. Although, compared to the lower part (6100 to 3800 cm), individual core barrels (Fig.
3.4; S16 and S13) reveal smaller age scatters of 40 to 50 ka, a similar formation with minor
mass wasting events, as observed in the lower part is expected. At this point of the mound
evolution, the area, covered today by the 6000 cm high mound, was a much small, 2000 cm
high mound or coral rubble field on the seafloor. However, the second part (3800 to 2700 cm)
does not show ages older than 333 ka which might be due to the stratigraphy of the source
mound, ideally it would have older corals on the bottom and younger corals on top (Fig. 3.7¢).
Thus, a second mass wasting event or at least major redistribution processes of coral
fragments may have caused the observed mound evolution. At the top of the second part
(~2600 to 2500 cm), first evidence of successive coral growth appears with coral ages in

stratigraphic order.

In the second cluster (Fig. 3.4), two different stages of mound evolution can be observed.
Between 2301 and 2058 cm, coral ages reveal similar patterns as observed in the core sections

below, with individual core barrels revealing age scatters of up to 50 ka (S10: 243 to 200 ka).

Vi
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Starting at 1914 cm depth up to 1053 cm, only minor age differences of some 6 ka per barrel
are observed, possibly reflecting successive coral growth over 1000 cm from 210 to 201 ka
(Fig. 3.7d). It should be noted, that the lowest sampled coral (1023 cm) from the third and
youngest cluster originates from the same core barrel as the upper corals from the second
cluster (1160-1060 cm) and is in stratigraphic order. This implies that the age gap between 201
and 115 ka must be a hiatus, with little (or no) coral occurrence on site. However, a single
coral was dated at 171 ka and originates from the CC of a barrel circa 1100 cm deeper (171
ka/2142 cm). The third and last cluster is stratigraphically in order with coral ages ranging
from 115 to 102 ka over the upper 1000 cm of the core. This cluster thus reflects successive
coral growth on Dragon Mound (Fig. 3.7d) at a rate (115 cm/ka) similar to active mound

aggregation rates observed during the Holocene (e.g. Frank et al. 2009, Fink et al. 2013)
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EMS Eastern Mediterranean Sea

WMS Western Mediterranean Sea
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WMB Western Mediterranean Basin

AS Alboran Sea
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AzC Azores Current
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FRE Freshwater Release Event

CWcC Cold-Water Corals
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WMCP West Mediterranean Coral Province
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ROV Remotely Operated Vehicles

GC Gravity Core

MeBo MeeresbodenBohrgerit (drilling device)
CcC CoreCatcher

CTD Conductivity Temperature Depth (Probe and sample gear)
COC Centre of Calcification

MAR Mound aggregation Rate

MUR Mediterranean 6%34U —Record
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