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Abstract 

Background. Infants with early onset of otitis media have greater risk of recurrent and chronic infec-

tions that can affect language and development. Diagnostic tools able to quickly and accurately identify 

middle ear pathology early in infancy could help to facilitate timely intervention for these children. 

Wideband acoustic immittance (WAI) is an emerging technology for assessing middle ear function 

with significant advantages over established clinical tests such as tympanometry. WAI does not require 

pressurization of the ear canal, and is a high-resolution test, measuring middle ear function over a wider 

frequency range than is possible with tympanometry. Preliminary studies in infants have shown prom-

ising results, but further research assessing the diagnostic performance of WAI is needed. Also, the 

large amount of data generated by WAI can make results difficult to interpret. Research into suitable 

quantitative techniques to analyse results is still in its infancy. Prediction models are an attractive 

method for analysis of multivariate data as they can provide individualized probabilities that an infant 

has middle ear dysfunction. A clinically useful prediction model must be able to accurately discrimi-

nate between normal ears and those with middle ear dysfunction, and be well calibrated (i.e., give 

accurate predictions). However, the number of variables generated by WAI can cause issues with 

overfitting when developing multivariate models. An overfitted model will accurately describe the data 

it was developed on, but is likely to perform poorly when applied to new samples. Some form of data 

reduction or penalization is therefore necessary when modelling WAI. Another issue with developing 

WAI models is that there are substantial maturational effects on WAI through infancy that need to be 

controlled for. This can be achieved by either developing models for specific age groups (e.g., a model 

specifically for neonates), or by controlling for the effect of age by including interactions between age 

and WAI variables in a model, or by only using developmentally stable regions as predictor variables.  

Objective. The aim of this work was to investigate the diagnostic performance of WAI in infants by 

developing predictive models. Data reduction strategies such as selecting predictors based on prior 

research and principal component analysis were used to increase the likelihood that models would 

generalize to new samples. The effect of age was initially accounted for by developing age-specific 

models for neonates, 6-month infants, and 12-month infants (Chapters 2, 3 and 4, respectively). Longi-

tudinal developmental effects on WAI through infancy were then investigated in Chapter 5, and this 

knowledge was used to develop a model controlling for the effect of age through infancy (6 to 18 

months) (Chapter 6, Study 1). The neonate model was assessed for generalizability by applying the 

model to results from a new sample of infants (Chapter 6, Study 2)  
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Methods. Tympanometry, distortion product otoacoustic emissions (DPOAEs) and WAI were meas-

ured in 753 neonates, and longitudinally in 357 infants who attended follow up appointments at around 

6, 12 and 18 months of age. High-frequency (1000-Hz) tympanometry was measured in neonates and at 

6 months, and 226-Hz tympanometry at 12 and 18 months. Tympanometry and DPOAEs were used to 

assess middle ear function of infants at each test session. Predictive models were developed for specific 

age groups through infancy: neonates, 6-, and 12-months (Chapters 2, 3 and 4, respectively), and 

longitudinal developmental effects on WAI through infancy were investigated (Chapter 5). A model 

controlling for the effect of age was developed for use in infants aged 6- to 18-months (Chapter 6, 

Study 1). The neonate model was applied to a new sample of 124 neonates to assess how well it 

generalized to new infants (Chapter 6, Study 2). Performance of the models was assessed with the c-

index and calibration curves. Models were internally validated using bootstrap resampling to correct for 

bias (overfitting) and/or data from the opposite ears of subjects.  

Results. The bias-corrected c-index results of the neonate, 6-month, 12-month, and 6- to 18-month 

models were 0.85, 0.87, 0.91 and 0.87, respectively. The c-index of the neonate model when applied to 

the new sample was 0.84. Calibration was satisfactory for all models.  

