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CHAPTER 1

INTRODUCTION

The main goal of radiotherapy is the eradication of cancerous cells. Unfortunately, irradiation in-

evitably leads to concurrent damage to healthy tissue. The reason is that the radiation beams deposit

the dose before they reach and after they leave the target volume (the latter is less of an issue for

proton beams). Consequently, a good radiotherapy treatment plan delivers a sufficiently high dose

to kill malignant cells while minimizing the injury to the organs surrounding the tumor. This ren-

ders an accurate estimation of normal tissue complication probability (NTCP) a crucial element of

radiotherapy treatment planning.

Over the years, many approaches were taken to model NTCP in radiotherapy treatments. Em-

pirical models focused on simplicity and ability to describe experimental data without making as-

sumptions on the mechanisms of radiation-induced tissue damage. Conversely, tissue-architecture

models stemmed from theoretical underpinnings of processes managing tissue response to radiation.

Recently, increasingly more attention has been given to data-driven approaches. Decreasing cost

of computing power and booming research on machine learning algorithms have facilitated use of

advanced pattern recognition methods in modeling of radiotherapy treatment outcomes (Kang et al.

2015).

In the course of routine diagnostics and radiotherapy treatment planning, vast amount of data

is generated. This data contains information on the patient’s demographics, anatomy, physiology,

and various treatment parameters. Consequently, the number and complexity of recorded factors

that can potentially influence treatment outcome is enormous. Holistic comprehension of all this

information and its relation to NTCP exceeds human capabilities. In such settings, algorithms that

are able to recognize patterns in data and provide predictions for new observations become useful.

In recent years, there has been a growing interest in the adoption of machine learning methods in

NTCP modeling (Gulliford 2015, El Naqa et al. 2018). Most of the studies, however, were limited

to evaluation of one or two methods. An analysis comprehensively comparing various machine

learning algorithms in terms of their suitability for NTCP modeling was missing, even though such

studies were available in the fields of radiomics (Parmar et al. 2015) and bioinformatics (Olson et al.

2017).

In this context, a cohort of 153 head-and-neck cancer patients treated with radiotherapy was

retrospectively collected. The cohort was used to investigate predictive potential of miscellaneous

demographic, radiomic (organ-shape), and dosiomic (dose-shape) features. Furthermore, suitabil-

ity of seven classification algorithms, six feature selection methods, and nine data cleaning/class



2 Chapter 1. Introduction

balancing techniques to NTCP modeling of xerostomia was examined.

1.1 Normal tissue complication probability models

1.1.1 Empirical models

Early radiobiological studies revealed that the dose-response follows a sigmoidal (s-shaped) curve.

This relation suggests that the complication-inducing dose is subject to some probability distribution.

The underlying uncertainty of NTCP stems from the probabilistic nature of the radiation damage

mechanism and inter-individual differences in radiosensitivity, for example, efficiency of DNA repair

mechanisms. Generally, when a tissue is irradiated to a dose d, NTCP can be described by

NTCP(d) =

∫ d

−∞
p(x) dx , (1.1)

where p(x) is the probability that the complication-inducing threshold dose is equal to x.

The sigmoidal shape of NTCP function has been modeled using various representations (Fig-

ure 1.1). Most common choices were cumulative distribution functions of the normal distribution

(probit model), logistic distribution (logit or logistic model), and log-logistic distribution (log-logit

or log-logistic model). All these functions can be parameterized to have a similar shape and there-

fore the choice of the particular representation was typically a matter of personal preference or

mathematical convenience (Bentzen & Tucker 1997).

The dose-response curves are often parameterized with the location parameter dx corresponding

to a certain complication probability and the normalized dose-response gradient γ quantifying the

steepness of the dose-response function. The dx parameter is usually chosen to correspond to 50%

(d50) or 37% (d37) complication probability. The γ parameter was first introduced by Brahme (1984)

and is defined as

γ(d) = d
dNTCP(d)

dd
. (1.2)

The γ parameter can be interpreted as the percentage change in the NTCP corresponding to a 1%

change in the dose. The value used for model parameterization is usually chosen to correspond to the

maximum steepness of the dose-response curve and is often marked with a subscript, for example,

γ50. It is important to distinguish that the dose for which dNTCP(d)/ dd is maximal is not the same

as the dose for which the γ reaches the maximum value (Bentzen & Tucker 1997).

Probit model

It was first observed by Holthusen (1936) that the empirical dose-response curve resembles the

cumulative distribution function of the normal distribution. The name of the model comes from

the probit function, which is the inverse of the cumulative distribution function of the standard

normal distribution. The probit model assumes that radiosensitivity is normally distributed within a

population and can by represented by

p(d|µ, σ) =
1√
2πσ

exp

[
−1

2

(
x− µ
σ

)2
]
, (1.3)
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where µ is the location parameter and σ is the scale parameter. In the normal distribution, µ corre-

sponds to the mean, the median, and the mode of the distribution, whereas σ is the standard deviation.

It follows from the Equation 1.1 that the NTCP can be calculated as

NTCP(d|µ, σ) =
1√
2π

∫ (d−µ)/σ

−∞
exp

(
−x

2

2

)
dx (1.4)

or, equivalently,

NTCP(d|µ, σ) =
1

2

[
1 + erf

(
x− µ
σ
√

2

)]
, (1.5)

where erf is the error function given by

erf(x) =
2√
π

∫ x

0
e−t

2
dt . (1.6)

Under the parameterization with d50 and γ50, the equation becomes

NTCP(d|d50, γ50) =
1

2

1− erf

[
γ50
√
π

(
1− d

d50

)] . (1.7)

One of the advantages of the probit model is its convenience for studying effects of multiple

sources of uncertainty in radiosensitivity and dose delivery (Bentzen & Tucker 1997).

The Probit model has also been defined in terms of the natural logarithm of the dose rather than

the dose, which gave rise to the log-probit model (Goitein 1979). The attractiveness of such a model

is that the NTCP tends to zero as the dose approaches zero. In contrast, NTCP in the probit model

can be very small but can never reach zero.

Logistic model

The logistic model is based on the logistic distribution

p(d|µ, s) =
exp[−(d− µ)/s]

s{1 + exp[−(d− µ)/s]}2
, (1.8)

where µ is the location parameter and s is the scale parameter. In the logistic distribution, µ corre-

sponds to the mean, the median, and the mode of the distribution, whereas s is quantifies the spread

of the distribution and is a linear function of the standard deviation (σ = sπ/
√

3). The logistic dis-

tribution has a shape similar to the normal distribution with slightly heavier tails. The related NTCP

function is given by

NTCP(d|µ, s) =
1

1 + exp[−(d− µ)/s]
(1.9)

or, equivalently,

NTCP(d|d50, γ50) =
1

1 + exp[4γ50(1− d/d50)]
. (1.10)

In real-life data sets, probit and logistic models yield similar results. The advantage of the
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logistic model is that its coefficients can be interpreted in terms of the odds of complication, that is

NTCP(d)

1−NTCP(d)
= exp

(
−µ
s

+
1

s
d

)
= exp

(
−4γ50 +

4γ50
d50

d

)
. (1.11)

It follows that the odds of complication with no irradiation are exp(−µ/s) or exp(−4γ50). Each ad-

ditional one-unit increase in radiation dose changes the odds of complication by a factor of exp(1/s)

or exp(4γ50/d50).

Log-logistic model

Another commonly used NTCP model stems from the log-logistic probability distribution. This

model is equivalent to the logistic model with the natural logarithm of the dose as the covariate. Such

description of the dose-response relationship was proposed by Suit et al. (1965). The probability

density function of the log-logistic distribution is given by

p(d|µ, k) =
(k/µ)(d/µ)k−1

[1 + (d/µ)k]2
, (1.12)

where µ is the scale parameter and k is the shape parameter. The scale parameter µ corresponds

to the median of the distribution and together with the shape parameter k affects the spread of the

distribution. The NTCP function related with the log-logistic probability distribution is given by

NTCP(d|µ, k) =
1

1 + (µ/d)k
. (1.13)

Under the parameterization with d50 and γ50, the equation becomes

NTCP(d|d50, γ50) =
1

1 + (d50/d)4γ50
. (1.14)

The support of the log-logistic model is limited to positive values, which makes physical sense since

the dose cannot be negative. Similarly to the log-probit model, the NTCP predicted by the log-

logistic model tends to zero as the dose approaches zero. In contrast to probit or logistic model, the

log-logistic model is asymmetric and exhibits positive skewness for k > 1.

The Lyman model

The previously described NTCP models are suitable for description of a dose response of an organ

under condition of homogeneous irradiation of the whole organ volume. They require, however,

modifications to accommodate them for treatment scenarios when only a part of the organ is irra-

diated. One of the first empirical models taking this into account was the Lyman model (Lyman

1985).

Lyman based his model on the probit function. As mentioned before (and also stated by Lyman)

the choice of the probit model was arbitrary and any other function of sigmoidal shape could have

been chosen as well. Lyman introduced two modifications to the probit model. First, based on the

previous studies (Schultheiss et al. 1983), he assumed that the partial volume tolerance dose µ(v)
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Figure 1.1: A comparison of three probability distribution functions: the normal distribution ( ), logistic
distribution ( ), and log-logistic distribution ( ). The cumulative distribution functions of these distribu-
tions were often used to model sigmoidal dose response of NTCP models. All distributions were parameter-
ized to have 25 Gy mean and 8 Gy standard deviation.

can be described by the power law

µ(v) = µ0v
−n , (1.15)

where v is a partial volume and µ0 is the tolerance dose for the whole organ irradiation, that is v = 1.

Second, he approximated the standard deviation σ as

σ = mµ(v) , (1.16)

where m is a free parameter. As a result, the Lyman model is a function of the dose d to the partial

volume v, given by

NTCP(d, v|µ0,m, n) =
1√
2π

∫ (d−µ0v−n)/(mµ0v−n)

−∞
exp

(
−x

2

2

)
dx , (1.17)

where µ0v−n is the mean and mµ0v−n is the standard deviation of the normal distribution. The

mean is parameterized by the partial volume v and the n parameter, which controls the strength of

the volume effect. For whole organ irradiation, v = 1 and the mean is simply µ0. The n parameter

is typically bounded by the interval [0, 1]. Values of n close to zero indicate a weak volume effect,

whereas values of n close to one signify a strong volume effect. A weak volume effect corresponds

to the situation where the NTCP is driven mainly by the dose and depends weakly on the volume

of the irradiation. Conversely, strong dependence of the NTCP on the irradiated volume indicates a

strong volume effect.

The advantages of the Lyman model are simplicity and applicability to partial irradiations. Its

main limitation, however, is the assumption of a uniform dose distribution within the irradiated

partial volume. In other words, the Lyman model was only suitable for single-step dose-volume

histograms. In order to extend applicability of the model to non-uniform irradiations, dose-volume
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histogram reduction schemes had to be designed.

The Lyman-Kutcher-Burman model

Kutcher & Burman (1989) proposed a dose-volume histogram reduction scheme called the effec-

tive volume method. This approach transforms a non-homogeneous histogram to a homogeneous

single-step histogram with the volume veff and the dose equal to the maximum dose to the organ

(dmax). The effective volume is calculated based on the assumption that the power-law relation-

ship applies independently to each volume element of the histogram. The Kutcher-Burman DVH

reduction scheme is given by

veff =
N∑
i=1

(
di
dmax

)1/n

∆vi , (1.18)

where N is the number of histogram bins, di is the dose to the ith bin, dmax is the maximum dose,

and vi is the height of the histogram step. The Lyman model together with the Kutcher-Burman

DVH reduction scheme was later called the Lyman-Kutcher-Burman (LKB) model.

In 1992, Mohan et al. proposed a different formulation of the LKB model. Instead of calculating

a partial volume receiving the maximum dose, they calculated an equivalent uniform dose deud to

the whole organ volume that would result in the same complication probability. deud is given by

deud({di};n) =

 N∑
i=i

vid
1/n
i

n

, (1.19)

where N is the number of voxels, {di} is the set of doses to all voxels, di is the dose to the ith

voxel, vi is the partial volume of the ith voxel, and n is a parameter which controls the strength of

the volume effect. The NTCP is then given by

NTCP(deud|d50,m) =
1√
2π

∫ (deud−d50)/(md50)

−∞
exp

(
−x

2

2

)
dx , (1.20)

where d50 is the equivalent uniform dose corresponding to 50% complication probability and md50
controls the slope of the NTCP curve. Mohan’s formulation allows to bypass the use of DVHs as an

intermediate step and was widely adopted afterwards.

1.1.2 Tissue-architecture models

A completely different approach to NTCP modeling was taken in tissue architecture models. The

idea was that theoretical assumptions on the structure of a tissue and its response to radiation can

lead to successful NTCP models. Some of the most well-known tissue-architecture models are the

Poisson model and the relative-seriality model.

Poisson model

The Poisson model of radiation response was first introduced by Munro & Gilbert (1961) with

an application to predicting tumor control probability (TCP). The model assumes log-linear cell-
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survival curve. This means a single hit on a critical target in the cell is enough to induce cell death.

Under this assumption, the survival fraction S of cells irradiated with a dose d is given by

S(d) = e−d/d0 , (1.21)

where d0 is a dose which results in the survival fraction of e−1 (approximately 0.37). Therefore, the

number N of cells surviving irradiation can be calculated as

N = N0e
−d/d0 , (1.22)

where N0 is the initial number of cells. Naturally, N given by Equation 1.22 is the expected number

of cells surviving irradiation. The exact number of cells surviving irradiation with a dose d is a

random variable subject to some probability distribution. Assuming that the survival of a single cell

is independent from the state of any other cell, the number of surviving cells at a given dose d can

be approximated with the Poisson probability distribution N ∼ Pois(N0S(d)) parameterized by the

product of the initial number of cells and the surviving fraction. The distribution is given by

p(N |N0S(d)) =
(N0S(d))Ne−N0S(d)

N !
. (1.23)

If we fix the number of surviving cells to zero, meaning that all cells are killed by the radiation dose

d, the dose-response curve is then represented by

p(N = 0|N0S(d)) = e−N0S(d) , (1.24)

which after after substituting S(d) from Equation 1.21 gives

NTCP(d|d0) = e−N0 exp (−d/d0) . (1.25)

The Poisson model is often parameterized with the normalized dose-response gradient γ and a

dose dx corresponding to x/100 complication probability, typically d37 or d50. The dose-response

gradient of the dose-response curve, given by Equation 1.25, has the greatest value for the dose

corresponding to e−1 complication probability. Therefore, γ for the Poisson model is given by

γ = d37
dNTCP(d)

dd
=

lnN0

e
(1.26)

and dx by

dx = d0[eγ − ln(ln 100− lnx)] . (1.27)

With this parameterization, the NTCP for the Poisson model is given by

NTCP(d|dx, γ) = e− exp{eγ−[eγ−ln(ln 100−lnx)]d/dx} . (1.28)

For dx = d50, the NTCP is then given by

NTCP(d|d50, γ) = e− exp{eγ−[eγ−ln(ln 2)]d/dx} , (1.29)
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Figure 1.2: Illustration of a Poisson distribution for number N of cells surviving irradiation with dose d ( )
(Equation 1.23), the expected number of cells surviving irradiation with dose d ( ) (Equation 1.22), and
corresponding probability that no cells will survive ( ) (Equation 1.25). The parameters used to plot the
curves are N0 = 108 and d0 = 2.73 Gy and are the same as the parameters used to plot one of the TCP curves
in Figure 2 in Brahme (1984).

whereas for dx = d100/e ≈ d37 it simplifies to

NTCP(d|d37, γ) = e− exp[eγ(1−d/d37)] . (1.30)

Another formulation of the Poisson model was proposed by Källman et al. (1992). In this for-

mulation the model is based on the number 2 instead of e. Consequently, parameterization with d50
results in much simpler formula, namely

NTCP(d|d50, γ) = 2− exp[eγ(1−d/d50)] . (1.31)

In fact, this formulation is only an approximation of the Poisson model, albeit it is often referred to in

the literature as the Poisson model. Even though the two formulations are mathematically different

and lead to slightly different values of γ parameter, the practical implications of this approximation

are negligible (Bentzen & Tucker 1997).

Relative seriality model

The relative seriality model proposed by Källman et al. (1992) assumes that an organ can be divided

into functional subunits (FSUs). The concept of FSUs was first introduced by Withers et al. (1988)

and is based on the idea that cells in a given tissue are organized into subunits responsible for a

certain function, hence the name functional subunits. The FSUs are interconnected and the overall

response of an organ depends not only on the number of FSUs surviving irradiation but also the

organization of the subunits (Figure 1.3). For example, if the subunits are connected in series,

destruction of a single FSU leads to impairment of the whole organ. The NTCP for such a structure
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Figure 1.3: Schematics of different kinds of tissue architectures: A) serial structure, B) parallel structure, C)
mixed (complex) structure. Adapted from Coates et al. (2016).

can be represented by

NTCP = 1−
M∏
i=1

(1− pi(di)) , (1.32)

where pi is a probability of complication of the ith subunit when receiving dose di andM is the total

number of FSUs. Conversely, if an organ exhibits parallel organization of FSUs the NTCP is given

by

NTCP =

N∏
j=1

pj(dj) , (1.33)

where pi is a probability of complication of the jth subunit when receiving dose di andN is the total

number of FSUs. In practical applications, the radiation-response of an organ resembles a mix of

serial and parallel response and can by described by

NTCP =

N∏
j=1

1−
M∏
i=1

(1− pij(dij))

 , (1.34)

where M is the number of FSUs connected in series and N is the number of parallel connections.

Källman et al. showed that an arbitrary combinations of serial and parallel FSU arrangements can by

conveniently modeled when instead of a number of serial and parallel FSUs one calculates a relative

seriality coefficient s

s =
M

M ·N
=

1

N
. (1.35)

If we assume that each subunit has the same complication probability p, then

pij(dij) = p(dij) (1.36)

and the NTCP given by Equation 1.34 becomes

NTCP(d|s, v) =

1−
N∏
i=1

(1− p(di)s)vi

1/s

, (1.37)

where N is the number of subunits, di dose to the ith subunit, s relative seriality coefficient, vi frac-

tional volume of ith subunit. This formulation is called the relative seriality model. The complication
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probability p is typically represented with the Poisson model

p(d) = 2− exp [eγ(1−d/d50)] . (1.38)

In practical applications, it is usually assumed that a FSU is a voxel of the dose cube.

1.1.3 Data-driven approaches

Data-driven models are in a way a step-up from empirical models. Instead of relying on a few,

preselected features, they are designed to recognize patterns in high-dimensional data sets, extract

informative features, and make predictions. In other words, they are able to learn from data. Such

models are suitable for applications where dimensionality and complexity of the available data ren-

ders hand-crafting the models impractical. The problem of learning from data is a focus of the

field of machine learning. Machine learning has gained a lot of interest in recent years and has

been successfully used in many applications, such as speech recognition, face recognition, targeted

advertising, autonomous driving, just to name a few.

Machine learning problems can be categorized into three general classes: supervised learning,

unsupervised learning, and reinforcement learning. In supervised learning, both input data and data

labels are available. Its goal is to capture the input-output relation in the data. In clinical context

this could be predicting treatment outcome based on various predictors. Usually large amounts of

input data are relatively easily accessible but assignment of data labels may be time-consuming and

expensive. For this reason, there is a subclass of supervised learning called semi-supervised learning.

Semi-supervised learning algorithms make use of data where apart from input-output data samples,

input-only observation are available. In unsupervised learning one is given only input data. The goal

of unsupervised learning is to find patterns and relations in the available data. An example could be

observations clustering, for example, finding groups of patients characterized by similar properties.

In reinforcement learning, the model is not presented with data labels but rather with a reward for a

correct decision. In the area of NTCP modeling, the vast majority of models belong to the supervised

learning category.

Machine learning models are often designed to form a pipeline consisting of a number of layers.

For example, a model can have a data cleaning layer followed by, a sampling layer, a feature selection

layer, and finally a classification layer. The data cleaning layer scans the data looking for outliers,

noisy observations, and observations on the border between the class clusters. Removal of such

observations improves class cluster definitions, often facilitating model learning. The sampling

layer can reduce imbalance in the number of observations between the classes. It can be beneficial

because class imbalance together with low size of the minority class can hinder the performance

of predictive models. The feature-selection layer allows to reduce the dimensionality of the feature

space. A simpler model often translates to better generalizalibity and facilitates interpretation of

the features underlying the model. The latter aspect is especially important in medical applications.

Finally, the classification layer is responsible for generating predictions based on the observations

curated by the first two layers and features selected by the third layer. The selection of the classifier

is a critical part of model building, which directly determines the model’s flexibility to describe the

underlying data. Furthermore, the interpretability of the model depends strongly on the type of the
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Figure 1.4: Historic graphic depicting the salivary glands of right side (Gray 1918). The submandibular gland
is marked as submaxillary gland (historical name).

chosen algorithm.

In recent years, there has been a growing interest in the adoption of machine learning methods in

NTCP modeling (Gulliford 2015, Kang et al. 2015, El Naqa et al. 2018). Support vector machines

were employed to model radiation-induced pneumonitis in Chen et al. (2007). Buettner et al. (2012)

showed that the use of Bayesian logistic regression together with features describing shape of the

dose within parotid glands allow to predict xerostomia better than NTCP models based on the mean

dose. Ospina et al. (2014) built models predicting rectal toxicity following prostate cancer radio-

therapy using random forests. Dean et al. (2016) compared the suitability of three machine learning

classifiers, namely support vector machines, random forest, and logistic regression, to model acute

oral mucositis with spatial dose metrics. Recently, Tseng et al. (2017) presented an application of

reinforcement learning with deep neural networks for automated treatment plan adaptation in lung

cancer patients.

