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Abstract 

 

Humans are exerting unparalleled pressures on terrestrial vertebrates through 

overexploitation and development. The patterns of human destruction on the natural 

environment are especially prevalent within carnivore distributions because they are 

subject to not only habitat fragmentation and loss, but they are also perceived as a threat 

to human societies leading to direct conflict. Although the perceived negative impacts of 

predators and scavengers dominate policy and individual action towards carnivores, there 

is a growing body of literature pointing to the potential benefits that predators and 

scavengers provide within shared landscapes. The overall aim of this thesis is to 

address key gaps in our knowledge on the exposure and contribution of predators and 

scavengers to humans and how this information can be used to enhance conservation 

initiatives.  

 

Human pressures cause species extinction. These pressures range from over-hunting and 

urbanization to other forms of habitat loss such as agricultural development. While human 

pressures and their threatening processes have been increasingly documented across a 

range of species and ecosystems, we do not know the extent of intense cumulative human 

pressures within species’ geographic ranges globally. In Chapter 2, I aim to quantify the 

exposure of terrestrial vertebrates to intense human pressure, including carnivores. I use 

the most up-to-date spatial dataset on cumulative human pressure, which takes into 

account eight pressures known to cause species decline. I find that 85% of the terrestrial 

vertebrates assessed have more than half of their range exposed to these cumulative 

pressures, with carnivores having similar exposure. Specifically, carnivores have on 

average 75% of their ranges overlapping with intense human pressures. This work 

provides a useful starting point for assessing species at risk of decline, especially for 

species with limited information on threats.  

 

Carnivore declines impact ecosystem stability that can result in negative impacts on 

human well-being. In Chapter 3, I aim to provide the first review of the benefits provided 

by predators and scavengers in shared landscapes with humans. I find that predators and 

scavengers have been shown to reduce zoonotic disease risk, increase agricultural output, 

and limit species known to cause injury and death to humans. Through the review process, 

I found considerable gaps in knowledge regarding the potential benefits of predators and 
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scavengers in shared landscapes, and I discuss future avenues of research, its caveats, 

and opportunities.  

 

An important knowledge gap identified during the review was the ecological and human 

well-being implications of losing apex scavengers. Although there is a great deal of 

information about the ecological repercussions of losing apex predators, we know 

relatively little about the role of apex scavengers at regulating lower trophic levels and how 

this can impact ecosystem health and human well-being. In Chapter 4, I describe the 

mesoscavenger release hypothesis, the competitive release of mesoscavengers in the 

absence of apex scavengers. This work sets the foundation for future studies investigating 

the consequences of apex scavenger decline on ecosystems and human health and 

provides a springboard for conservation action on imperiled apex scavengers. 

 

Another key question asked during the review was the potential role of large carnivores at 

benefitting humans. Chapters 5-7 focus on addressing this gap. Chapter 5 provides a 

case study of one of the most widespread large carnivores, leopards (Panthera pardus), at 

reducing bites and rabies risk from feral dogs in Mumbai, India. I discuss the implications 

of large carnivores at providing similar services around the world, especially where feral 

dogs are a considerable human health hazard in peri-urban environments. In Chapter 6 I 

quantify the predation value of two large carnivore species on an overabundant invasive 

species, wild pigs (Sus scrofa), known to cause substantial damage to agricultural lands. 

This chapter offers important information for assessing the benefits of large carnivore 

conservation on agricultural productivity while accounting for livestock loss. In Chapter 7 I 

assess the global ramifications of expanding wild pig populations, utilizing information on 

predicted wild pig densities and data on soil organic carbon (SOC) storage to quantify their 

relative impacts on SOC vulnerability. I discuss that wild pig control could be promoted 

through human-induced management and conservation of native predators. These case 

studies provide a foundation for future work investigating links between natural predation 

and human well-being through mitigating health hazards and increasing agricultural 

productivity in shared landscapes. These studies will also deliver conservation 

practitioners additional information on the consequences of large carnivore recovery.  

 

This thesis highlights the state of carnivores in shared landscapes with humans and the 

potential crucial services they provide. I address key gaps in our knowledge on the 
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exposure and contribution of predators and scavengers to humans and how this 

information can be used to enhance conservation initiatives. 
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Figure 2.3. Hypothetical range change after removing areas with intense human pressure 

for species listed as ‘vulnerable’ and ‘least concern’. (A) Range size frequency for species 

considered ‘vulnerable’ by the IUCN (IUCN 2016) (dark grey bars) against the range size 

frequency for the same species after removing areas with intense human pressure (red 

bars). We find that 832 (42.9%) vulnerable species could be considered for being listed as 

endangered if areas with intense human pressure were removed from the range (using 
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sub-criterion B2 of the IUCN (IUCN 2016), a 500 km2
 threshold denoted by the vertical 

dashed line). (B) For species considered ‘least concern’ by the IUCN, 2,478 (17.5%) could 

be considered for listing as threatened (using sub-criterion B2 of the IUCN (IUCN 2016), a 

2,000 km2
 threshold denoted by the vertical dashed line). The first column for both (A) and 

(B) represents the number of species that have their entire range exposed to intense 

human pressure. 
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production. (b), Ranges of some species that may reduce disease risk. (c), Ranges of 

some animals known to reduce species that cause human injury and death. (d), Ranges of 

some species known to remove dangerous organic waste. 

 

Figure 4.1. (A) Apex scavengers are more effective at detecting and consuming carrion 

than mesoscavengers (large solid arrow), resulting in less carrion available to 

mesoscavengers (small dotted arrow), and thus resulting in fewer mesoscavengers (small 
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Figure 4.2. Graphical illustration of our dynamic model to test theoretical support of the 

mesoscavenger release hypothesis. In the model, carcasses enter the system via animal 

death and leave the system through decay or by scavenging. Both apex scavengers and 

mesoscavengers consume carcasses with respective efficiencies and handling times. In 
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facultative scavenger logistic growth is denoted by the blue coloring and dashed arrows), 
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Figure 4.3. Equilibrium population densities of carcasses (green dotted line), 

mesoscavengers (red dashed line) and apex obligate scavengers (black solid line) from 

the dynamic model (eqn 1) as a function of apex scavenger search efficiency. The curves 
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for each plot start at mesoscavengers search efficiency. The black open circle for each 

plot denotes the search efficiency of an apex scavenger, the griffon vulture (Gyps fulvus), 

which is 18 times more efficient than a mesoscavenger assemblage. The red and green 

open circles on the equilibrium axis denote the equilibrium densities of mesoscavengers 

and carcasses, respectively, when the apex scavengers are absent. Generally, the more 

efficient (i.e. functionally dominant) the apex scavenger, the more they suppress 

mesoscavenger populations and carcass densities. The first column of plots is for the 

baseline mesoscavenger search efficiency, em = 1. The second column of plots is for the 

case where mesoscavenger search efficiency is doubled when apex obligate scavengers 

are present, potentially aiding mesoscavengers in finding carcasses - as documented in 

some vulture systems (Kane & Kendall 2017). 

 

Figure 4.4. Equilibrium population density of carcasses (green dotted line), 

mesoscavengers (red dashed line) and apex facultative scavengers (black solid line) from 

the dynamic model (eqn 2) as a function of apex scavenger carrying capacity in the 

absence of carcasses. Values on the x-axis range from 1/100th of the mesoscavenger 

carrying capacity value to the mesoscavenger carrying capacity value. The top model is 

parameterized for a known facultative scavenger, the Tasmanian devil (Cunningham et al. 

2018). The bottom is parameterized for vulture systems (Morales-Reyes et al. 2017).  The 

key difference between the two parameterisations is different mesoscavenger and apex 

scavenger search efficiencies, which are displayed in the top right of each plot. An 

imaginary effect of vultures surviving off of alternative food sources is displayed for 

comparison with Figure 3. As apex scavengers are able to sustain higher populations in 

the absence of scavenging (increasing ka), the more they suppress mesoscavenger 

populations and carcass densities; however, apex facultative scavengers with higher 

search efficiencies relative to mesoscavengers tend to have greater impact at lower 

carrying capacities compared to apex scavengers with smaller search efficiencies relative 

to mesoscavengers. 

 

Figure 5.1. Leopards in Mumbai’s Sanjay Gandhi National Park (SGNP) regularly leave 

the confines of the park to hunt stray dogs. (a) An adult female near an apartment block 

bordering the park’s eastern edge; (b) a female at a Muslim sacred site overlooking the 

city of Mumbai; (c) a young leopard walking through a village in the Aarey Milk Colony; and 

(d) a young leopard at a construction site in an informal settlement. 
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Figure 5.2. Map of the 104-km2 SGNP and 16-km2 Aarey Milk Colony on the southwest 

side of the park. The hatched area represents a 500-m buffer zone from the forest edge 

(buffer area = 43 km2) where leopards predate on stray dogs and where an estimated 

350,000 people live, mostly in informal settlements.  

 

Figure 5.3. (a) Projected dog bites per year and dog sterilization costs, along with (b) bite 

treatment costs and potential additional human lives lost if leopards were removed from 

SGNP. 

 

Figure 6.1. Florida panthers (Puma concolor coryii) have lost 95% of their historic 

distribution, and their core breeding population is restricted to South Florida (USFWS 

2008). 

 

Figure 6.2. Panel (A) shows Florida panther telemetry locations (red dots; for the years 

1981-2018; Florida Fish and Wildlife Conservation Commission) on lands north of the core 

breeding range of the species (black outline), and this expansion is within the extent of the 

proposed Florida Wildlife Corridor (green polygon). However, panel (B) shows the 

extensive gaps of formal protection (black polygons) within the proposed Florida Wildlife 

Corridor (green polygon), and a large portion of the panther’s core breeding range (red 

polygon) is in unprotected land. 

 

Figure 6.3. Distribution of the dingo (Canis lupus dingo) throughout Australia. Map 

adapted from West (2008). 

 

Figure 6.4. Damaged area from invasive wild pigs for the top six agricultural land cover 

types as a function of Florida panther conservation scenarios (Panel A). As conservation 

intensity increases, there is a concomitant decline in wild pig damage to agricultural lands. 

With full panther expansion, for example, there is a 19.8% decrease in damaged 

agricultural land. This decrease in damaged agricultural land could result in $10.5 million 

USD potential savings to crops and beef production if panthers achieve full expansion; 

whereas if they go extinct, there will be a loss of $3.2 million USD (Panel B). 

 

Figure 6.5. Damaged area from invasive wild pigs for the top agricultural land cover types 

as a function of dingo conservation scenarios (Panel A). As conservation intensity 

increases, there is a concomitant decline in wild pig damage to agricultural lands. With full 
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dingo expansion throughout NSW and VIC, for example, there is a 6.1% decrease in 

damaged agricultural land. This decrease in damaged agricultural land results in nearly 

$3.1 million USD potential savings across all agricultural lands assessed if dingoes 

achieve full expansion; whereas if they are fully excluded there will be a potential loss of 

$7 million USD (Panel B). 

 

Figure 7.1. Invasive wild pigs (Sus scrofa) cause soil disturbance via digging for 

belowground plant parts, fungi, and invertebrates. Wild pigs are the most widespread and 

abundant human-spread mammal globally. Photo credit: Ben Teton (top left), Jesse Lewis 

(bottom left), and Derek Risch (right). 

 

Figure 7.2. Global hotspots of vulnerable soil organic carbon (SOC) from invasive wild pig 

(Sus scrofa) soil disturbance across their current (hatched) and potential (colored, 

unhatched) non-native distribution (Panel A). Panel B shows the vulnerable SOC across 

their current and potential distributions, with estimates of vulnerable SOC under global wild 

pig reduction of 50% and targeted reduction of 75% within SOC hotspots (nearly one-fifth 

the area of current wild pig distribution at 10.8 million km2 vs. 50.4 million km2). Panel C 

shows potential CO2e emissions from wild pig soil disturbance (assuming 30% loss; range 

20-40%(Davidson & Ackerman 1993; Lal 2019)) across their current and potential 

distributions. As a comparison, the blue horizontal dashed lines represent the global CO2e 

emissions from road travel (top line) and airline travel (bottom line) for the year 2010 (Sims 

et al. 2014), and the average yearly CO2e emissions from the cultivation of organic soil 

from agriculture (FAO 2019) (middle line) for the years 1990-2017. 

 

Figure 7.3. Methodological framework for determining the relative amount of SOC 

vulnerable to emissions by invasive wild pig (Sus scrofa) soil disturbance. We determine 

soil disturbance from wild pigs by employing an equation(Hone 2006) that uses the 

predicted wild pig density data for each 1 km2 pixel (A) to estimate the proportion of soil 

disturbed as a function of wild pig density within that pixel (B). We then multiply that 

proportion by the amount of SOC stock within that pixel (C) to produce the relative amount 

of SOC stock vulnerable to wild pig soil disturbance (D). 

 

Table 3.1. Featured case studies of predators and scavengers contributing to human well-

being, their potential limitations and suggestions for furthering the case of human benefit. 
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Table 4.1. Studies showing the impacts of apex scavengers on mesoscavenger 

abundance, presence at carrion, and species richness. 
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CHAPTER 1 Introduction 

 

The plight of biodiversity in the Anthropocene 

Biodiversity includes the amalgamation of biological variability across all scales, from 

genetics, to plant and animal species, ecosystems, and landscapes (Walker 1992). Since 

the evolution of Homo sapiens approximately 200,000 years before present, we have 

exploited land and water for food production, shelter, medicine, recreation, and energy 

(Harari 2011). In the advent of the steam engine and the concomitant rise of the industrial 

revolution in the 18th Century, the extent and intensity of human exploitation of biodiversity 

skyrocketed, resulting in an impact on Earth so prodigious that scientists believe we have 

entered into a new geological epoch coined the “Anthropocene” (Crutzen 2006; Steffen et 

al. 2011).  

 

The Anthropocene is manifested by artificial, human-made substances, infrastructure, and 

land-clearing that is steadily altering the biophysical composition of the natural world, 

tantamount to some of Earth’s most striking natural disasters (Crutzen 2006). Such 

alterations to Earth’s biophysical structure include the release of carbon dioxide by the 

excessive use of fossil fuels by humans, which has been linked to changes in global 

climatic patterns and processes (Sims et al. 2014). Furthermore, large-scale land-cover 

change and utilisation is altering nitrogen, phosphorous, and sulphur, and is changing 

water flow and vapour patterns, which are all fundamental to life on Earth (IPBES 2019).  

 

The human impacts on habitats and ecosystems ranging from changes in land and sea 

use, to pollution and invasive species, has resulted in detrimental outcomes for native 

species. The effects on species span from large-scale habitat destruction and 

fragmentation to small-scale hunting, trapping, and persecution, with combinations of 

these impacts having a compounding effect on their extinction risk (Maxwell et al. 2016). 

While species have gone extinct across Earth’s history, the rate at which they go extinct 

has increased by over 100 times the fossil record background rate in modern time (Pimm 

et al. 2014). In a recent review mandated by the United Nations, nearly 1 million plant and 

animal species are at risk of extinction, with over three-quarters of all land having been 

significantly altered by humans (IPBES 2019). Although some recent efforts have 

attempted to quantify species population-density as a function of land-use change within 

species’ ranges (Santini et al. 2019), we know surprisingly little regarding the extent of 

cumulative human pressures within species’ geographic ranges, how much human 
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pressure has changed within species’ ranges over time, and what this means for their 

extinction risk (Di Marco et al. 2018; Allan et al. 2019). To address this knowledge gap, I 

quantify the extent of intense human pressure, starting from pastureland, within terrestrial 

vertebrate species’ geographic ranges using the most up-to-date dataset on cumulative 

human pressures at a global scale (as Chapter 2 and Appendix 1 of this thesis). This work 

highlights not only the potential vulnerability of many terrestrial vertebrate species to 

human pressures, but also the troubling state of the world’s carnivores.  

 

The plight of predators and scavengers  

Predators and scavengers, those species that consume live prey and/or carrion, 

respectively, are among some of the most imperilled terrestrial vertebrate guilds on Earth 

(Ripple et al. 2014; Buechley & Şekercioğlu 2016a). In the advent of the 21st Century, 

following suit with patterns of decline across much of biodiversity, carnivores have 

experienced accelerated extinction risk (Di Marco et al. 2014a). Indeed, carnivores have 

lost large swaths of their historic geographic distributions and are under a great deal of 

threat from human pressure. For example, the leopard (Panthera pardus), a predator, has 

lost nearly 70% of its historic distribution throughout Africa and Asia, with only 17% of its 

range currently protected (Jacobson et al. 2016). Likewise, African Lions (Panthera leo) 

occupy only 17% of their historic distribution due to continued habitat loss and 

indiscriminate killings by humans (Ripple et al. 2014). Even small predators such as the 

northern quoll (Dasyurus hallucatus) in Australia (Braithwaite & Griffiths 1994) and the 

swift fox (Vulpes velox) in North America are under increased threat from habitat loss and 

have already lost more than 75% and 60% of their historic ranges, respectively 

(Braithwaite & Griffiths 1994; Laliberte & Ripple 2004).  

 

Contractions in range size are often linked with species declines (Laliberte & Ripple 2004). 

For example, nearly 80% of obligate scavengers, species that consume only carrion (i.e. 

New- and Old-World vultures), are decreasing across their remaining distributions 

(Buechley & Şekercioğlu 2016a). Similar effects are occurring across persisting predator 

and scavenger guilds, with many facultative species (species that partly consume carrion, 

but also prey on live animals) being at risk of decline (Laliberte & Ripple 2004). As such, 

conservation practitioners have recently called for emergency action to recover and abate 

declines of predators and scavengers (Ogada et al. 2012a; Sebastián-González et al. 

2016; Ogada et al. 2016; Santangeli et al. 2019); an example stemming from Bird Life 
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International, which has declared a state of emergency for the World’s vultures, pointing to 

impending extinctions within the next decade (“Vultures need you | BirdLife Magazine”). 

 

The sources of carnivore decline largely depend on the species, their life history, and their 

sensitivity to anthropogenic threats. Shared landscapes, areas where humans and species 

coexist, are the primary source of direct threats for carnivores (Ripple et al. 2014; Carter & 

Linnell 2016). For many native apex predators in shared landscapes, their declines are 

driven by conflict with human societies, stemming from consuming livestock when natural 

prey sources are at low densities (Wolf & Ripple 2016) and/or when carnivore ranges are 

forced in and around human settlements (Prasad & Tiwari 2009; Di Minin et al. 2016). 

When an apex predator consumes livestock or is perceived as a threat, retaliatory killings 

often ensue (Inskip & Zimmermann 2009). For example, carnivores in southern Africa 

have been targeted with poisons for their perceived threats to humans and livestock 

(Ogada 2014), and in the Grand Chaco of Paraguay, jaguars (Panthera onca) are often 

shot illegally in pursuit of ‘eradication’ for preying on calves (Altrichter et al. 2006). 

Furthermore, in Appendix 2 of this thesis I assisted in documenting evidence that a 

considerable number of jaguar body parts are being sold in tourist markets of Peru, 

suggestion a potential further demand for their death beyond retaliatory killings 

(Braczkowski et al. 2019). Similar points of conflict and decline occur for scavengers, 

particularly when vultures scavenge on newly-born sheep, goats, and cattle due to 

changing farming practices and reduced carcass availability (Ogada 2014; Buechley & 

Şekercioğlu 2016a; Santangeli et al. 2016). For instance, farmers in Victoria, Australia, 

have been reported to poison hundreds of wedge-tailed eagles in retaliation for preying 

and scavenging on livestock (“14 days’ jail for killing 406 wedge-tailed eagles ‘inadequate’, 

animal groups say | Australia news | The Guardian”).  

 

Although many predators and scavengers are under threat due to conflict with humans 

that result in retaliatory killings, many are victim to indirect human pressures. Indirect 

pressures range from habitat loss, urban development, roadways, night lights, and 

invasive species spread, which can all influence vital rates of predators and scavengers 

(Di Marco et al. 2015; Wolf & Ripple 2016; Ripple et al. 2017). For example, vultures are 

thought to be declining due to collisions with power lines and accidental poisoning from 

veterinary pharmaceuticals (Buechley & Şekercioğlu 2016a; Ogada et al. 2016) in Africa 

and Asia, and the Florida panther (Puma concolor coryii), an endangered species, 

continues to lose approximately 5-10% of the meta-population per year from vehicle 
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collisions alone (Taylor et al. 2002; Schwab & Zandbergen 2011). Indeed, pumas in the 

southeastern United States have nearly gone extinct as a result of range contractions and 

continued pressure from urbanization (Fergus & Chuck 1991). Furthermore, indirect 

human pressures have impacted carnivores in various ways, such as the spread of 

invasive species, which can modify ecosystem structure and thus species persistence 

(Didham et al. 2005; Dorcas et al. 2012; Bankovich et al. 2016; Bellard et al. 2016; Walsh 

et al. 2016).  

 

While the pressures affecting carnivores have been thoroughly discussed and quantified 

across a multitude of species, there has yet to be a comprehensive evaluation of the 

cumulative human pressures, including direct and indirect pressures, within carnivore 

ranges globally and how intense human pressure within carnivore distributions compares 

to other terrestrial vertebrate taxa. Therefore, as part of Chapter 2 (Box 1) I report on the 

extent of intense human pressures, again starting from pastureland, within the ranges of 

carnivores. 

 

Implications for ecosystem health and human well-being  

The loss of carnivores can have a cascading effect on ecosystems (Ripple et al. 2016b). 

Apex predators are species that have no natural predator in the system, and thus are 

functionally dominant compared to mesopredators, species that occupy mid trophic levels 

(Prugh et al. 2009). For environments losing apex predators, mesopredators can increase 

in richness and abundance (the mesopredator release hypothesis; Crooks and Soule 

1999). Such trophic cascades as a result of apex predator loss have been shown to impact 

ecosystem stability at local and landscape scales (Ritchie & Johnson 2009b). For 

example, in areas of Australia where dingoes have declined or have been restricted there 

has been a stark increase in feral cats and foxes, non-native mesopredators, resulting in 

sharp declines in native birds and mammals, which are susceptible to increased predation 

(Johnson et al. 2007; Glen et al. 2007). Similarly, in Yellowstone National Park in the 

United States, declines of the native grey wolf (Canis lupus) metapopulation resulted in a 

spike in herbivore populations such as the elk (Cervus elaphus), which has altered 

vegetation richness and density, changing the dynamics of stream systems and even 

wildfire risk (Fortin et al. 2005; Ripple & Beschta 2012a). Not only can the decline of apex 

predators implicate richness and abundance of herbivores and mesospredators, but 

behavioural shifts of apex predators can also result in trophic cascades. For example, 

Suraci and colleagues (2019) recently showed that the presence of human vocalization 
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resulted in considerable movement shifts in mountain lions (Puma concolor) of California, 

which resulted in near disappearance of medium-sized mammals such as bobcats (Lynx 

rufus), striped skunks (Mephitis mephitis), and Virginia opossums (Didelphis virginiana), 

and a sharp increase in small mammals such as deer mice (Peromyscus maniculatus) 

(Suraci et al. 2016, 2019). As such, the loss of apex predators can result in perverse 

outcomes for many species and ecosystems. 

 

Perverse outcomes on ecosystems because of the loss of carnivores may result in 

negative impacts on human well-being. For example, we know that the loss of gray wolves 

in Yellowstone National Park is correlated with changes in landscape and herbivore 

structure and composition (Fortin et al. 2005; Ripple & Beschta 2012a), but we are unsure 

of how the loss of wolves impacts the surrounding human population in detail. Perhaps the 

loss of wolves results in increased risk of vehicle collisions near and within the National 

Park borders due to increases in large herbivores. Or perhaps the loss of wolves results in 

increased destruction of agricultural crops due to overabundant herbivores; therefore 

damaging local economies. Questions regarding the range of benefits provided by 

predators and scavengers to humans requires interdisciplinary investigation. For example, 

Gilbert and colleagues (2016) provide one of the first attempts at quantifying the potential 

direct services of large carnivores to human lives. They postulate that recolonizing North 

American cougars to the eastern United States could save upwards of 2 billion USD and 

over 150 human lives from reduced deer-vehicle collisions as a result of cougar predation 

on deer within 30 years of establishment (Gilbert et al. 2016). Although Gilbert and 

colleagues are the first to quantify the potential life-saving benefits provided by restoring 

an apex predator, many studies have investigated the role of carnivores at reducing 

disease risk and economic expenditure through predation and scavenging. However, there 

has been no comprehensive review of the current literature on the contribution of 

predators and scavengers to human health and well-being (see review of these benefits in 

Chapter 3 of this thesis). 

 

Although there is a growing body of literature on the benefits of predators to ecosystem 

health and human well-being, there is minimal knowledge on the mechanism driving how 

scavengers affect ecosystems and human health. For example, the loss of apex 

scavengers may result in competitive release of mesoscavengers, which can alter 

ecosystem structure and implicate human health (e.g. disease risk and waste removal 

costs; Buechley & Şekercioğlu 2016a; Hill et al. 2018). Mesoscavengers are those 
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scavenger species that are functionally less dominant than apex scavengers (i.e. they are 

less effective at finding and consuming carcasses, and tend to be pest species). Some 

studies have touched on the concept of trophic cascades in scavenger communities 

(Sebastián-González et al. 2013; Buechley & Şekercioğlu 2016a; S̜ekercioğlu et al. 2016; 

Sebastián-González et al. 2016; Morales-Reyes et al. 2017; Hill et al. 2018), with a suite of 

empirical studies showing an increase in mesoscavengers in the absence of more 

dominant apex scavengers. For example, in areas of Spain without vultures, the apex 

scavenger in the system, mesoscavengers such as red foxes (Vulpes vulpes) have 

increased in abundance (Morales-Reyes et al. 2017), and the interaction dynamics 

between mesoscavengers has changed (Sebastián-González et al. 2016). Similarly, in 

Tasmania, Australia, the Tasmanian devil (Sarcophilus harrisii) has declined due to facial 

tumour disease, which has resulted in an associated increase in mesoscavengers such as 

forest ravens (Corvus tasmanicus), feral cats, and quolls (Cunningham et al. 2018). This 

corollary relationship between apex scavengers and mesoscavengers, although shown 

empirically in the scientific literature, has not been defined in a structured way as it has 

with predator systems (i.e. mesopredator release). While the concept of trophic cascades 

in carnivore communities has been discussed for decades, knowledge gaps remain on the 

extent and applicability of trophic cascades across systems, including the parallels in 

qualitative outcomes between mesopredator release and mesoscavenger release. I 

address this crucial gap in scavenger ecology (in Chapter 4 of this thesis) by describing 

the mesoscavenger release hypothesis, summarizing the current empirical evidence to 

date, and presenting two dynamic models as theoretical evidence of scavenger trophic 

cascades due to competitive release. I then discuss the potential impacts of 

mesoscavenger release on human health and well-being. 

 

Through predation and scavenging, carnivores can reduce disease risk to humans by 

decreasing host and vector densities through local competitive exclusion or directly 

through feeding on infected hosts. For example, the loss of wolves in the eastern United 

States has been linked to the rise in Lyme disease outbreaks due to increases in smaller 

mammals that act has hosts (Brisson et al. 2008; Levi et al. 2012), although the actual 

mechanism leading to increased Lyme risk is unclear (Mysterud et al. 2016). Likewise, the 

decrease in vulture populations due to the use of veterinary pharmaceuticals in India has 

resulted in a spike in rats and feral dogs, which has been linked to an increase in rabies 

incidents (Markandya et al. 2008). With more than 20,000 people dying from rabies in 

India per year (Menezes 2008),  concern has resulted in active calls for the banning of 
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veterinary medicines known to kill vultures (Ogada et al. 2012a; Galligan et al. 2014; 

Buechley & Şekercioğlu 2016b). Similar effects of carnivores on disease risk have been 

observed in owls, with the Tengmolm’s owl (Aegolius funereus) being shown to selectively 

prey on voles infected with hantavirus, suggesting an active reduction in hosts for the 

disease via owl predation (Khalil et al. 2016). However, it is unclear if this predation by 

owls on diseased voles causes an active reduction in related diseases in nearby human 

populations. Although there have been case studies investigating the role of predators and 

scavengers on reducing disease risk, they are currently limited by species and taxonomic 

groups (highlighted in review Chapter 3). Indeed, no studies have investigated the 

potential services of large carnivores such as big cats, on the active reduction of disease 

hosts. As such, I touch on the potential services provided by one the world’s most densely 

populated large felines, the leopards of Mumbai, India, in this thesis. Using a simple 

predator-prey model I investigate if the predation of leopards in Mumbai reduces feral dog 

populations and then discuss the potential impacts of leopard predation on dog bites 

associated rabies risk on the local human population (Chapter 5 of this thesis). 

 

Not only can carnivores potentially reduce disease risk in humans through predation and 

scavenging behaviour, they can also increase agricultural production by reducing pest 

densities that consume valuable crops. For example, predatory bats and birds consume 

crop-eating insects that drastically reduce pest management costs and harvest 

depredation in crops like coffee, alfalfa, grapes, and corn (Kross et al. 2012; Maas et al. 

2015; Maine & Boyles 2015; Kross et al. 2016b). In another example Kross and colleagues 

(2012) show that by reintroducing New Zealand falcon (Falco novaeseelandiae) 

populations in New Zealand that there would be a parallel benefit to local wineries through 

the predation of passerine birds that consume grapes (Kross et al. 2012). Similarly, 

dingoes (Canis lupus dingo) have been shown to increase cattle productivity by reducing 

kangaroo densities in parts of Australia, even when accounting for the occasional 

depredation of calves by dingoes (Prowse et al. 2015). While the evidence for some 

carnivores providing services to agricultural areas is growing for some species and taxa 

(such as for birds and bats), critical gaps remain, such as for species of critical 

conservation importance and those that are at elevated risk of decline. For instance, large 

carnivores are rarely associated with providing beneficial services to agricultural 

communities as they are often associated with negative impacts such as livestock 

depredations and perceived risk of attacks on humans and pets (Inskip & Zimmermann 

2009). As such, I investigate the potential positive benefits of large carnivore conservation 
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on agricultural production (Chapter 6 of this thesis). Specifically, I explore the possible 

contribution predators to agricultural lands through their consumption of invasive wild pigs 

(Sus scrofa). 

 

Wild pigs are becoming the most widespread non-native mammal in the world, and this is 

due to human introductions through accidental release or intentional release for hunting 

(Barrios-Garcia & Ballari 2012). Invasive pigs are ecosystem engineers that excavate soil 

for feeding on belowground plant parts, fungi, and invertebrates (Ballari & Barrios-García 

2014). Through the creation of bare soil, they can also facilitate plant invasions that can 

have long-term consequences beyond the presence of invasive pigs (Barrios-Garcia & 

Ballari 2012). Consequently, agricultural commodities such as crops and pastureland are 

subject to loss, and the successful conservation of native large carnivores that prey on wild 

pigs may provide benefits to agricultural systems. I investigate the role of the Florida 

panther (Puma concolor coryi), an endangered mountain lion sub-species (listed by the US 

Fish and Wildlife Service) that occupies a fragmented matrix of natural, agricultural, and 

residential lands in south Florida, USA; and the dingo (Canus lupus dingo), a widespread 

but non-listed large wild canid subspecies found across much of the Australian mainland, 

at reducing wild pig densities and concomitant agricultural damage (both case studies are 

incorporated in Chapter 6).  

 

A reduction in wild pig densities may not only result in savings to agricultural commodities, 

but it may also result in co-benefits to human health through a reduction in greenhouse 

gas emissions. This is because the disturbance of soil affects its physical, chemical, and 

biological properties (Doran 1980; Lal 2004), releasing considerably higher rates of carbon 

compared to undisturbed soils (Reicosky 1997; Welander 2000; Haddaway et al. 2017). 

Since wild pigs are presently expanding their non-native range, there is not only a current 

large potential for soil damage (Mohr et al. 2005; Risch et al. 2010; Macci et al. 2012; 

Bueno et al. 2013a; Bueno & Jiménez 2014), but a looming unrecognized source of global 

soil carbon emissions (Mohr et al. 2005; Risch et al. 2010; Macci et al. 2012). Although the 

consequences of invasive pigs are well documented (Barrios-Garcia & Ballari 2012), we 

know relatively little about the enormity of predicted pig densities on soil disturbance 

globally, and what this means for ecosystem and human well-being. In Chapter 7, I 

quantify the potential implications of wild pig soil disturbance globally using a spatially 

explicit model of predicted pig densities and soil organic carbon storage. I focus the results 

on vulnerable soil organic carbon to emissions, which is a key biophysical element for 
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healthy soils (Paustian 2000; Xu et al. 2016; Patton et al. 2019) and is an important 

element to manage climate change (Lal 2004). I quantify the total land surface vulnerable 

to invasive pigs in the absence of management and in the presence of current large 

carnivore distributions. The results of this chapter point to the need for enhanced control of 

wild pigs, which could include the conservation of native predators.  

 

Thesis structure 

There is an urgent need for information regarding the exposure and contribution of species 

to shared landscapes, areas where humans and species coexist, to support current 

conservation efforts. One method for determining the exposure of species to human-

dominated landscapes is to understand the spatial patterns of intense human pressure 

within their geographic ranges. In Chapter 2, I present a global analysis of cumulative 

intense human pressures within terrestrial vertebrate ranges. I use the most up-to-date 

temporally inter-comparable, and validated spatial dataset of terrestrial human pressures 

for the years 1993 and 2009 (Venter et al. 2016a; McGowan 2016). These maps are 

comprised of a cumulative spatial index of eight key human pressures on natural 

ecosystems ranging from built environments and population density to agricultural lands 

and navigable waterways. These pressures were quantified through both remotely sensed 

and survey data, which overcomes drawbacks of stand-alone remotely sensed data, 

incorporating insidious threats such as overexploitation that are difficult to approximate 

from satellite imagery alone (Peres et al. 2006). Chapter 2 underpins the analysis for 

intense human pressures within carnivore distributions, which I present in Box 1 of 

Chapter 2, and lays the stage for the rest of the thesis, discussing the dynamics of 

predators and scavengers in these human-dominated landscapes. This information is also 

important for informing potential threats within carnivore ranges for species lacking 

information on pressures known to cause their decline. For example, the human footprint 

has been used to assess species-specific threats within species’ ranges, but this is limited 

to species that have information on pressures known to cause their extinction (e.g. Allan et 

al. 2019).   

 

While there is some knowledge of the ecological consequences of losing carnivores, there 

is great opportunity for developing our understanding on their effects to ecosystems and 

human well-being. In Chapter 3, I provide a review of benefits of predators and 

scavengers in human-dominated landscapes. Through the review process, I found that 

predators and scavengers can benefit human health and well-being through the reduction 
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of species that spread zoonotic diseases, through the reduction in pests that consume 

agricultural commodities, and through the reduction in species known to cause human 

death. This review is the first to summarize the contribution of predators and scavengers to 

human health and well-being. However, through conducting the review, I found 

considerable gaps in knowledge for species of significant conservation concern. For 

example, we know little about the trophic cascades that occur in scavenger systems and 

how this might affect human well-being. In Chapter 4, I provide the first description and 

justification for the mesoscavenger release hypothesis. This hypothesis states that with the 

loss of apex scavengers there is an associated increase in mesoscavenger and carrion 

biomass, which can affect human well-being through an increase in pest species and 

waste removal costs. Apex scavengers are functionally dominant at finding and consuming 

carrion relative to mesoscavengers; therefore, mesoscavenger release occurs through the 

reduction in exploitative competition and thus competitive release. The results of 

mesoscavenger release are qualitatively similar to the mesopredator release hypothesis, 

which has received substantial empirical and theoretical support. Another gap identified in 

the review is that of the contribution of large carnivores to human health and well-being 

(but see Gilbert et al. 2016) and how the consequences of restoring and conserving large 

predators may provide unique and previously unrecognized benefits to human societies. 

As such, I explore three case studies where large carnivore conservation may provide 

benefits in the form of lowering disease risk, increasing agricultural output, and decreasing 

greenhouse gas emissions. In Chapter 5, I study the effect of leopards in Mumbai, India 

on feral dog populations and what this means for bite risk and rabies potential in local 

communities. Specifically, I use local newspaper reports on dog bites, dog density studies, 

and leopard diet analyses to quantify the potential value of leopards at reducing dog 

densities around the periphery of the Sanjay Gandhi National Park in the centre of 

Mumbai. In Chapter 6, I investigate the role of the Florida panther in the United States, a 

critically endangered subspecies of mountain lion, and the dingo in Australia, at affecting 

feral pig populations in a matrix of intact and agricultural land. I show that by promoting 

their conservation in Florida and Australia that panthers and dingoes may provide unique 

benefits to agricultural systems by reducing the presence and abundance of invasive wild 

pigs, and in turn decreasing damage caused by wild pigs to valuable crops and 

pastureland. In Chapter 7, I show that unmitigated increases in wild pigs can cause 

considerable damage to soil globally, resulting in emissions of soil organic carbon that are 

critical for abating climate change. I discuss the potential benefits of wild pig control and 

the value of restoring native apex predators at alleviating wild pig damage. The results of 
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these case studies will provide information for decision makers and conservation 

practitioners on the potential benefits that large carnivores can provide in human-

dominated landscapes. 

 

The overall aim of this thesis is to address key gaps in our knowledge on the exposure and 

contribution of predators and scavengers to humans and how this information can be used 

to enhance conservation initiatives. The overarching structure of this thesis and the links 

between chapters is presented in Figure 1. 

 

Figure 1.1 Thesis structure 
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CHAPTER 2 Assessing patterns of intense human pressure 

across terrestrial vertebrate ranges 

 

Christopher J. O’Bryan, James R. Allan, Matthew H. Holden, Chris Sanderson, Oscar 

Venter, Moreno Di Marco, Eve McDonald-Madden, James E.M. Watson 

 

Abstract 

The United Nation’s Strategic Plan for Biodiversity 2011-2020 calls for reducing species 

extinctions, as it is increasingly clear that human activities threaten to drive thousands of 

species to decline. Yet many species lack information on their exposure to threats. Using 

the most comprehensive global dataset on cumulative human pressures, we assess the 

extent of intense human pressures, pressures starting at pastureland (a Human Footprint 

index score of ≥ 3) across 20,529 terrestrial vertebrate species ranges. We show that 85% 

(17,517) of the terrestrial vertebrate species assessed have > half of their range exposed 

to intense human pressure, with 16% (3,328) of the species assessed being entirely 

exposed to this degree of pressure. Threatened terrestrial vertebrates and species with 

small ranges are disproportionately exposed to intense human pressure. Our analysis 

suggests that there are at least 2,478 species considered ‘least concern’ that have 

considerable portions of their range overlapping with intense human pressures, which may 

indicate their risk of decline.  These results indicate it is possible to incorporate cumulative 

human pressure data across species ranges, which may be a useful first step for 

assessing species extinction risk, especially for species with little or no existing data on 

their threat exposure. 
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Introduction 

A fundamental goal of the United Nation’s Strategic Plan for Biodiversity 2011-2020 is to 

reduce species extinctions, as there is growing evidence that direct anthropogenic land 

use change such as pastureland, agriculture, and urbanization, and human activities like 

overharvesting threaten to drive thousands of species to decline (Newbold et al. 2015a; 

Tilman et al. 2017; Di Marco et al. 2018). Previous efforts to study species habitat 

availability have primarily focused on land cover (Andrén & Andren 1994; Betts et al. 2007; 

Maron et al. 2012); however, this does not capture ancillary threats that can impact 

species even when their habitat appears to be free of human pressure (Barlow et al. 2016; 

Betts et al. 2017). By taking advantage of recently available cumulative human pressure 

data, we capture cumulative pressures (Di Marco et al. 2018; Allan et al. 2019), not only 

providing a more robust understanding of how much pressure-free geographic range is 

available for species, but also delivering necessary results that can inform the urgency and 

specificity of conservation actions needed to avert species’ declines.  

