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Abstract

The drive for improved flexibility and reusability in satellite launch systems has brought a resur-
gence in the popularity of scramjet-powered access-to-space launch vehicle concepts. A challenge
in scramjet-powered accelerator vehicles is achieving positive thrust margins at the high-speed end
of their flight envelopes. As a consequence, scramjet-powered vehicles typically rely on highly inte-
grated airframe-engine configurations. However, due to the tight integration, the geometries and the
flow physics are complex. An automated optimisation method seems an excellent candidate approach
to explore the complex design space of hypersonic vehicles. This thesis focuses on the development
and application of a particular optimisation method, adjoint-based optimisation, to aid in efficient
aerodynamic design in hypersonic flows.

Shape optimisation of scramjet-powered vehicles requires many design parameters to capture the
geometric detail, and, since the flow physics is complex, the fidelity of Reynolds-Averaged Navier-
Stokes (RANS) analyses is desirable. The combination of many design parameters and an expensive
objective function evaluation drives the need for gradient evaluation methods that scale well with the
number of design variables. An advantage of the adjoint method is that all shape sensitivities for an
objective function are evaluated at the cost of only one flow solution and one adjoint solution. As a
result of its efficiency, the adjoint method has become widely used for aircraft design, evolving to the
design optimisation of full configurations. Despite the wide use of adjoint methods in aircraft optimi-
sation, there has been very little application to hypersonic vehicle design. Several high-speed adjoint
solvers have been reported in the literature, however, a majority of these works have only verified
the adjoint sensitivities, few have followed on to demonstrate the method for use in design optimi-
sation. The contribution of this work is the description and application of a discrete adjoint solver
in high-speed compressible flow optimisation. What is unique in this work is a demonstration that
complex-step differentiation works well to linearise a second-order spatially accurate unstructured
RANS solver. In particular, the approach presented in this work utilises the k−ω turbulence model
in high-speed ducted flow configurations.

As part of this work, to provide flow analysis with a rapid turn-around, an unstructured steady-
state RANS solver driven by a Jacobian-Free Newton-Krylov method was developed. Turbulence is
modelled using the two-equation k−ω turbulence model. The Newton method is globalised by using
the pseudo-transient approach. A restarted GMRES method is used to solve the system of linear equa-
tions arising when solving for the Newton steps. Evaluation of the matrix-vector products required in
the GMRES algorithm is accomplished by Fréchet derivatives using imaginary perturbations in the
complex plane. This is necessary to achieve robust convergence of the types of turbulent hypersonic
flows considered in this work. Equation scaling ensures that the linear solver provides an adequate
solution of the linear system, especially for turbulent flows, where the flow and turbulence variables
differ by several orders of magnitude. Incomplete lower-upper preconditioning with zero-fill is used
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to accelerate linear system convergence. To achieve adequate residual convergence for flows with
embedded shocks, limiter freezing is required to prevent early stall. The developed flow solver is
verified using several methods, including the Method of Manufactured Solutions. Several validation
cases from the literature are presented to establish the appropriateness of the implemented physical
models for design analysis in high-speed flow.

An accompanying discrete adjoint solver was developed to provide efficient computation of the re-
quired shape sensitivities. The primary complication of linearising the flow solver routines is handled
via a complex-step derivative approach. Targeted differentiation is employed to provide an efficient
means of constructing the adjoint operator. The adjoint gradients are verified against a complex vari-
able direct-differentiation method.

The flow and adjoint solvers are coupled to the open-source optimisation library, DAKOTA, to per-
form design optimisation in high-speed flows. Design surfaces are parameterised using Bézier curves
and mesh deformation is achieved by the inverse distance weighting method. Two optimisation appli-
cations are presented here as a demonstration of the development work: (a) wave drag minimisation
of an axisymmetric body; and (b) hypersonic inlet design optimisation. For the case of axisymmetric
bodies, the optimal shape determined by this work compares favourably to several minimum-drag
power-law bodies published in the literature. The second application is the redesign of the P2 hyper-
sonic inlet. The chosen objective function aimed at removing the reflected cowl shock whilst obtaining
the desired compression ratio. The results presented show that the optimiser has removed the reflected
shock while achieving the desired compression ratio, at no cost to the inlet performance metrics.

The conclusions are that the developed discrete adjoint-based optimisation framework does work
well in a hypersonic flow context and that the use of complex-step differentiation is a key enabler in
the implementation. In particular, the inlet example presented in this work demonstrates the efficiency,
accuracy, and applicability of discrete adjoint-based optimisation to design analysis in turbulent high-
speed flow.
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CHAPTER 1

INTRODUCTION

A hypersonic vehicle travels through the atmosphere at Mach numbers well above the sonic threshold.
To reduce overall drag and achieve positive thrust margins at hypersonic velocities, the high-speed air-
breathing engines that propel the aircraft must be made an integral part of the vehicle airframe. The
highly coupled airframe aerodynamics and engine performance characteristics leads to a complex
nonlinear design space. This makes intuition-based design challenging. A computer-based design
methodology utilising gradient-based optimisation seems a more suitable and efficient approach to
explore the complex design space of hypersonic vehicles. Gradient-based optimisation requires: (a)
an objective function evaluation at each design iteration; and (b) the objective function sensitivities for
each design parameter. A typical objective function evaluation, e.g. calculating lift/drag, is computa-
tionally expensive for a hypersonic vehicle, as a consequence of the complex flow physics that occur
at hypersonic velocities. Furthermore, an airframe-engine integrated vehicle requires many design pa-
rameters to sufficiently capture the geometric detail. Black-box style gradient-based optimisation, e.g.
using finite differences, does not scale well for this type of design problem. The development of new
design methods that incorporate efficient gradient-based optimisation techniques are thus required
for hypersonic vehicle design. The work in this thesis focuses on the investigation of one particular
optimisation approach, discrete adjoint optimisation, in the context of high-speed flow design.

1.1 Motivation and research context

1.1.1 Scramjet-assisted access-to-space

The motivation for the design method presented in this thesis is the development of scramjet-assisted
access-to-space launch systems. The number of small satellite launches per year has been steadily in-
creasing over the last decade [8]. As new and innovative satellite-based solutions are engineered, this
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number is predicted to increase further. Australia, in particular, has many industries that could ben-
efit from the application of small satellites. For example, remote sensing has applications in mining,
agricultural, defence and environmental industries [9]. Despite the increased demand, small satellites
still rely on conventional large-scale rocket technology to achieve orbit. The current business model
is structured on launching several small satellites with a single rocket-powered launch system. This
places fundamental restrictions on when a satellite is launched and, more importantly, to which orbit
it can be inserted. For some satellite applications, these restrictions are considered prohibitive, and
a tailored launch system that provides flexible orbit insertion is desired. In addition to flexible or-
bit insertion, a dedicated small satellite launch system should possess a fast turn-around, to remain
competitive with current vendors.

Figure 1.1: Scramjet-rocket launch system mission profile. Reproduced from Preller et al. [10].

At the University of Queensland’s Centre for Hypersonics, a three-stage-to-orbit launch system
tailored for small satellites is being developed. A schematic of the launch system is illustrated in Fig-
ure 1.1. There are a number of innovative technologies incorporated into the design [11]. Of particular
interest to this current work is the second stage vehicle: SPARTAN. SPARTAN is an airbreathing hy-
personic accelerator that uses a system of scramjet engines to propel the third stage rocket-booster
and payload from Mach 5 to Mach 10.

The scramjet or supersonic combustion ramjet [12], illustrated in Figure 1.2, is a type of high-
speed engine that has no moving parts and relies on the turning of the ingested air by the vehicle
forebody and engine inlet to provide the required compression. Unlike a traditional ramjet, scramjet
engines do not decelerate the captured air to subsonic velocities in the combustor. Instead, the air-fuel
combustion process takes place in a flow that remains supersonic in the combustor. This results in less
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Figure 1.2: Schematic of a scramjet engine. Image by V. Wheatley (22nd October, 2013).

severe total pressure losses for flight at high Mach number. A scramjet-powered accelerator has sev-
eral advantages over traditional rocket-powered propulsion systems. Foremost is the superior specific
impulse offered by scramjet engines, since they do not need to carry any on-board oxidiser. In addition
to the superior specific impulse, scramjet-powered accelerators have the advantage of operating like
traditional aircraft. Thus offering better manoeuvrability, reusability and fast turn-around between
launches [13]. These favourable traits make a scramjet-powered accelerator an attractive second stage
vehicle for a small satellite launch system.

Figure 1.3: Integrated vehicle design for SPARTAN hypersonic accelerator. Image by A. Ward (2nd
September 2019)

1.1.2 Hypersonic vehicle design challenges

Careful consideration of airframe-engine integration is critical in scramjet-powered hypersonic ve-
hicle design. In an airframe-engine integrated vehicle, the engines are mounted directly onto the
airframe, unlike conventional aircraft which typically have their engines fixed to the underside of the
wings, away from the fuselage. An example of airframe-engine integration is illustrated in Figure 1.3,
which shows the integrated design of the SPARTAN vehicle. An important effect of the airframe-
engine integration is that the entire underside of the vehicle forebody acts as the initial compression
system for the engine intake. Similarly, the underside of the aft body acts as part of the engine nozzle.
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The integrated design is a direct consequence of operating an airbreathing engine at flight Mach num-
bers well into the hypersonic regime. A neat back-of-the-envelope calculation, first shown to me by
P. Jacobs (personal correspondence, 2019), nicely illustrates the reasoning behind this design choice.
Consider the schematic of an airbreathing hypersonic vehicle indicating the relative engine area and
vehicle area in Figure 1.4. The drag force acting on the vehicle can be approximated by

FD =
1
2

ρ∞u2
∞CDAvehicle, (1.1)

where ρ∞ is the air density, Avehicle is the vehicle reference area, and CD is the coefficient of drag for
the vehicle. The engine specific impulse Isp, which provides a measure of the engine efficiency, is
written as

Isp =
FT

ṁfuelg
, (1.2)

where FT is the engine thrust, ṁfuel is the fuel flow rate, and g is the acceleration of gravity. For
stoichiometric combustion, ṁair = 17ṁfuel, where ṁair = ρ∞u∞Aengine, is the captured air mass flow
rate. Finally by introducing the non-dimensional Mach number, M = u∞/a∞, where a is the speed of
sound of air; and then combining and rearranging Equations 1.1 and 1.2, a relation for the airframe-
engine area ratio with respect to Mach number can be determined as

Aratio =
Aengine

Avehicle
=

[
17CDa∞

2gIsp

]
M. (1.3)

Avehicle

Aengine

Figure 1.4: Airbreathing hypersonic vehicle schematic.

Sample calculations for various Mach number are provided in Table 1.1. It is observed that the
engine-to-airframe area ratio has a strong dependence on the Mach number. For a vehicle that op-
erates up to Mach 10, the engines will make up approximately 20% of the vehicle frontal area. The
problem is compounded when also considering that the airbreathing engines will require some form
of compression system to compress the freestream air to the desired combustor inlet conditions. If
such engines were installed under the vehicle’s wings, away from the main airframe, the vehicle mass
would be prohibitively large. By integrating the engines on the underside of the airframe, the vehi-
cle forebody can be used as a compression surface for the air-intakes. This significantly reduces the
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structural mass of the vehicle. Airframe-engine integration is now widely recognised as an enabling
technology for airbreathing hypersonic flight.

Table 1.1: Sample results for Equation 1.3 with varying Mach number.

M 3 5 10 25
Aratio 0.057 0.095 0.19 0.475

The airframe-engine integration adds complexity to the design of hypersonic vehicles. In an
airframe-engine integrated vehicle, the vehicle aerodynamics and propulsion system are strongly cou-
pled. This strong coupling ultimately means that conventional techniques that design each component
separately and integrate the parts in the final stage of the design process cannot be employed. Instead,
airbreathing hypersonic vehicle design requires a technique called Multidisciplinary Design Optimi-
sation (MDO) to generate realisable designs [14]. In MDO, the aerodynamic and propulsive systems
are considered concurrently, and so the integrated nature of the hypersonic vehicle is accounted for
inherently in the design methodology. The challenge with applying MDO is the large computational
expenses incurred from incorporating several physics-based solvers into a numerical optimisation
loop. In an effort to make MDO more practical, it is common to apply computationally inexpensive,
low-fidelity methods to model the complex physics. For example, the use of panel methods based on
shock-expansion theory to evaluate vehicle aerodynamic forces have been applied in several recent
MDO of hypersonic vehicles [10, 15–18]. There is some concern that the reduced fidelity modelling
does not adequately capture the complex flow phenomena that form around a hypersonic vehicle.
Figure 1.5 shows an inviscid simulation of SPARTAN flying at Mach 8. It is observed that a complex
structure of shocks has formed around the vehicle. As a result of the leading edge shocks impinging
on downstream vehicle surfaces, complex shock-shock and shock wave/boundary layer interactions
occur. These flow phenomena are not resolved by using low-fidelity methods and require solutions of
the Navier-Stokes equations. In a state of the art MDO of a hypersonic vehicle, this concern has been
addressed by incorporating solutions of the Reynolds-Averaged Navier-Stokes (RANS) equations for
the underside vehicle flow-path [19]. Due to computational expense, however, the number of design
variables used to represent the vehicle geometry for the design optimisation was restricted to fewer
than fifteen. This is considered a coarse parameterisation when considering that to parameterise a
hypersonic inlet alone requires 50+ design variables to capture the geometric detail [20]. The design
challenge for hypersonic vehicles is developing methods for incorporating high-fidelity physics-based
solvers into the MDO of geometrically-complex vehicles requiring many-parameters.
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Figure 1.5: CART3D simulation of SPARTAN at Mach 8 flight conditions. Image provided by A.
Ward (5th August 2019).

1.1.3 Modern CFD-based design optimisation

A numerical optimisation algorithm is required to drive the MDO methodology outlined above. In
this work, the focus is restricted to gradient-based optimisation techniques, given the computational
expense associated with evaluating the objective function via a converged CFD solution. Alternate
global methods, such as those based on evolutionary systems, are better suited to optimisation prob-
lems where the objective function is computationally inexpensive. The most straightforward approach
to computing the design sensitivities used in a gradient-based optimisation algorithm is via finite dif-
ferences. In the finite difference approach, an additional CFD solution is required for each design
variable per design iteration. This approach does not scale well for many-parameter design optimi-
sation. Consider the CFD solution in Figure 1.5. This inviscid result took approximately 5 hours to
converge on 24 compute cores. If this vehicle was parameterised by 10 design variables, as done
in the work by Jazra et al. [16, 17] and Preller et al. [10, 18], then one design iteration would take
approximately 50 hours using finite differences. This is too prohibitive for vehicle design. A mod-
ern approach to CFD-based optimisation is the adjoint method [21]. The adjoint method enables the
computation of all shape sensitivities for a given problem at the cost of only one flow solution and
one adjoint solution [22]. As a result of its efficiency, the adjoint method has become widely used for
aircraft design, evolving to the design optimisation of full wing-body configurations [23]. The adjoint
method has also been considered an enabling technology for MDO of complex configurations [24], re-
cent examples include aerostructural design optimisation [25] and sonic boom mitigation [26]. MDO
of hypersonic vehicles could potentially benefit significantly from the efficiency of an adjoint-based
design optimisation approach. However, before adjoint-based MDO can be achieved, the applicabil-
ity of the adjoint method for high-speed design analysis within the individual disciplines should be
investigated. In the interim before adjoint-based MDO, there could be significant pay-offs from the
application of adjoint optimisation techniques within the disciplines [27, 28]. This current work aims
to investigate the applicability of the adjoint method to the particular discipline of aerodynamic shape
optimisation in hypersonic flow.
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1.2 Thesis aims

The overall aim of this thesis is to

Investigate how high-fidelity CFD-based optimisation using the adjoint method can be

applied to aerodynamic shape design in hypersonic flow.

This will be achieved through the following objectives:

1. Implement a Newton-Krylov accelerated, unstructured grid, compressible flow solver

The University of Queensland’s in-house compressible flow code, Eilmer, operates on struc-
tured grid topologies using an explicit time-accurate method to march in time to the steady-
state. To enable geometric flexibility and improve efficiency in reaching steady-state solutions,
a Newton-Krylov accelerated steady-state solver that operates on unstructured grids is imple-
mented. The Newton-Krylov approach applied to high-speed flows has some coverage in the
literature, however, has not been covered extensively for second-order spatially accurate meth-
ods with turbulence modelling. The approach is selected over other competing methods due to
its applicability to complex geometries, owing to no inherent preferential relaxation directions.

2. Implement a discrete adjoint solver based on the developed flow solver

In the context of CFD-based optimisation, the adjoint method is the most efficient. The pri-
mary complication of implementing the discrete adjoint method is linearising the flow solver
routines. For this work, the second-order spatially accurate flow routines for the steady-state
solver outlined above are linearised with no additional simplifications via a complex variable
approach.

3. Develop an optimisation package for aerodynamic shape design

The flow solver and adjoint solver are two pieces of the overall optimisation package. These are
coupled with a surface parameterisation method and a mesh deformation procedure in order to
compute shape sensitivities via the adjoint method. The gradient evaluation routines in Eilmer
coupled to the open-source optimisation library, DAKOTA, to construct a complete optimisation
package.

4. Apply the developed optimisation package to aerodynamic shape design in hypersonic flow

The developed optimisation software is applied to several design cases to assess the applicabil-
ity of the discrete adjoint method to hypersonic vehicle design.

7



CHAPTER 1. INTRODUCTION

1.3 Thesis outline

This thesis is organised into nine chapters which are outlined below. The appendices included at the
end of this document contain further technical information.

Chapter 2 - Background for Hypersonic Vehicle Design

This chapter provides a background to hypersonic vehicle design. It is divided into three sections.
Firstly, an introduction to airbreathing hypersonic vehicles is presented. Following this, the relevant
flow phenomena that encompass an airbreathing hypersonic vehicle as it travels through the atmo-
sphere is examined. The chapter then concludes with a critical review of current design methodolo-
gies.

Chapter 3 - Review for Adjoint-Based Aerodynamic Shape Optimisation

This chapter reviews the literature for adjoint-based aerodynamic shape optimisation. The chapter
begins by covering the broad topics of computational fluid dynamics and optimisation. Following
this, an introduction to the adjoint method is presented. A key concern with implementing an adjoint
solver is the method by which the flow solver is linearised, a discussion of this is presented here. The
chapter concludes with a review of adjoint-based optimisation in hypersonic flow.

Chapter 4 - Flow Solver

This chapter provides details of the flow solver implemented for this work. The topics covered in-
clude a detailed description of the Newton-Krylov implementation, in addition to details pertaining to
the inviscid and viscous flux calculations. Where appropriate, example results from several baseline
problems are presented to aid in the discussion.

Chapter 5 - Flow Solver Verification and Validation

This chapter presents the results of a verification and validation study for the flow solver. Several
methods of verification are employed to examine the accuracy of the implemented numerical methods.
An extensive set of validation cases have been taken from the literature to establish the appropriateness
of the implemented physical models for design analysis in high-speed flow.

Chapter 6 - Adjoint Solver

This chapter details the adjoint solver implemented for this work. Special attention is given to de-
scribing the method employed to construct the flow solver linearisation. The chapter concludes by
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presenting verification test results for the adjoint solver, in addition to presenting a debugging tech-
nique used throughout the adjoint solver development.

Chapter 7 - Shape Optimisation Methodology

This chapter provides a description of the shape optimisation package developed for this work. The
parameterisation technique and grid movement strategy employed for this work are presented. Details
on connecting the flow solver and adjoint solver to the open-source optimisation package DAKOTA
are also provided.

Chapter 8 - Optimisation Applications

Results from two optimisation applications are presented in this chapter. The first application is the
minimisation of wave drag on an axisymmetric body. This application presents a simple test case for
verifying the overall accuracy of the developed shape optimisation package. The second application
presents the re-design of a pre-existing hypersonic inlet.

Chapter 9 - Conclusions

The body of this thesis concludes by summarising the most significant findings from Chapters 4
through 8. Recommendations for future studies are provided.
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CHAPTER 2

BACKGROUND FOR HYPERSONIC VEHICLE DESIGN

The design of any aircraft begins with the mission definition. The details of the mission dictate the
preliminary design choices and the environment in which the aircraft must operate. This information
provides an insight into the general geometric layout of the aircraft and the relevant flow physics
that should be included in the design analysis. These two characteristics of an aircraft have a direct
impact on the selection of an appropriate design approach. In this chapter, a background for the
design of airbreathing hypersonic accelerators is presented. The discussion will cover the geometric
complexities of hypersonic vehicles, in addition to the relevant flow phenomena that encompass a
hypersonic vehicle as it travels through the atmosphere. The chapter concludes by providing a critical
analysis of the current design practices for airbreathing hypersonic vehicles. The purpose of this
chapter is to reiterate and expand on what the design challenges are for hypersonic vehicles, with
regards to external aerodynamics and, to some extent, the integration with an internal propulsion
flowpath.

2.1 Airbreathing hypersonic vehicles

The typical mission definition for an airbreathing hypersonic accelerator is to assist in delivering a
payload into orbit. The accelerator can be used as a single stage to orbit vehicle or as a reusable stage
in a multistage launch system. Early research on the National Aerospace Plane (NASP) [29], however,
has shown that a multistage system is significantly more practical. Depending on the exact staging
number, a combination of propulsive systems may be required, such as a turbine-based combined
cycle (TBCC) or rocket-based combined cycle (RBCC) engine. Regardless of the propulsive system
used for low Mach number flight, e.g. M ≤ 5, scramjet engines are currently the preferred engine for
high Mach number flight [12]. In Chapter 1, an example demonstrated that for moderate hypersonic
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Mach number, airbreathing engines account for approximately 20% of the vehicle frontal surface
area. The airframe-engine integrated design was proposed to accommodate the large engine intakes
required at high Mach number flight, however, it serves several other purposes as well. Airframe-
engine integration was first proposed in the late 1960’s as a successor to NASA’s Hypersonic Research
Engine (HRE). The HRE was a “pod” style axisymmetric scramjet engine [30] that provided excellent
internal performance but could not produce positive installed thrust due to several limitations [31].
Firstly, in agreement with the theoretical analysis presented in Chapter 1, the HRE scaled poorly for
high Mach number operation. Secondly, the HRE required a large exit to inlet area ratio to sufficiently
expand the exhaust gases, this resulted in excessive cowl drag. Thirdly, inefficient use of the cross-
sectional area within the shock layer meant that the inlet had an insufficient combustor inlet capture
area. Lastly, it was found that vehicle-body/pod-engine interference increased drag and heating values.
To reduce these effects, the airframe-engine integrated vehicle was designed. In an airframe-engine
integrated vehicle, the aerodynamics and propulsion systems are tightly coupled. This coupling allows
vehicle components to have multiple purposes. For example, the forebody of the vehicle not only
houses the fuel tanks, vehicle systems and makes up part of the thermal protection system, but also acts
as part of the compression system for the combustor inlet. A consequence of an integrated design is
that the vehicle aerodynamics and propulsion system are tightly coupled. For instance, the propulsion
system provides not only thrust but also portions of vehicle lift and pitching moment [15, 32]. The
strong coupling has a direct impact on the design methodology for hypersonic aircraft, as will be
discussed in Section 2.3. The airframe-engine integrated design is now widely considered as a crucial
element to the success of hypersonic vehicle design.

2.2 Relevant flow phenomena

This section will review the relevant flow phenomena that encompass a hypersonic accelerator travel-
ling through the atmosphere. The altitude at which an airbreathing accelerator operates is limited by
the requirement of robust combustion: recent optimised trajectories have an upper bound of approx-
imately 30-35 km [33]. The air is sufficiently dense at this altitude such that the Knudsen number,
defined as the ratio of the molecular mean free path length to a representative physical length scale,
is small enough to restrict our attention to the continuum flow regime.

The hypersonic regime spans a wide range of Mach number and is characterised by a broad range
of physical phenomena. A typical range of Mach number that an accelerator might operate between
is Mach 5 to Mach 10. This range is at the lower end of the hypersonic spectrum, and consequently,
many of the high-temperature gas-dynamics do not apply to the design of accelerator vehicles. For
example, at the flight Mach numbers considered here, the effects of thermochemical non-equilibrium
and radiative heat transfer have been shown to have a negligible effect on the vehicle aerodynamics
and propulsive system performance [34–37].
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The most significant phenomena experienced by a vehicle in hypersonic flight is the system of
strong shock waves that form on the frontal surfaces of the vehicle. A discontinuous 1 increase in
entropy occurs across a shock wave which manifests itself as a drag force on the vehicle, this phe-
nomenon is sometimes referred to as wave drag. Another adverse effect of the system of shock waves
forming on the frontal surfaces is that they can impinge on the vehicle surface downstream, such as
the wings or engine intakes. Several locations of shock-shock interactions on a generic hypersonic
vehicle are indicated in the schematic presented as Figure 2.1. The effect of shock-shock interactions
is to generate locally high pressures and heating loads.

In addition to wave drag, hypersonic vehicles must overcome severe skin-friction drag. The shear
stress along the vehicle surface is proportional to M2

e [37], the Mach number at the boundary layer
edge, as shown in Equation 2.1. In turn, Me is proportional to the flight Mach number, and, as a
consequence, the skin-friction increases significantly as flight Mach number increases.

τw =
1
2

γ peM2
eC f . (2.1)

The shear-stress at the wall is also a function of the skin friction coefficient (C f ). This coefficient
depends on what state the boundary is in: laminar, turbulent or in transition. In a laminar boundary
layer, the viscous forces of the fluid dominate over the inertial forces, and, as a result, smooth con-
stant flow persists. Alternatively, turbulent boundary layers are characterised by chaotic eddies and
vortices [37]. Turbulent boundary layers transfer energy more readily to the surface due to the chaotic
motion, thus turbulent boundary layers exhibit higher friction and heat transfer rates. To add further
complexity, the shock waves that impinge on the vehicle surface interact with the boundary layer. The
interaction of a shock wave with a turbulent boundary layer is a complex phenomenon, and much
is still unknown for interactions occurring on heated vehicle surfaces. The primary effect of these
interactions is to produce severe local pressure and heating loads, in addition to creating large regions
of separated flow. Figure 2.1 indicates regions on a generic hypersonic vehicle where shock wave
boundary layer interactions are likely to occur.

The complex flow phenomena that encompass a hypersonic vehicle requires sophisticated multi-
physics simulation software to capture the appropriate detail. This provides certain challenges to the
design of hypersonic vehicles, as will be discussed in Section 2.3.

1When compared to the vehicle length scale.
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Figure 2.1: Shock wave/viscous interactions on a generic hypersonic vehicle. Reproduced from Ko-
rkegi [38].

2.3 Existing design methodology

Traditional aircraft design methods employ a human-in-the-loop approach. For example, several of the
NACA 4 digit airfoils were designed by engineers relying on wind tunnel test results and engineering-
based intuition to aid in manually shaping the geometry toward an optimum [39, 40]. Modern appli-
cations of human-in-the-loop design have replaced wind tunnel test results with CFD solutions to
improve efficiency and reduce costs [39]. For a highly coupled system, often the separate disciplines
have competing effects on the design requirements. This makes intuition-based design by an engineer
difficult [15, 28]. For such highly nonlinear design problems, numerical optimisation techniques are
required to assist in finding an optimum solution efficiently. The simplest application of numerical
optimisation is to perform sequential optimisation of each discipline. However, in a highly coupled
system, this approach does not often converge to the true optimum [25]. This is particularly problem-
atic for hypersonic vehicles, where the optimum or near optimum performance of the overall system
is required to achieve a sufficient design margin [14, 19]. To account for the coupling of the systems,
all disciplines should be included in the optimisation concurrently. This branch of optimisation is
called Multidisciplinary Design Optimisation (MDO) [41]. Today, MDO is considered essential to
achieving hypersonic vehicle designs that achieve adequate performance at a reasonable operational
cost [14].