1.2 Radiation-induced xerostomia

One of common side effects of head-and-neck radiotherapy is xerostomia. Xerostomia originates

from incidental irradiation of salivary glands during treatment. Radiation impairs salivary gland

function, often leading to reduced saliva flow and change in saliva composition. Patients suffer-

ing from xerostomia experience difficulties in speaking, chewing, swallowing, dental health, and

sleeping. For these reasons, xerostomia often severely reduces patient quality of life after treatment

(Wijers et al. 2002).

Three major kinds of salivary glands can be usually distinguished: parotid glands, submandibular

glands, and sublingual glands (Figure 1.4). These glands exist in pairs, that is, one on each side of

the body. Additionally, many minor salivary glands are distributed throughout the oral cavity (Nanci

2017). The majority of saliva is produced in submandibular glands. These glands are responsible
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mainly for unstimulated saliva flow lubricating the mucosal surfaces in the mouth. Their secretion is

mostly thick and mucous. Proper functioning of the submandibular glands has a significant impact

on the patient’s subjective sensation of moisture (Kałużny et al. 2014). The largest salivary glands,

that is the parotid glands, contribute 30% of the total salivary volume. These glands are located in

front and below of the ear canals on either side of the mouth. The parotid glands are built mainly

from serous cells, hence their secretion is watery and rich in proteins. They are especially active on

stimulation and their contribution accounts for 50% of the stimulated saliva flow. Sublingual and

minor salivary glands provide only a few percent of the total salivary volume.

Most of clinical guidelines focus only on sparing parotid glands during radiotherapy. However,

patients with spared parotid glands but damaged submandibular glands may still suffer from xeros-

tomia, especially at night, when the majority of saliva production is unstimulated (Dijkema et al.

2012). Moreover, they may experience constant sensation of dryness in the mouth. It seems that

sparing submandibular glands could be beneficial due to the high volume of unstimulated saliva

secretion. Unfortunately, submandibular glands are often located close to or within the target vol-

ume and receive high doses of radiation. For many patients, a reduction of a dose to submandibular

glands could compromise local control.

1.3 Thesis overview

Chapter 2 supplies the information on the clinical data used for the study. This includes details on

the patient cohort, the follow-up, and the radiotherapy treatment planning data. Chapter 3 is dedi-

cated to an evaluation of the mean dose to parotid glands as a predictor of xerostomia in the collected

cohort. The analysis is complemented with the comparison to the results of the PARSPORT clinical

trial (Nutting et al. 2011). The focus of chapter 4 is the examination of univariate associations be-

tween xerostomia and various features describing parotid shape (radiomics), dose shape (dosiomics),

and demographic characteristics. It was investigated whether dosiomic, radiomic, and demographic

predictors could provide more precise xerostomia risk assessment than the mean radiation dose to

parotid glands. Chapter 5 is dedicated to a comprehensive evaluation of the suitability of seven

machine learning classifiers, six feature selection methods, and nine data cleaning/class balancing

algorithms for multivariate NTCP modeling of xerostomia. In chapter 6, the results of the external

validation on the PARSPORT data are presented. These include comparison of individual predictive

power of the analyzed features, performance of the multivariate models, analysis of features un-

derlying well-generalizing models, and examination of differences in the distribution of covariates

between the two cohorts. Chapter 7 provides final conclusions of this thesis.

Parts of the work presented in this thesis have been published in peer-reviewed scientific journals.

A list of publications is provided on page 117.



CHAPTER 2

CLINICAL DATA RETRIEVAL AND

PREPROCESSING

2.1 Patient cohort

In order to study NTCP of radiation-induced xerostomia, a cohort of radiotherapy patients that were

at risk of developing this side effect had to be assembled. Consent of the Ethics Committee of

Heidelberg University has been acquired to allow patient data extraction from the databases of Hei-

delberg University Hospital1. Patient cases for this study were selected retrospectively, that is at the

time of data collection all patients had already been treated according to the protocols of Heidelberg

University Hospital.

Radiation-induced xerostomia develops in patients whose salivary glands were damaged by ion-

izing radiation during the course of radiotherapy. Thus patients with tumors situated close to parotid

glands are at the greatest risk of developing this side effect as sparing organs in the vicinity of the tu-

mor is often unfeasible. Accordingly, patient data acquisition started from cases with tumors in oro-

and nasopharynx. Later, the search for suitable cases was extended to patients with malignancies

situated in locations further from parotid glands, such as hypopharynx, larynx, lips, and brain.

In order to be included in the cohort, patients had to meet a number of criteria. First and fore-

most, radiotherapy treatment planning data and follow-up documentation with at least one report

explicitly confirming or denying xerostomia had to be available. Due to the retrospective character

of the data acquisition process, available patients varied in terms of treatment protocol, treatment

modalities, and baseline xerostomia. Consequently, further patient inclusion criteria were defined

to improve cohort homogeneity and reduce influence of potentially confounding variables on the

analysis. Therefore, patients with baseline xerostomia, replanning during the treatment, tumor in the

parotid gland, second irradiation, second chemotherapy, or ion beam boost were considered unsuit-

able.

The final cohort comprised 153 head-and-neck cancer patients who were treated in years 2010–

2015 at Heidelberg University Hospital. Patient and tumor characteristics are listed in Table 2.1.

The patients’ age ranged from 29 to 82 years with median of 61 years. Males constituted 76% of

patients. Most of the tumors were located in oropharynx (65%) and hypopharynx/larynx (24%). All

patients were treated with intensity-modulated radiotherapy (IMRT) (24%) or helical tomotherapy

1Nr. S-392/2016 Validation and development of probabilistic prediction models for radiation-induced xerostomia.
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Table 2.1: Patients and tumor characteristics. Q1 and Q3 correspond to first and third quartiles, respectively.

Total patients 153
Age

Median 61
Q1-Q3 55–66
Range 29–82

Sex
Female 37
Male 116

Tumor site
Hypopharynx/Larynx 37
Nasopharynx 12
Oropharynx 99
Other 5

Radiation modality
Intensity-modulated radiotherapy 37
Tomotherapy 116

Ipsilateral parotid mean dose [Gy]
Median 24.3
Q1-Q3 20.6–27.6
Range 0.4–63.4

Contralateral parotid mean dose [Gy]
Median 19.9
Q1-Q3 15.4–23.1
Range 0.3–30.9

(76%)2.

2.2 Follow-up reports

The extraction of the follow-up data from the clinical databases was a time-consuming and challeng-

ing process. Remarks on occurring side effects were usually distributed among many documents and

were often mixed with information on patient medication and post-therapy examinations. Further-

more, a lot of follow-up reports had to be rejected due to ambiguous and imprecise statements, such

as xerostomia present, xerostomia as usual, xerostomia is better/worse. In total, 693 informative

follow-up reports of 153 patients were retrieved.

The frequency of the follow-up reports collection was visualized by plotting the number of

follow-up reports against the time after treatment at which the report was written (Figure 2.1). The

patients were interviewed, on average, at three-month intervals. The number of evaluations varied

among patients; for some patients there was only one evaluation available, while for others there

were more than ten. Most often three follow-up reports were available per patient.

2.2.1 Toxicity grading systems

Side effects in oncology are usually divided into early and late effects. Early effects, also often

called acute effects, become evident during and soon after treatment. They are usually reversible.

2To be precise, helical tomotherapy is a type of IMRT (Khan & Gibbons 2014).
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Figure 2.1: Frequency of the follow-up reports collection.

Late effects appear several months after therapy, often have a permanent character, and can progress

causing severe organ dysfunction or even death (Pavy et al. 1995).

There is no general consensus regarding a cutoff point separating early and late effects. Com-

monly, it is either 90 days from the onset or from the end of the therapy (Bentzen et al. 2003).

Nonetheless, complex and multimodal nature of modern oncology treatments may also motivate al-

ternative definitions (Trotti et al. 2003). Late effects are usually evaluated at 6, 12, and 24 months

after therapy.

The severity of side effects in oncological practice is usually assessed using standardized toxicity

grading systems. A toxicity grading system provides a list of grades matched to symptoms for

specific indications, such as xerostomia, dysphagia, and pneumonitis. Thus each indication can be

recognized and graded according to the provided criteria.

Bentzen et al. (2003) distinguished four domains of toxicity measures that are subject to a trade-

off between specificity and patient recognition of the side effect (Figure 2.2).

1. The analytic domain covers laboratory tests and quantitative imaging. On the one hand, it is

observer-independent and provides the highest specificity of the scores. On the other hand, it

often poorly correlates with patient subjective assessment of the adverse effect severity.

2. Objective measures come from physical examinations and simple imaging techniques. They

include signs such as edema, weight loss, and swelling.

3. Subjective symptoms are symptoms described by the patient, such as pain, and often translated

to medical terms and grades by clinicians.

4. Patient-reported toxicity is collected through standardized quality of life questionnaires evalu-

ating various physical and social functions. Although such measures represent low specificity,

they usually correlate best with the patient’s perception of quality of life and severity of ad-

verse effects.
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Figure 2.2: The trade-off between specificity and patient recognition of adverse effects by domain of toxicity
measure. Adapted from Bentzen et al. (2003).

The first toxicity grading systems for oncological treatments were the WHO Handbook for Re-

porting Results of Cancer Treatment, introduced in 1979 by World Health Organization (World

Health Organization and others 1979, Miller et al. 1981), and the Common Toxicity Criteria (CTC),

presented in 1983 by National Cancer Institute. Both systems were suitable only for description

of acute effects of chemotherapy. The first approach to aid recognition and grading of adverse ef-

fects in radiotherapy was realized in 1984 by the Radiation Therapy Oncology Group (RTOG) and

the European Organization for Research and Treatment of Cancer (EORTC). The RTOG/EORTC

introduced two systems: one for assessment of acute effects and one for assessment of late effects

of radiotherapy (Cox & Stetz 1995). In 1995, however, due to the emerging shortcomings of the

RTOG/EORTC Late Effects System, Late Effects of Normal Tissue (LENT-SOMA) scales were

presented (Rubin et al. 1995, Pavy et al. 1995). The LENT-SOMA scales have been found more

reliable than RTOG/EORTC grading system for assessment of late effects (Livsey et al. 2002). In

1998, the National Cancer Institute revised the CTC grading system introducing CTC v2.0 (Trotti

et al. 2000). This version was expanded to describe adverse effects related to both chemotherapy

and radiotherapy. It remained, however, applicable only to acute effects of treatment. In 2003, the

third revision of the CTC system took place. The Common Toxicity Criteria were renamed to Com-

mon Terminology Criteria for Adverse Events (CTCAE) (Trotti et al. 2003). Many of LENT-SOMA

items were incorporated in this version. The two major cornerstones of this revision were a unifi-

cation of early and late effects criteria onto a single time-independent system and applicability for

radiotherapy, chemotherapy, and surgery. Therefore, since the third revision, the CTCAE has been

the first comprehensive toxicity grading system applicable for recognition and assessment of both

early and late adverse effects of multimodal oncology treatments. More information on the current

and previous CTC and CTCAE versions can be found on the National Cancer Institute website3.

The CTCAE grading system takes into account analytic measures, objective signs, and subjective

clinician-graded symptoms (Trotti et al. 2007). The grades are represented by numbers ranging from

3https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm

https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm
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Table 2.2: Common Terminology Criteria for Adverse Effects v4.03 for dry mouth (xerostomia) (National
Cancer Institute 2010). Grades 4 and 5 are not defined for dry mouth.

Grade 1 Grade 2 Grade 3

- symptomatic (e.g., dry or
thick saliva)

- no significant dietary
alterations

- unstimulated saliva flow
> 0.2 ml/min

- moderate symptoms
- oral intake alterations (e.g.,

copious water, lubricants,
diet limited to purees and
soft, moist foods)

- unstimulated saliva flow
0.1–0.2 ml/min

- inability to adequately
aliment orally

- tube feeding or total
parenteral nutrition

- unstimulated saliva flow
< 0.1 ml/min

one to five with increasing severity of the side effect

• Grade 1 Mild complications not requiring medical intervention.

• Grade 2 Moderate complications with minimal noninvasive medical intervention.

• Grade 3 Severe side effects that often require hospitalization but are not life-threatening.

• Grade 4 Life-threatening complications.

• Grade 5 Death related to side effects.

2.2.2 Toxicity grading in our cohort

In 74% of the follow-up reports either CTCAE v3.0 or CTCAE v4.03 were used to assess severity

of radiation-induced xerostomia. Dry mouth (xerostomia) grading definitions are word-for-word

identical in both versions, so no inconsistency was introduced by using both versions. In case no

score was provided in the report but descriptive toxicity information was available, appropriate grade

was assigned after consulting Heidelberg University Hospital clinicians. In order to minimize intra-

and inter-observer variability in this process, a set of rules in a form of a dictionary was introduced.

The definitions of CTCAE grades for xerostomia are presented in Table 2.2.

2.3 Radiotherapy treatment planning data

The treatment planning data contains information about patient anatomy, structures defined during

treatment planning, radiation beam orientations, and the planned dose distribution. It was necessary

to extract this data in order to match the treatment plan parameters with treatment outcomes available

in the follow-up reports.

2.3.1 The DICOM standard

Radiotherapy treatment planning data is typically stored in the Digital Imaging and Communications

in Medicine (DICOM) files. The DICOM file format is a part of a widely adopted standard for

the management of medical imaging information and related data. Apart from the file format, the

DICOM standard specifies syntax, semantics, and a set of protocols that facilitate communication

and interoperability of medical equipment.
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Every DICOM file contains information that allows to match files to a specific patient, study,

series, and equipment. The data is organized in modules that consist of attributes, for example, the

patient module contains attributes that describe and identify the patient. These attributes could be

the patient’s name, ID, and date of birth. Similarly, the equipment module comprise attributes that

describe the device that produced the data, such as the manufacturer and the device serial number.

The DICOM standard specifies many information objects suitable for handling various kinds of

data. There are objects dedicated to managing data generated by imaging devices, such as computed

radiography (CR), computed tomography (CT), and magnetic resonance (MR). Additionally, the DI-

COM standard defines information objects for handling tasks specific to radiotherapy, for example,

portal images (RT Image) and treatment plan realization (RT Plan).

A comprehensive description of all DICOM information objects, modules, and attributes is be-

yond the scope of this thesis. In this work, only the elements of the DICOM standard that are most

relevant for this study are discussed. For a complete reference, the DICOM standard documentation

is available at http://medical.nema.org.

2.3.2 Data extraction

In order to extract treatment plan features, the planned dose distribution and the definitions of or-

gans at risk were needed. The information about the dose distribution calculated by radiotherapy

treatment planning systems was stored in DICOM RT Dose files, typically as a three-dimensional

array. Apart from the dose distribution itself, the RT Dose files provided information about patient

position, patient orientation, pixel spacing, position of slices, and dose units. The dose distribu-

tion, however, was of little use without definitions of the patient’s anatomical and treatment-related

structures. These were stored in DICOM RT Structure Set files as coordinates of polyhedra vertices,

which represented the defined structures. The CT images stored in DICOM CT Image files were col-

lected whenever possible. They were used, however, only for a visual check of the correct alignment

between the structure definitions and dose distribution as they were not required for the extraction

of the treatment plan features.

The DICOM files were exported either from the hospital picture archiving and communication

system (PACS) or directly from the treatment planning stations. The process of data retrieval was

slow and time consuming. The DICOM files of a single patient were often distributed among several

databases. The location and availability of the data depended on the time of the patient’s treatment

and used modalities. Furthermore, the access to the treatment planning stations from which some

patients had to be manually exported was limited due to routine clinical work.

2.3.3 Data preprocessing

After the retrieval, the DICOM files were preprocessed to accommodate them for the subsequent

analysis. First, all files were pseudonymized, that is each patient was assigned a new identification

number and all sensitive data was removed. Next, for each patient, DICOM RT Dose, DICOM

RT Structure Set, and DICOM CT Image files were imported to MATLAB. The CT and dose cubes

were extracted and interpolated to an isotropic resolution of 1 mm. A logical mask was generated for

every structure defined in the DICOM RT Structure Set files. The masks were of the same size and

http://medical.nema.org


2.3. Radiotherapy treatment planning data 19

spacing as the dose cubes and indicated which voxels belong to a structure. In the last preprocessing

step, the CT and dose cubes as well as the logical masks were saved as binary file, one per each

patient. This way, the data could be easily read to MATLAB for visualization or feature extraction

without the need for reimporting the DICOM files. The implementation of DICOM import and data

preprocessing is presented in Appendix A.

For the purpose of loading, preprocessing, visualization, and feature extraction from the DICOM

files, a collection of scripts was written in MATLAB. Together with the scripts, a graphical user

interface (GUI) was developed which facilitates use of the toolbox. The toolbox is publicly available

on GitHub4.

4https://github.com/hubertgabrys/DicomToolboxMatlab

https://github.com/hubertgabrys/DicomToolboxMatlab
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CHAPTER 3

MEAN DOSE TO PAROTID GLANDS AND

XEROSTOMIA

The results presented in this chapter were published in Gabryś et al. (2017). Part of sec-
tion 3.3 has been quoted verbatim from Gabryś et al. (2017).

Current clinical guidelines limiting dosage to parotid glands were formulated in 2010
by the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) group.
The QUANTEC initiative aimed to provide simple yet reliable dose-volume constraints to
reduce risk of side effects in radiotherapy treatments (Bentzen et al. 2010). After meta-
analysis of available studies, Deasy et al. (2010) concluded that sparing at least one parotid
gland to a mean dose less than 20 Gy or both parotid glands to a mean dose less than 25
Gy usually allows to avoid severe xerostomia. After publication of QUANTEC guidelines,
a number of large-cohort studies confirmed that the mean dose well describes the dose-
response relationship of the parotid gland (Houweling et al. 2010, Beetz et al. 2012).

In the following years, it has been observed that the mean-dose constraints indeed al-
lowed to reduce prevalence of xerostomia in cohorts where the majority of patients had met
the QUANTEC guidelines. At the same time, however, the mean dose was often not predic-
tive of xerostomia any more (Buettner et al. 2012, Lee et al. 2015). Since the introduction
of the QUANTEC recommendations, radiotherapy techniques improved on conformity of
target dose coverage and reduction of the overall dose to organs at risk. Consequently, cur-
rent treatment plans often manage to spare both parotid glands to a mean dose of 20–25 Gy
(Leung & Lee 2013, Lee et al. 2015), whereas a typical mean dose to parotid glands of a
head-and-neck cancer patient in 1996–2007 was usually in the range of 30–40 Gy (Braam
et al. 2006, Dijkema et al. 2008).

One of prospective studies investigating the relation between parotid sparing and inci-
dence of xerostomia was the PARSPORT clinical trial (Nutting et al. 2011). PARSPORT
was designed to demonstrate the difference in the proportion of patients treated with parotid-
sparing IMRT and conventional radiotherapy. The study showed reduced prevalence of late
xerostomia in the IMRT group, however the mean dose to parotid glands was not predictive
of patients who developed this side effect (Buettner et al. 2012).
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Figure 3.1: Frequency of the follow-up reports collection.

This chapter is dedicated to an analysis of the relationship between the mean dose to the
parotid glands and xerostomia in patients treated at Heidelberg University Hospital. The
analysis was carried out in context of the results of the PARSPORT trial, therefore the cohort
of patients treated in Heidelberg will be referred to form now on as the HD cohort. The
PARSPORT trial was chosen as the reference study for a number of reasons. First, it was
a prospective clinical trial. Data from such studies usually represents higher quality than
data from retrospective studies. Second, the trial was a multi-center study which allowed
to reduce center-specific bias stemming from personnel or equipment factors. Last, one of
the grading scales used in the study was LENT-SOMA which is similar to CTCAE grading
scale available in the HD cohort. It was examined how dosage to parotid glands differ
between PARSPORT and HD cohort and whether a mean-dose model built on PARSPORT
data could predict prevalence of xerostomia in the HD cohort. Subsequently, the reliability
of the mean dose to parotid glands as a predictor of late xerostomia in the HD cohort was
investigated. For this purpose, the LKB model was used.

3.1 Material and Methods

3.1.1 Endpoints

The analysis focused on xerostomia evaluated at 6 and 12 months after radiotherapy. These
time points are often used in studies of late xerostomia. Due to the time characteristic of
the follow-up report creation, six-month-wide windows around each of these time points
were applied and the reports within them were pooled (Figure 3.1). The toxicity score was
calculated as the arithmetic mean rounded to the nearest integer with x.5 being rounded
up. Furthermore, variability of the scores given to a certain patients was analyzed. It was
measured as an average percentage of reports with xerostomia grades different than the final
grade. At each of the time points, two xerostomia endpoints were analyzed:
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1. Mild-to-severe xerostomia quantified by CTCAE grade 1 and higher (G1+),

2. Moderate-to-severe xerostomia quantified by CTCAE grade 2 and higher (G2+).

Patient and tumor characteristics stratified by endpoint are summarized in Table 3.1.

3.1.2 Prevalence of xerostomia

Tomotherapy versus IMRT

In order to investigate whether there was a statistically significant difference in xerostomia
rates between the patients treated with either of these modalities, Barnard’s test was used
(Barnard 1945, 1947). Barnard’s test examines association of two categorical variables
and is uniformly more powerful than Fisher’s exact test (Fisher 1925) for 2x2 contingency
tables. A straightforward comparison of the two tests is provided in Mehta & Senchaudhuri
(2003). The following comparisons were examined: G0 versus G1, G0 versus G2, and
G0–1 versus G2 at 6 and 12 months after treatment. This resulted in six tests in total.

There are two kinds of errors associated with every hypothesis test: type I and type II
error. A type I error happens when true hypothesis is rejected. It is also often called false
positive or false discovery. A type II error, on the other hand, occurs when a false hypothesis
is not rejected. It is also known as false negative.

It is important to realize that performing multiple comparisons increases the probability
of reporting falsely positive tests. This is because each test has a probability of generating
a type I error and performing any additional test increases the probability that at least one
of the true hypotheses will be rejected.