 

We use the updated human footprint (Venter et al. 2016a), a cumulative human pressure 

assessment that includes data on roads, built environments, human population density, 

railways, navigable waterways, pasturelands, and croplands, at a 1-km2 resolution globally 

(Venter et al. 2016a, 2016b). The human footprint is the most comprehensive global 

human pressure dataset available (McGowan 2016), and given the nature of the input 

data, captures the greatest number of drivers of species declines (Maxwell et al. 2016), 

and has been shown to explain extinction risk in globally threatened vertebrates (Safi & 

Pettorelli 2010; Yackulic et al. 2011; Beans et al. 2012; Seiferling et al. 2014; Hand et al. 

2014; Di Marco et al. 2018). We identify intense human pressure as areas on the human 

footprint index that are composed of pressures at or above a value of three, which is the 

equivalent of pastureland (Venter et al. 2016a), a land use where habitat is considered 

functionally unavailable for many terrestrial vertebrate species that have been assessed 

(Fleischner 1994; Newbold et al. 2015a). Recently, Di Marco and colleagues found that a 

value greater than or equal to three on the index was correlated with extinction risk in 

terrestrial mammals globally, and similar values held true across regions, even when 

compared to other factors such as species’ traits, environmental conditions, and individual 

pressure layers (Di Marco et al. 2018).  

 

We first quantify the proportion of species ranges facing intense human pressure across 

10,745 birds (Birdlife International and Handbook of the Birds of the World 2017), 4,592 



 15 

mammals, 5,000 amphibians, and 192 reptiles, with 4,610 of the total being threatened 

(IUCN 2016). We focus on these taxa, as they are the only major terrestrial taxonomic 

groups that have been comprehensively assessed for their distribution and extinction risk 

(with the exception of reptiles, see Methods). We then investigate the extent of intense 

human pressure across taxonomic classes, species level of endangerment, and species 

range size. Lastly, we quantify changes in the extent of intense human pressure within 

species ranges between 1993 and 2009.  

 

Methods 

Species distribution data 

We focused our analysis on terrestrial vertebrate classes (mammals, birds, reptiles, and 

amphibians). Spatial data on mammal, amphibian, and reptile distributions were obtained 

from the IUCN Red List of Threatened Species (IUCN 2016), and bird distributions from 

BirdLife International (Birdlife International and Handbook of the Birds of the World 2017). 

We excluded species that were considered data deficient (“DD”) on the Red List, extinct, 

thought to be extinct, or presence uncertain. We only included the remaining extant 

species whose distributions overlapped with the extent of the terrestrial Human Footprint 

datasets (Venter et al. 2016b). We analyzed 20,529 terrestrial vertebrates, including 4,592 

mammal species, 10,745 bird species, 5,000 amphibian species, and 192 reptile species. 

We note that for reptiles, only chameleons, crocodilians, and sea snakes had been 

assessed comprehensively by the IUCN at the time of our analysis; as such, we only 

included reptiles when reporting on all species or on all threatened species, and do not 

report on reptiles for class-specific metrics. 

 

Spatial data on human pressure 

Recent advances in remote sensing coupled with bottom-up survey data have facilitated 

the development of a spatially explicit, high-resolution global dataset on human pressures 

across time steps (Allan et al. 2017a), which enables the quantification of the extent of 

human pressures on individual species (Di Marco & Santini 2015; Allan et al. 2019). We 

obtained data on the distribution of terrestrial human pressure for 1993 and 2009 from the 

global Human Footprint maps (Venter et al. 2016b, 2016a), the most up-to-date, 

comprehensive, and validated global human pressure data available (McGowan 2016). 

These maps are comprised of a cumulative spatial index of eight key human pressures on 

natural ecosystems at a 1-km2 resolution. These pressures were quantified through both 

remotely sensed and survey data, which overcomes drawbacks of stand-alone remotely 
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sensed data, incorporating insidious threats such as overexploitation that are difficult to 

approximate from satellite imagery alone (Peres et al. 2006). The eight human pressures 

in the human footprint included: 1) built environments, 2) population density, 3) electric 

infrastructure, 4) crop lands, 5) pasture lands, 6) roads, 7) railways, and 8) navigable 

waterways. These eight individual pressures are scaled between 0 and 10 based on their 

estimated environmental impact and summed in 1km grid cells. Some pressures can co-

occur whilst others are mutually exclusive; resulting in a combined global scale between 

zero and fifty where zero is wilderness and fifty is extreme urban conglomerates.  

 

Analyzing human pressure on species distributions 

We intersected individual species ranges with both the 1993 and 2009 Human Footprint 

(Venter et al. 2016) maps under a World Mollweide projection in a geographic information 

system using the tabulate area tool in model builder of ArcGIS (ESRI), and outputs were 

managed in R statistical software. This intersection resulted in a dataset with each species 

having the area of their range composed of each Human Footprint value (index values of 

0-50 as mentioned above). We then calculated the proportion of the species’ range that is 

composed of each of the Human Footprint index values. We adopted a threshold of the 

Human Footprint cumulative index where landscapes shift from relatively unmodified, low 

Human Footprint landscapes to modified, high Human Footprint landscapes. This 

threshold (a summed Human Footprint value at or above three on the index) was used to 

assess whether a species’ distribution overlapped with areas of intense human pressure. 

This threshold has been used in previous studies as a standard for evaluating human 

pressure in ecosystems (Watson et al. 2016; Jones et al. 2018). Additionally, Di Marco and 

colleagues (Di Marco et al. 2018) recently found that a human footprint index value of 

three and above was a strong indicator of extinction risk in mammals globally, even when 

compared to other factors such as species’ traits, environmental conditions, and individual 

pressure layers, and similar values held true across regions.  We also assessed the 

proportion of a species’ range containing Human Footprint index values of seven and 

above, which are considered to be areas that have intense industrial agriculture and 

urbanization (Venter et al. 2016a). 

 

Results 

Of the 20,529 terrestrial vertebrate species assessed, we found that 85.3% (17,517) have  

>50% of their range exposed to intense human pressures and that 16.2% (3,328) have no 

portion of their range free from intense human pressure (Appendix 3 Table 1). We also 
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found that all taxonomic classes are experiencing intense human pressure across the 

majority of their range, with 39.6% (1,980) of amphibians having no portion of their range 

free from intense human pressure (Figure 2.1A), compared to mammals (15.2% [698]; 

Figure 2.1B) and birds (11.6% [1,250]; Figure 2.1C). For carnivores, see Box 1. 

 

Threatened species (those classified as vulnerable, endangered, and critically endangered 

on the IUCN Red List) are disproportionately exposed to intense human pressure 

compared to non-threatened species, even when comparing across range sizes (Figure 

2.2). Threatened species have, on average, less than 12 percent of their range free from 

intense human pressure (Appendix 3 Table 2), with only 0.87% (40) of threatened species 

having their entire range free from intense human pressure (Appendix 3 Table 1). Of the 

4,610 threatened species assessed, 90.8% (4,185) have more than half of their range 

under intense human pressures, with 53.3% (2,457) having no portion of their range free 

from intense human pressure (Figure 2.1D). We found that 70.9% (1,453) of threatened 

amphibians have no portion of their range free from intense human pressure (Appendix 3 

Table 1), with 39.4% (441) of threatened mammals and 37.5% (510) of threatened birds 

having no portion of their range free from intense human pressure (Appendix 3 Table 1). 

For threatened carnivores, see Box 1. 

 

When adjusting the lower bounds of what is considered intense human pressure for many 

vertebrates (i.e. pastureland, an index value of 3) to start at industrial-level agriculture 

(pressures at or above a value of seven; Venter et al. 2016a) 40.5% (8,308) of all species 

assessed and 50.7% (3,230) of threatened species have more than half of their range 

under this level of intense human pressure (Appendix 3 Table 4). 
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Figure 2.1. Hypothetical range change after removing areas with intense human pressure 

(human footprint value of  ≥ 3) for all species assessed. Range size frequencies for the 

entire known geographic range of species (dark grey bars) and range size frequencies of 

the same species after excluding areas of intense human pressure (red bars) for (A) 

amphibians, (B) mammals, (C) birds, and (D) threatened species (including vulnerable, 

endangered, and critically endangered species). The first column for each plot represents 

the number of species that have their entire range exposed to intense human pressure. 
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Box 1 The exposure of carnivores to intense human pressures. We assess the 

proportion of carnivores exposed to intense human pressure by analysing a subset of 

species that are within the order Carnivora (251 species). We find that 85.3% (214) of 

the species assessed have >50% of their range within areas containing intense human 

pressures, which mirrors the results of all terrestrial vertebrates assessed. For 

threatened carnivores, we find that 84.6% (55 out of 65 species) have more than half of 

their range in these pressures, which is slightly lower than the remaining terrestrial 

vertebrates assessed; however, amphibians likely drive this discrepancy. Overall, 

carnivores have an average of 75.3% overlap (median of 81.2%; Box Figure) and 

threatened carnivores 77.4% (89.5% median) with intense human pressures.  

 

Box Figure: Proportion of carnivore ranges exposed to intense human pressure. The 

boxplot denotes the first quartile, median, and third quartile of the data, with each dot 

representing an individual species’ proportion of range exposed. The dashed horizontal 

line represents the proportion of global terrestrial surface exposed to intense human 

pressure (50.4%). 
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We found that species with small ranges have more of their distribution overlapping with 

intense human pressure compared to species with large ranges (Figure 2.2). This pattern 

is expected by random chance, since species with small ranges are the most likely ones to 

be fully covered by spatially aggregated regions of human pressure. However, we found 

that species with a median range size less than 100,000 km2 have their entire distribution 

under intense human pressure (Figure 2.2). That is, 100% of range with intense human 

pressure for a species with range size less than or equal to the area of South Korea (larger 

than the area of 45% of countries). Therefore, intense human pressure is widespread even 

for species with moderately large range sizes. 

 

Figure 2.2. Relationship between range size and proportion overlapping with intense 

human pressure for both threatened (red triangles) and non-threatened (black dots) 

terrestrial vertebrate species assessed. The plot on the left shows the median proportion 

of a species’ range under intense human pressure for all species assessed with the 

specified range size on the x-axis or smaller. For example, this shows that species with 

range sizes around or below 100,000 km2 (105.0 km2) have a median 100% of their range 

exposed to intense human pressure, and that threatened species have a median 100% 

exposed regardless of range size. The plot on the right shows the total number of species 
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in the dataset with the specified range size or smaller for both threatened and non-

threatened species.  

 

Over the last two decades, intense human pressure has increased in extent by 4.5% 

across Earth’s terrestrial surface (Venter et al. 2016a) (Appendix 3 Table 3). For the 

terrestrial vertebrates assessed however, we found that intense human pressure has 

increased within their ranges by 6.1% on average (Appendix 3 Table 2). This may indicate 

that the global increase in human pressure is occurring in species-rich areas (likely 

containing species with already restricted ranges, as shown above), with the number of 

species entirely exposed to intense human pressure in 2009 being 44.1% higher than it 

was in 1993, and the number of species entirely free from intense human pressure 37.6% 

lower (Appendix 3 Table 1). Additionally, threatened species have experienced a 3.9% 

average increase in the proportion of their range exposed to intense human pressure over 

the two decade study period (Appendix 3 Table 2).  

 

Discussion 

The extent and condition of species ranges are some of the most important components of 

species’ conservation status (Boakes et al. 2018), and are key elements for determining 

extinction risk (IUCN 2016). Our results suggest that 85% of all terrestrial vertebrates 

assessed have more than half of their range exposed to intense human pressure 

(Appendix 3 Table 1), and that this pressure has increased since 1993. We note that 

although the presence of intense human pressure is detrimental to almost all species (Di 

Marco et al. 2018), some species can still persist in these areas (for example in 

agricultural and managed forestry lands Phalan et al. 2011; Homyack et al. 2014; O’Bryan 

et al. 2016) and urban areas (Braczkowski et al. 2018; O’Bryan et al. 2018). As a further 

exploration of the intensity of human pressure on species, we adjusted the lower bounds 

of what is considered intense human pressure for many vertebrates (i.e. pastureland) to 

start at industrial-level agriculture (pressures at or above a value of seven; Venter et al. 

2016a). We found that, even when shifting the lower limit to a more intense human 

pressure score, 40.5% (8,308) of all species assessed and 50.7% (3,230) of threatened 

species have more than half of their range under intense human pressure (Appendix 3 

Table 4). This means that species able to persist in areas with some level of intense 

human pressure, such as pastureland, but not in areas where land is almost completely 

cleared for industrial agriculture and urbanization, may be at risk of decline. We 

recommend future research delve into the ‘winners’ and ‘losers’ at different levels of 
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human footprint, perhaps by assessing whether habitat specialists are impacted more than 

habitat generalists by intense human pressure. 

 

An important caveat to our work is that the human footprint data do not directly incorporate 

all pressures affecting biodiversity, such as anthropogenic climate change (e.g. Pecl et al. 

2017), pollution (e.g. Oita et al. 2016), infectious diseases (Stuart et al. 2004; O’Bryan et 

al. 2012; Bower et al. 2017), and invasive species (Dorcas et al. 2012; Walsh et al. 2016; 

Doherty et al. 2016), making it a conservative estimate of pressure (Jones et al. 2018). 

However, some pressures such as invasive species are closely associated with pressures 

represented in the human footprint dataset (Spear et al. 2013). As such, while our results 

are robust across well-established pressures that are driving the global extinction crisis 

(Maxwell et al. 2016), additional refinement will be necessary to insure all ancillary 

pressures are included, as this is particularly important for taxonomic groups that are 

known to be sensitive to pressures that are not easily quantified. Furthermore, although 

human pressures may occur within species’ ranges, these pressures may not evenly affect 

species, partially because individuals are not always evenly distributed throughout their 

geographic ranges and intense human pressure may not affect the majority of individuals 

and species in an assemblage. Future work should incorporate species-specific responses 

to threats (e.g. Allan et al. 2019) as well as habitat and population-density models for 

higher resolution analyses (e.g. Santini et al. 2019).  

 

Range size and range reduction are two of the main values used to assess species 

extinction risk in the IUCN Red List, representing restricted population size and population 

decline over time (Visconti et al. 2016; Tracewski et al. 2016; IUCN Standards and 

Petitions Subcommittee 2017; Santini et al. 2019). Overestimating range size 

fundamentally undermines the assessment of species extinction risk and efficacy of 

conservation planning and action (Jetz et al. 2008). Our results, by considering cumulative 

human pressure within species ranges, show that some species might be facing a higher 

risk of extinction than previously assessed, assuming areas exposed to intense human 

pressure are functionally unavailable.  For example, 832 (42.9%) vulnerable species would 

have a potential Area of Occupancy (AOO) smaller than the 500 km2 threshold that 

classifies endangered species under Red List sub-criterion B2 (Mace et al. 2008), if AOO 

is inferred from the extent of range free from intense pressure (Figure 2.3A). Thus, if these 

832 species already show evidence of population decline, fragmentation, or extreme 

fluctuations (at least two of these attributes must verify in order for criterion B to be 
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applicable), then they could be deemed as endangered (Mace et al. 2008). The same logic 

might apply to species that are not currently acknowledged as threatened on the IUCN 

Red List (Bland et al. 2015a). For example, 2,478 (17.5%) least concern species could be 

considered threatened under the range-loss criteria B2 of the IUCN (2,000 km2) if 

incorporating intense human pressure (Figure 2.3B). This has implications for how we view 

species’ risk, and also for efforts aimed at prioritizing funding and conservation action for 

currently acknowledged threatened species (Di Marco et al. 2018).  

 

Figure 2.3. Hypothetical range change after removing areas with intense human pressure 

for species listed as ‘vulnerable’ and ‘least concern’. (A) Range size frequency for species 

considered ‘vulnerable’ by the IUCN (IUCN 2016) (dark grey bars) against the range size 

frequency for the same species after removing areas with intense human pressure (red 

bars). We find that 832 (42.9%) vulnerable species could be considered for being listed as 

endangered if areas with intense human pressure were removed from the range (using 

sub-criterion B2 of the IUCN (IUCN 2016), a 500 km2
 threshold denoted by the vertical 

dashed line). (B) For species considered ‘least concern’ by the IUCN, 2,478 (17.5%) could 

be considered for listing as threatened (using sub-criterion B2 of the IUCN (IUCN 2016), a 

2,000 km2
 threshold denoted by the vertical dashed line). The first column for both (A) and 

(B) represents the number of species that have their entire range exposed to intense 

human pressure. 
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We show that considering cumulative human pressures has the potential to improve how 

we assess threats within species’ ranges, with subsequent benefits for many other areas 

of conservation. For example, our approach could be used as an initial examination of 

threats within known species geographic ranges, especially when resources are limited. 

This information could also inform necessary species and ecosystem-specific habitat 

retention and restoration targets (Maron et al. 2018). It can highlight areas where species 

are substantially impacted by intense human pressure (thus prioritizing habitat restoration 

and threat abatement in order to reopen viable space for species persistence Allan et al. 

2017, 2019a; Newmark et al. 2017) and areas where species still have large swaths of 

their range free from intense human pressure (thus prioritizing the protection of existing 

quality habitat, but could also be under threat from future human actions; Noss et al. 2012; 

Venter et al. 2014; Watson et al. 2014). This information can aid current assessments of 

progress against the 2020 Aichi Targets (especially Target 12, which deals with preventing 

extinctions and Target 5, which deals with preventing the loss of natural habitats), and for 

conversations around post-2020 targets. 

 

As intense human activities spread, habitat becomes lost to many species, and their 

populations will likely decline (Di Marco et al. 2014b; Di Marco & Santini 2015). Our work 

suggests that intense human pressure is widespread within the ranges of the terrestrial 

vertebrates assessed, and we are potentially overestimating how much range they have 

free from intense human activities. For a clearer picture on the status of species, we 

advocate for utilizing cumulative human pressure data, alongside other measures such as 

species habitat preferences and abundance (e.g. Santini et al. 2019), to identify areas 

within their ranges that are at a higher risk from anthropogenic threats, and where 

conservation action is imminently needed to ensure they have enough range to persist. 

Given the growing human influence on the planet, time and space are running out for 

biodiversity, and we need to prioritize actions against these intense human pressures. 
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CHAPTER 3 The contribution of predators and scavengers to 

human well-being 

 

Christopher J. O’Bryan, Alexander R. Braczkowski, Hawthorne L. Beyer, Neil H. Carter, 

James E. M. Watson, Eve McDonald-Madden 

 

Abstract 

Predators and scavengers are frequently persecuted for their negative effects on property, 

livestock, and human life. Research has shown that these species play important 

regulatory roles in intact ecosystems including regulating herbivore and mesopredator 

populations that in turn affect floral, soil, and hydrological systems. Yet predators and 

scavengers receive surprisingly little recognition for their benefits to humans in the 

landscapes they share. We review these benefits, highlighting the most recent studies that 

have documented their positive effects across a range of environments. Indeed, the 

benefits of predators and scavengers can be far reaching, affecting human health and 

well-being through disease mitigation, agricultural production, and waste-disposal 

services. As many predators and scavengers are in a state of rapid decline, we argue that 

researchers must work in concert with the media, managers, and policy makers to 

highlight benefits of these species and the need to ensure their long-term conservation. 

Furthermore, instead of only assessing the costs of predators and scavengers in economic 

terms, it is critical to recognize their beneficial contributions to human health and well-

being. Given the ever-expanding human footprint, it is essential that we construct 

conservation solutions that allow a wide variety of species to persist in shared landscapes. 

Identifying, evaluating, and communicating the benefits provided by species that are often 

considered problem animals is an important step for establishing tolerance in these shared 

spaces. 
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Introduction 

Coadaptation, the ability of humans and predators and scavengers to modify their behavior 

based on benefit trade-offs, is recognized as key for their coexistence in the 21st century 

(Carter & Linnell 2016; Chapron & López-Bao 2016). However, coadaptation relies on 

human tolerance and the recognition of the wide range of benefits that predators and 

scavengers provide humanity (Carter et al. 2012; Treves & Bruskotter 2014). It is well 

established in the ecological literature that predators play regulatory roles in intact 

ecosystems as they exert top-down pressures on prey communities, thereby reducing 

herbivory of plant species important to humans (Ripple & Beschta 2012a) and scavengers 

consume large amounts of carcasses and organic waste (Dupont et al. 2012; Ćirović et al. 

2016). It is accepted that the disappearance of predators and scavengers from 

ecosystems can cause a suite of deleterious effects including the loss of plant species 

diversity, biomass, and productivity that in turn affect disease dynamics, carbon 

sequestration, and wildfire risk (Ripple et al. 2014). As a result, predators and scavengers 

are considered flagship and keystone species (Macdonald et al. 2015) and are sometimes 

treated as surrogates for the health of entire ecosystems (Thornton et al. 2016).  

 

Despite their ecological value, predators and scavengers often have a poor public 

reputation because of their real and perceived negative impacts on humans (Ogada et al. 

2012a; Bhatia et al. 2013; Penteriani et al. 2016). These negative impacts include livestock 

depredations (Suryawanshi et al. 2013), killing of pets (Vickers et al. 2015), attacks on 

humans (Penteriani et al. 2016), and harboring of diseases and parasites (Han et al. 

2016). The human culture of fear associated with predators hinders many local and 

regional species recovery efforts (Barua et al. 2013). Populations of many predator and 

scavenger species are already declining (Ripple et al. 2014; Jacobson et al. 2016) and are 

projected to continue to dramatically decline over the next 25 years in response to 

increasing human populations, political uncertainty, and climate change (Ripple et al. 

2014; Chapron et al. 2014; Di Minin et al. 2016).  

 

An understanding of the benefits of predators and scavengers on human well-being is 

important in strengthening conservation efforts in shared landscapes (Soulsbury & White 

2015; Blackburn et al. 2016; Chapron & López-Bao 2016). For example, Egyptian vultures 

(Neophron percnopterus), which are declining globally, thrive in the towns and villages of 

Socotra, Yemen where they are valued for their service of removing livestock and human 

waste (Gangoso et al. 2013) that would otherwise cause water contamination and are 



 28 

expensive to remove (Markandya et al. 2008; Yirga et al. 2015; Ćirović et al. 2016). 

Similarly, the Tigray region of northern Ethiopia harbours high populations of spotted 

hyenas (Crocuta crocuta) that are tolerated by human societies, as they consume cattle 

and donkey carcasses as well as human corpses in urban settlements, reducing disease 

risk (Yirga et al. 2015). Yet, these examples of human communities cohabitating and 

actively conserving scavengers and predators are few and far between. 

 

Here, we highlight several key, yet often overlooked, benefits provided by native predators 

and scavengers in shared landscapes with humans (Figure 3.1). These potential benefits 

include disease regulation through host density reduction and competitive exclusion, 

increasing agricultural output through competition reduction and consumption of problem 

species that destroy crops, waste disposal services, and regulating populations of species 

that threaten humans. Although there are a growing number of examples of benefits 

provided by predators and scavengers, it is often unclear how widespread these benefits 

may be. While some benefits, such as carcass disposal, may be common and general, 

other benefits, such as protection from zoonotic disease, may be highly context-dependent 

effects that are localized in both space and time (Table 3.1). Management of predators 

and scavengers must also, therefore, be context-dependent and try to appropriately 

balance detrimental and beneficial effects. We focus primarily on economic and health 

aspects of human well-being, but we recognize that well-being can encompass other 

material, social, and subjective components of the human experience that are not covered 

in this paper (Milner-Gulland et al. 2014). 

 

Predators and scavengers regulate zoonotic diseases 

Zoonoses, diseases that are maintained in animal populations but can be transmitted to 

humans, pose direct threats to human health as exemplified by recent outbreaks of the 

Zika virus (Rodriguez-Morales et al. 2016), Ebola virus (Olivero et al. 2016), and H5N1 

avian influenza (Chen et al. 2005). Accounting for over 60% of known human diseases 

(Taylor et al. 2001), zoonotic disease outbreaks can decimate human societies and 

economies. For example, not only did the Ebola virus cause loss of life (>12,000 lives) 

(Narasimhan 2016), but it virtually halted all tourism to West Africa leading to dramatic 

economic suffering due to both local perception of disease risk and continent-wide 

economic concerns (Mizrachi & Fuchs 2016). Because of these human health and 

economic impacts, control of zoonoses and their vectors is important and while they may 

be hosts themselves in some cases (e.g. carnivores sustaining rabies cycles in some 
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African ecosystems (Lembo et al. 2008)), predators and scavengers may play a role in 

disease regulation (Harris & Dunn 2013). Indeed, some case studies have shown that they 

can control diseases by reducing host and vector densities (Moore et al. 2009), through 

local competitive exclusion (Markandya et al. 2008), or directly through feeding on infected 

hosts (Khalil et al. 2016) (see Figure 3.1).  

 

Reduction of host species densities by predators can reduce the risk of disease 

transmission to humans by limiting the prevalence of disease in host populations when 

within-host transmission is density-dependent (McCallum 2001). Predators can also 

reduce absolute host numbers, thereby limiting the opportunity of spillover to humans 

when within-host transmission is either density- or frequency-dependent (McCallum 2001). 

For example, reduction in dog densities by leopards (Panthera pardus) greatly reduces the 

frequency of dog bites and hence human exposure to rabies near the Sanjay Gandhi 

National Park in Mumbai, India (Braczkowski et al. 2018). Similarly, generalist predators 

such as foxes may reduce Lyme disease risk in humans by controlling mice populations 

(Peromyscus sp.), the main reservoir for infected nymphal tick vectors (Ixodes scapularis) 

via dilution (Ostfeld & Holt 2004; Brisson et al. 2008; Levi et al. 2012), and frog tadpoles 

may play a global role in reducing dengue fever by feeding on mosquito eggs (Bowatte et 

al. 2013) (see Figure 3.1 for global distribution of these species). 

 

Predators and scavengers can also reduce disease risk in humans through competitive 

exclusion, the action of outcompeting disease hosts for resources or space. For example, 

vultures have been shown to outcompete stray dogs in finding and consuming carrion 

(Markandya et al. 2008). Markandya and colleagues (2008) linked the severe decline in 

vulture populations in India (92% loss from 1990-2000) to the widespread use of 

diclofenac and the striking increase in stray dog populations (Markandya et al. 2008). They 

suggest in the absence of vultures consuming carrion, stray dog populations will continue 

to rise, resulting in an increase in human dog bites and exposure to rabies. Furthermore, 

other facultative scavengers can replace vultures, including gulls, rats, and invasive foxes 

(Buechley & Şekercioğlu 2016a), all of which can pose risks to humans and can 

themselves be disease hosts. However, no study has synthesized empirical and 

theoretical evidence of scavenger trophic cascades and how they might influence human 

health and well-being. 
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Predators can indirectly increase agricultural output 

Species that consume crops account for 10-20% of agricultural financial losses globally 

and current control measures are estimated to be only 40% effective on average (Oerke & 

Dehne 2004). Conventional pest-control methods, particularly chemical control, can be 

detrimental to human health (Alavanja et al. 2013) and costly. Biological control provides 

an alternative to unhealthy chemical control methods (Barzman et al. 2015), and some 

case studies have shown that natural predators can reduce financial burden and crop loss 

by consuming problem species.  

 

Airborne predators can play an important role in agricultural management (Labuschagne et 

al. 2016), a reason why some bat and bird species are often considered the most 

economically important non-domesticated group of animals (Kunz et al. 2011; Maine & 

Boyles 2015). For example, field experiments show that some bat communities in the USA 

suppress pest larval densities of the detrimental corn earworm moth (Helicoverpa zea) and 

cucumber beetle (Diabrotica undecimipunctata howardi) by nearly 60% and significantly 

reduce associated pest fungal growth in large-scale corn productions (Maine & Boyles 

2015). Based on these experiments, the authors estimate that bat control of crop pests 

may save farmers more than US$1 billion globally per year, thereby providing a substantial 

service to farmer livelihoods (Maine & Boyles 2015). Similarly, birds and bats in the 

tropical cacao plantations of Indonesia’s central Sulawesi have been shown to save over 

30% of crop output (~US$730 ha-1) by hunting pest populations of Lepidoptera and 

Heteroptera species (Maas et al. 2013). Additionally, insectivorous birds can reduce weevil  

density by over 33% in alfalfa fields of central California, USA (Kross et al. 2016b). 

  

Large avian predators can also have marked impacts on problem species that cause 

agricultural damage (Figure 3.1). For example, the barn owl (Tyto alba) has a diet made 

up of ~99% agricultural pest species in fields of California, USA (Kross et al. 2016a). 

Similarly, barn owls reduce man-hours worked and baiting costs for rat (Rattus sp.) control 

in oil palm plantations of Malaysia (Wood & Fee 2003). Likewise, New Zealand falcons 

(Falco novaeseelandiae) have increased winery output in six New Zealand wineries by 

preying on four crop-raiding bird species (Kross et al. 2012).  

 

Livestock depredation by carnivores can be costly for pastoralists (Suryawanshi et al. 

2013), resulting in retaliatory killings of predators (Treves & Bruskotter 2014). However, in 

pasture environments where livestock and wild herbivores are present, predators may 
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increase livestock productivity by reducing competition with other herbivores (Sundararaj 

et al. 2012). For instance, the dingo (Canis lupus dingo) (Figure 3.1) has been shown to 

increase agricultural output by controlling populations of red kangaroo (Macropus rufus), 

Australia’s largest native herbivore and a major competitor with livestock on commercial 

grazing land (Prowse et al. 2015). Cattle farmers often kill dingoes due to their reputation 

for killing valuable livestock but dingoes are estimated to increase pasture biomass by 53 

kg ha-1 and improve profit margins by US$0.83 ha-1,(Prowse et al. 2015). 

 

The value of other predatory species as pest regulators requires further investigation. For 

example, pest insects form over 50% of the diet of a suite of frog species in the Nepalese 

rice plantations of Chitwan (Khatiwada et al. 2016) and in southeast China, frog species 

depredate rice leaf rollers (Cnaphalocrocis medinalis), a problematic species that causes 

blight. By consuming leaf rollers, frogs increase the number of seedlings and stem width of 

rice plants (Teng et al. 2016) that may ultimately increase health and crop size for rice 

farmers. Similarly, skunks (Miphitis spp.) in North America have been shown to reduce 

pests in family gardens, potentially reducing the need for pest management (Rosatte et al. 

2010). 

 

Predators and scavengers provide benefits in urbanizing environments 

Negative human-wildlife interactions are a longstanding and growing problem (Barua et al. 

2013) that is often exacerbated in areas with high human density and an abrupt 

‘wilderness’ interface (Soulsbury & White 2015). Many species are attracted to the high 

calorie food items, shelter, and breeding resources common to urban areas, and they may 

form permanent populations in shared areas irrespective of wilderness proximit (Samia et 

al. 2015). For instance, bobcat and puma densities in Colorado, USA, are the same across 

semi-urban areas and wildland habitats provided that prey densities are similar (Lewis et 

al. 2015). As a result, predators and scavengers will utilize urban areas, and some case 

studies have shown that they may provide benefits to humans above and beyond the 

disease benefits discussed above, including waste regulation and reduction of species 

abundances that cause direct human injury and death (Ćirović et al. 2016; Gilbert et al. 

2016; Braczkowski et al. 2017). 

 

Scavengers provide organic waste regulatory services by feeding on carcasses or 

decaying food matter (Figure 3.1). For example, golden jackals (Canis aureus) reduce 

>3,700 tons of domestic animal waste in Serbia per year, including road-killed animals and 



 32 

waste dumps (Ćirović et al. 2016). One estimate indicates that jackals remove >13,000 

tons of organic waste across urban landscapes in Europe amounting to >US$0.5 million in 

saved waste-control (Ćirović et al. 2016) that would otherwise cause groundwater 

contamination and other health risks (Markandya et al. 2008). Vultures can also provide 

long-term carcass removal services for the livestock industry, leading to savings in man-

hours and reduced disease risk in valuable herds (Dupont et al. 2012). This service has 

been observed in many developing regions, particularly in Africa and Asia where waste-

disposal infrastructure is lacking (Markandya et al. 2008; Olea & Mateo-Tomás 2009; 

Gangoso et al. 2013). 

 

Large terrestrial predators can provide services in urban landscapes by reducing 

abundances of species that cause human death and injury (Figure 3.1). For example, 

leopards reduce the density of stray dogs in Mumbai, India, thereby reducing bites and 

injury accrued on residents and save the municipality nearly 10% of their annual dog 

management budget (Braczkowski et al. 2017). Stray dogs are responsible for thousands 

of bites on Mumbai’s citizens annually that result in hundreds of work days lost and 

subsequent financial burden (Gogtay et al. 2014). As stray dog populations currently 

exceed well over 1 billion globally and are expected to continue to grow as the human 

population increases (Treves & Bonacic 2016), large wild predators in these urban 

landscapes should be considered a valuable asset in reducing the ongoing and potential 

damage accrued from urban stray dogs on human health and well-being. 

 

Predators can also reduce the abundance of species that are responsible for costly 

wildlife-vehicle collisions (Figure 3.1). Where large carnivores have declined or been 

extirpated, herbivore populations have often increased (Ripple & Beschta 2012b). This 

trophic response not only impacts ecological structure, but can directly influence human 

well-being. Gilbert et al. (2016) found that the potential recolonization of cougars over a 

30-year period in the eastern United States would reduce deer populations and thereby 

curtail deer-vehicle collisions by 22% (Gilbert et al. 2016). They estimated that this 

reduction in collisions would result in 155 less human deaths, 21,400 less human injuries, 

and US$2.13 billion saved in costs. This study illustrates how the ecological effects of 

large predators can potentially save human lives and decrease government spending. 
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Predator and scavenger conservation in the 21st century  

Only 12.5 percent of the earth’s terrestrial surface is protected for conservation (Watson et 

al. 2014), and as the human population grows, and our global footprint expands, ‘shared’ 

landscapes will prevail across Earth’s terrestrial surface (Di Minin et al. 2016; Venter et al. 

2016a). Currently, predators and scavengers receive relatively high attention in protected 

landscapes (Verissimo et al. 2011), but receive relatively little conservation attention in 

shared landscapes (Dobrovolski et al. 2013; Di Minin et al. 2016) considering large 

portions of many species ranges occur in these areas (Di Minin et al. 2016). For example, 

leopards have disappeared across 78% of their historic range (Jacobson et al. 2016), 

African lions (Panthera leo) are predicted to continue to decline by half outside of 

protected areas (Bauer et al. 2015), and 17 out of the 22 vulture species are declining due 

to human activities (Buechley & Şekercioğlu 2016a). Shared landscapes must be 

managed to achieve effective conservation for all species and improving our 

understanding of the services provided by predators and scavengers may facilitate their 

conservation (Frank & Schlenker 2016).  

 

One obstacle to effective conservation of predators and scavengers in shared landscapes 

is bias in media, government, and public perception. Skewed viewpoints can 

sensationalize the negative effects of predators and scavengers (Bhatia et al. 2013; 

McCagh et al. 2015) that can have long-lasting repercussions on human perception, 

behavior, and policy (Kissui 2008; McCagh et al. 2015). For example, much of the media 

framed leopards as the perpetrators when attacks occurred in the city of Mumbai, India 

(Bhatia et al. 2013), and the main local newspaper in Bangladesh pointed to the tiger 

(Panthera tigris) as being the cause of conflict with a 2x higher frequency when compared 

to the international “The Guardian” newspaper (Sadath et al. 2013). In Florida, USA, 

instead of taking a neutral stance, local newspapers asserted risks that Florida panthers 

(Puma concolor coryi) might harm people and domestic animals (Jacobson et al. 2012). 

Likewise, most media coverage in the USA and Australia emphasized the risks sharks 

pose to people despite the threatened status of many shark species (Muter et al. 2013). 

An emphasis on wildlife-related risks from the media can lead to risk-averse policy such as 

when the Western Australia Government deployed drum lines to catch and kill sharks 

thought to be a threat to the public (McCagh et al. 2015). These “signals” the public 

receives from governments can influence human behavior directed toward wildlife. For 

example, Chapron and Treves (2016) suggest that the repeated policy signal to allow state 

culling of wolves in Wisconsin and Michigan, USA, may have sent a negative message 
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about the value of wolves or acceptability of poaching to the public (Chapron & Treves 

2016). The authors contend that these policy signals contributed to poaching of wolves 

and slowed their population growth (Chapron & Treves 2016).  

 

Another issue is the asymmetry between stakeholders that incur the costs from wildlife, 

such as the local communities living near them (Howe et al. 2014), and those that benefit 

from wildlife, such as specific industries (e.g. tourism) or society as a whole. For example, 

the international community values orangutans for their conservation and intrinsic value in 

Indonesia, yet local people incur the cost of crop raiding and personal injuries from 

orangutan attacks (Davis et al. 2013). Consequently, local people kill orangutans to reduce 

those costs (Davis et al. 2013; Carter et al. 2014). Likewise, although ecotourism 

companies benefit from predator-viewing activities in Bhutan’s Jigme Singye Wangchuk 

National Park, low income agropastoralists suffer from depredated livestock by tigers and 

leopards. These losses amount to more than two-thirds of average annual household 

income (Wang & Macdonald 2006). 