Several hypersonic vehicle MDO studies have been published over the last decade. The incor-
poration of several high-fidelity physics-based solvers into an optimisation routine is currently too
computationally expensive. To reduce the computational costs, MDO studies have typically applied
low-fidelity models that provide a means of fast analysis at the cost of accuracy. An example of the
type of reduced modelling applied in MDO is the use of panel methods that rely on analytic solutions
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to the shock-expansion equations and boundary layer correction techniques to evaluate aerodynamic
forces [10, 15, 16, 42]. Figure 2.2(a) presents a flow diagram showing the interactions between a
partial set of analysis codes utilised in Boeing’s hypersonic vehicle MDO. This illustrates the state
of the art for the MDO of hypersonic vehicles. The analysis codes vary in fidelity depending on the
discipline. The methodology, however, is novel in its inclusion of high-fidelity RANS solutions to
model the airbreathing engine inlet flow path [19]. The optimisation algorithm employed in the MDO
routine couples a Design of Experiments (DOE) technique with surrogate modelling and a Sequen-
tial Quadratic Programming (SQP) method. The software has been applied to the design of a Boeing
reusable launch vehicle concept called FASST [43], shown in Figure 2.2(b). In this example optimi-
sation, the FASST geometry was parameterised using 50 design parameters. However, only 12 design
variables were free for the MDO to modify [19].

Other hypersonic vehicle MDO applications published in the literature have employed low-fidelity
physics modelling coupled with a Simplex method [10, 15, 16, 42]. In these cited studies, the vehicle
geometries were also parameterised using on the order of 10 design parameters. The Simplex method
is a local direct search method that only requires objective function evaluations [44]. It is often chosen
over gradient-based methods since it typically only requires one or two objective function evaluations
per design iteration. This is considered more economical than a gradient-based method that employs
numerical gradients computed via finite differences, which requires an objective function evaluation
for each design variable per design iteration. A disadvantage of the Simplex method is that it can
take a large number of design iterations to converge. In the context of hypersonic missile MDO, the
simplex method required 200-300 design iterations to find the optimal aircraft parameterised using
five design parameters [15].

In Chapter 1, the challenges associated with hypersonic vehicle design were discussed. It was con-
cluded that the primary challenge is developing methods for incorporating high-fidelity physics-based
solvers into the MDO of geometrically-complex vehicles requiring many-parameters. Boeing’s MDO
software has begun to address the challenge of incorporating high-fidelity physics-based solvers into
the design loop. However, to reduce computational costs, it is more common to employ low-fidelity
modelling. The challenge of many-parameter MDO has yet to be addressed, with all cited MDO stud-
ies having used only a handful of design parameters to capture the geometric detail. It is thought that
hypersonic MDO could potentially benefit from incorporating high-fidelity modelling techniques and
increased design parameterisation flexibility. No published results say whether hypersonic vehicle
MDO should include a more flexible parameterisation. However, the results from an aerodynamic
design optimisation study by Ueno et al. [45] provide an insight into many-parameter vehicle op-
timisation. In this work, a hypersonic airliner was parameterised using several Bézier curves and
surfaces. In total, 127 design parameters were used in the optimisation. In the present author’s ob-
servation, a comparison of the optimised geometry and the baseline vehicle showed that whilst the
overall geometric topology remained similar, local geometric topologies, such as the lifting surfaces,
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had altered substantially from the baseline. The flow for this optimisation was modelled using the Eu-
ler equations. It would be computationally taxing to perform MDO of such a vehicle using solutions
of the Reynolds-Averaged Navier-Stokes equations coupled with either a finite difference or Sim-
plex method. A modern gradient-based optimisation technique, called the adjoint method, has shown
promise in enabling solutions to MDO problems in several engineering fields that were once con-
sidered intractable [24–26]. It is believed that adjoint-based optimisation could enable high-fidelity
MDO of hypersonic vehicles. A review of adjoint-based optimisation will be presented in Chapter 3.
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(a) Flow diagram of MDO methodology. Reproduced from Bowcutt. [14]

(b) FASST hypersonic vehicle designed using MDO. Reproduced from Bowcutt et al. [19]

Figure 2.2: Boeing’s state of the art MDO framework for a hypersonic vehicle.
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CHAPTER 3

REVIEW OF ADJOINT-BASED AERODYNAMIC SHAPE

OPTIMISATION

In this chapter, a literature review for adjoint-based aerodynamic shape optimisation is presented. The
chapter begins with a brief review of computational fluid dynamics and numerical optimisation, in the
context of the current work. Following this, an introduction to the adjoint method is presented. A key
concern with implementing the adjoint method is the technique by which the flow solver is linearised,
and so, a review of several approaches is presented here. The chapter concludes with a summary of
previously published works on adjoint-based optimisation in the hypersonic flow context.

3.1 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) refers to the analysis of fluid dynamic systems by means of
solving sets of physical equations that describe fluid motion. Figure 3.1 illustrates the various levels
of fidelity available for modelling a fluid. For irrotational inviscid flows, where the viscous effects
are negligible, the potential methods suffice to represent fluid motion. For inviscid rotational flows,
the Euler equations are employed. For some applications where viscous effects are non-negligible, it
is appropriate to employ either the potential flow or Euler equations in conjunction with a boundary
layer correction technique. However, such an approach is not appropriate when modelling complex
interactions between the viscous and inviscid components of a flow, such as shock wave/boundary
layer interactions. To simulate complex viscous interactions requires solutions of the full Navier-
Stokes equations. The Navier-Stokes equations contain all the necessary modelling information to
completely resolve both laminar and turbulent flows. This approach is referred to as Direct Numerical
Simulation (DNS). To perform DNS requires the fluid domain to be finely discretised, such that the
computational elements are small enough to resolve the entire spectrum of turbulent eddies. This typi-
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cally demands a mesh consisting of roughly Re9/4 elements to appropriately simulate a turbulent flow
using DNS. Even for a modest Reynolds number (Re) of 1 million, this would require on the order of
1013 computational cells. To reduce the computational costs, it is possible to resolve only the largest
eddies whilst applying a sub-grid model to approximate eddies under some specified threshold. This
method is referred to as Large Eddy Simulation (LES). LES requires significantly less mesh points
than DNS. However, the computational expense is still prohibitive for complex geometries. For some
industrial-level engineering problems, it is appropriate to model all the turbulent eddy structures. In
this approach, a time-averaging filter is applied to the Navier-Stokes equations: the set of resulting
equations are the Reynolds-Averaged Navier-Stokes (RANS) equations. The application of RANS
modelling is appropriate for problems that require only steady-state solutions of the flow field. So-
lutions of the RANS equations are far more economical than DNS and LES, with three-dimensional
turbulent solutions achievable on engineering workstations within 24 to 48 hours. As a consequence,
RANS is typically employed instead of DNS and LES methods for aircraft design [39].

Figure 3.1: Computational fluid models. Reproduced from Jameson et al. [27]

3.2 Numerical optimisation

This section begins with a definition of shape optimisation. Thévinin et al. [22] identified an unfortu-
nate trend in the literature that misrepresents parametric studies as optimisation, and so, it is important
to remove any ambiguous terminology. In this current work, optimisation is taken to mean the pursuit
of a vector of design parameters which is optimal in that it minimises a certain objective function
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while satisfying given constraints. This can be formulated mathematically as,

minimise J(x j)

w.r.t x j j = 1,2, ....,Nx (3.1)

subject to gm(x j)≥ 0, m = 1,2, ...,Ng

where J is the objective function, x j is one of the Nx design variables, and gm is one of the Ng nonlin-
ear constraint equations. Aerodynamic shape optimisation simply refers to the specific optimisation
of some aerodynamic characteristic, such as minimising drag or maximising lift, by altering the ge-
ometry in some way. The general optimisation problem can be explained graphically by considering
the schematic representation of a single parameter optimisation problem illustrated in Figure 3.2. The
objective is: given a starting point, either point A or D in this example, find the minimum point B. The
algorithms developed to search for the optimum point are divided into two categories, local methods
and global methods.
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Figure 3.2: Single parameter optimisation.

Global methods search the parameter space using only objective function evaluations. They are
given the name global, since the algorithms in this category will attempt to find the global minimum
given any starting condition. In practice, referring to Figure 3.2, a global method would find the
true optimum, point B, given either of the starting points. Popular global methods include genetic
algorithms and bio-inspired probabilistic algorithms. The primary limitation of these methods is the
large computational costs. The number of objective function evaluations rapidly increases with respect
to the number of design parameters. Consequently, the time required to find the global optimum can
be prohibitive for computationally expensive objective function evaluations.

Local methods use both objective function evaluations and an approximation of the objective
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function gradient to search the parameter space. By doing so, the algorithm is accelerated to finding
the nearest minimum value. If the design space is convex, then local search methods will converge on
the global optimum. However, for complex design spaces, it is hard to prove convexity, and as such, it
is only certain that the converged solution is a local optimum [22]. This can be explained graphically,
again by referring to Figure 3.2. For a local search method, the algorithm will find point B given
starting point D, or point C given starting point A. The simplest gradient-based method is Steepest
Descent, where the gradient information is used to ensure that the algorithm is always moving “down-
hill”. More sophisticated gradient-based methods such as Newton-type methods require second-order
gradients (Hessian matrix) to be evaluated, but they exhibit faster convergence.

There have been several comparative studies published that examine the relative performance of
global and local search methods for aerodynamic shape optimisation. Most of these works provide
qualitative results and do not provide a definitive answer on which method is more superior. However,
there appears to be a consensus that local search methods are more efficient at finding an optimum,
albeit at the expense of potentially converging on a local minimum [46, 47]. Zingg et al. [48] pro-
vided a more quantitative comparison by comparing the number of flow solutions required to obtain
a specified degree of convergence for the single point, multipoint and multiobjective design optimi-
sation of subsonic and transonic aerofoils. The published results showed that a genetic algorithm was
5 to 200 times more expensive than a gradient-based local search method. Importantly, the final con-
verged solutions for the two alternate search methods were observed to be similar, suggesting that
the local search method and the global search method had found the same minimum point. Hybrid
methods which combine a local search method with an initial population of baseline designs have
been suggested as a solution to the local minimum deficiency of local search methods [49].

3.3 The adjoint method

The adjoint method has gained popularity in recent years as an efficient means of computing sen-
sitivities for use in gradient-based optimisation [21, 50]. A distinguishing feature of the method is
that the cost of computing the complete sensitivity vector is independent of the number of design
variables [28]. To compute the adjoint sensitivities requires only one flow solution and one adjoint so-
lution per design iteration. Given that an adjoint solution costs roughly between one to ten times that
of a flow solution [51], the adjoint method is significantly more efficient at computing sensitivities
than a finite difference approach for complex geometries requiring many design parameters. The pri-
mary disadvantage of the adjoint method is the non-trivial code development required to implement
an adjoint solver. Unlike the finite difference approach which treats the flow solver as a black-box,
implementation of the adjoint method requires direct access to the flow solver source code.

The adjoint method can be applied in either the discrete form or continuous form. The discrete
adjoint method is derived directly from the discrete state equations, whilst the continuous adjoint
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method first derives the system of adjoint PDEs before discretising them [22]. There is no compelling
evidence that proves one formulation is better than the other, and both methods should, as the mesh
is refined, provide the same level of accuracy [52, 53]. There are, however, two key advantages of
deriving the adjoint system directly from the discrete state equations. Foremost is that there exists
algorithmic methods to linearise discretised equations. This ultimately means that the adjoint system
construction procedure may be automated. Techniques for automating the linearisation are discussed
in Section 3.4. This is not true for the continuous approach, which requires re-derivation of the adjoint
system for every new modification to the underlying set of equations. Secondly, the discrete adjoint
method can be easily verified against a direct differentiation of the flow code, since the differentiation
is of the discretised system. The continuous method does not have any theoretical equivalent, making
verification difficult. For these reasons, the discrete adjoint method is the preferred method for this
current work.

The derivation of the discrete adjoint method is presented here. The sensitivity of an objective
function, J(Q(D),X(D)), with respect to the design variables, D, is given by the chain rule to be

dJ
dD

=
∂J
∂X

∂X
∂D

+
∂J
∂Q

∂Q
∂D

, (3.2)

where Q is the vector of flow state variables, X are the grid points, and R is the residual vector.
The evaluation of Equation 3.2 incurs significant computational cost as a direct result of requiring
the evaluation of the sensitivity of the flow state variables with respect to the design variables, ∂Q

∂D .
The simplest approach to computing this term is via finite differences. In this approach, each design
variable is perturbed sequentially and an independent flow solution is converged. This approach does
not scale favourably for problems with many design variables. By applying the adjoint method, this
costly term can be eliminated from Equation 3.2. In this work, the Lagrange multiplier approach is
preferred [51]. To begin the derivation, the objective function, J(Q(D),X(D)), is reformulated as a
Lagrangian function

L(Q(D),X(D),λ ) = J(Q(D),X(D))+λ
T R(Q(D),X(D)), (3.3)

under the assumption that the flow is at steady state, i.e.

R(Q(D),X(D)) = 0. (3.4)

The new term λ , is used to denote the adjoint variables. By applying the chain rule, the sensitivity of
this Lagrangian function with respect to the design variables is given as the following

dL
dD

=
∂J
∂X

dX
dD

+

(
∂J
∂Q

+λ
T ∂R

∂Q

)
dQ
dD

+λ
T ∂R

∂X
dX
dD

. (3.5)
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The sensitivity of the flow state variables with respect to the design variables, dQ
dD , is computationally

expensive to compute, and the goal of the adjoint method is to remove it from the sensitivity calcula-
tion. Given that the residual of the Navier-Stokes equations at steady-state is zero (since they are a set
of conservation equations), the adjoint variables may take any arbitrary value. The adjoint variables
are chosen to eliminate the dQ

dD term in Eq. 3.5 by setting(
∂J
∂Q

+λ
T ∂R

∂Q

)
= 0, (3.6)

this is more commonly written as the adjoint equation(
∂R
∂Q

)T

λ =−
(

∂J
∂Q

)T

. (3.7)

The objective function sensitivity is then given by

dL
dD

=
∂J
∂D

+λ
T ∂R

∂D
, (3.8)

where,
∂R
∂D

=
∂R
∂X

dX
dD

, (3.9)

and,
∂J
∂D

=
∂J
∂X

dX
dD

. (3.10)

Eq. 3.8 is independent of dQ
dD . As a consequence, it is significantly less computationally expensive to

evaluate than Eq. 3.5. The calculation of the residual sensitivity ∂R
∂D in Equation 3.8 term can be com-

putationally expensive for certain mesh deformation algorithms 1, since it implicitly requires several
deformed meshes equal to the number of design variables. This term can be removed in a similar
manner to the flow sensitivity ∂Q

∂D by applying a mesh adjoint, in addition to the flow adjoint [54]. A
mesh adjoint was not required in this work, as will be discussed in Chapter 7. The interested reader
is directed to the referenced work by Nielsen et al. [54] for more details on implementing the mesh
adjoint. The procedure to evaluate the objective function sensitivity via the discrete adjoint method is
then:

1. Converge a flow solution.

2. Construct the adjoint operator and other partial derivatives.

3. Converge an adjoint solution.

4. Evaluate the objective function sensitivities via Equation 3.8.
1Refer to Chapter 7 for a review of mesh deformation methods.
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The difficulty in applying the discrete adjoint method is in constructing the adjoint operator,
(

∂R
∂Q
)T .

Techniques for constructing this operator are discussed in the next section.

3.4 Construction of the adjoint operator

Several methods exist for constructing the adjoint operator. This section will briefly describe these
methods and discuss the advantages and disadvantages of each method. Readers familiar with CFD
methods might recognise the adjoint operator as the transpose of the flow Jacobian matrix.

3.4.1 Analytic differentiation

Analytic differentiation is the most widely referenced method for constructing the adjoint operator. In
this approach, the underlying numerical methods of the flow solver are differentiated by hand. Hand
differentiation of a spatially second-order flow solver requires a significant number of hours and is
prone to human error. However, there is evidence that shows adjoint solvers developed from hand dif-
ferentiated routines typically provide the most efficient means of evaluating an adjoint solution [55].
The application of analytic differentiation to high-speed flow solvers or flow solvers which apply
turbulence modelling can also be problematic. The numerical routines in these types of flow solvers
can be non-differentiable [56]. Typically, simplifications such as assuming a constant turbulent eddy
viscosity is used in these circumstances.

3.4.2 Finite differences

The simplest method for constructing the adjoint operator is via finite differences. A first-order accu-
rate finite difference approximation for one entry of the adjoint operator is given as

∂Ri

∂Q j
=

Ri(Q j +h)−Ri(Q j)

h
, (3.11)

shown for the ith residual vector entry and jth primitive flow variable. This method requires very little
modifications to the underlying flow solver routines, making the implementation of this method attrac-
tive. However, compared to analytic differentiation, the finite difference approach is computationally
expensive, since a flow residual evaluation is required for each flow state variable in every cell. Tar-
geted differentiation is possible to help reduce the computational cost [56–58]. Another deficiency
of the finite difference approach is the difficult selection of the perturbation size h. This parameter
should be selected such that it is small enough to minimise the truncation error, yet large enough to
minimise the finite-precision subtractive error in the numerator.
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3.4.3 Complex-Step derivative approximation

The complex-step derivative approximation is similar to the finite difference approach, except now
the perturbation is along the imaginary axis in the complex plane [59]. The second-order accurate
gradient formula is given as

∂Ri

∂Q j
=

Im[Ri(Q j + ih)]
h

. (3.12)

It is noted that only one flow residual evaluation is required to obtain a second order accurate approx-
imation. However, since the evaluation now requires complex arithmetic, this typically incurs on the
order of twice the computational time, so the cost is roughly the same a second-order accurate finite
difference approximation. The primary advantage of the complex-step derivative approximation over
the finite difference approach is that there is no subtraction operator. This relaxes the conditions on
which the perturbation size (h) must be selected. In practice, this is set to be a very small number (for
example 1e−50) to satisfy truncation error. Similar to finite differences, targeted differentiation can be
used to improve the efficiency of this method.

3.4.4 Algorithmic differentiation

Algorithmic differentiation (AD), sometimes referred to as automatic differentiation, is a method of
generating source code for evaluating the sensitivities of numerical routines written in a higher-level
programming language. The premise is that, no matter how complex the underlying source code is,
it will always be constructed of elementary operations such as “+”, “-”, “x”. An AD code essentially
applies the chain-rule to differentiate the sequence of elementary operations. A new source code
is then built that evaluates the desired sensitivities. AD can be applied in either the forward mode
or the reverse mode. The forward mode was shown to be equivalent to the complex-step derivative
approximation by Martins [60], however, the complex-step derivative approach has been noted to
be simpler to implement and maintain [61, 62]. The reverse mode executes the code forward and
then backward, and evaluates the derivatives to a single objective function with respect to N design
variables. It is the reverse mode of AD that can be used to automate the application of the discrete
adjoint method. In small applications, it is sometimes possible to use AD as a “black-box”, feeding
in a nonlinear code and obtaining a corresponding linear perturbation (forward mode AD) or adjoint
(reverse mode AD) code. However, typically for large codes applying AD in a targeted or selective
manner is necessary to achieve a code that is both computationally efficient and memory efficient [52].
An alternate form of AD is operator overloading. In this approach a new structure that contains both
the value of a variable and its derivative are created. All of the existing operators in the program are
then overloaded for the new type by redefining the operator instructions. In the overloaded program,
the operator processes the value part in the same manner as the original implementation, however, the
operator now calculates the derivative using the definition of the derivative of the operator. Operator
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overloading is sometimes favoured since it does not require a third-party AD package to implement.

3.5 Hypersonic applications

As a result of its efficiency, the adjoint method has become widely used for aircraft design, evolv-
ing to the design optimisation of full wing-body configurations [23, 26]. This section will provide
a brief review of adjoint studies that have focused on the design of hypersonic aircraft. First, it is
interesting to consider the conclusions made by Giles et al. [63–65] on the topic of what happens
to the discrete adjoint system when the underlying nonlinear flow solution has an embedded shock.
By considering a fundamental one-dimensional problem with an embedded shock, the authors pre-
sented numerical results that indicate it is necessary to smear the shock over a few mesh points to
get a convergent adjoint system. A similar result was also observed by Bueno-Orovio et al. [66]. In
spite of these results, several high-speed discrete adjoint solvers have been implemented in practical
two- and three-dimensional flow codes, as discussed below. One explanation for this apparent con-
tradiction is that the numerical methods employed in high-speed flow solvers are most commonly
shock-capturing. Consequently, the captured shocks will be smeared across a few mesh points under
these circumstances.

3.5.1 Continuous adjoint method

Several studies have applied the continuous adjoint method to the design of hypersonic aircraft.
Loehner et al. [67] performed unconstrained, single-point optimisation of the nozzle on a generic
hypersonic vehicle geometry at Mach 8 flight conditions using the continuous adjoint approach. The
flow was modelled using the three-dimensional Euler equations. Several more recent works have ex-
tended the continuous adjoint framework for hypersonic flows. The work by Copeland et al. [68,
69] implemented the continuous adjoint approach to aerothermodynamic shape design for hyper-
sonic vehicles in thermochemical non-equilibrium flows. The objective functions derived in this work
were force-based and the flow was modelled as inviscid. Adjoint gradient verification against a finite
difference approach yielded reasonable accuracy. Kline et al. [70–72] has extended the continuous
adjoint method to hypersonic inlet design. Over a series of papers, the authors optimised both two-
and three-dimensional inlets using the RANS equations with the one-equation Spalart-Allmaras tur-
bulence model [73].

3.5.2 Discrete adjoint method

Perhaps the first hypersonic application of the discrete adjoint method was by Baysal et al. [74]. In this
work, a simplified two-dimensional scramjet-afterbody configuration was optimised for maximum
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axial thrust. The flow was modelled using the Euler equations. The authors compared optimisation
results from both an adjoint and a finite difference implementation. The adjoint approach was shown
to require far fewer objective function evaluations, as expected. The adjoint operator was constructed
by hand-differentiating the underlying flow solver routines.

Nemec et al. [75] applied the discrete adjoint method to their three-dimensional Euler solver
which operated on Cartesian grids. The adjoint operator was also constructed by hand-differentiation,
neglecting the non-differentiable limiter function. They performed optimisation of a re-entry capsule
at Mach 10 flight conditions, while the objective function was to achieve a lift-to-drag ratio of 0.4.
They verified their implementation against central-difference gradients, and reasonable agreement
was observed. It was noted that to stabilise the adjoint solver, the second-order reconstruction had to
be reduced to first order in some regions of the flow field.

Eyi et al. [76, 77] performed aerothermodynamic optimisation of hypersonic blunt bodies using
a discrete adjoint approach. The flow was modelled with the two-dimensional Reynolds-Averaged
Navier-Stokes equations coupled with the algebraic Baldwin-Lomax turbulence model and included
finite-rate chemistry. The adjoint operator was constructed by hand-differentiation. The objective was
to minimise pressure drag on the blunt-body. This work has most recently been extended to include
thermal non-equilibrium [78].

As discussed in Section 3.4, it is possible to automate the construction of the adjoint operator.
Nielsen et al [56] implemented a discrete adjoint solver using the complex-step approximation. The
implementation was verified for two-dimensional, spatially first-order accurate, laminar, hypersonic
flows with finite-rate chemistry. Another application of an automated adjoint operator is the work by
Marta [79], which presents the ADjoint method (AD refers to the algorithmic differentiation within
the adjoint approach). In this work, the fluid was modelled using the Euler equations coupled with
Maxwell’s equations for application in magnetohydrodynamic flow control. The adjoint gradients
were verified against finite differences with good agreement, also, several optimisation examples
were presented. The ADjoint approach has also been used for the optimisation of an oblique wing
in hypersonic flow by Mader et al. [80]. Again, the flow was modelled using the Euler equations for
this work. The adjoint gradients were also verified against finite differences with good agreement.

3.5.3 Context for contributions in this work

Table 3.1 summarises the reviewed work on adjoint-based aerodynamic shape optimisation in hyper-
sonic flow. The novel contribution in this thesis is the implementation of an adjoint solver for high-
speed flow that operates on the RANS equations coupled with a two-equation turbulence model. The
two-equation turbulence model used in this work is the k−ω turbulence model. The complex-step
derivative approach has been chosen to construct the adjoint operator for the spatially second-order
unstructured grid flow solver routines. The use of the complex-step derivative approach provides an
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extensible framework that is intended to provide automatic consistency between the flow solver and
the adjoint solver. It is superior to the finite difference approach since it does not incur any finite-
precision subtractive error, and it is more appropriate than AD for emerging languages, such as the D
programming language [81] used in this work, which may not have established AD libraries available.
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CHAPTER 4

FLOW SOLVER

Historically, Eilmer has operated on structured grid topologies using an explicit time-accurate method
[82]. To improve efficiency in reaching steady-state solutions and to provide geometrical flexibility, a
Newton-Krylov accelerated steady-state solver that operates on unstructured grid topologies has been
implemented. This chapter provides the details of the numerical methods employed within Eilmer’s
unstructured steady-state solver. The core routines of the flow solver are written in the D programming
language [81]. More details on the implementation of a compressible-flow code in the D programming
language are provided by Jacobs et al. [83].

4.1 Governing equations

4.1.1 Turbulence modelling

The set of equations that govern the behaviour of compressible turbulent flow are the Navier-Stokes
equations. It was discussed in Chapter 3 how it is currently too computationally prohibitive for engi-
neering design work to partially or fully resolve the turbulent eddy structures employing LES or DNS
methods. For this reason, time-averaging (or Reynolds-averaging as it is referred to) is employed to
describe the flow field in terms of mean flow quantities. In this approach, all turbulent eddy struc-
tures are modelled. When the governing equations are Reynolds-averaged, a quantity φ(t) can be
considered as the sum of a mean value and a fluctuating part as

φ(t) = φ̄ +φ
′, where φ̄ = lim

T→∞

1
T

t+T∫
t

φ dt and φ̄ ′ = 0, (4.1)
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where φ̄ is the time- or Reynolds-averaged term, and φ ′ is the fluctuating part. Due to the compress-
ibility of hypersonic flows, a further density-averaging is necessary. This density-weighting is referred
to as Favre-averaging.

φ(t) = φ̃ +φ
′′, where φ̃ =

1
ρ̄

lim
T→∞

1
T

t+T∫
t

ρφ dt =
ρφ

ρ̄
and ρφ ′′ = 0. (4.2)

As in Reynolds-averaging, φ̃ is the Favre-averaged term, and φ ′′ is the Favre fluctuating part (note that
this is different from the Reynolds-averaged fluctuating term). When substituted into the full Navier-
Stokes equations, the Reynolds- and Favre-averaged equations produce additional terms within the
governing laminar transport equations [84]. These terms, sometimes called the Reynolds stresses and
turbulent heat-flux vector [85], cannot be solved analytically and must be modelled by a turbulence
model [84]. There exists a vast quantity of turbulence models in the literature, for instance, Roy et
al. [86] reviewed 18 turbulence models for their suitability in predicting turbulent hypersonic flows.
Despite this, no turbulence model has been shown to provide sufficiently accurate results over a wide
range of flow regimes. Furthermore, even when simulating a particular experiment, the ranking of
turbulence models based on accuracy is dependent on the chosen metric. As an example, Coratekin
et al. [87] found that for hypersonic flow over a compression ramp, the Spalart-Allmaras turbulence
model [73] predicted the correct extent of separation, whereas only the k−ω model [84] predicted
sufficiently accurate surface heat transfer rates. Considering this, Wilcox’s 2006 k−ω turbulence
model [84] is selected for this current work, primarily due to its proven performance in Eilmer’s
structured grid explicit solver [88–90].