Two most common approaches to control the number of type I errors in multiple testing
are the family-wise error rate (FWER) and the false discovery rate (FDR). Here, the Holm-
Bonferroni method was used to control the FWER of the Barnard’s tests. The significance
level α for the FWER was set to 0.05.

Family-wise error rate Say m hypotheses H1, H2, . . . , Hm are tested and of these m0 are
true. Also, with each hypothesis there is an associated p-value p1, . . . , pm. The FWER is
then defined as the probability of reporting at least one false discovery, that is

FWER = P (V > 0) , (3.1)

where V is the number of falsely rejected hypotheses.
The most well-known method to control the FWER is the Bonferroni method. In order

to apply it, one compares each p-value not to the significance level α but to α/m. The
Bonferroni method is very appealing because it is easy to use and controls the FWER in
the strong sense under any dependence structure of the underlying p-values. It is, however,
overly conservative (Goeman & Solari 2014).
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To understand the problem with the Bonferroni correction, let us analyze the reasoning
behind it. The Bonferroni method is based on the Boole’s inequality given by

P

 k⋃
i=1

Ei

 ≤ k∑
i=1

P (Ei) (3.2)

for any set of events E1, . . . , Ek. If q1, . . . , qm0 are the p-values of the true hypotheses, it
follows from Boole’s inequality that

FWER = P

m0⋃
i=1

{
qi ≤

α

m

} ≤ m0∑
i=1

P

(
qi ≤

α

m

)
≤ m0

α

m
≤ α . (3.3)

This relation shows that the Bonferroni method does not only bound the significance level
α but also m0α/m. For this reason, the Bonferroni correction is especially conservative
when there are many false hypotheses.

Holm (1979) presented a uniformly more powerful algorithm, later called the Holm-
Bonferroni method. Similarly to the Bonferroni correction, it provides strong control of the
FWER and does not require assumptions on the p-values dependence. First, the p-values
are sorted in increasing order. Then, the maximum index k is found such that

k = max

{
1 ≤ i ≤ m : pi ≤

α

m− i+ 1

}
(3.4)

and hypotheses H1, . . . , Hk are rejected. If no such k exists, no hypothesis is rejected.
There were also other methods developed that have even greater power than the Holm-

Bonferroni method, for example, Hochberg’s step-up procedure (Hochberg 1988). They
require, however, assumptions on the joint distribution of the test statistics, which limit
their applicability.

Expected incidence of xerostomia

NTCP models predict complication probability for a patient based on a features vector
associated with this patient and model parameters estimated during model training. In case
of mean dose models of xerostomia, the feature vector is usually a mean dose to both parotid
glands or a mean dose to a contralateral parotid gland. Having NTCP probability scores for
all patients in a cohort, one can calculate the expected prevalence of a side effect using the
following formula

NTCP =
1

N

N∑
i=1

NTCP(xi|θ) (3.5)

where N is the number of patients in the cohort, xi is a feature vector of the ith patient, and
θ is the model’s parameterization.

In order to investigate whether the observed xerostomia rates in the HD cohort could
have been predicted by an external NTCP model based on a mean dose to parotid glands, an
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NTCP model trained on the PARSPORT data was used. The model published by Miah et al.
(2013) was the LKB model based on the mean dose to the contralateral parotid gland. It was
trained to predict LENT-SOMA subjective G2+ xerostomia at 12 months after treatment.
The model training resulted in the following parameterization: d50 = 28.7 Gy, m = 0.20, n
= 1. The n parameter value was not estimated but was fixed a priori at 1.

3.1.3 Model training

The model architecture chosen to build mean-dose models for the HD cohort was the LKB
model (discussed in section 1.1.1) with parameterization proposed by Mohan et al. (1992)

NTCP =
1√
2π

∫ t

−∞
e−x

2/2dx , (3.6)

where
t =

deud − d50
m · d50

(3.7)

and

deud =

 N∑
i=i

vid
1/n
i

n

. (3.8)

The LKB model was chosen due to its popularity in NTCP modeling and straightforward
comparison of model parameters to the values reported in other studies.

In this study, the value of n parameter was fixed at 1, which is commonly done in stud-
ies on xerostomia toxicity (Deasy et al. 2010). With this parameterization, the equivalent
uniform dose deud is equivalent to the mean dose. Due to a low number of observations in
the near zero-dose region, a zero-dose correction was applied (Braam et al. 2005). Thus,
artificial zero-dose dose-volume histograms were added to ensure maximal NTCP of 5%
for a zero dose for every model.

As explained previously, the models were build for late xerostomia evaluated at 6 and
12 months after treatment for G1+ and G2+ severity. The models were based either on
the mean dose to the contralateral parotid gland or the mean dose to both parotid glands
weighted by parotid volumes. This resulted in eight models in total.

Maximum likelihood estimation

The parameters {d50,m} of the models were fitted using maximum likelihood estimation
(MLE) defined by

{d̂50, m̂} = arg max
d50,m

lnL(d50,m|deud, y) , (3.9)

where the log-likelihood logL is given by

lnL(d50,m|deud, y) =
1∑
c=0

∑
i:yi=c

ln NTCP(deud,i|d50,m) (3.10)
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and

yi =

1 if i is a positive case,

0 if i is a negative case.
(3.11)

Maximum likelihood estimation is a widely used method of estimating parameters of statis-
tical models. It is based on the idea that the most reasonable values of the model parameters
are those for which the probability of the observed data is largest (Hastie et al. 2009). It
is often more convenient to work with the natural logarithm of the likelihood called log-
likelihood, which does not change values of the estimated parameters as the log-likelihood
assumes maximum values for the same values as the likelihood function.

An advantage of the MLE is that the likelihood function captures all the information
about a certain parameter in the data, including its uncertainty. The equation 3.9 is realized
by finding parameter values for which partial derivatives of the log-likelihood are zero

∇ lnL(d50,m) = 0 . (3.12)

At the log-likelihood maximum, the second derivative of the function is negative. Therefore
the curvature of the log-likelihood function can be expressed as

I(d50,m) = −∇2 lnL(d50,m) , (3.13)

where I is the observed Fisher information. Large values of I correspond to steep peak of
the log-likelihood, hence low uncertainty about the estimate. The Fisher information is an
estimator of the asymptotic covariance matrix of the parameters

cov(d̂50, m̂) = I−1(d̂50, m̂) . (3.14)

The curvature of the log-likelihood can be often approximated by the normal distribution

{d̂50, m̂} ≈ N ((d50,m), I−1(d̂50, m̂)) . (3.15)

For that reason, the standard errors SE of the parameters are given by the square roots of
the diagonal elements of the covariance matrix

SE(d̂50) =
√
I−1d50,d50 , (3.16a)

SE(m̂) =
√
I−1m,m . (3.16b)

It follows that the confidence intervals CI for the parameters can be calculated as

CI(d̂50;C) = d̂50 ± Φ−1
(

1− C
2

)
SE(d̂50) , (3.17a)

CI(m̂;C) = m̂± Φ−1
(

1− C
2

)
SE(m̂) . (3.17b)
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Table 3.2: Confusion matrix. TP - true positives, FN - false negatives, FP - false positives, TN - true negatives.

Positive cases Negative cases

Positive predictions TP FP Precision = TP
TP+FP

Negative predictions FN TN
Sensitivity = TP

TP+FN Specificity = TN
FP+TN

where Φ−1 marks the probit function1 andC is the confidence level. The topic of likelihood-
based modeling is extensively covered in Pawitan (2001).

3.1.4 Model evaluation

The LKB model is a continuous classifier, which means it does not classify patients as
positive or negative cases. It rather gives a probability that a certain patient will develop a
side effect. One way to evaluate performance of such a model is to select a threshold, for
example a mean dose of 20 Gy, and transform in this way a continuous model into a binary
model. This would allow to calculate a fraction of patients correctly classified as patients
who will develop the side effect (sensitivity) and a fraction of patients correctly classified
as patients who will not develop the side effect (specificity) (Table 3.2). The downside of
this approach is that selection of a different threshold would result in a different sensitivity
and specificity. As a result, there is no particular value of sensitivity or specificity that
would characterize the overall accuracy of a model, but rather an entire range of values that
would vary depending on what was used as the decision threshold. The trade-off between
the sensitivity and the specificity due to the decision threshold selection can be visualized
with the receiver operating characteristic (ROC) curve. The ROC curve is generated by
plotting sensitivity versus 1-specificity over the entire range of threshold values allowing a
model-wide evaluation.

Area under the ROC curve

The most commonly used index related to ROC curves is the area under the curve (AUC).
Intuitively, it can be interpreted as the probability that a randomly chosen patient from
the positive group will be assigned a higher score than a randomly chosen patient from
the negative group. It can also be interpreted as the average sensitivity over all values of
specificity or, analogously, the average specificity over all values of sensitivity. A perfect
model has an AUC of 1.0, whereas a random classifier gives an AUC of 0.5. The predictive
performance of the models in this chapter was measured with the AUC. For brevity, θ
represents the AUC in all equations in this chapter.

It has been shown that the AUC calculated with the trapezoidal rule is directly related to
the Mann-Whitney U statistic (Bamber 1975). Let us assume the patients who developed a
complication form group A, whereas the patients who did not develop a complication form

1Probit function is the inverse of the cumulative distribution function of the standard normal distribution.
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group B, that is

A = {a1, a2, . . . , am} , (3.18a)

B = {b1, b2, . . . , bn} , (3.18b)

where the ai and bj are the model predictions for the individual patients. Then, the AUC
estimate θ̂, can be calculated according to the trapezoidal rule as

θ̂ =
1

mn

m∑
i

n∑
j

ψ(ai, bj) , (3.19)

where ψ is given by

ψ =


1 if ai > bj ,

0.5 if ai = bj ,

0 if ai < bj .

(3.20)

Confidence intervals for the AUC

Confidence intervals for the AUC can be calculated in a number of ways, such as the normal
approximation, Mann-Whitney U statistic, logit-transformation, and the DeLong method.
A number of studies showed that usually confidence intervals closest to the true unknown
confidence intervals can be estimated with the bootstrap (Obuchowski & Lieber 1998).
The bootstrap is a nonparametric approach, where one generates a large number, typically
thousands, of samples by sampling with replacement from the original data set. The AUCs
are estimated separately for each sample, which results in a distribution of AUC estimates
marked as Θ̂b.

The most straightforward way to calculate confidence intervals in such setting is to use
percentiles of the bootstrap distribution. For example, for the confidence level C = 1− 2α,
the confidence intervals are given by

CI(θ̂;C) = (Θ̂b
(α), Θ̂

b
(1−α)) . (3.21)

The limitation of this approach is that it does not take into account potential bias and
skewness of the Θ̂b distribution. By the bias is meant the discrepancy between the median
value in Θ̂b and the the Θ̂. The skewness, in turn, stems from the fact that the standard error
of the AUC estimate with respect to the true value of the AUC is not constant. In other
words, the standard normal approximation θ̂ ∝ N (θ, σ2

θ̂
) assumes that the standard error of

θ̂ is the same for all values of θ, which is often unrealistic.

For that reason, in this study the confidence intervals of the AUC estimates were cal-
culated with the bootstrap using the bias-corrected and accelerated (BCa) method (Efron
& Tibshirani 1993). The BCa interval endpoints are given by percentiles of the bootstrap
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distribution
CI(θ̂;C) = (Θ̂b

(αL)
, Θ̂b

(αH)) , (3.22)

where Θ̂b is a set of AUC bootstrap estimates, αL is the lower percentile, and αH is the
higher percentile. The percentile values are given by

αL = Φ

(
ẑ0 +

ẑ0 + Φ−1(α)

1− â(ẑ0 + Φ−1(α))

)
, (3.23a)

αH = Φ

(
ẑ0 +

ẑ0 + Φ−1(1− α)

1− â(ẑ0 + Φ−1(1− α))

)
, (3.23b)

where Φ is the cumulative distribution function of the standard normal distribution, Φ−1 is
the probit function, ẑ0 is the bias-correction coefficient, and â is the acceleration coefficient.
The bias-correction coefficient, defined by

ẑ0 = Φ−1

(
|{Θ̂b < θ̂}|
|Θ̂b|

)
, (3.24)

measures the discrepancy between the median and the mean value of the AUC estimates.
In other words, it compares the number of bootstrapped AUCs that are lower than the esti-
mated AUC to the number of all bootstrap samples, and quantifies skewness of the bootstrap
distribution via the probit function. The acceleration coefficient â is defined by

â =

∑n
i=1(θ̂(·) − θ̂(i))3

6(
∑n

i=1(θ̂(·) − θ̂(i))2)3/2
, (3.25)

where θ̂(i) is the ith Jackknife replica, that is the AUC estimate based on the original sample
with the ith observation removed, and θ̂(·) is the average of Jacknife replicas given by

θ̂(·) =
1

n

n∑
i=1

θ̂(i) . (3.26)

The acceleration coefficient â describes the rate of change of the standard error of the AUC
estimate with respect to the true value of the AUC. More details on the BCa method can by
found in Efron (1987).

The BCa bootstrap was chosen for the confidence intervals estimation because it does
not require data distribution assumptions. Moreover, it has been shown to outperform
other methods, especially in small imbalanced sample settings (Obuchowski & Lieber 1998,
Lasko et al. 2005).

Comparison of AUCs

The statistical significance of the differences between the AUCs were estimated using the
DeLong method (DeLong et al. 1988, Robin et al. 2011). The DeLong method is a non-
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parametric asymptotic approach which means that it makes no parametric assumptions of
the data. An intuitive explanation of the algorithm can be found in Hanley & Hajian-Tilaki
(1997). The method transforms each model prediction value to a placement value. The
placements values are given by

VAi =
1

n

n∑
j=1

ψ(ai, bj) , (3.27a)

VBj =
1

m

m∑
i=1

ψ(ai, bj) . (3.27b)

Intuitively, the placement value for a measurement from group A is its percentile among the
values of group B. The variance of the AUC estimate is then given by

var[θ̂] =
var[VA]

m
+

var[VB]

n
. (3.28)

In order to compare AUCs of two ROC curves generated by two different models using
the same data set, one needs to calculate the difference between the areas as well as the
variance of that difference. Because both models used the same data, the ROC curves are
correlated. Therefore, the variance of the difference between two AUC estimates defined as

var[θ̂α − θ̂β] = var[θ̂α] + var[θ̂β]− 2 cov[θ̂α, θ̂β] , (3.29)

must comprise a covariance term given by

cov[θ̂α, θ̂β] =
cov[V α

A , V
β
A ]

m
+

cov[V α
B , V

β
B ]

n
. (3.30)

As a result, the statistical significance of a difference between two AUC estimates can be
calculated from the following statistic

θ̂α − θ̂β√
var[θ̂α − θ̂β]

, (3.31)

which follows the standard normal distribution.

In addition to the ROC curves, the precision-recall (PR) curves were calculated. The
PR curves demonstrate interdependence of precision and recall2 on a decision threshold.
Similarly to the ROC curves, the PR curves allow a model-wide evaluation. Moreover, they
can expose differences between models that are not apparent in the ROC plots (Davis &
Goadrich 2006). Whereas the ROC curves show ability of a model to recognize positive
(sensitivity) and negative (specificity) cases, the PR curves inform how sensitivity of a
model affects reliability of positive predictions (precision) and vice versa.

2Recall is another term for sensitivity.
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Table 3.3: Variability of xerostomia grades.

Time point Grade 0 Grade 1 Grade 2

6 months 0.0% 3.4% 32.7%
12 months 0.0% 2.6% 30.0%

3.2 Results

The analysis showed no variability in follow-up reports of patients who did not develop
xerostomia and little variability in follow-up reports of patients categorized as xerostomia
G1. For G2 patients, however, the variability was rather high reaching over 30%, both at
6 and 12 months after treatment. In other words, almost every third follow-up document
reported a grade different than grade 2. The variability of xerostomia grades is summarized
in Table 3.3.

There was no significant difference in xerostomia prevalence between the IMRT and
the tomotherapy groups at the FWER = 0.05. The comparison involved G0 versus G1, G0
versus G2, and G0-1 versus G2 at 6 and 12 months after treatment. The observed xerostomia
toxicity rates stratified by endpoint are presented in Table 3.1.

The analysis of the mean doses to parotid glands revealed that 52% of patients in the
HD cohort had their contralateral parotid glands spared to a mean dose lower than 20 Gy.
Moreover, 72% of patients received an average mean dose to both parotid glands lower than
25 Gy. At least one QUANTEC constraint was satisfied in 74% of patients. Figure 3.2
shows the distribution of ipsilateral and contralateral mean doses among G0, G1, and G2
patients.

A comparison of the mean dosage to the parotid glands showed that the average mean
dose to the contralateral glands in the HD group was lower than in the PARSPORT cohort
(18.7 Gy versus 24.9 Gy). Furthermore, the difference in the average mean dose to the
ipsilateral glands between the two cohorts was even more pronounced (25.4 Gy versus 45.7
Gy). A visual comparison of the parotid gland mean dose distributions between the two
cohorts is provided in Figure 3.3.

The difference in the average mean doses to parotid glands corresponded to a difference
in the observed xerostomia rates. The incidence of xerostomia at 12 months in the PAR-
SPORT cohort was 38% of LENT-SOMA subjective G2+ compared to 15% of CTCAE
G2+ in the HD cohort. The low incidence in the HD cohort was also predicted by the LKB
model trained on the PARSPORT data. Figure 3.4 shows the NTCP curve produced by this
model and the observations from the HD cohort. The expected prevalence of LENT-SOMA
subjective G2+ at 12 months in the HD cohort predicted by this model was estimated as
11%.

The parameters of the fitted models together with 95% confidence intervals are pre-
sented in Table 3.4. For the G1+ xerostomia models based on the mean dose to the con-
tralateral parotid gland, d50 increased slightly from 10.7 Gy to 12.0 Gy when moving from
6 to 12 months time point. A similar time point-dependent shift of d50 was observed for the
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Figure 3.2: Ipsi- and contralateral mean dose to parotid glands and corresponding xerostomia grades at 6 and
12 months after treatment in the HD cohort.
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Figure 3.3: Comparison of parotid glands mean dose distributions between the HD and the PARSPORT data
sets. The distributions are visualized as kernel density plots. Wide dashed lines mark the medians, whereas
narrow dashed lines correspond to the first and the third quartiles.
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Figure 3.4: NTCP curve for G2+ xerostomia at 12 months based on the data from the PARSPORT clinical
trial (Miah et al. 2013) with observations from the HD cohort.

Table 3.4: The parameters and performance of the LKB models with 95% confidence intervals.

Endpoint Gland d50 [Gy] m AUC

G1+ 6 months Contralateral 10.7 (7.5–13.9) 0.61 (0.46–0.75) 0.73 (0.62–0.83)
G1+ 6 months Both 12.2 (6.4–18.0) 0.61 (0.37–0.84) 0.76 (0.66–0.87)
G1+ 12 months Contralateral 12.0 (7.8–16.1) 0.61 (0.32–0.89) 0.69 (0.54–0.83)
G1+ 12 months Both 13.6 (5.9–21.3) 0.61 (0.32–0.89) 0.73 (0.60–0.86)
G2+ 6 months Contralateral 42.8 (5.7–80.0) 0.60 (0.39–0.82) 0.49 (0.38–0.60)
G2+ 6 months Both 51.2 (8.0–94.4) 0.60 (0.40–0.81) 0.50 (0.39–0.62)
G2+ 12 months Contralateral 51.6 (-41.8–145.1) 0.60 (0.20–1.00) 0.56 (0.41–0.70)
G2+ 12 months Both 64.8 (-31.8–161.3) 0.60 (0.29–0.91) 0.52 (0.38–0.67)

G1+ xerostomia models based on the mean dose to both parotid glands, that is, 12.2 Gy at 6
months and 13.6 Gy at 12 months. For all G1+ xerostomia models, m parameter was 0.61.
The NTCP curves for G1+ xerostomia are presented in Figure 3.5. The G2+ xerostomia
models failed to fit the data which was revealed by extremely wide confidence intervals of
d50 (Table 3.4).

Predictive performance of the LKB models ranged from AUC = 0.69 to 0.76 for G1+
xerostomia. The G1+ models based on the mean dose to both parotid glands scored higher
than the contralateral mean dose models for both analyzed time points. Nonetheless, the
difference was not statistically significant at the significance level of 0.05. The PR curves
also did not reveal any substantial advantage of one predictor over the other. Figure 3.5
shows the ROC and the PR curves for the LKB G1+ models. The predictive performance of
all G2+ LKB models was close to a random classifier, that is, AUC = 0.50. For that reason,
the ROC and the PR curves were not presented on the plots. The AUCs of all models
together with confidence intervals are summarized in Table 3.4.
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Figure 3.5: NTCP, ROC, and PR curves for G1+ xerostomia. The curves are presented for models based on
both parotid glands ( ) or the contralateral parotid gland alone ( ).



36 Chapter 3. Mean dose to parotid glands and xerostomia

3.3 Discussion

In recent years, considerable attention has been given to the validation of the QUANTEC
guidelines to avoid radiation-induced xerostomia (Lee & Fang 2013, Beetz et al. 2014).
Most of the studies supported the QUANTEC recommendations. Nonetheless, the common
conclusion was that further dose reduction was advisable.

Median mean doses of 46 and 25 Gy to ipsi- and contralateral parotid glands, respec-
tively, corresponded to 38% LENT-SOMA subjective G2+ xerostomia prevalence at 12
months in the PARSPORT clinical trial. Beetz et al. (2012) reported similar moderate-to-
severe xerostomia prevalence measured with patient-based EORTC QLQ-H&N35 question-
naires. The average mean dose to parotid glands was 30 Gy. Leung & Lee (2013) showed
that median mean doses of 22 and 20 Gy to ipsi- and contralateral parotid glands, respec-
tively, resulted in RTOG/EORTC G2+ xerostomia in only two of 72 patients in their study.
Moreover, Lee et al. (2015) presented a patient cohort with median ipsi- and contralateral
parotid gland mean doses of 23 Gy and 22 Gy, respectively, and only 24% EORTC QLQ-
H&N35 moderate-to-severe xerostomia prevalence at 6 months after treatment. The results
presented in this chapter seem to be in accordance with the dose-response pattern emerging
from the recently published studies. Namely, sparing both parotid glands to a mean dose
as low as possible resulted in low G2+ xerostomia prevalence at 6 and 12 months after
treatment.