Discussion. The developed models accurately identified middle ear dysfunction in infants. The models 

were carefully fitted and internally validated, to increase the likelihood that they will generalize to new 

samples. The neonate model did effectively generalize to a new sample, which indicates that the 

strategies employed to minimize overfitting were effective. There were large developmental effects on 

WAI measurements, and this knowledge was used to develop a model that controlled for maturational 

effects through infancy. The models have potential applications in both screening and diagnostic 

settings. In a screening context, predictions could be used to set a referral threshold sensitive to the 

costs associated with true, and false positive referrals, that is intuitive and easy to apply. In a diagnostic 

setting, predicted probabilities could be used in conjunction with graphical depictions of WAI for 

individualized diagnoses of conductive dysfunction. Further research validating, updating, and as-

sessing the clinical impact of the models is warranted.  
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Chapter 1. Introduction 

1.1 Overview 

Otitis media, an inflammation of the middle ear, is one of the most common conditions of infancy 

(Thomas & Brook, 2014). Early intervention is vital, as early onset of otitis media is associated with 

recurrent and chronic conditions that can affect language and development (Corbeel, 2007; 

Damoiseaux, Rovers, Van Balen, Hoes, & de Melker, 2006; Karma, Perälä, & Kuusela, 1989b). Early 

intervention requires timely diagnosis, but identifying this often asymptomatic condition in infants 

remains a challenge. Tests that have been developed and validated for use in older children have 

significant limitations in infants (Aithal, Kei, Driscoll, & Khan, 2013). Pneumatic otoscopy is difficult 

and unreliable in infants with accuracy varying widely between otoscopists (Chianese et al., 2007; 

Smith et al., 2006). Tympanometry using a low-frequency (226 Hz) probe tone (LFT) is inaccurate in 

young infants, and some large-scale studies using stringent reference standards such as otomicroscopy 

and myringotomy have found poor sensitivity in older infants (Hoffmann et al., 2013; Palmu & 

Syrjänen, 2005). High-frequency tympanometry (HFT) is more accurate than LFT in young infants but 

has poor sensitivity in neonates (Margolis, Bass-Ringdahl, Hanks, Holte, & Zapala, 2003; Swanepoel et 

al., 2007). Other available clinical tests such as acoustic stapedial reflexes (ASR) and auditory brain-

stem response (ABR) also have significant limitations for diagnosing otitis media in infants. ASR 

requires the subject to remain completely still which is rarely possible when testing infants, and ABR 

testing is very time consuming and requires significant expertise. There remains the need for a quick 

and accurate diagnostic tool for assessing middle ear function in infants.  

Wideband acoustic immittance (WAI) is an innovative, high-resolution test of middle ear function 

that is quick and easy to use. Initial studies investigating the accuracy of WAI in infants have shown 

promising results, but large-scale studies have only been undertaken in neonates, using evoked otoa-

coustic emissions (EOAEs) as the reference standard (Hunter, Feeney, Miller, Jeng, & Bohning, 2010; 

Keefe, Gorga, Neely, Zhao, & Vohr, 2003a; Keefe, Zhao, Neely, Gorga, & Vohr, 2003b; Sanford et al., 

2009). Used in isolation as a reference test, EOAEs may not accurately reflect the status of the conduc-

tive pathway as they are a test of inner, rather than middle ear function. Passing an EOAE test does not 

necessarily rule out conductive problems, as they have been recorded in ears of neonates, infants and 

children with known middle ear dysfunction (Aithal, Kei, Driscoll, Khan, & Swanston, 2015; Amedee, 

1995; Doyle, Burggraaff, Fujikawa, Kim, & Macarthur, 1997; Driscoll, Kei, & McPherson, 2001; 

Margolis et al., 2003). Further research is needed in a large sample of neonates using a more stringent 

reference standard to determine the diagnostic performance of WAI. There is a dearth of evidence 
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about the diagnostic performance of WAI in infants outside of the neonatal period. Although prelimi-

nary studies in infants have reported strong performance (Ellison et al., 2012; Prieve, Vander Werff, 

Preston, & Georgantas, 2013b), more research is needed in this age group, as WAI could be a valuable 

tool for identification of middle ear pathology in infancy.  

1.2 Otitis media in infants 

1.2.1 Definitions 

Lack of consensus regarding definitions and diagnostic markers is a major issue in otitis media re-

search. A study that surveyed 165 physicians found 147 different sets of diagnostic criteria for acute 

otitis media (Hayden, 1981). Lack of standardization has caused difficulties in accurately estimating 

the incidence and prevalence of otitis media in Australia (Kong & Coates, 2009). Making comparisons 

between studies is often difficult due to differences in definitions, diagnostic methods and diagnostic 

criteria (Brennan-Jones et al., 2014; Kværner, Nafstad, Hagen, Mair, & Jaakkola, 1997). For example, 

in various studies, recurrent otitis media is defined as at least three episodes of otitis media in six or 

twelve months, at least three episodes in two to three years, or at least six in five years (Harsten, 

Prellner, Heldrup, Kalm, & Kornfält, 1989).  