 

Initiatives that have directly provided local stakeholders with benefits from large predators 

and scavengers have achieved substantial and sustained reductions in conflict. Two 

seminal examples include profit-sharing and compensation schemes in Kenya’s Kuku 

group ranch and Mbirikani ranch, which provide local stakeholders with a proportion of 

tourist industry revenue.  This has led to reductions in the incidence of lion deaths resulting 

from poisoning (Hazzah et al. 2014; Bauer et al. 2015). Such schemes may help balance 

the economic benefits between private stakeholders and the local public who accrue most 

of the costs of predators and scavengers. Similar incentive schemes have been used 

successfully by conservation NGO’s and governments to promote changes in human 

behavior, such as reducing carnivore killings (Nyhus et al. 2003). However, the success of 

these schemes can be jeopardised if they lack sufficient logistic and financial support, they 

do not award adequate compensation to offset losses, or if compensation is awarded 

inequitably (Dickman et al. 2011). Such schemes may also have limited effectiveness in 

reducing killings motivated by cultural, political or historical reasons (Goldman et al. 2013). 

Hence, profit-sharing and compensation schemes must be implemented in conjunction 

with broader management programs that attempt to identify and address the wide range of 

factors that contribute to killing of wildlife, and that encourage the participation of all 

stakeholders in an inclusive decision-making process that recognizes multiple systems of 

knowledge and values (Pascual et al. 2014). 
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In addition to improving equity in various forms associated with predators and scavengers, 

there is also an urgent need to promote human tolerance to these species through 

education about benefits (Steinmetz et al. 2014; Reid 2016; Skupien et al. 2016; Marley et 

al. 2017). Dedicating outreach teams to communicate the benefits of endemic predators 

and scavengers to local communities could be an effective conservation strategy. 

Demonstrations of the effectiveness of education programs include: an improvement in the 

belief in potential for co-existence with alligators (Alligator mississippiensis) following 

education (Skupien et al. 2016), greater tolerance of black bears (Ursus americanus) 

following education of benefits provided by bears (Slagle et al. 2013), and greater 

tolerance of bats among Costa Rican men following education regarding ecosystem 

service provision (Reid 2016). Although more research is required to understand how long 

the benefits of education programs may last and how best to deliver them to people from a 

variety of cultural, educational and religious backgrounds, education can be an effective 

tool for conservation of predators and scavengers in shared landscapes. 

  

In addition to the benefits predators and scavengers provide to the public as a whole, they 

may also benefit a wide range of business, agricultural, and tourism interests. Much can 

be done to bolster the services of predators and scavengers in these sectors through local 

government and individual action. For example, Italian city councils are encouraging 

residents to purchase bat nesting boxes in response to increasing mosquitos that cause 

chikungunya fever (Day 2010), although it is unclear the extent of impact that bats have on 

disease-carrying mosquitoes in this region. Similarly, the city of Dubai in the United Arab 

Emirates invests in consultancies that work with peregrine falcons to reduce feral pigeon 

populations that cause severe damage to infrastructure (Choksi 2015). Ecotourism 

revenue can be substantial, though it is often difficult to estimate how much particular 

species contribute to overall economic value (O’Mahony et al. 2017). The presence of 

jaguars (Panthera onca) in Brazil, for example, may contribute greatly to Pantanal 

ecolodges. One study estimates that the large felids bring nearly US$7 million in annual 

land-use revenue, which is 52 times higher than other industries in the region (Tortato et 

al. 2017).  

 

Predators may also benefit vehicle drivers by reducing insurance premiums in areas where 

predators have been effective in reducing the abundance of large prey like deer, which can 

be a leading source of vehicle collision damage (Gilbert et al. 2016). Similarly, obligate 
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scavengers have been shown to save ca. $50 million in insurance payments by farmers 

and national administrations in Spain by supplanting transportation of livestock carcasses 

to processing facilities (Morales-Reyes et al. 2005). Scavengers may also provide savings 

by reducing costs associated with meat contamination (Whelan et al. 2015). There may be 

additional benefits from predators by reducing densities of invasive ecosystem engineers 

such as wild pigs (Sus scrofa) that disturb soil and disrupt soil organic carbon, thus 

reducing greenhouse gas emissions. More work is needed to document the financial and 

health benefits of predators and scavengers to different sectors of society. 

 

Managing the trade-offs between the costs and benefits of accommodating predators and 

scavengers in shared landscapes is a difficult and unresolved problem due to the 

complexity of human and ecological systems (Table 3.1). Risk-averse management may 

tend to place undue importance on eliminating the detrimental impacts of predators and 

scavengers over maintaining the benefits, particularly if the impacts include direct hazard 

to human life. In some cases, however, this may be a short-sighted and poorly justified 

perspective that could lead to a net increase in risk to humans if these animals also 

provide benefits that reduce exposure of risk to humans. Important unanswered questions 

include: how do the benefits from predators and scavengers change as the density of 

those species varies over time (Courchamp et al. 2006)? How does the composition of the 

predator guild alter human perception of the costs associated with those predators 

(Dickman et al. 2014)? Integrating the natural and social sciences can help answer these 

questions by evaluating the full range of both costs and benefits. Doing so will enable 

conservationists to determine if and when there is a net-benefit in shared landscapes and 

develop strategies to encourage net benefits (Carter et al. 2014). Moreover, as the extent 

of shared landscapes increases globally, it is imperative that we identify new approaches 

to management that allow wildlife and humans to coexist. Failing to do so is likely to result 

in the extinction of many species.  

 

Human societies depend greatly on the living components of the natural world (Pecl et al. 

2017), and these natural services are being altered by human dominance of landscapes 

(Worm & Paine 2016) and climate change (Scheffer et al. 2015). While, predators and 

scavengers currently face great threats in shared landscapes (Buechley & Şekercioğlu 

2016a; Ripple et al. 2017), they can coexist in areas where local communities accept and 

tolerate these species (Gangoso et al. 2013; Treves & Bruskotter 2014; Skupien et al. 

2016). Traditional conservation approaches such as safeguarding land may not lead to 
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comprehensive protection of species in human-dominated areas (Di Minin et al. 2016), 

leading to a requirement for alternative approaches for saving species in these shared 

landscapes. An important alternative is using services that predators and scavengers 

provide for human well-being to enhance protection (Frank & Schlenker 2016). By 

adopting an approach that communicates and educates these benefits to communities that 

live with predators and scavengers while accounting for cultural values and equitable 

conservation decision-making, we may be able to stem the decline of these persecuted 

guilds and make progress toward more expansive protection and increased instances of a 

net-gain in shared landscapes. 

 

Figure 3.1. (a), Ranges of some species known to contribute to agricultural 

production. (b), Ranges of some species that may reduce disease risk. (c), Ranges of 

some animals known to reduce species that cause human injury and death. (d), Ranges of 

some species known to remove dangerous organic waste. 
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Benefit Predator/scavenger species & 

location of case study 

Key finding(s) Potential limitations of case study  Additional research needed to 

further demonstrate human 

well-being benefits 

Regulating 

zoonoses 

Leopard (Panthera pardus) 

(Braczkowski et al. 2017) 

 

Mumbai, India 

 

Leopards consume 

nearly 1,500 feral dogs 

per year, reducing 

injury rates and   

potentially saving 

approximately 90 

human lives. 

Human benefit inferred from 

leopards consuming feral dogs that 

bite and infect humans, yet lacks 

direct measure of benefit, or 

controls for comparisons in similar 

dog-infested areas without 

leopards. Small spatial scale. 

Conduct similar analyses in 

locations without leopard 

presence. Estimate prevalence 

of dog rabies rates in Mumbai 

and analysis of trade-offs 

between dog and leopard 

attacks on humans. Are these 

results in line with similar 

systems globally? 

Regulating 

zoonoses 

Red fox (Vulpes vulpes) (Levi 

et al. 2012) 

 

USA 

 

 

 

 

The decline of red 

foxes is spatially 

correlated with Lyme 

disease outbreaks. 

Potential benefit inferred from 

correlation (cause and effect not 

established).  

Better mechanistic 

understanding of system 

required to evaluate effect of 

multiple predators on prey 

(host) populations, and 

explicitly link this to host-

pathogen dynamics. 
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Regulating 

zoonoses 

Amphibian larvae (Polypedates 

cruicger, Bufo melanostictus, 

Ramanella obscura, 

Euphlyctyis cyanophlyctis) 

(Bowatte et al. 2013) 

 

Sri Lanka; Lab experiment 

 

Amphibian larvae feed 

aggressively on 

dengue mosquito 

(Aedes aegypti) eggs. 

Lab-based experiment that does 

not account for alternative food 

availability that can dilute predatory 

effects. No direct quantification of 

human well-being. For example, 

lack of analyses on cost savings 

associated with vector control or 

reduced infection rates in humans 

as a result of amphibian predation 

of mosquito eggs.  

Conduct field studies on 

amphibian larvae gut content 

across a variety of geographic 

areas subject to mosquito-

borne diseases. Investigate 

whether predation of larvae by 

amphibians results in lower 

densities of adult mosquitos. 

Quantify how many human 

lives amphibian communities 

could affect.  

Regulating 

zoonoses 

Old world vultures (Gyps spp.) 

(Markandya et al. 2008) 

 

India 

 

 

Vulture declines are 

linked to increased 

feral dogs that cause 

rabies. 

Potential benefit inferred from 

correlation (cause and effect not 

established). 

Must identify other potential 

factors implicated in vulture 

declines and rule them out. 

Compare with vulture 

population trends in areas in 

which feral dogs have not 

increased. 

Increasing 

agricultural 

output 

Barn owl (Tyto alba) (Kross et 

al. 2016a)  

Barn owls consume 

>99% rodent pests in 

No demonstration of increased 

crop yield. No calculation of cost 

A controlled replicated 

experiment may be feasible to 

demonstrate a causal link 
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California, USA 

 

row crops of California, 

USA.  

savings from pest species 

consumption.   

between barn owls and 

increased crop yield. Calculate 

cost savings through work-

hours, chemical control, and 

trap costs saved from pest 

predation by owls.  

Increasing 

agricultural 

output 

New Zealand falcon (Falco 

novaeseelandiae) (Kross et al. 

2012) 

 

New Zealand 

 

 

 

New Zealand falcons 

reduce the presence of 

four crop-raiding bird 

species, increasing 

profit margins in 

wineries from US$234-

326/ha. 

Geographically- limited case study. Replication in other areas and 

other systems required to 

better establish generality. 

Include calculations on work-

hours saved by having falcons 

present on wineries.  

Increasing 

agricultural 

output 

Dingo (Canis lupus dingo) 

(Prowse et al. 2015) 

 

New South Wales, Australia 

 

Dingoes increase 

gross profit margins by 

reducing the density of 

kangaroos, which 

compete with cattle. 

Geographically-limited case study 

based on a metamodel.  

Fieldwork needed to show that 

forage availability is 

proportional to kangaroo 

density. Must account for both 

forage quantity and quality 

effects. 

Include calculations on work-

hours saved. Conduct 

exclusion experiments. Are the 
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results similar to the 

metamodel? 

Increasing 

agricultural 

output 

Thirteen frog species 

(Bufonidae, Microhylidaae, 

Ranidae, Rhacopphoridae) 

(Khatiwada et al. 2016) 

 

Chitwan, Nepal 

 

 

 

 

Frogs increase the 

number of rice 

seedlings and stem 

width of rice plants by 

consuming leaf rollers 

(Cnaphalocrocis 

medinalis) 

No calculation of increased crop 

yield or cost savings from pest 

species consumption.   

Demonstrate crop yield 

increases when frogs are 

present, ideally using field 

experiments. Calculate cost 

savings through work-hours, 

chemical control, and trap 

costs saved from pest 

predation by frogs.  

Waste 

removal 

Egyptian vulture (Neophron 

percnopterus) (Gangoso et al. 

2013) 

 

Socotra, Yemen 

 

 

 

 

Vultures dispose of 

>22% of organic 

waste. 

Clearer link to human well-being 

needed, such as disease 

implications and cost savings of 

waste scavenging. Small spatial 

scale. 

Test water sources near waste 

dumps with and without vulture 

access. Additionally, assess 

costs of waste removal. 

Quantify how organic waste 

has negative impacts on 

humans. 
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Table 3.1. Featured case studies of predators and scavengers contributing to human well-being, their potential limitations and 

suggestions for furthering the case of human benefit. 

 

Waste 

removal 

Spotted hyena  

(Crocuta crocuta) (Yirga et al. 

2015) 

 

Tigray, Ethiopia 

 

 

 

 

Nearly 90% of studied 

hyenas were located at 

waste dumps.  

Human benefit inferred from hyena 

abundance at waste dumps. 

Clearer link to human well-being 

needed, such as estimation of 

waste removal, disease 

implications, and cost savings. 

Small spatial scale. 

Conduct diet analysis similar to 

Gangoso and colleagues 

(Gangoso et al. 2013), but take 

additional steps to address 

costs of waste removal and/or 

human disease implications.   

Reducing 

species 

abundance 

that cause 

human 

injury/deat

h 

North American cougar (Puma 

concolor) (Gilbert et al. 2016) 

 

Eastern USA 

 

Potential 

recolonization of 

cougars over 30 years 

would curtail deer-

vehicle collisions by 

22%, saving 155 

human lives, 21,400 

injuries, and US$2.13 

billion. 

Human benefit based on a 

projected recolonization scenario 

for the eastern USA.  

Account for the costs of cougar 

recolonization, such as 

increased incidences of 

livestock predation. Do the 

benefits on human well-being 

outweigh the costs? 
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CHAPTER 4 The mesoscavenger release hypothesis and 

implications for ecosystem and human well-being 

 

Christopher J. O’Bryan, Matthew H. Holden, James E.M. Watson 

 

Abstract 

Many apex scavenger species, including nearly all obligate scavengers, are in a state of 

rapid decline and there is growing evidence these declines can drastically alter ecological 

food webs. Our understanding of how apex scavengers regulate populations of 

mesoscavengers, those less-efficient scavengers occupying mid-trophic levels, is 

improving; yet, there has been no comprehensive evaluation of the evidence around the 

competitive release of these species by the loss of apex scavengers. Here we present 

current evidence that supports the mesoscavenger release hypothesis, the increase in 

mesoscavengers and increase in carrion in the face of declining apex scavengers. We 

provide two models of scavenger dynamics to demonstrate that the mesoscavenger 

release hypothesis is consistent with ecological theory. We further examine the ecological 

and human well-being implications of apex scavenger decline, including carrion removal 

and disease regulation services.  
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Introduction 

Apex scavengers are functionally dominant at scavenging, meaning they can find and 

consume carcasses more efficiently than other scavengers (Sebastián-González et al. 

2016), and can be either obligate or facultative scavengers. Obligate scavengers (i.e. Old 

and New World vultures) are dependent entirely on carrion, but facultative scavengers rely 

partly on carrion (Ogada et al. 2012a). Apex scavengers (i.e. vultures and functionally 

dominant facultative scavengers) are facing unprecedented declines due to direct 

persecution, human disturbance, collision with infrastructures and electrocution, poisons 

and other dietary toxins, human disturbance, habitat loss and degradation, food shortage 

caused by sanitary regulations, or abandonment of traditional farming practices (Ripple et 

al. 2014; Buechley & Şekercioğlu 2016b). As such, it is imperative to understand the 

ecological and human well-being impacts of apex scavenger declines (Buechley & 

Şekercioğlu 2016b). There is growing evidence of scavenger competitive release across 

Earth, where mid-sized, less efficient scavengers (i.e., mesoscavengers) can increase in 

abundance in the absence of competition from more efficient apex scavengers (the 

mesoscavenger release hypothesis; Figure 4.1) (Butler & du Toit 2002; Sekercioğlu et al. 

2004; Markandya et al. 2008; Ogada et al. 2012b; Buechley & Şekercioğlu 2016b; 

Morales-Reyes et al. 2017). The population effects of mesoscavenger release from apex 

scavengers can be qualitatively similar to well documented patterns observed in predatory 

systems, where the absence of apex predators releases mesopredators (Crooks & Soulé 

1999; Ritchie & Johnson 2009a; Ripple et al. 2014; Newsome et al. 2017). However, the 

mechanism behind mesoscavenger release is different; it is caused by reduced 

competition over a shared resource, not the loss of top-down control.  Here, we present 

evidence pointing to the release of mesoscavengers by the loss of apex scavengers, and 

we discuss potential ecosystem and human well-being implications of mesoscavenger 

release. 
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Figure 4.1. (A) Apex scavengers are more effective at detecting and consuming carrion 

than mesoscavengers (large solid arrow), resulting in less carrion available to 

mesoscavengers (small dotted arrow), and thus resulting in fewer mesoscavengers (small 

solid and dotted arrows). This may result in indirect effects such as less disease risk, pest 

prevalence, and invasion potential that can negatively impact humans and ecosystem 

structure (small dotted arrows). (B) The loss of apex scavengers can result in 

mesoscavenger release, which is primarily caused by increased carrion availability due to 

a reduction in competition (large solid arrow). Mesoscavenger release can result in indirect 

effects such as increased disease risk, pest prevalence, and invasion potential that can 

negatively impact humans and ecosystem structure (large dotted arrows).  

 

Empirical support for the mesoscavenger release hypothesis 

Mesoscavengers have been shown to be more abundant and diverse in areas that are 

absent of apex scavengers (Table 4.1), which can affect ecosystem structure. For 

example, red foxes (Vulpes vulpes), which are facultative mesoscavengers, were 

significantly more abundant in areas of south-eastern Spain that lack vultures (Gyps spp.) 
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compared to areas with vultures (Morales-Reyes et al. 2017). Morales-Reyes and 

colleagues contend that mesoscavengers had increased scavenging opportunities and 

thus consumed more carrion in the absence of vultures, therefore resulting in increased 

abundance of foxes. An increase in mesoscavengers has also been observed in India, 

where growing feral dog (Canis lupus) and rodent populations have been linked to the 

widespread decline of vultures caused by ingestion of veterinary pharmaceuticals (i.e. 

diclofenac) (Markandya et al. 2008). The authors suggest that the concomitant rise of 

carrion without vultures resulted in a spike in mesoscavenger populations (Markandya et 

al. 2008). In Tasmania, Australia, areas where Tasmanian devils (Sarcophilus harrisii) 

have declined due to facial tumour disease have resulted in an increased abundance of 

feral cats (Felis catus) and forest ravens (Corvus tasmanicus) (Cunningham et al. 2018). 

The authors show that forest ravens have increased across all of Tasmania during the 

period of Tasmanian devil decline. In areas of Spain and South Africa where apex 

scavengers were lacking, species richness and composition drove the consumption of 

carrion; however, context-dependent effects (i.e. species abundance) had a greater effect 

where apex scavengers were common (Mateo-Tomás et al. 2017). These apex 

scavengers not only included globally widespread species such as wild boar (Sus scrofa), 

but also imperilled species like gyps vultures (Gyps spp.) and African lions (Panthera leo) 

(Mateo-Tomás et al. 2017). Likewise, in the Mendocino National Forest of California, 

foxes, corvids, and rodents had significantly higher species richness at deer carcasses in 

the absence of black bears and puma – the apex facultative scavenger and apex predator, 

respectively (Allen et al. 2014). The authors argue that the nestedness, or structure of the 

scavenger community, increased at carcasses where large carnivores were present (Allen 

et al. 2014).  

 

In the absence of apex scavengers, mesoscavengers are thought to be less effective at 

locating carrion, resulting in a longer carcass decomposition time. For instance, when 

turkey vultures (Cathartes aura) and black vultures (Coragyps atratus) were experimentally 

excluded from carrion in South Carolina, USA, 80 percent of carcasses were not 

scavenged by mesoscavengers, resulting in a ten-fold increase in carrion that were not 

fully scavenged compared to controls (Hill et al. 2018). A similar pattern was observed in 

Australia where nearly 70 percent of carrion were not scavenged by mesoscavengers 

(rats, dogs, foxes, and corvids) in the absence of apex facultative scavenging species 

such as kites (Haliastur spp.) and white-bellied sea eagles (Haliaeetus leucogaster) 

(Huijbers et al. 2015). Similarly, carrion persisted 2.6 times longer in areas where 
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Tasmanian devils declined due to a facial tumor disease (Cunningham et al. 2018). 

Carcasses were scavenged three times slower in the absence of vultures in the Laikipia 

District of central Kenya (Ogada et al. 2012b) and thirteen times slower in areas without 

vultures in south-eastern Spain (Morales-Reyes et al. 2017). Not only are vultures more 

efficient at locating and consuming carrion in the Masai Mara National Reserve in Kenya, 

they have also been shown to aid mesoscavengers in locating carrion (Kane & Kendall 

2017). As such, the loss of apex scavengers can result in increased available carrion 

biomass and slower decomposition time likely due to a lower scavenging efficiency by 

mesoscavengers. 
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Table 4.1. Studies showing the impacts of apex scavengers on mesoscavenger abundance, presence at carrion, and species richness.  

 

Apex scavenger(s) 
(obligate and/or facultative) 

Mesoscavenger(s)  
(obligate and/or facultative) 

Impacts on mesoscavenger(s)  Location Source 

Griffon vulture (Gyps fulvus) Red fox (Vulpes vulpes) Abundance of foxes increased with 
vulture absence 

South-eastern 
Spain 

(Morales-Reyes et al. 
2017) 

Black bear (Ursus americanus) Bobcat (Lynx rufus), gray fox (Urocyon 
cinereoargenteus), western spotted skunk 
(Spirogale gracilis), ringtail (Bassariscus 
astutus), common raven (Corvus corax) 

Total feeding time and presence of 
mesoscavengers on carrion decreased 
with bear presence 
 

Mendocino 
National Forest, 
California 

(Allen et al. 2014); 
(Allen et al. 2015)  

Long-billed vulture (Gyps indicu), 
slender-billed vulture (Gyps 
tenuirostris), oriental white-backed 
vulture (Gyps bengalensis) 

Feral dogs (Canis familiaris) Numbers of dogs significantly 
increased with vulture declines 

India (Markandya et al. 
2008) 

Wild boar (Sus scrofa), griffon 
vulture (Gyps fulvus), white-back 
vulture (Gyps africanus), African 
lion (Panthera leo) 

Marten (Martes spp), red fox (Vulpes vulpes), 
feral dog (Canis familiaris), Eurasian jay 
(Garrulus glandarius), azure-winged magpie 
(Cyanopica cyanus), Eurasian magpie (Pica 
pica), crows (Corvus spp)  

Species richness and composition 
drove carcass consumption in 
ecosystems where apex scavengers 
were rare, but context dependent 
factors (e.g. species abundance) drove 
carcass consumption where apex 
scavengers were common.  
 

Mediterranean 
Spain and 
subtropical 
South Africa 

(Mateo-Tomás et al. 
2017) 

Palm-nut vulture (Gypohierax 
angolensis), hooded vulture 
(Necrosyrtes monachus), white-
backed vulture (Gyps africanus), 
Rüppell's vulture (G. rueppellii), 
lappet-faced vulture (Torgos 
tracheliotus)  

Hyenas (Crocuta & Haena spp), black-
backed jackal (Canis mesomelas), Egyptian 
mongoose (Herpestes ichneumon) 

Increase in contacts between 
mesoscavengers and number of 
species at carcasses without vultures 

Laikipia District, 
Kenya 

(Ogada et al. 2012b) 

Griffon vulture (Gyps fulvus) Red kite (Milvus milvus), black kite (Milvus 
migrans), common raven (Corvus corax), 
marsh harrier (Circus aeruginosus), golden 
eagle (Aquila chrysaetos)  

Vultures dominated carcasses in 
predictable locations, reducing species 
abundance of mesoscavengers 

Northern Spain (Cortés-Avizanda et 
al. 2012) 

Tasmanian devil (Sarcophilus 
harrisii) 
 

Feral cat (Felis catus), forest raven (Corvus 
tasmanicus), spotted-tailed quoll (Dasyurus 
maculatus) 
 

Mesoscavengers increased carrion 
consumption in areas where 
Tasmanian devils have declined. 
Raven populations increased 2.2 fold 
following devil declines.  

Tasmania, 
Australia 

(Cunningham et al. 
2018) 
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Theoretical support for the mesoscavenger release hypothesis 

Unlike the mesoscavenger release hypothesis, the mesopredator release hypothesis 

has been shown to be consistent with the outputs of classic predator-prey models 

(Crooks & Soulé 1999). To determine if the mesoscavenger release hypothesis is 

also consistent with ecological theory, we built two simple dynamic models, one of 

apex obligate scavengers and mesoscavengers competing over carcasses for food, 

and the second model where the apex scavenger is facultative.  

 

Apex obligate scavenger model 

Consider an obligate scavenger model (see Figure 4.2 for a graphic description of 

the model), 

 

(1) 

𝑑𝐴

𝑑𝑡
= −𝜇𝐴 +

𝑔𝑎𝑒𝑎𝐶𝐴

1 + ℎ𝑎𝑒𝑎𝐶
   , 

 

𝑑𝑀

𝑑𝑡
= 𝑟𝑀 (1 −

𝑀

𝑘
) +

𝑔𝑚𝑒𝑚𝐶𝑀

1 + ℎ𝑚𝑒𝑚𝐶
  , 

 

𝑑𝐶

𝑑𝑡
= 𝑝 − 𝛿𝐶 −

𝑒𝑎𝐶𝐴

1 + ℎ𝑎𝑒𝑎𝐶
−

𝑒𝑚𝐶𝑀

1 + ℎ𝑚𝑒𝑚𝐶
   , 

 

where A, M, and C are apex scavenger, mesoscavenger, and carrion biomasses, 

respectively. For the sake of the model above, we consider all apex scavengers to 

be obligate scavengers that die in the absence of carrion at rate μ. Mesoscavengers 

are assumed to have alternate food sources, and therefore in the absence of carrion 

grow logistically at rate r, with carrying capacity k. Apex scavengers and 

mesoscavengers convert food into increased reproduction at rates ga and gm, 

respectively. The efficiency at which they find carrion is ea and em, and scavenger 

handling time is ha and hm. Note that ea will always be greater than em under 

mesoscavenger release due to apex scavengers being functionally dominant at 

scavenging relative to mesoscavengers. Carrion increase due to animal death at a 

constant rate p and decay at rate δ. The model assumes that carrion are from non-

modelled species and are therefore mathematically similar in structure to chemostat 
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models of resource dynamics where resources enter and exit a system at constant 

rates (Smith & Waltman 1995). While mesoscavenger and apex scavenger 

carcasses can contribute to scavenged carrion, this contribution is generally 

inconsequential compared to the carcasses of other species, and are often avoided 

due to the coevolutionary relation between carnivores and their parasites (Moleón et 

al. 2017). 

 

  

Figure 4.2. Graphical illustration of our dynamic model to test theoretical support of 

the mesoscavenger release hypothesis. In the model, carcasses enter the system 

via animal death and leave the system through decay or by scavenging. Both apex 

scavengers and mesoscavengers consume carcasses with respective efficiencies 

and handling times. In the dynamic model, mesoscavenger and apex facultative 

scavenger populations have a logistic growth rate (combination of births and deaths) 

in the absence of carcasses (apex facultative scavenger logistic growth is denoted 

by the blue coloring and dashed arrows), whereas apex obligate scavengers have a 

mortality rate in the absence of carcasses.  
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We parameterize our model using known mortality, efficiency, decay, and carrion 

availability rates and scavenger handling times (Appendix 5 Table 1). Known 

parameters on apex obligate scavengers are obtained from studies on cape vultures 

(Gyps coprotheres) (Komen 1992), griffon vultures (Gyps fulvus) (Houston 1974), 

and multi-scavenger systems with vultures present (Morales-Reyes et al. 2017). 

Known parameters on mesoscavengers are obtained from a study on scavenger 

systems with vultures absent (Morales-Reyes et al. 2017), with information on 

carrion availability and decay rates from field experiments in Africa and the USA, 

respectively (Houston 1985; Carter et al. 2006). Population growth rate of the 

mesoscavenger in the absence of carrion, and the food conversion rates for both 

scavengers are arbitrarily set equal to the mortality rate of apex scavengers in the 

absence of food. We vary the carrying capacity of the mesoscavengers in the 

absence of carcasses from 0.5 – 2.0, to capture differing dependence and/or 

preference for non-carrion food sources. We also consider the case where 

scavenging efficiency of the mesoscavenger is doubled in the presence of an apex 

obligate scavenger due to evidence of following behaviour by mesoscavengers on 

vultures (Kane & Kendall 2017). We note that this model could be non-

dimentionalised to reduce the number of parameters, but we present the model here 

in its most biologically interpretable form, for clarity. 

 

We define mesoscavenger release as the increase in functionally less dominant 

mesoscavengers in the absence of more functionally dominant apex scavengers, 

where functional dominance is determined by a scavenger’s relative ability to 

efficiently locate and consume carrion (Mateo-Tomás et al. 2017). Under the 

assumed conditions (i.e. that apex scavengers are stronger competitors than 

mesoscavengers) a reduction of apex scavengers leads to an increase in 

mesoscavengers and carrion in our model, which is consistent with the 

mesoscavenger release hypothesis. These results therefore suggest that a decrease 

in apex obligate scavengers may lead to increases in mesoscavengers and carrion, 

which is also consistent with observational data (e.g. Morales-Reyes et al. 2017). 

When apex obligate scavengers are removed from the system, mesoscavenger 

equilibrium densities increase along with carrion density. For example, in the 

baseline parameterisation, with an apex obligate scavenger 18 times more efficient 
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(e.g. Gyps fulvus) than the typical mesoscavenger assemblage, removing the apex 

scavenger causes a 13-fold increase in equilibrium carrion density (Figure 4.3). The 

effect is strongest when apex scavengers are substantially more efficient than the 

mesoscavengers, and when mesoscavenger carrying capacity is low (although 

mesoscavenger release occurs across a range of carrying capacities; Figure 4.3 & 

Appendix 5 Figure 1). For example, removing an apex scavenger that is only three 

times as efficient as the typical mesoscavenger increases carrion density two-fold. 

Furthermore, when mesoscavengers have a high carrying capacity in the absence of 

carrion, apex obligate scavengers still reduce carrion density by over half, due to 

their relatively high search efficiency (Figure 4.3).  

 

When doubling mesoscavenger search efficiency in the presence of apex 

scavengers, the mesoscavenger release response is qualitatively similar to the 

baseline case (Figure 4.3). The only differences are that mesoscavenger density 

slightly increases (4.7% increase) and carrion density drops by 5.3% when apex 

scavengers improve mesoscavenger search efficiency (measured at the baseline 

apex scavenger search efficiency). A full local sensitivity analysis of the model 

parameterisation is presented in the Supplementary Material (Appendix 4 Figure 1).  
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Figure 4.3. Equilibrium population densities of carcasses (green dotted line), 

mesoscavengers (red dashed line) and apex obligate scavengers (black solid line) 

from the dynamic model (eqn 1) as a function of apex scavenger search efficiency. 

The curves for each plot start at mesoscavengers search efficiency. The black open 

circle for each plot denotes the search efficiency of an apex scavenger, the griffon 

vulture (Gyps fulvus), which is 18 times more efficient than a mesoscavenger 

assemblage. The red and green open circles on the equilibrium axis denote the 

equilibrium densities of mesoscavengers and carcasses, respectively, when the 

apex scavengers are absent. Generally, the more efficient (i.e. functionally dominant) 

the apex scavenger, the more they suppress mesoscavenger populations and 

carcass densities. The first column of plots is for the baseline mesoscavenger search 

efficiency, em = 1. The second column of plots is for the case where mesoscavenger 

search efficiency is doubled when apex obligate scavengers are present, potentially 
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aiding mesoscavengers in finding carcasses - as documented in some vulture 

systems (Kane & Kendall 2017). 

 
Our models do not consider interactive effects of other carnivore species at 

modulating the ability of vultures to exploit carrion. For example, apex predators may 

have differing effects on scavenging behavior and consumption patterns of both 

apex scavengers and/or mesoscavengers at and around carcasses (Selva & Fortuna 

2007; Olson et al. 2012; Barton et al. 2013; Allen et al. 2014; Moleón et al. 2014; 

Sivy et al. 2018; Cunningham et al. 2018). More research is needed to investigate 

the role of other carnivore species at regulating scavenger behavior and population 

dynamics. 

 

Apex facultative scavenger model 

As apex scavengers can also be facultative, consider a similar dynamic model, but 

with apex scavengers capable of alternate feeding strategies. Apex scavengers now 

grow logistically at rate ra, with carrying capacity ka in the absence of carrion,  

 

(2) 

𝑑𝐴

𝑑𝑡
= 𝑟𝑎𝐴 (1 −

𝐴

𝑘𝑎
) +

𝑔𝑎𝑒𝑎𝐶𝐴

1 + ℎ𝑎𝑒𝑎𝐶
    .   

 

We parameterize our model using known efficiency and handling times from a study 

on Tasmanian devils (Cunningham et al. 2018). Other parameters, describing carrion 

decay and carrion availability, are set to the baselines in the previous model 

(Appendix 5 Table 1). We explore the parameter space for this system by varying 

handling times, search efficiencies, growth rates, and carrying capacities against 

equilibrium population densities for the Tasmanian system (Appendix 5 Figure 2 & 

3). We also consider a hypothetical system using the vulture parameterisation. The 

vulture parameterisation allows us to see how the mesoscavenger release generated 

from the obligate scavenger model would be affected by allowing an apex facultative 

scavenger with considerably high search efficiency to consume non-carrion food 

sources. Here, all parameters are set to match the vulture parameterisation in the 

obligate apex scavenger model. We vary carrying capacity of the apex facultative 

scavenger in the absence of carrion to range between 1/100th of mesoscavenger 
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carrying capacity to mesoscavenger carrying capacity, as we do not expect apex 

facultative scavengers to have higher densities than mesoscavengers in the absence 

of carrion.  

 

We find that mesoscavenger release occurs in facultative systems. For example, in 

the vulture-parameterized model in Figure 4.4, mesoscavenger and carrion densities 

drop 3-fold when the apex facultative scavenger’s carrying capacity in the absence 

of carrion reaches 1/10th of the mesoscavengers’ carrying capacity (Figure 4.4). 

However, in the Tasmanian devil-parameterized model, mesoscavenger densities 

are only slightly impacted, likely due to the relatively close search efficiencies 

between the apex scavengers and mesoscavengers (Figure 4.4). This suggests that 

apex facultative scavengers with higher search efficiencies (i.e. more functionally 

dominant) relative to mesoscavengers tend to have greatest impact on 

mesoscavenger and carrion densities, especially at lower apex scavenger carrying 

capacities in the absence of carrion (Figure 4.4). A full local sensitivity analysis of the 

model parameterisation is presented in the Supplementary Material (Appendix 4 

Figures 2 and 3). 
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Figure 4.4. Equilibrium population density of carcasses (green dotted line), 

mesoscavengers (red dashed line) and apex facultative scavengers (black solid line) 

from the dynamic model (eqn 2) as a function of apex scavenger carrying capacity in 

the absence of carcasses. Values on the x-axis range from 1/100th of the 

mesoscavenger carrying capacity value to the mesoscavenger carrying capacity 

value. The top model is parameterized for a known facultative scavenger, the 

Tasmanian devil (Cunningham et al. 2018). The bottom is parameterized for vulture 

systems (Morales-Reyes et al. 2017).  The key difference between the two 

parameterisations is different mesoscavenger and apex scavenger search 

efficiencies, which are displayed in the top right of each plot. An imaginary effect of 

vultures surviving off of alternative food sources is displayed for comparison with 

Figure 4.3. As apex scavengers are able to sustain higher populations in the 

absence of scavenging (increasing ka), the more they suppress mesoscavenger 

populations and carcass densities; however, apex facultative scavengers with higher 

search efficiencies relative to mesoscavengers tend to have greater impact at lower 
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carrying capacities compared to apex scavengers with smaller search efficiencies 

relative to mesoscavengers.  

 
We assume that facultative scavengers do not decrease their search effort on 

carrion when the carrion are at low densities. It may be true that facultative 

scavengers reduce their search efficiency for carrion when carrion densities are low, 

and alternatively increasingly target live prey if more available, which is consistent 

with optimal foraging theory (Kane et al. 2017; Margalida et al. 2017). However, it is 

empirically unclear how facultative scavenger search efficiency fluctuates depending 

on food availability. Food switching could be modelled as a discontinuous functional 

response, or even approximated by a Holling’s Type III sigmoidal functional 

response, which is an approach taken in food-source-switching models of predation 

(van Baalen et al. 2001). More research on facultative scavenger behaviour is 

needed to realistically explore the effect of food switching on the mesoscavenger 

release hypothesis. 

 

Known consequences of losing apex scavengers  

The literature we review in this paper, along with our dynamic models, suggest that 

without apex scavengers, organic waste may be left unscavenged for longer periods 

and at higher biomass, and this can increase mesoscavenger abundance (biomass 

in our models) due to the increase in carrion biomass. Such increases in 

mesoscavengers and waste can change ecosystem structure (Sebastián-González 

et al. 2016) and impact human well-being (Markandya et al. 2008; Braczkowski et al. 

2018; O’Bryan et al. 2018). Mesoscavengers are often pest species. Their population 

increases can lead to a loss of species at lower trophic levels (Ackerman et al. 

2006), increased invasive species (Brown et al. 2015), increased associated pest 

control costs (Buechley & Şekercioğlu 2016b), and disease risk (Markandya et al. 

2008). There is evidence that some facultative mesoscavengers have faster 

reproductive rates and can therefore increase in population size with more available 

resources compared to apex obligate scavengers, assuming that increased carrion 

will result in increased fecundity (Buechley & Şekercioğlu 2016b). Research in the 

Canary Archipelago showed that increased scavenging opportunities at “vulture 

restaurants” resulted in increased predation of native ground-nesting birds by 

facultative scavengers (Cortés-Avizanda et al. 2009). Similarly, the California gull 
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(Larus californicus) depredated 61 percent of American avocet chicks (Recurvirostra 

americana) and 23 percent of black-necked stilt chicks (Himantopus mexicanus) in 

San Francisco Bay as a result of an increase in available refuse (Ackerman et al. 

2006). Furthermore, with the loss of apex scavengers and the increased availability 

of carcasses under a mesoscavenger release scenario, it is likely that invertebrate 

scavengers will have higher importance in reducing carcass biomass. Future 

investigations on the relationship between mesoscavengers and invertebrate 

scavenger resource exploitative competition would be informative. For example, it is 

plausible that invertebrate scavenger release may occur with the loss of apex 

scavengers, but these dynamics are poorly understood (but see DeVault et al. 2004). 

As a result, examination of the mesoscavenger release hypothesis and the impacts 

across multiple taxonomic and functional groups would be an important future 

research agenda.  

 

Burgeoning mesoscavenger populations may affect human well-being (Braczkowski 

et al. 2018; O’Bryan et al. 2018), such as the spread of bubonic plagued rats of the 

1300’s (Keeling & Gilligan 2000). More recently, rabies risk has increased 

dramatically following the rapid decline of India’s apex obligate scavengers, vultures 

(Markandya et al. 2008) and more than 20,000 Indian citizens have died from rabies 

each year since 1985 (Menezes 2008). There have been numerous recent calls for 

vulture conservation and feral dog sterilization (Markandya et al. 2008). Not only 

does increased carrion result in increased mesoscavengers, but it can also result in 

amplified carcass-borne diseases, such as spongiform encephalopathies found in 

unconsumed livestock remains in the European Union (Gwyther et al. 2011). 