Comparison of toxicity scores based on different toxicity grading systems is often dif-
ficult, as concordance between the assigned scores can be low. Quantitative evaluations,
such as saliva flow measurements, are highly variable and often translate poorly to pa-
tient’s quality of life (Deasy et al. 2010). Also, purely observer-based systems, such as the
RTOG/EORTC, suffer from misinterpretation and omission errors (Trotti et al. 2007) and
can underestimate patient’s subjective xerostomia (Deasy et al. 2010, Meirovitz et al. 2006).
The common notion is that patient-reported scores should be used for xerostomia assess-
ment either as a solely measure (Meirovitz et al. 2006, Ho et al. 2010) or as a supplementary
information at least (Deasy et al. 2010, Trotti et al. 2007). Ho et al. (2010) compared two
such patient-based scoring systems, namely EORTC QLQ-HN35 with the LENT-SOMA
subjective, and found good agreement between them. This finding likely extends to the
CTCAE system because the LENT-SOMA items were incorporated into the CTCAE v3.0.

The LKB model proved to be unsuitable for G2+ xerostomia prediction in the HD patient
cohort. The widths of the confidence intervals were in range of hundreds of grays showing
that the model failed to fit the data. The lack of predictive power was supported by low AUC
values. Due to direct correspondence between the AUC and the Mann-Whitney U-test, low
AUC values were a hallmark of weak class separation with respect to the predictor. The
results show that neither the mean dose to both parotid glands, nor the mean dose to the
contralateral parotid gland differentiated well patients at risk of G2+ xerostomia in the HD
data set. Furthermore, even though all G2+ xerostomia patients from the HD cohort were
in the low-risk region of the NTCP curve (Figure 3.4), for some cases the NTCP was up to
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20–30%.
G1+ xerostomia was described fairly well by the LKB model. AUC values exceeding

0.70 indicate a clear dose dependence of mild xerostomia. It is important to note that the
steepest part of the NTCP curve of the LKB model corresponds to the doses close to d50.
Hence, a mean dose reduction in this region will have relatively the largest effect on a
complication probability reduction. Since d50 estimates were in the range of 11–14 Gy, the
mean dose to the parotid glands should be kept as low as possible to reduce incidence of
G1+ xerostomia, even in the sub-20 Gy region.

It was commonly reported in the literature that for patients who received radiation doses
exceeding QUANTEC guidelines, the LKB model well discriminated patients at risk of
G2+ xerostomia (Lee & Fang 2013, Beetz et al. 2012, Houweling et al. 2010). Nowa-
days, however, due to effective parotid sparing techniques, the prevalence of G3 is rare and
patients at risk of G2+ xerostomia are often not recognized by mean dose models. The
results of the analysis presented in this chapter underscore a need for the development of
new NTCP models of xerostomia, which could be better suited for modeling of xerostomia
in highly conformal radiotherapy treatments. Several studies emphasized the importance of
the submandibular gland function as a potential factor in xerostomia prediction (Deasy et al.
2010, Lee et al. 2015). For this reason, information about surgical resection or the radiation
dose to this gland may be an valuable predictor in future studies on NTCP models of xeros-
tomia. Additionally, it could be beneficial to examine classification algorithms exploiting
more complex dosimetric (dosiomics) and organ-shape (radiomics) features (Buettner et al.
2012, Dean et al. 2016). Such models may provide clinical guidelines for treatment plan-
ning in cases where a reduction of the mean dose to parotid glands is not attainable.
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CHAPTER 4

RADIOMICS, DOSIOMICS, AND

DEMOGRAPHICS TO PREDICT

XEROSTOMIA

The results presented in this chapter were published in Gabryś et al. (2018). Under the
journal’s copyright policy, the authors retained the copyright to their work. Figures 4.1
and 4.3, and parts of section 4.1 have been quoted verbatim from Gabryś et al. (2018).

In the course of routine medical procedures, large amounts of data are generated. Medi-
cal documentation stores information on patients’ age, sex, martial status, habits, and other
demographic characteristics. Also, various kinds of medical imaging, such as computed
tomography, magnetic resonance imaging, and positron emission tomography are often in-
volved. These images are usually inspected visually by an expert to aid diagnostic or thera-
peutic decisions. However, quantitative information that they contain can also be extracted
and further analyzed. Such analysis is the realm of radiomics (Lambin et al. 2012). In
radiomics, complex descriptors, such as Haralick textures, wavelets, and Laplacian trans-
forms, are used to describe semantic image features, such as shape, vascularity, and spicu-
lation (Gillies et al. 2015). Radiomics has been successfully used in many applications in
oncology, for example, decoding tumor phenotype (Aerts et al. 2014), prediction of metas-
tases (Vallières et al. 2015), and cancer detection (Cameron et al. 2015). Likewise, similar
techniques can be applied to describe the spatial dose distribution in radiotherapy treatment
plans. For instance, tubular organs can be described using dose-surface maps (Sanchez-
Nieto et al. 2001) that quantify the dose deposited to the walls of the organ. For volumetric
organs, such as prostate and parotid gland, three-dimensional moments have been success-
fully used for the spatial-dose description (Buettner et al. 2012).

In recent years, a number of studies have examined a variety of factors in hope of more
precise xerostomia predictions. Lee et al. (2014) investigated predictive power of patient-
specific predictors related to demographics, such as age, financial status, education, smok-
ing, and alcohol intake. Hawkins et al. (2018) studied how the mean dose not only to
parotid glands but also to submandibular glands and the oral cavity affects treatment out-
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comes. Luijk et al. (2015) showed that it is sufficient to spare a subvolume of the parotid
gland which contains stem cells to avoid parotid gland disfunction one year after treatment.
Other researches focused on relating radiomic features or spatial dose shape within parotid
glands to xerostomia. Van Dijk et al. (2017) examined CT image biomarkers to predict late
xerostomia and sticky saliva, whereas Buettner et al. (2012) showed that the use of three-
dimensional scale-invariant dose moments can predict late xerostomia better than the mean
dose to parotid glands.

In this chapter, the relation of various features describing parotid shape (radiomics),
dose shape (dosiomics), and demographic characteristics to radiation-induced xerostomia
was investigated. The conducted analysis aimed to recognize informative predictors beyond
the mean dose that would allow better prediction of early, late, and long-term xerostomia.

4.1 Material and Methods

4.1.1 Endpoints

The follow-up reports after treatment were collected at approximately three-months inter-
vals. As already discussed in previous chapters, the number of available reports and the
exact date of evaluation varied from patient to patient. For this reason, three intervals rep-
resenting early, late, and long-term xerostomia were defined:

• 0–6 months (early xerostomia)

• 6–15 months (late xerostomia)

• 15–24 months (long-term xerostomia)

The intervals are visually marked in Figure 4.1. Like in chapter 3, if a given patient received
more than one xerostomia evaluation in a certain time interval, the final toxicity score was
calculated as the arithmetic mean rounded to the nearest integer with x.5 being rounded
up. In this chapter, the focus was on xerostomia grade two or higher (G2+) according to
the CTCAE v4.03. Patient and tumor characteristics stratified by endpoint are presented in
Table 4.1.

4.1.2 Feature definitions

The candidate xerostomia predictors are listed in Table 4.2. The features were subdivided
in nine feature groups: demographics, parotid shape, dose-volume histogram, subvolume
mean dose, spatial dose gradient, spatial dose spread, spatial dose correlation, spatial dose
skewness, and spatial dose coskewness. As explained in chapter 2, the radiomic and the
dosiomic features were extracted from the CT- and the dose-cubes read from treatment
planning DICOM files. The features were analyzed in terms of ipsi- and contralateral rather
than left and right parotid glands. For this reason, the cubes were flipped through the sagittal
plane for cases with the mean dose to the right parotid gland higher than the mean dose to
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Figure 4.1: Frequency of the follow-up reports collection.

Table 4.2: Feature sets before and after removal of highly correlated pairs. Removal of correlated features is
provided in section 4.1.3.

Feature group Initial feature set Final feature set

Demographics age, sex age, sex
Parotid shape volume, area, sphericity, eccentricity,

compactness, λ1, λ2, λ3
volume, sphericity, eccentricity

Dose-volume histogram mean, spread, skewness, D2, D98,
D10, D20, D30, D40, D50, D60,
D70, D80, D90, V10, V15, V20,
V25, V30, V35, V40, V45, entropy,
uniformity

mean, spread, skewness

Subvolume mean dose s1x, s2x, s3x, s1y , s2y , s3y , s1z , s2z , s3z
Spatial dose gradient gradientx, gradienty, gradientz gradientx, gradienty, gradientz
Spatial dose spread η200, η020, η002 η200, η020, η002
Spatial dose correlation η110, η101, η011 η110, η101, η011
Spatial dose skewness η300, η030, η003 η300, η030, η003
Spatial dose coskewness η012, η021, η120, η102, η210, η201 η012, η021, η120, η102, η210, η201

the left parotid gland. This allowed to avoid situations where certain spatial features, such
as dose gradient, would have either positive or negative value, depending on whether the
tumor was located on the patient’s left or right side. All feature definitions were based on
the LPS coordinate system, that is (right to left, anterior to posterior, inferior to superior).
MATLAB code written for data preprocessing and feature extraction was made publicly
available on GitHub1.

Demographic features

The demographic features group consisted of only two predictors: the patient’s age and sex.
This information was readily available in the medical documentation. Inclusion of other

1https://github.com/hubertgabrys/DicomToolboxMatlab

https://github.com/hubertgabrys/DicomToolboxMatlab
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factors, such as smoking, financial status and education, was unfeasible due to retrospective
character of the study and, resulting from this, variability in the available information.

Parotid shape features

Parotid shape features described size and shape of the parotid glands.

Volume Volume V of the parotid gland was given by

V =
∑
x,y,z

I(x, y, z) , (4.1)

where I(x, y, z) is the three-dimensional logical array indicating whether a voxel of coor-
dinates x, y, and z is within the parotid gland.

Surface area Surface area A of the parotid gland was calculated as

A =
∑
yz

[I(1, y, z) +
nx−1∑
x=2

|I(x, y, z)− I(x− 1, y, z)|+ I(nx, y, z)]

+
∑
xz

[I(x, 1, z) +

ny−1∑
y=2

|I(x, y, z)− I(x, y − 1, z)|+ I(x, ny, z)]

+
∑
xy

[I(x, y, 1) +
nz−1∑
z=2

|I(x, y, z)− I(x, y, z − 1)|+ I(x, y, nz)] ,

(4.2)

where nx, ny, and nz are the number of voxels in x, y, and z direction respectively.

Sphericity Parotid sphericity Ψ was defined as the ratio of the surface area of a sphere of
the same volume as the parotid to the actual surface area of the parotid

Ψ =
π

1
3 (6V )

2
3

A
. (4.3)

Compactness Parotid compactness κ was given by the ratio of the parotid surface area A
to the parotid volume V

κ =
A

V
. (4.4)

Eccentricity Eccentricity ε measured elongation of the parotid gland given by

ε = 1−
√
λmin
λmax

, (4.5)

where the eigenvalues λi of the parotid shape covariance matrix correspond to the dimen-
sions of the parotid gland along the principal axes defined by the eigenvectors. Larger
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asymmetry of the gland corresponded to larger values of ε. The covariance matrix needed
to calculate the eigenvectors is defined as

cov[I(x, y, z)] =

µ200 µ110 µ101

µ110 µ020 µ011

µ101 µ011 µ002

 , (4.6)

where µpqr denotes central moments of the parotid given by

µpqr =
∑
x,y,z

(x− x̄)p(y − ȳ)q(z − z̄)rI(x, y, z) (4.7)

and

x̄ =

∑
x,y,z xI(x, y, z)∑
x,y,z I(x, y, z)

, (4.8a)

ȳ =

∑
x,y,z yI(x, y, z)∑
x,y,z I(x, y, z)

, (4.8b)

z̄ =

∑
x,y,z zI(x, y, z)∑
x,y,z I(x, y, z)

. (4.8c)

Dose-volume histogram features

This feature group quantified characteristics of a differential dose-volume histogram (DVH).

Mean The mean dose d̄ to the parotid gland.

d̄ =
1

N

N∑
i=1

di , (4.9)

where di denotes the dose to ith voxel and N denotes total number of voxels in the parotid
gland.

Spread The spread σ of the DVH was quantified with the standard deviation of the dose
within the parotid gland, that is

σ =

√
1

N − 1

∑
|di − d̄|2 . (4.10)

Low value of σ indicate a narrow DVH and, therefore, rather homogeneous dose distribu-
tion.
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Skewness Skewness γ1 of the DVH was defined as

γ1 =
1
N

∑
(di − d̄)3

(
√

1
N

∑
(di − d̄)2)3

, (4.11)

which is the third standardized moment. Negative skewness corresponds to a DVH skewed
toward a low-dose region, whereas positive skewness describes a DVH skewed toward a
high-dose region.

Dx Minimum dose to x% hottest volume of the parotid gland was given by

Dx = inf{d ∈ R : x ≤
∑
di>d

1} , (4.12)

where vi is a partial volume of the ith voxel.

Vx Percentage volume of the parotid gland receiving at least x Gy was defined as

V x =

∑
di≥x vi∑
vi

. (4.13)

Entropy Entropy H (Gonzalez & Woods 2006), given by

H = −
256∑
i=1

m(di) logm(di) , (4.14)

measures smoothness of the dose within the parotid gland. The di is the dose delivered to
the ith voxel and m(di) is the corresponding histogram. Entropy is a nonnegative quantity
reaching zero only for a perfectly uniform distribution.

Uniformity Uniformity U (Gonzalez & Woods 2006) of the dose was defined as

U =
256∑
i=1

m2(di) . (4.15)

Uniformity U , sometimes also called energy, assumes values form zero to one. For a uni-
form dose U = 1.

Subvolume mean dose

Parotid gland subvolumes were defined by axial, coronal, and sagittal splits that cut parotid
glands in thirds along the patient’s axes. The cuts were positioned in such a way that each
subvolume comprised approximately the same number of voxels. As a result, nine, not
exclusive, subvolumes were defined: three in x, three in y, and three in z direction. For
each subvolume the mean radiation dose was calculated, for example, the mean dose to the
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anterior third of the parotid gland (s1y) or the mean dose to the superior third of the parotid
gland (s3z).

Dose gradients

Dose gradients measured average change of the dose along one of patient axes and were
defined as

gradientx =

∑
x,y,z(D(x+ 1, y, z)−D(x− 1, y, z))I(x, y, z)

2
∑

x,y,z I(x, y, z)
, (4.16a)

gradienty =

∑
x,y,z(D(x, y + 1, z)−D(x, y − 1, z))I(x, y, z)

2
∑

x,y,z I(x, y, z)
, (4.16b)

gradientz =

∑
x,y,z(D(x, y, z + 1)−D(x, y, z − 1))I(x, y, z)

2
∑

x,y,z I(x, y, z)
. (4.16c)

where x, y, and z are the coordinates of the voxel, D(x, y, z) is the dose delivered to the
voxel, and I(x, y, z) is a logical array indicating whether a voxel belongs to the parotid.

Three-dimensional dose moments

The scale-invariant dose moments allowed to quantify the three-dimensional shape of the
dose distribution within the parotid gland. Visualization of the moments can be found in
Buettner et al. Supplementary figure 1–3 (Buettner et al. 2012). The moments were defined
as

ηpqr =

∑
x,y,z(x− x̄)p(y − ȳ)q(z − z̄)rD(x, y, z)I(x, y, z)(∑

x,y,zD(x, y, z)I(x, y, z)
) p+q+r

3
+1

, (4.17)

where

x̄ =

∑
x,y,z xI(x, y, z)D(x, y, z)∑
x,y,z I(x, y, z)D(x, y, z)

, (4.18a)

ȳ =

∑
x,y,z yI(x, y, z)D(x, y, z)∑
x,y,z I(x, y, z)D(x, y, z)

, (4.18b)

z̄ =

∑
x,y,z zI(x, y, z)D(x, y, z)∑
x,y,z I(x, y, z)D(x, y, z)

. (4.18c)

In particular, moments quantifying dose variance, covariance, skewness, and coskewness
were considered.

Dose variance (η200, η020, η002) Dose variance corresponds to spread of the dose along a
given direction.

Dose covariance(η110, η101, η011) Dose covariance measures how the dose covaries along
two axes. For example, large positive values of η110 correspond to dose deposition along xy
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direction, whereas large negative values correspond to dose deposition along the direction
perpendicular to xy.

Dose skewness (η300, η030, η003) Dose skewness measures asymmetry of the dose distribu-
tion along a given axis.

Dose coskewness (η210, η201, η120, η021, η012, η102) Dose coskewness measures how dose
variance along one direction covaries with another dimension. For example, large η210
would mean that variance of the dose along x axis increases when moving up the y axis.

4.1.3 Feature correlation

To reduce feature redundancy, the Kendall rank correlation coefficient was calculated for
all feature pairs. Kendall’s τ , defined by

τ =
(number of concordant pairs)− (number of discordant pairs)

n(n− 1)/2
, (4.19)

allows to measure ordinal association between two features, in other words, agreement
in ranks assigned to the observations. It can be interpreted as a difference between the
probability that both features would rank a random pair of observations in the same way
and the probability that they would rank these observations in a different way (Abdi 2007).
Feature pairs with |τ | > 0.5 in both glands were considered as highly correlated and suitable
for rejection from the initial feature set. This arbitrarily chosen threshold corresponds to a
75% probability that the two features would rank a random pair of observations in the
same way. Whenever a pair of features was found highly correlated, the feature that was
conceptually and computationally simpler was kept in the feature set, for example, mean
dose over Dx, parotid volume over parotid compactness.

4.1.4 Predictive power of the features

In order to estimate predictive power of individual features, the Mann-Whitney U statistic
and the corresponding AUC were calculated for every feature. The null hypothesis for each
test was that the median value of the feature was the same in the group of patients with G0
and G1 xerostomia, and the group of patients with G2+ xerostomia. The alternative hypoth-
esis was that the median value was different between the two groups. For all AUCs, 95%
confidence intervals were estimated with bias-corrected and accelerated (BCa) bootstrap.
The BCa method was discussed in detail in section 3.1.4. Type I error was a recognition of
a feature as informative when in fact it was not.

As already discussed in chapter 3, performing multiple tests increases the risk of re-
porting falsely positive results. In the context of this analysis, evaluating multiple features
increases a risk of observing overoptimistic AUC values just by chance. For this reason, a
correction for multiple testing was applied. The number of type I errors was controlled with
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the false discovery rate (FDR) using the Gavrilov-Benjamini-Sarkar method. The choice of
this particular method is explained in the next section.

False discovery rate

The FDR is defined as the expected proportion of falsely rejected hypotheses V in the set
of all the rejected hypotheses R, that is

FDR = E

[
V

R

]
. (4.20)

Instead of controlling the probability of at least one false positive result in the family of all
tests as the FWER does (vide section 3.1.2), it rather controls the proportion of type I errors
within the set of rejected hypotheses. The FDR provides control of the FWER in the weak
sense, that is, if all null hypotheses are true, the FDR controls the FWER. Whenever there
are non-true null hypotheses, the FDR provides greater power than the FWER method at
the cost of a greater risk of type I errors. The FDR may be especially preferable for settings
were hundreds or even thousands comparisons are performed. In such situations, the FWER
may be too conservative and its power too low.

Probably the most well known algorithm of controlling the FDR is the Benjamini-
Hochberg method (Benjamini & Hochberg 1995). Say m hypotheses H1, H2, . . . , Hm are
tested and of these m0 are true. Also, with each hypothesis there is an associated p-value
p1, . . . , pm. First, the p-values are sorted in increasing order. Then, the maximum index k
is found such that

k = max

{
1 ≤ i ≤ m : pi ≤

i

m
α

}
(4.21)

and hypotheses H1, . . . , Hk are rejected. If no such k exists, no hypothesis is rejected.
The Benjamini-Hochberg method is conceptually and computationally simple and ap-

pealing. Nonetheless, it can be too conservative when the proportion m0/m is small. It
is because the true proportion m0/m is unknown. The consequences of this are well dis-
cussed in Benjamini et al. (2006). To address this problem, Gavrilov et al. (2009) presented
an adaptive step-down procedure that provides more powerful control of the FDR, namely

k = max

{
1 ≤ i ≤ m : pi ≤

i

m− i(1− α) + 1
α

}
. (4.22)

Hypotheses H1, . . . , Hk are rejected. If no such k exists, no hypothesis is rejected. The
Gavrilov-Benjamini-Sarkar method has been shown to work well under both independence
and positive dependence.

4.1.5 Tolerance values

In order to relate raw values of the features to the expected complication probability, a
univariate logistic regression model was build based on each of them. Consequently, for
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Figure 4.2: Correlation matrix of |τ | before (left) and after (right) feature set reduction.

each of the predictors, tolerance values corresponding to 20% (TV20), 10% (TV10), and
5% (TV5) complication probability were calculated.