4.1.2 The RANS flow equations

The differential form of the Reynolds-averaged, Favre-averaged Navier-Stokes equations (referred to
herein as the RANS equations) coupled with the k−ω turbulence model are given as follows:

Mass Conservation:
∂ ρ̄

∂ t
+

∂

∂xi
(ρ̄ ũi) = 0 (4.3)

Momentum Conservation:

∂

∂ t
(ρ̄ ũi)+

∂

∂x j
(ρ̄ ũ jũi) =−

∂ p
∂xi

+
∂

∂x j
[t̄ ji + ρ̄τ ji] (4.4)
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Energy Conservation:

∂

∂ t

[
ρ̄

(
ẽ+

ũiũi

2
+ k
)]

+
∂

∂x j

[
ρ̄ ũ j

(
h̃+

ũiũi

2
+ k
)]

=

∂

∂x j

[(
µ

PrL

+
µT

PRT

)
∂ h̃
∂x j

+

(
µ +σ

∗ ρ̄k
ω

)
∂k
∂x j

]
+

∂

∂x j
[ũi(t̄i j + ρ̄τi j)]

(4.5)

Molecular and Reynolds-Stress Tensors:

t̄i j = 2µ S̄i j ρ̄τi j = 2µT S̄i j−
2
3

ρ̄kδi j S̄i j = Si j−
1
3

∂ ũk

∂xk
δi j (4.6)

Eddy Viscosity:

µT =
ρ̄k
ω̃

ω̃ = max

{
ω,Clim

√
2S̄i jS̄i j

β ∗

}
Clim =

7
8

(4.7)

Turbulence Kinetic Energy:

∂

∂ t
(ρ̄k)+

∂

∂x j
(ρ̄ ũ jk) = ρ̄τi j

∂ ũi

∂x j
−β

∗
ρ̄kω +

∂

∂x j

[(
µ +σ

∗ ρ̄k
ω

)
∂k
∂x j

]
(4.8)

Specific Dissipation Rate:

∂

∂ t
(ρ̄ω)+

∂

∂x j
(ρ̄ ũ jω) = α

ω

k
ρ̄τi j

∂ ũi

∂x j
−βρ̄ω

2 +σd
ρ̄

ω

∂k
∂x j

∂ω

∂x j

+
∂

∂x j

[(
µ +σ

ρ̄k
ω

)
∂ω

∂x j

] (4.9)

Closure Coefficients:

α =
12
25

β = β0 fβ β
∗ =

9
100

σ =
1
2

σ
∗ =

3
5

σd0 =
1
8

β0 = 0.0708 PrT =
8
9

σd =

0, ∂k
∂x j

∂ω

∂x j
≤ 0

σd0,
∂k
∂x j

∂ω

∂x j
> 0

fβ =
1+85χω

1+100χω

χω =

∣∣∣∣∣Ωi jΩ jkŜki

(β ∗ω)3

∣∣∣∣∣ Ŝki = Ski−
1
2

∂ ũm

∂xm
δki

(4.10)

For this work, the system is closed using the ideal gas equation of state

p = ρ̄RT̃ . (4.11)

The viscosity coefficient µ is assumed a function of temperature only, and is evaluated by Sutherland’s
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semi-empirical formula

µ = µref

(
T

Tref

)
Tref +S
T +S

, (4.12)

where µref = 1.716× 10−5 kg·m−1·s−1, Tref = 273.15 K, and S = 111.0 K. Similarly, the thermal
conductivity coefficient k is assumed a function of temperature only, and is evaluated by Sutherland’s
semi-empirical formula

k = kref

(
T

Tref

)
Tref +S
T +S

, (4.13)

where kref = 2.41×10−2 W·m−1·K−1, Tref = 273.0 K, and S = 194.0 K.

4.2 Discretisation of the flow equations

4.2.1 Finite Volume Method

The governing equations outlined above are discretised using a cell-centered finite-volume approach.
The finite volumes (referred to herein as cells) supported in Eilmer are triangles or quadrilaterals in
two-dimensions; and hexahedrals, tetrahedrals, prisms, or pyramids in three-dimensions. A quadrilat-
eral cell is shown in Figure 4.1 with geometric definitions. The finite volume method operates directly
on the integral form of the governing equations

∂

∂ t

∫
V

UdV =−
∮

S
(Fc−Fv) · n̂dA+

∫
V

Sturb.dV, (4.14)

where U is the vector of conserved variables,

U =



ρ̄

ρ̄ ũx

ρ̄ ũy

ρ̄ ũz

ρ̄E

ρ̄k

ρ̄ω


, (4.15)

t is time, V is volume, A is an interfacial area, Fc is the convective flux vector, Fv is the viscous flux
vector, and Sturb is the turbulence model source term. The residual function for a cell, discretised by
the finite volume method, can then be written as

R(U) =
dU
dt

=− 1
V ∑

f aces
(Fc−Fv) · n̂dA+Sturb, (4.16)
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where U and Sturb now represent cell-average values, and ∑ f aces denotes integration over the cell
interfaces.

vertex
cell-center
interface mid-point
cell interface
control volume

Figure 4.1: Quadrilateral finite volume cell with geometric definitions.

4.2.2 Gradient reconstruction

When applying the finite volume method, gradient reconstruction is required in both the convective
flux update (outlined in Section 4.2.3) and the viscous flux update (outlined in Section 4.2.4). Two
popular methods for approximating the gradients are Gauss’ divergence theorem and the least-squares
procedure. The least-squares procedure is chosen for the current work as suggested by several authors
who have reported superior performance on unstructured grids [91–94].

i
∆pij

j

Figure 4.2: Least-squares point cloud stencil.

Consider the cloud of points, j, centred around the ith cell in Figure 4.2. For a primitive flow
variable Qi, the least-squares error term (S) can be defined as

S =
N

∑
j=1

w2
j(

~∇Qi ·∆~pi j−∆Q j)
2, (4.17)

where w j is the weight applied to the jth cell. To minimise the error over the cloud, the error term is
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differentiated with respect to the unknown gradients and set to zero,

∂S
∂∇Qi

= 0. (4.18)

The linear system of equations which form (shown for two dimensions only) can then be solved to
estimate the gradients

∇Qi = [M]−1~b, (4.19)

where,

[M] =

∑
N
j=1 w2

j∆xi j∆xi j ∑
N
j=1 w2

j∆xi j∆yi j

∑
N
j=1 w2

j∆xi j∆yi j ∑
N
j=1 w2

j∆yi j∆yi j

 , (4.20)

and,

~b =

∑
N
j=1 w2

j∆Q∆xi j

∑
N
j=1 w2

j∆Q∆yi j

 . (4.21)

If the weights are dependent only on the point positions, the least-squares estimates for the gradi-
ents can be reduced to a summation of the ∆Q values, with coefficients determined from the equations
above. This is the form coded within the flow solver to improve efficiency.

4.2.3 Convective flux

The convective flux through a cell interface is computed by nominally first-order upwinding schemes,

F = F(QL,QR), (4.22)

where F(.) is the flux operator, QL and QR are the cell-centered flow state from the left and right
cell respectively. Upwind schemes can be categorised into either flux difference splitting (FDS) or
flux vector splitting (FVS) schemes. FDS schemes use an approximate solution to the local Riemann
problem, whereas FVS schemes split the flux vector into upstream and downstream travelling com-
ponents. Several flux calculators are available in Eilmer. The popular FDS scheme by Roe [95, 96],
the FVS scheme by Hanel et al. [97, 98], and the hybrid AUSMDV scheme by Liou and Wada [99]
have been used in this work. Higher-order accuracy is achieved by reconstructing the cell-centered
flow state up to a cell interface before the flux calculation, as outlined in Section 4.2.3.1.
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4.2.3.1 Higher-order reconstruction

To achieve second-order spatial accuracy, the flow states at the cell interfaces are calculated by inter-
polating the cell-centered flow state using a piece-wise-linear scheme,

Qi+1/2 = Qi +φ ·∇Qi ·
1
2

∆~pi j, (4.23)

where φ is some limiting factor (discussed in Section 4.2.3.2), and Qi is a primitive variable (u,
v, w, ρ̄ , p, k, ω). The gradients of the primitive flow variables (∇Qi) are approximated using the
least-squares procedure outlined in Section 4.2.2. The reconstructed flow states, either side of the
interface, are then used for QL and QR in Equation 4.22. A compact, nearest neighbour stencil is
chosen as the least-squares stencil, illustrated in Figure 4.2. Our reconstruction procedure computes
a gradient for all internal cells only. For multi-block simulations, this gradient is communicated to
the ghost-cells at block connection boundaries such that consistent inviscid fluxes are computed at
shared interfaces of these connections. This increases the complexity of the code as a result of the
tightly coupled communication between neighbouring blocks. However, failing to do this results in
small inconsistencies in flux estimates across boundary interfaces. The compact nature of the stencil
is memory efficient and requires only one layer of ghost-cells.

4.2.3.2 Gradient limiting

When reconstructing a flow state with Equation 6.4 in regions near strong shocks, a limiting factor
φ is required to ensure stability. The limiter acts to prevent new local minima or maxima during the
reconstruction process by limiting the computed gradient, and so φ is taken to be some positive value
less than 1. For unstructured grids, the multidimensional limiters by Barth [100] and Venkatakrish-
nan [101] are frequently employed. The Venkatakrishnan limiter is preferred for steady-state solvers
due to its superior convergence properties [85], and, for this reason, the Venkatakrishnan limiter is
used in this work. Details of the version implemented in Eilmer can be found in the textbook by
Blazek [85]. The multidimensional limiter procedure (MLP) [102, 103] has also been identified as a
promising technique to improve the discontinuity capturing capability and robustness of the unstruc-
tured grid solvers near strong shocks [104]. Future work may incorporate it.

A known problem for supersonic and hypersonic flow-codes is that the limiters necessary to en-
sure stability can oscillate causing a stalling of the convergence. In the literature, this is referred to as
limiter ringing [104, 105]. The level of convergence achieved before stalling is problem-dependent.
Since the adjoint method is predicated on the assumption that the residual vector has been reduced
to machine precision, performing an adjoint solve on a stalled flow field residual can cause the ad-
joint solver to either diverge or converge on an inaccurate solution. Furthermore, the routines in the
flow code that evaluate the limiter values have been observed to be sensitive to complex variable per-

37



CHAPTER 4. FLOW SOLVER

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

0 500 1000 1500 2000 2500 3000 3500 4000 4500

L 2
no

rm

iteration

Figure 4.3: Global residual history for simulation with frozen limiter on 3000th iteration.

turbations [105]. This has also been observed in this current work. One approach to overcome this
limitation is to freeze the limiter after stalled convergence [101]. In this approach, once convergence
has stalled, the limiter value for each cell is frozen, i.e. the limiter value is no longer updated during
residual evaluations, noting that the limiter is still applied. Thompson [105] applied this approach
in the context of high-speed adjoint optimisation. Limiter freezing is applied in the current work on
problems that exhibit stalled convergence. Figure 4.3 presents an example of freezing the limiter. This
example is of Mach 10 air flowing over a blunted wedge 1. It is observed that the stalled residual can
drop several orders of magnitude upon freezing the limiter on step 3000.

4.2.3.3 Carbuncle Fix

The AUSMDV and Roe-Pike flux schemes are both known to suffer from the Carbuncle phenomenon
[106]. The carbuncle phenomenon manifests itself as a region of non-physical re-circulation behind
a strong shock wave. One of several suggested fixes in the literature is to apply a highly dissipative
flux scheme in the shock region whilst employing a low dissipation flux scheme elsewhere. This was
suggested by Wada et al [98], where the Roe flux scheme was paired with the HLLE scheme [107,
108] and the AUMSDV flux scheme was paired with with scheme by Hanel et al. [97, 98]. To switch
between the flux schemes, a simple shock detector based on a measure of the relative change in normal
velocity at interfaces is used. Specifically, we indicate a strong compression at cell-interface i + 1/2
when

un,i+1−un,i

min(ai+1,ai)
< tol, (4.24)

1More details for this simulation are provided in Appendix B.2.
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where u is the gas velocity, a is the gas speed of sound, and tol is a compression tolerance, typically
set at -0.05. This shock detector is favoured over a pressure-based detector, since the latter can be trig-
gered by compression waves that are not shock waves, such as in boundary layers [98]. An example
of the employed fix is shown in Figure 4.4. Here a carbuncle arises when simulating Mach 8 inviscid
air flow over a cylinder 2 using the AUSMDV flux scheme. By applying the Hanel flux scheme in
regions where Equation 4.24 is triggered, the carbuncle is completely avoided. It is noted that we
only observe the carbuncle phenomenon with the unstructured grid solver. We have not observed the
carbuncle phenomenon using the structured grid solver within Eilmer.

(a) AUSMDV. (b) AUSMDV+Hanel. (c) AUSMDV+Hanel.

Figure 4.4: Carbuncle fix example. For figure (c) S= 1 denotes cells in which the Hanel flux calculator
is employed; S = 0 denotes cells in which the AUSMDV flux calculator is employed.

4.2.4 Viscous flux

To calculate the viscous flux, the flow variables and their gradients are required at the cell interface
mid-points. The interface flow state is simply the average of the left and right cell-centered values.
Although it is possible to also average the flow gradients in a likewise manner, this is known to
produce an oscillatory checker-board pattern [109, 110]. Several studies [91, 92, 104, 111] have shown
that the augmented-face face-tangent method by Haselbacher et al. [109, 110] is a preferred method
of averaging the gradients. The spatial gradients at the cell interfaces, computed using the augmented-
face face-tangent method, are given as

(∇Q) f = ∇Q f −
[

∇Q f · ∆̂pi j−
Q j−Qi

| ~∆pi j|

](
n̂ f

n̂ f · ∆̂pi j

)
, (4.25)

2More details for this simulation are provided in Appendix B.3.
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with reference to Figure 4.2 and where ∇Q f is the average of the left and right cell-centered gradients
evaluated using the weighted least-squares approach outlined in Section 4.2.2. An inverse distance
weighting was applied in this work. The stencil of points used in the least-squares method here are
the cell-center and the surrounding interface mid-points.

4.3 Temporal discretisation

4.3.1 A globalised Newton-Krylov method

A Newton-Krylov method is used to accelerate the flow solution to the steady state, i.e. R(U) = 0.
A Newton iteration can be derived by applying a multivariate Taylor expansion about a current point
Un:

R(Un+1) = R(Un)+R′(Un)(Un+1−Un)+higher order terms. (4.26)

Then by setting the right-hand side to zero and neglecting the higher-order terms, the Newton iteration
is obtained as

R′(Un)∆Un =−R(Un), Un+1 = Un +∆Un, n = 0,1, .... (4.27)

Where R′ = ∂R
∂U is the flow Jacobian. A disadvantage of Newton’s method is the lack of conver-

gence robustness. In practice, globalisation strategies that lead from an initial iterate into the region of
convergence of Newton’s method around the desired root are required [112]. Standard globalisation
strategies such as line search or trust-region methods often stagnate at local minima. This can be par-
ticularly problematic when the solution has complex features such as shocks not present in the initial
condition [113]. The pseudo-transient continuation is more favourable for these types of problems
since it does not require a reduction in the global residual at each step [113]. In practical terms, Knoll
et al. [112] describe it as being able to “climb hills.” Pseudo-transient continuation can be viewed as
time-marching to the steady-state solution and is applicable when the residual is time-independent
and the eigenvalues of its Jacobian have negative real parts [114]. When choosing a time-marching
method to globalise Newton’s method, the implicit-Euler time-marching scheme is attractive, because
it is unconditionally stable, and its time linearisation becomes Newton’s method in the limit of infi-
nite step sizes [115]. An implicit-Euler scheme can be derived by first rewriting Equation 4.14 in
semi-discrete form using the discrete residual given as Equation 4.16.

∂U
∂ t

= R. (4.28)

Using implicit-Euler time-integration, Equation 4.28 can be written in fully discrete form as

∆Un

∆t
= Rn+1, where ∆Un = Un+1−Un, (4.29)
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and ∆t is the discretised time increment. Since we do not know Rn+1, Equation 4.29 is linearised in
time as

∆Un

∆t
= Rn +

∂Rn

∂U
∆Un, (4.30)

this may then be rearranged to recover the implicit-Euler time marching iterate,

[A]n∆Un =

{
1
∆t

I− ∂Rn

∂U

}
∆Un = Rn. (4.31)

Note that as 1/∆t approaches 0, Newton’s method (Equation 4.27) is recovered. In practice it is
unnecessary to solve the linear system at each step exactly, instead an inexact-Newtons method is
applied [112, 115, 116], where an update to the linear system is sought that satisfies

||Rn +[A]n∆Un|| ≤ η ||Rn||, (4.32)

were η ∈ [0,1) is called the forcing parameter. Although several methods are available for computing
the forcing parameter [117], it is typical to use a constant forcing parameter [118]. The time step at
each iteration is updated corresponding to a reduction of the residual norm over a step [85, 112],

∆tn = ∆tn−1

(
||R(Un−1||
||R(Un)||

)a

, (4.33)

where a is some positive number, typically chosen as 1. This formulation allows the time-step to grow
and reduce depending on the convergence history.

The Krylov term in the name Newton-Krylov comes from the use of a Krylov subspace linear
solver for solving the linear system (Equation 4.31) arising at each Newton iteration. Several Krylov
subspace methods exist [119, 120]. The Generalised Minimal RESidual (GMRES) algorithm [121]
has been a favourable selection for CFD solvers [112, 122–125]. A primary factor in the popularity of
GMRES is that the algorithm only requires a matrix-vector product, which may be approximated by a
Fréchet derivative [126], this will be discussed further in Section 4.3.3. This suggests that the method
can be matrix- or Jacobian-free. However, it will be shown in Section 4.3.4 that some approximation
of the Jacobian is still required as a preconditioner to the linear system. The GMRES algorithm
employed in the flow solver will be presented in Section 4.3.5.

4.3.2 Linear system scaling

The linear system of equations presented as Equation 4.31 are poorly scaled. For example, for turbu-
lent flows, the turbulence variables can have residual components that are several orders of magnitude
larger than the flow state variables. As a consequence of solving the linear system inexactly, the poor
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scaling can lead to sub-optimal convergence or even divergence since the system can be dominated by
the largest residual component [118]. To improve the convergence characteristics of Equation 4.31,
residual vector (row) and solution vector (column) scaling is recommended [122]. The row and vector
scaling outlined by Brown et al. [127] is applied to Equation 4.31 in this work. The scaled system is
given as

[Ã]∆Ũ = R̃, where [Ã] = D−1[A]D, ∆Ũ = D−1
∆U, R̃ = D−1R. (4.34)

The scaling matrix D, which is a diagonal matrix, is made up of typical values for ∆U [127, 128]. For
the current work, this is chosen to be the absolute value of the maximum time rate of change for each
conserved variable at the current time step. To avoid scaling by values close to zero, when the time
rates of change are very small, we limit the absolute value of the entries in D to be 1.

4.3.3 Matrix-free approach

Explicit formation of the flow Jacobian, ∂Rn

∂U , in Equation 4.31 requires linearisation of the spatially
second-order flow routines. This requires excessive storage and is computationally expensive to com-
pute [129]. An advantage of GMRES over other linear solvers is that it requires only matrix-vector
products, which may be approximated by a directional difference or Frećhet derivative [126]. The
Frećhet derivative is given as

Jv≈ [R(U +hv)−R(U)]

h
, (4.35)

where v is a directional vector, h is the perturbation parameter, R is the residual vector, and J is
the matrix operator, in this case the flow Jacobian. A difficulty of applying Equation 4.35 directly is
the choice of the perturbation parameter h. Considering truncation error, h should be chosen suffi-
ciently small. However, if h is too small, then the round-off error from subtracting two large, almost
equal numbers can degrade the accuracy of the approximation [130]. Erroneous matrix-vector prod-
ucts resulting from poor selection of h can lead to GMRES converging on the incorrect linear system
solution at each step as discussed by Zingg et al. [131]. To relieve the difficulty of selecting an ap-
propriate perturbation size, and to improve the accuracy of the evaluated derivatives, a complex-step
approximation to the Frećhet derivative may be applied [132]. The complex-step approximation to
the Frećhet derivative is written as

Jv≈ Im[R(U+hvi)]
h

. (4.36)

In the complex-variable approach, no explicit differencing is involved, and so the perturbation pa-
rameter may be chosen sufficiently small to solely control the truncation error. A comparison of the
real and complex variable Frećhet derivative for several choices of h is shown in Figure 4.5. Here
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the convergence history for an inviscid simulation of Mach 2 air flowing over a ramp is presented 3,
this problem was originally published by Marques et al. [133]. From Figure 4.5, it is observed that
the level of convergence achievable is strongly dependent on the selection of h for the real-valued
Frećhet derivative. The complex-valued Frećhet derivative does not show the same dependence. For
turbulent simulations, it was found throughout this work that the complex-valued Frećhet derivative
was necessary to achieve suitable convergence.
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Figure 4.5: Effect of h selection for a supersonic ramp simulation.

4.3.4 Preconditioning

The Krylov subspace methods tend to suffer from slow convergence for problems which arise from
fluid dynamics [119]. In practice, methods such as GMRES require some form of preconditioning
to achieve fast, robust convergence. Preconditioning transforms the system by either pre- or post-
multiplying by a matrix which approximates A. The former is referred to as left-preconditioning, and
is applied as given

P−1Ax = P−1b. (4.37)

3More details for this simulation are provided in Appendix B.1.
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In left-preconditioning, the residual of the system is changed. This can be avoided by applying post-
multiplying or right-preconditioning,

AP−1Px = b. (4.38)

Right-preconditioning is used in this work. The precondition matrix P−1 should resemble A−1 as
much as possible. In practice, P is typically chosen to be a reduced-order approximation of A which
is then decomposed by some approximate factorisation. The factorisation of P enables fast inversion
when performing the preconditioning. Selection of a suitable factorisation is challenging. In a review
of factorisation methods for CFD applications, Saad et al. [134] found that no single method was
superior to the rest. For hypersonic flows, a zero-fill Incomplete Lower-Upper (ILU) factorisation of
an approximate first-order flow Jacobian has shown good results for inviscid, laminar and turbulent
flows [135–137]. An ILU factorisation of a matrix is a sparse approximation of the LU factorisation;
zero-fill denotes that the sparsity pattern of the ILU factorisation is that of the original matrix. Higher
levels of fill are possible, typically denoted as ILU(p), where p is the level of fill. As the level of
fill increases, the sparsity pattern becomes less like the original matrix and more like the exact fac-
torisation. However, the added accuracy of the factorisation is balanced by the additional memory
and computational expense. Several authors [122–125] have found higher fill levels, ranging from 2
through to 4, to provide accelerated convergence for the simulation of subsonic airfoils. The effect of
increasing the level of fill for a supersonic test case was briefly studied as part of this current work.
Figure 4.6 shows the convergence history for the inviscid supersonic ramp test case first introduced in
Section 4.3.3. It is observed that the additional level of fill does not provide significant performance
improvement over the ILU0 preconditioner. As a consequence, for this work, the ILU0 preconditioner
is used.
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Figure 4.6: Comparison of level of fill for a supersonic ramp simulation.

The ILU preconditioner can be implemented in either a scalar or block flavour. In the block ap-
proach, the LU factorisation is applied per block, where the block structure is taken to be the natural
block structure of the flow Jacobian. This is referred to as block-fill ILU or BFILU. Orkwis [138]
found that BFILU was able to converge problems that the scalar approach stalled on. Pueyo [123]
found that, by treating the zero entries within a block as if they were non-zeroes, the BFILU can
be constructed via a scalar algorithm. This reduces the complexity of the code and is the approach
applied in the current work. For domain decomposed problems, an additive-Schwarz [139] approach
with no overlapping is employed.

4.3.5 GMRES algorithm

The scaled right-preconditioned restarted GMRES algorithm implemented in Eilmer is presented in
Figure 4.7. In this work, we have chosen to precondition first and scale second. Note that, in the cal-
culation of J̃ṽ j, the Jacobian matrix

(
J = ∂R

∂U
)

is never explicitly formed. The product is calculated
by first forming z = D−1ṽ j, then solving the linear system Pw = z, evaluating Jw via the complex
Fréchet derivative, and then finally multiplying the result of the matrix-vector product by D. In prac-
tice, the routines used to construct the adjoint operator4,

(
∂R
∂Q
)T , are used to build the approximate

low-order flow Jacobian used as the precondition matrix. This requires the application of a transform

4Details are provided in Section 6.2

45



CHAPTER 4. FLOW SOLVER

from the primitive to conservative flow state variables, details of this transform matrix are provided
in Appendix C. To remove unnecessary computational expense, the ILU decomposition of the trans-
posed approximate low-order flow Jacobian is constructed, and so, it is PT that is actually stored in
memory using compressed row storage format (CRS) [119]. Consequently, the preconditioning stage
requires the solution of (PT )T w = z via a CRS-based factorisation transpose solve. The algorithm for
performing this, which is implemented in Eilmer, is outlined by Dongarra [140]. The remainder of
the GMRES algorithm resembles the standard method as outlined by Saad [119, 121].
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1. Star t:

• Choose x0

• Compute

r0 = b−Ax0.

r̃0 =Dr0.

ṽ1 =
r̃0

||r̃0||2
.

2. Iterate:

• For j= 1,...,m do

J̃ ṽj =D(J(P−1(D−1ṽj))).

h̃i, j =(J̃ ṽj), i= 1,2,..., j.

ṽj+1 = J̃ ṽj−
i

∑
i=1

h̃i, jṽi.

h̃ j+1, j =||ṽj+1||2, and

ṽj+1 = ˜̂vj+1/ h̃ j+1, j.

3. Solve the least-squares problem:

• Define ˜̄Hm to be the (m+1)×m(Hessenberg) matrix whose nonzero entries are the coefficients
h̃i j, 1≤ i≤ j+1, 1≤ j≤m and Ṽm≡ [ṽ1,...,ṽm].

• Find the vector ỹm which minimises ||β̃e1− ˜̄Hmỹ||2 over all vectors ỹ in R
m.

4. Form approximate solution:

• Compute xm= x0+P−1D−1z̃m, where z̃m= Ṽmỹm.

5. Restar t:

• Compute rm= b−Axm, if satisfied then stop,

• else x0 ← xm Go-to 1.

Figure 4.7: A scaled right-preconditioned restarted GMRES algorithm.

4.4 Boundary Conditions

Each boundary of a computational domain in this work is modelled as either an inflow, outflow,
slip-wall, or no-slip wall boundary condition. The boundary conditions are handled by attaching a
ring of ghost cells, one cell deep, around the outer edges of the computational domain. The inviscid-
component of an applied boundary condition is implemented by filling the ghost-cell data and then
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applying the normal reconstruction and flux calculation without further discrimination of the bound-
ary cells. For viscous simulations, the boundary interface flow state is also specified as appropriate
for the particular boundary condition. The boundary values data are used in the derivative calculations
that subsequently feed into the viscous fluxes.

The inflow boundary condition employed in the flow solver is a supersonic inflow boundary con-
dition. For this inflow, the ghost cell is filled in with the user-specified freestream flow state. The
outflow boundary condition is an extrapolate outflow boundary condition. For this outflow, the ghost-
cell is filled in with a first-order extrapolation of the interior flow state. The interface flow state for
the inflow and outflow boundary conditions are calculated similar to the interior interfaces, i.e. by
averaging the flow state on either side of the interface. The slip- and no-slip wall boundary conditions
each fill the ghost cell with a copy of the internal flow state, the normal velocity is then reflected with
respect to the boundary surface to model the wall effect. The interface flow state for the slip wall
is calculated by the same averaging as the inflow and outflow boundary conditions. For the no-slip
wall boundary condition, a zero velocity is applied. Additionally, either a fixed temperature is set in
the isothermal case, or a copy of the interior flow state temperature for adiabatic walls. There is also
a user-defined boundary condition that allows the user to specify the ghost-cell data and boundary
interface data via user-written functions. This particular boundary condition is used in the verification
test cases presented in Chapter 5.

4.5 Parallelisation

The computational domain may be decomposed into several partitions of cells, referred to as blocks,
for parallel processing of the calculations. For this work, domain decomposition of the computa-
tional grid is achieved via METIS[141]. The decomposition of the domain generates extra interior
boundaries along block-block connections. To accommodate the transferral of data between blocks
separated by these interior boundaries, each block has a buffer region, one cell deep, along block-
block boundaries. The buffer region contains ghost cells, which are used to hold a copy of the flow
information including the gradients required for the flowstate reconstruction and viscous flux cal-
culation, from adjacent blocks. For a boundary common to two blocks, the ghost cells in the buffer
region of each block overlap the active cells of the adjacent block. The only interaction that occurs be-
tween blocks is the exchange of boundary data. To achieve second-order spatial accuracy on domain
decomposed simulations, data is exchanged three times: (1) the flow state is exchanged prior to the
reconstruction phase; (2) the convective gradients are exchanged prior to the invsicid flux calculation;
and (3) the spatial gradients are exchanged prior to the viscous flux calculation.