Additionally, in Kenya, carcasses without vultures had a three-fold increase in 

interactions between facultative mesoscavengers (Ogada et al. 2012b), and the 

authors contend a potential change in patterns of disease transmission between 

mesoscavengers as a result. Thus, the loss of apex scavengers can alter 

scavenging assemblages that can cause risk to ecosystem structure and human 

health either by increasing disease hosts or by increasing carcass decay time. 

However, empirical evidence that apex scavengers alter mesoscavenger dynamics 

at carcasses and thus disease dynamics on its own does not indicate that similar 

patterns hold at the population-level. As such, the mesoscavenger release 
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hypothesis should be vigorously tested, especially around the effect of removing 

apex scavengers on mesoscavengers at the population-level. 

 

Apex scavenger conservation in the 21st century  

Vultures and many apex facultative scavengers are among the most threatened 

functional groups worldwide (Estes et al. 2011; Buechley & Şekercioğlu 2016b; 

Ogada et al. 2016). A better understanding of the effects of apex scavengers on 

mesoscavenger communities is important to illuminate where and when to undertake 

conservation action. This has been clearly demonstrated for apex predators and 

mesopredator release, with significant efforts now underway to rewild and re-

introduce populations of apex predators in North America and Europe (Svenning et 

al. 2016). These efforts could be expanded to include the protection of apex 

scavengers, particularly in places where mesoscavenger release could have 

negative consequences for humans or ecosystems. Areas such as southern and 

eastern Africa, South Asia, and the Iberian Peninsula appear to be of high priority for 

Old World vulture conservation given current threats and lack of protection 

(Santangeli et al. 2019). Additionally, developing nations may be particularly 

susceptible to the consequences of apex scavenger loss due to a lack of waste 

disposal infrastructure and increased disease risk from harmful mesoscavengers.  

 

Since scavengers feed on organic waste, they are often found in human-dominated 

areas where anthropogenic waste is prevalent. Indeed, avian scavengers in the 

Middle East and Africa strongly select for habitats associated with humans, such as 

highways, power distribution lines, and towns (Buechley et al. 2018). Apex 

scavenger persistence in shared landscapes will therefore require tolerance from 

local people who live alongside these species. However, apex scavengers are 

frequently persecuted and viewed as nuisance animals as they can be found around 

these human dwellings (Buechley & Şekercioğlu 2016b). An improved understanding 

of the importance of apex scavengers and the benefits they provide could help raise 

their profile and make their conservation a global priority. For example, there is 

evidence of a variety of human communities that tolerate apex scavengers. In the 

Tigray region of Ethiopia, for instance, spotted hyenas (Crocuta crocuta), facultative 

scavengers, are tolerated because of the traditional belief that they eat evil spirits as 
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they remove livestock remains and other garbage in and around waste dumps 

(Baynes-Rock 2015; Yirga et al. 2015). Similarly, Egyptian vultures (Neophron 

percnopterus) are thriving in urban areas of Socotra, Yemen where they dispose of 

22.4 percent organic waste produced in towns annually (Gangoso et al. 2013). 

Nevertheless, when apex scavenger species are no longer tolerated, facultative 

mesoscavengers may increase in abundance and richness, which is likely to result in 

increased human-wildlife conflict. For example, the loss vultures in India resulted in 

an increase in feral dog bites on humans (Markandya et al. 2008).As such, it is 

imperative that future research focus on the relationship between scavenger trophic 

interactions and human tolerance (Morales-Reyes et al. 2018). 

 

Conclusion 

While there is both empirical and theoretical evidence for apex scavengers releasing 

mesoscavengers (the mesoscavenger release hypothesis), there is still much to 

learn about the impacts of different apex scavengers on mesoscavenger 

assemblages. We find in our simple dynamic models that the relationship between 

apex facultative scavengers and mesoscavengers vary depending on their handling 

times, search efficiencies, and carrying capacities (Figures 4.4, Appendix 4 Figures 1 

& 2). We recommend that future work explore the dynamics of these parameters as 

they pertain to different feeding strategies. Further to this, there is much debate on 

how scavenger assemblages are arranged in time and space, such as the influence 

of carcass species and type (Olson et al. 2016; Moleón et al. 2017), carcass size 

(Moleón et al. 2015), season (Pereira et al. 2014), or location (Smith et al. 2017) 

among others on community dynamics.  There may be variable effects of apex 

scavenger removal on obligate versus facultative mesoscavengers. Additionally, 

most of the apex scavenger and mesoscavenger examples illustrated in this 

manuscript, and the ones used in our models, pertain to terrestrial scavengers, with 

vulture systems dominating the literature. As such, our models do not consider the 

contribution of invertebrate scavengers relative to vertebrate scavengers (DeVault et 

al. 2003; Griffiths et al. 2018), and we recommend future research incorporate 

invertebrates in models investigating the mesoscavenger release hypothesis. Thus, 

our simple models are useful as a starting point for future studies exploring the 

effects of apex scavengers on mesoscavengers across a multitude of systems.  
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Apex scavenger conservation is especially important given the potential negative 

impacts of released mesoscavengers on ecosystem and human health. Based on a 

global meta-analysis, there is already skewed dominance towards mesopredators 

and mesoscavengers that is likely due to altered top-down control mechanisms from 

declining apex scavenger and predator populations (Mateo-Tomás et al. 2015). 

Considering nearly 80 percent of obligate scavenger species are currently in a rapid 

state of decline (Buechley & Şekercioğlu 2016b), and widespread evidence that 

human pressures alter apex scavenger distributions and population viability (Ogada 

et al. 2012a; Huijbers et al. 2015; Di Marco & Santini 2015; Buechley & Şekercioğlu 

2016b; S̜ekercioğlu et al. 2016), we urge proactive management tailored to apex 

scavengers similar to approaches applied as a result of mesopredator release. By 

building the research base associated with the mesoscavenger release hypothesis, 

we will likely better understand the vulnerability of critical ecosystem and human 

well-being services that apex scavengers provide and can therefore administer more 

effective conservation action. 
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CHAPTER 5 Leopards provide public health benefits in 

Mumbai, India 

 

Alexander R. Braczkowski, Christopher J. O’Bryan, Martin J. Stringer, James E.M. 

Watson, Hugh P. Possingham, Hawthorne L. Beyer 

 

Abstract 

Populations of large carnivores are often suppressed in human-dominated 

landscapes because they can kill or injure people and domestic animals. However, 

carnivores can also provide beneficial services to human societies, even in urban 

environments. We examined the services provided by leopards (Panthera pardus) to 

the residents of Mumbai, India, one of the world’s largest cities. We suggest that by 

preying on stray dogs, leopards reduce the number of people bitten by dogs, the risk 

of rabies transmission, and the costs associated with dog sterilization and 

management. Under one set of assumptions, the presence of leopards in this highly 

urbanized area could save up to 90 human lives per year. A further indirect benefit of 

leopard presence may be an increase in local abundance of other wildlife species 

that would otherwise be predated by dogs. The effective conservation of carnivores 

in human-dominated landscapes involves difficult trade-offs between human safety 

and conservation concerns. Quantitative assessments of how large carnivores 

negatively and positively affect urban ecosystems are critical, along with improved 

education of local communities about large carnivores and their impacts. 

 

In a nutshell 

Predation of stray dogs by leopards (Panthera pardus) in areas within Mumbai, India, 

likely benefits humans by reducing dog bite incidents, and thereby potentially 

preventing 90 people from dying of rabies 

The presence of leopards also saves US$18,000 per year in dog management costs 

The indirect beneficial impacts of large carnivores on human well-being may be 

substantial and are underestimated, especially in urban environments 
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Management of the world’s large carnivores is a polarizing issue (Ripple et al. 2014). 

In many areas, carnivores are vilified for attacks on livestock, charismatic wildlife 

species, and humans (Packer et al. 2005; Dickman 2015), which often leads to the 

retaliatory killing of carnivores (McManus et al. 2015). Yet large carnivores are often 

flagship species for many of the world’s ecosystems (Ripple et al. 2014), and play 

essential roles in regulating numerous ecosystem processes, from controlling prey 

populations (Ripple et al. 2014) and suppressing smaller carnivores (Berger et al. 

2008), to reducing parasite loads in humans (Harris & Dunn 2010) and promoting 

seed dispersal (Sarasola et al. 2016). 

 

The contribution of large carnivores to human well-being in shared landscapes has 

received little attention. Along with the growth of human populations in many 

developing nations, there have been concomitant increases in the populations of 

“pests”, such as stray dogs, in both urban and agricultural landscapes (Hughes & 

Macdonald 2013). We estimated the ecosystem service value of a small population 

of ~35 leopards (Panthera pardus; Surve et al. 2015) that feed on stray dogs. This 

population of leopards lives in and around the 104-km2 Sanjay Gandhi National Park 

(SGNP), which borders the city of Mumbai, India, currently ranked as the sixth 

largest urban agglomeration in the world (UN 2015a). Mumbai is home to an 

estimated 96,000 stray dogs (Hiby 2014), which regularly attack people (Harris 2012) 

and whose primary predator is the leopard (Hayward et al. 2006). The leopards of 

Mumbai are a striking example of humans and large carnivores living in close 

proximity, and of how a large carnivore may benefit humans through their regulation 

of stray dog populations. 

 

Leopards living on an urban edge 

Approximately 35 mature leopards live in SGNP and the adjoining Aarey Milk 

Colony, a suburb of Mumbai (Figure 5.1; Surve et al. 2015). Sanjay Gandhi National 

Park is a nationally designated protected area characterized by moist deciduous 

forest, whereas Aarey, a former dairy colony connected to the southwest corner of 

SGNP, consists of a 16-km2 matrix of pastures, forest patches, and human 

settlements (Figure 5.2). The park is slowly being encroached upon by some of the 

largest slums in Mumbai, and at present approximately 250,000 people are 
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estimated to live within just 500 m of the park’s borders (K Tiwari pers comm; Prasad 

& Tiwari 2009), with an additional 100,000 people living in and around Aarey (P 

Variyar pers comm; Appendix 5). 

 

Figure 5.1. Leopards in Mumbai’s Sanjay Gandhi National Park (SGNP) regularly 

leave the confines of the park to hunt stray dogs. (a) An adult female near an 

apartment block bordering the park’s eastern edge; (b) a female at a Muslim sacred 

site overlooking the city of Mumbai; (c) a young leopard walking through a village in 

the Aarey Milk Colony; and (d) a young leopard at a construction site in an informal 

settlement. 
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Figure 5.2. Map of the 104-km2 SGNP and 16-km2 Aarey Milk Colony on the 

southwest side of the park. The hatched area represents a 500-m buffer zone from 

the forest edge (buffer area = 43 km2) where leopards predate on stray dogs and 

where an estimated 350,000 people live, mostly in informal settlements. 
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Mumbai is home to one of the largest populations of stray dogs in the world (an 

estimated 96,000 animals), which roam freely throughout both urban and rural slums 

(Hiby 2014). This abundance of stray dogs arises as a result of human tolerance and 

the hundreds of tons of uncollected refuse and carrion that accumulate within slums 

(Prasad & Tiwari 2009), exacerbated by the catastrophic decline in carrion-eating 

vulture populations over the past 20 years due to the widespread use of diclofenac, 

an anti-inflammatory drug, to treat cattle (Markandya et al. 2008). 

 

Leopard impacts on stray dog populations 

Dogs have been the primary prey source for leopards in SGNP over the past 15 

years (Edgaonkar & Chellam 2002; Prasad & Tiwari 2009; Surve et al. 2015). Dog 

biomass represents approximately 42% (range 25–58%; Edgaonkar & Chellam 

2002; Surve et al. 2015) of the diet of leopards inhabiting this area. Assuming a 

leopard daily food intake of 4.7 kg (Odden & Wegge 2009), and given that 17.1 kg of 

an average dog can be consumed (assuming 95% of the carcass is eaten; Stander 

et al. 1997; Athreya et al. 2016), a population of 35 leopards will kill about 1500 dogs 

per year (range 878–2036, depending on diet range) in and around SGNP (see 

Appendix 5 for a detailed explanation). 

 

Few dogs, if any, live within the interior of SGNP itself (Surve et al. 2015), which may 

suggest behaviorally mediated distribution effects by leopards or a paucity of 

resources for the dogs (Butler et al. 2004). We assumed that leopard activity in 

urban areas is concentrated within 500 m of the forest edge, based on expert opinion 

and 10 sightings of leopards outside the park (see Appendix 5 for details). This 500-

m strip around the park covers an area of 43 km2 and, given a mean dog population 

density of 17.3 ± 0.3 dogs km–2 (Surve et al. 2015), we infer that this region could 

contain 730–760 dogs, or about half the number of dogs the leopards consume. This 

difference between the number of dogs on the periphery of the park and the number 

of dogs consumed by leopards in the same area suggests that dogs disperse into 

this low-density area from surrounding neighborhoods and are subsequently preyed 

upon. 
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The value of leopard predation in combating the stray dog problem can be assessed 

in comparison with the local government’s ongoing dog sterilization program, which 

is conducted at a cost of US$11.90 per dog (www.wsdindia.org). If the total number 

of dogs that leopards consume in this system (ie ~1500 individuals) is multiplied by 

the cost of sterilizing each dog (US$11.90), then predation by leopards is arguably 

worth about US$18,000 in saved sterilization costs, equivalent to ~8% of Mumbai’s 

existing annual sterilization budget (US$208,000; Correspondent 2015). 

 

Dog impacts on human populations 

Although rabies transmitted by stray dogs are responsible for the deaths of over 

20,000 people in India per year (Biswas 2016), it is illegal to kill stray dogs (Section 

428 of the Indian Penal Code, 1860, and The Prevention of the Cruelty of Animals 

Act, 1960), so Mumbai citizens often carry rocks and bamboo rods to fend them off 

(Harris 2012). Stray dogs are the primary source of rabies transmission to humans 

(Knobel et al. 2005), and an average of 74,603 bite cases have been reported per 

year among a human population of 21 million people in Mumbai (2011–2015 5-year 

mean; Table 1 of Appendix 5). For Mumbai’s 96,000 stray dogs, this corresponds to 

0.78 bites per dog per year, or 3.6 bites per 1000 people per year. This is likely a 

conservative estimate, however, as disease incidents are greatly underreported in 

developing areas; for example, Singh et al. (2006) estimated that leishmaniasis was 

underreported by a factor of 8.13 in Bihar, India, and even in the US state of 

Pennsylvania, dog bites were greatly underreported in 1980 (Beck & Jones 1985). 

 

As stray dogs gravitate toward the resources available in and around slums, their 

populations often overlap with those of humans, and thus dog bites and rabies 

transmission disproportionately affect the poorest members of society (Acosta-

Jamett et al. 2010; Gogtay et al. 2014). Although rabies vaccinations and post-

exposure treatments are subsidized by some hospitals (Gogtay et al. 2014), they 

cost on average US$33.75 (range US$26–42; Table 2 of Appendix 5), which 

represents a substantial expenditure for the majority of bite victims, who typically live 

below the poverty line. On average, people living on the periphery of SGNP earn just 

US$0.75–1.50 per day (CPDR 2000).  

 



 

70 

 

Leopards may benefit human health and dog management 

The statistics noted above can be used to estimate the reduction in exposure to dog 

bites for the 350,000 people living within leopards range (ie the 500-m buffer), as 

compared to typical exposure for those living elsewhere in the city. The estimated 

dog density in the park periphery (17.3 km–2) is 40 times lower than densities in four 

urban slums located deeper within the city (a dog density of 688 dogs km–2 is found 

2.5–13.6 km [mean = 7.4 km] from the park boundary; Hiby 2014) and nearly 10 

times lower than the citywide average (96,000 dogs in 603 km2 = ~160 dogs km–2). 

Assuming that bite rates will be roughly proportional to both dog density and human 

population, we estimated that people living immediately adjacent to the park 

experience about 10 times fewer dog-bite incidents than is typical for the city. At an 

average bite rate of about 3.6 bites per 1000 citizens for the city as a whole 

(approximately 74,603 bitten out of a total population of 21 million), a region of 

350,000 people would expect to see around 1200 bite incidents per year. However, 

because the dog density near the park is just 11% of the average density for the city, 

people living immediately alongside SGNP may experience just 11% of the number 

of bites, or perhaps fewer than 140 bites in total annually. In other words, leopard 

predation may prevent over 1000 bites per year in this region. 

 

If leopards were absent from the park, then the surrounding dog population would 

increase not merely to the average value but to match the many hundreds of dogs 

per square kilometer that are found in other slums, suggesting that the benefit 

derived from the presence of these large carnivores is even greater than it would 

initially appear. We used a simple Lotka-Volterra predator–prey model to explore the 

potential increase in stray dog numbers and subsequent attacks on humans per year 

around the park in the absence of leopards (Figure 5.3). We assumed that the stray 

dog carrying capacity is equivalent to the highest documented dog density in the 

region (688 dogs km–2), and that if leopards were removed from the system, then 

dog densities would increase to carrying capacity. We estimated the dog population 

growth rate (r) – based on the assumption that leopards are holding the dog 

population around the park at its current density – using the equation r = (p/N0)/(1 – 

N0/K), where p is the number of dogs predated by leopards per year, N0 is the 

current number of dogs within the leopards’ range, and K is the carrying capacity.  
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Under this scenario, the increase in dog numbers resulting from the absence of 

leopards could lead to increases in dog bites of humans from under 140 to over 5000 

per year (Figure 5.3a). Given that >78% of dog bites in Mumbai require medical 

treatment and 2.14% require treatment with immunoglobulin (ie bites that pose a risk 

of rabies exposure; Gogtay et al. 2014), it follows that nearly 4000 medical 

treatments and 90 lives may be saved each year by leopards limiting the expansion 

of the dog population in this region. Under the worst-case scenario, medical 

treatment costs in this area could reach as high as ~US$200,000 per year (Figure 

5.3b). This estimate is based on an average treatment cost of US$33.75 per person, 

350,000 people, and a bite rate of 3.6 bites per 1000 people that increases to 15.5 

bites per 1000 people as a result of the dog density rising from 160 to 688 dogs km–

2, and assuming that every bite victim requires post-exposure treatment. 

 

With both human and dog populations likely to increase over the coming decades, 

the value of retaining the leopards in SGNP may become even greater than these 

estimates indicate. Mumbai’s human population is projected to double by 2050 (to 

42.4 million people; Hoornweg & Pope 2014), and if accompanied by a doubling of 

the dog population, epidemiological theory would predict that the number of dog 

bites to humans, along with the associated costs to human health and livelihoods, 

would increase a further fourfold (Figure 5.3b). 
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Figure 5.3. (a) Projected dog bites per year and dog sterilization costs, along with 

(b) bite treatment costs and potential additional human lives lost if leopards were 

removed from SGNP. 

 

Although our estimates are based on known leopard diet and dog densities within 

and around SGNP, there remains substantial uncertainty about the valuation of this 

ecosystem service. For example, we assumed that dogs continue to predominate in 

the leopards’ diet; however, large carnivore diets are variable across space and time 

(Johnson et al. 1993). Moreover, only approximate estimates of dog bite rates on 

humans (Sharma et al. 2016) and the human population size for the area around the 

park are available. Recent research on bite rates from stray dogs in Delhi, India, 

revealed an annual per capita bite rate of 0.025, which is considerably higher than 

our estimate of 0.0034 bites person–1 year–1 (Sharma et al. 2016). We also assumed 

that dog bite rates were consistent across the region, reflecting the findings of 
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Sharma et al. (2016), who determined that bite rates were similar across urban 

areas.  

 

Regarding leopard spatial dynamics, local knowledge and newspaper reports led us 

to conclude that leopards frequently roam in and around a 500-m buffer zone 

bordering SGNP, but there are no published data detailing leopard movements in 

this area. Overall, it is unclear whether our work over- or underestimates the value of 

services provided by leopards in this system. Further research on the interactions 

among leopards, dogs, and people will improve the accuracy of these estimates and 

the areal extent over which they occur, but our analysis indicates the value of these 

services to be substantial. However, linking leopard predation of dogs to human well-

being also requires careful assessment of the costs of leopards as well, including 

mental health effects (such as the stress and fear associated with living in such close 

proximity to an apex predator) that could offset any indirect benefits of leopard 

presence. 

 

Human–wildlife conflict and the future of leopards in Mumbai 

The negative impacts of leopards on humans around SGNP have been managed 

and largely mitigated, with leopard attacks in Mumbai dropping substantially (to one 

or two cases per year) following the abandonment of leopard translocation programs 

in 2003, and the development and implementation of dedicated environmental 

awareness and “best practice” campaigns directed toward people entering the forest. 

As of 2015, there had not been a single human death from leopards in Mumbai since 

October 2013 (Surve et al. 2015). By comparison, attacks on humans by leopards 

peaked at 25 incidents in 2002 (Athreya et al. 2011). Previous attacks were largely 

attributed to intraspecific conflict caused by translocations of foreign “problem 

leopards” to the park by local Forest Department personnel (Athreya et al. 2011; 

Bhatia et al. 2013). In March 2017, however, a leopard attacked a child in the Aarey 

Milk Colony near SGNP (Alok 2017). This attack, in combination with other reports of 

attacks on humans by neighboring leopard populations, will likely increase fear and 

stress levels among the local residents. The negative impacts of leopards also reach 

far beyond direct human injury and death, and include depredating both livestock 
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and domestic pets in areas around the park, and reducing the abundance of 

bushmeat species that are valued by local people (Inskip & Zimmermann 2009). 

 

Conservation of leopards in Mumbai will therefore be a challenge in the future. With 

urban Mumbai expected to grow 26% by 2020 (Moghadam & Helbich 2013), the 

slums will likely further encroach upon forested areas and the leopard habitat they 

provide (Figure 5.2). Furthermore, SGNP and the adjoining Aarey Milk Colony are 

under constant threat from development, and the recent approval of the Metro III 

train car shed project in the Aarey colony is likely to lead to the clearing of large 

swaths of leopard habitat. 

 

Global impacts of large carnivores in urban environments 

Nineteen other studies across Africa and Asia have shown that leopards prey on 

stray dogs (Butler et al. 2013), suggesting that our results are not isolated and that 

leopards may benefit humans more broadly across their range. More generally, 

these benefits may be realized in shared landscapes where wildlife frequently prey 

upon stray dogs. This may be limited to areas where stray dogs and felids (eg. 

Jaguars Panthera onca) still occur. Dog attacks on humans have a wide range of 

consequences above and beyond direct injury, including time off work or even job 

loss, lost wages, medical expenses, and reduced ability to care for dependents 

(Knobel et al. 2005; Gogtay et al. 2014). In many countries, dogs are infected with 

rabies, which can be fatal to humans and livestock if post-exposure treatment is not 

administered quickly (Gogtay et al. 2014). Unfortunately, high densities of people 

and stray dogs often occur in the poorest communities, such as slums, where dog 

attacks can have the most severe impacts (Gogtay et al. 2014). As populations of 

large felids are threatened and declining in many areas (Ripple et al. 2014, 2017; 

Jacobson et al. 2016), there is a risk that the benefits of their regulatory effects on 

dog populations will be reduced or lost, further exacerbating the impacts of stray 

dogs on local human populations (Treves & Bonacic 2016). 

 

Large carnivores are valued for their ecological roles in regulating trophic levels and 

habitat structure in protected areas (Fortin et al. 2005; Ripple & Beschta 2012b). 

However, less is understood about the role of carnivores as ecosystem service 



 

75 

 

providers in shared landscapes. Previous research has established that European 

jackals (Canis aureus moreoticus), a subspecies of the golden jackal (Canis aureus), 

and spotted hyenas (Crocuta crocuta) reduce organic waste by scavenging in urban 

areas of Serbia and Ethiopia, respectively (Yirga et al. 2015; Ćirović et al. 2016). In 

addition, Gilbert et al. (2016) postulated that indirect benefits to humans (eg reduced 

loss of life and injury, lower rates of property damage) would result from the re-

colonization of North America by cougars (Puma concolor) via reductions in vehicle 

collisions with prey species as a result of lower prey densities. Further research is 

needed to better quantify the full range of social, economic, and ecological impacts 

of carnivores in shared landscapes. 

 

Wildlife attacks on humans, which are often featured in and sensationalized by the 

media (Bhatia et al. 2013), may result in risk-averse management strategies at local 

scales; for example, the Government of Western Australia initiated a shark-culling 

program as a direct result of media coverage of shark attacks (McCagh et al. 2015). 

It is critical that such attacks from carnivores, though tragic, do not prompt ill-

considered and reactionary management responses, such as local eradication 

programs, because there is little or no evidence that such programs are effective and 

in fact they may even be counterproductive (McCagh et al. 2015). It is essential that 

the reduction in attacks on humans achieved through carnivore eradication be 

weighed against the potentially much greater number of lives saved, among other 

benefits, by the presence of these carnivores. 

 

The long-term survival of carnivores in shared landscapes requires the effective 

management of human–carnivore conflict. Whereas the negative effects of 

carnivores have been well documented in the scientific literature (Inskip and 

Zimmerman 2009) and in the popular media (Bhatia et al. 2013; McCagh et al. 

2015), the benefits provided by carnivores to human well-being and ecosystem 

services have not (eg Jacobson et al. 2012). Tolerance of large carnivores and their 

acceptance by humans (Bruskotter & Fulton 2012) are more likely to occur if the 

benefits of the species are understood (Bruskotter & Wilson 2014). Experimental 

studies have shown that the perceived benefit of the presence of large predators and 

scavengers by local societies is a predictor of tolerance levels (Bruskotter & Fulton 
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2012; Bruskotter & Wilson 2014). For example, Egyptian vultures (Neophron 

percnopterus), populations of which are declining globally, thrive in the towns and 

villages of Socotra, Yemen, an archipelago of four islands, because of local 

recognition of the valuable livestock and human waste processing services they 

provide. These services are otherwise lacking in this area (Gangoso et al. 2013). 

Tolerance of large carnivores is also highly dependent on social factors, such as 

whether or not a neighbor tolerates the species (Treves and Bruskotter 2014). 

 

Education and communication initiatives are important components of programs 

geared toward improving tolerance. For example, Slagle et al. (2013) found that 

people were more tolerant of black bears (Ursus americanus) when given 

information describing the benefits of the presence of bears. In this regard, the 

popular media may be an important avenue for communicating carnivore benefits. 

For instance, Bhatia et al. (2013) found that mass media focused on human–

carnivore conflicts in India, were willing to correct erroneous perceptions, and in 

some areas even helped to facilitate proper management and mitigation. Research 

into the ecosystem services associated with wildlife must be actively communicated 

in order to establish a more balanced perspective on the value of wildlife to the 

general public. The continued persistence of carnivores in shared landscapes is 

contingent upon identifying ways to mitigate detrimental impacts while 

simultaneously recognizing and facilitating the benefits provided by these species. 
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CHAPTER 6 Large carnivores provide co-benefits to 

agricultural systems 

 

Christopher J. O’Bryan, Michael C. Runge, Javiera Paz Jara-Diaz, Jim Hone, 

Alexander R. Braczkowski, Eve McDonald-Madden, Matthew Holden 

 

Abstract 

Large carnivores are often perceived as a purveyor of misfortune in shared 

landscapes. Yet the loss of large carnivores has a deleterious impact on ecosystems 

that can in turn affect human societies. Here we provide two case studies on the 

beneficial consequences of restoring large carnivores using a predictive model. We 

show that through their successful expansion, large carnivores can reduce damage 

to agricultural lands by decreasing invasive wild pig densities. We find that 

restoration of the Florida panther (Puma concolor coryi) could save 20% of 

agricultural land from pig destruction (at least $10.5 million USD in equivalent yield 

value of crops and beef production after accounting for livestock loss to predation). 

Contrastingly, we find that panther extinction would result in $3.2 million USD loss in 

equivalent market value. Similarly, the restoration of dingo (Canis lupus dingo) in 

New South Wales and Victoria, Australia could save 6% of agricultural land 

amounting to $3.1 million USD in otherwise lost crops and beef production. If 

dingoes are fully excluded in these states, then $7 million USD market value could 

be lost to wild pig damage. While our analysis provides an initial assessment of the 

ecosystem services of large carnivore restoration to agricultural systems, there is 

much opportunity to explore the many socioeconomic services that carnivores can 

provide in shared landscapes, providing crucial tools for conservation practitioners, 

decision scientists, and policy makers.  
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Introduction 

The global decline of large carnivores has resulted in a suite of deleterious effects on 

ecosystems (Estes et al. 2011; Ripple & Beschta 2012b; Ripple et al. 2014). Their 

loss can result in increased mesopredator and prey abundances that can alter 

ecosystem structure. This is because large carnivores have a top-down effect on 

species through direct predation, changes in habitat use, and decreased foraging 

time (Laundré et al. 2001; Sinclair et al. 2003; Winnie & Creel 2017). Not only can 

the loss of large carnivores result in ecosystem change, but the increase in certain 

prey species has been shown to impact human well-being, ranging from increased 

vehicle collisions (Côté et al. 2004) and disease risk (Levi et al. 2016), to amplified 

competition with livestock (Prowse et al. 2015) and destruction of agricultural lands 

(Barrios-Garcia & Ballari 2012). The destruction of agricultural lands by 

overabundant prey species has led to significant costs to farmers through the 

reduction in crops or destruction of soil in areas where large carnivores have 

declined (Schley & Roper 2003; Barrios-Garcia & Ballari 2012; Bankovich et al. 

2016; Gren et al. 2019). The recovery and expansion of large carnivores may reduce 

overabundant prey species known to cause damage in agricultural lands – providing 

a crucial ecosystem service. However, little work has explored the potential of large 

carnivores at mitigating this damage and the ensuing savings to agricultural lands. 

 

One of the most widespread non-native prey species, invasive wild pigs (Sus scrofa) 

(hereafter wild pig; Keiter et al. 2016), has been shown to cause significant damage 

to agricultural productivity, indeed in the United States over $1.5 billion USD annually 

is lost (Pimental 2007) from the destruction of crops and reduction of forage grasses 

for cattle (Barrios-Garcia & Ballari 2012). In one state in the United States alone, 

Florida, millions of dollars in damage to agriculture is caused by wild pigs (Bankovich 

et al. 2016). In Australia, wild pigs were deemed a pest as early as 1795 due to their 

destruction of agricultural lands (Bengsen et al. 2014). Such destruction still occurs 

today, with estimates that wild pigs can consume greater than 60% of their dietary 

biomass from agricultural products, as highlight by a study in northern Queensland 

(Gentle et al. 2015). Such consumption has amounted to greater than 9 million AUD 

in damages to lamb, wool, and grain production throughout Australia (Gong et al. 

2009) with some estimates of damage and mitigation costs at greater than 106 
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million AUD per year (McLeod 2004). Wild pig populations are predicted to rise 

globally (Lewis et al. 2019). In Florida the population could potentially grow to 

upwards of 1 million individuals if all quality habitat is utilized by wild pigs (Lewis et 

al. 2019). It is recognised in Australia that a similar broadening of the wild pig 

distribution across the continent is likely without control (Long 2003; Bengsen et al. 

2014). Unfettered increases in wild pig populations are likely to bring with them 

important economic implications for agriculture. To avert this, management actions 

are likely to be required (Lewis et al. 2017, 2019), and may be actively informed 

through an understanding of the impacts of native predators on invasive wild pig 

populations.  

 

Here we provide two case studies of the benefits and costs of recovery and 

expansion of large carnivores at reducing wild pig abundance, and the potential 

ecosystem services this has on agricultural lands while accounting for potential 

depredations of livestock. We assess two iconic large carnivore species, with 

contrasting conservation status, the Florida panther (Puma concolor coryi) and the 

dingo (Canus lupus dingo) in Australia. 

 

Case study introduction: The role of Florida panthers (Puma concolor) at 

reducing agricultural damage 

The Florida panther (also referred to as panther and puma) is the only native 

predator of invasive wild pigs within the state, comprising nearly half of their diet 

(Maehr et al. 1990; Caudill et al. 2019). Panthers are a federally endangered 

species, and the last remaining puma species in the eastern United States (Johnson 

et al. 2010). Having lost 95% of their historic range, panthers are restricted to South 

Florida (Figure 6.1), with a total population estimated to be under 150 individuals 

(Gross 2005; McClintock et al. 2015). The initial cause of the decline of panthers 

stems from the early 1900’s when panthers were still hunted (Fergus & Chuck 1991). 

Hunting pressure (outlawed in 1967), compounded with severe habitat loss and 

fragmentation due to land conversion for agriculture and urban development, spelled 

the demise for the species, and panthers nearly went extinct by the end of the 20th 

Century (Fergus & Chuck 1991). As a result of the isolation of the population in south 

Florida, the population has experienced severe threats ranging from genetic 
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malformations (Johnson et al. 2010), vehicle collisions due to increasing road 

development (McClintock et al. 2015), and increasing deaths from intraspecific 

aggression due to shrinking territories (Maehr et al. 1991).  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Florida panthers (Puma concolor coryii) have lost 95% of their historic 

distribution, and their core breeding population is restricted to South Florida (USFWS 

2008). 

 

Recovery of the Florida panther requires the protection and expansion of large 

swaths of habitat (Saremi et al. 2019) in the central and northern part of the state, 

where the population can expand through natural dispersal or through reintroduction 

schemes (USFWS 2008; Frakes et al. 2015). Current habitat connectivity initiatives 

are underway that address multi-species objectives, such as the Florida Wildlife 

Corridor (hereafter referred to as ‘FWC’; Figure 6.2A; see: 

http://floridawildlifecorridor.org). However, over 41% of the corridor is unprotected 

land (Figure 6.2B; see Appendix 6) and as such is susceptible to numerous threats, 

for example, impending road development (Main 2019), suggesting unparalleled 

importance of private lands for the expansion of the species (Kreye & Pienaar 2015; 

Frakes et al. 2015). Indeed, Florida panthers have been utilizing habitats (including 

private lands) north of the core breeding range (albeit a limited number of dispersing 

males), into existing and proposed Florida Fish and Wildlife Conservation 

Commission areas (FWC ; Figure 6.2A). This indicates the importance of retaining 

existing habitat within the FWC, and safeguarding lands that are critical links 

http://floridawildlifecorridor.org/
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between intact habitats (Figure 6.2B; Fergus & Chuck 1991; Team 2008; Johnson et 

al. 2010; Onorato et al. 2011; Frakes et al. 2015; Kreye & Pienaar 2015; Criffield et 

al. 2018). 

 

Due to the current and potential expansion of Florida panthers within private and 

public lands north of their core breeding range, there is a growing concern from 

landowners, particularly the agricultural community, including concerns around 

increased risks of attacks on humans, pets, and livestock (Jacobson et al. 2012; 

Langin & Jacobson 2012; Kreye et al. 2017; Rodgers & Pienaar 2018). Such 

concerns on the perceived consequences of panther expansion can inhibit land 

connectivity and habitat recovery schemes that require community support (Madden 

2008). However, the potential positive consequences of Florida panther conservation 

and subsequent expansion have not been quantified, including their effects on 

invasive wild pig densities and ensuing agricultural savings.  

 

We assess the current agricultural benefits (land area and subsequent yield savings) 

of Florida panther predation on wild pigs, and examine their additional benefits if the 

population undergoes an expansion, assuming the successful expansion of the 

species through the FWC, which would connect the core panther breeding range in 

South Florida with that of habitats throughout the state (Figure 6.2A). We assess the 

relative impacts of the Florida panther on wild pigs and agricultural land savings for 

the current distribution of panthers, the distribution of the species under population 

expansion assuming protection and restoration of the FWC and its critical links (see 

gaps in Figure 6.2B), and a scenario where panthers go extinct. We hypothesize that 

invasive wild pig density is reduced as a function of Florida panther presence in the 

landscape with an associated savings in agricultural land from invasive wild pig 

damage. Our results will provide information on the potential consequences of 

Florida panther expansion on invasive wild pig and agricultural lands, and will 

represent a framework for future studies investigating the consequences of large 

carnivore recovery and expansion.  
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Figure 6.2. Panel A) shows Florida panther telemetry locations (red dots; for the 

years 1981-2018; Florida Fish and Wildlife Conservation Commission) on lands 

north of the core breeding range of the species (black outline), and this expansion is 

within the extent of the proposed Florida Wildlife Corridor (green polygon). However, 

panel B) shows the extensive gaps of formal protection (black polygons) within the 

proposed Florida Wildlife Corridor (green polygon), and a large portion of the 

panther’s core breeding range (red polygon) is in unprotected land. 

 

Case study introduction: The role of dingoes (Canis lupus dingo) at reducing 

agricultural damage  

The dingo (also referred to as wild dog depending on the region and genetic purity; 

Stephens et al. 2015) is the only non-human mammalian predator of wild pigs 

remaining in Australia, with pigs comprising 3-29% frequency occurrence in their diet 

(Newsome et al. 1983; Corbett 1995; Forsyth et al. 2019). Dingoes have variable 

effects on wild pig populations (Forsyth et al. 2019). Some studies suggest that the 

dingo has minimal influence on pig numbers (Corbett 1995), while others propose 

that dingoes play a regulatory role (Woodall 1983; Saunders 1993) through the 

consumption of young pigs (less than  6 months-old) (Corbett 1995) and potentially 

through their behavioural modification (e.g. creating a ‘landscape of fear’; Ritchie & 

Johnson 2009). Nevertheless, the highest recorded densities of wild pigs in Australia 

have been in areas absent of dingoes (Bryant et al. 1984; Saunders & Bryant 1988 
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as cited in Forsyth et al. 2019), suggesting a need for further research on the effects 

of dingoes on pig density and abundance.  

 

The dingo was likely introduced to Australia around 3,500-4,000 years ago (Milham 

& Thompson 1976) and is controversially considered a native Australian mammal 

today (Fleming et al. 2001). Dingoes are widespread throughout most of Australia 

(Figure 6.3) that is to the north and west of the barrier fence (Fleming et al. 2001). 

The barrier fence (also referred to as dog fence or dog-proof fence) was built during 

the 1880’s and runs for about 5,600 km from Fowlers Bay in South Australia to 

south-eastern Queensland to keep dingoes out of sheep and cattle rangelands 

(Fleming et al. 2001). Indeed, dingoes prey on cattle, sheep, and other livestock, 

which has resulted in retaliatory lethal control (Fleming & Korn 1989) and exclusion 

(Fleming et al. 2001; West 2008). However, a growing number of studies suggest 

that dingoes have a suppressive effect on native kangaroo and other herbivore 

populations that compete with livestock (see review of studies in Letnic et al. 2012). 