4.2 Results

In total, 61 predictors were defined. The analysis of feature correlations and mutual redun-
dancy started with comparison of the mean dose to parotid glands to other predictors. The
mean dose was chosen because it is a gold standard in the clinical practice. The analysis
revealed that all Dx, Vx, and subvolume features were highly correlated to the mean dose.
Consequently, they were removed from the feature set. A number of features, such as the
DVH skewness, entropy, and gradients, described inhomogeneity of the dose distribution
within the parotid glands. For this reason, feature correlation to the DVH skewness was
examined. The result was that entropy and uniformity were redundant with respect to the
DVH skewness and could be excluded. Furthermore, there was a number of features de-
scribing shape of parotid glands. Parotid volume was considered the simplest and the most
straightforward descriptor, thus other features were compared to it. As a result, surface area,
compactness, and all three eigenvalues were redundant with respect to the parotid volume.
Afterwards, there were 26 features left in the feature set and no feature pairs were correlated
with |τ | > 0.5 in both glands. The correlation matrix of features before and after removal
of the correlated pairs is presented in Figure 4.2. The initial and final set of features is
presented in Table 4.2.

The results of the univariate analysis are presented in Figure 4.3. There was little asso-
ciation between single predictors and xerostomia within the first six months after treatment.
The only features that passed AUC = 0.60 threshold were the DVH skewness in both glands,
contralateral η210, and contralateral η011. They were, however, not significant at the FDR
= 0.05. Late xerostomia correlated with individual features slightly better. The most in-
formative were the contralateral spatial dose gradients in the right-left direction and the
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Table 4.3: AUCs and tolerance values for selected predictors of long-term xerostomia.

Predictor AUC TV20 TV10 TV5

volumei 0.87 (0.75–0.95) 9894 mm3 15681 mm3 21014 mm3

volumec 0.85 (0.66–0.98) 9169 mm3 14533 mm3 19475 mm3

gradientix 0.78 (0.58–0.92) 1.78 Gy/mm TV10 = 1.42 Gy/mm TV5 = 1.09 Gy/mm
gradientcx 0.84 (0.71–0.93) 1.49 Gy/mm TV10 = 1.29 Gy/mm TV5 = 1.10 Gy/mm
gradientiy 0.74 (0.54–0.89) 0.67 Gy/mm TV10 = 0.42 Gy/mm TV5 = 0.20 Gy/mm
gradientcy 0.72 (0.55–0.87) 0.69 Gy/mm TV10 = 0.36 Gy/mm TV5 = 0.07 Gy/mm

anterior-posterior direction. Considerable performance was achieved also by the contralat-
eral DVH spread and ipsilateral η210. Nevertheless, no late xerostomia AUC was statistically
significant at the FDR = 0.05. Long-term xerostomia predictors achieved by far the high-
est AUCs. Parotid size described by parotid volume predicted long-term xerostomia with
AUCs greater than 0.85. Furthermore, dose-gradients in the right-left and anterior-posterior
predicted long-term xerostomia very well (AUCs > 0.7). Other contralateral features that
that had relatively high predictive power were the DVH spread, parotid eccentricity, and
coskewness in the xy plane (η210 and η120). Also, patient’s sex allowed to recognize pa-
tients at risk with AUC = 0.64. Nonetheless, at FDR = 0.05 statistically significant were
only parotid gland volumes and the right-left spatial dose gradient in the contralateral gland.
The corresponding AUCs and tolerance values of selected long-term xerostomia predictors
are presented in Table 4.3.

4.3 Discussion

The investigation of correlations between the features and their mutual redundancy proved
to be an important part of the analysis. Removal of highly correlated descriptors allowed to
significantly reduce feature redundancy and lower the dimensionality of the data set from 61
to 26 features. Furthermore, the correlation analysis allowed to exclude complex features
that have low added value over simpler and more intuitive ones. For example, the DVH
skewness rendered entropy and uniformity redundant.

The analysis revealed large variability of the features predictive power depending on the
analyzed time point. The most marked is probably the parotid volume. It was completely
nonpredictive of early and late xerostomia. For the long-term xerostomia, however, it scored
AUC greater than 0.85 for both ipsi- and contralateral parotids. Similar variability was
observed for other descriptors as well, for example, spatial dose gradients. This finding
underlines necessity of evaluation of radiomic and dosiomic features at various times after
treatment as their predictive power may change among early, late, and long-term effects.
Nonetheless, so distinct variability as observed in this study was likely emphasized by the
low sample size and the retrospective character of the collected data.

Another important aspect was the number of statistically significant AUC values. Even
though six features achieved AUC greater than 0.70, only three were statistically significant
at the FDR = 0.05. It is important to remember that high AUC does not have to translate to
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Figure 4.3: Predictive power of individual features in the time-specific models measured with the area under
the receiver operating characteristic curve (AUC). The left-hand side vertical axis lists the features, the right-
hand side vertical axis lists the feature groups. The AUCs were calculated from the corresponding Mann-
Whitney U statistic. Bars marked with * are significant at the false discovery rate (FDR) = 0.05.
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high confidence of the observed predictive power. For instance, for large samples, AUC of
0.60 can be significant, whereas for small samples, AUC of 0.80 can be nonsignificant. In
other words, AUC itself informs only about the strength of the effect, whereas p-value and
confidence intervals quantify uncertainty of the AUC estimate. These results emphasize
the importance of correction factors and confidence intervals estimation in multiple testing
settings.

The univariate analysis showed that predictors describing shape of the dose and shape
of the parotid gland can be highly predictive of xerostomia. Patients with small parotid
were significantly more likely to develop long-term xerostomia than patients with large
parotid glands. Average volume of parotid gland in the negative group was 14374 mm3 in
comparison to 9557 mm3 in the positive group. Similarly, patients with steep dose gradients
in the right-left direction were at higher risk than patients with low dose gradient in this
direction. Median gradient in the negative group was 1.2 Gy/mm in contrast to 1.7 Gy/mm
in the positive group. A possible explanation of these relations could be often reported
shrinkage of parotid glands and their movement toward the medial direction during the
course of radiotherapy.

Nonetheless, good predictive power of the spatial dose gradients and poor performance
of the mean dose can be put into perspective of other studies validating mean-dose models.
In cohorts where patients received a high radiation dose to parotid glands, the mean dose al-
lowed achieving AUC greater than 0.80 (Houweling et al. 2010, Beetz et al. 2012). It seems
that for relatively high doses, the mean dose alone is a good xerostomia predictor, irrespec-
tive of the dose gradient, whereas in the highly conformal regime of modern radiotherapy,
the dose gradients are more informative and the mean dose is less predictive.



CHAPTER 5

MACHINE LEARNING MODELS OF

XEROSTOMIA

The results presented in this chapter were published in Gabryś et al. (2018). Under the
journal’s copyright policy, the authors retained the copyright to their work. All the figures
and parts of sections 5.1, 5.2, and 5.3 have been quoted verbatim from Gabryś et al. (2018).

A multitude of miscellaneous predictors can be designed for NTCP modeling. Demo-
graphic, radiomic, and dosiomic features can have high predictive power and recognize well
patients at risk of side effects (vide chapter 4). Nonetheless, models based on a single pre-
dictor, that is, univariate models, are significantly limited. This is because various features
can explain different parts of variation between positive and negative groups, thus being
mutually complementary. The Lyman model, for instance, takes into account not only the
mean dose but also the partial volume of the organ receiving that dose. It may seem only
logical to include as many predictors as possible in the model in order to capture the internal
structure of the data and better predict a complication risk of future patients.

Unfortunately, numerous issues are related to transition from low- to high-dimensional
feature spaces. These phenomena are often referred to as curse of dimensionality, a term
coined by Bellman (1961). One of these issues is sparsity of data in high dimensions. For
instance, say, a sample of N observations is considered dense for a univariate model. In
order to obtain the same sampling density in case of a d-dimensional model, one would
require Nd observations. As a result, the required sample size grows exponentially and
quickly becomes unfeasible.

A related problem is overfitting. In many model architectures, increasing the dimension-
ality increases the number of free parameters that can be tuned to fit the data. Consequently,
a model may become too flexible and fit the training data so well that apart from the present
pattern, or signal, it learns noise and eventually fails to generalize to new data sets. In order
to prevent this from happening, one could increase the size of the training set to keep the
risk of overfitting on the same level (Hastie et al. 2009), which, as stated before, quickly
becomes unrealistic for real-life samples.

Another disadvantage of high-dimensional models is poor interpretability. Developing
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an intuition for a model based on a few features is usually not difficult but interpreting
a model based on dozens of covariates may be challenging if not impossible. For some
applications this may not be a problem, however, in NTCP models designed to aid clinical
decisions interpretability is an important factor.

Machine learning provides means to solve these issues. Various methods exist to recog-
nize subsets of relevant informative features and discard the redundant ones. This allows to
reduce model dimensionality and facilitate understanding the model. Furthermore, model
flexibility can be tuned which allows to prevent overfitting. Additionally, sampling and data
cleaning algorithms are able to remove noisy observations and improve density of the data
set by creating artificial observations based on the available training samples.

Nonetheless, despite the growing interest in data-driven methods (El Naqa et al. 2018),
there have been no published studies so far systematically evaluating how different machine
learning techniques can be used to address challenges specific to NTCP modeling. NTCP
data sets are usually relatively small, rarely exceeding 300 patients. Moreover, they are
frequently imbalanced, which often results in cohorts with a small positive group and a large
negative group. Furthermore, there are multiple sources of uncertainty. In radiotherapy the
planned dose is not the delivered dose. Among others a disconnect between the planned
and delivered dose may be implied by erroneous patient positioning, organ motion, weight
loss, and tumor shrinkage. Also, the follow-up reports are subject to bias introduced by
(different) human observers if physically non-objective measures (as used in this study with
CTCAE) are used.

Works comprehensively comparing various machine learning methods in terms of their
suitability for application-specific tasks have been already presented in the fields of bioin-
formatics (Statnikov et al. 2005, Olson et al. 2017) and radiomics (Parmar et al. 2015). Such
analysis is missing for NTCP modeling, although it seems especially relevant. For this rea-
son, in this chapter, the suitability for multivariate NTCP modeling of xerostomia of seven
machine learning classifiers, six feature selection methods, and nine sampling (data clean-
ing/class balancing) algorithms was evaluated. The models were based on demographic,
radiomic, and dosiomic features introduced in chapter 4. The multivariate analysis allowed
to examine interactions between the features and their relative relevance and redundancy.
The obtained results were compared to models based on the mean dose to parotid glands
and the morphological model based on the shape of the dose (Buettner et al. 2012).

Additionally, a novel longitudinal approach to NTCP modeling has been proposed. Usu-
ally, the side effects are modeled at specific time after treatment, for example, at 12 months
after radiotherapy. This is a convenient setting for well-organized prospective studies with
rigorous protocols of patient evaluation. In retrospective studies, however, the structure of
follow-up reports collection is much more irregular and heterogeneous (vide section 2.2).
For this reason, the longitudinal approach presented in this chapter treated the time after
treatment as a model covariate. This allowed to use all available data from model training
without the need for binning the observations around a certain time point and predict the
NTCP at any time after treatment.
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5.1 Material and Methods

5.1.1 Endpoints

In this chapter, two types of endpoints were defined, the time-specific endpoints and the
longitudinal endpoint. The time-specific endpoints were the same as in chapter 4, that
is: 0–6 months, 6–15 months, and 15–24 months, to investigate early, late, and long-term
xerostomia, respectively (Figure 4.1). In case there were multiple follow-up reports avail-
able for individual patients, the final toxicity score was calculated as the arithmetic mean
rounded to the nearest integer with x.5 being rounded up. In the longitudinal approach,
no time-intervals were defined and no toxicity grades were averaged. Instead, each pa-
tient evaluation served as a separate observation and the time after treatment was included
as a covariate in the model. The intention was to provide the model enough flexibility to
describe early, late, and long-term effects. Patient and tumor characteristics stratified by
endpoint are presented in Table 4.1.

5.1.2 Previously proposed NTCP models of xerostomia

Four different mean-dose models were tested to evaluate predictive power of the mean dose
in the HD cohort: three univariate logistic regression models based on the ipsilateral mean
dose, the contralateral mean dose, and the mean dose to both parotid glands, as well as one
bivariate logistic regression model based on the mean dose to contralateral and to ipsilateral
parotid glands.

As an alternative to the mean-dose models, Buettner et al. (2012) proposed a morpho-
logical multivariate logistic regression model. The model was based on scale-invariant dose
moments, namely ηi

111, η
c
002, η

c
300, and ηi

110 η
c
110. The model was retrained and tested on the

HD data set.

5.1.3 Features

The multivariate model building process investigated in this chapter directly builds upon
the results of the univariate feature analysis described in chapter 4. In particular, the feature
set after removal of correlated features was used (vide Table 4.2 and Figure 4.3).

5.1.4 Model building

The multivariate analysis was a multi-step process comprising feature-group selection, fea-
ture scaling, sampling (data cleaning/class balancing), feature selection, and classification.
The workflow is presented in Figure 5.1.

Workflow

The first step of the workflow was an initial, unsupervised dimensionality reduction of the
feature space by random selection of feature groups (Table 4.2) used for model training.
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Figure 5.1: The workflow of a multivariate five-step model building comprising, in this order, feature-group
selection, feature scaling, sampling, feature selection, and classification.

The selection was realized by performing a Bernoulli trial for every feature group with
a 50% chance of success. If a given group was selected, all features in this group were
accepted for further analysis. If no group was selected after performing all Bernoulli trials,
the procedure was repeated for all feature groups. Reduced dimensionality of feature space
often translates into better predictive performance and facilitates interpretation of a model.

In the second step, all features were scaled via Z-score normalization. Feature nor-
malization usually improves stability and speed of optimization algorithms because scaled
features are in comparable order of magnitude.

The third step was responsible for class balancing and data cleaning. Class imbalance is
the difference in size between the modeled classes, in case of this study, G0-1 versus G2+
xerostomia. It was reported that small minority class together with class imbalance can
hinder performance of predictive models (Japkowicz & Stephen 2002, He & Garcia 2009).
This is applicable to the HD cohort as the prevalence of G2+ xerostomia ranged from 10%
to 22%, depending on the endpoint. Two approaches are commonly used to reduce class
imbalance: oversampling and undersampling. In oversampling, one lowers the imbalance
between classes by random replication or synthetic creation of minority class observations.
Conversely, in undersampling, the majority class size is reduced by discarding some of its
observations. Furthermore, there are data cleaning methods which exclude some observa-
tions irrespective of their class membership. These methods remove the observations that
can be considered noise or the observations close to the decision boundary. In order to in-
vestigate the influence of various sampling and data cleaning methods on the NTCP models
performance, ten data sampling scenarios were examined:

• No sampling or data cleaning (None)

• Random oversampling (ROS)

• Synthetic minority oversampling (SMOTE)

• Adaptive synthetic sampling (ADASYN)
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• One-sided selection (OSS)

• Tomek links (TL)

• The Wilson’s edited nearest neighbor rule (ENN)

• The neighborhood cleaning rule (NCL)

• SMOTE followed by ENN (SMOTE+ENN)

• SMOTE followed by TL (SMOTE+TL)

The detailed description of the sampling algorithms is given in Appendix B.1.
The fourth step of the analysis was feature selection. One of rationales for feature se-

lection is a reduction of model complexity, which decreases the risk of overfitting and often
improves model performance (Guyon & Elisseeff 2003). Also, the reduced dimensional-
ity of the model facilitates understanding of the relations between the predictors and the
modeled outcome (here: xerostomia). In this study, seven feature selection scenarios were
tested:

• No feature selection (None)

• Univariate feature selection by F-score (UFS-F)

• Univariate feature selection by mutual information (UFS-MI)

• Recursive feature elimination by logistic regression (RFE-LR)

• Recursive feature elimination by extra-trees (RFE-ET)

• Model-based feature selection by logistic regression (MB-LR)

• Model-based feature selection by extra-trees (MB-ET)

The details on the feature selection algorithms are provided in Appendix B.2.
The last step of the workflow was classification. Selection of a particular classification

algorithm is an important part of model building which determines shape and flexibility
of the model’s decision boundary. On the one hand, a too flexible model can result in
overfitting and low generalizability. On the other hand, a too simple model can fail to
capture the complexity of the true decision boundary and result in underfitting. Moreover,
the interpretability of a model depends strongly on the type of the chosen algorithm. In this
study seven machine learning classification algorithms were compared:

• Logistic regression with L1 penalty (LR-L1)

• Logistic regression with L2 penalty (LR-L2)

• Logistic regression with elastic net penalty (LR-EN)

• k-Nearest neighbors (kNN)
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• Support vector machines (SVM)

• Extra-trees (ET)

• Gradient tree boosting (GTB)

More details on the classification algorithms are given in Appendix B.3.
Multivariate NTCP models of xerostomia were built for every combination of the clas-

sification, feature selection, and data sampling methods. This resulted in 490 models per
endpoint and, consequently, 1960 models in total. A given classifier or a feature selection
algorithm was a part of 210 time-specific and 70 longitudinal models. Every data sampling
method was involved in 147 time-specific and 49 longitudinal models.

Model tuning

The process of model building can be divided into a number of steps. First, the input space
and the modeled variable need to be specified. Second, the model architecture is defined,
for example, the data preprocessing, the sampling algorithm, the feature selection method,
and the classifier. Third, the model hyperparameter values need to be set. Hyperparameters
control various characteristics of the models, for example, the regularization strength in
logistic regression, the number of trees in extra-trees, and the number of neighbors in k-
nearest neighbors. The process of finding optimal values of hyperparameters is called model
tuning. Last, the model is trained, that is, optimal values of model parameters are estimated
by minimization of some cost function.

A number of hyperparameter tuning methods exists; most common are grid search and
random search. In this study the random search optimization was used because it was
shown to find better hyperparameter values than grid search (Bergstra & Bengio 2012). The
type and the range of the hyperparameters that were used for model tuning were based on
previously reported values that worked well in various machine learning tasks (Tables B.1,
B.2, and B.3).

The process of hyperparameter optimization by random search is the following: 1) select
a random sample of hyperparameter values, 2) train the model using these hyperparameter
values, 3) evaluate the model performance. This three-step procedure is repeated until a
desired number of iterations is reached. The hyperparameter values that result in the best
performance score are selected.

In order to evaluate model performance for a given set of hyperparameters (the third
step of the random search algorithm), the available observations need to be divided into a
training set and a test set. This allows to test the model on data that it did not see during
training. In large data sets this approach usually works well. In small cohorts, however, the
particular way the data set was divided can affect the obtained results. A typical solution
to this problem is to repeat the process of splitting the data, model training, and model
evaluation in order to obtain a set of performance scores that can be averaged to provide
more robust performance estimate. This approach is called cross-validation. There are
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many variations of cross-validation which differ in terms of the bias and variance of the
provided performance estimates.

In this study two types of cross-validation were used, depending if the model was time-
specific or had a longitudinal architecture. In the time-specific models, the stratified Monte
Carlo cross-validation (MCCV) (Molinaro et al. 2005) with 300 splits and 10% of obser-
vations held out for testing at each split was used. For the longitudinal models, modified
leave-pair-out cross-validation (LPOCV) (Krzanowski & Hand 1997, Airola et al. 2011)
was implemented. The modification consisted in that all the training observations sharing
patient ID with the test fold observations were removed at each split because such obser-
vations differed only in the time of the follow-up evaluation; not removing them from the
training fold would lead to overoptimistic performance scores. Furthermore, instead of all
possible positive-negative pairs, as in typical LPOCV, only a random subset of 300 positive-
negative pairs was used at each split, which allowed to substantially reduce the computation
time.

Finally, the random search hyperparameter optimization in this study was realized in the
following way:

1. Select 300 random samples from the hyperparameter space.

2. Evaluate model performance for each hyperparameter sample using cross-validation.

3. Retrain the model using all available data with the hyperparameter configuration that
maximized the cross-validated AUC.

Confidence intervals for the model tuning AUC estimates were calculated with BCa boot-
strap.

5.1.5 Model evaluation

Comparison of machine learning algorithms

The machine learning algorithms described before were compared in terms of their influ-
ence on the average predictive performance of the final model. The classifiers, the feature
selection methods, and the data sampling techniques were evaluated separately. Further-
more, the analysis was performed independently for the time-specific and the longitudinal
models.

The statistical significance of the differences between the algorithms was evaluated with
the Friedman tests (Friedman 1937, 1940) followed by the Nemenyi post hoc analysis (Ne-
menyi 1963). The Friedman test is a non-parametric test suitable for comparison of the
difference among multiple related samples. For instance, seven different classifiers evalu-
ated on 50 different models. The Friedman test computed the average performance ranks
of the algorithms and tested whether they had the same influence on the AUC score. If the
null hypothesis was rejected, the Nemenyi post hoc analysis followed. To do the Nemenyi
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test, one has to first calculate the critical difference (CD), given by

CD = qα

√
k(k + 1)

6N
, (5.1)

where N is the number of models, k is the number of algorithms, and qα is the critical value
based on the Studentized range statistic divided by

√
2. When the average performance

ranks of two algorithms differed by at least the CD, they were significantly different.
The analysis was repeated six times to test the classifiers, the feature selection algo-

rithms, and the data sampling methods separately in the time-specific and the longitudinal
models. The family-wise error rate (FWER) of the Friedman tests, that is the probability
of at least one incorrect rejection of a true null hypothesis in any of the comparisons, was
controlled with the Holm-Bonferroni method. The significance level for the FWER was set
to 0.05.

Generalization performance

Hyperparameter optimization (model tuning) comes at a cost. On the one hand, it allows to
tune the model so it well fits the training data. On the other hand, a favorable selection of
hyperparameters can result in overoptimistic performance of the tuned model. To estimate
performance of a tuned model on new, unseen data, that is, the generalization performance,
the data used for hyperparameter optimization must be separate from the data used for
model testing. A common way to do it, is to divide the data set into three parts: the training
subset, the validation subset, and the testing subset. The model is trained on the training
subset, the hyperparameter values are chosen based on the model’s performance on the
validation subset, and the generalization performance is estimated on the testing subset. In
small data sets, however, the particular way the data set is divided into the three subsets
can substantially influence the hyperparameter values and the generalization performance.
For this reason, due to the modest size of the HD data set, instead of dividing the data
to training, validation, and test folds, the models were tested with nested-cross validation
(Cawley & Talbot 2010).