Acute otitis media is an acute infection of the middle ear accompanied by middle ear effusion. 

Acute otitis media can occur with fever, ear pain and irritability although it is often asymptomatic in 

infants (Casselbrant & Mandel, 2014). Recurrent acute otitis media refers to either three episodes of 

acute otitis media in six months or four in twelve months (Qureishi, Lee, Belfield, Birchall, & Daniel, 

2014). Otitis media with effusion is a condition where middle ear effusion is present without acute 

infection (Rovers, 2008). Chronic otitis media with effusion refers to otitis media with effusion that 

persists longer than three months. Chronic suppurative otitis media is a discharging perforation of the 

eardrum that persists for longer than six weeks (Mahadevan et al., 2012). Recurrent otitis media is at 

least three episodes of otitis media in six months or four in twelve months with the type of otitis media 

unspecified. Chronic otitis media is otitis media that persists for greater than three months with the type 

unspecified.  

In this thesis “otitis media” is used as a general term encompassing both acute otitis media and oti-

tis media with effusion, and “conductive condition”, refers generally to conditions affecting the 

outer/middle ear.  “Neonates” refers to children under 4 weeks old and “infants” to children under 2 

years old. “Young infants” denotes children under 6 months old and “older children” refers to children 

over 2 years old.  
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1.2.2 Pathology of otitis media in infants 

Otitis media is a multifactorial disease resulting from the interaction between the Eustachian tube, 

infection, the immune system and inflammatory responses (Allen, Manichaikul, & Sale, 2014; Lee, 

Kim, & Nguyen, 2013). Maturational factors play an important role in the pathogenesis of otitis media 

in infants. The ear is not fully mature at birth with development continuing until around 9 years of age. 

Significant development occurs over the first year of life with most rapid change in the first few 

months (Calandruccio, Fitzgerald, & Prieve, 2006; Kei, Sanford, Prieve, & Hunter, 2013). The bony 

portion surrounding the inner two-thirds of the ear canal is not fully formed until approximately 12 

months of age which causes the ear canal of young infants to be highly compliant as it is completely 

surrounded by soft tissue (Baldwin, 2006; Wilson, 2012). Ear canal diameter and length increase, the 

size of the middle ear increases, ossicular bone density changes, and orientation of the tympanic 

membrane changes as the ear matures (Baldwin, 2006; Calandruccio et al., 2006; Sanford & Feeney, 

2008). The infant Eustachian tube functions less efficiently than that of adults. It is shorter, wider and 

more flexible. It closes more slowly than that of adults and is almost horizontal, with an inclination of 

approximately 10 degrees. The Eustachian tube continues to develop over the first seven years of life, 

becoming longer and increasing in inclination to around 45 degrees (Casselbrant & Mandel, 2014; Kei 

et al., 2013).  

The Eustachian tube regulates pressure, protects and clears secretions from the middle ear 

(Corbeel, 2007). It equilibrates the middle ear to atmospheric pressure by intermittently opening during 

movements such as swallowing, chewing and yawning (Casselbrant & Mandel, 2014). The immature, 

inefficient infant Eustachian tube leaves infants susceptible to Eustachian tube dysfunction, an inflam-

matory response that obstructs the Eustachian tube causing negative pressure to develop in the middle 

ear (Corbeel, 2007). Eustachian tube dysfunction often precedes otitis media. The negative middle ear 

pressure results in effusion and aspiration of pathogens into the middle ear. These secretions are then 

unable to be discharged because of the impaired function of the Eustachian tube (Cunningham, 

Guardiani, Kim, & Brook, 2012; Gould & Matz, 2010). 