This reduction in native herbivores by dingoes can benefit livestock productivity 

(even when accounting for depredations) (Prowse et al. 2015) as long as dingoes 

have a healthy pack structure (Glen et al. 2007; Johnson & Wallach 2016). As such, 

there is considerable dialogue on the value of restoring dingo populations where they 

have declined (Dickman et al. 2009; Ritchie et al. 2012; Newsome et al. 2015). 

However, no studies have investigated how restoring dingoes in areas where they 

are absent south of the barrier fence will affect the predicted densities of wild pigs 

and how the reduction of pig densities by dingoes will affect agricultural lands.  
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Figure 6.3. Distribution of the dingo (Canis lupus dingo) throughout Australia. Map 

adapted from West (2008). Note the dingo fence is an approximation as there is not 

an accessible geospatial layer. 

 

We investigate the benefits of dingo to agricultural lands through their predation of 

wild pigs, and we assess their additional benefits if the population is restored in 

areas south of the barrier fence in New South Wales and Victoria, Australia 

(Appendix 6 Figure 2). As such, we examine the impacts of dingoes within their 

current distribution in these states, their distribution under expansion (assuming the 

barrier fence is removed and/or dingo lethal control is halted), and a scenario where 

dingoes are excluded or culled from the region. This work will aid current and future 

dialogue associated with expanding dingo populations and will provide additional 

data surrounding the effects that dingoes may have on wild pig populations and 

agricultural commodities at a regional scale.  

 

  

Dingo fence 
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Methods 

Identifying large carnivore distribution and expansion areas 

We identify existing extent of occurrence for both the Florida panther and the dingo 

using published data on individual locations (in the case of panthers) and estimates 

of distributions (in the case of dingoes). We then determine the potential 

expansion/recovery areas based on species habitat preferences (for both species) 

and proposed corridor conservation (in the case of panthers).  

 

We determine the Florida panther’s existing extent of occurrence as the minimum 

convex polygon (MCP) of known panther locations from 1981-2018 (Florida Fish and 

Wildlife Conservation Commission 2019; Figure 6.2A), a common approach used by 

the IUCN (Joppa et al. 2016b). We identify the panther core breeding range as the 

MCP of all telemetry locations south of the Caloosahatchee River following previous 

work (Fergus & Chuck 1991; Onorato et al. 2011; Frakes et al. 2015). We consider 

the area north of the breeding range as the primary expansion zone (Appendix 6 

Figure 1), which is where dispersing males and a single gravid female have 

expanded their range. Areas north of the primary expansion zone are considered the 

secondary and panhandle expansion zones (Appendix 6 Figure 1), which have no 

known panthers, and are within the proposed Florida Wildlife Corridor (Figure 6.2A; 

see: http://floridawildlifecorridor.org). All expansion zones north of the breeding 

range represent key opportunity areas for continued population expansion of the 

species (Maehr et al. 2002; USFWS 2008). We assume panthers use all forest 

patches and habitat within 1 km distance of a given forest patch, as Florida panthers 

have been shown to utilize these habitats for dispersal and hunting (see Onorato et 

al. 2011). We identify this 1km distance from forest patches as the predation buffer, 

as panthers are known to prefer hunting along forest edges (Onorato et al. 2011). 

We delineate forest patches using known upland forests from the Florida Department 

of Environment Protection’s state-wide land use and land cover dataset (FDEP 

2019). We use the resultant predation buffer for quantifying the effects of puma on 

invasive wild pigs.   

 

Since the dingo/wild dog distribution covers the majority of the Australian continent, 

we only assess areas south of the barrier fence where dingoes (and wild dog/dingo 

http://floridawildlifecorridor.org/
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hybrids; Cairns et al. 2019) are of occasional occurrence or are absent, particularly 

within the states of New South Wales, Victoria, and South Australia (Fleming et al. 

2001; West 2008; Figure 6.3), and delineate their existing extent of occurrence 

based on West (2008). Unlike the Florida panther distribution, we assume dingoes 

utilize all habitat types within the study region given they have been shown to not 

use habitat types disproportionate to their availability (Edwards et al. 2002; but see 

Newsome et al. 2013). 

 

Quantifying invasive wild pig densities  

We model predicted pig densities in the absence of human management based on 

biotic and abiotic variables known to explain wild pig densities globally, including 

large carnivore presence (Lewis et al. 2017; see Appendix 6 Table 1 for a list of 

variables, sources, and parameter estimates). We adopt the parameter estimates 

from Lewis and colleagues’ (2017) based on their multiple linear regression analysis 

to predict pig densities at a 1km2 resolution; however, we use state-level data on 

agricultural lands (FDEP 2019 for Florida and Geoscience Australia’s dynamic land 

cover dataset for Australia; Lymburner et al. 2011). For Florida, USA and New South 

Wales and Victory, Australia, wild pigs are estimated to be widespread (Hernández 

et al. 2018; see Appendix 6 Figure 2 for known distribution of wild pigs in Australia 

vs. the study region).  

 

We assess the impacts of panthers and dingoes on wild pig densities using the wild 

pig density model above (i.e. as the variable for large carnivores in the model; see 

Appendix 6). We modify the large carnivore variable depending on the conservation 

scenario per pixel (e.g. the pixels where large carnivores are present get a “1” vs. not 

present a “0”). We also provide an estimate of the number of individual pigs likely 

killed by panthers per year in Appendix 6 as supplementary information.  

 

Quantifying invasive wild pig damage on agricultural lands 

To identify agricultural areas susceptible to wild pig damage, we mask wild pig 

densities to agriculture-buffered forest patches. This is because the presence and 

probability of invasive wild pig damage to agricultural lands has been found to be 

highest near woody edges where they have significant cover (Meriggi & Sacchi 
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2001; Calenge et al. 2004; Thurfjell et al. 2009; Amici et al. 2012; Morelle & Lejeune 

2015). We identify all upland wooded patches that are adjoining agricultural lands 

using state-wide land cover data (FDEP 2019 for Florida and Geoscience Australia’s 

dynamic land cover dataset for Australia; Lymburner et al. 2011). We only include 

agricultural lands adjoining forest patches that are within 1 km from a forest edge to 

determine the relative area of agricultural land susceptible to invasive wild pig 

damage (Calenge et al. 2004; Thurfjell et al. 2009), which matches the resolution of 

the predicted densities. We then calculate the proportion of that agricultural land 

area vulnerable to predicted wild pig densities, assuming that the relationship 

between wild pig density and soil damage is a positively curved relationship as 

described by Hone (2006, 2012). See Appendix 6 for a detailed description of the pig 

density-disturbance relationship.  

 

Quantifying the economic value of invasive wild pig damage to agricultural lands 

We determine the value of wild pig damage to croplands using average yearly 

market rates per unit area. For Florida, we use the average yearly market rates (for 

2018) per acre for three agricultural land cover classes: row crops, field crops, and 

hay crops from the USDA National Agricultural Statistics Service (USDA 2018).  For 

Australia, we obtained data on the average yearly market rate (for 2017) for irrigated 

and rainfed crops from the Australian Bureau of Agricultural and Resource 

Economics and Sciences (ABARES 2017). We convert the values of each crop type 

to km2.  

 

To estimate the economic loss from wild pig destruction of livestock pasture, we 

modified a simple economic model from Bankovich et al. (2016; originally modified 

from Ferrell et al. 2006), which assesses calf weight, produced under stocking 

densities per unit area. We assumed that the amount of pasture is directly related to 

the ability of a unit area to produce beef and that any loss in pasture area would 

result in similar loss to beef production (Bankovich et al. 2016). We also modify the 

model by incorporating loss of calves from predation. We define the model as: 

 

𝐶 =
𝑊 ∗ 𝐶𝑊 ∗ 𝑘

𝑅
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Where C is calf kilograms produced per hectare (ha) per year, W is the weaning 

proportion of cows (we used 0.75 to reflect the Florida average [Bankovich et al. 

2016] and 0.76 to reflect the Australia average [ABS 2013]). CW is the average calf 

weight (249.5 kg; Bankovich et al. 2016); k is the proportion of unit area not rooted 

and R is the stocking rate (one cow-calf pair per 1.2 ha for Florida [Bankovich et al. 

2016] and one cow-calf pair 1.6 ha  for Australia [Blackwood et al. 2006]). The value 

of calf weight was determined at current market rates (~3.84 USD/kg for Australia 

and ~5.68 USD/kg for Florida).  

 

To assess the costs of large carnivores, we consider the potential proportion of calf 

production lost to predation, and assume that the calf mortality is directly proportional 

to the loss in equivalent calf weight per unit area. We assume that 5.3% of calf 

production is lost to panther depredations in Florida based on panther calf loss from 

two commercial cattle farms in southwest Florida (Jacobs et al. 2015). This offtake 

percentage is reflected in recent diet estimates from panther necropsy and scat 

contents (Caudill et al. 2019). Calf depredations from dingoes are less clear, some 

studies suggest that the variation in dingo depredation vs. natural mortality is 

negligible, while others estimate calf losses from dingoes reach 30% (Glen et al. 

2007). We set our estimate of calf production loss due to dingoes at 30%, but we 

recognize the suite of diet studies that suggest consumption of livestock is lower 

(Newsome et al. 1983; Thomson 1992; Glen et al. 2007; Allen et al. 2012). For both 

case studies, we provide estimates of damage saved to pastureland in both the 

presence and absence of large carnivore livestock predation.  

 

Results: Florida panther case study  

Considering predicted wild pig numbers in Florida if panthers go extinct, we find they 

would be 0.3% higher overall than current numbers (5.9% higher within the FWC, 

from 200,861 to 212,711 individuals), with density estimates remaining the same on 

average (at 2.9 pigs km-2). This increase in pig numbers corresponds to a 6.9% 

increase (10.7 km2) in damaged agricultural land within the FWC (Figure 6.4A; 144.1 

km2 vs. 154.8 km2), according to our pig density-soil disturbance model (Appendix 6 

Table 3). This increase in damage to agricultural land translates to nearly $700,000 

USD loss in market value for crops (about $10.5 million USD damage under status 
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quo vs. $11.2 million USD damage under panther extinction; Appendix 6 Table 4). 

For pastureland, this amounts to nearly $2.5 million USD loss in equivalent beef 

production after accounting for depredations (Appendix 6 Table 5), which amounts to 

$3.2 million USD lost across all assessed agricultural types (Figure 6.4B).  

 

When assessing the predicted number of wild pigs under successful panther 

expansion (i.e. panther extent of occurrence encompassing the FWC in addition to 

their core breeding range; Figure 6.4A), we find that predicted wild pig numbers drop 

by 22.5% throughout Florida relative to the current numbers (42% reduction within 

the FWC, from 200,861 to 116,439 individuals). The concomitant density estimates 

slightly drop from 2.9 to 2.2 pigs km-2 on average throughout the state. Considering 

this change in pig density in terms of reduced soil disturbance throughout Florida, we 

find that 216 km2 of equivalent land could be saved from wild pig rooting. Regarding 

destruction of agricultural lands within the FWC, this decrease in pig densities means 

a 19.8% reduction (28.5 km2; Appendix 6 Table 3) in damaged land (115.6 km2) from 

pig rooting, which translates to about $2.2 million USD in equivalent market value 

savings for a subset of crops (approx. $8.3 million vs. $10.5 million USD in damage; 

Appendix 6 Table 4) and $8.2 million USD for beef production (Appendix 6 Table 5). 

This amounts to a total market value savings of $10.4 million USD for the assessed 

agricultural types (Figure 6.4B). Under a situation where panthers do not kill any 

calves, then the total market value savings across all agricultural would be $10.5 

million USD. 
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Figure 6.4. Damaged area from invasive wild pigs for the top six agricultural land 

cover types as a function of Florida panther conservation scenarios (Panel A). As 

conservation intensity increases, there is a concomitant decline in wild pig damage 

to agricultural lands. With full panther expansion, for example, there is a 19.8% 

decrease in damaged agricultural land. This decrease in damaged agricultural land 

could result in $10.5 million USD potential savings to crops and beef production if 

panthers achieve full expansion; whereas if they go extinct, there will be a loss of 

$3.2 million USD (Panel B).  

 

Results: Dingo case study  

Regarding predicted wild pig numbers in agricultural lands of NSW and Victoria, 

Australia under full dingo exclusion, we find that wild pigs would be 19.7% higher 

(from 572,962 to 713,053 individuals), according to our predicted pig density model. 

The predicted pig density estimates would increase from 2.3 pigs km-2 under the 

status quo to 2.9 pigs km-2 under full exclusion. This increase in pig densities 

corresponds to a 9.7% increase (62.9 km2) in damaged agricultural land (Figure 
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6.5A; 587.7 km2 vs 650.5 km2; Appendix 6 Table 6) according to our pig density-soil 

disturbance model. This increase in pig disturbance translates to over $5 million 

USD in market value loss for crops (about $47.3 million USD damage under status 

quo vs. $52.4 million USD damage under dingo exclusion; Appendix 6 Table 7). For 

pastureland, this amounts to nearly $2 million USD loss in equivalent beef production 

after accounting for dingo offtake (Appendix 6 Table 8), which totals greater than $7 

million USD in losses across all assessed agricultural lands (Figure 6.1B).  

 

Considering the predicted number of wild pigs under successful dingo restoration 

(i.e. the dingo distribution encompassing all NSW and VIC), we find that their 

numbers drop by 10.9% compared to the dingo exclusion scenario (from nearly 

572,962 to 510,301 individuals). The corresponding density estimates drop from 2.3 

to 2.1 pigs km-2 on average. This reduction in pig densities results in 6.1% less 

damage to agricultural land (Figure 6.5A) from pig disturbance (35.7 km2 saved; 

Appendix 6 Table 6), which translates to around $2.9 million USD in equivalent 

market value savings for crops (approx. $44.5 million USD damage under dingo 

expansion vs. $47.3 million USD damage under status quo; Appendix 6 Table 7). 

This also means a savings in beef calf production of $0.2 million USD, with a total 

savings across all agricultural lands assessed being $3.1 million USD (Figure 6.5B). 

If dingoes do not kill any calves, then the total savings would be about $4.1 million 

USD. 
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Figure 6.5. Damaged area from invasive wild pigs for the top agricultural land cover 

types as a function of dingo conservation scenarios (Panel A). As conservation 

intensity increases, there is a concomitant decline in wild pig damage to agricultural 

lands. With full dingo expansion throughout NSW and VIC, for example, there is a 

6.1% decrease in damaged agricultural land. This decrease in damaged agricultural 

land results in nearly $3.1 million USD potential savings across all agricultural lands 

assessed if dingoes achieve full expansion; whereas if they are fully excluded there 

will be a potential loss of $7 million USD (Panel B).  

 

Discussion 

We show that the successful conservation of two large carnivore species can have 

substantial net economic benefit by reducing wild pig densities in and around 

agricultural lands. We find that large carnivore restoration could potentially save 

$10.5 million USD (in Florida) and $3.1 million USD (in Australia) in crops and beef 

production that would otherwise be lost from unmitigated wild pig soil disturbance. 

Given the widespread distribution of invasive ungulates, other large carnivores are 

likely providing similar ecosystem services to agricultural systems around the world. 
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Estimation of such socio-ecological cascades may provide an opportunity for 

presenting additional consequences and predictions of large carnivore recovery to 

stakeholders and engage communities in their conservation. 

 

The socio-economic benefits and costs of large carnivore restoration extend well 

beyond their value to crops. Similar benefits may be seen in the reduction of disease 

transmission and risk of predation by pigs on livestock (e.g. lambs; Barrios-Garcia & 

Ballari 2012). The reduction of pigs may also reduce vehicle damage and human 

deaths related to collisions (Beasley et al. 2013). There may also be co-benefits to 

ecosystems as wild pigs have been linked to greater than 30% of assessed IUCN 

species’ declines (Gurevitch & Padilla 2004), and may present additional risk to 

already threatened species (McClure et al. 2018). While our paper focuses on one 

ecosystem service provided by large carnivores, there may be many co-benefits that 

have otherwise not been realized, and we urge future research to consider ancillary 

benefits when assessing the consequences of large carnivore recovery.  

 

While this work builds our understanding of the impacts of large carnivores on 

agricultural output it is subject to a number of caveats related to system complexity. 

Predators often have numerous prey species beyond wild pigs many of which are 

known to damage agricultural commodities (e.g. deer in Florida [Garrison & Gedir 

2006] and kangaroos in Australia [Prowse et al. 2015]). In this study we focus on wild 

pigs as a widespread, highly abundant prey species, however the inclusion of more 

prey species (e.g. deer and kangaroos) would be important to reflect further 

cascading implications of predator population increases. This would also help inform 

how natural prey-density affects livestock killing. To assess the potential impacts of 

pigs in the future it was essential to use the best available information on predicted 

pig densities. In Florida these predictions are based on the assumption that pigs will 

utilize all available habitat within the study area; while this may not be the case there 

is some evidence that near full expansion via human-assisted translocation is 

possible (Hernández et al. 2018). In addition, our predicted pig density model does 

not take into account species-specific predation pressures of panthers and dingoes 

on pigs, or of other protector species (e.g. guardian dogs). It is likely that panthers 

consume more pigs on average than dingoes based on published diet estimates 
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(Newsome et al. 1983; Maehr et al. 1990; Corbett 1995; Caudill et al. 2019); 

however, dingoes exhibit pack-style predation tactics similar to wolves, which may 

result in pigs being excluded from areas where dingoes are present (Fleming et al. 

2001; West 2008). As such, future work should incorporate population and predator-

prey dynamics.  

 

To calculate the economic impacts of wild pigs and net benefits of predators a 

number of assumptions were required. For example, our calculation of savings on 

agricultural commodities assumes that all pasturelands are being used by cattle at 

the specified stocking rate, but the stocking rate may fluctuate depending on whether 

the pasture is improved versus unimproved, and depending on the breed of cattle. 

Further there may be other livestock species using the pastureland, such as sheep 

and goats, which we do not account for in our study. While we considered damage 

across all agricultural land, accurate crop data for market valuation are limited to a 

subset of irrigated and/or rainfed crops in both case studies, suggesting a potential 

underestimate of savings. To ensure we captured the net economic outcomes it was 

essential to measure the depredation of livestock by both predator species, a factor 

also of key concern to landholders. For simplicity we assumed fixed depredations in 

both case studies, however in reality these values are likely to change depending on 

a number of factors, for example pack dynamics for dingoes (Forsyth et al. 2019) 

and the proximity of cattle from forest edges for panthers (Jacobs et al. 2015). There 

is also opportunity for implementing additional costs and benefits ranging from 

tourism and hunting (of wild pigs) value to wild fire risk, hydrological impacts, and 

restoration costs associated with large carnivore recovery. Based on the above there 

is great potential for improvement in future work to not only account for the potential 

benefits in more detail, such as quantifying the economic savings across all 

agricultural types, but also accounting for the variability of potential loss (in the case 

of livestock), or the perceived fear of having an apex predator in the landscape 

(Lucherini & Merino 2008).  

 

Large carnivores are declining due to human conflict (Ripple et al. 2014) driven by a 

strong public perception that they are detrimental to humans (Treves & Karanth 

2003; Hazzah 2006; Inskip & Zimmermann 2009). Our work could be harnessed to 
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enhance the plight of carnivores by articulating their services to society from an 

economic and human well-being perspective. As such, the recovery and expansion 

of large carnivores will require a balance of perceived costs and benefits to human 

communities, both in losses to their livelihoods (e.g. livestock predation; Inskip & 

Zimmermann 2009) and threat to human life (Hunter et al. 2007; McCagh et al. 

2015), and benefits such as the reduction of negative impacts of overabundant non-

native prey.  
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CHAPTER 7 Global soil carbon storage compromised by a 

widespread invasive species 

 

Christopher J. O’Bryan, Violeta M. Berdejo-Espinola, Jim Hone, Jesse S. Lewis, 

Nicholas R. Patton, Derek R. Risch, Matthew H. Holden, Eve McDonald-Madden 

 

Abstract 

Global climate commitments require member nations to account for carbon loss 

(UNFCCC 2019). Carbon loss can occur through the disruption of soil, the largest 

pool of stored carbon (Carvalhais et al. 2014). Invasive wild pigs (Sus scrofa), one of 

the most widespread non-native vertebrates, excavate soil for feeding (Ballari & 

Barrios-García 2014); however, the global extent of wild pig damage on soil and 

resultant carbon vulnerability are unknown. Here we show that over one metric 

gigatonne of soil organic carbon storage is vulnerable to wild pig densities in their 

current distribution, which is 40% higher than the world’s yearly airline travel, with a 

potential of nearly four gigatonnes if they continue to expand. Our work suggests that 

managing wild pig densities can reduce vulnerability of soil carbon to emissions. For 

countries committed to global climate agreements, unmanaged wild pig densities can 

compromise a substantial portion of their carbon pledges. Our work provides a first 

assessment of global soil organic carbon storage at risk from a widespread invasive 

vertebrate and provides information on the consequences of invasive species 

management on global climate commitments.  
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Main 

A reduction of human-induced carbon emissions is critical for mitigating the negative 

effects of climate change (UNFCCC 2019). The importance of this reduction is 

recognized through binding international regulations and agreements (Savaresi 

2016; UNFCCC 2019). One of the factors contributing to carbon emissions is the 

disruption of soil, the largest pool of carbon on land (Lal 2004; Carvalhais et al. 

2014). The most recognized human activity leading to soil disruption is agricultural 

production (Amundson et al. 2015) where the tillage of soil affects its physical, 

chemical, and biological properties (Doran 1980; Lal 2004), releasing considerably 

higher rates of carbon compared to untilled soils (Reicosky 1997; Welander 2000; 

Haddaway et al. 2017). Soil disruption associated with agriculture and other human 

development activities (e.g. urbanization Amundson et al. 2015) has dominated the 

focus of the soil carbon literature; however, there may be unexplored avenues to 

reduce impacts on soil organic carbon stocks.  

 

Invasive wild pigs (Sus scrofa)(hereafter referred to as wild pigs) are the most 

widespread and abundant human-spread mammal globally and are ecosystem 

engineers, causing soil disturbance via digging for belowground plant parts, fungi, 

and invertebrates (Barrios-Garcia & Ballari 2012) (Figure 7.1). Wild pigs are also 

currently expanding their non-native range, leading to not only a current large 

potential for soil damage (Mohr et al. 2005; Risch et al. 2010; Macci et al. 2012; 

Bueno et al. 2013a; Bueno & Jiménez 2014), but a looming unrecognized source of 

global soil carbon emissions (Mohr et al. 2005; Risch et al. 2010; Macci et al. 2012). 

In this paper, we present the first attempt to assess and quantify the potential 

implications of wild pigs on global soil carbon using a spatially explicit model 

capturing the most current data on predicted global pig distributions (Lewis et al. 

2017) and soil carbon storage (Hengl et al. 2017) (see Methods). The outcomes of 

our model provide an estimation of soil organic carbon (SOC) storage that is 

vulnerable to emissions from wild pig soil disturbance (i.e. the proportion of SOC 
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storage that has the potential to be emitted from soil disturbance) in their current and 

potential distributions (Figure 7.2A).  

Figure 7.1. Invasive wild pigs (Sus scrofa) cause soil disturbance via digging for 

belowground plant parts, fungi, and invertebrates. Wild pigs are the most widespread 

and abundant human-spread mammal globally. Photo credit: Ben Teton (top left), 

Jesse Lewis (bottom left), and Derek Risch (right). 

 

We find that wild pigs are jeopardizing 1.07 (SE 0.37-3.42) metric gigatonnes (gt) of 

SOC across their current non-native distribution (Figure 7.2B) (mean 121.16, SE 

40.13-397.54 t SOC km-2). Assuming 30% of SOC is released in the form of CO2 

(similar to agriculture tillage) (Davidson & Ackerman 1993; Lal 2019), then that would 

result in 1.18 gt CO2 equivalent (CO2e), which is about 40% greater than the annual 

CO2 loss from all aviation travel globally (Sims et al. 2014) (Figure 7.2C). If we could 

reduce wild pigs worldwide by half, then we could save a concomitant third SOC (to 

0.80 gt CO2e). However, a targeted reduction of wild pig densities by three-quarters 

solely within the global hotspots of soil carbon vulnerability (i.e. areas greater than 

the global mean SOC) would save over 38% gt SOC (to 0.74 gt CO2e), which is 

nearly one-fifth the area of current wild pig distribution (10.8 million km2 vs. 50.4 

million km2). Reductions of wild pig density of such magnitude have been previously 
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reported (Hone 2012), which suggests that aggressive management within existing 

wild pig areas, especially areas of high vulnerability, is feasible and could have a 

significant impact on SOC storage similar to that of widespread reduction efforts 

(Figure 7.2B).  

 

Without concerted management there is significant likelihood that wild pigs could 

expand beyond their current distribution, a highlight in recent predictions of wild pig 

densities globally (Snow et al. 2017; Lewis et al. 2019). The impact on SOC storage 

that could result is likely substantial (Figure 7.2). For example, we find that when 

considering predicted wild pig densities outside of their current non-native 

distribution, vulnerable SOC goes up by 2.5 fold (to 3.81 gt, SE 1.40-11.35 gt) (mean 

94.44, SE 33.87-288.67 t SOC km-2; Figure 7.2B) with potential loss of CO2e at 4.20 

gt, which is nearly four times the average yearly emissions from soil cultivation in 

agricultural lands (Figure 7.2C) (FAO 2019).   

Figure 7.2. Global hotspots of vulnerable soil organic carbon (SOC) from invasive 

wild pig (Sus scrofa) soil disturbance across their current non-native distribution 

(hatched) and potential (colored, unhatched) non-native distribution (Panel A). Panel 

B shows the vulnerable SOC across their current and potential distributions, with 

estimates of vulnerable SOC under global wild pig reduction of 50% and targeted 

reduction of 75% within SOC hotspots (nearly one-fifth the area of current wild pig 
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distribution at 10.8 million km2 vs. 50.4 million km2). Panel C shows potential CO2e 

emissions from wild pig soil disturbance (assuming 30% loss; range 20-

40%(Davidson & Ackerman 1993; Lal 2019)) across their current and potential 

distributions. As a comparison, the blue horizontal dashed lines represent the global 

CO2e emissions from road travel (top line) and airline travel (bottom line) for the year 

2010 (Sims et al. 2014), and the average yearly CO2e emissions from the cultivation 

of soil from agriculture (FAO 2019) (middle line) for the years 1990-2017.  

 

Management and reduction of wild pigs could not only lead to a potential reduction in 

carbon emissions, but it may also result in co-benefits to sustainable development 

goals such as food security, economic development, and biodiversity protection (UN 

2015b). Wild pigs have been shown to damage important food crops and have 

indeed been shown to reduce agricultural yields (Barrios-Garcia & Ballari 2012; 

Gentle et al. 2015). For example, wild pig destruction of pasture forage causes a loss 

of 2 million USD in Florida (Bankovich et al. 2016) and at least $1.5 billion USD 

annually in damages and control costs alone (Pimental 2007). Such reductions are 

not only damaging from an economic perspective, but they may reduce our 

productive capacity for food consumption. Beyond agriculture, wild pigs have been 

shown to have dramatic impacts on terrestrial ecosystems. For instance, wild pigs 

are thought to have played a role in nearly 30% of assessed species being 

threatened (Gurevitch & Padilla 2004) and may pose additional threat to species 

already imperiled (McClure et al. 2018). More specifically, wild pigs have been 

shown to reduce populations of plants through their rooting behavior (Bankovich et 

al. 2016), consume eggs of and prey on endangered species, facilitate invasive plant 

spread, and spread emerging infectious diseases (Barrios-Garcia & Ballari 2012). 

Through their rooting behaviour, wild pigs can also cause erosion (Bruland et al. 

2010) that may exacerbate threats to food production (Pimentel & Burgess 2013) 

and biodiversity. While the aim of this paper is to capture the potential benefits of 

wild pig control on SOC and its release in the form of CO2, the impacts of wild pigs 

on human well-being and biodiversity show potential collateral benefits of their 

control that are relevant to the United Nations’ Sustainable Development Goals.  
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The results we present are subject to caveats. To explore the global perspective of 

the potential role of wild pigs in disturbing soil carbon storage we used a model of 

predicted wild pig density because global wild pig density data are unavailable. For 

the broad scale results presented here, this is unlikely to cause a major issue; 

however, such an approach should be used with caution to present results at a local 

scale. Further, we assume that soil disturbance results in carbon vulnerability. Soil 

disturbance by wild pigs may result in varying levels of carbon emissions, and our 

wild pig-soil disturbance model is parameterized from a long-term study in Australia 

(Hone 2002a, 2006, 2012) that does not necessarily reflect variation in ecosystems 

and climates that are present at a global scale. However, according to a global meta-

analysis on the effects of agricultural tillage on SOC storage, soil type and climate 

zone did not influence the effects of soil turnover on SOC at 0-15cm depth 

(Haddaway et al. 2017). We also do not consider potential emissions caused by 

managing wild pigs, such as the use of vehicles and other resources that emit 

carbon. As such, we urge future research to incorporate wild pig disturbance and 

revegetation parameters at more local scales in addition to the costs of wild pig 

management to prioritize actions for achieving lower carbon emissions.  

 

A fundamental goal of the United Nation’s Paris Agreement is for member countries 

to combat climate change through the reduction of carbon emissions (UNFCCC 

2019). Our results indicate that substantial amounts of SOC are vulnerable to wild 

pig soil disturbance across Earth, and this may result in loss of carbon storage that 

can compromise global climate commitments if not addressed. We hope this paper 

stimulates discussion on the potential role of controlling wild pigs at not only abating 

potential carbon emissions, but also spurring further research that looks at the local 

benefits to countries at tackling growing wild pig populations to reach their climate 

obligations – a research direction that could bring both reduced emissions and 

benefits to biodiversity and food security. 

 

Methods 

Analysis 

We determine the estimated relative proportion of soil that is vulnerable to wild pig 

disturbance based on the predicted density of wild pigs per 1 km2 pixel in the 
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absence of management. We calculate the area that is vulnerable to wild pig 

disturbance per pixel by assuming that the rate of change of undisturbed to disturbed 

soil is related to wild pig density and the area of undisturbed soil (Hone 2002a, 2006, 

2012) (Appendix 7 Figure 1). The calculation and subsequent wild pig-soil 

disturbance model can be found in the Supplementary Material. We parameterize 

our model from a long-term study of ground disturbance by wild pigs in Namadgi 

National Park, south-eastern Australia (Appendix 7 Table 1), the only known study 

that provides parameters suitable for our global analysis (Hone 2002a). We present 

results using these parameter estimates with their standard errors given in Appendix 

7. For this initial calculation, we assume that every 1 km2 pixel is available for wild 

pig disturbance (i.e. nothing impedes invasive wild pigs from rooting soil). We then 

multiply the subsequent proportion of soil disturbance per 1 km2 pixel with that of the 

SOC stock in the upper 15cm of soil depth for that pixel (see SOC data below), 

which results in the relative amount of SOC that is vulnerable to wild pig soil 

disturbance, reported in metric tonnes per pixel (1 km2) (Figure 7.3). For the SOC 

that is vulnerable to wild pig soil disturbance, we assume that the depth of 

disturbance is consistent across pixels. We then calculate a range of CO2 equivalent 

(CO2e) that could be emitted from the aforementioned soil disturbance based on 

previously reported estimates of carbon release from arable agriculture practices, a 

30% loss (range 20-40%) mostly occurring <1 year to 5 years since disturbance 

(Davidson & Ackerman 1993).  

 

We remove pixels that overlap with human built-up areas, including roadways, 

railways, paved areas, buildings, and urban parks, as these are areas where we 

assume invasive wild pigs cannot access soil. Water bodies were also excluded as a 

function of the soil carbon data. We then calculate the relative amount of SOC and 

carbon dioxide equivalent (see Appendix 7) that is vulnerable to wild pig soil 

disturbance across continents (excluding Antarctica) and countries using publicly 

available data on administrative areas (https://gadm.org/), which is presented in 

Appendix 7. Our methodological framework is illustrated in Figure 7.3.  

https://gadm.org/
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Figure 7.3. Methodological framework for determining the relative amount of SOC 

vulnerable to emissions by invasive wild pig (Sus scrofa) soil disturbance. We 

determine soil disturbance from wild pigs by employing an equation(Hone 2006) that 

uses the predicted wild pig density data for each 1 km2 pixel (A) to estimate the 

proportion of soil disturbed as a function of wild pig density within that pixel (B). We 

then multiply that proportion by the amount of SOC stock within that pixel (C) to 

produce the relative amount of SOC stock vulnerable to wild pig soil disturbance (D).  

 

Predicted wild pig density data 

Wild pigs are currently absent from broad extents where there is high quality wild pig 

habitat, yet there is great potential for their expansion (Snow et al. 2017; Lewis et al. 

2017, 2019). We use the most comprehensive spatial dataset on predicted wild pig 

densities (in the absence of pig management). Lewis and colleagues use known 

records of 129 wild pig densities across five continents to evaluate seven biotic and 

abiotic factors in predicting population density of wild pigs using generalized linear 

models and model selection techniques (see Lewis et al. 2017 Supplementary 
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Information). Specifically, they assess biotic factors such as large carnivore richness 

(predation risk) and vegetation structure, and abiotic factors such as potential 

evapotranspiration and precipitation at explaining wild pig density (Lewis et al. 2017). 

Because the predicted wild pig densities includes areas where they do not currently 

occur but have potential to occur at a global scale (Lewis et al. 2017) (Appendix 7 

Figure 2), we mask their native geographic range, which is derived from the IUCN 

(IUCN 2016). We resample (bilinear method) the predicted wild pig density data to 

reveal density at a 1 km2 resolution (World Mollweide projection), and we only 

consider predicted wild pig densities >0.5 pigs km-2 to eliminate unlikely pig locations 

(e.g. Siberia, the Australian outback, and the Sahara Desert; Appendix 7 Figure 2). 

For a portion of our analysis, we assess wild pig densities in currently known non-

native distributions that are derived from Lewis and colleagues (Lewis et al. 2017).  

 

Soil organic carbon data 

We use a global dataset on SOC stock at 0-15 cm depth reported in metric tonnes 

per hectare at a 250 m resolution (Hengl et al. 2017) (Appendix 7 Figure 3). We 

choose a depth of 0-15 cm as wild pigs have been shown to disturb soil at depths of 

10.7 cm on average (+/- 0.3 cm) (Bueno et al. 2013b; Bueno & Jiménez 2014) and 

have been suggested to disturb at depths ranging from 5-15 cm deep (Kotanen 

1995; Groot Bruinderink & Hazebroek 1996; Cushman et al. 2004). Hengl and 

colleagues (Hengl et al. 2017) predict global SOC based on approximately 150,000 

soil profiles and 158 remote sensing-based soil covariates using machine learning 

methods such as random forest, gradient boosting, and/or multinomial logistic 

regression (Hengl et al. 2017). We resample (bilinear method in a World Mollweide 

projection) the predicted SOC data to reveal SOC stock at a 1 km2 resolution and 

snap to the predicted wild pig density pixels, which allows for analyses on predicted 

SOC stock that is vulnerable to wild pig soil disturbance. We then multiply the 

resultant carbon value by 100 to get the amount of carbon in metric tonnes for each 

pixel.  

 

Built-up areas data 

We use data on built-up areas from Venter and colleagues’ updated human footprint 

dataset (Venter et al. 2016a) (Appendix 7 Figure 4), which is at a 1 km2 resolution 
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and represents 13.1 million km2 of Earth’s terrestrial surface. These built-up areas 

correspond to human infrastructure, including buildings, paved land, urban parks, 

roadways, and railways for the year 2009 (Venter et al. 2016a).  
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CHAPTER 8 Conclusion 

 

Overview 

The overall aim of this thesis was to address key knowledge gaps relevant to the 

exposure and contribution of predators and scavengers to humans (Chapter 1), 

including the ecological and human well-being consequences of predators and 

scavengers. I present a global analysis on the exposure of terrestrial vertebrates to 

cumulative intense human pressures (Chapter 2) with a focus on carnivores 

(Chapter 2, Box 1). These shared landscapes are the focal areas for questions 

regarding the role of carnivores at contributing to key ecological and human well-

being processes and outcomes. I produced a global review on the contribution of 

predators and scavengers to human health and well-being (Chapter 3). From the 

review, I identified key gaps in our knowledge on scavenger ecology. I provided a 

formal description of the mesoscavenger release hypothesis including two simple 

models to illustrate the dynamic effects of declining apex scavengers on carrion and 

mesoscavenger biomass (Chapter 4). By doing so, I filled a critical gap in our 

knowledge on scavenger trophic dynamics by presenting both empirical and 

theoretical evidence on the subject. This work also helped connect the dots between 

ecological and human health and well-being outcomes from losing apex scavengers. 

Another key gap identified in the review was that of services provided by large 

carnivores in human-dominated landscapes. One such service is that of their 

potential to reduce injury and disease risk, which became the impetus for a case 

study investigating the potential of leopards in Mumbai, India to reduce bites and 

rabies risk to humans by feral dogs (Chapter 5). The reduction of pest species by 

large carnivores can have far-reaching benefits beyond injury and disease risk – 

from an economic perspective they can support agricultural productivity. In Chapter 

6, I provided two case studies on the implications of conserving and restoring large 

carnivores in areas where they have declined, specifically investigating the net 

benefits they can provide to agriculture. I examine the role of Florida panther 

conservation in the United States, a critically endangered subspecies of mountain 

lion, and the dingo in Australia, at affecting invasive wild pig populations in a matrix 

of intact and agricultural land. I show that restoring these species in Florida and 

Australia may provide unique benefits to agricultural systems by reducing the 
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presence and abundance of wild pigs, and in turn reducing damage to agricultural 

lands where wild pigs are prevalent. In Chapter 7, I show that expanding wild pig 

populations can cause considerable damage beyond agriculture, to soil globally, 

resulting in emissions of soil organic carbon that are critical for abating climate 

change. I discuss the potential benefits of invasive wild pig control and the value of 

restoring native apex predators at mitigating pig damage. The results of these case 

studies provide crucial information for decision makers and conservation 

practitioners on the potential benefits that large carnivores have in human-dominated 

landscapes and thus are a novel tool to encourage landholder and community 

engagement in and support of their protection.   

 

Scientific advancements and conservation implications 

Faced with increasing evidence that human activities and land uses such as 

pastureland, urbanization, and over-exploitation threaten to drive thousands of 

species to decline, it is imperative to report these pressures within their geographic 

ranges globally. Previous efforts have been limited to a small number of species that 

have species-specific threat data (e.g. Allan et al. 2019; Appendix 1), which begs the 

question about how exposed are the 20,000+ terrestrial vertebrates that have limited 

data on pressures within their distributions? Recent work has attempted to address 

this question by assessing population trends as a function of land-use change (e.g. 