Although is is possible to use an MPI library for parallelism from D, as a first pass, we have
chosen to use the shared-memory parallelism offered directly by the D compiler. We employ block-
level parallelism, whereby each block may have its partition of cells operated on simultaneously.
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Although the use of a thread-pool to implement the parallel updates for the blocks means we need
to run parallel jobs on a multi-core computer, typical engineering workstations have enough compute
resources to allow for significant acceleration as compared to a single core calculation. For example,
the simulations presented in Chapters 5 and 8 were executed on a 20-core, 128GB RAM system.

4.6 Summary

To summarise, the flow solver developed for this work extends the open-source, compressible flow
CFD code, Eilmer [83]. The flow solver is written in the D programming language [81] and uses a
finite-volume method to solve the Euler, Navier-Stokes or Reynolds-Averaged Navier-Stokes equa-
tions on unstructured body-fitted grids using A Jacobian-Free Newton-Krylov method for acceleration
to steady-state [142]. The convective fluxes are computed using the AUSMDV scheme by Liou and
Wada [99]. Second-order spatial accuracy for convective fluxes is achieved by reconstructing the prim-
itive flow state variables (u,v,ρ, p,k,ω) within the finite-volumes using an unweighted least-squares
method with a nearest face neighbour stencil [143]. To ensure stability when reconstructing the flow
state in finite-volumes near strong shocks, the limiter by Venkatakrishnan is employed [144]. The spa-
tial gradients required at the cell interface mid-points for computing the viscous fluxes are computed
using a cell-centered weighted least-squares method and the face-tangent augmented face-gradient
method [109]. The Reynolds stresses in the RANS equations are modelled using Wilcox’s 2006 k−ω

turbulence model [84]. The system is closed using the ideal gas equation of state, and the viscosity
and thermal conductivity coefficients are evaluated using the Sutherland semi-empirical formulae. A
preconditioned, restarted GMRES method is used to solve the system of linear equations arising when
solving for the Newton steps [119]. Robust preconditioning is achieved by an ILU[0] decomposition
of an approximate flow Jacobian constructed by only considering a nearest-face-neighbour stencil.
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CHAPTER 5

FLOW SOLVER VERIFICATION AND VALIDATION

Having discussed the formulation of the flow solver in Chapter 4, this chapter will document the
verification and validation of the flow solver, with the goal to show that it is suitable for high-speed
flow analysis. Boehm [145] and Blottner [146] define verification as “solving the equations right”
and validation as “solving the right equations” [147]. In this work, several methods of verification are
employed to examine the accuracy of the implemented numerical methods. The Method of Manufac-
tured solutions is used to quantitatively verify the order of accuracy of the core routines of the flow
solver. The shock-capturing and boundary layer resolving capabilities of the flow solver are quali-
tatively verified by comparison to analytical and numerical solutions, respectively. An extensive set
of validation cases has been taken from the literature to establish the appropriateness of the imple-
mented physical models for design analysis in high-speed flow. The selected validation cases cover
the spectrum of relevant flow phenomena outlined in Chapter 2, in particular, high-speed flows with
strong inviscid/viscous interactions. These include several fundamental configurations which are well
established in the literature: such as flat plates, cones, and compression corners. In addition to these
fundamental cases, a representative hypersonic vehicle geometry is also presented.

5.1 Overview of flow solver settings

The following flow solver settings have been used in the verification and validation studies presented
in this chapter unless otherwise stated.
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Table 5.1: General flow solver settings for verification and validation cases.

Solver Type Newton-Krylov
Preconditioner ILU0
Grid Type Unstructured
Grid Generation Pointwise™
Grid Partitioning METIS™
Flux Calculator AUSMDV
Reconstruction Second-order
Limiter Venkatakrishnan (K = 0.3)

5.2 Verification

5.2.1 Method of Manufactured Solutions

The Method of Manufactured Solutions is a code verification technique that can be used to assess
the order of accuracy of a computational fluid dynamics code. First proposed by Roache and Stein-
berg [148], the method allows one to choose a purely manufactured analytic solution which is fed
through the governing partial differential equations to obtain the source terms which would, in turn,
generate the manufactured solution. The solver is then employed to simulate the derived source terms
with exact Dirichlet boundary conditions applied to all boundaries by filling the ghost cells with val-
ues from the analytic solution. As grid refinement increases, the solution generated by the flow solver
should approach the analytic solution in all cells. The manufactured solutions method is a more rigor-
ous approach than simply using exact solutions because the manufactured solution can be constructed
to exercise all terms in the governing equations. In theory, on an infinitely refined mesh, the flow
solver solution should approach the analytic solution. In practice, one calculates an observed order of
convergence of the discretisation error. This is then compared to the actual order of convergence of
the numerical model. To determine the observed order of accuracy, error terms from successive grid
refinements are compared. Obkerkampf and Roy’s textbook [149] presents the following equation for
estimating the order of accuracy,

p =
ln
(

εk+1
εk

)
ln(r)

, (5.1)

where εk+1 is the error at the coarse level and εk is the error at the fine level, and,

r =
(

Nk

Nk+1

)1/d

. (5.2)

Here the refinement factor, r, is defined as the ratio of the number of cells in the fine mesh (Nk) and the
coarse mesh (Nk+1) raised to the power of 1/d, where d is the dimension (i.e. 2 for two-dimensions).
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Any of the error norms may be used to determine the order of accuracy. Here we have chosen to use
the L2 norm, defined as,

ε =‖ f − fref ‖2=

(
1
N

N

∑
n=1
| fn− fref,n |2

)1/2

. (5.3)

Here f is any flow field value of interest, for example, density (ρ). fn is the numerical value at
cell n and fref,n is the manufactured value evaluated at cell centroid coordinates. The Method of
Manufactured Solutions and it’s importance to the verification of CFD codes is widely known and is
a strongly recommended method for code verification by the AIAA Committee on Standards [150].
Further details on the methodology can be found in the comprehensive textbook by Oberkampf and
Roy [149].

5.2.1.1 Baseline Manufactured Solutions

The Manufactured Solutions employed for this work all take the following form,

φ(x,y,z) = φ0 +φx fsx

(
aφxπx

L

)
+φy fsy

(
aφyπy

L

)
+φz fsz

(
aφzπz

L

)
+φxy fsxy

(
aφxyπxy

L2

)
+φyz fsyz

(
aφyzπyz

L2

)
+φzx fszx

(
aφzxπzx

L2

)
, (5.4)

where φ = [ρ,u,v,w, p,k,ω]T represents any of the primitive variables and the fs(.) functions repre-
sent sine or cosine functions [151]. The generation of the source terms is accomplished by substitut-
ing the analytic solution into the respective governing equations. Since the task is non-trivial to do
by hand, this is typically done using a computer algebra system, such as SymPy [152], used in this
work. The specific constants and forms of fs found in Equation 5.4, for each particular manufactured
solution, can be found in Appendix A.

5.2.1.2 Two-dimensional flow solver

The two-dimensional flow solver has been verified on uniform quadrilateral cell grids. The levels of
grid refinement used in the verification are presented in Table 5.2, and an example of the mesh is
presented in Figure 5.1. The meshes for the MMS verification have been generated using Eilmer’s
native grid generator and applied manual grid partitioning. We have used a 16 block arrangement (4
blocks in the x-direction, and 4 blocks in the y-direction) for the simulations presented in this work.

The chosen analytical solutions for the Euler and Navier-Stokes equations were first presented
by Roy et al. [153]. They take the form of Equation 5.4, where the φz, φyz, φzx terms are all 0; the
remaining constants used are presented in Table A.1 and A.3, and the fs functions are presented in
Tables A.2 and A.4, for the Euler and Navier-Stokes equations respectively. For the Euler test, an
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Table 5.2: Levels of grid refinement used for two-dimensional verification.

Grid Dimensions Cell width, ∆x (m)
G1 8×8 0.125
G2 16×16 0.0625
G3 32×32 0.03125
G4 64×64 0.015625
G5 128×128 7.8125×10−3

x

y

Figure 5.1: Example grid for two-dimensional MMS simulations.

inviscid supersonic flow is simulated on the uniform grid. For the Navier-Stokes test, a subsonic flow
of a viscous gas is simulated on the same uniform grid. The gas is modelled as a calorically perfect
gas with γ = 1.4, R = 287.0 J·kg−1·K−1, µ = 10.0 Pa·s, and Pr = 1.0. The results from the two-
dimensional Euler and Navier-Stokes tests are presented in Figures 5.2(a), 5.2(b), 5.2(c), and 5.2(d).

The chosen analytic solution for the RANS equations was first presented by Roy et al [154]. It
takes the form of Equation 5.4, where the φz, φyz, φzx terms are all 0: the remaining constants used
are presented in Tables A.5, and the fs functions are presented in Table A.6. For the RANS test, a
subsonic flow of a viscous gas is simulated on the uniform grid. The gas is modelled as a calorically
perfect gas with γ = 1.4, R = 287.0 J·kg−1·K−1, µ = 10.0 Pa·s, Pr = 1.0, and PrT = 0.89. The results
from the two-dimensional RANS tests are presented in Figures 5.2(e), 5.2(f).

As expected, the error is seen to decrease with successive grid refinements for all two-dimensional
test cases. Furthermore, all sets of results observe second-order convergence, consistent with the
second-order accurate numerical methods implemented.
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Figure 5.2: Two-dimensional MMS results for the Euler, Navier-Stokes, and RANS equations: (a)
Euler flow solution L2 error norm for density (ρ), (b) Order of accuracy for the Euler equations, (c)
Navier-Stokes flow solution L2 error norm for density (ρ), (d) order of accuracy for the Navier-Stokes
equations, (e) RANS flow solution L2 error norm for turbulent kinetic energy (k) and turbulence
frequency (ω), (f) order of accuracy for the RANS equations.
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5.2.1.3 Three-dimensional flow solver

The three-dimensional flow solver has been verified on uniform hexahedral cells. The levels of grid
refinement used in the verification are presented in Table 5.3. We have used a 24 block arrangement
(4 blocks in the x-direction, 3 blocks in the y-direction, and 2-blocks in the z-direction) for the simu-
lations presented in this work.

Table 5.3: Levels of grid refinement used for three-dimensional verification.

Grid Dimensions Cell width, ∆x (m)
1 8×8×8 0.125
2 16×16×16 0.0625
3 32×32×32 0.03125
4 64×64×64 0.015625
5 128×128×128 7.8125×10−3

The chosen analytic solution for the Euler equations was first presented by Roy et al [155]. It
takes the form of Equation 5.4, the constants used are presented in Tables A.7 and the fs functions are
presented in Table A.8. For this test, an inviscid supersonic flow is simulated on the uniform grid. The
gas is modelled as a calorically perfect gas with γ = 1.4, R = 287.0 J·kg−1·K−1, µ = 10.0 Pa·s, and
Pr = 1.0. The results from the three-dimensional Euler tests are presented in Figures 5.3(a), 5.3(b).

The chosen analytic solution for the Navier-Stokes and RANS equations was first presented by
Veluri et al [156]. It takes the form of Equation 5.4, the constants used are presented in Tables A.9
and A.11, and the fs functions are presented in Tables A.10 and A.12, for the Navier-Stokes and RANS
equations respectively. For both test cases, a subsonic flow of a viscous gas is simulated on the same
uniform grid. The gas is modelled as a calorically perfect gas with γ = 1.4, R = 287.0 J·kg−1·K−1,
µ = 10.0 Pa·s, Pr = 1.0, and, for the RANS test, PrT = 0.89. The results from the three-dimensional
Navier-Stokes and RANS tests are presented in Figures 5.3(c), 5.3(d), 5.3(e), and 5.3(f).

Similar results to the two-dimensional flow solver verification are observed. As expected, the error
is seen to decrease with successive grid refinements for all three-dimensional test cases. Furthermore,
all sets of results observe second-order convergence, consistent with the second-order accurate nu-
merical methods implemented.
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Figure 5.3: Three-dimensional MMS results for Euler, Navier-Stokes, and RANS equations: (a) Eu-
ler flow solution L2 error norm for density (ρ), (b) order of accuracy for the Euler equations, (c)
Navier-Stokes flow solution L2 error norm for density (ρ), (d) order of accuracy for the Navier-Stokes
equations, (e) RANS flow solution L2 error norm for turbulent kinetic energy (k) and turbulence fre-
quency (ω), (f) order of accuracy for the RANS equations.
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5.2.2 Shock-capturing capability

The manufactured solutions presented in Section 5.2.1 were smoothly varying, and hence did not
verify the flow solver’s capability to capture embedded shocks. Whilst it is possible to develop a
manufactured solution with an embedded shock [157], it is much more practical to test the shock-
capturing capability of the flow solver by comparison to an exact solution with an embedded shock.
There exists an analytic solution for a steady-state oblique shock wave resulting from a supersonic
inviscid gas impinging on a wedge. The flow solver solution should approach this analytic solution
on a family of refined grids.

Numerical setup

A schematic of the test case is shown in Figure 5.4. The problem has been simulated using several
grids with increasing refinement, the dimensions are shown in Table 8.2.1. Grid G2 is also shown in
Figure 5.4. The wedge angle, θ , is 15°. The solution is independent of the scale of the wedge, for the
results presented here, the wedge was 1 m in length. The inflow Mach number is M1 = 3, and the gas
flowing over the wedge is air with a specific heat ratio of γ = 1.4. The solution is independent of the
remaining inflow properties, however, for completeness, the values used in this work are provided in
Table 8.2. From oblique shock theory, the solution for this particular Mach number and wedge angle
is as follows: β = 32.24, M2 = 2.255, and p2/p1 = 2.822. Further details on this problem can be
found in the publication by Ghia et al. [150].

Slip Wall B.C.

Supersonic 
Inflow B.C.

Extroplated Outflow B.C.

Extroplated
Outflow B.C.

Slip Wall B.C.

 θ β
y

x

Oblique shock

Slip Wall B.C.

M1

M2

Figure 5.4: Oblique-shock simulation schematic.
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Table 5.4: Levels of grid refinement for oblique shock verification.

Grid Dimensions
G1 80 ×40
G2 160×80
G3 640×320

Table 5.5: Freestream inflow conditions for oblique shock verification.

Mach number 3.0
Velocity, m·s−1 1997.2
Pressure, Pa 100.0
Temperature, K 1103.0

Results

The flow solution for this problem on grid G3 is presented as Figure 5.5. It is observed that the
oblique shock is correctly turning the flow by 15°, as shown by the superimposed streamline. The
entropy change is also observed to abruptly increase across the shock and then remain constant in the
post-shock flow, as expected. A small increase in the entropy is noticed near the slip-wall boundary
that defines the wedge surface. This increase in entropy is from numerical error and was observed to
decrease in magnitude and extent as the mesh was refined, consistent with the results published by
Ghia et al. [150]. Table 5.6 presents the numerically computed shock angle, β , approximated as the
angle between the x-axis and the point at which the oblique shock intersects the outflow boundary;
and the post-shock Mach number M2, computed as an average of cell-centered values along a stream-
line. The analytically derived shock angle and post-shock Mach number, in addition to a measure of
the relative error between the numerical and analytical solutions, defined as ε = | fexact− fCFD|

fexact
, are also

presented in Table 5.6. As expected, for a given grid level, the second-order spatially accurate simula-
tions better approximate the solution than the first-order spatially accurate simulations. Furthermore,
the error for each respective spatial order reduces monotonically as the grid is refined, consistent with
the expected behaviour. Figure 5.6 presents plots of the pressure distribution along the streamline
illustrated in Figure 5.5, for each grid. The numerically computed pressure in the post-shock flow is
observed to agree well with the analytic solution. Some slight oscillations are noticed for the spatially
second-order accurate simulations, a characteristic of the Venkatakrishnan limiter. These oscillations
could be damped by modifying the K parameter, however, at a cost to the spatial order of accuracy.
Similar to the previous results tabulated in Table 5.6, as the grid is refined, the simulated shock ap-
proaches the analytic solution monotonically.
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streamline

Figure 5.5: Oblique shock numerical solution colour map of Mach number and entropy change
(J·kg−1K−1) for a second-order computation on grid G3

Table 5.6: Post-shock Mach number and shock angle for oblique shock simulation.

First Order Second Order
Grid M2 (%ε) β (%ε) M2 (%ε) β (%ε)
G1 2.233 (0.976) 33.421 (3.66) 2.244 (0.487) 31.928 (0.968)
G2 2.246 (0.399) 32.899 (2.04) 2.252 (0.133) 32.152 (0.273)
G3 2.252 (0.133) 32.412 (0.533) 2.253 (0.089) 32.225 (0.047)
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Figure 5.6: Pressure distribution along a streamline on grid (a) G1, (b) G2 and (c) G3.
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5.2.3 Self-similar laminar boundary layers

The manufactured solutions presented in Section 5.2.1 did not exercise the flow solver routines for
calculating wall bounded flows. Although it is possible to use MMS to verify the implementation of
a flow solver’s boundary conditions [156, 158, 159], it is more direct to use an analytical solution for
comparison, similar to the approach employed in Section 5.2.2 for embedded shocks. Under certain
conditions, compressible laminar boundary layers exhibit a behaviour called self-similarity. That is,
the flow field profile of the boundary layer is independent of location along the surface. The self-
similar solutions approach has been used to verify incompressible laminar boundary layers by Ghia et
al. [150]. A similar approach is applied here for compressible laminar boundary layers. The method
transforms the compressible laminar boundary layer equations for two-dimensional flow expressed in
the standard Cartesian coordinates (x,y) into the similarity variables (η ,ζ ). Although the resulting set
of equations are still partial differential equations that require solution by some numerical method, the
form allows for a much simpler solution. The particular set of partial differential equations solved in
the self-similarity variables used in this work can be found on p. 283 in the textbook by Anderson [37].

Numerical setup

A schematic of the computational domain for the laminar flat plate simulation is presented in Fig-
ure 5.7, where L = 1.1 m, H = 0.4L and h = 0.75H. Three levels of mesh refinement were used in
this study, the details of which are provided in Table 5.7. The G1 grid is also shown in Figure 5.7.
The grid was clustered in both x- and y-directions. On the finest grid, the first cell off the wall had a
width of 1.0×10−5 m in the y-direction, and the leading edge cell had a width of 4.0×10−3 m in the
x-direction.
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Inflow B.C.

Supersonic 
Inflow B.C.

Extroplated

Outflow B.C.

No Slip Fixed T Wall B.C.

y
x

h

H

Figure 5.7: Laminar flat plate simulation schematic.
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Table 5.7: Levels of grid refinement for laminar flat plate verification.

Grid Dimensions
G1 61×193
G2 122×386
G3 244×722

Table 5.8: Freestream inflow conditions for laminar flat plate verification.

Mach number 4.0
Velocity, m·s−1 1390.0
Pressure, Pa 1013.0
Temperature, K 300.0

Results

The skin friction coefficient along the plate computed by the flow solver and the corresponding self-
similar solution is presented in Figure 5.8. The flow solver is observed to be in excellent agreement
with the self-similar solution downstream of the leading edge. Closer to the leading edge some dis-
crepancy is observed. It is most probable that this a consequence of the semi-infinite nature of the
Navier-Stokes solution compared to the self-similar solution. Ghia et al. [150] states that an exact
match between the two methods is only expected asymptotically far downstream of the leading edge.
The boundary layer velocity and temperature profiles are compared at a location 1 m downstream of
the leading edge in Figure 5.9. Again, excellent agreement is observed between the two solutions.
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Figure 5.8: Laminar flat plate simulation, skin friction coefficient.
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Figure 5.9: Laminar boundary layer profiles normalised by boundary layer edge flow state at x = 1 m.

5.2.4 Summary

The results from a verification study of the flow solver were presented in this section. The Method of
Manufactured Solutions provided a formal means for determining the order of accuracy of the core
flow solver routines. The results demonstrated that all configurations of the flow solver (Euler/Navier-
Stokes/RANS, two- and three-dimensional solvers) achieve the expected second order of spatial ac-
curacy. The flow solver’s shock and boundary layer capturing capabilities were also demonstrated by
a qualitative comparison to analytic and numerical solutions, respectively. This concludes the verifi-
cation of the flow solver.
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5.3 Validation

Several validation cases have been taken from the literature to establish the appropriateness of the
implemented physical models for design analysis in high-speed flow. Care has been taken to select
experimental data that is well established in the literature for CFD code validation. The chosen vali-
dation cases are as follows:

I. Turbulent flow over a flat plate.

II. Shock wave/turbulent boundary layer interaction.

III. Hypersonic flow over a sharp nose double cone.

IV. Hypersonic flow over a 24° compression corner.

V. The Joint Computational/Experimental Aerodynamic Project (JCEAP) Model.

5.3.1 Turbulent flat plate

The first validation case considers Mach 4.5 air flow over a flat plate. The experimental data for
this validation case was originally reported by Mabey et al. [160], and was included in a critical
compilation of compressible turbulent boundary data by AGARD [161]. This data has been used to
validate the k−ω turbulence model in a previous version of Eilmer [88], and has been more recently
used to validate the k−ω turbulence model in Eilmer’s structured-grid explicit solver [162]. The flat
plate was tested in the supersonic wind tunnel at R.A.E. Bedford, and spanned 0.9 m in width and was
approximately 1.6 m in length. During the experimental campaign, the plate was thermally insulated.
Boundary layer transition was forced by a roughness band consisting of several small glass spheres
near the leading edge of the model. Skin friction was measured using a floating-element balance, and
velocity and temperature profiles across the boundary layer were measured using a combined total
temperature and Pitot pressure probe.

Numerical setup

A schematic of the computational domain for the turbulent flat plate simulation is presented in Fig-
ure 5.10, where L = 1.4 m, H = 0.4L and h = 3

4H. Four levels of grid refinement were used to demon-
strate grid convergence. The grid dimensions are provided in Table 5.9. Also shown in Figure 5.10
is the G1 grid for this computational case. The grid was clustered in both x and y directions. On the
finest grid, grid G4, the first cell off the wall had a width of 1.56×10−5 m in the y-direction, and the
leading edge cell had a width of 5×10−4 m in the x-direction. This grid achieves a y+ of less than 1,
except at the leading edge. The inflow conditions for the simulation were taken from Chan [89] and
are provided in Table 5.10.
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Figure 5.10: Turbulent flat plate simulation schematic.

Table 5.9: Levels of grid refinement for turbulent flat plate validation case.

Grid Dimensions
G1 129×97
G2 258×194
G3 516×388
G4 1032×776

Table 5.10: Freestream inflow conditions for turbulent flat plate validation case.

Mach number 4.5
Velocity, m·s−1 712.9
Pressure, Pa 3160.0
Temperature, K 62.16
Turbulence Intensity, % 1.0
Eddy viscosity ratio, µlam

µturb
1.0
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Results

Figure 5.11 shows the calculated skin friction coefficient along the flat plate. Good grid convergence
is observed downstream of the leading edge for grids G2 and G3. Also shown in Figure 5.11 is the ex-
perimentally measured skin friction coefficient. Good agreement is observed between the calculated
and experimental values. The boundary layer profiles for the velocity, Mach number, and temperature
at a location 0.368 m downstream of the leading edge are shown in Figure 5.12. Again, good grid
convergence is demonstrated on grids G2 and G3. Despite the degree of accuracy of the calculated
skin friction coefficient, the boundary layer profiles are observed to deviate from the experimental
data by some small amount. A similar result has been reported for Eilmer’s structured grid explicit
solver [162]. One proposed reason for this discrepancy is that the k−ω turbulence model is develop-
ing the boundary layer slower than in reality. Another possible reason is that the forced transition of
the experiment has in some way altered the boundary layer development. Figure 5.13 shows a com-
parison of the boundary profiles from the numerical simulation at a distance 0.45 m downstream of
the leading edge compared to the original location of x = 0.368 m. It is noted that better agreement
is observed at x = 0.45 m. This result warrants a more in-depth analysis, not presented here. For the
current work, accurate calculation of the skin friction along a surface is sufficient, and consequently,
the results in Figure 5.11 demonstrate the flow solver’s applicability in this context.
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Figure 5.11: Turbulent flat plate simulation, skin friction coefficient. Experimental data from Mabey
et al. [160].
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Figure 5.12: Turbulent boundary layer profiles at x = 0.368 m normalised by boundary layer edge
flow state. Experimental data from Mabey et al. [160].
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Figure 5.13: Comparison of boundary layer profiles at x = 0.368 m and x = 0.45 m normalised by
boundary layer edge flow state. Experimental data from Mabey et al. [160].
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5.3.2 Turbulent flat plate with impinging shock

The second validation case is of a shock impinging on a flat plate with a fully developed turbulent
boundary layer. The particular configuration considered here is the Mach 5/10° shock generator case
taken from the campaign of experiments published by Schülein et al. [163, 164]. The original model
was tested in the DLR Ludwieg Tube Wind Tunnel Facility (RWG, Tunnel B) by Schülein et al. [163],
who later published further results for the same configuration [164]. The available experimental data
includes static wall pressure, skin friction coefficient and the Stanton number along the flat plate. This
data has been previously used to validate the k−ω turbulence model for several codes [165–169].

Numerical setup

A schematic of the computational domain for the simulation is presented in Figure 5.14, where θ =

10°. Three levels of grid refinement were used to demonstrate grid convergence. The grid dimensions
are given in Table 5.11. Also shown in Figure 5.14 is the G1 grid for this computational case. The grid
was clustered in the y-direction near the wall, and also in the x-direction near the interaction zone.
On the finest grid, grid G4, the first cell off the wall had a width of 4.0× 10−7 m in the y-direction.
This grid achieves a y+ of less than 1 along the length of the flat plate. The inflow conditions for the
simulation were computed from the total pressure and total temperature values reported by Schülein
et al. [164] assuming ideal air with γ = 1.4, and are provided in Table 5.12.
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Figure 5.14: Shock wave turbulent boundary layer interaction simulation schematic (units in meters).
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Table 5.11: Levels of grid refinement for shock wave turbulent boundary layer interaction validation
case.

Grid Dimensions
G1 155×100
G2 310×200
G3 620×400
G4 877×566

Table 5.12: Freestream inflow conditions for shock wave turbulent boundary layer interaction valida-
tion case.

Mach number 5.0
Velocity, m·s−1 828.5
Pressure, Pa 4070.0
Temperature, K 68.33
Turbulence Intensity, % 1.0
Eddy viscosity ratio, µlam

µturb
1.0

Results

A colour map of Mach number is shown in Figure 5.15(a), along with a numerical schlieren insert
of the interaction zone. From a comparison of this computed flow field with the experimentally cap-
tured shadow-graph, Figure 5.15(b), it is observed that the shock impinges on the boundary layer at
approximately the same location along the flat plate. Furthermore, the separation and reattachment
points agree well between the calculation and the experiment. Figure 5.16 shows the calculated static
wall pressure, skin friction coefficient, and Stanton number along the flat plate. It is observed that
good grid convergence is achieved for grid G3 and grid G4, determined from the wall pressure and
skin friction coefficient plots. However, it is noted that a grid-independent solution of the Stanton
number has not been achieved in the interaction zone. Compared to the experimental results, an ex-
cellent agreement is observed for the wall pressure along the plate. The skin friction coefficient agrees
well immediately upstream of the separation zone, however, there is some discrepancy downstream
of the interaction. Despite this, the separation extent is in good agreement with the experimental data.
Concerning the skin friction coefficient, Droske [169] has observed sensitivity in the flow down-
stream of the interaction when employing the SST turbulence model. It was observed that an increase
in the turbulence intensity (from 1% to 5%) produced a better agreement between the experimentally
observed skin friction coefficient downstream of the interaction and that calculated by the SST turbu-
lence model. However, this also reduced the extent of separation. This suggests that a poor estimation
of the freestream turbulence intensity alone is not sufficient to explain the discrepancy. It is interesting
to note that some inconsistency is observed when comparing the skin friction distribution of several
authors who have computed this experiment using the k−ω model [165–169]. Finally, it is observed
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that the Stanton number agrees well upstream of the interaction and downstream of the interaction
zone. A large deviation in agreement is observed within the interaction zone, where a severe spike
in the Stanton number suggests an over-prediction of the heat-transfer in the interaction zone. This
has been observed by others who have employed two-equation turbulence models [165, 166, 169].
Droske [169] cites Dolling [170] when attributing this behaviour as a common issue in simulating
these flows, suggesting that it is most likely a deficiency of the two-equation turbulence models.