Nested cross-validation is essentially cross validation within cross validation. Part of
the data is set aside for testing and the rest is used for model tuning. Next, the tuned model
is tested on the part of data previously set aside for testing. Then, the procedure is repeated,
that is another randomly selected part of the data is set aside for testing and the rest is used
for model tuning. This is repeated until the desired number of iterations is achieved.

Unfortunately, it was not feasible to calculate the expected generalization performance
of all 1960 models due to high computation cost. For this reason, nested cross-validation
estimates were calculated only for best performing models in model tuning stratified by
endpoint and classifier. This resulted in seven models per endpoint and 28 models in total.
The inner loops of the nested cross-validation, which were responsible for model tuning,
were the same as described in section dedicated to model tuning. That is, 300 hyperpa-
rameter samples were evaluated with MCCV with 300 splits and 10% of observations held
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out for testing at each split for the time-specific models and modified LPOCV with 300
positive-negative pairs for the longitudinal models. The outer loops were realized by the
MCCV with 100 splits and a 10% test fold for the time-specific models and the modified
LPOCV with 100 positive-negative pairs for the longitudinal models. Confidence intervals
for the generalization AUCs were calculated with BCa bootstrap.

5.1.6 Software

For the described analysis, an automated pipeline was built using existing libraries available
for the Python programming language and custom code was written for specific functional-
ities required for this study. Open-source Python libraries:

• scikit-learn (Pedregosa et al. 2011) - machine learning library providing classes for
model training, tuning, and testing. Also, the package provided classes for UFS and
RFE feature selection methods and all classifiers except GTB.

• XGBoost (Chen & Guestrin 2016) - GTB classifier

• imbalanced-learn (Lemaitre et al. 2017) - sampling and data cleaning algorithms

• Orange (Demšar et al. 2013) - Friedman and Nemenyi tests as well as critical differ-
ence plots

• StatsModels (Seabold & Perktold 2010) - FWER and FDR

• NumPy & SciPy (Van der Walt et al. 2011), Pandas (McKinney 2010), Matplotlib
(Hunter 2007) - miscellaneous libraries for data handling and visualization.

The author’s scripts and extensions:

• Model architecture - a collection of classes and functions allowing to combine classes
from various libraries into a single model and enable model training, tuning, and test-
ing.

• Feature-group selection - a class providing feature-group selection described in sec-
tion 5.1.4

• Model-based feature selection - a class providing model-based feature selection de-
scribed in appendix B.2

• Modified LPOCV - a class implementing modified leave-pair-out cross-validation
(LPOCV) described in section 5.1.4

5.2 Results

5.2.1 Mean-dose and morphological models

The predictive performance scores of the mean-dose models and the morphological model
are presented in Table 5.1. The mean-dose models failed to predict xerostomia (AUC <
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0.60) at all time-intervals as well as in the longitudinal approach. The morphological model
achieved fair performance (AUC = 0.64) only in predicting long-term xerostomia.

5.2.2 Comparison of classification, feature selection, and sampling algorithms

There was a clear difference in the average performance between early (AUC ≈ 0.60),
late (AUC ≈ 0.70), and long-term (AUC ≈ 0.90) xerostomia models (Figure 5.2). After
applying the Holm-Bonferroni correction, all the Friedman tests were significant at the
FWER = 0.05. Therefore, classification, feature selection, and sampling algorithms were
compared with Nemenyi post hoc analysis for both the time-specific and the longitudinal
models.

In the time-specific models, the support vector machine was by far the best scoring clas-
sifier, outperforming the other classifiers in over 70% of cases (Figure 5.3), whereas gradi-
ent tree boosting was on average the worst performing classifier (Figure 5.4). Conversely,
gradient tree boosting together with support vector machines and extra-trees predicted xe-
rostomia significantly better than all the other classifiers in the longitudinal approach.

The logistic regression-based algorithms performed significantly better than the feature
selection methods based on extra-trees, in both the time-specific and the longitudinal mod-
els. Interestingly, while univariate feature selection by mutual information was the worst
performing feature selection method in the time-specific models, it was one of the best in
the longitudinal approach. Not performing feature selection was not disadvantageous in
terms of predictive performance.

In both the time-specific and the longitudinal approach, no sampling algorithm gave a
significant advantage over no sampling at all. In the time-specific models, Tomek links
and the neighborhood cleaning rule performed significantly better than any oversampling
algorithm. In the longitudinal models, Tomek links performed significantly better than
random oversampling or ADASYN.

5.2.3 Generalization performance

The best performing models stratified by endpoint and classifier are listed in Table 5.2.
These models were retested by nested cross-validation to estimate their generalization per-
formance. Early xerostomia (0–6 months after treatment) was predicted fairly well only
by the k-nearest neighbors classifier (AUC = 0.65). The models of late xerostomia (6–15
months after treatment) generalized slightly better with logistic regression, k-nearest neigh-
bors, and gradient tree boosting scoring the AUC over 0.60. For long-term xerostomia (15–
24 months after treatment), the models generalized best with the AUC ranging from 0.74
(k-nearest neighbors) to 0.88 (extra-trees). The longitudinal models failed to generalize ex-
cept the gradient tree boosting classifier, which achieved the AUC of 0.63. Generalization
AUCs were on average 0.10 lower than tuning AUCs for all the analyzed endpoints.
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Table 5.1: Predictive performance of the mean-dose models and the morphological model proposed by Buet-
tner et al. (2012). i - ipsilateral gland, c - contralateral gland, b - both glands.

Endpoint Model AUC

meani 0.58 (0.56–0.60)
meanc 0.42 (0.41–0.44)

Early meanb 0.50 (0.48–0.53)
meani, meanc 0.49 (0.48–0.51)
morphological 0.42 (0.40–0.44)

meani 0.48 (0.44–0.51)
meanc 0.58 (0.55–0.61)

Late meanb 0.55 (0.52–0.58)
meani, meanc 0.54 (0.51–0.57)
morphological 0.59 (0.56–0.62)

meani 0.40 (0.37–0.44)
meanc 0.58 (0.55–0.61)

Long-term meanb 0.56 (0.52–0.60)
meani, meanc 0.47 (0.44–0.50)
morphological 0.64 (0.60–0.67)

meani 0.51 (0.45–0.56)
meanc 0.57 (0.51–0.62)

Longitudinal meanb 0.50 (0.44–0.55)
meani, meanc 0.52 (0.46–0.58)
morphological 0.55 (0.49–0.60)

5.2.4 Model interpretation

Only the models predicting long-term xerostomia achieved high generalization scores, that
is the AUC greater than 0.70. For that reason, model interpretation was performed only for
this endpoint. The multivariate models of long-term xerostomia relied mostly on the parotid
gland volume, the spread of the contralateral dose-volume histogram, and the parotid gland
eccentricity (Figure 5.5). The contralateral dose gradient in the right-left direction, despite
good univariate predictive power, was included in only one model.

5.3 Discussion

The mean-dose models failed to recognize patients at risk of early, late, and long-term
xerostomia. The morphological model predicted patients at risk of long-term xerostomia
fairly well confirming the findings of Buettner et al. (2012) that morphological descriptors
of the dose distribution can improve prediction of radiation-induced xerostomia.

There was no multivariate model that would achieve generalization AUC above 0.65
for early or late effects, even though a few univariate models of late xerostomia exceeded
that value. Similarly, the multivariate models of long-term xerostomia, despite their good
generalization scores (AUCmax = 0.88), performed on a par with the univariate models based
on the parotid volume or the contralateral dose gradient in the patient’s right-left direction.
Comparable performance of the univariate and the multivariate models could be caused by
the small sample size, especially the small minority class. In such setting, the distribution
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Table 5.2: Expected generalization performance of selected models evaluated by nested cross-validation.
Best performing models at a given endpoint are marked with *.

Endpoint Classifier Feature selection Sampling AUC tuning AUC testing

LR-L1 RFE-ET NCL 0.62 (0.60–0.64) 0.56 (0.53–0.60)
LR-L2 RFE-LR NCL 0.62 (0.60–0.64) 0.46 (0.42–0.49)
LR-EN MB-ET NCL 0.62 (0.60–0.64) 0.54 (0.50–0.57)

Early kNN UFS-F SMOTE+ENN 0.68 (0.66–0.70) 0.65 (0.62–0.68)*
SVM UFS-F NONE 0.70 (0.68–0.72) 0.57 (0.53–0.61)
ET MB-LR NCL 0.63 (0.61–0.65) 0.44 (0.41–0.47)
GTB UFS-F NONE 0.66 (0.64–0.68) 0.55 (0.51–0.59)

LR-L1 RFE-LR NCL 0.78 (0.75–0.80) 0.63 (0.56–0.69)
LR-L2 RFE-LR NCL 0.76 (0.73–0.78) 0.60 (0.53–0.66)
LR-EN MB-LR SMOTE+TL 0.73 (0.70–0.76) 0.56 (0.51–0.62)

Late kNN MB-LR NCL 0.78 (0.76–0.80) 0.62 (0.57–0.67)
SVM UFS-F TL 0.80 (0.77–0.82) 0.52 (0.46–0.58)
ET RFE-ET NCL 0.78 (0.75–0.80) 0.55 (0.50–0.61)
GTB MB-LR OSS 0.77 (0.75–0.79) 0.65 (0.59–0.70)*

LR-L1 MB-LR ROS 0.95 (0.94–0.96) 0.86 (0.80–0.90)
LR-L2 MB-LR NONE 0.96 (0.95–0.97) 0.86 (0.81–0.90)
LR-EN MB-LR SMOTE+ENN 0.92 (0.90–0.93) 0.83 (0.76–0.88)

Long-term kNN UFS-MI TL 0.88 (0.86–0.90) 0.74 (0.68–0.80)
SVM RFE-LR ENN 0.94 (0.92–0.96) 0.79 (0.73–0.85)
ET MB-LR ENN 0.93 (0.92–0.94) 0.88 (0.84–0.91)*
GTB UFS-F ROS 0.89 (0.86–0.91) 0.77 (0.71–0.83)

LR-L1 UFS-MI NONE 0.63 (0.57–0.68) 0.52 (0.41–0.61)
LR-L2 RFE-LR NCL 0.60 (0.55–0.66) 0.39 (0.29–0.48)
LR-EN UFS-MI TL 0.62 (0.57–0.68) 0.52 (0.42–0.60)

Longitudinal kNN UFS-MI NCL 0.65 (0.61–0.69) 0.58 (0.49–0.66)
SVM UFS-MI OSS 0.66 (0.60–0.71) 0.57 (0.46–0.66)
ET UFS-MI TL 0.66 (0.61–0.71) 0.51 (0.40–0.60)
GTB RFE-LR ROS 0.68 (0.62–0.72) 0.63 (0.52–0.71)*



5.3. Discussion 65

None
UFS-F

UFS-MI
RFE-LR
RFE-ET
MB-LR
MB-ET
None
UFS-F

UFS-MI
RFE-LR
RFE-ET
MB-LR
MB-ET
None
UFS-F

UFS-MI
RFE-LR
RFE-ET
MB-LR
MB-ET
None
UFS-F

UFS-MI
RFE-LR
RFE-ET
MB-LR
MB-ET
None
UFS-F

UFS-MI
RFE-LR
RFE-ET
MB-LR
MB-ET
None
UFS-F

UFS-MI
RFE-LR
RFE-ET
MB-LR
MB-ET

No
ne

RO
S

SM
OT

E
AD

AS
YN TL

OS
S

EN
N

NC
L

SM
OT

E+
TL

SM
OT

E+
EN

N

None
UFS-F

UFS-MI
RFE-LR
RFE-ET
MB-LR
MB-ET

      0.54 0.61 0.71      

Early
xerostomia

No
ne

RO
S

SM
OT

E
AD

AS
YN TL

OS
S

EN
N

NC
L

SM
OT

E+
TL

SM
OT

E+
EN

N

      0.60 0.70 0.80      

Late
xerostomia

No
ne

RO
S

SM
OT

E
AD

AS
YN TL

OS
S

EN
N

NC
L

SM
OT

E+
TL

SM
OT

E+
EN

N

      0.81 0.90 0.97      

Long-term
xerostomia

LR-L1

LR-L2

LR-EN

kNN

SVM

ET

No
ne

RO
S

SM
OT

E
AD

AS
YN TL

OS
S

EN
N

NC
L

SM
OT

E+
TL

SM
OT

E+
EN

N

GTB

      0.55 0.62 0.70      

Longitudinal
model

Figure 5.2: A comparison of classification, feature selection, and sampling algorithms in terms of their
predictive performance in model tuning. All heat maps in a given column belong to a single endpoint, whereas
all heat maps in a given row correspond to a single classifier. In each heat map, rows represent feature selection
algorithms and columns correspond to sampling methods. The color maps are normalized per endpoint. The
color bar ticks correspond to the worst, average, and the best model performance.
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Figure 5.3: Heat maps showing a proportion of times a given algorithm on the vertical axis outperformed
another algorithm on the horizontal axis in terms of the best AUC in model tuning.
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Figure 5.5: Features underlying the multivariate models of long-term xerostomia. i - ipsilateral gland, c -
contralateral gland.
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of model covariates can nonnegligibly differ between training and testing folds, hindering
model training and reducing performance of the model.

The analysis of the multivariate models highlighted the importance of personalized treat-
ment planning in radiotherapy. The models were strongly based on patient-specific and
dose-independent features, such as parotid volume, parotid eccentricity, and the patient’s
sex. Interestingly, the dose gradient, despite relatively high predictive power, was included
in only one model. Instead, the most common dosiomic feature was the spread of the con-
tralateral dose-volume histogram quantifying the standard deviation of the dose within a
parotid gland. Nevertheless, due to the geometry of the problem, the DVH spread and spa-
tial dose gradients measured a similar characteristic of the dose distribution. That is, a large
spread of the DVH was present when part of the parotid gland received high dose, whereas
another part was spared.

In the time-specific models, the support vector machine was most commonly the best
classifier. The other classifiers performed similarly to one another. The unexceptional per-
formance of the ensemble methods (extra-trees and gradient tree boosting) could stem from
the fact that complex models need more training samples to correctly learn the decision
boundary. Among the longitudinal models, there was a more commonly observed classifier
ranking, that is, GTB> ET> SVM> LR> kNN (Olson et al. 2017). Feature selection did
not give a clear advantage over no feature selection in terms of the predictive performance.
Nonetheless, feature selection allowed for a reduction of model complexity and made model
interpretation easier. The best results were achieved with the logistic regression-based algo-
rithms and feature selection by mutual information (only in the longitudinal models). There
was no evidence that sampling methods improve accuracy of predictions. Moreover, it was
observed that certain kinds of sampling, especially random oversampling, can significantly
decrease predictive performance of the models.

Nested cross-validation proved to be an important step in the analysis. On average, the
generalization AUCs were significantly lower than the AUCs achieved in model tuning.
These findings corroborate the notion that single cross-validation can lead to overoptimistic
performance estimates when hyperparameter tuning is involved in model building.

The results presented in this chapter show that the choice of a classifier and a feature
selection algorithm can significantly influence predictive performance of the NTCP model.
Moreover, in relatively small clinical data sets, simple logistic regression can perform as
well as top-ranking machine learning algorithms, such as extra-trees or support vector ma-
chines. There was no significant advantage in using data cleaning or reducing the class
imbalance. This study indicates the need for significantly larger patient cohorts to benefit
from advanced classification methods, such as gradient tree boosting. It was shown that sin-
gle cross-validation can lead to overoptimistic performance estimates when hyperparameter
optimization is involved; either nested cross-validation or an independent test set should be
used to estimate the generalization performance of a model.

It was demonstrated that in a highly conformal regime of modern radiotherapy, use of
organ- and dose-shape features can be advantageous for modeling of treatment outcomes.
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Moreover, due to strong dependence on patient-specific factors, such as the parotid shape
and the patient’s sex, the results highlight the need for development of personalized data-
driven risk profiles in future NTCP models of xerostomia.



CHAPTER 6

EXTERNAL VALIDATION

Predictive models, even carefully internally validated, tend to perform worse on external
data than on the training data set (Moons et al. 2012). This behavior pertains especially to
relatively small data sets (Bleeker et al. 2003), such as the HD cohort used for this study.
Positive results of external validation broadens the impact of the research, indicating that the
model is applicable beyond the institution in which it was developed. Successful validation
on several external data sets can be considered the ultimate test for generalizability of any
NTCP model. Nevertheless, if independent validation is not successful, it does not mean
that the model is not useful. It means that its applicability may be restricted to patients
treated at the institution in which the model was internally validated.

This chapter investigates how the models built on patient data from Heidelberg Univer-
sity Hospital, as detailed in chapter 2, generalize to a cohort from an external institution.
For this purpose, patient data from the PARSPORT clinical trial was used for external vali-
dation of the models presented in chapters 4 and 5. The validation data was extracted during
the author’s research stay at the Institute of Cancer Research in London, United Kingdom.

6.1 Material and Methods

6.1.1 Endpoints

The endpoints selected for the external validation were late and long-term grade 2 or higher
(G2+) xerostomia. This decision was motivated by the good performance of the univariate
and the multivariate models at both of these time points (vide chapter 4 and 5).

As laid out in chapter 2, the follow-up reports in the HD cohort were collected at 3-
month intervals, starting at the beginning of the treatment (Figure 4.1). In the PARSPORT
cohort, in contrast, the follow-up reports were collected at 3, 6, 12, 18, and 24 months after
the end of the therapy. For a meaningful comparison of the follow-up data between the
cohorts, late xerostomia in the PARSPORT cohort was defined as the average complication
score based on the reports from 6 and 12 months after treatment pooled together. For
long-term xerostomia, it was realized by pooling the reports from 18 and 24 months after
treatment. The endpoint definitions for the HD cohort were the same as in the previous
chapters, that is 6–15 and 15–24 months after treatment for late and long-term xerostomia,
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respectively.
Apart from the times of the follow-up report collection, there were also differences in the

toxicity grading scales used in both cohorts. While the HD cohort applied the CTCAE scale,
the PARSPORT cohort used the LENT-SOMA scale. However, the differences between the
two scales can be considered negligible as the LENT-SOMA scale was mostly incorporated
to the CTCAE grading system (vide chapter 2).

6.1.2 Covariate distribution

Patients in both cohorts were treated at different times, different institutions, and according
to different protocols. It was expected that the distribution of predictors (covariates) may
differ between patients treated in Heidelberg and patients from the PARSPORT trial. In-
vestigation of such differences is important because most of machine learning algorithms
is assume that the distribution of covariates within both the training and testing data sets is
similar (Sugiyama & Kawanabe 2012).

To compare the distributions between the data sets, violin plots were generated for all
the analyzed real-valued features. Violin plots are similar to box plots, however, they are
more informative by showing the whole data distribution.

6.1.3 Model testing

The predictive power of individual features was compared between the HD and the PAR-
SPORT cohorts. For this purpose, the AUC was calculated for each feature at late and
long-term xerostomia endpoints.

In chapter 5, the best performing models stratified by endpoint and classifier were in-
ternally tested with nested cross-validation. Predictive performance of these models on the
PARSPORT data was estimated and the results were compared to the results of the inter-
nal validation. The performance was measured with the AUC. Confidence intervals were
estimated with BCa bootstrap.

Additionally, to investigate general association between model tuning and model testing
scores, all late and long-term xerostomia models were evaluated on the PARSPORT data.
The results were visualized with scatter plots.

Furthermore, the models at both time points were divided into well generalizing models
and badly generalizing models. The threshold was the median generalization AUC among
all models at a given time point. The good and the bad groups were compared in terms of
the features on which the models were based.

6.2 Results

6.2.1 Covariate distribution

The comparison of covariate distribution is provided in Figures 6.1 and 6.2. The distri-
bution of patients’ age was comparable between the cohorts. Parotid gland volumes were
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substantially larger in the PARSPORT cohort (median volume of 24 cm3) than in the HD
cohort (median volume of 18 cm3). Also, parotid glands of the Heidelberg patients tended
to be more round (greater sphericity). The difference in the mean dose was large, especially
for the ipsilateral parotid. The absolute values of all three gradients were slightly smaller in
the PARSPORT cohort than in the HD data set. The distributions of the majority of scale-
invariant moments are markedly different between the two cohorts; typically, the spread of
the dose-moments in the HD cohort was substantially broader.

6.2.2 Univariate models

The univariate analysis revealed large discrepancies in the predictive performance of the
individual predictors between the cohorts. The results of the comparison are presented in
Figure 6.3 for late xerostomia and in Figure 6.4 for long-term xerostomia.

For late xerostomia, good predictive power of the mean dose was observed (AUC =
0.74) in the PARSPORT cohort in contrast to the AUC of 0.58 in the HD cohort. Also,
contralateral η102 scored the AUC of 0.78, whereas the predictive power of this feature in
the HD cohort was negligible. The only feature with substantial predictive power in both
cohorts was the gradient in the anterior-posterior direction of the contralateral parotid gland
(gradienty) with AUCs close to 0.70.

For long-term xerostomia, the agreement in the predictive power of the contralateral
gradienty was observed as well. Additionally, the contralateral gradient in the lateral (x)
direction gave good results in both cohorts. On the other hand, high predictive power of the
ipsilateral gradientx and gradienty in the HD cohort was not observed in the PARSPORT
data. Furthermore, very high AUCs of parotid gland volumes in the HD cohort were not
recapitulated in the PARSPORT cohort.

6.2.3 Multivariate models

The results of external validation of the models which were internally validated with nested
cross-validation in chapter 5 are summarized in Table 6.1. The obtained AUCs were low
for most of the models at both considered time points. The only models with reasonable
performance were extra-trees for late xerostomia (AUC = 0.64) and gradient tree boosting
for long-term xerostomia (AUC = 0.69). At the same time, however, the 95% confidence
intervals of the obtained estimates were rather large.