Santini et al. 2019) or by focusing on the extinction risk across changes in human 

footprint for a single taxonomic group (e.g. Di Marco et al. 2018); however these 

approaches require extensive analytical effort. To overcome this, I provided a simple 

methodological framework in Chapter 2 that can be used as an initial assessment 

for species exposure to threatening pressures at a fine resolution, which can be 

particularly helpful when resources are limited (Bland et al. 2015a, 2015b). I 

presented a global analysis of cumulative human pressure (at a 1 km2 resolution) 

across the ranges of 20,529 terrestrial vertebrate species. I use a threshold of the 

human footprint index that is linked to extinction risk (a value of 3; pressures roughly 

starting at pastureland) recently published by Di Marco and colleagues (2018). I 

found that over 85% (17,517) of assessed species are exposed to intense human 

pressures across >half of their range, and 3,328 species across their entire range. 

For carnivores, I found that they are exposed across 66% of their ranges on average 
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(Chapter 2, Box 1). As such, this chapter provides an easily replicable method for 

initial assessments of intense human pressures within species’ geographic ranges, 

and will guide future work on mapping species-specific threats. 

 

With these threatening processes comes a great potential for further range 

contractions and population declines of carnivores (Laliberte & Ripple 2004; Ripple 

et al. 2014; Di Minin et al. 2016; Jacobson et al. 2016; Tucker et al. 2018). Such 

declines can affect human health and well-being. While the concept of ‘ecosystem 

services’ (the aspects of ecosystems utilized [actively or passively] to produce 

human well-being; Fisher & Kerry Turner 2008; Fisher et al. 2009) has been around 

for decades (Daily 1997), there has been minimal effort to summarize the 

contemporary literature around the benefits provided by predators and scavengers. 

Reviews on the topic of predator and scavenger services to humans have primarily 

focused on one service by a single taxonomic group. For example, reviews have 

been limited to the benefits provided by insectivorous bats due to their consumption 

of pest insects that damage agricultural systems (thus saving pest control costs and 

increasing agricultural yield; Kunz et al. 2011) and the role of birds at consuming 

disease-carrying rodents and the potential human health implications (Donázar et al. 

2016). Similar syntheses have been done on vultures, assessing their human health 

effects by their reduction of carcasses and organic waste (Buechley & Şekercioğlu 

2016a; S̜ekercioğlu et al. 2016). In Chapter 3, I ameliorated this gap by publishing a 

review on the known benefits provided by both predators and scavengers in shared 

landscapes (O’Bryan et al. 2018). I demonstrated that some predators and 

scavengers are providing services in the form of zoonotic disease regulation, 

agricultural productivity, and reduction of species known to cause human injury and 

death. I postulated in my review that these services can be used as a springboard for 

conservation in areas where humans and carnivores cohabitate (Carter & Linnell 

2016). I suggest that through an inclusive process, decision makers can use this 

information to inform and elaborate conservation in contentious areas where 

predators and scavengers may have been originally persecuted for their perceived 

negative impacts.  
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During the review process presented in this thesis, I identified a number of gaps in 

our knowledge regarding the effects of losing apex scavengers. Although there is 

strong empirical and theoretical evidence surrounding the effects of losing apex 

predators on pest species and even food web structure, there is considerably less 

information on the role of apex scavengers. Buechley and Şekercioğlu (2016) touch 

on the concept of how vultures influence trophic structure in their global review. They 

discuss the consequences of losing these apex scavengers and the competitive 

release of smaller scavenger species, postulating that the phenomenon of 

mesopredator release can occur in similar function following vulture declines 

(Buechley & Şekercioğlu 2016b). There are a number of studies pointing to the rise 

of mesoscavengers, those scavengers that are less efficient at finding and 

consuming carrion compared to apex scavengers, when apex scavengers have 

declined or are absent from the system (Sebastián-González et al. 2013, 2016; 

Buechley & Şekercioğlu 2016a; S̜ekercioğlu et al. 2016; Morales-Reyes et al. 2017; 

Hill et al. 2018). However, no studies have thoroughly quantified and described 

trophic cascade theory in scavenger communities as has been done with predators 

(e.g. the mesopredator release hypothesis; Crooks & Soulé 1999). In Chapter 4, I 

described the mesoscavenger release hypothesis using both empirical and 

theoretical evidence (O’Bryan et al. 2019). I summarized our current knowledge base 

on apex scavengers competitively excluding mesoscavengers and provided two 

dynamic models of scavenger systems parameterized by studies on apex 

scavengers such as vultures in Spain and Tasmanian devils in Australia that are 

obligate and facultative apex scavenger species, respectively. This work will aid 

conservation efforts by providing a better understanding of the ecological impacts of 

losing apex scavengers. For example, as knowledge grew on the relative impacts of 

apex predators on mesopredators and ecosystem structure, efforts to ‘rewild’ parts of 

Europe and North America ensued, which has had substantial success (Ritchie et al. 

2012; Svenning et al. 2016; Lindsey et al. 2017). I argued that similar efforts could 

take place for scavengers in areas where apex scavengers are declining rapidly or 

have disappeared altogether. 

 

One of the gaps identified in the review was a lack of information on the role of large 

carnivores at mitigating direct human injury or death by consuming ‘problem’ 
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species. The only analytical study that has been recently published on the subject 

was by Gilbert and colleagues (2016), who posited that by re-establishing North 

American cougars in their native range in the eastern United States that there would 

be a concomitant decrease in the number of deer-vehicle collisions (through their 

reduction in deer densities). In an attempt to build the literature base on the subject, I 

presented a perspective and quantification of the potential role of leopards at saving 

human injury and death by reducing densities of feral dogs in Mumbai, India 

(Chapter 5; Braczkowski & O'Bryan et al. 2018). This project was unique in that it 

focused on a species and location associated with high human-carnivore conflict as 

dozens of leopard attacks are reported throughout India per year (Athreya et al. 

2011; Surve et al. 2015), presenting great opportunity for utilizing information on their 

services to reduce conflict and retaliatory killings (e.g. Carter & Linnell 2016; Skupien 

et al. 2016). 

 

Another gap identified in the review process was the lack of information on large 

carnivores at increasing agricultural yield through the reduction of crop pests. 

Indeed, there is no information on the benefits of restoring large carnivore 

populations in areas where they have declined or disappeared. Previous work has 

eluded to the role of carnivores at affecting agricultural yield, such as owls preying 

on rodents in California crops (Kross et al. 2016a), golden jackals consuming crop 

rodents in Serbia (Ćirović et al. 2016), and dingoes reducing competition between 

kangaroos and cattle (Prowse et al. 2015). However, these studies do not assess 

how multiple conservation scenarios will effect agricultural commodities. In Chapter 

6, I quantified the relative contribution of large carnivore species at increasing 

agricultural output under three scenarios: status quo, full carnivore expansion, and 

carnivore extinction/exclusion. I presented two case studies of the prospective value 

of conserving large carnivore species, one on the Florida panther in Florida, USA 

and the other on dingoes in Australia. I provided results of large carnivore presence 

at reducing the densities of invasive wild pigs and the resultant savings in agricultural 

products that would otherwise be destroyed from wild pigs. As such, this work is 

valuable for decision makers when assessing consequences of actions related to 

large carnivore recovery within a structured decision-making framework (Conroy & 

Peterson 2013). This work also aids in potentially reducing negative perceptions of 
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stakeholders (e.g. pastoralists) towards large carnivores that are thought to cause 

only negative effects on human societies (e.g. depredation of livestock and attacks 

on humans; Riley & Decker 2000; Conforti & de Azevedo 2003; Prokop & Usak 

2011; Muter et al. 2013; Suryawanshi et al. 2013; Morales-Reyes et al. 2018).  

 

The reduction in wild pig densities can also lessen greenhouse gas emissions. 

Although there is a strong body of literature documenting the detrimental effects of 

wild pigs on soil structure and its effects on ecosystems, such studies are limited to 

local scales (e.g. Ickes et al. 2001; Hone 2002; Mitchell et al. 2007; Risch et al. 

2010; Barrios-Garcia & Ballari 2012; Macci et al. 2012; Ballari & Barrios-García 

2014; Bueno & Jiménez 2014). Furthermore, few studies have quantified the role of 

pigs at disturbing soil carbon (Risch et al. 2010; Barrios-Garcia & Ballari 2012; Macci 

et al. 2012) and only one study on the direct effects of pigs on soil carbon emissions 

in the form of CO2 (Risch et al. 2010). The study by Risch and colleagues (2010) 

focused their analysis on one forested region in Switzerland and extrapolated their 

results across all of Switzerland without accounting for variation in organic soil 

carbon storage and invasive pig densities. To fill these gaps, I provided a 

quantification of potential soil damage by unmitigated wild pig populations around the 

world (Chapter 7), focusing my analysis on the role of this invasive ecosystem 

engineer at destroying soil through rooting and grubbing behaviour, and how this 

behaviour affects organic soil carbon storage. This study builds our knowledge on 

the effects of overabundant (and non-native) species, and points to the potential 

adverse impacts of losing apex predators that would otherwise reduce the density 

and abundance of these species. 

 

Research limitations and future research priorities 

Although this thesis provides a great deal of new information crucial for the 

conservation of carnivores in human-dominated landscapes, there are a number of 

caveats and priorities for future research. Below I highlight three overarching 

opportunities for improvement and subsequent research endeavours. 

 

Connecting human footprint and extinction: one threshold may not fit all taxa 
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In Chapter 2 I refer to intense human pressure as starting at pastureland, with a 

strict threshold of three or greater on the human footprint index (Venter et al. 2016a). 

However, the threshold of human footprint for mammals presented by Di Marco and 

colleagues (2018) may not apply across all taxonomic groups presented in my 

analysis, suggesting a need for future studies to investigate whether the same 

threshold applies across all vertebrate species classes and functional groups. 

Although there is strong evidence to suggest that land-clearing associated with 

agriculture and rangelands has detrimental effects on many species (Fleischner 

1994; Newbold et al. 2015a), there is also evidence that some species can survive in 

human-dominated landscapes and across varying levels of human pressure ranging 

from agricultural lands (Phalan et al. 2011; Homyack et al. 2014; O’Bryan et al. 

2016) to urban areas (Morey et al. 2007). A solution for quantifying human pressures 

more accurately across species ranges is to map the individual species-specific 

threats that are known to cause their decline. In Appendix 1, I assisted in an attempt 

to link the individual pressure layers from Venter and colleagues’ human footprint 

map with that of species for which those threats are known to cause their population 

decline (Allan et al. 2019). While this analysis was limited to threatened mammals, 

birds, and amphibians on the IUCN Red List (IUCN 2016), it suggests an avenue for  

future research that considers all species that have available data on threats (not just 

species listed as threatened, endangered, or critically endangered on the Red List).  

 

The complexity of species interactions 

Species interactions are incredibly complex – driven by countless biotic and abiotic 

factors that are difficult to capture in a modelling framework. For example, in 

Chapter 4, I modelled the effects of functional dominance by apex scavengers on 

mesoscavengers and carrion – I did not account for intraspecific behavioural 

modification of mesoscavengers on apex scavengers. Although rare, there are cases 

in the scavenger community where apex scavengers are excluded from carrion 

solely by mesoscavengers portraying physical dominance over a carcass (Butler & 

du Toit 2002). Similarly, in Chapter 5, leopards may alter the behaviour of feral dogs 

and thus exclude them from many areas surrounding the Sanjay Gandhi National 

Park without preying on them per se. There is a growing body of literature 

surrounding the concept of the “landscape of fear” as it pertains to predator-prey 
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dynamics and the ancillary effects that predators have on their prey (Suraci et al. 

2019) that I did not capture within my work. As such, there is opportunity for future 

work to consider additional behavioural effects such as how dominance influences 

feeding behaviour and how the fear of a predator affects prey resource use.  

 

Predators and scavengers may also fluctuate their feeding behaviour depending on 

food availability or other extraneous factors. In Chapters 4-6 I assume that 

facultative scavenger and predator diets mirror that of previous studies (Newsome et 

al. 1983; Maehr et al. 1990; Athreya et al. 2016; Caudill et al. 2019; Forsyth et al. 

2019), but diets are likely to shift and fluctuate through time and space (van Baalen 

et al. 2001). Although my approach is common practice for studies on predator-prey 

interactions, future work could incorporate prey-switching (such as a Holling’s Type 

III sigmoidal functional response; van Baalen et al. 2001).  

 

Uncertainty in distribution data 

The spatial information and distribution data used throughout the thesis is subject to 

caveats and improvements. For example, Chapter 2 was limited to the polygons 

provided by the IUCN spatial data repository, and does not necessarily represent the 

most accurate depiction of species’ distributions (e.g. some distributions are 

represented as area of occupancy, while others are represented as extent of 

occurrence depending on available locality information; Mace et al. 2008). While 

these data are the global standard for assessing species extinction risk their 

underlying limitations could affect the outcomes of the analysis of species in human-

dominated landscapes presented in Chapter 2. In Chapter 5, I used local 

knowledge and newspaper reports to conclude that leopards frequently roam in and 

around a 500-m buffer zone bordering the Sanjay Gandhi National Park, however 

specific data on the spatial movement pattern of leopards in this area are lacking. 

Overall, it is unclear whether this work over-or underestimates the value of services 

provided by leopards in this system. In Chapter 6, I assume that the Florida panther 

and the dingo distribute their populations evenly and at the same density during 

expansion; however, their consumption may be different since dingoes exhibit 

complex pack structure in some areas, consuming larger prey, and hunt solo in other 

areas, consuming smaller prey (Thomson 1992). Similarly, the Florida panther 
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population assessed may maintain their core breeding population and thus have 

limited expansion even if habitat connectivity were to be successful (Maehr et al. 

2002). Likewise, Chapters 6-7 are based on predicted wild pig densities/distributions 

that are subject to a number of assumptions. I adopt and modify the model published 

by Lewis and colleagues (2017) who predict pig densities using a series of biotic and 

abiotic variables, including large carnivore presence, at a 1km2 resolution, but many 

environmental processes that influence wild pig density occur at finer scales (Hone 

2002b; Thurfjell et al. 2009; Barrios-Garcia & Ballari 2012; Lopez et al. 2014). For 

instance, wild pigs have been shown to increase their rooting behaviour in Sweden 

and Australia as soil moisture increases (Welander 2000; Hone 2012) and as 

elevation increases (Hone 1988), but other studies have shown different patterns 

depending on season (e.g. Bowman & Mcdonough 1991). The uncertainty inherent 

the spatial data used throughout my work could be rectified with extensive studies to 

improve the data. However, first an assessment of the importance of variation in 

such data on the outcomes of my work should be implemented using sensitivity 

analysis. From a practical perspective improving spatial information is expensive and 

time consuming (McDonald-Madden et al. 2010). Future research could therefore be 

prioritised based on those uncertainties that if improved could inform better decision-

making with regard to predator conservation and management. To achieve this a 

focus on the value of information as it pertains to quantifying high-resolution species 

distributions could be of benefit and can be guided by recent work on Expected 

Value of Information Theory in ecology (e.g. Runge et al. 2011; Xiao et al. 2019). 

 

Concluding remarks 

This thesis showed that predators and scavengers have large portions of their range 

in human-dominated areas (Chapter 2, Box 1) and the loss of predators and 

scavengers may impact ecosystems that can affect human well-being in a number of 

ways (Chapter 5), including human health through the competitive exclusion 

(Chapter 4) and predation (Chapter 5) of species at lower trophic levels, agricultural 

productivity (Chapter 6), and greenhouse gas emissions (Chapter 7). Humans have 

been in direct conflict with predators and scavengers since we arrived on the 

landscape (Lee-Thorp et al. 2000), which has led to their unprecedented decline. 

Credible metrics on the role predators and scavengers play in both ecosystems and 
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human well-being are urgently needed. A shift from focusing only on mitigating 

negative perceptions of large carnivores to a more balanced approach of accounting 

for both their adverse and positive effects is a necessary step toward achieving their 

effective conservation in shared landscapes. While there are many examples of 

human societies coexisting with predators and scavengers, there is an overwhelming 

majority of societies that do not. I hope that this thesis provides a starting point for 

future research to delve deeper into the role carnivores have in shared landscapes 

and how conservationists and decision makers can use this information for 

maximizing coexistence.   
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Abstract 

Conserving threatened species requires identifying where across their range they 

are being impacted by threats, yet this remains unresolved across most of Earth. 

Here we present a global analysis of cumulative human impacts on threatened 

species by using a spatial framework that jointly considers the co-occurrence of eight 

threatening processes and the distribution of 5,457 terrestrial vertebrates. We show 

that impacts to species are widespread, occurring across 84% of Earth’s surface, 

and identify hotspots of impacted species richness, and coolspots of unimpacted 

species richness. Almost one quarter of assessed species are impacted across > 

90% of their distribution, and ~7% are impacted across their entire range. These 

results foreshadow localized extirpations, and potential extinctions, without 

conservation action. The spatial framework developed here offers a tool for defining 

strategies to directly mitigate the threats driving species declines, providing essential 

information for future national and global conservation agendas. 
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Introduction 

Human activities and land-uses are exerting unprecedented pressure on natural 

environments (Newbold et al. 2015b; Venter et al. 2016a), threatening to drive tens 

of thousands of species to extinction (IUCN 2016). The main drivers of species 

declines include the conversion of natural habitats for land-uses such as crops, 

pasture and infrastructure, and the overexploitation of species through activities such 

as hunting (IUCN 2016; Maxwell et al. 2016). The distribution of these activities 

varies across Earth’s terrestrial surface (Venter et al. 2016a), as do the distributions 

of the species they threaten (Jenkins et al. 2013). Understanding and quantifying 

spatial patterns of where human pressures overlap with sensitive species (i.e. 

mapping human impacts to threatened species) will improve our ability to prioritise 

actions to manage and mitigate human impacts on biodiversity (Wilson et al. 2006; 

Allan et al. 2013). Importantly, it will allow for the identification of areas across 

species distributions that are free from those threats which the species is sensitive 

to, and this information can be used to map global ‘coolspots’ of what we call ‘threat 

refugia’. Both forms of information are essential for conservation planning and can 

guide action towards securing these impact-free refugia, which are paramount for the 

survival of many threatened species (Hoffmann et al. 2010; Waldron et al. 2017; 

Watson et al. 2018a, 2018b).  

 

Mapping impacts to biodiversity requires linking spatial data on the distributions of 

threats, with the distributions of species known to be sensitive to those threats 

(Halpern et al. 2008). To date, no efforts undertaken at either regional (Woolmer et 

al. 2008; Halpern et al. 2009) or global extents (Sanderson et al. 2002; Vörösmarty 

et al. 2010; Geldmann et al. 2014; Venter et al. 2016a; Ramírez et al. 2017) have 

accounted for the distribution and sensitivity of species and their threats, and 

therefore do not directly map likely human impacts (Martins et al. 2012). Past efforts 

that simply map threats (Venter et al. 2016a) fail to account for the distribution of 

species that respond to those threats, and even overlapping threats with species 

ranges (Evans et al. 2011) does not account for the specific sensitivities of each 

species to co-occurring threats. Some efforts to map threats to the marine realm 

estimated their impacts at the coarse ecosystem scale but did not account for 

individual species sensitivities (Halpern et al. 2008, 2015). The few studies that do 
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account for species have either been conducted at fine spatial resolutions (Bellard et 

al. 2015) or consider a limited number of taxonomic groups (Maxwell et al. 2013; 

Shackelford et al. 2018), and many suffer from the assumption that species are 

exposed to threats across their entire range, not just where the threat occurs, 

overestimating impacts (Schipper et al. 2008; Evans et al. 2011; Moran & Kanemoto 

2017). Clearly our understanding of where individual species are being impacted by 

threats, or where their threat-free refugia are, remains limited at the global scale 

(Joppa et al. 2016a), and is a major gap in our ability to prioritize conservation 

actions (Tulloch et al. 2015b; Joppa et al. 2016a).  

 

Here, we present the first global assessment of the spatial distribution of human 

impacts on globally threatened and near threatened terrestrial birds, mammals and 

amphibians. We developed a novel method for quantifying and mapping human 

impacts that jointly considers the distributions of 5,457 threatened and near 

threatened species (1,277 mammals, 2120 birds, and 2060 amphibians), and the 

distribution of species-specific threats, and the extent to which the distribution of 

each species is impacted by relevant threats (Fig. 1).  

 

 

Fig. 1. Methodological framework for mapping cumulative human impacts on 

threatened vertebrate species. 
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Spatial data on threats was obtained from the recently updated Human Footprint 

(Venter et al. 2016a), which is unique for considering eight human pressures globally 

at a 1km2 resolution, including: built environments, crop lands, pasture lands, human 

population density, night lights, railways, major roadways and navigable waterways. 

This makes the Human Footprint the most complete and highest resolution globally 

consistent dataset of anthropogenic threats (McGowan 2016). Each individual 

pressure was linked to a species if they directly or indirectly correspond to threats 

identified by the IUCN Red List (IUCN 2016) as driving the endangerment of that 

species. The Human Footprint data correspond with seven major classes, and 15 

sub-classes of IUCN threats (Table 1; S1 Table). Although these do not include all 

threats to species, they do include all of the most prevalent drivers of global 

biodiversity decline (Maxwell et al. 2016). We calculated the proportion of each 

species range that is currently impacted by a threat, and then mapped cumulative 

human impacts in a 30 km x 30 km grid globally (see Methods). We also examined 

patterns of human impacts across individual species distributions, taxonomic groups 

and threat status categories. Finally, we used the inverse of our cumulative impact 

maps to identify threat refugia, the places where high numbers of threatened (and 

near threatened) species persist unimpacted by human activity.
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Table 1. Major classes and sub-classes of threats to biodiversity, as classified in the IUCN Red List of 

Threatened Species, and the corresponding spatially explicit pressure variable from the updated Human 

Footprint dataset. 

 

Major threat class (IUCN) Sub-class threats (IUCN) Pressure (Human Footprint) 

Species 

Impacted 

1. Residential & commercial 

development  

1.1 Housing & urban areas 
Electric infrastructure (nightlights) 

1748 
Built environments 

1.2 Commercial & industrial areas 
Electric infrastructure (nightlights) 

349 
Built environments 

2. Agriculture & aquaculture 

2.1 Annual and perennial non-timber 

crops Crop lands 
4017 

2.3 Livestock farming & ranching Pasture lands 1850 

4. Transportation & service 

corridors 

4.1 Roads & railroads 
Railways 

563 
Roads 

4.2 Utility &service lines Roads 88 

5. Biological resource use 

5.1 Hunting and collecting terrestrial 

animals 

Navigable waterways 

1594 Population density 

Roads 

5.2 Gathering terrestrial plants 

Navigable waterways 

149 Population density 

Roads 
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6. Human intrusions & 

disturbance 

6.1 Recreational activities* 
Electric infrastructure (nightlights)  

Population density 373 

6.3 Work & other activities 
Electric infrastructure (nightlights) 

196 
Population density 

8. Invasive & other 

problematic species, genes 

& diseases 

8.1 Invasive non-native / alien species / 

diseases 

Population density 

1319 

Roads 

9. Pollution 

9.1 Domestic and urban waste water 
Population density 

205 
Built environments 

9.3 Agriculture & forestry effluents Crop lands 805 

9.4 Garbage & solid waste Built environments 27 

9.6 Excess energy 
Electric infrastructure (nightlights) 

24 
Built environments 

*We excluded navigable waterways as these pressures are generally limited to aquatic-dwelling species by the IUCN, and our 

analysis focuses on terrestrial species. Additionally, we excluded roads as the pressures described by the IUCN for this category 

are generally limited to dirt roads, which are not represented in the human footprint.
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Results 2 

Human impacts on threatened vertebrate species 3 

We found that on average 38% of a species’ distribution range is impacted by one or 4 

more relevant threats (Table 2, S1 Data), including an average 21% of the 5 

distribution impacted by multiple co-occurring threats. Mammals are the most 6 

impacted of all taxa, with on average 52% of a species’ distribution impacted by 7 

relevant threats. Concerningly, almost one quarter of all species (23%, n=1237) are 8 

impacted by threats across >90% of their distribution, with 395 (7%) impacted by at 9 

least one relevant threat across their entire distribution. Conversely, we found that 10 

one third of all species (34%, n=1863) are not exposed to the threats we mapped 11 

across any portion of their distribution; however, this result should be interpreted 12 

within the context of threats we consider. We also found that the proportion of a 13 

species distribution impacted by threats correlates with its threat status (IUCN Red 14 

List categories; Fig. 2) (Analysis of variance P <0.001, F = 7.5). Species classified as 15 

critically endangered on the IUCN Red List had almost half their distribution 16 

impacted by threats on average (46%, n=851), whilst near threatened species had 17 

one third of their distribution impacted by threats on average (31%, n=1439). 18 
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 19 

Fig. 2. Mean proportion of species distributions impacted by threats across extinction 20 

risk categories of threatened and near threatened terrestrial vertebrates. Bars 21 

represent means with standard errors. The data underlying this figure are freely 22 

available (doi:10.1594/PANGAEA.897391). Species extinction risk assessed by the 23 

International Union for Conservation of Nature (IUCN 2016).   24 
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Table 2. The number (and percentage) of species and the proportion of their distribution impacted by threats. The most common 25 

category for each taxon is shown in bold. 26 

    Proportion of range impacted by threats 

  

Total number of 

species 0% 1-50%  50-90%  90-99%  100% Mean (%) 

Amphibians 2060 1082 (52.5%) 293 (14.2%) 301 (14.6%) 213 (10.3%) 171 (8.3%) 31.5 

Birds 2120 387 (18.3%) 911 (43%)  442 (20.8%) 292 (13.8%) 88 (4.2%) 37.2 

Mammals 1277 337 (26.4%) 259 (20.3%) 216 (16.9%) 354 (27.7) 111 (8.7%) 51.5 

Total 5457 1806 (33.1%) 1463 (26.8) 959 (17.6%) 859 (15.7%) 370 (6.8%) 38.4 

27 
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Global hotspots of human impact 

Human impacts on threatened vertebrates are widespread, extending across 84% of 

Earth’s terrestrial surface (S2 Table; S1 Fig; S2 Fig). There is strong spatial variation in 

the intensity of human impacts, with alarming peaks in Southeast Asia (Fig. 3). Hotspots 

of human impact differ spatially between taxa (S3 Fig), and as expected, are largely 

driven by patterns of threatened species richness (S4 Fig) and human pressure, 

although they are not congruent. 

 

Fig. 3. Cumulative human impacts on threatened and near threatened terrestrial 

vertebrates (n=5457). Legend indicates the number of species in a grid cell impacted by 

at least one threat. Maps use a 30x30 km grid and a Mollweide equal area projection. 

The data underlying this figure are freely available (doi:10.1594/PANGAEA.897391). 

 

The top five countries most impacted by anthropogenic threats to species are all found 

in Southeast Asia (S3 Table), which we confirm is overwhelmingly the dominant global 

hotspot of impacts to species (Sodhi et al. 2004). Malaysia has the highest average 
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human impact score (125 species impacted per grid cell), followed by Brunei and 

Singapore (124 and 112 species respectively). These scores are substantially higher 

than the global average of 15.6 species impacted per grid cell. Concerningly, there are 

13 grid cells (11,700km2) in Southeast Asia where >150 species are impacted by 

threats. 

 

When aggregated across biomes and ecoregions, which represent distinct 

biogeographic spatial units at the global scale (Olson et al. 2001) (S4 Table; S5 Table), 

the highest human impacts are in Mangroves, where on average 35 species are 

impacted per grid cell. Human impacts are also high throughout the tropical forests 

which harbour Earth’s richest biota, and are critically important for biodiversity 

conservation (Gibson et al. 2011). The Tropical and sub-tropical moist broadleaf forests 

in Southeast Brazil, Malaysia, and Indonesia are the second most impacted biome, 

followed by the tropical and subtropical dry broadleaf forests in India, Myanmar, and 

Thailand (35 and 34 species impacted per 900km2 grid cell).  

 

Global coolspots of threat refugia 

We mapped threat refugia for threatened vertebrates by combining the unimpacted 

parts of each species’ distribution. Less than half of Earth’s surface (43%) hosts at least 

one unimpacted threatened species, acting as a potential refugium for that species (Fig. 

4); however, impacted and unimpacted species co-occur across 28% of Earth’s surface, 

identifying places where species with divergent sensitives to threatening processes are 

present. There is strong spatial variation in the intensity of threat refugia for threatened 

species, and between coolspots for different taxa (S5 Fig). The Amazon rainforest is the 

overwhelmingly dominant global coolspot. Interestingly, threat refugia follow similar 

patterns to hotspots of impact in many places, including parts of East Africa, Southeast 

Asia, and the Amazon. Although counterintuitive, our results are driven by species 

richness and individual species different sensitivities to threats. Therefore, in species 

rich areas it is logical that many species will be impacted, whilst many others remain 

unimpacted. The highest average threat refugia score is in Liberia (23 species 

unimpacted per grid cell), but the highest score for an individual grid cell occurs in 
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Malaysia, where 87 species are unimpacted. Encouragingly, there are 12 grid cells 

(10,800km2) in Southeast Asia with  >60 unimpacted species, although this is primarily 

due to the large number of threatened species in the region.  

 

Fig. 4. Coolspots of refugia for threatened and near threatened terrestrial vertebrates 

(n=5457). Legend indicates the number of species that are not impacted by any threats 

in a grid cell. Maps use a 30x30 km grid and a Mollweide equal area projection. The 

data underlying this figure are freely available  (doi:10.1594/PANGAEA.897391). 

 

Other coolspots of threat refugia include Liberia in West Africa, The Albertine Rift Valley 

in East Africa, and Southern Myanmar. When aggregated across Biomes and 

ecoregions (S4 Table; S5 Table), the Tropical and sub-tropical moist broadleaf forests, 

and Tundra act as the greatest threat refugia supporting on average 5.2 and 2.5 

unimpacted species per grid cell respectively. The Tropical and sub-tropical moist 

broadleaf forests are also one of the most impacted biomes, demonstrating that despite 

this, there is still considerable conservation opportunity here. The Tundra is the only 

Biome where more species are unimpacted than impacted on average. 
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Proportion of species impacted 

Some areas of the planet contain low numbers of threatened species (e.g. the high 

latitudes, or arid and desert regions). Therefore, it is instructive to examine the 

corresponding proportions of impacted versus unimpacted species. On average there 

are more impacted than unimpacted species in a grid cell globally (15.6 versus 1.9; ratio 

8) (Fig. 5; S6 Fig). The proportion varies for taxonomic groups, with Amphibians having 

the highest ratio of impacted versus unimpacted species (2.3 versus 0.2; ratio 12.2), 

compared to birds and mammals (birds 10.5 versus 1.3; ratio 8.1 & mammals 5.4 

versus 0.7; ratio 7.8). 

 

 

Fig. 5. The percentage of species in a grid cell impacted by a threat (and inversely the 

number of unimpacted species for whom it is a refuge) for all taxa (n=5457). Maps use a 

30x30 km grid and a Mollweide equal area projection. The data underlying this figure 

are freely available (doi:10.1594/PANGAEA.897391). 

 

In our 30 km2 grid cells, the proportion of species impacted extends across the full 

range from 0 – 100%. We found that > 90% of species were impacted in 107,102 grid 
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cells globally, amounting to a staggering 96 million km2 (66.7% of Earth’s terrestrial 

area). Encouragingly, species are present but none are impacted in 23,865 grid cells 

(21.5 million km2; 14.8% of Earth’s terrestrial area). The majority of this is wilderness 

where no human pressures occur. However, we found 426 grid cells (383,400 km2; 

0.27% of terrestrial area) where a species and a human pressure co-occur, but there is 

no impact (i.e. none of the species present are sensitive to the human activity or land 

use occurring in that area).  

 

The distribution of areas with high proportions of impacted species is extensive and 

differs substantially from hotspots of human impact. Europe, North and Central America, 

and Africa now emerge as hotspots, particularly for mammals and amphibians. The 

proportion of birds impacted presents a more spatially homogenous pattern, with 

hotspots in Southeast Asia and the Southeast South America. When aggregated across 

biomes, Tropical and subtropical dry broadleaf forests  have the highest mean 

proportion of impacted species (98.3%), followed by Temperate grasslands savannas 

and shrublands (97.8%) (S4 Table). The Tundra and Boreal/taiga forests have the 

lowest mean proportions of impacted species (48.6% and 60.3% respectively). 

 

Discussion 

Implications for biodiversity conservation 

Our results represent the current best estimate of the spatial distribution of human 

impacts on terrestrial vertebrates. Continued extirpations, the precursors of extinction, 

will continue to occur in the impacted portions of species ranges, which our results 

demonstrate are substantial. Consequently, completely impacted species, or those 

persisting in threat refugia that are too small to support viable populations in the long 

term (Maron et al. 2012), likely face imminent extinction. These findings complement 

recent work showing that hundreds of mammals have lost considerable portions of their 

historic distributions (Ceballos et al. 2017), and that habitat fragmentation has greatly 

reduced the proportion of highly suitable habitat within species distributions, reducing 

their movements (Tucker et al. 2018), and increasing their extinction risk (Crooks et al. 

2017).  
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Although our results are concerning, there is room for hope. The threats we map can be 

mitigated by in situ conservation actions, but diverse approaches are required. To 

ensure the survival of highly impacted species with little or no threat refugia, active 

threat management, restoration and rewilding efforts (Ceaușu et al. 2015) are needed to 

open up enough viable habitat for species to persist. Conservation action in the 

hotspots of human impact we identify will have high benefits since they are areas with 

exceptionally high threatened species richness and species-specific threats (Myers et 

al. 2000). Our results therefore extend previous efforts to identify biodiversity hotspots 

(Myers et al. 2000), which were developed following somewhat similar logic, and have 

helped guide conservation action and millions of dollars of funding. The hotspots of 

human impact we identify are priorities for actions that mitigate the specific threats 

(Brooks et al. 2006). 

 

Rather than being purely reactive and focusing solely on securing a future for imperiled 

species in the short term, conservation efforts would also benefit from proactively 

securing coolspots of species refugia and avoiding any initial human impacts in these 

places (Betts et al. 2017). This will help ensure many species long term persistence, 

especially in a time of a rapid climate change, where areas free of threatening 

processes will be critical for species adaptation (Martin & Watson 2016; Scheffers et al. 

2016).  Securing refugia will be particularly effective if protection is targeted at the most 

species rich places that currently remain threat free but may soon be jeopardized 

(Margules & Pressey 2000; Venter et al. 2018). Additionally, conservation action is also 

likely to have a high chance of success in threat refugia and be more cost-effective 

(Balmford et al. 2003; Tulloch et al. 2015a). Proactive and reactive approaches to 

conservation have historically been pitted against each other (Kareiva & Marvier 2003), 

with reactive approaches deemed more urgent and taking precedence (Kareiva & 

Marvier 2003; Hoekstra et al. 2004; Pressey et al. 2017). However, our discovery of the 

spatial overlap existing between hotspots of impacted species richness and coolspots of 

unimpacted species richness provides opportunities for multi-faceted conservation 

action that is reactive for some species, while simultaneously being proactive for others.  



 

 

171 

 

 

The utility of our work extends beyond conservation, and can inform sustainable 

development planning. Conservation action within some the hotspots of impact we 

identified (especially in Southeast Asia) are likely to deliver synergistic benefits to other 

environmental goals, such as carbon conservation and global reduction of deforestation 

rates (Di Marco et al. 2016). Additionally, according to our definition, species threat 

refugia do not necessarily have to be off limits to human development, just free of the 

actions and land-uses that directly threaten species found in that area. This provides a 

unique framework for quantifying the trade-offs associated with the development of 

alternate human activities and land-uses, and for identifying locations and strategies to 

minimise their impacts on biodiversity. This has implications for nations striving to meet 

ambitious development targets such as the United Nations Sustainable Development 

Goals (SDGs), especially where achieving development goals involves trade-offs with 

biodiversity goals (Ibisch et al. 2016; Singh et al. 2018). The framework presented here 

could be adapted to inform conservation and development planning from local to 

regional scales, and could be particularly useful in South East Asia, Latin America and 

sub-Saharan Africa; regions that are undergoing rapid economic development, but are 

also hotspots of human impact and coolspots of threat refugia (Laurance et al. 2009; 

Wadey et al. 2018).  

 

It is important to note that our data are not comprehensive of all threats to all species. 

For example, our analysis does not take into account infectious diseases, a driver of 

global declines in amphibians (Stuart et al. 2004), or climate change, a threat already 

impacting many species across all taxa (Scheffers et al. 2016). The results are therefore 

conservative, and many species will be more impacted than our maps indicate. Notably, 

one of the fundamental ways to manage global scale threats such as climate change, is 

to stop more easily abatable threats such as those considered in this analysis [58], to 

avoid antagonistic or synergistic interactions between multiple threats [59,60]. Other 

caveats worthy of discussion are that we assume the intensity of threats (e.g. 

agricultural land use or roads) are equal across their distribution, and that species are 

equally sensitive to each threat known to affect them. This assumption could mean we 
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are overestimating impacts in cases where species are sensitive to several threats 

where only the secondary threat is present. The IUCN has collected data on the severity 

of threats to species, but a comprehensive database is still lacking, as this information is 

often unknown. The further development of these data would allow important nuances 

to be included in future extensions of this work.  

 

A species and threat overlap does not necessarily mean that the threat is acting in that 

location. However, our analysis extends beyond a species threat overlay by 

incorporating three co-occurring and connected forms of data; a species distribution, a 

threat distribution, and that species vulnerability to that threat. To the best of our 

knowledge, this is the first time species-specific sensitivity to threats has been 

incorporated into an impact mapping exercise at this scale. By mapping species-specific 

threats, it is much more likely that a threat is acting in a given location and impacting a 

species. This approach does rely on the current knowledge of threats to species, and 

cannot account for the possibility that undocumented threats could be impacting a 

species. We sourced information on threats to species from the IUCN, who are the main 

authority on assessing species extinction risk, and limited our analyses to threatened 

terrestrial vertebrates, which include the most studied taxa globally (Di Marco et al. 

2017a). Yet, it is important to note that there is still variation between species 

assessments due to taxonomic and geographical biases which could influence our 

findings (Donaldson et al. 2017). For example, our understanding of threats to 

mammals is greater than for amphibians, which could partly explain why our results 

show mammals as the most impacted taxon, whilst amphibians are generally regarded 

as the more threatened taxon. 