(a) Colour map of Mach number.

Fully developed 
boundary layer

Reflected Shock

Interaction Zone

Impinging Shock

Expansion fan

Separation Reattachment

(b) Quantitative flow diagram from Schülein et al. [164] (top) and numerical schlieren (bottom).

Figure 5.15: Shock wave turbulent boundary layer interaction flow solution.
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Figure 5.16: Calculated distributions for shock wave turbulent boundary layer interaction: (a) wall
pressure, (b) skin friction and (c) Stanton number. Experimental data from Schülein et al. [163, 164].
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5.3.3 Sharp nose double cone

The third validation case is Mach 12.5 nitrogen (N2) flowing over a sharp nose double cone con-
figuration. This validation case has been catalogued in the CUBRC (Calspan-University at Buffalo
Research Center) database of aerothermal measurements in “building block“ experiments for CFD
validation [171]. Several runs of the model are presented in the database. For this validation exercise,
run 35 has been selected. The model was originally tested in the Calspan University shock tunnels. For
the experiments, the gas flowing over the model was chosen to be pure nitrogen (N2) to avoid high-
temperature effects, since at the selected flow conditions significant dissociation of oxygen molecules
would occur in air [172]. The dissociation of N2 molecules for this flow condition has been shown
to be insignificant [173]. It is reported in the literature that this particular case can be sensitive to
thermal non-equilibrium effects via excitation of vibrational energy modes. In addition, a breakdown
of the no-slip wall boundary condition assumption has been studied [174]. Despite these effects, good
agreement to the experimental data has been demonstrated using a perfect gas assumption with stan-
dard no-slip wall boundary conditions for run 35 [172]. For further details on the experimental model
and test facilities at Calspan University, refer to Holden et al. [175, 176]. This validation case has
been used to validate a previous version of Eilmer [177].

Numerical setup

A schematic of the computational domain for the sharp nose double cone simulation is presented in
Figure 5.17, where θ = 25° and β = 55°. Four levels of grid refinement were used to demonstrate
grid convergence. The grid dimensions are given in Table 5.13. Also shown in Figure 5.17 is the G1
grid for this computational case. The grid was clustered in the y-direction near the wall, and also in
the x-direction near the separation region and abrupt expansion region. On the finest grid, grid G4,
the first cell off the wall had a width of 2.25× 10−6 m in the y-direction. The inflow conditions for
the simulation are given in Table 5.14.

Table 5.13: Levels of grid refinement for sharp nose double cone validation case.

Grid Dimensions
G1 175×80
G2 350×160
G3 700×320
G4 990×453
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Figure 5.17: Sharp nose double cone simulation schematic (units in meters).

Table 5.14: Freestream inflow conditions for sharp nose double cone validation case.

Mach number 12.5
Velocity, m·s−1 2576.0
Pressure, Pa 18.55
Temperature, K 102.2

Results

Shown in Figure 5.18(a) is the computed numerical schlieren of the sharp nose double cone flowfield.
The numerical schlieren displays all major flow features as identified by Nompelis et al. [174], as
shown in Figure 5.18(b). The experimental schlieren image for this validation case is of a poor qual-
ity, owing to the low density of the flow, thus no meaningful comparison can be made. The calculated
static wall pressure and heat transfer are shown in Figure 5.19. It is observed that good grid conver-
gence is attained on grids G2 and G3. Also shown in Figure 5.19 are the experimentally measured
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data points [175]. It is observed that the location and extent of separation has been calculated to a
fair degree of accuracy, despite the perfect gas assumption. The reattachment location, where peak
heating and pressure occurs, is also captured quite well by the flow solver. In the separated flow re-
gion, an under prediction of the heat transfer and a slight over-prediction of the static wall pressure is
observed, as expected by the modelling assumptions [174]. The heat transfer downstream of the reat-
tachment is captured well, however, there is a stronger oscillation in the static pressure, than observed
in the experimental data. A similar result for the static wall pressure was also noticed by Maclean et
al. [172].

(a) Numerical schlieren.

Separation Shock

Contact Surface

Separation Zone

Bow Shock

Transmitted Shock

Contact Surface

Supersonic Jet

(b) Flow diagram from Nompelis et al. [174] (left), annotated numerical schlieren (right).

Figure 5.18: Sharp nose double cone simulation flow features.
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Figure 5.19: Calculated distributions for double cone: (a) wall pressure, (b) wall heat transfer.
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5.3.4 24° compression-corner

The fourth validation case is a flat plate/wedge configuration, herein referred to as a compression-
corner. Holden et al. [178] tested several compression-corners with various wedge angles in the
Calspan 48-in. shock tunnel. The 24° angle model has been selected for the current validation work.
The experimental data for this particular configuration has been shown to include significant three-
dimensional effects [179]. The combination of the steep inclination of the wedge and the insufficient
spanwise width of the model resulted in spillage of gas over the model edge during the experimental
campaign. Consequently, the pressure relief caused by the spillage significantly reduced the extent of
the separated region, compared to what would be expected for true two-dimensional flow. This pro-
vides a suitable test to exercise the three-dimensional flow solver. Several authors have used this ex-
perimental data set to validate their flow solvers. The first published results were by Hung et al. [180].
For further details on the test facility refer to Holden et al. [178].

Numerical setup

A schematic of the computational domain for the 24° compression-corner simulation is presented in
Figure 5.20, where θ = 24°. The width of the model was 2 ft (approximately 0.609 m). The model
had a total length of 2.88 ft (approximately 0.8778 m), the flat plate length was 1.44 ft (approximately
0.4389 m). Only half the model was simulated, using a slip wall boundary condition on the symmetry
plane. Four levels of grid refinement were used to demonstrate grid convergence. The grid dimensions
are given in Table 5.15. Also shown in Figure 5.20 is the G1 grid for this computational case. The
grid was clustered in the y-direction near the wall, and also in the z-direction near the model edge.
On the finest grid, grid G4, the first cell off the wall had a width of 1.0× 10−5 m in the y-direction.
The inflow conditions for the simulation were computed from the total pressure and total temperature
values reported by Holden et al. [178] assuming ideal air with γ = 1.4, and are provided in Table 5.16.
The flow for the experimental campaign had a Reynolds number sufficiently low to ensure a fully
laminar flow.

Table 5.15: Levels of grid refinement for 24° compression-corner validation case.

Grid Dimensions
G1 101×51×10
G2 202×102×20
G3 285×144×28
G4 404×204×40
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Figure 5.20: 24° compression-corner simulation schematic

Table 5.16: Freestream inflow conditions for 24° compression-corner validation case.

Mach number 14.1
Velocity, m·s−1 2408.93
Pressure, Pa 10.10
Temperature, K 72.64

Results

A colour map of the pressure on the model surface is shown in Figure 5.21. The three-dimensionality
of the flow solution is evidenced by the curvature of the separation bubble. To demonstrate the sig-
nificance of the three-dimensional flow features, results on a sequence of two-dimensional grids were
also computed. A comparison of the pressure coefficient (Cp) for the two- and three-dimensional
solutions is presented in Figure 5.22(a). This plot demonstrates the significance of the edge effects
outlined in the previous section. The calculated skin friction coefficient and heat transfer coefficient
for the three-dimensional simulation are shown in Figures 5.22(b) and 5.22(c). A good agreement be-
tween the calculations and the experimental data published by Holden et al. [178] is observed. Similar
results have also been reported in the literature [179, 180].
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Figure 5.21: Colour map of pressure field for 24° compression corner.
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Figure 5.22: .
Calculated distributions for compression-corner: (a) pressure coefficient, (b) skin friction coefficient,

and (c) heat transfer coefficient. Experimental data from Holden et al. [178]
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5.3.5 JCEAP

The final validation case is the Joint Computational/Experimental Aerodynamics Program model. The
model was designed as part of a research program dedicated to producing an experimental method-
ology for CFD code validation [181]. The model itself is a spherically blunted 10° half-angle cone
with a slice parallel to the vehicle axis. On the slice section, a flap can be attached. In the experiment,
several flap angles were used. For the validation of Eilmer, the slice-only and 10° flap configurations
were considered. The experiments were conducted in the Sandia Laboratories blow-down-to-vacuum
hypersonic wind tunnel using a Mach 7.84 flow condition. The published experimental data available
includes aerodynamic force and moment measurements for several orientations, in addition to static
wall pressure measurements and surface flow visualisation results. The results of the experimental
campaign were first published by Oberkampf et al. [182] and the corresponding computational results
were published by Walker et al. [183]. Since the initial publications, further experimental results of the
campaign have been published by Oberkampf et al. [184, 185]. The experimental data has also since
been used for CFD validation [186–188]. For further details on the project and the Sandia Laboratory
facility, refer to Oberkampf et al. [149].

Numerical setup

The dimensions of the JCEAP model are presented in Figure 5.23(a). The simulation used supersonic
inflow and extrapolate outflow boundary conditions. Half the model was simulated, with a slip wall
boundary condition applied along the symmetry plane. The model surface had a no-slip boundary
condition, with a fixed temperature of 316.7 K as suggested by Walker et al. [183]. The inclusion
of the base region in the simulation has been shown to have negligible effect [188]. Consequently,
the wake region was not resolved for this work. Grid refinement studies were not performed for this
validation case due to the large computing costs. Guidance in building the grids was taken from
the lessons reported by Walker et al. [183]. In addition, axisymmetric simulations (presented in the
following section) were employed to ensure the nose region was sufficiently refined. The resulting
grid sizes developed for this work are presented in Table 5.17. Examples of the generated grids are
shown in Figure 5.23(b). The grid was clustered towards the model surface. The first cell off the wall
had a width of 5.0×10−6 m in the y-direction. The inflow conditions for the simulations are given in
Table 5.18. It should be noted that, as first reported by Roy et al. [188], several of the original papers
(including references [184, 187]) published an erroneous freestream static pressure. This work uses
the corrected inflow conditions, reported in Roy et al. [188]. The flow for the experimental campaign
had a low Reynolds number, ensuring a fully laminar flow. For the axial force coefficient calculations,
the base drag was computed by assuming pbase = p∞ and a reference area of 11.525 in2 [183].
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(a) Model dimensions (inches) reproduced from Oberkampf et al. [149].

(b) slice-only configuration grid (left), 10° flap configuration grid (right).

Figure 5.23: JCEAP simulation details.
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Table 5.17: Levels of grid refinement for JCEAP validation case.

model no. cells
10° flap configuration 2095114
slice-only configuration 183726

Table 5.18: Freestream inflow conditions for JCEAP validation case.

Mach number 7.841
Velocity, m·s−1 1103.9
Pressure, Pa 290.9
Temperature, K 47.7

Results

Figure 5.24 shows the surface pressure results for the axisymmetric simulations used in the grid
design. Similar agreement to the experimental data is observed as compared to the results published
by Roy et al. [188]. Three-dimensional solutions were calculated for the slice-only configuration at
0° and 10° angle of attack, and for the 10° flap configuration at −5°, 0°, and 10° angle of attack.
The calculated flowfield for the 10° flap configuration at −5° angle of attack is shown in Figure 5.25.
The calculated axial force coefficient for all simulated configurations is shown in Figure 5.26. Good
agreement is observed for all configurations.
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Figure 5.24: Surface pressure distribution for axisymmetric simulations. Experimental data from Roy
et al. [188].

Figure 5.25: Colour map of pressure for JCEAP 10° flap configuration at −5° angle of attack.
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Figure 5.26: Axial force coefficients for JCEAP model. Experimental data from Oberkampf et
al. [182].
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5.3.6 Summary

The results from a validation study of the flow solver were presented in this section. Several high-
speed flow configurations with strong inviscid/viscous interactions were simulated. The numerical re-
sults were compared to published experimental data. A majority of the comparisons were favourable.
However, there are some details that the flow solver does not capture. These discrepancies, particu-
larly in the interaction zone of a shock wave impinging on a turbulent boundary layer, and also for
low-density high Mach number flows, are not unusual, and references to several published works that
have observed similar behaviour have been presented. Despite these difficulties, we still believe that
the RANS unstructured grid solver will be a useful discriminator between designs for optimisation
work.
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CHAPTER 6

ADJOINT SOLVER

This chapter documents the implementation of the numerical solver employed to solve the adjoint sys-
tem of equations. The procedure for evaluating the total derivative is also presented. The chapter con-
cludes by verifying the accuracy of the adjoint sensitivities by comparison to a direct-differentiation
method using complex-variables. A helpful technique for debugging the adjoint operator is also out-
lined.

6.1 Discrete adjoint equations

The derivation of the discrete adjoint method was presented in Chapter 3. The adjoint system of
equations are reprinted as Equation 6.1 for convenience.[

∂R
∂Q

]T

λ =

(
∂J
∂Q

)T

. (6.1)

The primary challenge of implementing an adjoint solver is constructing the adjoint operator. Unlike
the implicit operator of the flow solver, the adjoint operator must be an exact linearisation of the flow
solver routines, and should not be some approximation. It has been shown that approximations such
as forming the adjoint operator using a first-order stencil or assuming “frozen” eddy viscosity result
in derivatives that are often inaccurate and can even be of incorrect sign [51]. The details about the
formation of the adjoint operator and the numerical solution of Equation 6.1 will be covered in the
subsequent sections.
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6.2 Constructing the discrete adjoint operator

To construct the discrete adjoint operator requires an exact linearisation of the discretised residual
vector. Several methods for performing the linearisation were outlined in Chapter 3, for this work, the
complex-step derivative approximation is used.

When applying the complex-step derivative approach to linearise the residual vector, a primitive
flow variable is perturbed along the imaginary axis in the complex plane by some perturbation size
h. The flow solver residual routine is then executed, and the imaginary part is mined to evaluate one
entry of the matrix, as shown in Eq. 6.2 for the ith residual vector entry and jth primitive flow variable.
In this approach, by looping through all primitive variables, over all cells, the adjoint operator

(
∂R
∂Q
)T

is constructed row by row, and stored in compressed row storage (CRS) format.

∂Ri

∂Q j
=

Im[Ri(Q j + ih)]
h

(6.2)

In practice, for a perturbed flow variable, the residual is not evaluated over the entire domain. Instead,
to improve efficiency of construction, the residual is only evaluated on a subset of cells. We call
this the residual stencil. The residual stencil is composed of all cells that will have an imaginary
contribution from a perturbation of a particular cell. The residual stencil for the Euler equations in
two-dimensions is illustrated in Figure 6.1. Although this example uses a structured arrangement of
elements, the solver works on unstructured grids and is not limited to quad or hex cells.

Figure 6.1: First-order residual stencil (left), second-order stencil (right), (·) denotes perturbed cell.

6.2.1 Parallelisation

The construction of the adjoint operator is parallelised using the same domain decomposition as the
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flow solver. Following the approach by Saad [189] for solving linear systems on decomposed domains
on distributed systems, each block in the decomposition stores a local Jacobian matrix (Aloc), and
an external Jacobian matrix (Aext), illustrated in the schematic presented as Figure 6.2(a). The local
Jacobian matrix is a square matrix that stores the sensitivities of local cell residuals from perturbations
of local cell primitive variables. The external Jacobian matrix is a non-square matrix that stores all
the entries for perturbations of local cells that affect the residual calculation of cells in neighbouring
blocks. Note that, although Aext is represented as spanning the entire global matrix in Figure 6.2(a),
in practice, this sub-matrix is a very sparse matrix. To achieve an exact linearisation for second-order
spatially accurate simulations using a nearest-neighbour least-squares approach, the Jacobian routine
requires one extra layer of ghost cells at block connections compared to the flow solver, as shown in
Figure 6.2(b).

(a)

(b)

Figure 6.2: (a) Domain decomposed Jacobian. Each local block stores a local Jacobian matrix (Aloc)
and an external Jacobian matrix (Aext), (b) Domain decomposed block-block boundary, shaded cells
are cells from the neighbouring block required in the external Jacobian construction.

6.2.2 Boundary conditions

Boundary conditions in the adjoint solver must be handled explicitly [190]. The explicit boundary
conditions for the Jacobian can be written as Eq. 6.3, where R and Q are as defined above, and q
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represents the ghost cell flow state variables.

∂R
∂Q

=
∂R
∂Q

∣∣∣∣∣
int

+
∂R
∂q

∂q
∂Q

(6.3)

The second term in Eq. 6.3 represents the application of the physical boundary conditions. The sensi-
tivity ∂R

∂q is simply the resultant perturbation of the residual vector entry from a perturbation of a ghost
cell flow state variable. It may be formed using a similar approach as the internal cells. The second
sensitivity, ∂q

∂Q , can be thought of as a transform from the internal flow state to the ghost cell flow
state. This transform can be evaluated using the complex variable method, by perturbing an internal
cell’s flow state, applying the physical boundary condition, and mining the complex part of the ghost
cell flow state. To improve efficiency for applying adjoint boundary conditions in Eilmer, our phys-
ical boundary conditions may be applied on a per interface basis. To provide an exact linearization
of the flow solver, the physical interfacial boundary condition information should be communicated
to neighbouring blocks during the construction of the external Jacobian matrix (Aext). To simplify the
implementation, the communication of this information is omitted in Eilmer. Although this omission
results in some small error in several entries of the Jacobian, the effect is limited to only those entries
where a physical boundary condition is intersected by a block-to-block boundary condition, i.e. in
the corners of the decomposed domains. In Section 6.5, it is shown that this simplification does not
substantially reduce the accuracy of the adjoint sensitivities.

6.2.3 Frozen limiter

A known problem for supersonic and hypersonic flow-codes is that the limiters, necessary to ensure
stability, can oscillate causing a stalling of the convergence. This is sometimes referred to as limiter
ringing [104, 105]. The level of convergence achieved before stalling is problem dependent. Since the
adjoint method is predicated on the assumption that the residual vector has been reduced to machine
precision (see Eq. 3.4), performing an adjoint solve on a stalled flow field residual can cause the
adjoint solver to either diverge, or converge on an inaccurate solution. Furthermore, the routines in
the flow code that evaluate the limiter values have been observed to be sensitive to complex variable
perturbations [105]. This has also been observed in this current work. One approach to overcome this
limitation is to freeze the limiter after stalled convergence [101]. In this approach, once convergence
has stalled, the limiter value for each cell is frozen, i.e. the limiter value is no longer re-evaluated,
but is still applied. When applying the Venkatakrishnan limiter [144], a scalar value (φ ) for each
primitive flow state variable is calculated and stored at the cell-centers. The flow state reconstruction
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with gradient limiting is then evaluated as

Q j+1/2 = Q j +φ ·∇Q j ·
1
2

∆~x jk, (6.4)

where j+1/2 denotes a cell interface, and~x jk is the cell-center position vector that points from cell
j to cell k (refer to Section 4.2.2 for more details on the reconstruction procedure). When the limiter
is frozen, φ is no longer re-evaluated, however, Eq. 6.4 is still employed during the reconstruction
procedure using the frozen values. Thompson [105] applied this approach for the Van Albada [191]
and Van Leer [192] limiters, in the context of high-speed adjoint optimisation. In this context, the
adjoint solver does not re-compute the limiter values when constructing the Jacobian, but, instead,
uses the frozen limiter values from the flow solver.

6.3 Numerical solution of the adjoint equations

In addition to the adjoint operator detailed in the previous section, the right hand side of the adjoint
system of equations requires the formation of the partial derivative of the objective function with re-
spect to the flow state variables, ∂J

∂Q . Entries from this partial derivative are evaluated by perturbing
each flow state variable sequentially in the complex domain, and executing the objective function
routine. The imaginary part of the objective function is then mined to construct the sensitivity vector.
Since this vector is typically filled with mostly zeros, to improve efficiency, it is possible to perform
targeted differentiation. In this approach, only flow states in cells that will effect the objective function
are perturbed, the remaining entries are automatically filled with zero entries. For example, if the ob-
jective function is drag along a boundary, then only cells near the boundary need explicit evaluations
of the perturbed objective function routine.

The resulting linear system (Equation 6.1) is solved using a preconditioned, restarted GMRES
method. The GMRES algorithm is the same as that for the flow solver outlined in Section 4.3.5,
however, the adjoint operator is explicitly constructed and stored in memory, and no column or row
scaling is applied. Preconditioning of the system is accomplished by an incomplete LU factorisation
of a transposed first-order flow Jacobian matrix using zero fill-in, ILU0. It is noted that to provide
robust convergence for turbulent flows, the first-order transposed flow Jacobian matrix should only
contain entries arising from the nearest-neighbour cells (i.e. first-order convective stencil). In practice,
matrix entries with non-zero values outside of the convective first-order stencil, i.e. arising from any
viscous contributions, are dropped. The use of Jacobi and block-Jacobi precondition matrices were
also explored for their efficiency. However, poor convergence was observed.
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6.4 Total derivative calculation

For the discrete adjoint method, the objective function total derivative is given by

dL
dD

=
∂J
∂D

+

[
∂R
∂D

]T

λ . (6.5)

The residual vector partial derivative, ∂R
∂D , is evaluated by perturbing each design variable sequen-

tially in the complex domain, executing the mesh deformation routine, and then evaluating a flow
solver residual routine over the entire flow domain. The imaginary part of the residual vector entries
are then mined to construct the sensitivity matrix. So for ‘n’ design variables, ‘n’ residual evaluations
are required. This is still typically a small cost compared to the number of residual evaluations re-
quired to converge a flow field calculation. As discussed in Section 3.3, the construction of ∂R

∂D can be
computationally expensive as a result of the ‘n’ calls to the mesh deformation routine. However, for
the particular mesh movement strategy implemented in this work (outlined in Section 7.2.2), this was
not a difficulty. Note that the evaluation of the residual vector sensitivities includes the evaluation of
grid sensitivities because the design variables do not explicitly appear in the residual equations [193].
The remaining partial derivative, ∂J

∂D , is evaluated similarly, by perturbing each design variable se-
quentially in the complex domain, executing the mesh deformation routine and then evaluating the
objective function routine.

In practice, the code performs the following steps for each of the ‘n’ design variables:

1. Perturb design variable Di in the complex domain.

2. Execute surface parameterisation routine:

⇒ Sensitivities are propagated to the mesh nodes along the parameterised surface.

3. Execute mesh deformation routine:

⇒ Sensitivities are propagated to all mesh points.

4. Execute flow solver residual routine:

⇒ Sensitivities are propagated to conserved residual quantities.

5. Evaluate ∂R
∂Di

.

6. Execute objective function routine:

⇒ Sensitivities are propagated to the objective function scalar quantity.

7. Evaluate ∂J
∂Di

.

In this way only ‘n’ calls to the mesh deformation routine are required.
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6.5 Verification

The role of code validation has no meaning in the context of the adjoint solver since there exists no
experimental means of determining shape sensitivities. The verification of the adjoint solver outlined
above is documented in this section.

6.5.1 Verification procedure

The adjoint gradients are verified by comparison to a direct differentiation via complex variables.
Since both methods use complex variables, their evaluated gradients are expected to agree to several
significant figures. This approach is now considered to be the standard practice for adjoint verifica-
tion [24].

In complex variable direct-differentiation, a design variable is perturbed along the imaginary axis
of the complex domain. The surface parameterisation routine and mesh deformation routine are both
executed to propagate the sensitivities through to the mesh points. The flow solver is then run until a
steady-state has been achieved. The imaginary component of an objective function evaluation is then
used to compute the design sensitivity. This is repeated for all design variables. Mathematically, this
procedure is written as

∂J
∂D j

=
Im[J(Q(D j + ih),X(D j + ih))]

h
. (6.6)

The application of complex variable direct-differentiation is the equivalent of applying forward-mode
automatic-differentiation [61, 194]. Further reading on the direct complex variable method can be
found in the work by Martins [60].

As discussed in Section 4.3.3, the flow solver itself employs complex arithmetic in evaluating the
Fréchet derivative and forming the low-order flow Jacobian used as a preconditioner in the GMRES
algorithm. This presents a complication when applying direct differentiation via complex variables
since the imaginary part of a complex variable cannot store two independent sensitivities [132] (e.g.
one for the design sensitivity and one for the Fréchet derivative evaluation). For this reason, the
flow solver is run using real-valued Fréchet derivatives without preconditioning when used in direct-
differentiation mode. However, this can lead to poor convergence of the flow solver, so in practice, a
three-stage procedure is executed. First, a flow solution is converged to machine precision using the
flow solver in its nominal state utilising complex arithmetic. The flow solution is then used to initialise
a new simulation using the flow solver with real-valued Fréchet derivatives and with preconditioning
switched off. This is typically run for several thousand steps, with a fixed CFL of 1. The limiter is
frozen at the end of this stage and stored. This flow solution is then used as an input to the adjoint
solver to compute the adjoint sensitivities. Finally, the flow solution is then used to initialise a third
flow solver simulation, this time with direct-differentiation mode on. This is run for several thousand
steps with a CFL of 1 until the sensitivities have converged to machine precision. Note that this
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simulation also uses the frozen limiter values. The two sensitivities are then compared. This procedure
is similar to the approach first reported by Thompson [105].

6.5.2 Verification test case

The chosen geometry and flow conditions for the verification test case are taken from the experimental
campaign by Simenonides et al. [195], and are those for the Mach 6, 7.5-degree compression corner.
The flow over the model was ideal air. A schematic of the problem is presented in Figure 6.3. The
wedge surface was parameterised using a 4-point Bézier curve, the first and last points were fixed, the
remaining two points, annotated on Figure 6.3 were the design variables. More details on the Bézier
surface parameterisation can be found in Chapter 7. The mesh consisted of 50 cells in the x-direction
and 25 cells in the y-direction, with cell stretching in the y-direction to capture the boundary layer.
Although this mesh is not well resolved for engineering purposes, it serves its purpose to verify the
adjoint gradients. The adjoint solver was verified for use with the Euler, Navier-Stokes and Reynolds-
Averaged Navier-Stokes equations in Eilmer. Slip-wall boundary conditions were used for the Euler
solutions, and for the viscous simulations, a no-slip isothermal wall at 300 K. The AUSMDV flux
calculator was employed for this verification test. The blending parameter (s in Eq. 37 from Wada and
Liou [99]) in the AUSMDV flux calculator that blends the AUSMD and AUSMV schemes was set to
a fixed value of 0, such that both the AUSMD scheme and AUSMV scheme had equal contributions to
the calculated flux. This was to accommodate the direct complex variable solver which was observed
to be sensitive to the numerical routine employed in computing this parameter.

The sensitivities of the inviscid drag component acting on the wedge section are presented in
Table 6.1. Here the inviscid drag is calculated as

FD =
∫

Ω

p(x,y) dA, (6.7)

where Ω denotes the wedge surface and A is the area. The sensitivities presented in Table 6.1 are then
∂FD
∂D0

and ∂FD
∂D1

. As expected, there is an excellent agreement between the two methods. A reduction
in accuracy is observed for the multiblock RANS sensitivities, as a result of the simplified boundary
implementation outlined in Section 6.2.2. Table 6.1 shows the effects of the simplification when the
domain is decomposed into 4 and 8 blocks. The relative error in D0 increased as the number of
blocks increased, however, the relative error in D1 decreased. The effect of the simplification has
been observed to reduce as the number of cells in each block increases since the simplification is only
applied at the intersection of a block-to-block boundary condition with a physical boundary condition.
Increasing the number of cells in a block effectively decreases the ratio of simplified entries to exact
entries in

(
∂R
∂Q

)T . To demonstrate that the solver is suitable for a practical decomposition, an additional
verification test case was performed using a mesh consisting of 200 cells in the x-direction and 100
cells in the y-direction decomposed into 32 blocks. The observed relative error for this configuration
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was of the same order of magnitude as the previous results. It will be demonstrated in Chapter 8 that
this level of accuracy is sufficient for gradient-based optimisation.

D0

D1

Figure 6.3: Schematic of flat-plate wedge geometry with Bézier points superimposed on wedge.