The relationship between the tuning scores and the testing scores is presented in Fig-
ure 6.5. There was no clear correlation between the AUC scores achieved in model tuning
and the AUC scores in model testing.

Feature analysis for late xerostomia models

All of the features that did well in the univariate analysis of late xerostomia were often
included in the multivariate models (Figure 6.6a). Unexpectedly, the ipsilateral parotid
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Figure 6.1: Age, parotid shape, dose-volume histogram, and spatial dose gradient features. Comparison
between the HD ( ) and the PARSPORT ( ) cohorts. The distributions are visualized as kernel density
plots. Wide dashed lines mark the medians, whereas narrow dashed lines correspond to the first and the third
quartiles.
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Figure 6.5: Distribution of AUCs achieved in model testing on the PARSPORT data against AUCs from
model tuning on the HD data.

volume, the contralateral parotid sphericity, and the contralateral mean dose were included
in the models of late xerostomia more often than the univariate analysis would suggest.

Over 80% of models that included gradientc
x or gradienti

x achieved better than average
score in model testing (Figure 6.6b). Conversely, over 90% of models that relied on ipsi-
lateral parotid volume, contralateral parotid sphericity or some other parotid-shape metric
scored worse than average (Figure 6.6c).

Feature analysis for long-term xerostomia models

In case of long-term xerostomia, the situation was slightly more complicated. In the uni-
variate analysis the most informative features were parotid gland volumes (Figure 6.7a).
Unsurprisingly, the vast majority of the models relied on the ipsilateral parotid volume
(over 98%) or the contralateral parotid volume (over 80%). Other good performing features
in the univariate analysis were the ipsi- and contralateral dose gradients in the right-left and
the anterior-posterior directions. Remarkably, all these gradients, with the exception of the
contralateral gradientx, were rarely included in the multivariate models (less than 5% of the
models). Moreover, the contralateral DVH spread was included in over 50% of the models,
even though it had lower univariate predictive power.

Due to the extremely high prevalence, ipsilateral parotid volume was approximately
evenly distributed between the good and the bad models. Many features were present only
in the well performing group (Figure 6.7b). Most of them, however, were included in only
a couple of models. The only feature that was fairly often selected (approximately 30%
of all models) and was usually included in the group that achieved better than average
AUC was the contralateral gradientx. Over 70% of models that included the contralateral
gradientx generalized better than the average. As for the features present mainly in the worse
generalizing group, the contralateral DVH spread was the most prevalent one (Figure 6.7c).
Over 60% of models that included this covariate did worse than the average.
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(b) Relative occurrence of features within models that performed better than average according to the
testing AUC. For example, 1 corresponds to a feature that was only included in the better-than-average
models, 0.5 corresponds to a feature that was equally often included in better- and worse-than-average
performing models.
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(c) Relative occurrence of features within models that performed worse than average according to the
testing AUC. For example, 1 corresponds to a feature that was only included in the worse-than-average
models, 0.5 corresponds to a feature that was equally often included in better- and worse-than-average
performing models.

Figure 6.6: Features underlying multivariate models of late xerostomia. Ipsilateral features are marked with
, whereas contralateral features are marked with .
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(a) Fraction of models in which a given feature was included considering all models.
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(b) Relative occurrence of features within models that performed better than average according to the
testing AUC. For example, 1 corresponds to a feature that was only included in the better-than-average
models, 0.5 corresponds to a feature that was equally often included in better- and worse-than-average
performing models.
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(c) Relative occurrence of features within models that performed worse than average according to the
testing AUC. For example, 1 corresponds to a feature that was only included in the worse-than-average
models, 0.5 corresponds to a feature that was equally often included in better- and worse-than-average
performing models.

Figure 6.7: Features underlying multivariate models of long-term xerostomia. Ipsilateral features are marked
with , whereas contralateral features are marked with .
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6.3 Discussion

In this chapter the external validation of univariate- and multivariate NTCP models of late
and long-term xerostomia was presented. In general, the analyzed models did not gen-
eralized well to the external cohort. Especially performance of the long-term xerostomia
models was disappointing due to their high predictive performance in the HD cohort.

The head on comparison of covariate distributions between the training and validation
data sets revealed that even though patients in both cohorts were treated with the goal of
sparing parotid glands, the distribution of various features differed significantly between
the groups. Moreover, the differences were apparent not only in the dosiomic features,
which are treatment-specific, but also in radiomic features. Such differences may suggest
different organ delineation protocols between the data sets. The difference in dosage to
parotid glands was substantial, especially for the ipsilateral parotid which was much better
spared in the HD cohort. The differences between the cohorts in the three-dimensional
scale-invariant dose moments concerned not so much a shift of the distributions but rather
the spread of the distributions. As nicely illustrated in the violin plots in Figure 6.2, the
dose moments were significantly more scattered in the HD data set than in the PARSPORT
cohort. This may suggest that for highly conformal treatments, spatial dose moments are
too unstable.

The analysis revealed large discrepancies in the predictive performance of the individual
predictors between the cohorts. For instance, high predictive power of the parotid volumes
was not observed in the PARSPORT cohort, which may suggest that it was only a statistical
fluke and a false positive. After all, the good performance of the volumes was observed only
for the long-term xerostomia endpoint in the HD cohort and for no other endpoints. On the
other hand, the volume definitions in the PARSPORT cohort seem to be slightly larger.
Furthermore, even though parotid volume was not predictive of late xerostomia alone, it
was the fourth most often included feature in the multivariate models of late xerostomia.
This suggests that parotid volume may provide NTCP-related information complementary
to other features.

The only feature group that exhibited good predictive performance in both cohorts were
spatial dose gradients. A possible explanation of this finding could be that parotid glands
typically shrink and move toward the medial direction during the course of radiotherapy.
As a result, the gradient can be a proxy for the change of any dose-related metric subject
to motion. As such, this might be an indicator of neglected motion and deformation effects
during the modeling process.

Given the covariate shift between the HD and the PARSPORT cohorts it would be inter-
esting to validate the results of chapters 4 and 5 against a data set which has a more similar
distribution of the covariates. Furthermore, covariate-shift adaptation methods could be
investigated (Sugiyama & Kawanabe 2012).

The observed marked differences in the covariate distributions between the cohorts to-
gether with the variability in predictive power of the features suggest it could be beneficial
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in the future to report not only the predictors themselves but also some metrics of their dis-
tribution, such as median and interquartile range, when publishing novel multivariate NTCP
models. In the previous chapter, one of the conclusions was that larger data sets could im-
prove performance of state-of-the-art machine learning methods. The results presented in
this chapter may, furthermore, suggest that not only larger but also more heterogeneous data
sets could be beneficial. That is, data sets coming from different institutions, various modal-
ities (tomotherapy, Volumetric Arc Therapy (VMAT), etc.) which could allow to build less
cohort-specific but more general models.
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CHAPTER 7

CONCLUSIONS

This thesis investigated suitability of state-of-the-art machine learning and high-dimensional
feature spaces for building NTCP models of xerostomia.

The analysis presented in chapter 3 showed that modern radiotherapy treatments in the
HD cohort allowed to spare parotid glands below QUANTEC recommendations for 74% of
patients. QUANTEC guidelines state that to avoid severe xerostomia, one should spare at
least one parotid gland to a mean dose less than 20 Gy or both parotids to a mean dose less
than 25 Gy. In the HD cohort, the former recommendation was satisfied in 54% of patients,
whereas the latter one in 72% of patients. Consequently, this work dealt with xerostomia
prediction models in highly conformal treatments.

The corresponding rates of xerostomia were low. Grade 2 (moderate) xerostomia per-
tained to approximately 15–20% of patients and no patient suffered from grade 3 (severe)
xerostomia. These results show that a reduction of the mean dose to parotid glands be-
yond QUANTEC recommendations is beneficial and allows to reduce overall risk of G2+
xerostomia. Interestingly, conventional xerostomia prediction models, which are based on
the mean dose, were not predictive of patients at risk of G2+ xerostomia in this low-dose
regime. The presented findings indicate that other factors, apart from the mean dose to
parotid glands, may influence the development of G2+ xerostomia and that these factors
dominate in highly-conformal modern radiotherapy treatments.

The examination of 61 demographic, radiomic, and dosiomic features revealed high pre-
dictive power of parotid volumes and the spatial dose gradients within the parotid glands
in the right-left and the anterior-posterior directions (vide chapters 4 and 5). Moreover,
the good predictive performance of gradients was also recognized in the PARSPORT co-
hort (Figure 6.3 and 6.4). This finding is especially important because it indicates that the
observed pattern is not limited to the HD data set alone. The consistent observation of gra-
dients, being a predictive signal in two independent and strongly differing patient cohorts,
may be interpreted as a strong indicator that the assumption of a completely parallel parotid
gland structure for NTCP modeling (as done in mean-dose models) falls short of the actual
organ complexity. Nonhomogeneous radiosensitivity of parotid glands was also observed
by Luijk et al. (2015), who identified the stem cell-containing region responsible for the
functional regeneration. However, predictors based on the spatial dose gradient within the
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parotid are easy to calculate and do not require creating additional delineations during the
treatment planning phase. Additionally, the high predictive power of dose gradients may
have roots in a neglected organ motion and deformation effects. Parotid glands typically
shrink and move toward the medial direction during the course of radiotherapy (Osorio
et al. 2008). Effectively, this means that parotids move toward the high-dose region. In any
case, in light of poor performance of the mean dose, the findings presented in this thesis un-
dermine the applicability of the LKB model for xerostomia predictions in highly-conformal
low-dose domains.

The comparison of various machine learning methods for the modeling of xerostomia
was presented in chapter 5. The results showed that the choice of a classifier and a fea-
ture selection algorithm can significantly influence the predictive performance of an NTCP
model. Interestingly, simple logistic regression often performed on a par with top-ranking
machine learning algorithms, such as extra-trees and support vector machines. There is a
lot of evidence from multiple studies and machine learning competitions that certain algo-
rithms tend to work better than others (Olson et al. 2017). However, more complex models
usually require more data to learn effectively. The advantage of larger training cohorts
became apparent when the performance of machine learning classifiers between the time-
specific and the longitudinal model was compared (Figure 5.4). Support vector machines
and tree-based models clearly took advantage of a larger number of observations and per-
formed significantly better than logistic regression and k-nearest neighbors. The results of
this study indicate that significantly larger patient cohorts are needed to fully benefit from
sophisticated classification methods, such as gradient tree boosting, in NTCP modeling.

The external validation of the models showed that most of the models built on the HD
data set did not generalize to the PARSPORT cohort (vide chapter 6). The models that
performed well in both data sets relied on the spatial dose gradients, especially within the
contralateral gland (Figures 6.6 and 6.7). The underlying assumption of most supervised
models in machine learning is that the distribution of covariates is similar between the train-
ing and the testing cohort. It was observed, however, that distributions of many predictors
were extremely different between the HD and the PARSPORT cohorts (Figures 6.1 and 6.2).
The patients in the PARSPORT trial were treated from 2003 to 2007 and the NTCP models
based on the PARSPORT data were published in 2012 and 2013 (Buettner et al. 2012, Miah
et al. 2013). The patients in the HD cohort were treated from 2010 to 2015. This means
that at the time the patients from the HD cohort were being treated, the PARSPORT NTCP
models that were about to be published could have already been unsuitable for some of the
contemporary patient cohorts. For these reasons, it seems to be reasonable to include in-
formation about the covariate distribution when publishing novel NTCP models. Even the
median value with the interquartile range would be informative, allowing to predetermine
whether a given model might be applicable to a given cohort.

In order to perform the analysis presented in this thesis, an original multi-stage pipeline
was developed. The pipeline implemented feature extraction, unsupervised feature selec-
tion, data cleaning, class balancing, supervised feature selection, and classification. It was
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the first, to the author’s knowledge, such a complex approach to NTCP modeling. More-
over, it is straightforward to use this pipeline for follow-up studies or the modeling of other
indications. Selected parts of the pipeline were made publicly available on GitHub to facil-
itate similar studies for other researchers.

It would be interesting to analyze the performance of advanced machine learning algo-
rithms on a lager patient cohort. A relatively small sample size of the HD data set often
translated to wide confidence intervals of the estimated parameters and the performance
metrics. Also, the applicability of sophisticated machine learning methods which require
large number of samples could be better evaluated. With a sufficiently large cohort one
could even think of designing an NTCP model based on a deep neural network architec-
ture. Such models proved to be extremely effective in numerous computer vision tasks
and require neither feature engineering nor feature selection. Deep neural networks are,
however, difficult to interpret, which may impede adoption of such models in the clinic.
Another interesting research direction could be investigation of image-guided NTCP mod-
els. On the one hand, high conformality of the dose distribution allows to efficiently spare
organs at risk. On the other hand, any effects related to uncertainty in dose delivery during
treatment are intensified. Image guidance could allow to keep track of these uncertainties
and, perhaps, explain large part of unexplained variability observed in NTCP models based
solely on the treatment planning data. The lack of image guidance data in the HD data
set prevented correcting for interfractional anatomical changes that often take place during
head-and-neck radiotherapy. Such analysis would be especially interesting, considering the
observed high importance of the spatial dose gradients in this study. Last but not least,
some studies indicated that the condition of submandibular glands after radiotherapy might
affect the severity of patient-reported xerostomia (Dijkema et al. 2012). Due to the observed
efficient sparing of parotid glands, the relative impact of submandibular glands injury on xe-
rostomia is increasing. For this reason, inclusion of submandibular gland-based predictors
may be beneficial for future NTCP models of xerostomia.
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SUMMARY

In routine clinical practice, the risk of xerostomia is typically managed by limiting the
mean radiation dose to parotid glands. This approach used to give satisfying results. In
recent years, however, several studies have reported mean-dose models to fail in the recog-
nition of xerostomia risk. This can be explained by a strong improvement of overall dose
conformality in radiotherapy due to recent technological advances, and thereby a substan-
tial reduction of the mean dose to parotid glands. This thesis investigated novel approaches
to building reliable normal tissue complication probability (NTCP) models of xerostomia
in this context.

For the purpose of the study, a cohort of 153 head-and-neck cancer patients treated
with radiotherapy at Heidelberg University Hospital was retrospectively collected. The
predictive performance of the mean-dose to parotid glands was evaluated with the Lyman-
Kutcher-Burman (LKB) model. In order to examine the individual predictive power of
predictors describing parotid shape (radiomics), dose shape (dosiomics), and demographic
characteristics, a total of 61 different features was defined and extracted from the DICOM
files. These included the patient’s age and sex, parotid shape features, features related to
the dose-volume histogram, the mean dose to subvolumes of parotid glands, spatial dose
gradients, and three-dimensional dose moments. In the multivariate analysis, a variety of
machine learning algorithms was evaluated: 1) classification methods, that discriminated
patients between a high and a low risk of complication, 2) feature selection techniques, that
aimed to select a number of highly informative covariates from a large set of predictors, 3)
sampling methods, that reduced the class imbalance, 4) data cleaning methods, that reduced
noise in the data set. The predictive performance of the models was validated internally,
using nested cross-validation, and externally, using an independent patient cohort from the
PARSPORT clinical trial.

The LKB model showed fairly good performance on mild-to-severe (G1+) xerosto-
mia predictions. The corresponding dose-response curve revealed that even small doses
to parotid glands increase the risk of xerostomia and should be kept as low as possible.
For the patients who did develop moderate-to-severe (G2+) xerostomia, the mean dose was
not an informative predictor, even though the efficient sparing of parotid glands allowed to
achieve low G2+ xerostomia rates. The features describing the shape of a parotid gland and
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the shape of a dose proved to be highly predictive of xerostomia. In particular, the parotid
volume and the spatial dose gradients in the transverse plane explained xerostomia well.
The results of the machine learning algorithms comparison showed that a particular choice
of a classifier and a feature selection method can significantly influence predictive perfor-
mance of the NTCP model. In general, support vector machines and extra-trees achieved
top performance, especially for the endpoints with a large number of observations. For
the endpoints with a smaller number of observations, simple logistic regression often per-
formed on a par with the top-ranking machine learning algorithms. The external validation
showed that the analyzed multivariate models did not generalize well to the PARSPORT
cohort. The only features that were predictive of xerostomia both in the Heidelberg (HD)
and the PARSPORT cohort were the spatial dose gradients in the right-left and the anterior-
posterior directions. Substantial differences in the distribution of covariates between the
two cohorts were observed, which may be one of the reasons for the weak generalizability
of the HD models.

The results presented in this thesis undermine the applicability of NTCP models of
xerostomia based only on the mean dose to parotid glands in highly conformal radiotherapy
treatments. The spatial dose gradients in the left-right and the anterior-posterior directions
proved to be predictive of xerostomia both in the HD and the PARSPORT cohort. This
finding is especially important as it is not limited to a single cohort but describes a general
pattern present in two independent data sets. The performance of the sophisticated machine
learning methods may indicate a need for larger patient cohorts in studies on NTCP models
in order to fully benefit from their advantages. Last but not least, the observed covariate-
shift between the HD and the PARSPORT cohort motivates, in the author’s opinion, a need
for reporting information about the covariate distribution when publishing novel NTCP
models.



ZUSAMMENFASSUNG

In der klinischen Routine wird dem Risiko einer Xerostomie typischerweise dadurch begeg-
net, dass die mittlere Strahlendosis auf die Parotis begrenzt wird. Dieser Ansatz lieferte gute
Ergebnisse. In den letzten Jahren haben jedoch mehrere Studien berichtet, dass Modelle mit
mittlerer Dosis als prädiktiven Parameter bei der Erkennung eines Xerostomie-Risikos ver-
sagen. Dies kann durch eine starke Verbesserung der Dosiskonformität in der Strahlenther-
apie aufgrund neuerer technologischer Fortschritte und einer dadurch wesentlichen Ver-
ringerung der mittleren Dosis für die Parotiden erklärt werden. Die vorliegende Arbeit
untersucht neue Ansätze zum Aufbau zuverlässigerer Vorhersagemodelle für die Neben-
wirkungswahrscheinlichkeit (engl.: normal tissue complication probability, NTCP) von Xe-
rostomie.

Im Rahmen dieser Arbeit wurde eine Kohorte von 153 Kopf-Hals-Karzinompatienten,
die mit Strahlentherapie am Universitätsklinikum Heidelberg behandelt wurden, wurde
gesammelt. Die Vorhersagekraft der mittleren Dosis für Parotiden wurde mit dem Lyman-
Kutcher-Burman (LKB) Modell bewertet. Um die individuelle Vorhersagekraft von Prädik-
toren zu untersuchen, die jeweils Parotidenform (radiomics), Dosisform (dosiomics) und
demographische Merkmale beschreiben, wurden insgesamt 61 verschiedene Indikatoren
definiert und aus den DICOM-Dateien extrahiert. Dazu gehörten Alter und Geschlecht
des Patienten, Charakteristiken der Parotiden, extrahierte Indikatoren aus Dosis-Volumen-
Histogrammen, die mittlere Dosis für Subvolumina der Parotiden, räumliche Dosisgradien-
ten sowie dreidimensionale Dosismomente. In der multivariaten Analyse wurden mehrere
maschinelle Lernalgorithmen evaluiert: 1) Klassifikationsmethoden, die Patienten nach ho-
hem und niedrigem Komplikationsrisiko einstufen, 2) Merkmalauswahltechniken, die eine
Anzahl relevanter Kovariaten aus einer großen Menge von Prädiktoren auswählen, 3) Stich-
probenverfahren, die das Klassenungleichgewicht reduzieren, 4) Datenbereinigungsmetho-
den, die das Rauschen im Datensatz reduzieren. Die prädiktive Leistung der Modelle wurde
intern mithilfe einer verschachtelten Kreuzvalidierung (engl.: nested cross-validation) und
extern mithilfe einer unabhängigen Patientenkohorte aus der PARSPORT-Studie evaluiert.

Das LKB-Modell zeigte eine annehmbare Leistung bei der Vorhersage von leicht bis
schwerer Xerostomie. Die mit dem LKB-modell angepasste NTCP-Kurve zeigte, dass
bereits eine geringe Dosierung der Parotiden das Risiko einer Xerostomie erhöhen kann
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und die Dosis daher hier so gering wie möglich gehalten werden sollte. Für Patienten,
die eine moderate bis schwere Xerostomie entwickelten, war die mittlere Dosis hinge-
gen kein aussagekräftiger Prädiktor, obwohl durch die effiziente Schonung der Parotiden
niedrige Xerostomie-Raten erreicht wurden. Die Merkmale, die die Form der Parotiden
oder der Dosis beschreiben, erwiesen sich hier als prädiktiv für die Xerostomie. Ins-
besondere Parameter wie die Parotisvolumina und die räumlichen Dosisgradienten in der
Transversalebene konnten Xerostomie gut vorhersagen. Die Ergebnisse des Vergleichs mit
einem maschinellen Lernalgorithmus zeigten, dass die Wahl eines Klassifikators und eines
Merkmalsauswahlverfahrens die Vorhersagefähigkeit des NTCP-Modells signifikant beein-
flussen kann. Im Allgemeinen erzielten Support Vector Machine und Extra-Trees höchste
Vorraussagekraft, insbesondere für die Endpunkte mit einer großen Anzahl von Beobach-
tungen. Für die Endpunkte mit geringerer Anzahl von Beobachtungen erzielt einfache logis-
tische Regression oft gute Ergebnisse. Die externe Validierung zeigte, dass die analysierten
multivariaten Modelle eher nicht auf die PARSPORT-Kohorte verallgemeinerten. Die einzi-
gen Merkmale, die sowohl in der Heidelberger (HD) als auch in der PARSPORT-Kohorte
auf Xerostomie hindeuteten, waren die räumlichen Dosisgradienten in der Rechts-Links-
Richtung und der Anterior-Posterior-Richtung. In der Verteilung der Kovariaten zwischen
den beiden Kohorten wurden erhebliche Unterschiede festgestellt, was einer der Gründe für
die schwache Generalisierbarkeit der HD-Modelle sein könnte.