 

This analysis provides a framework for mapping human impacts that represents a 

conceptual advance over cumulative pressure mapping or threatened species richness 

mapping that can be applied to any scale, taxa or realm.  Furthermore, the framework 

and baseline can be continually updated and enhanced as additional data on species 

distributions, their sensitivity to threats, and the spatial distribution of threats become 

available, and our understanding of threat interactions improves. Improvements in our 
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understanding of species sensitivity to threats will also allow this analysis to be 

extended to other forms of life such as plant and invertebrate species. We have shown 

that human impacts on species are almost ubiquitous across Earth, and that hundreds 

of species have no refuge from these impacts, including many of the most charismatic 

large mammals. The survival of these species, and many more, hinges on humanity’s 

ability and willingness to compromise and share space.  

 

Methods 

Spatial data on threatened species ranges 

We focused our analysis on terrestrial vertebrate groups (amphibians, birds, mammals) 

with distribution maps and assessment of identified threat available for all species. 

Spatial data on mammal and amphibian distributions was obtained from the IUCN Red 

list of threatened species (IUCN 2016), and bird distributions from Birdlife International 

and NatureServe (Birdlife International and Handbook of the Birds of the World 2017). 

We focused on species which are listed as near threatened, vulnerable, endangered or 

critically endangered since their major threats have been identified and 

comprehensively assessed for the IUCN Red List of Threatened Species (Rodrigues et 

al. 2006; IUCN 2016; Brooks et al. 2016; Maxwell et al. 2016). Following established 

practice we only considered native and reintroduced parts of each species distribution 

range in our analysis, which are listed as extant, possibly extant or possibly extinct 

within their range (Butchart et al. 2015). We excluded introduced, vagrant and extinct 

species as well as species whose origin or presence is uncertain. Although reintroduced 

species ranges may be theoretically subject to less threats, they may still be under 

threats not realised during the reintroduction process (Seddon et al. 2014). As such, 

incorporating all portions of a species range, including reintroduced areas, can provide 

a robust picture of the threats for a given species. Finally, we only included species 

whose distribution overlapped (even just partially) with the extent of the Human 

Footprint threat dataset, which does not include Antarctica. A total of 2060 amphibian 

species, 2120 bird species, and 1277 mammal species qualified for our analysis based 

on these criteria. 
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Spatial data on threats to species 

Spatially explicit data on the distribution of threats to species was obtained from the 

recently updated Human Footprint maps (Venter et al. 2016a, 2016b). These are 

globally standardised maps of cumulative human pressures on the natural environment 

at 1km2 resolution globally for eight of the most harmful pressures humans exert on 

nature including: 1) built environments, 2) population density, 3) electric infrastructure, 

4) crop lands, 5) pasture lands, 6) roads, 7) railways, and 8) navigable waterways. This 

makes the Human Footprint the most up-to-date and comprehensive global cumulative 

pressure/threat map available (McGowan 2016). The Human Footprint is also the first 

global scale threat dataset to have been validated for accuracy. This was done by 

visually confirming if human pressures were present or absent across thousands of 

randomly selected 1km x 1km plots globally [68]. The data were found to exhibit an 

excellent degree of accuracy (88.5% agreement between visual plots and human 

footprint data), especially at identifying threat free areas (98.9% agreement between 

visual plots and wilderness) (Allan et al. 2017b). 

 

In the Human Footprint each pressure layer is scaled between 1 and 10 based on its 

estimated impact on the environment. These scores are then cumulated in each pixel to 

give a total score out of 50. We converted these scores to binary (present or absent in 

any 1km2 pixel) for our analyses since there is no data on the relative severity of 

individual threats to species. To convert pressure layers from continuous scales to 

binary (present/absent) we set cutoffs where the pressure was considered absent. For 

example, roads have a direct pressure score of 8 up to 500 meters either side, beyond 

this the pressure score decays exponentially from a score of 4 out to 0 at 15km. When 

converting this to a binary score, we set a threshold that considered the pressure 

present up to 3 km either side of the road, and absent beyond this (see S6 Table for 

comprehensive details on how each layer was handled). 

 

Mapping species-specific threats 

We identified cases where the eight pressures in the updated Human Footprint dataset 

directly or indirectly correspond with threats to biodiversity as listed in the IUCN Red List 
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(IUCN 2016) (Table 1. S1 Table). This allowed us to globally map seven major classes, 

and 15 sub-classes of threats. Although this is not comprehensive of all the threats to 

species, it importantly includes the biggest drivers of biodiversity declines globally 

(Maxwell et al. 2016). For example, multiple forms of agriculture, urban development 

and transportation corridors are directly accounted for by our pressure data. Whilst 

biological resource use and over-exploitation through hunting, pollution, human 

disturbance, and invasive species are indirectly accounted for by human population 

density, roads and navigable river networks which act as proxies (Hulme 2009; 

Laurance et al. 2009, 2015; Meunier & Lavoie 2012; Ripple et al. 2016a).  

 

Analysing the extent of human impacts on individual species 

For a pressure to impact a species, it must spatially overlap with that species’ 

distribution, and have been identified in the IUCN Red List as a threat to that species 

(Martins et al. 2012). Therefore, we calculated the extent of overlap between each 

species distribution, and each pressure layer which that species is sensitive to at a 

1km2 resolution globally. We accounted for the overlap between threats, identifying 

where multiple threats are present. All spatial data was analysed in a Mollweide equal 

area projection in ESRI ArcGIS and PostGIS, and statistics were calculated in R 

statistical software. We used a one-way analysis of variance to test for correlation 

between a species extinction risk category and the proportion of that species range 

impacted by threats. 

 

Mapping hotspots of cumulative human impacts  

We estimated cumulative human impacts on threatened species using a global 30km x 

30km planning unit grid, since this has been identified as the ideal resolution for 

reducing the effects of commission errors (where species are thought to be present but 

are not) when working with species range maps (Di Marco et al. 2017b). An impact was 

scored in a grid cell if a species and at least one threat it is sensitive to were both 

present. This means that the presence of a threat and a species in the same grid cell is 

not considered an impact unless the species is known to be sensitive to that threat. We 
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then calculated the sum of all impacted species in a grid cell to give a total estimate of 

cumulative human impact.  

 

As a sensitivity analysis, we calculated the area of each species distribution within each 

planning unit and the area of each pressure in each planning unit, converting both to 

proportions of planning unit area. To estimate how impacted each species is within each 

planning unit, we multiplied the proportion of the species distribution by the proportion of 

each pressure which threatens and then summed the scores. By using the proportion of 

planning unit area, we scale for the likelihood of a species and a pressure overlapping 

within a grid cell. Finally, we calculated the sum all the individual species impact scores 

within each grid cell, to give a total estimate of cumulative human impact. Spatial 

patterns of impact were strongly coherent between the two approaches so we report on 

the more intuitive binary metric in the manuscript. We also ran a multiple linear 

regression on 10,000 randomly selected grid cells comparing the binary impact metric 

reported in the paper (a species and ≥ 1 threat = 1 impact in a grid cell) (response 

variable), and species richness and the mean human footprint in a grid cell as predictor 

variables. We obtained an R squared value of 0.9, which shows that the human footprint 

and richness explain 90% of the variation in the model, but also suggests that including 

species sensitivities to threats explains the other 10% of the variation. When we 

incorporate cumulative impacts (1 species + 3 threats = 3 impacts in a grid cell) and re-

run the multiple linear regression the R squared drops to 0.77, suggesting that in areas 

where multiple threats are present, including species-specific threats is particularly 

important. 

 

Mapping coolspots of threatened vertebrate anthropogenic refugia 

We followed similar methods to mapping human impacts, where a cell was scored as an 

anthropogenic refuge if a species was present in the cell, but no pressures that threaten 

it were present. These were then summed to give a cumulative score of the number of 

unimpacted species in a cell. 
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APPENDIX 2 The ayahuasca tourism boom: An undervalued 

demand driver for jaguar body parts? 

 

Alexander Braczkowski, Andres Ruzo, Fatima Sanchez, Romi Castagnino, Chip Brown, 

Sharon Guynup, Steve Winter, Devlin Gandy, Christopher J. O’Bryan 

 

Published in Conservation Science and Practice e126, September 16, 2019. 

 

Main 

The jaguar Panthera onca is threatened across much of its range, due to habitat loss, 

retaliatory killings, and poaching. Consequently, it is listed as near threatened on the 

IUCN Red List (Quigley et al. 2017). There is evidence of a growing trade in jaguar body 

parts across Latin America, particularly in Brazil, Bolivia, Suriname, Costa Rica, and 

Peru (Berton 2018). For example, on February 23, 2018, two Chinese citizens were 

apprehended in Santa Cruz de la Sierra, Bolivia for possession of 185 jaguar teeth and 

three skins (Berton 2018). Similarly, in Brazil at least 30 seizures of jaguar parts have 

occurred in the past 5 years (Berton 2018). 

 

In Southeast Asia, jaguar claws and teeth are worn as jewellery; their skins are bought 

for home decor; and a glue paste (made from boiled jaguar parts) is consumed to heal 

various ailments. Most organized trafficking appears to be by contractors working for 

foreign companies hired to hunt cats to export body part (Berton 2018). With Latin 

America's current ayahuasca and shamanic tourist boom there are additional demands 

for jaguar products, which is our focus. 

 

Each year, thousands of ayahuasca tourists travel to Peru, generating significant 

revenue for retreat centers that administer the brew (Fotiou 2016). For example, a 2015 

study found that in Iquitos, Peru's largest Amazonian city, 10 of the 40 largest retreats 

generated over USD 6.5 million annually (Alvarez 2015). Ayahuasca is a traditional 

Amazonian medicine that has become a global phenomenon. It is a psychoactive brew 
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made from the ayahuasca vine Banisteriopsis caapi and chakruna leaves Psychotria 

viridis. It is traditionally administered in ritualized shamanic ceremonies for both spiritual 

and physical healing; however, recreational users now ingest it for entheogenic 

experiences. It is the subject of extensive scientific research, global conferences, 

tourism, and even religious movements. 

 

Figure 1. The three Peruvian cities where markets sold jaguar parts (8 locations total). 

Images 1 (an ayahuasca tourist with a newly purchased jaguar tooth), 2 (jaguar teeth 

held by a local trader) and 4 (a jaguar skin held by a trader) were taken in the Passage 
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Paquito section of Belen market, Iquitos; Image 3 (a village elder holds 3 jaguar paws) 

was shot in the Barrio Florido community, Punchana district, outskirts of Iquitos. Images 

5 (teeth and a jaguar skull for sale in a craft market) and 7 (jaguar tooth pendants) were 

taken in Yarinacocha Market, Pucallpa. Image 6 (jaguar skin with shotgun pellet holes) 

was taken at the Clock Plaza of Pucallpa. Image 8 was shot in Lima, and shows jaguar, 

sea lion and caiman teeth in a small exhibit box. We also took images of two skins at 

the edge of the Momon River, Iquitos (Punchana district; Supplementary Information 1). 

Images by Steve Winter (2, 4 and 6), Alex Braczkowski (1, 3,5 and 7) and Devlin Gandy 

(8). Total sample sizes for discussions with vendors, shamans and individuals engaged 

in the tourism industry are as follows: One trip in August 2019 by the second author, 

one trip by the third author in April 2019; and an earlier trip in August 2017 by the first, 

second, third, fifth and sixth authors to a) Pucallpa – 9 shamans (Mestizo, Ahaninka, 

and Shipibo-Conibo), 3 airport secuirty guards tasked with searches of wildlife products, 

3 local mediators, 1 veterinarian (San Juan Beer Company), five street-side shops (7 

sellers), b) Lima – 2 small shops, c) Iquitos - approximately 14 sellers: 7 at Passage 

Paquito section of Belen market (one of them with 3 family members), 2 at Arteanal San 

Juan, 1 Barrio Florido community, 4 at the Boulevard. In addition there were 4 

intermediaries who assisted in connecting the third author to vendors, 5 shamans, and 4 

tourists interested in sessions with ayahuasca. 

 

We present findings from investigations into the jaguar parts trade in local markets in 

Peru, considered a top tourist and ayahuasca tourism destination. We postulate that 

commercialized ayahuasca tourism may be an undervalued contributor to the trade. 

 

Findings 

Investigations were conducted between August 2016 and August 2019 in the cities of 

Lima, Iquitos, and Pucallpa (Figure 1). This information was collected while working on 

a story for National Geographic Magazine. Sales of items incorporating jaguar body 

parts to tourists were most prevalent in the Amazonian cities of Iquitos and Pucallpa. In 

Lima, a few jaguar fangs were found as “specialty items” at a curio a shop and at an 

open-air tourist market. 
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In Iquitos, jaguar skins ranged in price from S/. 150 (Peruvian soles) to S/. 500 (USD 

49–152); a single paw could be purchased for S/. 30 (USD 9). Jaguar skin purses were 

sold for S/. 20 (USD 6); a stuffed jaguar head was priced at S/. 100 to S/. 300 (USD 30–

91). Jaguar canines cost anywhere from S/. 200 to S/. 400 each (USD 61–122); two 

street vendors and a local trader In Pullcapa sold jaguar canine pendants for S/. 250 to 

S/. 330 each (USD 76–100). Prices for jaguar skins in Pucallpa and Iquitos were similar, 

selling at USD 80–200. Sellers were also willing to transport the skins internationally, 

using airport and customs agent contacts. We were approached repeatedly by local 

vendors to purchase jaguar body parts in touristic locations. In contrast, our team had to 

inquire specifically for jaguar body parts in less touristic areas, but still found them. We 

note that there are also decoys: South American sea lion Otaria flavescens, and caiman 

Melanosuchus niger teeth were being sold as jaguar fangs in both Lima and Iquitos. 

 

Discussion with street-side vendors, shamans, and individuals working in the tourism 

industry (sample sizes are in Figure 1) revealed that jaguar canine pendants, jaguar 

skin bracelets, and other items are being sold to “enhance the ayahuasca experience” 

(Figure 1). This appears to be a case of rebranding, specifically using “ayahuasca 

marketing” for sellers to charge a premium on jaguar parts. Local indigenous shamans 

and healers from the Pucallpa area (Shipibo, Conibo, and Ashaninka ethnicities) denied 

the notion that jaguar parts enhance the ayahuasca experience for visiting tourists, and 

suggested that this practice is being marketed by “charlatan shamans” seeking financial 

gain from the ayahuasca boom. 

 

East Asian demand for jaguar parts remains the main market (Berton 2018; Plotkin 

2018) however, we suggest that the ayahuasca tourism industry is quickly becoming an 

important additional driver of poaching. We argue that the drivers behind all demand for 

these products in Peru and other ayahuasca tourism hubs must be investigated further, 

and recommend future research to identify the main buyers (Chinese nationals or 

tourists, and their countries of origin), and their motivation (memorabilia, ayahuasca 

ceremony or traditional Chinese medicine). 
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Solutions 

1. Government regulations—Peru has implemented a national anti-wildlife trafficking 

policy, which includes jaguar trafficking (Supreme Decret N_ 011-2017-MINA GRI) 

that punishes wildlife traffickers with a prison sentence of 3–5 years, as established 

in article 308 of the 2016 Peruvian penal code. 

2. Education of tourists—a formal media campaign to educate ayahuasca tourists on 

the plight of wild jaguars, and discouraging them from buying jaguar parts is urgently 

needed. 

3. Regulate and sensitize shamanic tourism operations—we suggest that a concerted 

effort to formalize ayahuasca tourism and educate both tourists and tour operators 

could play an important role in discouraging the trade in this niche market. The 

shamans we encountered in Iquitos and Pucallpa stressed the importance of the 

jaguar to the Amazon ecosystem and as a powerful totem in the spiritual world. The 

leadership of ayahuasca retreats could be important champions for jaguar 

conservation in Peru, Costa Rica, Colombia, Brazil, and other regions where 

ayahuasca is used, and they could discourage tourists from using jaguar parts. 

4. Bettered enforcement—enforcement by local police is limited and sellers in Peru, 

and traffickers are finding ways to hide the products in warehouses, in the back of 

their stalls and other locations (Supplementary information 1). Bettered support and 

more resources are needed for anti-trafficking police in Peru. 
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APPENDIX 3 Supplementary Material for Chapter 2 

 

Table 1. Proportions of species that have varying levels of intense human pressure 

across years. The table column headings contain the categories of species assessed, 

including all species, all threatened species (IUCN classifications of Vulnerable, 

Endangered, and Critically Endangered), all amphibians, threatened amphibians, all 

mammals, threatened mammals, all birds, and threatened birds (out of the 22,752 

species assessed in this study). The exact number of species assessed are in 

parenthesis under each column heading. We calculate the proportion of species under 

varying levels of intense human pressure: 0%, >50%, and 100%. As such, each entry 

corresponds to the proportion of species (and the absolute number of species in 

parentheses) within a specific category as mentioned above that have: 1) no intense 

human pressure within their range; 2), more than half of their range exposed to intense 

human pressure; or 3) all of their range exposed to intense human pressure. We 

calculate the proportion of species with no intense human pressure by taking the sum of 

proportions within a species’ range that fall within the Human Footprint index of three 

and above (e.g. Di Marco et al. 2018) and reporting on the number of species that have 

a sum of proportions of exactly zero. We calculate the proportion of species with >50% 

of their range exposed to intense human pressure by taking the sum of proportions that 

fall within the Human Footprint index of three and above and report on the number of 

species that have a sum of proportions of exactly 0.5 or greater. Lastly, we calculate the 

proportion of species with all of their range exposed to intense human pressure by 

taking the sum of proportions that fall within the Human Footprint index of three and 

above and report on the number of species that have a sum of proportions of one (i.e. 

those species that have 100% of their range exposed to intense human pressure). All 

summed proportions were rounded to six decimal places before reporting on each 
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threshold (although each entry for proportion of species in the table is reported to four decimal places). We obtained the 

Human Footprint data from Venter et al. (2016). 

 
 

All species 

(N=20,529) 

All 

threatened 

species 

(n=4,610) 

All 

amphibians 

(n=5,000) 

Threatened 

amphibians 

(n=2,050) 

All 

mammal 

(n=4,592) 

Threatened 

mammals 

(n=1,118) 

All birds 

(n=10,745) 

Threatened 

birds 

(n=1,360) 

1993_proportion species 

with 0% intense human 

pressure (# species in 

parentheses) 

0.0041 

(85) 

0.0115 (53) 0.0090 (45) 0.0047 (30) 0.0028 

(13) 

0.0015 (8) 0.0025 

(27) 

0.0014 (15) 

2009_proportion species 

with 0% intense human 

pressure (# species in 

parentheses) 

0.0058 

(53) 

0.0087 (40) 0.0072 (36) 0.0127 (26) 0.0011 

(5) 

0.0027 (3) 0.0011 

(12) 

0.0081 (11) 

1993_proportion species 

with >50% intense human 

pressure (# species in 

parentheses) 

0.8081 

(16,589) 

0.8796 

(4,055) 

0.8344 

(4,172) 

0.2909 

(1,870) 

0.7905 

(3,630) 

0.1772 

(942) 

0.8010 

(8,606) 

0.1080 

(1,166) 

2009_proportion species 

with >50% intense human 

0.8533 

(17,517) 

0.9078 

(4,185) 

0.8772 

(4,386) 

0.9376 

(1,922) 

0.8380 

(3,848) 

0.8766 

(980) 

0.8466 

(9,097) 

0.8860 

(1,205) 
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pressure (# species in 

parentheses) 

1993_proportion species 

with 100% intense human 

pressure (# species in 

parentheses) 

0.1125 

(2,310) 

0.4744 

(2,187) 

0.3468 

(1,734) 

0.6522 

(1,337) 

0.1276 

(586) 

0.3345 

(374) 

0.0985 

(1,058) 

0.3250 

(442) 

2009_proportion species 

with 100% intense human 

pressure (# species in 

parentheses) 

0.1621 

(3,328) 

0.5330 

(2,457) 

0.3960 

(1,980) 

0.7088 

(1,453) 

0.1520 

(698) 

0.3944 

(441) 

0.1163 

(1,250) 

0.3750 

(510) 
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Table 2. Average and median proportions of intense human footprint within species’ ranges across years. The table 

column headings contain the categories of species assessed, including all species, all threatened species (IUCN 

classifications of Vulnerable, Endangered, and Critically Endangered), all amphibians, threatened amphibians, all 

mammals, threatened mammals, all birds, and threatened birds (out of the 22,752 species assessed in this study). The 

exact number of species assessed are in parenthesis under each column heading. We calculate intense human pressure 

within species’ ranges by taking the sum of proportions within species’ ranges that fall within the Human Footprint index of 

three and above (e.g. Di Marco et al. 2018) and report on the average and median proportions across all species that fall 

within the aforementioned categories. As such, each entry in the table corresponds to the average proportion with median 

proportions in parentheses; however, the last row in the table corresponds to the percent change in average proportions 

of intense human pressure within species ranges. We obtained the Human Footprint data from Venter et al. (2016). 

 All species 

(N=20,529) 

All 

threatened 

species 

(n=4,610) 

All 

amphibians 

(n=5,000) 

Threatened 

amphibians 

(n=2,050) 

All 

mammal 

(n=4,592) 

Threatened 

mammals 

(n=1,118) 

All birds 

(n=10,745) 

Threatened 

birds 

(n=1,360) 

1993_average 

proportion of 

intense human 

footprint within 

species range 

(median in 

parentheses) 

0.7453 

(0.8415) 

0.8485 

(0.9969) 

0.8038 

(0.9550) 

0.8948 

(1.000) 

0.7313 

(0.8260) 

0.8009 

(0.9392) 

0.7216 

(0.7974) 

0.8152 

(0.9465) 
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2009_average 

proportion of 

intense human 

footprint within 

species range 

(median in 

parentheses) 

0.7897 

(0.8932)  

0.8812 

(1.0000) 

0.8413 

(0.9855) 

0.9193 

(1.0000) 

0.7749 

(0.8782) 

0.8410 

(0.9811) 

0.7693 

(0.8572) 

0.8527 

(0.9787) 

Percent change in 

average 

proportion of 

intense human 

pressure within 

species ranges 

between 1993 and 

2009 

5.9573% 3.8539% 4.6653% 2.7380% 

 

5.9620% 5.0069% 6.6103% 4.6000% 
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Table 3. The proportions of cumulative human pressures across Earth’s terrestrial 

surface for 1993 and 2009, showing an increase in intense human pressure by 4.5% 

between years. We obtained the Human Footprint data from Venter et al. (2016). For 

clarity, “No human pressure” has a Human Footprint index value of 0, “No/Low 

human pressure” has index values of 0-2, and “Intense human pressure” has index 

values of 3-50. Each entry in the table for the first two columns reports the proportion 

with the area in km2. The third column of the table reports the percent change 

between years.  

 

 

Human pressure 

thresholds 

1993 proportion of 

Earth’s terrestrial 

surface  

2009 proportion of 

Earth’s terrestrial 

surface 

Percent 

increase/decrease 

from 1993 to 2009 

No human pressure 0.2854 (38,265,091 

km2) 

0.2718 (36,441,429  

km2) 

-4.7652% 

No/Low human 

pressure 

0.1632 (21,878,153 

km2) 

0.1521 (20,392,433  

km2) 

-6.8015% 

Intense human pressure  0.5514 (73,921,142 

km2) 

0.5761 (77,230,524  

km2) 

 4.4795% 
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 Table 4. Post hoc analysis of proportions and number species that are exposed to 

intense human pressure, but shifting the lower limits from pasture land (Human 

Footprint index value of 3) to industrial agricultural infrastructure (Human Footprint 

index value of 7) such as large-scale cropland and roadways. We obtained the 

Human Footprint data from Venter et al. (2016). The table column headings contain 

the categories of species assessed, including all species and all threatened species 

(IUCN classifications of Vulnerable, Endangered, and Critically Endangered). The 

exact number of species assessed are in parenthesis under each column heading. 

We calculate the proportion of species with >50% of their range exposed to this level 

of intense human pressure by taking the sum of proportions that fall within the 

Human Footprint index of seven and above and report on the number of species that 

have a sum of proportions of exactly 0.5 or greater.  

 

 All species for 2009 

human footprint data 

(N = 20,529) 

All threatened species for 2009 

human footprint data (n = 

4,610) 

The proportion of species 

with ranges >50% 

exposed to a Human 

Footprint index value of 7 

and above (# species in 

parentheses) 

 0.4047 (8,308)  0.5071 (3,230) 
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APPENDIX 4 Supplementary Material for Chapter 4 

 

Table 1. Parameters for two dynamic models of mesoscavenger release, including known mortality, efficiency, handling times, 

carcass availability, and decay rates from the literature for obligate scavengers and facultative scavengers. 

Symbol System Notes and units Parameter Species  Citation 

𝜇 Obligate: areas where vultures 

are present 

Mortality rate of apex scavengers in 

the absence of carcases (1/days till 

death without food) 

0.05 (1/20 days) Cape vultures 

(Gyps coprotheres) 

(Komen 1992) 

𝑒𝑎  Obligate: areas where vultures 

are present 

Mean time to detect carcasses 

(efficiency) for apex scavengers 

(1/days till location of carcass) 

18.77 (1/0.053264 

days) 

Griffon vultures 

(Gyps fulvus) 

(Houston 

1974) 

ℎ𝑎  Obligate: areas where vultures 

are present 

Average consumption time (handling 

time) of carcasses by apex 

scavengers (days/kg) 

0.00983 days/kg Scavenger 

assemblage with 

vultures in the 

system 

(Morales-

Reyes et al. 

2017) 

𝑒𝑎  Facultative: areas where 

Tasmanian devils are healthy and 

present 

Mean time to detect carcasses 

(efficiency) for apex scavengers 

(1/days till location of carcass) 

0.2534 (1/ 

3.9456 days) 

 

 

Tasmanian devils 

(Sarcophilus 

harrisii) 

(Cunningham 

et al. 2018) 

ℎ𝑎  Facultative: areas where 

Tasmanian devils are healthy and 

present 

Average consumption time (handling 

time) of carcasses by apex 

scavengers (days/kg) 

0.0309 days/kg 

 

Tasmanian devils 

(Sarcophilus 

harrisii) 

(Cunningham 

et al. 2018) 
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𝑒𝑚  Facultative: areas where vultures 

are absent 

Mean time to detect carcasses 

(efficiency) for mesoscavengers 

(1/days till location of carcass) 

1.0 (1/1 day) 

(doubles in 

the presence 

of apex 

obligate 

scavengers)  

Scavenger 

assemblage 

without vultures in 

the system 

(Morales-

Reyes et al. 

2017) 

(Kane & 

Kendall 2017) 

𝑒𝑚  Facultative: areas where 

Tasmanian devils are diseased 

and declining  

Mean time to detect carcasses 

(efficiency) for mesoscavengers 

(1/days till location of carcass) 

 0.1504 (1/6.6497 

days) 

 

Forest ravens 

(Corvus tasmanicu) 

and spotted-tailed 

quolls (Dasyurus 

maculatus) 

 

(Cunningham 

et al. 2018) 

ℎ𝑚 Facultative: areas where vultures 

are absent 

Average consumption time (handling 

time) of carcasses by 

mesoscavengers (days/kg) 

0.1344 days/kg Scavenger 

assemblage 

without vultures in 

the system 

(Morales-

Reyes et al. 

2017) 

ℎ𝑚 Facultative: areas where 

Tasmanian devils are diseased 

and declining  

Average consumption time (handling 

time) of carcasses by 

mesoscavengers (days/kg) 

0.0330 days/kg 

 

Forest ravens 

(Corvus tasmanicu) 

and spotted-tailed 

quolls (Dasyurus 

maculatus) 

 

(Cunningham 

et al. 2018) 
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𝑝  Rate at which carcasses become 

available on the landscape 

(days/kg/km2) 

1.02 days/kg/km2 Mammal 

assemblage in 

Kibale Forest of 

East Africa 

(Houston 

1985) 

𝛿  Rate of decay of a carcass (1/days 

to dry stage of decay) 

0.0125 (1/80 days) Pig (Sus scrofa) 

carcasses 

(Carter et al. 

2006) 
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Figure 1. Exploration of equilibrium population densities of carcasses (green dotted 

line), mesoscavengers (red dashed line) and apex obligate scavengers (black solid 

line) from the dynamic model (eqn 1 in the main text) as a function of apex 

scavenger search efficiency, ea, across varying mesoscavenger carrying capacities, 

k, in the absence of carcasses. The left-most value on the x-axis for each plot is 

equivalent to mesoscavenger search efficiency, such that apex scavengers are more 

efficient at locating carcasses. Generally, the more efficient (i.e. functionally 

dominant) the apex scavenger, the more they suppress mesoscavenger populations 

and carcass densities. Additionally, k appears to have a strong effect on carcass and 

apex scavenger densities.  
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Figure 2. Exploration of equilibrium population densities of carcasses (green dotted 

line), mesoscavengers (red dashed line), and apex facultative scavengers (black 

solid line) from the dynamic model (eqn 2 in the main text) as a function of apex 

facultative scavenger and mesoscavenger handling times of carrion (ha and hm), 

search efficiencies for carrion (ea and em), and carrying capacities in the absence of 
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carrion (ka and km) from a Tasmanian devil system (Table 1). The carcass production 

(p) rate is the same as that of the apex obligate scavenger system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Exploration of equilibrium population densities of carcasses (green dotted 

line), mesoscavengers (red dashed line), and apex facultative scavengers (black 

solid line) from the dynamic model (eqn 2 in the main text) as a function of apex 

facultative scavenger and mesoscavenger logistic growth rate (ra and rm). The 

carcass production (p) rate is the same as that of the apex obligate scavenger 

system. We find that when ra and rm go to zero, density dependence is removed in 

our model, and therefore the population always increases in the presence of 

carcasses. One could consider the same model but with an alternate 

parameterization,  

 

𝑑𝐴

𝑑𝑡
= 𝛽𝑎𝐴 − 𝜇𝑎𝐴2 +

𝑔𝑎𝑒𝑎𝐶𝐴

1 + ℎ𝑎𝑒𝑎𝐶
  , 

 

𝑑𝑀

𝑑𝑡
= 𝛽𝑚𝑀 − 𝜇𝑚𝑀2 +

𝑔𝑚𝑒𝑚𝐶𝑀

1 + ℎ𝑚𝑒𝑚𝐶
  . 

 

This is equivalent to the logistic model, but with a linear birth rate, 𝛽𝑎 and 𝛽𝑚, and 

non-linear death rate, 𝜇𝑎 and 𝜇𝑚 for apex and mesoscavengers respectively. In this 
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formulation, mesoscavengers and apex scavengers have carrying capacities 
𝛽𝑎

𝜇𝑎
 and 

𝛽𝑚

𝜇𝑚
, respectively, in the absence of carcasses. When running a sensitivity analysis of 

growth rate at low densities, one could increase 𝛽 (rather than r in the original 

models), in which case scavenger equilibrium density increases with increasing birth 

rate, and decreases with increasing death rate. The benefit of this alternate model is 

that density dependence is unaffected by the parameter that controls the growth rate 

at low densities. The following figure is the result of exploring this alternate model 

with a baseline 𝛽 and 𝜇 all set to 0.5: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Equilibrium population density of carcasses (green dotted line), 

mesoscavengers (red dashed line) and apex facultative scavengers (black solid line) 

as a function of apex scavenger birth rate 𝛽 in the absence of carcasses. The top 

model is parameterized for a known facultative scavenger, the Tasmanian devil 
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(Cunningham et al. 2018). The bottom is parameterized for vulture systems 

(Morales-Reyes et al. 2017). The key difference between the two parameterisations 

is the mesoscavenger and apex scavenger search efficiencies. An imaginary effect 

of vultures surviving off alternative food sources is displayed for comparison, similar 

to Figure 4 in the manuscript. As apex scavenger birth rate increases apex 

scavenger density increases and carrion density decreases. 
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APPENDIX 5 Supplementary Material for Chapter 5 

 

Explanation of leopard dog consumption and occurrence around SGNP  

Evidence of leopard consumption of dogs 

Dogs were estimated to constitute 25% (Surve et al. 2015) and 58% (Edgaonkar & 

Chellam 2002) of the total leopard diet biomass in Sanjay Gandhi National Park 

(SGNP). Acknowledging that large carnivore diets can exhibit pronounced 

seasonality (eg Johnson et al. 1993), we adopted the mean of these two studies (ie 

42% dog biomass in leopard diet), which was consistent with the estimate calculated 

by Prasad and Tiwari (2009) that dogs comprised 47% of leopard diets. 

 

Number of dogs consumed by leopards around SGNP annually 

Assuming dog biomass constituted ~42% of leopard diet, we applied the following 

calculation: leopard daily food consumption ([4.7 kg; Odden & Wegge 2009] × dog 

biomass of diet [42%]) × (365 days)/(average consumed dog weight assuming 

leopards eat 95% of carcass [17.1 kg; Stander et al. 1997; Athreya et al. 2016]) × (35 

leopards) ≈ 1475 dogs consumed per year by the 35 leopards residing in and around 

SGNP. We rounded this figure up to 1500 dogs in the manuscript to avoid a false 

sense of accuracy. The range for this estimate was 878–2036 dogs, depending on 

biomass estimates of 25% (Surve et al. 2015) or 58% (Edgaonkar & Chellam 2002), 

respectively.  

 

Assumption that leopard impacts are concentrated within 500 m of SGNP 

Local scientist K Tiwari (Mumbaikers for SGNP, a local NGO working on leopard-

human conflict and education in communities surrounding SGNP) reported that 

leopards rarely stray farther than 500 m from the SGNP boundaries (K Tiwara pers 

comm). We believe this estimate is prudent in light of several reports and 

photographs of leopards outside of or near to residences that straddle the park 

(mean distance = 282 m; range = 0–1.04 km): 

 

(1) Leopard sighted in Hirandani, near Supreme Business Park (1.04 km from forest 

edge): www.mid-day.com/articles/leopard-spotted-paw-mumbai-powai-building-

supreme-business-park-hiranandani/17632181.  
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(2) Leopard sighted and photographed in Kujapada (157 m from forest edge): 

www.dnaindia.com/mumbai/report-need-anymore-proof-of-leopard-in-kajupada-

2245528.  

(3) Leopard cub captured in Mumbai Indian Institute of Technology (2003, within 

forested area): www.rediff.com/news/2003/aug/05leo.htm.  

(4) Leopard found in Mumbai Indian Institute of Technology (2016, within forested 

area): www.ndtv.com/mumbai-news/leopard-enters-iit-bombay-campus-hides-

behind-a-generator-593120.  

(5) Leopard crossed Mumbai’s 42 State Highway, which hugs the western edge of 

SGNP (1 km from forest edge): http://colabradio.mit.edu/when-a-leopard-crosses-

state-highway-42-in-mumbai-to-get-into-the-forest/. 

(6) Leopard killed a Rottweiler in a residence near Ghodbunder Road, Thane (206 m 

from forest edge): www.hindustantimes.com/mumbai/mumbai-locals-live-in-fear-as-

leopard-cub-kill-dog-in-thane/story-cn2CFHdidyKcttLX4AIe4L.html. 

(7) Leopard photographed being chased by a stray dog near the Hill View building in 

Mumbai (104 m from forest edge): www.ndtv.com/mumbai-news/mumbais-chase-of-

the-year-stray-dog-chases-leopard-away-552594. 

(8) Leopard attempted to attack a dog at a house in Borivali (within forested area): 

www.ndtv.com/mumbai-news/caught-on-camera-dog-chases-away-leopard-from-

house-in-mumbai-775451.  

(9) Leopard repeatedly sighted on the Khatau Mill/Ekta Meadows boundary (within 

forested area): http://mumbaimirror.indiatimes.com/mumbai/other/Panic-as-

Leopards-venture-into-Borivali-society/articleshow/19942529.cms? 

(10) Leopard sighted in Poonam Nagar (314 m from forest edge): 

http://timesofindia.indiatimes.com/city/mumbai/Leopard-caught-napping-in-staircase-

of-Andheri-building/articleshow/17472551.cms.  

 

Evidence that leopards do not occur in districts located farther from SGNP 

We found no online or newspaper reports of leopards occurring in suburbs located 

>2 km from our designated 500-m buffer beyond the forest edge. Leopards require 

the safety of forest and vegetation cover (at least intermediate levels of cover; Balme 

et al. 2007) in order to hunt successfully. This has been shown in a diversity of 

habitats, ranging from woodland savannas (Balme et al. 2007) to semi-deserts, 
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where leopards hunt in dry riverbeds in which trees are present (eg Bothma & Le 

Riche 1984). The only reports of the occurrence of leopards in suburbs included in 

the city-wide dog census were (1) Bhandup West (a part of this suburb directly 

borders the SGNP), (2) Borivali (borders the park), (3) Mulund (borders the park), (4) 

Kandivali (borders the park), and (5) Goregaon (borders the park). 

 

Estimate of human population within or directly adjacent to SGNP 

P Variyar (Sanctuary Asia; pers comm) and K Tiwari (Mumbaikers for SGNP; 

www.mumbaikarsforsgnp.com; pers comm) suggested that ~350,000 people live 

within or directly adjacent to SGNP (this is a more recent estimate than the last 

human population census, which was conducted in 2011). 

 

Table 1. Estimated annual number of dog bites on humans in Mumbai, India 

Year # bites Source 

2011 67,463 http://timesofindia.indiatimes.com/city/mumbai/2011-dog-bite-cases-

67463-ampamp-counting/articleshow/11214730.cms 

2012 82,247 www.hindustantimes.com/mumbai/82-247-cases-of-dog-bites-reported-in-

2012/story-MNlG9XGA4JErNmF0Gd3aYP.html 

2013 81,716 http://timesofindia.indiatimes.com/city/mumbai/Stray-population-at-66K-

yet-dog-bites-increase-to-82K/articleshow/40310447.cms 

2014 83,273 www.freepressjournal.in/mumbai/dog-bite-cases-on-the-rise-in-

city/566698 

2015 58,317 www.hindustantimes.com/mumbai/58-317-dog-bite-cases-in-mumbai-

this-year/story-wR4lI5YiK5OWGyI8qhPBFO.html 

Average 74,603 
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Table 2. Estimated costs of post-exposure rabies treatment in humans  

Post Exposure 

Treatment after bite 

and vaccine course 

(human) 

Immunoglobin (post 

bite) = average US$26  

 

Vaccine treatment full 

course=average 

US$41.50 

 

2.14% of bite cases 

result in 

immunoglobulin 

treatment (Gogtay et al. 