6.5.3 Debugging the adjoint operator

The verification procedure outlined above is effective for demonstrating the accuracy of the imple-
mentation. However, it provides no useful information to the code developer as to where an exist-
ing bug might exist in constructing the adjoint operator. Carpentieri [196] presented two verification
techniques for the adjoint operator: (a) a real-valued Fréchet derivative approach, and (b) an auto-
matic differentiation (AD) approach. Both methods evaluate matrix-vector products: the former is
easier to implement but less accurate, and the latter requires complex AD tools (e.g. Tapenade [197])
but provides analytically accurate products. If the real-valued Fréchet derivative is replaced with a
complex-step Fréchet derivative, then a method for evaluating matrix-vector products is both simple
to implement and provides analytically accurate products [198]. This method is a powerful tool for
debugging the adjoint operator

(
∂R
∂Q
)T since it can be used to give the location of an erroneous entry.

The procedure for debugging is outlined here. Ultimately we seek the relative error vector

ε =
Z1−Z2

Z1
, (6.8)

where Z1 is the resulting vector from an explicit matrix-vector multiplication of the flow Jacobian (or
transpose of the adjoint operator) and some test vector (v),

Z1 =

[(
∂R
∂Q

)T]T

v, (6.9)
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Table 6.1: Sensitivities of the inviscid drag component acting on the wedge section. SB = Singleblock;
4MB = 4 blocks; 8MB = 8 blocks.

Equations Method D0 D1
Euler (SB) direct -4.594183086029831e+02 1.803545660822891e+02

adjoint -4.594183086029751e+02 1.803545660822925e+02

Euler (4MB) direct -4.578044643486712e+02 1.795628739115091e+02
adjoint -4.578044643486759e+02 1.795628739114956e+02

Navier-Stokes (SB) direct -1.5239846655859574e+03 -1.6470562968334468e+02
adjoint -1.5239846655944107e+03 -1.6470562969431143e+02

Navier-Stokes (4MB) direct -1.5239805058541165e+03 -1.6470271844914430e+02
adjoint -1.5240314478664918e+03 -1.6476360643609402e+02

RANS (SB) direct -8.683408385995121e+02 1.900431473981142e+03
adjoint -8.683408385995051e+02 1.900431473981131e+03

RANS (4MB) direct -8.683156434934184e+02 1.900457510584376e+03
adjoint -8.683653295253905e+02 1.900701298865737e+03

RANS (8MB) direct -8.6809937520721110e+02 1.9004431301468817e+03
adjoint -8.6833107690871600e+02 1.9004792612670160e+03

and Z2 is the Fréchet derivative,

Z2 =
∂R
∂Q

v≈ Im[R(Q+vih)]
h

. (6.10)

Each entry in the relative error vector represents the error for a particular flow variable in a particular
cell.

To demonstrate its use, consider performing the procedure on the compression-corner verification
case outlined above. The error vector for the nominal code is shown in Figure 6.4. It is observed that
a majority of entries achieve close to machine precision accuracy, as expected. The entries that have
a slightly higher error have been identified as relating to the y-component of momentum along wall
boundaries. The exact cause of this behaviour has not been identified. Regardless, this agreement is
sufficient to achieve analytically accurate sensitivities as shown in Table 6.1. Figure 6.5 shows the
error vector for the same problem but with a deliberate coding bug in the Jacobian matrix entry for
a particular cell. In this instance, the deliberately placed bug was to switch the sign of the matrix
entry. It is observed that this bug has caused four entries in the error vector, related to this particular
cell, to exhibit a substantial error. During code development, this debugging technique can be used
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to visualise where certain erroneous cells are in the flow domain, hence narrowing down the lines of
code to be reviewed.
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Figure 6.4: Matrix-vector product error vector (ε) for nominal case.
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Figure 6.5: Matrix-vector product error vector (ε) for case with implemented bug.
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CHAPTER 7

SHAPE OPTIMISATION METHODOLOGY

The gradient-based optimisation methodology applied in this work is separated into five distinct steps:
(i) surface parameterisation; (ii) mesh generation and movement strategy; (iii) gradient evaluation; (iv)
objective function evaluation, or in the context of CFD-based optimisation, flow solution evaluation;
and (v) numerical optimisation. Steps (iv) and (iii) were covered in Chapters 4 and 6 respectively.
This chapter will detail the remaining steps: surface parameterisation, mesh generation and movement
strategy, and numerical optimisation.

7.1 Surface parameterisation

7.1.1 A brief review of surface parameterisation methods

Surface parameterisation methods can be categorised into three types [199]: discrete, computer-aided
design (CAD) based, and free-form deformation. In the discrete approach, every node on a surface
is assigned as a design variable. This allows easy parameterisation for complex geometries, facili-
tates unconstrained shapes, allows easy calculation of movement sensitivity and enables strong local
control. However, the discrete approach does not guarantee a smooth surface. More recently Soto
et al. [200] presented a pseudo-shell discrete method which had the favourable trait of maintaining
smooth surfaces.

For the CAD-based approach, the surface is parameterised using a CAD software package. Typ-
ically CAD software defines a surface by a combination of B-splines. Parameterisation using CAD
software allows consistent parameterisation with a smaller number of design variables and allows
smoothness of the surface to be controlled. However, the shape is limited to that of the parameterisa-
tion available in the CAD software, it is difficult to obtain the sensitivities, and allows very little local
control (depending on the form of parametric curve). Anderson et al. [201] modelled two-dimensional
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wing profiles using B-splines outside of a CAD environment. This allowed the sensitivities to be cal-
culated directly from the surface definition, however, it is difficult to parameterise complex three-
dimensional shapes using this method.

Free-form deformation is a type of parameterisation typically used in computer animation. In this
approach, the surface being parameterised is contained within a three-dimensional hull. Movement
of the nodes which define the hull are mapped to movements of the parameterised surface. Samareh
presented this approach for aerodynamic shape optimisation in [202]. Free-form deformation allows
consistent parameterisation of the surface; sensitivities to be determined analytically; allows for strong
local control with fewer design variables than a discrete approach; and the smoothness is retained.

7.1.2 Bézier curves

In the current work, all design surfaces are parameterised by n-order Bézier curves. Mathematically,
a parametric Bézier curve is defined by

P(t) =
n

∑
i=0

BiJn,i(t) 0≤ t ≤ 1 (7.1)

where Bi are the Bézier control points, and the Bézier, or Bernstein, basis or blending is

Jn,i(t) =

(
n

i

)
t i(1− t)n−i (7.2)(

n

i

)
=

n!
i!(n− i)!

(7.3)

Here, n, the degree of the Bernstein basis function and thus of the polynomial curve segment, is one
less than the number of points in the Bézier curve. An example of a cubic Bézier curve is shown in
Figure 7.1. For more details on Bézier curves, refer to the textbook by Rogers [203]. For the design
work presented in Chapter 8, each Bézier control point has a fixed x-coordinate and a variable y-
coordinate. Bézier curves were selected as a simple, robust solution to surface parameterisation in
two-dimensions when the design surfaces have little complexity. Future three-dimensional design
work will explore the use of Bézier surfaces or free-form deformation.
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Figure 7.1: Cubic Bézier curve.

7.2 Mesh generation and movement strategy

The meshes used throughout this work have been generated using the Pointwise™ software (V18.1
R1) and domain decomposition of the mesh is achieved via METIS [141] (V5.1.0). The optimisation
in this work requires continuous modification of geometric surfaces via perturbations of the Bézier
control points. The deformation of the computational domain boundary requires consistent deforma-
tion of the internal mesh points to ensure meshes of sufficient quality throughout the optimisation
procedure.

7.2.1 A brief review of mesh deformation methods

A straightforward method to accomplish mesh deformation is through linear interpolation of the sur-
face movement. This is simple to apply to structured grids using an algebraic mesh movement strat-
egy [204]. However, these methods do not extend to unstructured grids. For unstructured grids, mesh
movement has been achieved using the spring tension analogy [205–207] and the torsional spring
analogy [208, 209]. Nielsen et al. [210] found, however, that the use of spring analogies lacked ro-
bustness necessary for a design environment where large mesh movements are required. In the opti-
misation of three-dimensional aerofoils, Nielsen et al. [210] assumed the mesh obeyed the isotropic
linear elasticity relations. It was shown via numerical experiments that this method was favourable for
large geometry movement. An alternative method that perturbed the mesh by solving an elliptic equa-
tion with nonlinear diffusion has also been applied [211]. This method was shown to accommodate
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large geometry deflection also. The most straightforward approach to mesh deformation for unstruc-
tured grids is inverse distance weighting (IDW). This approach has been shown to produce mesh
qualities comparable to alternate methods at a fraction of the computational cost of the previously
outlined methods [212]. For this reason, IDW has been applied in this work.

7.2.2 Inverse Distance Weighting method

Given a perturbed design surface, the new interior mesh point coordinates are given as

pnew = pold +w(p), (7.4)

where w(p) is the change in mesh point coordinates, given via the IDW method as

w(p) = ∑
n
i=1 viφ(ri)

∑
n
i=1 φ(ri)

. (7.5)

The vector v stores the change in mesh point coordinates for all points along the boundaries,

vi = pnew
boundary,i−pold

boundary,i, (7.6)

and the general weighting function φ(ri) is defined as

φ(ri) = r−c
i , where ri = ||p−pboundary,i||. (7.7)

Here c is set to 2 in the current implementation. In practice, after the design surface has been up-
dated, the IDW routine loops over all interior mesh points and evaluates w(p) via Equation 7.5. The
summation in Equation 7.5 is over ‘n’ boundary mesh points. It is noted that only mesh points along
the design surface will have a non-zero entry in v. A minor complication in implementing the IDW
method is that it is not obvious whether to use the old or new boundary vertex coordinates in the
computation of the weighting function (Equation 7.7). For this work, we choose to use the new vertex
coordinate, since this provided better quality meshes for the types of problems presented. An example
of a mesh perturbed using the IDW method is shown in Figure 7.2.

104



7.2. MESH GENERATION AND MOVEMENT STRATEGY

(a) Baseline mesh for conical body (grey lines) and perturbed mesh (black lines).

(b) Close-up of nose region.

Figure 7.2: Example of mesh deformation via IDW.
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7.3 Numerical optimiser

The flow and gradient evaluation routines in the developed framework are coupled to the open-source
optimisation software, DAKOTA [213]. DAKOTA provides access to several gradient-based numeri-
cal optimisation algorithms. The Fletcher-Reeves Conjugate Gradient (FRCG) method [214], has been
used in the optimisation work presented in Chapter 8. FRCG is a method for solving unconstrained,
nonlinear optimisation problems. Constraints may be handled via a penalty method.

7.4 Design optimisation algorithm

The design optimisation algorithm applied in this work is shown in Figure 7.3. The design loop takes
as an input a parameterised surface and a computational grid. The loop begins with the flow solver
computing the steady-state flow solution and evaluating the objective function. The converged flow
solution is used as an input to the adjoint solver to construct the adjoint operator. The adjoint solver
then determines the adjoint variables. The remaining partial derivatives are evaluated, and these are
combined with the adjoint variables to evaluate the total derivative (or shape sensitivities). DAKOTA
uses the shape sensitivities to take a step in the design space and returns an updated set of design pa-
rameters. If the shape sensitivities are below a certain magnitude or the relative change in the objective
function evaluation is below a certain tolerance, then the optimiser returns the optimum parameters.
Otherwise, the new design parameters are given as an input to the surface parameterisation routine to
generate the new surface and the mesh deformation routine is executed to update the computational
grid. The design loop is then repeated until one of the convergence criterion is satisfied.
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Figure 7.3: Design optimisation algorithm.
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CHAPTER 8

OPTIMISATION APPLICATIONS

This chapter is to demonstrate the application of the developed optimisation package to shape design
problems in high-speed flows. Two optimisation applications have been selected for this purpose.
The first application seeks to minimise the wave drag of a slender body of revolution. Hypersonic
minimum-drag slender bodies of revolution have been reported extensively in the literature. The ac-
curacy of the optimisation package is demonstrated by comparison to several published optimum bod-
ies for high-speed flow. The second application is the redesign of an existing hypersonic inlet. The
design of hypersonic inlets is expected to benefit greatly from the addition of RANS-based analysis
into the design phase. Consequently, this demonstration is of considerable interest to the hypersonic
community.

8.1 Selection of grid topology

It is noted that, even when employing techniques to improve convergence, such as the limiter freezing
procedure presented in Section 6.2.3, the achievable residual convergence is often not to a sufficient
level for the adjoint system when operating on unstructured tetrahedral elements. An example of this
is provided in White et al. [104], where only a 4 order of magnitude drop in the global residual was
achieved when simulating a turbulent hypersonic inlet. For this reason, the adjoint work presented
herein uses structured quadrilateral elements to achieve robust convergence. It is stressed, however,
that despite the grid being made up of structured elements, the underlying flow and adjoint solvers
operate on the grid using numerical routines developed for unstructured grids. This methodology is
common in computational analyses of complex hypersonic flows [215, 216]. This work focussed on
an unstructured grid implementation because we are optimistic that unstructured methods will mature
in the near future to the point where residual convergence is no longer an issue.

109



CHAPTER 8. OPTIMISATION APPLICATIONS

8.2 Hypersonic minimum-drag slender bodies of revolution

In this application, we seek to find the optimal shape of a slender body of revolution that minimises
the wave drag in a hypersonic flow. We constrain our interest to geometries that have a fixed length
and base diameter. Both analytic and numerical solutions to this problem have been reported in the lit-
erature for flows ranging from supersonic to hypersonic. Perhaps the most well-known solution to the
problem is the von Kármán ogive [217]. The derivation of the von Kármán ogive is based on linearised
supersonic flow theory, and, as such, is only valid at low supersonic speeds [218]. For hypersonic
flows, the optimal bodies differ substantially from the von Kármán ogive, since the flow at elevated
Mach number is poorly modelled by linearised flow theory. Several approaches have been applied to
deriving hypersonic minimum-drag bodies of revolution. Cole [219] and Eggers et al. [220] employed
Newtonian flow theory to the problem. The optimal bodies that were produced are best approximated
by a power law with an exponent n of 0.75, or 0.66 when centrifugal forces are included [221]. The
general form of the power law is given by:

R = Rb

(
x

L0

)n

, (8.1)

where Rb is the base radius, and L0 is the body length. Fink [222] studied the hypersonic wave-drag
minimisation problem based on hypersonic small-disturbance approximations to the shock-expansion
method. The optimum bodies derived in this study were best approximated by a power-law body with
an exponent n of 3/4 (see Figure 2 from [222]). In the early 1990s, Mason et al. [223] performed
a parametric study using solutions of the Euler equations to determine the optimum power-law ex-
ponent for several fineness ratios and Mach numbers, where fineness ratio is defined as the ratio of
the length of the body divided by the diameter, herein denoted as L/D. The results published showed
that for an L/D of 3, the optimum geometry was generally independent of the Mach number, and
was best approximated by a power-law exponent n of 0.69. The results also showed a weak depen-
dence on the fineness ratio, with a power-law exponent n of 0.7 better approximating the minimum
wave-drag for L/D of 5. More recently Sahai et al. [224] applied a numerical optimisation method
to derive hypersonic minimum-drag bodies. In the methodology, the flow was modelled by modified
Newtonian theory. The published results showed that the optimal power-law exponent n was 0.7 for
low L/D, similar to the results of Mason et al. [223]. However, for high L/D the power-law exponent
deviated considerably from those previously reported. It is noted that, upon validating the optimum
bodies using solutions of the Euler equations, the modified Newtonian theory was shown to poorly
approximate the flow for large L/D. For this current work, hypersonic minimum-drag bodies of rev-
olution are derived using the adjoint-based optimisation package. Specific details of the optimisation
problem are presented in the following section.
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8.2.1 Optimisation problem description

The objective of this optimisation problem is to find the optimum axisymmetric profile that minimises
the wave drag subject to a fixed length and base radius. This section will detail several aspects of the
problem.

Objective function

The objective function for this problem is simply written as:

J = Dwave, (8.2)

where surface pressure integration (SPI) is applied along the body to approximate the wave drag
(Dwave). It is noted that SPI computes the total drag, which for an inviscid flow is comprised of both
wave drag and induced drag, e.g. drag generated from lift [39]. However, since axisymmetric bodies
flying at 0° angle of attack are considered here, there is no induced drag component. Consequently, the
application of SPI is appropriate. Since SPI is a near-field method of drag estimation, some spurious
errors caused by numerical diffusion are expected [39, 225, 226]. However, for two-dimensional
inviscid calculations, the SPI method has been shown to be relatively accurate in computing drag
compared to far-field methods [227]. It will be shown later in this section that SPI provides sufficient
accuracy for computing the drag on an axisymmetric body in inviscid flow. It is noted that the objective
function is only based on drag. The constraint on length and base diameter is enforced in the choice
of design parameters. In other words, the optimiser is asked to search the design space of bodies of
revolution with a fixed length and base diameter.

Baseline geometry

The baseline geometry used as the initial state for the optimisation problem is a right circular cone.
The cone has a half-angle of approximately 5.71° and a length of 10 m, this gives a base radius of
1 m corresponding to an L/D of 5. A second cone, with a half-angle of approximately 9.46° and a
length of 10 m, resulting in an L/D of 3 was also considered in the optimisation study. A schematic
of the problem is provided in Figure 8.1. The freestream conditions are presented in Table 8.2. A
grid convergence study was performed for both baseline geometries. Here we show the results for the
L/D = 5 case. The levels of grid refinement are shown in Table 8.2.1. Figure 8.2 shows grid G1. Note
that although the simulations are only inviscid, clustering in both the x- and y-direction is applied to
allow for a bluntening of the leading edge during the optimisation. The simulations used second-order
spatial reconstruction with the Venkatakrishnan limiter [101], with interfacial fluxes evaluated using
the AUSMDV flux calculator [99]. Table 8.2.1 summarises the results of the calculations. The com-
puted drag (ignoring base pressure) is compared with solutions of the Taylor-Maccoll equations [228,
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229]. It is observed that the drag is approaching the value evaluated using the Taylor-Maccoll method
monotonically. The relative error between the drag computed from the Euler solutions and that com-
puted by the Taylor-Maccoll solutions is below 0.5% for all grid resolutions. It is also noted that the
relative difference in computed drag between grid-level G1 and G3 is approximately 0.07%. Given
this excellent agreement across all mesh refinements, G2 is selected as an appropriate refinement for
the optimisation problem.

conical shock

Var1

Var2

Supersonic 
Inflow B.C.

Slip Wall B.C.

Slip Wall B.C.

Extroplated
Outflow B.C.

Extroplated Outflow B.C.

Var0

Varn

Axisymmetric

Figure 8.1: Schematic of conical shock simulation.

Figure 8.2: Baseline mesh for minimum-drag optimisation.

Table 8.1: Levels of grid refinement and calculated drag for baseline cone simulation.

Grid Dimensions DEuler (N) DTaylor-Maccoll (N)
G1 130×25 54497.2 54664.6
G2 260×50 54517.6 54664.6
G3 520×100 54535.5 54664.6
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Table 8.2: Freestream inflow conditions for baseline cone simulation.

Mach number 6.28
Velocity, m·s−1 2180.345
Pressure, Pa 10,000.0
Temperature, K 300.0

Surface parameterisation

The design surface is parameterised using a Bézier curve. The points are spaced evenly along the
x-direction, and the initial y-ordinates are selected such that the Bézier curve recovers the baseline
conical body. The first and last points are fixed throughout the optimisation to enforce the fixed length
and diameter constraints. The y-ordinates are used as the design variables in the optimisation. More
details are provided in Appendix D.

8.2.2 Adjoint solver convergence characteristics

In this section, the convergence characteristics of the adjoint solver are examined. The accuracy of
the sensitivity gradients computed by the adjoint method is dependent on the level of convergence
of both the flow solution and the adjoint solution. If it is possible to compute sufficiently accurate
sensitivity gradients on either a partially converged flow solution or a partially converged adjoint
solution, then significant gains in efficiency could be achieved. To explore the convergence character-
istics, flow-adjoint solutions were generated for the baseline conical geometry outlined in the previous
section. The reference sensitivities, assumed to be exact, are evaluated on a flow solution converged
to machine precision and an adjoint solution converged to machine precision. Figure 8.3(a) presents
the results from partially converging the flow solution. Figure 8.3(b) presents the results from par-
tially converging the adjoint solution. The variables shown correspond to Bézier points located at
x = 0.5L and x = 0.75L. It is observed from these results that sensitivity gradients accurate to
within 0.1% are achievable by converging the flow solver 7 orders of magnitude and converging the
adjoint solver 9 orders of magnitude. Although encouraging, these results should be taken with some
caution. The adjoint method is predicated on the flow solution being converged to machine precision,
and for second-order spatially accurate solutions of the RANS equations, the adjoint solver has been
known to diverge for a poorly converged flow solution. As noted by Burdyshaw [230] the results for
the convergence characteristics are most probably problem-dependent.
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Figure 8.3: Influence of convergence levels on sensitivity estimates for two selected variables.
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8.2.3 Results

Minimum-drag profiles were found for fineness ratios of L/D = 3 and L/D = 5. For the L/D = 3
case, optimal profiles for Mach 3, Mach 6.28 and Mach 12 were found using a 20 point Bézier curve
and the AUSMDV flux calculator. For the L/D = 5 case, optimal profiles for Mach 6.28 were found
using combinations of the AUSMDV and Roe flux calculator, and by parameterising the surface with
a 20-point and a 40-point Bézier curve. These particular configurations were taken from the work
by Mason et al [223]. The objective function histories for each of the cases are shown in Figure 8.4.
The optimiser was run for 50 design iterations. In all cases, the optimiser had virtually settled on a
minimum point by the 50th iteration. The optimised profiles for L/D = 3 are shown in Figure 8.5(a).
Also presented in Figure 8.5(a) are several of the previously derived optimum profiles, discussed
earlier. The present results show some small Mach number dependence. However, this appears to be
only for the Mach 3 case, it is observed that the Mach 6.28 and Mach 12 cases both share the same
profile. It is also observed that all three Mach number cases are approximated well by the power-
law body with an exponent n of 0.69 near the leading edge, however, the agreement deviates slightly
downstream. The optimised profiles for the L/D = 5 case are shown in Figure 8.5(b). The results
for this case appear to be independent of the number of design variables and also independent of the
flux calculator employed. This case exhibits much better agreement with the results from Mason et
al. [223], also plotted in Figure 8.5(a) as the power-law body with exponent n = 0.7. Overall these
results demonstrate that the adjoint-based optimisation package is correctly finding the minimum
point for the given design problem. The results presented here also appear to confirm that for large
fineness ratio, hypersonic minimum-drag bodies of revolution are best approximated by a power-law
with an exponent approximately equal to n of 0.7.
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Figure 8.4: Objective function history.
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8.3 Redesign of the NASA P2 hypersonic inlet

The redesign of the NASA P2 hypersonic inlet is the subject of the second application case. The
following has been reproduced from Damm et al. [1].

8.3.1 Background for hypersonic inlet design

A key challenge to designing a hypersonic accelerating scramjet engine is achieving robust combus-
tion of the fuel-air mixture over a wide range of Mach numbers [231]. The design of the hypersonic
inlet, that is required to provide desired flow conditions to the combustor, is consequently of consid-
erable importance to achieving realisable scramjet-powered accelerators.

A common hypersonic inlet design methodology is to integrate an inviscid flow analysis with
boundary layer correction techniques to achieve the desired flow field compression. The P2 and
P8 hypersonic inlets [232], developed in the 1970s at NASA, are an example of this procedure.
The Rectangular-to-Elliptical-Shape-Transition (REST) inlet [233] is another, more modern exam-
ple. Both of these classes of inlet have been known to suffer from adverse turbulent boundary layer
interactions, not evident during the design process [232, 234].

Since the mid-1990s, several researchers have studied integrating high-fidelity Reynolds-Averaged
Navier-Stokes (RANS) calculations into the hypersonic inlet design process. Gelsey et al. [235] and
Shukla et al. [236, 237] presented some of the first RANS-based design optimisation results for hyper-
sonic inlets: throughout a series of papers, the authors presented redesigns of the P2 and P8 hypersonic
inlets using NASA’s NPARC and GASP codes coupled with the k-ε turbulence model. Hasegawa et
al. [238, 239] also utilised the GASP code in an automated design optimisation of generic 2D inlets us-
ing the k-ω turbulence model. More recently, Drayna et al. [240] developed a sensitivity analysis code
within the US3D solver and applied it to the design optimisation of 3D hypersonic inward-turning in-
lets using the Spalart-Allmaras turbulence model. These works all suffered from poor scalability for a
large number of design parameters, in that for each additional design variable, at least one additional
objective function evaluation was required. This poor scaling of the design iteration is too restric-
tive for practical hypersonic inlet design, considering that a 3D hypersonic inlet requires 50+ design
parameters to capture the geometric detail [20].

8.3.2 P2 hypersonic inlet

We have selected to redesign the P2 hypersonic inlet to demonstrate the applicability of the discrete
adjoint method to hypersonic inlet design. This problem has been previously used to demonstrate
the use of black-box finite difference style CFD optimisation for hypersonic inlet design [235–237],
and, consequently, the inlet design community has some familiarity with the geometry. The P2 in-
let (illustrated in Figure. 8.6) was a two-dimensional, planar, hypersonic inlet designed for a generic
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accelerating vehicle at NASA in the early 1970s [232]. The original design objective was to achieve
a desired compression ratio of 2 across the cowl shock while providing an approximately uniform
static pressure distribution at the throat. From the experimental campaign, it was observed that the
inlet did not achieve a uniform static pressure distribution across the throat. Instead, the cowl shock
reflected off the bodyside of the inlet rather than being cancelled by an expansion. Gnos et al. [232]
attributed the failure of the design approach to the analytical technique’s poor capturing of the various
interactions between the viscous and inviscid components of the flow, and in particular, the turbulent
shockwave boundary layer interaction. Our goal, in this work, is to show how discrete adjoint opti-
misation can be used to develop a correction to the inlet shape that delivers on the original design
intent.
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Figure 8.6: Schematic of the P2 Hypersonic Inlet.

8.3.3 Baseline flowfield

The flow solver has been validated for use in this inlet design context by comparison to the original
experimental results of the P2 inlet presented in [232]. The sharp cowl approximation presented by
Knight [241] is applied in this work to reduce the computational complexity of resolving the blunt
leading edge. The P2 inlet walls were modelled as no-slip boundaries with a fixed temperature of 304
K, consistent with what was reported by the experimenters [232]. The inflow conditions were com-
puted from the reported stagnation conditions, assuming γ = 1.4 for ideal air, and are presented in
Table 8.3. No experimental data quantifying the turbulence intensity of the freestream is available for
this inlet. Consequently, several combinations of freestream turbulence intensity and eddy viscosity
ratio were applied, and are presented in Table 8.4. Transition was accommodated by separating the

119



CHAPTER 8. OPTIMISATION APPLICATIONS

domains into laminar regions and turbulent regions. The turbulent region was set at a distance of 40%
of the fore-body wedge length. This distance matched that observed in experiment. First-order extrap-
olation of the flow state is applied at outflow boundaries. A grid independence study was undertaken,
consisting of three levels of refinement, tabulated in Table 8.5. The G2 grid is presented in Figure. 8.7.
Each mesh achieves a y+ of less than 1 along the inlet bodyside wall, except G1 which has a maxi-
mum y+ of 1.2 near the reflected shock region. The simulations were considered converged once the
global L2 error norm was reduced by at least 8 orders of magnitude. Mesh sequencing was utilised
to accelerate convergence, with the current grid level being initialised with the previous grid levels
converged solution. The G1 grid was initialised with the freestream condition and a fake boundary
layer, generated by a linear blending of the wall properties and freestream conditions over 25 cells
normal to the wall.

Table 8.3: Freestream inflow conditions for P2 inlet.

Mach number 7.4
Velocity, m·s−1 1221.8
Pressure, Pa 701.4
Temperature, K 67.85

Table 8.4: Testing of freestream turbulence properties for P2 inlet.