Die in dieser Arbeit vorgestellten Ergebnisse zweifeln an der Anwendbarkeit von NTCP-
Modellen für Xerostomie, die nur auf der mittleren Dosis der Parotis bei hochkonformen
Strahlentherapien beruhen. Die räumlichen Dosisgradienten in der links-rechts- und der
anterior-posterior-Richtung hingegen erwiesen sich sowohl in der HD- als auch in der
PARSPORT-Kohorte als prädiktiv für Xerostomie. Diese Erkenntnis ist besonders wichtig,
da sie nicht auf eine einzige Kohorte beschränkt ist, sondern ein allgemeines Muster in
zwei unabhängigen Datensätzen beschreibt. Die Leistung der ausgefeilten Methoden des
maschinellen Lernens kann auf die Notwendigkeit größerer Patientenkohorten in Studien
über NTCP-Modelle hinweisen, um ihre Vorteile voll auszunutzen. Die beobachtete Kovari-
atenverschiebung (engl.: covariate shift) zwischen der HD- und der PARSPORT-Kohorte
motiviert die Notwendigkeit, Informationen über die Kovariatenverteilung in neuartigen
NTCP-Modellen zu melden.



APPENDIX A

DICOM IMPORT AND DATA

PREPROCESSING

Algorithm A.1: Generate CT cube and directional vectors from DICOM CT images. Source
code: load_ct_cube.m
// Generate a CT cube and zVec from DICOM CT images

1 i = 0;
2 foreach dcm do
3 read dcm;
4 cube(:,:,i) = dcm.PixelData;
5 zVec(i) = dcm.ImagePositionPatient(3);
6 i = i+1;
7 end
// Generate yVec

8 if dcm.ImageOrientationPatient(1:3) == (1,0,0) then
9 yVec = dcm.ImagePositionPatient(2) + [0..dcm.Rows-1] * dcm.PixelSpacing(2);

10 else if dcm.ImageOrientationPatient(1:3) == (-1,0,0) then
11 yVec = dcm.ImagePositionPatient(2) - [0..dcm.Rows-1] * dcm.PixelSpacing(2);
12 yVec = sort(yVec);
13 cube = flip(cube,1);
14 else
15 error(’Not supported patient’s orientation’);
16 end

// Generate xVec
17 if dcm.ImageOrientationPatient(4:6) == (0,1,0) then
18 xVec = dcm.ImagePositionPatient(1) + [0..dcm.Columns-1] * dcm.PixelSpacing(1);
19 else if dcm.ImageOrientationPatient(4:6) == (0,-1,0) then
20 xVec = dcm.ImagePositionPatient(1) - [0..dcm.Columns-1] * dcm.PixelSpacing(1);
21 xVec = sort(xVec);
22 cube = flip(cube,2);
23 else
24 error(’Not supported patient’s orientation’);
25 end

// Ensure that the zVec is monotonic
26 [zVec, idx] = sort(zVec);
27 cube = cube(:,:,idx);

https://github.com/hubertgabrys/DicomToolboxMatlab/blob/master/dicom_import/load_ct_cube.m
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Algorithm A.2: Generate a dose cube and directional vectors from DICOM RT Dose. Source
code: load_dose_cube.m
// Generate dose cube and zVec from DICOM RT dose

1 read dcm;
2 cube = dcm.PixelData;
3 cube = cube * dcm.DoseGridScaling;
4 if dcm.GrifFrameOffsetVector(1) != 0 then
5 offset = dcm.GridFrameOffsetVector - dcm.GridFrameOffsetVector(1);
6 else
7 offset = dcm.GridFrameOffsetVector;
8 end
9 zVec = dcm.ImagePositionPatient(3) + offset;

10 if zVec(2) - zVec(1) < 0 then
11 zVec(:,1) = flip(zVec);
12 cube = flip(cube, 3);
13 end

// Generate yVec
14 if dcm.ImageOrientationPatient(1:3) == (1,0,0) then
15 yVec = dcm.ImagePositionPatient(2) + [0..dcm.Rows-1] * dcm.PixelSpacing(2);
16 else if dcm.ImageOrientationPatient(1:3) == (-1,0,0) then
17 yVec = dcm.ImagePositionPatient(2) - [0..dcm.Rows-1] * dcm.PixelSpacing(2);
18 yVec = sort(yVec);
19 cube = flip(cube,1);
20 else
21 error(’Not supported patient’s orientation’);
22 end

// Generate xVec
23 if dcm.ImageOrientationPatient(4:6) == (0,1,0) then
24 xVec = dcm.ImagePositionPatient(1) + [0..dcm.Columns-1] * dcm.PixelSpacing(1);
25 else if dcm.ImageOrientationPatient(4:6) == (0,-1,0) then
26 xVec = dcm.ImagePositionPatient(1) - [0..dcm.Columns-1] * dcm.PixelSpacing(1);
27 xVec = sort(xVec);
28 cube = flip(cube,2);
29 else
30 error(’Not supported patient’s orientation’);
31 end

https://github.com/hubertgabrys/DicomToolboxMatlab/blob/master/dicom_import/load_dose_cube.m
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Algorithm A.3: Calculate masks for structures from DICOM RT Structure Set. Source code:
calc_struct_masks.m
1 xVec, yVec, zVec← DICOM RT Dose and/or DICOM CT;
2 dcm← read DICOM RT Structure Set;
3 contoured_structs← dcm.ROIContourSequence;
4 defined_structs← dcm.StructureSetROISequence;
5 foreach c_struct in contoured_structs do

// Get structure name
6 foreach d_struct in defined_structs do
7 if c_struct.ReferencedROINumber == d_struct.ROINumber then
8 struct_name← d_struct.ROIName;
9 break;

10 end
11 end

// Generate logical mask for each structure slice
12 slices← struct.ContourSequence;
13 zCoords← empty list;
14 slice_masks← empty list;
15 foreach slice in slices do
16 if slice.ContourGeometricType != ’POINT’ then

// Structure vertices in the slice
17 zCoord← slice.ContourData(3);
18 add zCoord to zCoords;
19 xCoord, yCoord← slice.ContourData(1:2);

// Generate meshgrid
20 X, Y← xVec, yVec;

// Calculate the logical mask
21 slice_mask← inpolygon(X, Y, xCoord, yCoord);
22 add slice_mask to slice_masks;
23 end
24 end

// Move to the next structure if this one is of type POINT
25 if slice.ContourGeometricType == ’POINT’ then
26 continue;
27 end

// Convert 2D slice masks to a 3D structure mask
28 struct_mask← zCoords, slice_masks;

// Interpolate structure mask to DICOM RT Dose resolution
29 struct_mask← struct_mask, xVec, yVec, zVec;
30 end

https://github.com/hubertgabrys/DicomToolboxMatlab/blob/master/dicom_import/calc_struct_masks.m
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APPENDIX B

DATA SAMPLING, FEATURE

SELECTION, AND CLASSIFICATION

ALGORITHMS

Parts of this appendix has been quoted verbatim from Gabryś et al. (2018). Under the jour-
nal’s copyright policy, the authors retained the copyright to their work.

B.1 Data cleaning and class balancing

Random oversampling

Class imbalance is reduced by randomly duplicating observations from the minority class.

Synthetic minority oversampling

Synthetic minority oversampling (SMOTE) was proposed by Chawla et al. (2002). The al-
gorithm generates new synthetic minority observations by considering k nearest neighbors
of a randomly selected minority observation. Next, the difference between the observation
feature vector and one of the nearest neighbors feature vector is taken. This difference is
then multiplied by a random weight between zero and one and added to the observation
feature vector to generate new synthetic observation. Approximately equal number of syn-
thetic observations is created for each minority class observation.

Adaptive synthetic sampling

Adaptive synthetic sampling (ADASYN) (He et al. 2008), similarly to SMOTE, generates
synthetic minority class observations by interpolating feature vectors between a minority
class observation and a randomly selected nearest neighbor. The key difference to SMOTE
is that ADASYN aims to create more synthetic data for minority class observations that are
hard to learn. For that reason, a learning difficulty weight is calculated for each minority
class observation, based on the number of majority class observations in its neighborhood.



98 Chapter B. Data sampling, feature selection, and classification algorithms

Based on these weights, more synthetic observations are created for difficult minority class
observations.

Tomek links

A pair of observations (Ei, Ej) stemming from different classes and with distance d(Ei, Ej)

form a Tomek link if there is no observationEl, such that d(Ei, El) < d(Ei, Ej) or d(Ej, El) <

d(Ei, Ej) (Tomek 1976). As an undersampling method, all the observations in the majority
class forming Tomek links are removed; when used as a data cleaning method, both the
observation from the majority and the observation from the minority class are eliminated.

Condensed Nearest Neighbor Rule

The condensed nearest neighbor rule (CNN) proposed by Hart (1968) undersamples the data
set to find a consistent subset Ê of all observations E. First, all minority class observations
and one randomly selected majority class observation are moved to Ê. Next, the rest of
the majority class observations are classified using 1-nearest neighbor rule and during this
process every misclassified observation is moved to subset Ê. The procedure continues
until all misclassified observations are in the subset Ê (Kubat & Matwin 1997). Intuitively,
CNN reduces the number of redundant observations in majority class that are far from the
decision border and therefore less informative in learning.

One-sided selection

One-sided selection (OSS) (Kubat & Matwin 1997) is an undersampling method realized
by Tomek links algorithm followed by CNN. Tomek links undersample the majority class
and remove noisy and borderline class observations. CNN, on the other hand, removes
observations from the majority class that are distant from the decision border and likely are
not informative.

Wilson’s edited nearest neighbor rule

The Wilson’s edited nearest neighbor rule (ENN) (Wilson 1972) removes all observations
which class label differ from the class of its k nearest neighbors.

Neighborhood cleaning rule

The neighborhood cleaning rule (NCL) (Laurikkala 2001) is a modification of the ENN
algorithm. As in the ENN, the class of each observation is compared with the classes of its
k nearest neighbors. If the analyzed observation belongs to the majority class, the procedure
is the same as in the ENN. However, if the observation belongs to the minority class and its
k nearest neighbors to the majority class, the minority class observation is kept in the data
set and the k nearest neighbors are removed.



B.2. Feature selection 99

SMOTE + TL

First, the original data set is oversampled with SMOTE, and then Tomek links are identified
and removed. The method aims to produce a balanced data set with well-defined class
clusters (Batista et al. 2004).

SMOTE + ENN

This method is similar to SMOTE+TL but with stronger data cleaning component realized
by the ENN (Batista et al. 2004).

B.2 Feature selection

Univariate feature selection

Univariate feature selection methods evaluate each feature separately relying solely on the
relation between one feature characteristic and the modeled variable. After all the features
were graded, the features with the highest rankings are selected. A disadvantage of univari-
ate feature selection is that the algorithm fails to select features which have relatively low
individual scores but a high score when combined together. Also, due to the fact that uni-
variate feature selection methods evaluate features individually, they are unable to handle
feature redundancy (Gu et al. 2012, Tang et al. 2014).

Fisher score

Intuitively, Fisher score is a ratio of the between-class scatter to the within-class scatter.
As a result, high Fisher scores correspond to features with well defined class clusters (low
within-class scatter) that are distant from each other (large between-class scatter) (Duda
et al. 2012). Fisher score is commonly used in supervised classification tasks due to its low
computational cost and general good performance (Gu et al. 2012).

Fisher score of feature X was calculated using the following formula (Lowry 2014):

F (X) =
1
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where C is the number of classes, N total number of observations, Nc number of obser-
vations in class c, x̄ mean value of feature X , and x̄c mean value of feature X in class
c.
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Mutual information

This univariate feature selection method measures mutual information between each feature
and the modeled variable. Intuitively, mutual information measures how much knowing the
feature X value reduces uncertainty about the class label Y , and vice versa (Murphy 2012).
This can be expressed by the formula:

MI(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

where H(X) is the entropy of X and H(X|Y ) is the entropy of X after observing class Y .

H(X) = −
N∑
i=1

p(xi) log p(xi)

H(X|Y ) = −
N∑
i=1

p(yi)
N∑
k=1

p(xk|yi) log p(xk|yi)

Features with high mutual information are considered informative.

Recursive feature elimination

In the first step of recursive feature elimination (RFE), an induction algorithm is trained us-
ing the full set of features. Next, the features are ranked according to a given criterion, such
as feature weight in logistic regression or feature importance in ensemble models. Then,
the feature or the features with the smallest ranks are removed from the feature set. This
procedure is repeated iteratively until the desired number of features is achieved (Kohavi &
John 1997, Guyon et al. 2002).

In contrast to univariate feature selection, recursive feature elimination methods can
capture feature interactions. For this reason, they can select not only good univariate pre-
dictors but also features which have low predictive power alone but high predictive power
when pooled together.

The ability to handle feature redundancy depends on the induction algorithm used with
RFE. For instance, L1 penalized logistic regression tends to select one of highly correlated
features, hence reducing feature redundancy (Hastie et al. 2009). On the contrary, L2 pe-
nalized logistic regression tends to give similar weights to correlated features distributing
the total feature importance among them. For the recursive feature elimination in this study
two induction algorithms were used: logistic regression and extra-trees.

Model based feature selection

Model based feature selection can be considered a special case of recursive feature elimi-
nation with only one iteration step. The induction algorithm is trained using the full set of
features and the desired number of lowest scoring features is removed. Similarly to RFE,
logistic regression and extra-trees were employed as the induction algorithms.
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B.3 Classification

Logistic Regression

Logistic regression is a simple linear model allowing to estimate probability of a binary
response based on a number of risk factors. In order to avoid overfitting, logistic regression
is usually regularized via either L1, L2, or elastic net penalty. L1 penalty outperforms L2
penalty in terms of handling irrelevant and redundant features (Ng 2004). Its ability to
bring feature weights to zero results in sparse models and improves model interpretability
(Bishop 2006). On the other hand, L1 tends to randomly select one of highly correlated
features which can result in model variability (Zou & Hastie 2005). The elastic method
brings in a way the two worlds together and applies a penalty that is a convex combination
of L1 and L2 regularization (Zou & Hastie 2005).

The advantages of logistic regression are its simplicity, interpretability, and easy tuning
(only one hyperparameter with L1 or L2 regularization or two hyperparameters with elastic
net regularization). The biggest disadvantage is a linear hypersurface decision boundary
that may not be flexible enough to describe the real decision boundary.

k-Nearest Neighbors

The k-nearest neighbor (kNN) classifier looks at the k points in the training set that are
nearest to the test input. The object is classified based on a majority of vote of its neighbors
(Murphy 2012). kNN has a much more flexible decision boundary compared to logistic
regression. It will likely outperform logistic regression when the true decision boundary
is highly irregular. Nevertheless, the curse of dimensionality has a considerable impact on
the performance of the k-nearest neighbors classifier making feature selection crucial when
working with high-dimensional data sets.

Support Vector Machines

Similarly to the k-nearest neighbors algorithm, the support vector machine (SVM) does
not learn a fixed set of parameters corresponding to the features of the input. It rather
remembers the training examples and classifies new observations based on some similarity
function. The two main concepts behind support vector machines are the kernel trick and the
large margin principle. The kernel trick guarantees high flexibility of the decision boundary
by allowing to operate in features spaces of very high, even infinite, dimensionality. The
large margin principle, ensures model sparsity by discarding all observations not laying on
maximum margin hypersurfaces. Support vector machines proved to be very successful
in various classification tasks, including NTCP modeling. Unfortunately, interpretation of
support vector machines with nonlinear kernels is a challenge (Burges 1998).
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Extra-Trees

The extra-trees classifier is an ensemble of decision trees. Each tree is built either on the
full learning sample or on a bootstrap replica. At each node, a random subset of features is
selected and for each feature a random cut-point is drawn. The best feature-cutpoint pair is
selected to split the node. The tree is grown until the minimum sample size for splitting a
node is reached. The ensemble predictions are the results of the majority vote of predictions
of individual trees (Geurts et al. 2006). A great advantage of the extra-trees algorithm is
that it works out-of-the-box with no or minimal hyperparameter tuning.

Gradient Tree Boosting

Similarly to extra-trees, gradient tree boosting uses an ensemble of decision trees. Gradient
tree boosting iteratively fits small decision trees to the data set in an adaptive fashion. After
each iteration, training samples are reweighted to focus on the instances misclassified by
the previous trees. When all trees are grown, the prediction is obtained by the weighted
majority vote of the trees (Hastie et al. 2009, Freund & Schapire 1997).

Gradient tree boosting proved to be a very successful algorithm often outperforming
neural networks, support vector machines, and other ensemble models. However, tuning
the hyperparameters may be challenging.

Table B.1: Hyperparameters used to tune the sampling algorithms. Hyperparameters not listed in this table
assumed the default values of imbalanced-learn package (Lemaitre et al. 2017).

Algorithm Hyperparameters Values

ROS - -

SMOTE

k_neighbors: Number of nearest neighbors used
to construct synthetic samples.
m_neighbors: Number of nearest neighbors used
to determine if a minority sample is in danger.
kind: Type of SMOTE algorithm.

{3, 4, 5}

{7, 8, 9}

{’regular’, ’borderline1’,
’borderline2’}

ADASYN
n_neighbors: Number of nearest neighbors to use
to construct synthetic samples.

{3, 5, 8}

OSS - -

TL - -

ENN
n_neighbors: Number of nearest neighbors.
kind_sel: Type of ENN algorithm.

{2, 3, 5}
{’all’, ’mode’}

NCL n_neighbors: Number of nearest neighbors. {2, 3, 5}

SMOTE+TL - -

SMOTE+ENN - -
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Table B.2: Hyperparameters used to tune the feature selection algorithms. Hyperparameters not listed in this
table assumed the default values of scikit-learn package (Pedregosa et al. 2011).

Algorithm Hyperparameters Values

UFS-F k: Number of features to select. {2, 3, 4, 5, 6}

UFS-MI k: Number of features to select. {2, 3, 4, 5, 6}

RFE-LR

k: Number of features to select.
step: Number of features to remove at each itera-
tion.
class_weight: Whether class weights are equal or
inversely proportional to class frequencies.
C: Inverse of regularization strength.
penalty: Type of regularization.

{2, 3, 4, 5, 6}
1
{None, ’balanced’}

{2−5, 2−4.985, 2−4.97, . . . , 210}
’l2’

RFE-ET

k: Number of features to select.
step: Fraction of features to remove at each itera-
tion.
class_weight: Whether class weights are equal or
inversely proportional to class frequencies.
n_estimators: Number of decision trees.

{2, 3, 4, 5, 6}
0.5
{None, ’balanced’,
’balanced_subsample’}

[90, 140]

MB-LR

k: Number of features to select.
class_weight: Whether class weights are equal or
inversely proportional to class frequencies.
C: Inverse of regularization strength.
penalty: Type of regularization.

{2, 3, 4, 5, 6}
{None, ’balanced’}

{2−5, 2−4.985, 2−4.97, . . . , 210}
{’l1’, ’l2’}

MB-ET

k: Number of features to select.
class_weight: Whether class weights are equal or
inversely proportional to class frequencies.
n_estimators: Number of decision trees.

{2, 3, 4, 5, 6}
{None, ’balanced’,
’balanced_subsample’}

[90, 140]
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Table B.3: Hyperparameters used to tune the classification algorithms. Hyperparameters not listed in this
table assumed the default values of scikit-learn (Pedregosa et al. 2011) and xgboost (Chen & Guestrin 2016)
packages.

Algorithm Hyperparameters Values

LR-L1/L2
class_weight: Whether class weights are equal or
inversely proportional to class frequencies.
C: Inverse of regularization strength.

{None, ’balanced’}

{2−5, 2−4.985, 2−4.97, . . . , 210}

LR-EN

class_weight: Whether class weights are equal or
inversely proportional to class frequencies.
alpha: Regularization strength.
l1_ratio: Ratio between L1 and L2 penalty.

{None, ’balanced’}

{2−10, 2−9.985, 2−9.97, . . . , 25}
[0, 1]

kNN
n_neighbors: Number of nearest neighbors.
p: Power parameter of the Minkowski distance.

{1, 2, 3, . . . , 9}
{1, 2,∞}

SVM

class_weight: Whether class weights are equal or
inversely proportional to class frequencies.
C: Inverse of regularization strength.
gamma: Parameter of the RBF kernel.

{None, ’balanced’}

{2−5, 2−4.985, 2−4.97, . . . , 210}
{2−15, 2−14.982, 2−14.964, . . . , 23}

ET

n_estimators: Number of decision trees.
class_weight: Whether class weights are equal of
inversely proportional to class frequencies.
criterion: The function to measure the quality of
a split.
max_features: Number of features to consider
when calculating the best split.
min_samples_split: The minimum number of
samples required to split a node.
min_samples_leaf: The minimum number of
samples required to be at a leaf node.

[90, 230]
{None, ’balanced’}

{’gini’, ’entropy’}

{0.05, 0.10, 0.15, . . . , 1}

{2, 3, 4, . . . , 20}

{1, 2, 3, . . . , 20}

GTB

n_estimators: Number of decision trees.
learning_rate: Boosting learning rate.
max_depth: Maximum tree depth.
gamma: Minimum loss reduction required to
make a further partition on a leaf node of the tree.
min_child_weight: Minimum sum of instance
weight(hessian) needed in a child.
subsample: Ratio of the training samples used to
grow trees.
reg_lambda: L1 regularization term on weights.
reg_alpha: L2 regularization term on weights.

[200, 2000]
{2−7, 2−6.994, 2−6.988, . . . , 2−1}
{1, 2, 3, . . . , 6}
{0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1}

{1, 3, 5, 7}

{0.6, 0.65, 0.70, . . . , 1}

[0, 1]
[0, 1]
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