2014)  

 

 

http://www.drugsupdate.com/brand

/generic/Vaccine,Rabies/4088 and 

“Treatment Costs.xlsx” 

 

http://www.drugsupdate.com/brand

/generic/Vaccine,Rabies/4088 and 

“Treatment Costs.xlsx” 

 

(Knobel et al. 2005) 

 

  

http://www.drugsupdate.com/brand/generic/Vaccine,Rabies/4088
http://www.drugsupdate.com/brand/generic/Vaccine,Rabies/4088
http://www.drugsupdate.com/brand/generic/Vaccine,Rabies/4088
http://www.drugsupdate.com/brand/generic/Vaccine,Rabies/4088
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APPENDIX 6 Supplementary Material for Chapter 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The current and expansion zones of the Florida panther (Puma concolor 

coryi) in Florida, USA. The breeding zone and primary expansion zone have 

documented panther locations; however, there are little to no known recent panther 

locations in the secondary and panhandle zones, which represent opportunity for 

panther expansion.  
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Figure 2. The distribution of invasive wild pigs (Sus scrofa) in Australia and the 

outline of study region, which includes both NSW and Victoria states. Map adopted 

from West (2008).  
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Predicting feral pig densities with and without the presence of an apex predator 

We predict feral pig densities using multiple linear regression coefficients and intercept values derived from Lewis and colleagues 

(2017). They assessed predicted wild pig densities at a global scale using seven abiotic and biotic variables (Table 1). We use 

higher-resolution data on agricultural lands and the presence of large carnivores by identifying their current likely distributions and 

their potential distributions assuming all quality habitat is utilized (see methods).  

Variable Potential 

Evapo-

transpiration 

(mean) 

Large 

Carnivore 

(mean 

number) 

Precipitation 

Wet Season 

(mean) 

Unvegetated 

area 

(proportion 

area) 

Agriculture 

(proportion 

area) 

Precipitation 

Dry Season 

(mean) 

Forest canopy 

cover (mean) 

Parameter 

Estimate 

(Standard 

Error) 

m: 0.443 

(0.056)  

q: −0.226 

(0.046) 

−0.243 

(0.043) 

0.233 (0.055) −0.203 

(0.061) 

m: 0.236 

(0.076) 

q: −0.118 

(0.038) 

0.100 (0.050) −0.001 

(0.029) 

Original data 

source that 

was used in 

Lewis et al. 

(2017)? 

Yes No Yes Yes No Yes Yes 
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Table 1. Description, values, and source of landscape variables considered in Lewis and colleagues (2017) analyses for predicting 

wild pig densities across their global distribution.  

 

 

Data source 

used for case 

study 

Trabucco, 

Antonio; 

Zomer, 

Robert 

(2019): Global 

Aridity Index 

and Potential 

Evapotranspir

ation (ET0) 

Climate 

Database v2. 

figshare. 

Dataset. 

See methods. Bioclim 

WorldClim 

World Climate 

Data – Bio 16 

Precipitation 

of Wettest 

Quarter (mm); 

1950–2000 

https://global

maps.github.i

o/glcnmo.html

#reference 

FDEP 2019 

(Florida) GA 

(Australia) 

Bioclim 

WorldClim 

World Climate 

Data – Bio 17 

Precipitation 

of Driest 

Quarter (mm); 

1950–2000 

https://earthe

nginepartners

.appspot.com/

science-2013-

global-

forest/downlo

ad_v1.0.html 
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Calculating the area of land within the proposed Florida Wildlife Corridor that 

is not currently formally protected 

We calculated the area of land that is not formally protected within the proposed 

Florida Wildlife Corridor by intersecting the Florida Wildlife Corridor (Florida 

Environmental Greenways Network 2016) shapefile with that of the Florida Natural 

Areas Inventory shapefile of Florida Conservation Lands 

(http://www.fnai.org/gis_data.cfm; last updated June 2019; accessed August 2019), 

which is the most up-to-date data layer for Florida public (and some private) 

protected lands. This intersection resulted in 41.4% (28,003.29 km2) of the total area 

of the proposed Florida Wildlife Corridor (67,714.46 km2) being unprotected. We 

conducted the intersection in a geographic information system (Albers projection). 

 

Calculating the relationship between feral pigs and soil disturbance 

We determine the relative proportion of an area that is rooted (also referred to as 

‘disturbed’) as a function of wild pig density as, 

𝑅𝑃 = (
𝑟(𝑃)

100
) ∗ (

𝑠(𝑃)

100
) 𝑒𝑞𝑛. 1 

based on a long-term study of wild pig disturbance in Namadgi National Park, 

Australia (Hone 2002b), where r is the percentage of sampling plots that have 

rooting as a function of wild pig density (P) in pigs per km2, and s is the percentage 

of wild pig rooting within a given sampling plot, assuming some prior disturbance, as 

a function of pig density (P). Specifically, 

𝑟 =
𝑐(𝑎 + 𝑏 𝑃)𝑔

100
𝑒𝑞𝑛. 2 

and 

𝑠 =
ℎ(𝑎 + 𝑏 𝑃)𝑗

100
𝑒𝑞𝑛. 3 

where a, b, c, g, h, and j are parameters whose values have been fit to data from 

Namadgi National Park in the peer-reviewed literature (Table  2). With these values 

eqn. 1 produces the following relationship between wild pig density and proportion of 

area disturbed (Figure 3). See more detail in the description below.  

http://www.fnai.org/gis_data.cfm
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Figure 3. The proportion of ground rooted (or disturbed) as a function of wild pig 

density per km2. 

 

Details of quantifying the relative proportion of ground rooting (or disturbance) as a 

function of wild pig density 

We determine the relative proportion of ground rooted as a function of wild pig 

density from a long-term study in Namadgi National Park in south-eastern Australia 

(Hone 2002b, 2012). The study was conducted from 1985 to 2000, with a sampling 

design comprised of 700 sampling plots, with seven sites (1 km2 each) containing 

100 plots randomly allocated across a range of vegetation types and elevations (for 

more information refer to Hone 2002). The original study terms are not in the spatial 

extent of ground rooting or pig density as is necessary for this manuscript, they are 

rather in terms of the percentage of sampling plots with pig dung as a function of the 

percentage of sampling plots with ground rooting by wild pigs. Nevertheless, the 

percentage of pig dung is related to wild pig density as described below. Note that all 

fitted parameters are given in Table  2.  

 

The percent of plots with pig dung (d) is related to pig density (P) as, 

 

𝑑 = 𝑎 + 𝑏𝑃 𝑒𝑞𝑛. 4 
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The percentage of sampling plots with ground rooting by pigs (r) is related to the 

percentage of sampling plots with pig dung (d) as, 

 

𝑟 = 𝑐 ∗ 𝑑𝑔 𝑒𝑞𝑛. 5 

This can be related as the proportion of sampling plots with ground rooting (R) from 

equation 5 as a function of pig density (P) from equation 4 such that,  

 

𝑅 =
𝑐(𝑎 + 𝑏𝑃)𝑔

100
𝑒𝑞𝑛. 6 

 

However, just because rooting occurred in a sampling plot does not mean that the 

whole plot was rooted. As such, the percentage of a given sampling plot that has 

ground rooting (s) is related to the percentage of sampling plots with pig dung (d) as, 

 

𝑠 = ℎ ∗ 𝑑𝑗 𝑒𝑞𝑛. 7 

 

This can be related to pig density (P) from equation 4 as a proportion of a sampling 

plot that is uprooted (s) based on equation 4 such that,  

 

𝑆 =
ℎ(𝑎 + 𝑏𝑃)𝑗

100
𝑒𝑞𝑛. 8 

 

Our objective is to determine the relative proportion of rooted area (RP) based on a 

given pig density (P) by multiplying equations 6 and 8, and simplifying, such that, 

 

𝑅𝑃 =
𝑐ℎ(𝑎 + 𝑏 𝑃)𝑔+𝑗

10000
𝑒𝑞𝑛. 9 

 

All parameter estimates are provided in Table  2 below.  
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Parameter Estimate Lower SE Upper SE Source  

a   5.149   3.113   7.185 (Figure 4.3; 

Hone 2012) 

b   2.970   2.301   3.639 (Figure 4.3; 

Hone 2012) 

c 13.490 12.257 14.723 (Figure 5.10; 

Hone 2012) 

g   0.389   0.274   0.504 (Figure 5.10; 

Hone 2012) 

h   1.21 N/A N/A (Hone 

2002b) 

j   0.408 0.284 0.532 (Hone 

2002b) 

 

Table 2. Parameter estimates and standard errors derived from a long-term study on 

wild pig damage (Hone 2002; Hone 2006; Hone 2012) in Australia used to assess 

the relationship between wild pig density and proportion of area disturbed from 

rooting behavior by wild pigs.  

 

It should be noted that s is actually the linear proportion of a given sampling plot (the 

plots were 10m x 2m in size, but rooting was measured as a linear proportion along 

the 10m length of the plot) (Hone 2002b). Because the measurements were taken 

along the middle of a given sampling plot, and the fact that the area of a single pig 

rooting event is rather large (e.g. Bankovich et al. 2016), we assume this proportion 

can be thought of as percent area. We verified this logic with the author of the 

original study (Jim Hone, Personal Communication).  

 

Application of the pig density-disturbance equation  

We apply the pig density-disturbance equation above within a geographic 

information system raster calculator using the expressions below for the baseline 

estimate of damage. 
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 ((13.49 * (5.149 + 2.970 * "Pig_density_raster.tif")**0.389)/100) * ((1.21 * (5.149 + 

2.970 * "Pig_density_raster.tif")**0.408)/100) 
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Table 3. The agricultural land cover codes and types assessed for the Florida case study (FDEP 2019) and the corresponding 

savings in land surface due to a reduction in pig densities under three scenarios: Florida panther extinction, status quo (panthers 

are restricted to their current breeding range), or a scenario where panthers fully expand throughout the Florida Wildlife Corridor. 

The values in the table  were derived from a spatially-explicit wild pig density-soil disturbance model as described in the section 

above titled, “Calculating the relationship between feral pigs and soil disturbance”. 

 

Agricultural land cover type Extinction scenario  

(land damage from pigs in 

km2) 

Status quo scenario  

(land damage from pigs in 

km2) 

Full expansion scenario  

(land damage from pigs in 

km2) 

2110: Improved Pastures 79.57 75.74 60.67 

2120: Unimproved Pastures 16.65 15.62 12.47 

2130: Woodland Pastures 13.32 12.10 9.88 

2210: Citrus Groves 11.51 9.65 8.18 

2140: Row Crops 10.55 9.16 7.29 

2156: Sugar Cane 4.26 3.64 3.39 

2610: Fallow Cropland 3.50 3.08 2.72 

2150: Field Crops 3.49 3.27 2.60 

2153: Hay Fields 2.20 2.26 1.54 

2100: Cropland and 

Pastureland 

2.04 1.98 1.37 
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2600: Other Open Lands 

(Rural) 

1.57 1.56 1.05 

2510: Horse Farms 0.94 0.97 0.65 

2240: Abandoned Groves 0.89 0.82 0.63 

2520: Dairies 0.73 0.75 0.64 

2420: Sod Farms 0.60 0.61 0.46 

2410: Tree Nurseries 0.47 0.47 0.31 

2143: Potatoes and Cabbage 0.40 0.41 0.27 

2190: Wildlife Strip Crops 0.38 0.39 0.28 

2431: Shade Ferns 0.28 0.29 0.19 

2230: Other Groves (Pecan, 

Avocado, Coconut, Mango, 

etc) 

0.26 0.25 0.21 

2432: Hammock Ferns 0.24 0.24 0.16 

2200: Tree Crops 0.23 0.18 0.14 

2430: Ornamentals 0.21 0.19 0.14 

2310: Cattle Feeding 

Operations 

0.17 0.17 0.13 

2300: Feeding Operations 0.09 0.09 0.06 

2540: Aquaculture 0.08 0.08 0.06 
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2400: Nurseries and 

Vineyards 

0.07 0.07 0.05 

2240: Abandoned Tree Crops 0.03 0.03 0.02 

2320: Poultry Feeding 

Operations 

0.03 0.03 0.02 

2160: Mixed Crops 0.03 0.03 0.02 

Total 154.80 144.14 115.60 
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Table 4. The agricultural land cover codes and types assessed for the Florida case study (FDEP 2019) and the equivalent market 

value cost in USD from wild pig rooting on agricultural lands under three scenarios: Florida panther extinction, status quo (panthers 

are restricted to their current breeding range), or a scenario where panthers fully expand throughout the Florida Wildlife Corridor. 

The values in the table  were derived from 2018 agriculture yield data from the USDA National Agricultural Statistics Service for the 

state of Florida (USDA, 2018). 

 

Agricultural land cover type Extinction scenario  

(market value cost in 

USD) 

Status quo scenario  

(market value cost in 

USD) 

Full expansion scenario  

(market value cost in 

USD) 

2140: Row Crops* 10,489,693.04 9,819,965.06 7,818,311.37 

2150: Field Crops** 466,756.86 436,956.17 347,889.16 

2153: Hay Fields 258,054.21 265,279.11 180,029.22 

Total 11,214,504.11 10,522,200.34 8,346,229.74 

*based on average 2018 market value of beans, blueberries, cabbage, cucumbers, melons, peanuts, peppers, potatoes, 

strawberries, sweet corn, sweet potatoes, and tomatoes in Florida (USDA 2018). 

**based on average 2018 market value of wheat and cotton crops in Florida (USDA 2018). 
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Table 5. Estimates of beef calf production and the equivalent market value savings in USD from reduced wild pig rooting on 

agricultural lands under three scenarios: Florida panther extinction, status quo (panthers are restricted to their current breeding 

range), or a scenario where panthers fully expand throughout the Florida Wildlife Corridor. We assume that Florida panthers reduce 

total production savings by 5.3% (Jacobs et al. 2015). 

 

  

Scenario Calf 

production 

(kg km-2) 

Total calf 

production (kg) 

Total 

production 

savings (kg) 

Calf value 

USD km-2 

Gross 

savings 

USD km-2 

Total Gross 

savings 

Panther offtake 

from total 

production (kg) 

Panther 

cost USD 

Total net 

savings 

Extinction 15352.79 108,835,954.38 0.00 $87,203.87 0.00 $0.00 0.00 $0.00 $0.00 

Status 

quo 

15366.17 108,930,764.38 94,810.00 $87,279.83 75.97 $2,469,188.90 2,022.52 $11,487.91 $2,467,166.38 

Full 

expansion 

15411.11 109,249,344.69 413,390.31 $87,535.09 331.23 $10,766,150.93 21,909.69 $124,447.02 $10,744,241.24 
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Table 6. The agricultural land cover codes and types assessed for the Australia case study (Lymburner et al. 2011) and the 

corresponding savings in land surface due to a reduction in pig densities under three scenarios: dingo extinction, status quo 

(dingoes are restricted to their current range), or a scenario where dingoes fully expand throughout the NSW and VIC. The values 

in the table  were derived from a spatially-explicit wild pig density-soil disturbance model as described in the section above titled, 

“Calculating the relationship between feral pigs and soil disturbance”. 

 

Agricultural land 

cover type 

Extinction scenario  

(land damage from pigs in km2) 

Status quo scenario  

(land damage from pigs in km2) 

Full expansion scenario  

(land damage from pigs in km2) 

9 Rainfed 

pasture 

459.52 413.65 389.59 

8 Rainfed 

cropping 

186.03 169.59 158.12 

5 Irrigated 

cropping 

3.74 3.37 3.19 

6 Irrigated 

pasture 

1.21 1.05 1.02 

7 Irrigated sugar 0.01 0.01 0.01 

Total area 650.51 587.67 551.94 
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Table 7. The agricultural land cover codes and types assessed for the Australia case 

study (Lymburner et al. 2011) and the equivalent market value cost in USD from wild 

pig rooting on agricultural lands under three scenarios: dingo extinction, status quo 

(dingoes are restricted to their current range), or a scenario where dingoes fully 

expand throughout the NSW and VIC. The values in the table  were derived from 

2017 estimates of yield from the Australian Bureau of Agricultural and Resource 

Economics and Sciences (ABARES 2017) 

 

Agricultural land 

cover type 

Extinction scenario  

(market value cost 

in USD) 

Status quo scenario 

(market value cost in 

USD) 

Full expansion scenario 

(market value cost in 

USD) 

Irrigated and 

rainfed cropping 

(codes 5 & 8) 

52,393,696.00 47,332,007.69 44,454,239.27 



 

 

217 

 

Table 8. Estimates of beef calf production and the equivalent market value savings in USD from reduced wild pig rooting on 

agricultural lands under three scenarios: Dingo exclusion, status quo (dingoes are restricted to their current distribution), or a 

scenario where dingoes fully expand throughout NSW and VIC, Australia. We assume that dingoes reduce total production savings 

by 30% (Glen et al. 2007). This analysis assumes that all pastureland is used for cattle production. 

 

Scenario Calf 

production 

(kg km-2) 

Total calf 

production (kg) 

Total 

production 

savings (kg) 

Calf value 

USD km-2 

Gross 

savings 

USD km-2 

Total Gross 

savings 

Dingo offtake 

from total 

production (kg) 

Dingo cost 

USD 

Total net 

savings 

Exclusion 11,398.31 370,490,572.59 0.00 43,797.42 $0.00 $0.00 0.00 $0.00 $0.00 

Status 

quo 

11,414.68 371,022,781.40 532,208.81 43,860.34 $62.91 $2,044,985.74 20,912.73 $80,356.11 $1,964,629.64 

Full 

expansion 

11,423.25 371,301,232.56 810,659.97 43,893.26 $95.83 $3,114,920.41 243,197.99 $934,476.12 $2,180,444.29 
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Calculating the contribution of feral pigs (Sus scrofa) to the diet of Florida 

panthers (Puma concolor coryi)  

Summary 

We replicate previously published techniques that lead to the quantification of the 

number of individual prey items killed per year by an apex predator (Braczkowski et 

al. 2018; Barry et al. 2019). We then determine the relative number of individual 

invasive wild pigs killed by a single adult puma per year by multiplying the mean 

relative biomass contribution of invasive wild pigs by their mean body size 

distribution from published estimates. 

 

Methods and results 

We identify two studies that explicitly report on the food habits of Florida panthers 

(Maehr et al. 1990; Caudill et al. 2019). These studies report on the percent 

occurrence of prey items found in scat contents (in the case of both studies) or 

stomach contents (in the case of Caudill and colleagues). While Maehr and 

colleagues (Maehr et al. 1990) report on the percent biomass consumption by 

Florida panthers, a more accurate representation of diet, Caudill and colleagues 

(Caudill et al. 2019) do not. Therefore, we calculate the relative biomass consumed 

using a correction factor for prey that are highly variable in size (Ackerman et al. 

1984) and assumptions of live prey weight. We use Caudill and colleagues estimates 

of occurrence to calculate relative biomass consumed. We treat Caudill and 

colleagues’ percent occurrence estimates of feral pigs in scat contents as corrected 

frequencies due to the fact that only 6.1% (19 of 312) of scats contained more than 

one prey item (Henschel et al. 2005). As such, we calculate relative biomass 

consumed by taking the ingested biomass per deposited scat (Y) (from Caudill et al. 

2019), and the mean live weight (Table 7 and 8) of the prey species (X). The 

resulting linear relationship, Y = 1.98 + 0.035X, can then be applied in the form of a 

correction factor (Table 9), to convert frequency of occurrence to relative biomass 

consumed (by multiplying the corrected frequency of occurrence for one species by 

the correction factor for that species and then dividing that product by the sum of the 

products for all species in the diet; Table 59; phrasing and methodology taken from 

Henschel et al. 2005, calculation originally from Ackerman et al. 1984). We then take 

the average relative biomass between that calculated from Caudill et al. (2019) with 
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that of estimates from Maehr and colleagues (Maehr et al. 1990) as our final 

estimates for mean relative biomass consumed by Florida panthers, which is 

reflected in Table 9. To calculate relative weight (kg) of species killed by Florida 

panthers per day, we used the mean kill rate of pumas from Elbroch and colleagues 

(2014), which held consistent across field sites (in North America and South 

America) and seasons (10.10 kg/day; Elbroch et al. 2014) multiplied by the mean 

relative biomass estimate in Table 9. To calculate relative numbers of individual 

animals by species, we took the estimated weight of species killed per day divided 

by the mean live weight of that species (Table 9). Similar methods have been used 

to calculated relative numbers of individuals killed (e.g. Henschel et al. 2005; 

Braczkowski et al. 2018). We calculate that a single adult non-gravid Florida panther 

removes approximately 34.40 (range 27.96 – 52.53 pigs) individual invasive wild pigs 

per year, assuming kill rate and relative biomass consumed remain static. 
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Table 7. Estimates of mean live body weight of prey species analysed in scat 

samples reported by Caudill and colleagues diet study (Caudill et al. 2019). Note that 

some prey item average weight estimates have no literature source as they lack 

specific information on the species from Caudill and colleagues; therefore, we 

estimated a reasonable mean body size of such prey items (specifically ‘Rodentia’ 

and ‘Other’).  

Prey species Mean Body 

Weight (kg) 

Source 

Wild pig (Sus scrofa) 44.9  Table 2 

White-tailed deer (Odocoileus 

virginianus) 

56.7 (Garrison & Gedir 

2006) 

Racoon (Procyon lotor) 4.41 (Mugaas et al. 1993) 

Nine-banded armadillo 

(Dasypus novemcinctus) 

5.0 (McBee & Baker 1982) 

Rodentia 0.11*  (Joule & Cameron 

1974)** 

Viginia opossum (Didelphis 

virginiana) 

2.4* (McManus 1974) 

Domestic cat (Felis catus) 4.0* (Brothers et al. 1985) 

Rabbit (Sylvilagus spp.) 1.2 (Elder & Sowls 1942) 

Other 0.1*** NA*** 

Livestock (goats) 20.0 (Field & Taylor 2008) 

*averaged between males and females 

**assuming majority of rodentia diet is similar to that of bobcats (Lynx rufus), which 

primarily consists of Sigmodon hispidus in Florida (Maehr & Brady 1986). 

***Caudill and colleagues (Caudill et al. 2019) do not indicate animal type, so we 

assume the size of this category to be similar to that of the ‘rodentia’ category (i.e. 

small species that are difficult to identify). 

  



 

 

221 

 

Table 8. Body mass estimates of feral pigs (Sus scrofa). Note that mean body mass 

was calculated as the average between the mean male and mean female body mass 

from the Saunders and McLeod study (Saunders & McLeod 1999). 

Location Mean body 

mass (kg) 

Citation 

Santa Catalina Island, 

California 

27.5 (Baber & Coblentz 1986 as 

reported in Saunders & McLeod 

1999)  

Galapagos 40.0 (Coblentz & Baber 1987 as 

reported in Saunders & McLeod 

1999) 

Hawaii 50.5 (Diong 1982 as reported in 

Saunders & McLeod 1999) 

South Carolina 49.0 (Wood & Brenneman 1980 as 

reported in Saunders & McLeod 

1999) 

South Carolina 57.5 (Kurz & Marchinton 1972 as 

reported in Saunders & McLeod 

1999) 
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Table 9. Calculation of mean relative biomass consumed across two known diet studies on the Florida panther (Puma concolor coryi) in 

southwest Florida, USA. The resulting mean biomass estimate is used throughout the manuscript. Frequency occurrence of diet 

consumed by Florida panther (Puma concolor coryi) taken from Caudill and colleagues (Caudill et al. 2019) and converted to relative 

biomass consumed based on assumed average weight of prey from Table 7. Note that the two frequency occurrence and biomass 

estimates are from pre- and post-genetic restoration era samples of panther scats (Caudill et al. 2019). We then calculated the relative 

number of individuals consumed following methodology by Henschel and colleagues (Henschel et al. 2005).  

Prey item % 

occurren

ce in 

panther 

diet 

(pre*) 

% 

occurren

ce in 

panther 

diet 

(post*) 

Body 

weight 

(kg) 

from 

Table 1 

Correcti

on factor 

(kg/scat)

** 

Biomass  

in 

panther 

diet 

(pre*) 

Biomass 

in panther 

diet 

(post*) 

Biomass  in 

panther 

diet from 

Maehr et 

al. 1990*** 

Mean 

biomass  

in panther 

diet (all 

studies) 

Kg killed 

day-1**** 

Individual

s killed 

day-1 

Individual

s killed 

year-1 

Feral pig 

(Sus scrofa) 

55.93 21.97 44.9 3.5515 0.58226

7575 

0.264597

714 

0.41 0.418955

096 

4.231446

475 

0.094241

57 

34.39817

29 

White-tailed 

deer 

(Odocoileus 

virginianus) 

27.12 28.03 56.7 3.9645 0.31516

9422 

0.376838

904 

0.35 0.347336

109 

3.508094

698 

0.061871

159 

22.58297

292 
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Racoon 

(Procyon 

lotor) 

5.08 21.97 4.41 2.13435 0.03178

3032 

0.159015

664 

NA 0.063599

565 

0.642355

609 

0.145658

868 

53.16548

69 

Nine-banded 

armadillo 

(Dasypus 

novemcinctu

s) 

3.39 6.82 5 2.155 0.02141

4747 

0.049839

751 

0.11 0.060418

166 

0.610223

474 

 

0.122044

695 

44.54631

363 

Rodentia 1.69 2.27 0.11 1.98385 0.00982

7918 

0.015271

402 

0.07 0.031699

773 

0.320167

708 

2.910615

529 

1062.374

668 

Viginia 

opossum 

(Didelphis 

virginiana) 

0 3.79 2.4 2.064 0 0.026527

304 

0.026 0.017509

101 

0.176841

924 

0.073684

135 

26.89470

922 

Domestic cat 

(Felis catus) 

0 3.79 4 2.12 0 0.027247

037 

NA 0.009082

346 

0.091731

692 

0.022932

923 

8.370516

857 

Rabbit 

(Sylvilagus 

spp.) 

0 4.55 1.2 2.022 0 0.031198

719 

NA 0.010399

573 

0.105035

687 

0.087529

739 

31.94835

471 

Other 6.8 5.3 0.1 1.9835 0.03953

7307 

0.035649

405 

0.026 0.033728

904 

0.340661

931 

3.406619

308 

1243.416

047 
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*based on Caudill et al. 2019  

**based on Ackerman et al. 1984  

***We took the average estimates of relative biomass consumed from Maehr and colleagues (1990) as they provide estimates for both 

‘North’ and ‘South’ in southwest Florida.  

****based on Elbroch et al. 2014 estimate of 10.10 kg/day kill rate multiplied by mean biomass 

 

Livestock 

(goats) 

0 1.52 20 2.68 0 0.013814

1 

0.049 0.020938

033 

0.211474

137 

0.010573

707 

3.859402

992 
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APPENDIX 7 Supplementary Material for Chapter 7 

 

Overview of quantifying the relative proportion of ground rooting (or 

disturbance) as a function of wild pig density 

We determine the relative proportion of an area that is rooted (also referred to as 

‘disturbed’) as a function of wild pig density as, 

𝑅𝑃 = (
𝑟(𝑃)

100
) ∗ (

𝑠(𝑃)

100
) 𝑒𝑞𝑛. 1 

based on a long-term study of wild pig disturbance in Namadgi National Park, 

Australia (Hone 2002b), where r is the percentage of sampling plots that have 

rooting as a function of wild pig density (P) in pigs per km2, and s is the percentage 

of wild pig rooting within a given sampling plot, assuming some prior disturbance, as 

a function of pig density (P). Specifically, 

𝑟 =
𝑐(𝑎 + 𝑏 𝑃)𝑔

100
𝑒𝑞𝑛. 2 

and 

𝑠 =
ℎ(𝑎 + 𝑏 𝑃)𝑗

100
𝑒𝑞𝑛. 3 

where a, b, c, g, h, and j are parameters whose values have been fit to data from 

Namadgi National Park in the peer-reviewed literature (Table 1). With these values 

eqn. 1 produces the following relationship between wild pig density and proportion of 

area disturbed (Figure 1). See more detail in the description below.  
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Figure 1. The proportion of ground rooted (or disturbed) as a function of wild pig 

density per km2. 

 

Details of quantifying the relative proportion of ground rooting (or 

disturbance) as a function of wild pig density 

We determine the relative proportion of ground rooted as a function of wild pig 

density from a long-term study in Namadgi National Park in south-eastern Australia 

(Hone 2002b, 2012). The study was conducted from 1985 to 2000, with a sampling 

design comprised of 700 sampling plots, with seven sites (1 km2 each) containing 

100 plots randomly allocated across a range of vegetation types and elevations (for 

more information refer to Hone 2002). The original study terms are not in the spatial 

extent of ground rooting or pig density as is necessary for this manuscript, they are 

rather in terms of the percentage of sampling plots with pig dung as a function of the 

percentage of sampling plots with ground rooting by wild pigs. Nevertheless, the 

percentage of pig dung is related to wild pig density as described below. Note that all 

fitted parameters are given in Table 1.  

 

The percent of plots with pig dung (d) is related to pig density (P) as, 

 

𝑑 = 𝑎 + 𝑏𝑃 𝑒𝑞𝑛. 4 
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The percentage of sampling plots with ground rooting by pigs (r) is related to the 

percentage of sampling plots with pig dung (d) as, 

 

𝑟 = 𝑐 ∗ 𝑑𝑔 𝑒𝑞𝑛. 5 

This can be related as the proportion of sampling plots with ground rooting (R) from 

equation 5 as a function of pig density (P) from equation 4 such that,  

 

𝑅 =
𝑐(𝑎 + 𝑏𝑃)𝑔

100
𝑒𝑞𝑛. 6 

 

However, just because rooting occurred in a sampling plot does not mean that the 

whole plot was rooted. As such, the percentage of a given sampling plot that has 

ground rooting (s) is related to the percentage of sampling plots with pig dung (d) as, 

 

𝑠 = ℎ ∗ 𝑑𝑗 𝑒𝑞𝑛. 7 

 

This can be related to pig density (P) from equation 4 as a proportion of a sampling 

plot that is uprooted (s) based on equation 4 such that,  

 

𝑆 =
ℎ(𝑎 + 𝑏𝑃)𝑗

100
𝑒𝑞𝑛. 8 

 

Our objective is to determine the relative proportion of rooted area (RP) based on a 

given pig density (P) by multiplying equations 6 and 8, and simplifying, such that, 

 

𝑅𝑃 =
𝑐ℎ(𝑎 + 𝑏 𝑃)𝑔+𝑗

10000
𝑒𝑞𝑛. 9 

 

All parameter estimates are provided in Table 1 below.  
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Parameter Estimate Lower SE Upper SE Source  

a   5.149   3.113   7.185 (Figure 4.3; 

Hone 2012) 

b   2.970   2.301   3.639 (Figure 4.3; 

Hone 2012) 

c 13.490 12.257 14.723 (Figure 5.10; 

Hone 2012) 

g   0.389   0.274   0.504 (Figure 5.10; 

Hone 2012) 

h   1.21 N/A N/A (Hone 

2002b) 

j   0.408 0.284 0.532 (Hone 

2002b) 

 

Table 1. Parameter estimates and standard errors derived from a long-term study on 

wild pig damage (Hone 2002; Hone 2006; Hone 2012) in Australia used to assess 

the relationship between wild pig density and proportion of area disturbed from 

rooting behavior by wild pigs.  

 

It should be noted that s is actually the linear proportion of a given sampling plot (the 

plots were 10m x 2m in size, but rooting was measured as a linear proportion along 

the 10m length of the plot) (Hone 2002b). Because the measurements were taken 

along the middle of a given sampling plot, and the fact that the area of a single pig 

rooting event is rather large (e.g. Bankovich et al. 2016), we assume this proportion 

can be thought of as percent area. We verified this logic with the author of the 

original study (Jim Hone, Personal Communication).  

 

Application of the pig density-disturbance equation  

 

We apply the pig density-disturbance equation above within a geographic 

information system raster calculator using the expressions below for the baseline 
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estimate of damage and the lower and upper standard error estimates across all 

parameters (the standard error estimates are expressed as a range of values). 

 

Baseline estimate of damage: 

((13.49 * (5.149 + 2.970 * "Pig_density_raster.tif")**0.389)/100) * ((1.21 * (5.149 + 

2.970 * "Pig_density_raster.tif")**0.408)/100) 

 

Lower SE estimate of damage: 

((12.257 * (3.113 + 2.301 * " Pig_density_raster.tif “)**0.274)/100) * ((1.21 * (3.113 + 

2.301 * " Pig_density_raster.tif ")**0.284)/100) 

 

Upper SE estimate of damage: 

((14.723 * (7.185 + 3.639 * " Pig_density_raster.tif ")**0.504)/100) * ((1.21 * (7.185 + 

3.639 * " Pig_density_raster.tif ")**0.532)/100) 

 

Quantifying carbon dioxide equivalent (CO2e) 

We convert our estimate of carbon into carbon dioxide (at one-tonne stock) by taking 

the molecular weight of carbon dioxide (44 amu) and dividing by the atomic weight of 

carbon (12 amu), which equals 3.67 metric tonnes of carbon dioxide equivalent. By 

multiplying the carbon dioxide equivalent by our estimates of carbon we report on the 

equivalent carbon dioxide that is vulnerable to wild pig soil disturbance (in metric 

tonnes per km2) using a geographic information system raster calculator. We then 

determine the proportion of soil organic carbon storage that is emitted in the form of 

CO2e based on estimates of SOC lost in the form of CO2 from arable agricultural 

practices (30%, range of 20-40%; Davidson & Ackerman 1993). 
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Global maps of data used to assess the amount of vulnerable organic soil 

carbon stock from predicted wild pig soil disturbance 

Figure 2. Global map on predicted wild pig density (per km2) in the absence of pig 

management used in this study. The data are originally reported in Lewis et al. 

(2017). 
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Figure 3. Global map of predicted organic soil carbon storage (in tonnes per km2) at 

a depth of 0-15cm, obtained from the Soil Grid database (Hengl et al. 2017). 
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Figure 4. Global map of the World’s built-up areas at a 1 km2 resolution during the 

year 2009 from Venter and colleagues (Venter et al. 2016a). These built-up areas 

correspond to human infrastructure, including buildings, paved land, urban parks, 

roadways, and railways. 
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Continent Total vulnerable 

organic soil carbon 

stock (in millions of 

t) 

Lower SE  

(in millions of 

t) 

Upper SE  

(in millions of 

t) 

Mean vulnerable 

organic soil carbon 

stock (t km-2) 

Lower SE  

(t km-2) 

Upper SE  

(t km-2) 

Oceania 371.69 124.64 1223.93 77.71 26.06 255.90 

Asia 313.73 94.94 1114.06 344.30 104.19 1222.65 

North 

America 

273.97 105.35 763.54 79.80 30.69 222.41 

South 

America 

111.32 42.30 313.44 83.04 31.55 233.82 

Africa 3.91 1.65 9.88 20.94 8.14 52.90 

 

Table 2. The total (in millions of tonnes) and mean (in tonnes per km2) vulnerable organic soil carbon stock from wild pig (Sus 

scrofa) soil disturbance across their known non-native distribution organized by continent. The standard errors are derived from the 

model parameters’ standard errors as reported in Table 1.
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Continent Total vulnerable 

organic soil carbon 

stock (in millions of 

t) 

Lower SE  

(in millions of 

t) 

Upper SE  

(in millions of 

t) 

Mean vulnerable 

organic soil carbon 

stock (t km-2) 

Lower SE  

(t km-2) 

Upper SE  

(t km-2) 

South 

America 

1354.40 494.73 195.73 85.77 31.33 195.16 

North 

America 

671.35 266.14 2245.39 73.28 29.05 778.56 

Asia 654.97 206.65 1712.47 227.10 71.65 121.25 

Africa 632.25 250.74 1360.71 44.77 17.75 184.09 

Oceania 419.29 142.82 1819.35 56.73 19.32 198.59 

Europe 79.22 34.23 4017.16 78.99 34.13 254.39 

 

Table 3. The total (in millions of tonnes) and mean (in tonnes per km2) vulnerable organic soil carbon stock from wild pig (Sus 

scrofa) soil disturbance across their predicted expansion distribution organized by continent. The standard errors are derived from 

the model parameters’ standard errors as reported in Table 1. 
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Rank Country Total current 

vulnerable 

organic soil 

carbon stock (in 

millions of t) 

Lower SE  

(in millions of 

t) 

Upper SE 

(in millions of 

t) 

Total predicted 

vulnerable 

organic soil 

carbon stock (in 

millions of t) 

Lower SE  

(in millions of 

t) 

Upper SE  

(in millions of 

t) 

1 Indonesia 259.16 78.34 921.95 434.64 133.16 1521.28 

2 United 

States 

237.55 91.11 663.19 399.36 158.38 1079.52 

3 Papua New 

Guinea 

199.24 56.96 752.97 199.28 56.97 753.08 

4 Australia 133.00 53.36 354.50 162.71 66.05 428.68 

5 Brazil 59.95 23.26 165.09 569.07 212.30 1633.12 

6 New 

Zealand 

39.44 14.33 116.46 39.46 14.33 116.50 

7 Philippines 30.61 9.47 105.96 64.05 19.33 227.61 

8 Malaysia 23.96 7.13 86.15 68.30 20.37 244.71 

9 Colombia 22.12 7.99 65.40 215.92 67.89 759.69 

10 Uruguay 16.03 5.80 47.24 16.09 5.82 47.42 

11 Canada 15.63 6.80 38.35 103.00 44.95 251.70 

12 Cuba 9.64 3.49 28.40 9.65 3.49 28.41 

13 Chile 9.33 3.60 25.91 55.66 21.55 155.24 
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14 Dominican 

Republic 

4.75 1.70 14.17 4.75 1.70 14.17 

15 Argentina 3.85 1.64 9.71 92.71 38.37 239.44 

16 Haiti 2.53 0.89 7.64 2.53 0.89 7.64 

17 South Africa 2.17 0.92 5.43 19.09 7.96 48.88 

18 Jamaica 1.42 0.48 4.49 1.42 0.48 4.49 

19 Bahamas 1.24 0.47 3.49 1.25 0.47 3.50 

20 Uganda 0.72 0.31 1.81 9.19 3.87 23.32 

21 Zambia 0.49 0.20 1.24 25.28 10.64 64.09 

22 Puerto Rico 0.47 0.16 1.49 0.47 0.16 1.49 

23 Cameroon 0.27 0.10 0.76 29.73 11.25 84.35 

24 Guadeloupe 0.20 0.07 0.62 0.20 0.07 0.63 

25 Dominica 0.17 0.05 0.54 0.17 0.05 0.54 

26 Sudan 0.15 0.06 0.35 19.08 8.36 46.39 

27 Tanzania 0.11 0.05 0.27 21.56 9.15 54.24 

28 Martinique 0.10 0.03 0.31 0.10 0.03 0.31 

29 Saint Lucia 0.08 0.03 0.25 0.08 0.03 0.25 

30 Saint 

Vincent and 

the 

Grenadines 

0.06 0.02 0.19 0.06 0.02 0.19 
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Table 3. The estimated organic soil carbon stock that is vulnerable to wild pig (Sus scrofa) soil disturbance in their current and predicted 

distributions for the top 30 countries. The total organic soil carbon is reported in millions of metric tonnes. The lower and upper standard 

errors are based on model outputs from the fitted parameter estimates’ lower and upper standard errors as reported in Table 1. 