Simulation I µlam
µturb

S1 0.03 10
S2 0.03 100
S3 0.04 10
S4 0.05 10

Table 8.5: Levels of grid refinement used for validation.

Grid No. Cells
G1 16240
G2 66125
G3 266845

Figure. 8.8 presents pressure contours for the converged solution on grid G3 for simulation S3.
The strong reflected cowl shock observed in the experimental campaign is also present in the RANS
calculation. Annotated on Figure. 8.8 are three stations at which pressure probes were placed during
the experiment. The Pitot pressure at each station for simulation S3 is compared with the experimental
data from [232] in Figures. 8.9(a), 8.9(b), and 8.9(c). Similar grid convergence trends were observed
for simulations S1, S2 and S4; however, for brevity, the results are omitted. The results for simulations
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Figure 8.7: P2 inlet grid level G2.

Station A Station E Station J

Cowl shock Reflected cowl shock

Figure 8.8: Baseline P2 inlet pressure colour map and contour lines for simulation S3 on grid level
G3, with annotated experimental measurement locations.

S1 through S4, on grid G3, are presented in Figures. 8.10(a), 8.10(b), and 8.10(c). For all simulations,
the largest discrepancy is noticeable near the cowl surface, where the sharp cowl approximation has
not captured the entropy layer generated by the blunt leading edge. It is evident that the core-flow
of the inlet is sensitive to the inflow freestream turbulence properties. Along the bodyside of the in-
let, our simulations are in good agreement with the experimental data in the boundary layer region,
however, an over-prediction in the core-flow region is observed. The numerical results compare well
to others who have applied the sharp cowl approximation, however, prior works did not notice an
over-prediction of the normalised Pitot pressures in the core flow [235–237, 241]. These authors used
a patched-grid approach by dividing the inlet into self-contained regions, in comparison to simulat-
ing the inlet in a tip-to-tail fashion, as done in this current work. An over prediction of core-flow
Pitot pressure has been reported for tip-to-tail simulations of the P8 hypersonic inlet by several au-
thors [242], tested during the same experimental study [232]. Despite this sensitivity, the major flow
features are captured by the flow solver, and hence the simulations will be suitable for demonstrating
adjoint-based inlet design in the present work.

121



CHAPTER 8. OPTIMISATION APPLICATIONS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.01  0.02  0.03  0.04  0.05

y
, 
c
m

Pp/Pt,∞

EXP
G1
G2
G3

(a) Station A, x = 0.9906 m.

 0

 1

 2

 3

 4

 5

 6

 0  0.01  0.02  0.03  0.04  0.05

y
, 
c
m

Pp/Pt,∞

EXP
G1
G2
G3

(b) Station J, x = 1.1938 m.
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Figure 8.9: Simulation S3 Pitot pressure (PP), normalised by Pt,∞ = 4.14 MPa. Experimental data
from [232].
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Figure 8.10: Simulation S3 on level G3 Pitot pressure (PP), normalised by Pt,∞ = 4.14 MPa. Experi-
mental data from [232].
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8.3.4 Optimisation problem description

The original design objective for the P2 hypersonic inlet was to achieve a compression ratio of 2
across the cowl shock (corresponding to a compression ratio of 6.25 relative to the freestream), while
providing a uniform pressure distribution across the throat of the inlet. Our chosen objective function
for the redesign of the inlet is presented as Eq. 8.3.

J =

∫ H
0 (p(x,y)− p∗)2dA

Atot
, (8.3)

Here, p∗= rp p∞ is the desired pressure at the throat, and rp is the desired compression ratio referenced
to the freestream pressure. For our design optimisation we set rp = 6.25 and p∞ = 701.4 Pa, to be
consistent with the original design objective documented by Gnos et al. [232]. The objective function
(Eq. 8.3) was evaluated at the baseline inlet throat location, shown in Figure 8.11. Only a portion of
the compression surface was chosen for redesign. The design surface was designated as the segment
of the bodyside of the inlet spanning from the end of the forebody wedge, approximately 1.1 m
downstream of the leading edge, to the end of the computational domain. The forebody wedge and
cowl side geometry act to provide the core-flow compression, and since the goal is to remove the
reflected shock, they remain fixed during the optimisation. The design surface segment of inlet was
parameterised by a Bézier curve. The initial Bézier control points are fitted to the baseline P2 inlet
geometry. To ensure smooth continuity between the fixed inlet surfaces and the design surface, the
first, second and last Bézier control points have fixed y-ordinates. The second Bézier point is chosen to
match the slope of the wedge. The remaining control points have a variable y-ordinate. Further details
of the parameterisation can be found in the Appendix E. The turbulence properties were chosen to be
those of simulation S3, and the optimisation was performed on grid level G2. The optimiser was run
for a fixed number of design iterations.

Adjoint optimisation results for two Bézier curve parameterizations, an 11-point curve and a 20-
point curve, are presented here. After 20 objective function evaluations and 4 adjoint solves, the
objective function has already been reduced by more than 95% of the original value for both cases.
The entire optimiser search history is shown in Figure 8.12. Also shown in Figure 8.12 is the same
design problem optimised using standard finite-difference gradients with a step-size of 1× 10−3.
Some observations can be made regarding the efficiency of the adjoint approach from the comparison
of these results. The number of objective function evaluations required to sufficiently reduce the
objective function scales excellently with the number of design variables for the adjoint approach:
little difference is observed in the history of objective function evaluations when comparing 11-point
and 20-point adjoint optimisations. On the other hand, the finite-difference approach is shown to scale
very poorly. Given that, for this particular problem, an adjoint solve costs roughly the same as a flow
solve, this demonstrates that the efficiency of the adjoint approach over the finite-difference approach
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Figure 8.11: P2 inlet objective function integral path (design surface shown as dashed line).
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Figure 8.12: Objective function history for optimisation of the P2 inlet. Two design paramterisations
are shown: a Bézier curve with 11 control points and a Bézier curve with 20 control points.

is substantial. Furthermore, for the adjoint optimisations, the wall-clock time taken to reach the fixed
number of design iterations for the two parameterizations was within 2% of each other, where the 11-
point optimisation (not the 20-point optimisation) incurred the longer wall-clock time, meaning the
difference was not a direct result of the additional design parameters. So, an approximate doubling in
the number of design variables has resulted in no additional compute time. This clearly demonstrates
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the advantage of the adjoint approach over black-box style gradient-based methods.

8.3.5 Results

Figure 8.13 presents a pressure colour map with contour lines overlaid for the baseline and the 20-
point Bézier curve optimised inlet. It is observed that the reflected shock has been virtually removed,
without any substantial effects to the upstream flow features of the inlet. Similar pressure fields were
obtained for the 11-point Bézier curve optimised inlet, but the plots have been omitted for brevity.

Plots of the Pitot pressure and static pressure normalised by their freestream values at the baseline
throat location (J station) are presented in Figures. 8.14 and 8.15. It is observed that the characteristic
pressure drop, from the shock-boundary layer interaction, has almost been completely removed for
all cases, confirming the removal of the reflected shock. Furthermore, it is evident that similar pro-
files have been obtained for both the 11-point and 20-point parameterisation. A comparison of the two
optimised Bézier curves are presented in Figure 8.16. It is observed that both curves share similar pro-
files up until approximately x=1.1938 m. After this location, the two curves deviate significantly from
each other. This result is somewhat explicable since the flow is supersonic in the inlet, perturbations
to the geometry downstream of the objective function evaluation location should have no influence
on the value of the objective function, and consequently, have negligible effects on the design. This
can be confirmed by examining the adjoint variables, which provide the sensitivity to the objective
function with respect to conserved residuals in each cell. Figure 8.17 presents a colour map of the ad-
joint variable related to the conserved mass residual. It is observed that downstream of the objective
function evaluation location, the adjoint variable has a magnitude of zero. This insensitivity to the ob-
jective function consequently means that the geometry here may be perturbed without any substantial
effect on the objective function, noting that a perturbation in the design variables downstream could
potentially result in a non-zero ∂J

∂D term in Eq. 6.5.

Table 8.6 lists several performance metrics for the baseline and optimised inlets. The adiabatic
energy efficiency is computed from its definition:

ηKE,ad =
ht0−h

′
2

ht0−h0
, (8.4)

where h
′
2 is the enthalpy the flow would have if the gas state at the throat were expanded isentropically

to the freestream pressure. The throat location has moved upstream by approximately 4% for both de-
signs. Also, the throat width has been reduced by 4%. The total pressure recovery has improved for
the optimised inlets, at no cost to the adiabatic kinetic energy efficiency, which has remained constant
despite the geometric perturbations, a common trait of ηKE,ad as discussed in the textbook by Heiser
and Pratt (pg. 208) [32]. Note that the performance metrics in Table 8.6 were not evaluated at the
objective function location, which was set to the baseline throat location. Instead, the performance

125



CHAPTER 8. OPTIMISATION APPLICATIONS

(a)

(b)

Figure 8.13: P2 inlet pressure colour map with contour lines overlaid for (a) Baseline (b) Optimised
(20-point Bézier curve).
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Figure 8.14: Comparison of Pitot pressure (PP) at station J, x = 1.1938 m, normalised by Pt,∞ = 4.14
MPa for optimised inlets.
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optimised inlets.
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Figure 8.17: Colour map with contour lines of the absolute value of the adjoint variable related to
Eq. 8.3 and the conserved mass residual for baseline P2 inlet.

metrics are evaluated at the throat location in the optimised inlet since it seems fairest to compare
performance of inlets at their respective throat locations. However, in the interests of a direct compar-
ison at the same physical location, the performance metrics for both redesigns at the baseline throat
location were approximately p/p∞ = 6.22, pt/pt,∞ = 0.578, ηKE,ad = 0.985. Summarising the results,
the new inlets have achieved the desired compression ratio and removed the reflected shock, while
retaining or improving the performance metrics.
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Table 8.6: Performance metrics at respective throat locations extracted as flux-conserved quantities.

Performance metric Baseline 20-point 11-point
Throat location (xthroat, m) 1.1938 1.1447 1.1459
Throat width (∆OH, mm) 61.18 58.86 58.80
Compression ratio (p/p∞) 5.987 6.367 6.366
Total pressure recovery (pt/pt,∞) 0.576 0.584 0.584
Adiabatic kinetic energy efficiency (ηKE,ad) 0.985 0.985 0.985

8.4 Summary

This chapter presented two applications of adjoint-based optimisation in hypersonic flow. The two ap-
plications were: (a) wave drag minimisation of axisymmetric bodies; and (b) hypersonic inlet design.
These examples span both external and internal high-speed flows, with both inviscid and viscous flow
models. The success of these applications, demonstrated by the presented design results, show that
adjoint-based optimisation is applicable for both external and internal hypersonic flow design analy-
sis. The efficiency of the adjoint method was confirmed for hypersonic flows, with additional design
parameters incurring no additional compute time per design iteration, as reported for the hypersonic
inlet design case. Finally, by employing complex-variable differentiation to construct the adjoint op-
erator and partial derivatives, no additional code extensions were required to accommodate different:
(a) physics models (e.g. Euler and RANS); or (b) numerical methods (e.g. flux calculators). This is
an encouraging result, given the development of numerical methods for the simulation of hypersonic
compressible flows is still an active field of research.
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CHAPTER 9

CONCLUSIONS

9.1 Summary and discussion

The overall aim of this thesis was to

Investigate how high-fidelity CFD-based optimisation using the adjoint method can be

applied to aerodynamic shape design in hypersonic flow.

This was divided into several objectives that were listed in Chapter 1 and are repeated here:

1. Implement a Newton-Krylov accelerated, unstructured grid, compressible flow solver.

2. Implement a discrete adjoint solver based on the developed flow solver.

3. Develop an optimisation package for aerodynamic shape design.

4. Apply the developed optimisation package to aerodynamic shape design in hypersonic flow.

With these objectives in mind, we may now summarise how the presented work addressed these
objectives.

Chapter 2 provided a general background to hypersonic vehicle design. The chapter began with
an introduction to airbreathing hypersonic vehicles. The discussion focused on the importance of
airframe-engine integration in reducing overall drag and achieving positive thrust. Following this,
the relevant flow phenomena for airbreathing hypersonic flight were presented. The key messages
from these two sections were that: (a) hypersonic vehicles have complex geometries; and (b) the flow
physics that describe a hypersonic vehicle’s aerodynamics are complex. The chapter concluded with
a critical review of current design methodologies. The findings suggested that an improved design
system that employs numerical optimisation, which can account for and take advantage of the highly
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integrated nature of hypersonic vehicles, is required for robust designs to be developed. The adjoint
method was introduced at the end of Chapter 2 as a proposed means of efficiently accommodating
the complex geometries and flow physics relevant to hypersonic vehicle design into an optimisation
framework.

A review of adjoint-based optimisation was then presented in Chapter 3. The discrete adjoint
method was derived and the key challenge of constructing the adjoint operator was discussed. Several
popular techniques for constructing the adjoint operator were compared. Ultimately the complex-step
derivative approach was chosen as the preferred method for this work as a consequence of its accuracy
and ease of implementation. Chapter 3 concluded with a review of adjoint-based optimisation in
hypersonic flow. The review uncovered that the application of the discrete adjoint method to RANS-
based design in high-speed flows had not been extensively reported in the literature. This motivated
the contributions made by this work, outlined below.

Chapter 4 introduced the flow solver developed for high-speed flow analysis. To provide flow
analysis with a rapid turn-around, an unstructured steady-state RANS solver driven by a Jacobian-Free
Newton-Krylov method was developed. In this work, turbulence was modelled using the two-equation
k−ω turbulence model. The Newton method was globalised using the pseudo-transient approach. A
restarted GMRES method was used to solve the system of linear equations arising when solving
for the Newton steps. Evaluation of the matrix-vector products required in the GMRES algorithm
was accomplished by Fréchet derivatives using imaginary perturbations in the complex plane. This
was necessary to achieve robust convergence of the types of turbulent hypersonic flow considered in
this work. Equation scaling ensured that the linear solver provides an adequate solution of the linear
system, especially for turbulent flows, where the flow and turbulence variables differ by several orders
of magnitude. Incomplete lower-upper preconditioning with zero-fill was used to accelerate linear
system convergence. To achieve adequate residual convergence for flows with embedded shocks,
limiter freezing was required to prevent early stall.

The results from a complete verification and validation of the developed flow solver were pre-
sented in Chapter 5. The Method of Manufactured Solutions was employed to quantitatively verify
the spatial order of accuracy of the code. As expected, the order of accuracy was demonstrated to be
2 for both the two- and three-dimensional solvers. The flow solver’s shock capturing and boundary
layer capturing capabilities were verified by qualitative means. The shock capturing was verified by
comparison to analytic solutions of an oblique shock wave. The boundary layer capturing capability
was verified by comparison to numerical solutions of the boundary layer equations in self-similarity
variables. The flow solver was validated using several validation cases taken from the literature to
establish the appropriateness of the implemented physical models for design analysis in high-speed
flow. The selected validation cases covered the spectrum of relevant flow phenomena, in particular,
high-speed flows with strong inviscid/viscous interactions. Good agreement to the published experi-
mental data for all cases was observed.
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In Chapter 6, the accompanying adjoint solver developed for this work was presented. The pri-
mary complication of linearising the flow solver routines was handled via a complex-step derivative
approach. Targeted differentiation was employed to provide an efficient means of constructing the ad-
joint operator. The evaluation of the remaining partial derivatives required in the total derivative calcu-
lation was also via a complex-step derivative approach. The adjoint gradients were verified against a
complex variable direct-differentiation method. The gradients are shown to have excellent agreement.
The chapter concluded by presenting a useful technique for debugging the adjoint operator.

Chapter 7 presented the remaining components of the developed optimisation package. Namely,
the Bézier curve surface parameterisation and the inverse distance weighting (IDW) method for mesh
deformation. The open-source optimisation library, DAKOTA, was utilised in this work for perform-
ing the design space search. Communication of the objective function evaluations and gradients be-
tween the developed software and DAKOTA was necessary. This coupling was outlined at the end of
Chapter 7.

In Chapter 8, two optimisation applications were presented as a demonstration of the development
work: (a) wave drag minimisation of an axisymmetric body; and (b) hypersonic inlet design optimi-
sation. For the case of axisymmetric bodies, the optimal shape determined by this work compared
favourably to several minimum-drag power law bodies published in the literature. The second appli-
cation was the redesign of the P2 hypersonic inlet. The chosen objective function aimed at removing
the reflected cowl shock whilst obtaining the desired compression ratio. The results presented show
that the optimiser has removed the reflected shock while achieving the desired compression ratio, at
no cost to the inlet performance metrics.

The conclusions that may be drawn from the work conducted in this thesis is that the discrete
adjoint-based optimisation method does work well in a hypersonic flow context, and that use of the
complex-step differentiation is a key enabler in the implementation. In particular, the inlet example
presented in this work demonstrated the efficiency, accuracy, and applicability of discrete adjoint-
based optimisation to design analysis in turbulent high-speed flow. Another conclusion from this
work is that the complex Fréchet derivative works well for evaluating the matrix-vector products in
a Jacobian-Free Newton-Krylov method in a hypersonic flow context. The advantage of setting the
perturbation parameter independent of round-off error was instrumental in solving the large three-
dimensional problems presented in Chapter 5. Moreover, the complex Fréchet derivative was an en-
abler for achieving sufficient levels of residual convergence for the turbulent high-speed flows simu-
lated in this work.
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9.2 Contributions

The primary contribution of this work is the description and application of a discrete adjoint solver
in high-speed compressible flow optimisation. What is unique in this work is a demonstration that
complex-step differentiation works well to linearise a second-order spatially accurate unstructured
RANS solver. In particular, the approach presented in this work utilised the k−ω turbulence model
in high-speed ducted flow configurations. We have not seen this reported elsewhere.

In addition to the adjoint development, this work contributes towards the advancement of Newton-
Krylov methods for the primal solution of turbulent high-speed flows. In particular, it is believed that
this is the first application of a Jacobian-Free Newton-Krylov method to solving the RANS equations
coupled with the k−ω turbulence model on unstructured grids using a spatially second-order numer-
ical discretisation. Furthermore, the application of a complex-step Fréchet derivative for evaluating
the matrix-vector products is believed to be novel.

More local contributions are the new capabilities for the in-house flow solver, Eilmer, produced
by this work. Historically, Eilmer has utilised explicit time-stepping to calculate the steady-state flows
achieved in the experimental facilities at the University of Queensland. The addition of a steady-state
solver to the software suite will provide a more efficient means of simulating flows for comparison
to experimental data. Furthermore, it is envisioned that the optimisation package will also provide an
efficient means of model design for future experimental campaigns.

9.3 Recommendations for future work

Over the course of this investigation, a number of research directions were identified which extended
well beyond the scope of this work. First, some specific recommendations for directly extending this
work are presented, and, second, more general recommendations for the adjoint-based optimisation
community are discussed.

Extend surface parameterisation for 3D geometries: The Bézier curve surface parameterisation is
difficult to extend to three-dimensional surfaces. To facilitate the design of three-dimensional geome-
tries, the geometry parameterisation in Eilmer will need to be extended. Several candidate methods
were highlighted in Chapter 7, the simplest extension to the Bézier curve routine already implemented
are Bézier surfaces. However, free-form deformation has shown to be robust for complex geometries
and is under consideration.

Perform optimisation of 3D geometries: The flow and adjoint solvers developed for this work oper-
ate on two- and three-dimensional meshes. However, due to the limitations of the surface parameteri-
sation, the applications presented here were restricted to two-dimensional and axisymmetric geome-
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tries. Future work will include the optimisation of three-dimensional geometries. Several candidate
applications include modern hypersonic inlets, such as modular shape-transition inlets [243], and the
SPARTAN vehicle airframe.

Implement robust three-dimensional mesh movement strategy: The IDW method produced de-
formed meshes of sufficient quality for the two-dimensional optimisation applications presented in
this work. Although the IDW method applies to three-dimensional mesh deformation, several alter-
nate candidate methods have been selected for future work, such as the application of linear elastic
solvers.

Extend adjoint solver to include mesh adjoint: The IDW method is computationally inexpensive,
and as such a mesh adjoint was not considered in this work. If a more computationally expensive mesh
deformation method is implemented, then a mesh adjoint will be necessary to retain the scalability of
the adjoint solver.

Extend flow and adjoint solvers to include chemical non-equilibrium: The flow and adjoint solvers
in this work were developed for a single species gas. A natural extension to both these solvers is the
inclusion of chemical non-equilibrium flows. The baseline solver, Eilmer, already includes routines
for finite-rate chemistry, currently utilised by the explicit solver. Future work will extend the steady-
state flow and adjoint solvers to include the use of finite-rate chemistry for modelling and design in
non-equilibrium flows. This can then be applied to the propulsion flowpath design for scramjet en-
gines.

More generally, a limitation of the adjoint method experienced in this work is achieving satisfactory
convergence of the flow solver residual for flows with embedded shocks. Flows with strong shock
waves present are known to suffer from stalled convergence due to the ringing of the limiter demon-
strated in Chapter 4. Although freezing the limiter worked well for the applications presented in
Chapter 8, this approach is not ideal, since it is known to be problem dependent and has been shown
to exhibit small-scale oscillations in the flow solution for some limiters [105]. For these reasons, focus
should be given to the development of innovative numerical methods that retain a high order of spatial
accuracy whilst removing the need for flux or gradient limiting. Several techniques are currently in
development [244–247]. However, the applicability of adjoint-based optimisation for these numerical
methods will need to be investigated given the requirements for a convergent adjoint system with
embedded shocks discussed in Section 3.5 [63–66]

Finally, this work was motivated by the promise that adjoint-based multidisciplinary design op-
timisation has for the design of hypersonic vehicles, such as the SPARTAN vehicle introduced in
Chapter 1. As a first step, this work has investigated the application of a discrete adjoint-based opti-
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misation framework for high-speed design of the vehicle aerodynamics. Towards the goal of adjoint-
based MDO, the components of this framework can be used as one of several modules in an adjoint-
based MDO framework. The coupling of several disciplines in an adjoint-based MDO framework is
an important next step in this research field. The long term goal is using adjoint-based optimisation to
perform high-fidelity design analysis of entire vehicle configurations.

136



REFERENCES

[1] K.A. Damm, R.J. Gollan, P.A. Jacobs, M.K. Smart, S. Lee, E. Kim, and C. Kim. “Discrete
adjoint optimization of a hypersonic inlet”. In: AIAA Journal (2019).

[2] K.A. Damm, R.J. Gollan, and A. Veeraragavan. “Acceleration of combustion simulations us-
ing GPUs”. In: Australian Combustion Symposium. Melbourne, Australia, 2015, pp. 148–151.

[3] K.A. Damm, R.J. Gollan, and A. Veeraragavan. “On the effect of workload ordering for react-
ing flow simulations using GPUs”. In: 20th Australasian Fluid Mechanics Conference. Paper
Number: 748. Perth, Australia, 2016, pp. 748.1–748.4.

[4] K.A. Damm, R.J. Gollan, and P.A. Jacobs. “Verification of the least-squares procedure within
an unstructured-grid flow solver”. In: 20th Australasian Fluid Mechanics Conference. Paper
Number: 703. Perth, Australia, 2016, pp. 703.1–703.4.

[5] K.A. Damm, R.J. Gollan, P.A. Jacobs, S. Lee, E. Kim, and C. Kim. “Adjoint design optimiza-
tion for the P2 hypersonic inlet”. In: Korean Society of Computational Fluid Engineering

Conference. Jeju, South Korea, 2018.

[6] K.A. Damm, R.J. Gollan, P.A. Jacobs, S. Lee, E. Kim, and C. Kim. “Adjoint design op-
timization for the P2 hypersonic inlet”. In: 10th National Congress on Fluids Engineering

Conference. Yeosu, South Korea, 2018.

[7] K. A. Damm. Shock Fitting mode for Eilmer. Mechanical Engineering Report 2016/15. Centre
for Hypersonics, University of Queensland, 2016.

[8] Elizabeth Buchen. “2013 Small Satellite Market Observations”. In: AIAA/USU Conference on

Small Satellites, Technical Session VII: Opportunities, Trends and Initiative. 2013.

[9] Australian Government. The high growth potential of Australia’s space economy. ACT, 2013.

[10] Dawid Preller and Michael K Smart. “Reusable launch of small satellites using scramjets”.
In: Journal of Spacecraft and Rockets 54.6 (2017), pp. 1317–1329. DOI: 10.2514/1.A33610.

137

https://doi.org/10.2514/1.A33610


REFERENCES

[11] Dawid Preller and Michael K. Smart. “Scramjets for Reusable Launch of Small Satellites”. In:
20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference.
AIAA paper 2015-3586. Reston, Virginia, 2015. DOI: 10.2514/6.2015-3586.

[12] Michael K. Smart. “Scramjets”. In: The Aeronautical Journal 111.1124 (2007), pp. 605–619.
DOI: 10.1017/S0001924000004796.

[13] Michael K. Smart and Matthew R. Tetlow. “Orbital delivery of small payloads using hyper-
sonic airbreathing propulsion”. In: Journal of Spacecraft and Rockets 46.1 (2009), pp. 117–
125. DOI: 10.2514/1.38784.

[14] Kevin G. Bowcutt. “A perspective on the future of aerospace vehicle design”. In: 12th AIAA

International Space Planes and Hypersonic Systems and Technologies. AIAA paper 2003-
6957. Norfolk, Virginia, 2003. DOI: 10.2514/6.2003-6957.

[15] Kevin G. Bowcutt. “Multidisciplinary optimization of airbreathing hypersonic vehicles”. In:
Journal of Propulsion and Power 17.6 (2001), pp. 1184–1190. DOI: 10.2514/2.5893.

[16] Thomas Jazra, Dawid Preller, and Michael K. Smart. “Design of an airbreathing second
stage for a rocket-scramjet-rocket launch vehicle”. In: Journal of Spacecraft and Rockets 50.2
(2013), pp. 411–422. DOI: 10.2514/1.A32381.

[17] Thomas Jazra. “Optimisation of Hypersonic Vehicles for Airbreathing Propulsion”. PhD the-
sis. University of Queensland, 2010.

[18] Dawid Preller. “Multidisciplinary design and optimisation of a pitch trimmed hypersonic air-
breathing accelerating vehicle”. PhD thesis. University of Queensland, 2018.

[19] Kevin G. Bowcutt, Geojoe Kuruvila, Thomas A. Grandine, Thomas A. Hogan, and Evin J.
Cramer. “Advancements in multidisciplinary design optimization applied to hypersonic vehi-
cles to achieve closure”. In: 15th AIAA International Space Planes and Hypersonic Systems

and Technologies Conference. AIAA paper 2008-2591. Dayton, Ohio, 2008. DOI: 10.2514/
6.2008-2591.

[20] Paul G. Ferlemann and Rowan J. Gollan. “Parametric geometry, structured grid generation,
and initial design study for REST-Class hypersonic inlets”. In: JANNAF 43rd Combustion &

31st Airbreathing Joint Meeting. Salt Lake City, Utah, 2010.

[21] Olivier Pironneau. “On optimum design in fluid mechanics”. In: Journal of Fluid Mechanics

64.1 (1974), pp. 97–110. DOI: 10.1017/S0022112074002023.

[22] Dominique Thévenin and Gábor Janiga. Optimization and Computational Fluid Dynamics.
New York: Springer Science & Business Media, 2008.

138

https://doi.org/10.2514/6.2015-3586
https://doi.org/10.1017/S0001924000004796
https://doi.org/10.2514/1.38784
https://doi.org/10.2514/6.2003-6957
https://doi.org/10.2514/2.5893
https://doi.org/10.2514/1.A32381
https://doi.org/10.2514/6.2008-2591
https://doi.org/10.2514/6.2008-2591
https://doi.org/10.1017/S0022112074002023


REFERENCES

[23] Byung Joon Lee and Chongam Kim. “Aerodynamic redesign using discrete adjoint approach
on overset mesh system”. In: Journal of Aircraft 45.5 (2008), pp. 1643–1653. DOI: 10.2514/
1.34112.

[24] Eric J. Nielsen. “Adjoint-Based Aerodynamic Design of Complex Aerospace Configurations”.
In: ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME

2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference

on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engi-
neers. Washington, DC, 2016. DOI: 10.1115/FEDSM2016-7573.

[25] Joaquim R. R.A. Martins, Juan J. Alonso, and James J. Reuther. “High-fidelity aerostructural
design optimization of a supersonic business jet”. In: Journal of Aircraft 41.3 (2004), pp. 523–
530. DOI: 10.2514/1.11478.

[26] Sriram K. Rallabhandi, Eric J. Nielsen, and Boris Diskin. “Sonic-boom mitigation through
aircraft design and adjoint methodology”. In: Journal of Aircraft 51.2 (2014), pp. 502–510.
DOI: 10.2514/1.C032189.

[27] Antony Jameson. “Re-engineering the design process through computation”. In: Journal of

Aircraft 36.1 (1999), pp. 36–50. DOI: 10.2514/2.2412.

[28] Antony Jameson and John C. Vassberg. “Computational fluid dynamics for aerodynamic de-
sign: Its current and future impact”. In: 39th AIAA Aerospace Sciences Meeting. Vol. 538.
AIAA Paper 2001-0538. Reno, Nevada, 2001. DOI: 10.2514/6.2001-538.

[29] Joseph Shea. Report of the Defense Science Board Task Force on the National Aerospace

Plane (NASP). Report AD-A201 124. Defense Science Board, Office of the Under Secretary
of Defense for Acquisition, 1988.

[30] Ajay Kumar, J. Philip Drummond, Charles R. McClinton, and James L. Hunt. “Research
in hypersonic airbreathing propulsion at the NASA Langley Research Center”. In: Fifteenth

International Symposium on Airbreathing Engines. Bangalore, India, 2001.

[31] Robert A. Jones and Paul W. Huber. “Airframe-integrated propulsion system for hypersonic
cruise vehicles”. In: 11th Congress of the International Council of the Aeronautical Science.
Lisbon, Portugal, 1978.

[32] William H. Heiser and David T. Pratt. Hypersonic Airbreathing Propulsion. Reston, Virginia:
AIAA, 1994.

[33] Sholto O. Forbes-Spyratos, Michael P. Kearney, Michael K. Smart, and Ingo H. Jahn. “Trajec-
tory Design of a Rocket–Scramjet–Rocket Multistage Launch System”. In: Journal of Space-

craft and Rockets 56.1 (2018), pp. 53–67. DOI: 10.2514/1.A34107.

139

https://doi.org/10.2514/1.34112
https://doi.org/10.2514/1.34112
https://doi.org/10.1115/FEDSM2016-7573
https://doi.org/10.2514/1.11478
https://doi.org/10.2514/1.C032189
https://doi.org/10.2514/2.2412
https://doi.org/10.2514/6.2001-538
https://doi.org/10.2514/1.A34107


REFERENCES

[34] Thomas A. McLaughlin. “Viscous optimized hypersonic waveriders for chemical equilibrium
flow”. PhD thesis. University of Maryland, 1990.

[35] John David Anderson Jr., Jinhwa Chang, and T.A. McLaughlin. “Hypersonic waveriders: ef-
fects of chemically reacting flow and viscous interaction”. In: 30th Aerospace Sciences Meet-

ing and Exhibit. AIAA paper 1992-0302. Reno, Nevada, 1992. DOI: 10.2514/6.1992-302.

[36] Thomas R.A. Bussing and Scott Eberhardt. “Chemistry associated with hypersonic vehicles”.
In: Journal of Thermophysics and Heat Transfer 3.3 (1989), pp. 245–253. DOI: 10.2514/3.
28772.

[37] John David Anderson Jr. Hypersonic and High Temperature Gas Dynamics. Reston, Virginia:
AIAA, 2000.

[38] Robert H. Korkegi. “Survey of viscous interactions associated with high Mach number flight”.
In: AIAA Journal 9.5 (1971), pp. 771–784. DOI: 10.2514/3.6275.

[39] Andy J. Keane and Prasanth B. Nair. Computational Approaches for Aerospace Design.
Vol. 582. Wiley Online Library, 2005.

[40] Ed Obert. Aerodynamic Design of Transport Aircraft. IOS press, 2009.

[41] Jaroslaw Sobieszczanski-Sobieski. “Multidisciplinary design optimization: an emerging new
engineering discipline”. In: Advances in Structural Optimization. Springer, 1995, pp. 483–
496. DOI: 10.1007/978-94-011-0453-1_14.

[42] Jing Che and Shuo Tang. “Research on integrated optimization design of hypersonic cruise
vehicle”. In: Aerospace Science and Technology 12.7 (2008), pp. 567–572. DOI: 10.1016/j.
ast.2008.01.008.

[43] Kevin Bowcutt, Steve Hollowell, Mark Gonda, and Ted Ralston III. “Performance, operational
and economic drivers of reusable launch vehicles”. In: 38 th AIAA/ASME/SAE/ASEE Joint

Propulsion Conference and Exhibit. AIAA paper 2002-3901. Indianapolis, Indiana, 2002.
DOI: 10.2514/6.2002-3901.

[44] John A. Nelder and Roger Mead. “A simplex method for function minimization”. In: The

Computer Journal 7.4 (1965), pp. 308–313. DOI: 10.1093/comjnl/7.4.308.

[45] Atsushi Ueno, Hideyuki Taguchi, and Kojiro Suzuki. “Aerodynamic shape optimization of hy-
personic airliners considering multi-design-point”. In: 27th Congress of International Council

of the Aeronautical Sciences. Vol. 2. 3. Nice, France, 2010, p. 2010.

[46] Daisuke Sasaki, Shigeru Obayashi, and Hyoung-Jin Kim. “Evolutionary algorithm vs. adjoint
method applied to SST shape optimization”. In: The Annual Conference of CFD Society of

Canada, Waterloo. Waterloo, Canada, 2001.

140

https://doi.org/10.2514/6.1992-302
https://doi.org/10.2514/3.28772
https://doi.org/10.2514/3.28772
https://doi.org/10.2514/3.6275
https://doi.org/10.1007/978-94-011-0453-1_14
https://doi.org/10.1016/j.ast.2008.01.008
https://doi.org/10.1016/j.ast.2008.01.008
https://doi.org/10.2514/6.2002-3901
https://doi.org/10.1093/comjnl/7.4.308


REFERENCES

[47] T.H. Pulliam, Marian Nemec, Terry Holst, and D.W. Zingg. “Comparison of evolutionary
(genetic) algorithm and adjoint methods for multi-objective viscous airfoil optimizations”.
In: AIAA Journal 298.4 (2003). DOI: 10.2514/6.2003-298.

[48] David W. Zingg, Marian Nemec, and Thomas H. Pulliam. “A comparative evaluation of
genetic and gradient-based algorithms applied to aerodynamic optimization”. In: European

Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique 17.1-2
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APPENDIX A

METHOD OF MANUFACTURED SOLUTIONS CONSTANTS

A.1 2D Euler Equations

Table A.1: Constants for 2D supersonic Euler manufactured solution.

Equation, φ φ0 φx φy φxy aφx aφy aφxy
ρ (kg/m3) 1 0.15 −0.1 0 1 0.5 0
u (m/s) 800 50 −30 0 1.5 0.6 0
v (m/s) 800 −75 40 0 0.5 2/3 0
p (N/m2) 1×105 0.2×105 0.5×105 0 2 1 0

Table A.2: fs(.) functions for 2D Euler and 2D subsonic Navier-Stokes manufactured solution.

Equation, φ fsx fsy fsxy

ρ (kg/m3) sin cos cos
u (m/s) sin cos cos
v (m/s) cos sin cos
p (N/m2) cos sin sin
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APPENDIX A. METHOD OF MANUFACTURED SOLUTIONS CONSTANTS

A.2 2D Navier-Stokes Equations

Table A.3: Constants for 2D subsonic Navier-Stokes manufactured solution.

Equation, φ φ0 φx φy φxy aφx aφy aφxy
ρ (kg/m3) 1 0.1 0.15 0.08 0.75 1.0 1.25
u (m/s) 70 4 −12 7 5/3 1.5 0.6
v (m/s) 90 −20 4 −11 1.5 1.0 0.9
p (N/m2) 1×105 −0.3×105 0.2×105 −0.25×105 1.0 1.25 0.75

Table A.4: fs(.) functions for 2D Euler and 2D subsonic Navier-Stokes manufactured solution.

Equation, φ fsx fsy fsxy

ρ (kg/m3) sin cos cos
u (m/s) sin cos cos
v (m/s) cos sin cos
p (N/m2) cos sin sin
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A.3. 2D RANS EQUATIONS

A.3 2D RANS Equations

Table A.5: Constants for 2D k−ω Reynolds-Averaged Navier-Stokes manufactured solution.

Equation, φ φ0 φx φy φxy aφx aφy aφxy
ρ (kg/m3) 1 0.15 −0.1 0.08 0.75 1 1.25
u (m/s) 70 7 −8 5.5 1.5 1.5 0.6
v (m/s) 90 −5 10 −11 1.5 1 0.9
p (N/m2) 1×105 0.2×105 0.175×105 −0.25×105 1 1.25 0.75
k (m2/m2) 780 160 −120 80 0.65 0.7 0.8
ω (1/s) 150 −30 22.5 40 0.75 0.875 0.6

Table A.6: fs(.) functions for 2D RANS manufactured solution.

Equation, φ fsx fsy fsxy

ρ (kg/m3) cos sin cos
u (m/s) sin cos cos
v (m/s) sin cos cos
p (N/m2) cos sin sin
k (m2/m2) cos sin cos
ω (1/s) cos sin cos
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APPENDIX A. METHOD OF MANUFACTURED SOLUTIONS CONSTANTS

A.4 3D Euler Equations

Table A.7: Constants for 3D supersonic Euler manufactured solution.

Equation, φ φ0 φx φy φz aφx aφy aφz
ρ (kg/m3) 1 0.15 −0.1 −0.12 1 0.5 1.5
u (m/s) 800 50 −30 −18 1.5 0.6 0.5
v (m/s) 800 −75 40 −30 0.5 2/3 1.25
w (m/s) 800 15 −25 35 1/3 1.5 1
p (N/m2) 1×105 0.2×105 0.5×105 −0.35×105 2 1 1/3

Table A.8: fs(.) functions for 3D Euler manufactured solution.

Equation, φ fsx fsy fsxy

ρ (kg/m3) sin cos sin
u (m/s) sin cos cos
v (m/s) cos sin sin
w (m/s) sin sin cos
p (N/m2) cos sin cos
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A.5. 3D NAVIER-STOKES EQUATIONS

A.5 3D Navier-Stokes Equations

Table A.9: Constants for 3D subsonic Navier-Stokes manufactured solution.

Equation, φ φ0 φx φy φz φxy φyz φzx
ρ (kg/m3) 1 0.1 −0.1 0.1 0.08 0.05 0.12
u (m/s) 70 7 −15 −10 7 4 −4
v (m/s) 90 −5 10 5 −11 −5 5
w (m/s) 80 −10 10 12 −12 11 5
p (N/m2) 1×105 0.2×105 0.5×105 0.2×105 0.25×105 −0.1×105 0.1×105

ax ay az axy ayz azx
ρ (kg/m3) 0.75 0.45 0.8 0.65 0.75 0.5
u (m/s) 0.5 0.85 0.4 0.6 0.8 0.9
v (m/s) 0.8 0.8 0.5 0.9 0.4 0.6
w (m/s) 0.85 0.9 0.5 0.4 0.8 0.75
p (N/m2) 0.4 0.45 0.85 0.75 0.7 0.8

Table A.10: fs(.) functions for 3D subsonic Navier-Stokes manufactured solution.

Equation, φ fsx ) fsy fsz fsxy fsyz fszx

ρ (kg/m3) cos sin sin cos sin cos
u (m/s) sin cos cos cos sin cos
v (m/s) sin cos cos cos sin cos
w (m/s) cos sin cos sin sin cos
p (N/m2) cos cos sin cos sin cos
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APPENDIX A. METHOD OF MANUFACTURED SOLUTIONS CONSTANTS

A.6 3D RANS Equations

Table A.11: Constants for 3D subsonic Navier-Stokes manufactured solution.

Equation, φ φ0 φx φy φz φxy φyz φzx
ρ (kg/m3) 1 0.1 −0.1 0.1 0.08 0.05 0.12
u (m/s) 70 7 −15 −10 7 4 −4
v (m/s) 90 −5 10 5 −11 −5 5
w (m/s) 80 −10 10 12 −12 11 5
p (N/m2) 1×105 0.2×105 0.5×105 0.2×105 0.25×105 −0.1×105 0.1×105

k (m2/m2) 780 160 −120 80 80 60 −70
ω (1/s) 150 −30 22.5 20 40 −15 25

ax ay az axy ayz azx
ρ (kg/m3) 0.75 0.45 0.8 0.65 0.75 0.5
u (m/s) 0.5 0.85 0.4 0.6 0.8 0.9
v (m/s) 0.8 0.8 0.5 0.9 0.4 0.6
w (m/s) 0.85 0.9 0.5 0.4 0.8 0.75
p (N/m2) 0.4 0.45 0.85 0.75 0.7 0.8
k (m2/m2) 0.65 0.7 0.8 0.8 0.85 0.6
ω (1/s) 0.75 0.875 0.65 0.6 0.75 0.8

Table A.12: fs(.) functions for 3D subsonic Navier-Stokes manufactured solution.

Equation, φ fsx fsy fsz fsxy fsyz fszx

ρ (kg/m3) cos sin sin cos sin cos
u (m/s) sin cos cos cos sin cos
v (m/s) sin cos cos cos sin cos
w (m/s) cos sin cos sin sin cos
p (N/m2) cos cos sin cos sin cos
k (m2/m2) cos cos sin cos cos sin
ω (1/s) cos cos sin cos cos sin
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APPENDIX B

ADDITIONAL FLOW SOLVER TEST CASES

Chapter 4 presented results from several test cases used throughout the development of the flow solver.
The details of these simulations are presented here.

B.1 Supersonic ramp

This test case was taken from Marques et al. [133]. The geometry was extracted from Figure 1 on p.
461 of the cited paper, the extracted dimensions are presented in Figure B.1. The fine mesh presented
by Marques et al. [133] was recreated as closely as possible using triangular elements with the Point-
wise™ orthonormal advancing front algorithm. The generated grid is also shown in Figure B.1, and
consisted of 9897 cells. The inflow conditions for the simulation are presented in Table B.1. A colour
map of the pressure field is presented in Figure B.2.

Table B.1: Freestream inflow conditions for supersonic ramp simulation.

Mach number 2.0
Velocity, m·s−1 694.377
Pressure, Pa 10,000.0
Temperature, K 300.0
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APPENDIX B. ADDITIONAL FLOW SOLVER TEST CASES

Supersonic 
Inflow B.C.

Extroplated
Outflow B.C.

Extroplated
Outflow B.C.

Slip Wall B.C.
(0.0, 0.0) (2.11, 0.0)

(2.11, 0.37) (10.5, 0.37)

(10.5, 2.0)(0.0, 2.0)

Figure B.1: Supersonic ramp simulation schematic.

Figure B.2: Colour map of pressure for supersonic ramp simulation.
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B.2. MACH 10 BLUNTED WEDGE

B.2 Mach 10 blunted wedge

The geometry for this test case is a blunted wedge. The radius of curvature of blunted nose is 0.005 m,
the wedge angle is 10° , and the length of the model is 0.3 m. A schematic for the simulation is shown
in Figure B.3. The grid, also shown in Figure B.3, consisted of 150×90 cells, with a first cell width
off the wall of 1.0× 10−05 m. The inflow conditions for the simulation are presented in Table B.2.
The wall temperature was set to 287 K. A colour map of the pressure field is presented in Figure B.4.

Table B.2: Freestream inflow conditions for blunted wedge simulation.

Mach number 9.59
Velocity, m·s−1 1386.2
Pressure, Pa 74.62
Temperature, K 52.0

Extroplated
Outflow B.C.

Slip Wall B.C.

Supersonic 
Inflow B.C.

No Slip Wall Fixed T B.C.

Figure B.3: Blunted wedge simulation schematic.

Figure B.4: Colour map of pressure for blunted-wedge simulation.
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APPENDIX B. ADDITIONAL FLOW SOLVER TEST CASES

B.3 Mach 8 cylinder

The geometry for this test case is a cylinder with a radius of 0.005 m. A schematic for the simulation
is shown in Figure B.5(a). The grid, also shown in Figure B.5(a), consisted of 100× 100 cells. The
inflow conditions for the simulation are presented in Table B.3. A colour map of the pressure field is
presented in Figure B.5(b).

Table B.3: Freestream inflow conditions for cylinder simulation.

Mach number 8.0
Velocity, m·s−1 2777.51
Pressure, Pa 10,000.0
Temperature, K 300.0

Extroplated
Outflow B.C.

Slip Wall B.C.

Supersonic 
Inflow B.C.

Slip Wall B.C.

(a) Schematic. (b) Colour map of the pressure.

Figure B.5: Cylinder simulation
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APPENDIX C

DERIVATION OF TRANSFORM JACOBIAN

The adjoint solver in Eilmer operates on the primitive flow state variables. Consequently, the adjoint
operator is of the form ∂R

∂Q . The approximate low-order flow Jacobian used as the precondition matrix
in the flow solver, however, requires ∂R

∂U , i.e. the flow Jacobian with respect to the conserved flow state
variables. Consequently, a transform matrix is needed during the construction of the precondition
matrix. This transform matrix is defined such that

∂R
∂U

=
∂R
∂Q
· ∂Q

∂U
,

where ∂Q
∂U is the transform matrix. For the RANS equations coupled with the k−ω turbulence model,

the primitive and conservative flow state variables are given as,

Q =



ρ

u

v

w

p

k

ω


, U =



U1

U2

U3

U4

U5

U6

U7


=



ρ

ρu

ρv

ρw

ρE

ρk

ρω


(C.1)

where the total energy is defined as

E =
p

γ−1
+

ρ(u2 + v2 +w2)

2
+ k. (C.2)
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APPENDIX C. DERIVATION OF TRANSFORM JACOBIAN

Note that the Reynolds and Favre averaging superscripts have been omitted for simplicity. Also note
that the velocity components are now represented by u,v,w for clarity. To derive the transform Jaco-
bian, Q is first written in terms of U

Q =



ρ

u

v

w

p

k

ω


=



U1

U2/U1

U3/U1

U4/U1

(γ−1)
(

U5−
U2

2+U2
3+U2

4
2U1

−U6

)
U6/U1

U7/U1


. (C.3)

The transform Jacobian is then given as

∂Q
∂U

=



1 0 0 0 0 0 0
−U2

U2
1

1
U1

0 0 0 0 0

−U3
U2

1
0 1

U1
0 0 0 0

−U4
U2

1
0 0 1

U1
0 0 0

(γ−1) (U
2
2 +U2

3+U2
4 )

2U2
1

−U2
U1
(γ−1) −U3

U1
(γ−1) −U4

U1
(γ−1) γ−1 −(γ−1) 0

−U6
U2

1
0 0 0 0 1

U1
0

−U7
U2

1
0 0 0 0 0 1

U1


(C.4)

=



1 0 0 0 0 0 0
− u

ρ

1
ρ

0 0 0 0 0

− v
ρ

0 1
ρ

0 0 0 0

−w
ρ

0 0 1
ρ

0 0 0
γ−1

2 (u2 + v2 +w2) −u(γ−1) −v(γ−1) −w(γ−1) γ−1 −(γ−1) 0
− k

ρ
0 0 0 0 1

ρ
0

−ω

ρ
0 0 0 0 0 1

ρ


(C.5)
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APPENDIX D

MINIMUM-DRAG SLENDER BODY OF REVOLUTION

BASELINE AND OPTIMISED GEOMETRIES

Presented below is an example result from the minimum-drag slender body of revolution optimisation
application from Chapter 8. The geometric details for the L/D = 5 case, parameterised using a 20-
point Bézier curve and a 40-point Bézier curve, are provided.
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APPENDIX D. MINIMUM-DRAG SLENDER BODY OF REVOLUTION BASELINE AND
OPTIMISED GEOMETRIES

Table D.1: 20-point Bézier coordinates for minimum-drag slender body of revolution (in meters).

Baseline Optimised
x-coordinate y-coordinate x-coordinate y-coordinate
0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
5.2631e-01 5.2631e-02 5.2631e-01 2.0565e-01
1.0526e+00 1.0526e-01 1.0526e+00 1.2788e-01
1.5789e+00 1.5789e-01 1.5789e+00 3.3311e-01
2.1052e+00 2.1052e-01 2.1052e+00 3.6057e-01
2.6315e+00 2.6315e-01 2.6315e+00 3.7454e-01
3.1578e+00 3.1578e-01 3.1578e+00 4.3411e-01
3.6842e+00 3.6842e-01 3.6842e+00 5.0854e-01
4.2105e+00 4.2105e-01 4.2105e+00 5.6567e-01
4.7368e+00 4.7368e-01 4.7368e+00 6.0317e-01
5.2631e+00 5.2631e-01 5.2631e+00 6.3688e-01
5.7894e+00 5.7894e-01 5.7894e+00 6.7956e-01
6.3157e+00 6.3157e-01 6.3157e+00 7.3045e-01
6.8421e+00 6.8421e-01 6.8421e+00 7.7947e-01
7.3684e+00 7.3684e-01 7.3684e+00 8.1852e-01
7.8947e+00 7.8947e-01 7.8947e+00 8.4977e-01
8.4210e+00 8.4210e-01 8.4210e+00 8.8479e-01
8.9473e+00 8.9473e-01 8.9473e+00 9.3339e-01
9.4736e+00 9.4736e-01 9.4736e+00 9.6301e-01
1.0000e+01 1.0000e+00 1.0000e+01 1.0000e+00
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Table D.2: 40-point Bézier coordinates for minimum-drag slender body of revolution (in meters).

Baseline Optimised
x-coordinate y-coordinate x-coordinate y-coordinate
0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
2.5641e-01 2.5641e-02 2.5641e-01 1.2073e-01
5.1282e-01 5.1282e-02 5.1282e-01 9.7987e-02
7.6923e-01 7.6923e-02 7.6923e-01 1.7574e-01
1.0256e+00 1.0256e-01 1.0256e+00 2.1818e-01
1.2820e+00 1.2820e-01 1.2820e+00 2.4211e-01
1.5384e+00 1.5384e-01 1.5384e+00 2.6684e-01
1.7948e+00 1.7948e-01 1.7948e+00 2.9669e-01
2.0512e+00 2.0512e-01 2.0512e+00 3.2890e-01
2.3076e+00 2.3076e-01 2.3076e+00 3.6012e-01
2.5641e+00 2.5641e-01 2.5641e+00 3.8878e-01
2.8205e+00 2.8205e-01 2.8205e+00 4.1500e-01
3.0769e+00 3.0769e-01 3.0769e+00 4.3967e-01
3.3333e+00 3.3333e-01 3.3333e+00 4.6377e-01
3.5897e+00 3.5897e-01 3.5897e+00 4.8790e-01
3.8461e+00 3.8461e-01 3.8461e+00 5.1222e-01
4.1025e+00 4.1025e-01 4.1025e+00 5.3661e-01
4.3589e+00 4.3589e-01 4.3589e+00 5.6077e-01
4.6153e+00 4.6153e-01 4.6153e+00 5.8447e-01
4.8717e+00 4.8717e-01 4.8717e+00 6.0756e-01
5.1282e+00 5.1282e-01 5.1282e+00 6.3001e-01
5.3846e+00 5.3846e-01 5.3846e+00 6.5193e-01
5.6410e+00 5.6410e-01 5.6410e+00 6.7343e-01
5.8974e+00 5.8974e-01 5.8974e+00 6.9466e-01
6.1538e+00 6.1538e-01 6.1538e+00 7.1570e-01
6.4102e+00 6.4102e-01 6.4102e+00 7.3657e-01
6.6666e+00 6.6666e-01 6.6666e+00 7.5725e-01
6.9230e+00 6.9230e-01 6.9230e+00 7.7765e-01
7.1794e+00 7.1794e-01 7.1794e+00 7.9771e-01
7.4358e+00 7.4358e-01 7.4358e+00 8.1740e-01
7.6923e+00 7.6923e-01 7.6923e+00 8.3673e-01
7.9487e+00 7.9487e-01 7.9487e+00 8.5575e-01
8.2051e+00 8.2051e-01 8.2051e+00 8.7452e-01
8.4615e+00 8.4615e-01 8.4615e+00 8.9302e-01
8.7179e+00 8.7179e-01 8.7179e+00 9.1119e-01
8.9743e+00 8.9743e-01 8.9743e+00 9.2907e-01
9.2307e+00 9.2307e-01 9.2307e+00 9.4701e-01
9.4871e+00 9.4871e-01 9.4871e+00 9.6518e-01
9.7435e+00 9.7435e-01 9.7435e+00 9.8201e-01
1.0000e+01 1.0000e+00 1.0000e+01 1.0000e+00
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OPTIMISED GEOMETRIES
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Figure D.1: Minimum-drag slender body of revolution Bézier parameterisation (a) 20-point curve (b)
40-point curve.
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APPENDIX E

P2 INLET BASELINE AND OPTIMISED GEOMETRIES

Geometric details for the baseline and optimised P2 inlet are provided below.

Table E.1: 11-point Bézier coordinates for P2 inlet (in meters).

Baseline Optimised
x-coordinate y-coordinate x-coordinate y-coordinate
1.1000e+00 1.2798e-01 1.1000e+00 1.279e-01
1.1184e+00 1.2920e-01 1.1184e+00 1.292e-01
1.1352e+00 1.3253e-01 1.1352e+00 1.3637e-01
1.1482e+00 1.3124e-01 1.1482e+00 1.3543e-01
1.1734e+00 1.3153e-01 1.1734e+00 1.3240e-01
1.1925e+00 1.3272e-01 1.1925e+00 1.3307e-01
1.2153e+00 1.3280e-01 1.2153e+00 1.3485e-01
1.2347e+00 1.3420e-01 1.2347e+00 1.3665e-01
1.2558e+00 1.3455e-01 1.2558e+00 1.3589e-01
1.2758e+00 1.3223e-01 1.2758e+00 1.3261e-01
1.2954e+00 1.3008e-01 1.2954e+00 1.3008e-01
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APPENDIX E. P2 INLET BASELINE AND OPTIMISED GEOMETRIES

Table E.2: 20-point Bézier coordinates for P2 inlet (in meters).

Baseline Optimised
x-coordinate y-coordinate x-coordinate y-coordinate
1.1000e+00 1.2798e-01 1.1000e+00 1.2798e-01
1.1048e+00 1.2873e-01 1.1048e+00 1.2873e-01
1.1162e+00 1.2895e-01 1.1162e+00 1.2919e-01
1.1263e+00 1.2996e-01 1.1263e+00 1.3171e-01
1.1367e+00 1.3254e-01 1.1367e+00 1.3560e-01
1.1480e+00 1.3143e-01 1.1480e+00 1.3484e-01
1.1408e+00 1.3100e-01 1.1408e+00 1.3373e-01
1.1679e+00 1.3180e-01 1.1679e+00 1.3357e-01
1.1839e+00 1.3213e-01 1.1839e+00 1.3334e-01
1.1984e+00 1.3200e-01 1.1984e+00 1.3339e-01
1.1959e+00 1.3386e-01 1.1959e+00 1.3565e-01
1.2132e+00 1.3254e-01 1.2132e+00 1.3442e-01
1.2225e+00 1.3309e-01 1.2225e+00 1.3459e-01
1.2328e+00 1.3365e-01 1.2328e+00 1.3456e-01
1.2436e+00 1.3418e-01 1.2436e+00 1.3461e-01
1.2556e+00 1.3337e-01 1.2556e+00 1.3352e-01
1.2639e+00 1.3364e-01 1.2639e+00 1.3368e-01
1.2748e+00 1.3149e-01 1.2748e+00 1.3149e-01
1.2822e+00 1.3201e-01 1.2822e+00 1.3201e-01
1.2954e+00 1.3008e-01 1.2954e+00 1.3008e-01
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Figure E.1: P2 inlet Bézier parameterisation (a) 11-point curve (b) 20-point curve.
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