Viral and bacterial infection play a central role in the pathology of otitis media. Upper respiratory 

tract infection often precedes otitis media as it  leaves the middle ear vulnerable to inflammation and 

infection (Pichichero, 2013). Otitis media has a cyclical peak coinciding with peak upper respiratory 

tract infection season (Gould & Matz, 2010). Chonmaitree et al. (2008) found that over 60% of upper 

respiratory tract infections in 6-month- to 3-year-old children were complicated by otitis media. Upper 

respiratory tract infection causes Eustachian tube dysfunction and creates an environment susceptible to 
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bacterial infection (Gould & Matz, 2010; Rovers, 2008). The most common viruses associated with 

otitis media are respiratory syncytial viruses, parainfluenza, influenza, enteroviruses and adenoviruses 

(Corbeel, 2007; Gould & Matz, 2010).  

Bacterial colonization of the nasopharynx is the most significant factor leading to otitis media 

(Pelton & Leibovitz, 2009). Bacteria can be found in 50% to 90% of middle ear effusion samples 

(Harmes et al., 2013; Taylor et al., 2012). Infants are especially susceptible to colonization due to 

immaturity of the Eustachian tube and immune system (Pelton & Leibovitz, 2009; Pukander, Luotonen, 

Sipilau, Timonen, & Karma, 1982). Otitis media is caused when bacteria from the nasopharynx invade 

the middle ear (Lee et al., 2013). Traditionally, the dominant pathogen has been Streptococcus pneu-

moniae followed by nontypeable Haemophilus influenzae, and Moraxella catarrhalis. However, the 

bacterial landscape has changed since the introduction of the pneumococcal conjugate vaccine circa 

2000 resulting in nontypeable Haemophilus influenzae becoming the dominant pathogen and an 

increase in Moraxella catarrhalis, Staphylococcus aureus and strains of Streptococcus pneumoniae not 

covered by the pneumococcal conjugate vaccine. The 13-valent pneumococcal conjugate vaccine 

introduced in 2010 may further change the bacterial landscape of otitis media (Harmes et al., 2013; 

Thomas & Brook, 2014). 

Amniotic fluid plays an important role in the development of neonatal otitis media. Many neonates 

are born with a conductive condition due to vernix in the outer ear and residual mesenchyme and 

amniotic fluid in the middle ear. Balkany, Berman, Simmons, and Jafek (1978) found that the ear canal 

of neonates younger than 24 hours old were at least partially occluded by vernix caseosa, a waxy 

substance that coats the skin of newborns. Cavanaugh (1987) reported that vernix obscured view of the 

tympanic membrane in 56% of 1-day-old neonates which reduced to 24% by day 2 and 19% by day 3. 

Doyle et al. (1997) found that vernix occluded 13% of ears in neonates aged 5 to 120 hours (mean = 24 

hours). The middle ear is filled with mesenchyme during foetal development and redistribution is 

complete between 8 foetal months and 13 postnatal months (Guggenheim, Clements, & Schlesinger, 

1956; Piza, Northrop, & Eavey, 1998; Wolff, 1934). Amniotic fluid fills the middle ear during preg-

nancy which clears postnatally (De Sa, 1973; Eavey, 1993; Priner, Freeman, Perez, & Sohmer, 2003). 

Roberts et al. (1995) found effusion in 100% of ears at 3 hours of age which resolved in 73% to 92% of 

neonates by the third day of life. Jaffe, Hurtado, and Hurtado (1970) found that 83% of ears were 

aerated by the second day of life. Stuart, Yang, and Green (1994) concluded that conductive hearing 

loss in the first 2 days of life was due to fluid in the middle ear and Kok, Van Zanten, and Brocuar 

(1992) attributed improvement in transient evoked otoacoustic emissions (TEOAEs) over the first days 

of life to the clearing of amniotic fluid. The process of vernix, mesenchyme and amniotic fluid clearing 
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from the outer and middle ear are a part of normal development, but persistent amniotic fluid can cause 

neonatal otitis media, a foreign-body type inflammation which creates granulation tissue, obstructing 

the pathways of attic aeration and middle ear clearance (Palva, Northrop, & Ramsay, 2001; Syggelou, 

Fanos, & Iacovidou, 2011). Neonatal otitis media can predispose children to recurrent otitis media 

throughout infancy (Palva, Johnsson, & Ramsay, 2000; Syggelou et al., 2011). 

1.2.3 Disease burden 

1.2.3.1 Epidemiology  

Otitis media is one of the most common childhood conditions, affecting almost all children at least 

once by the time they reach school age (Casselbrant & Mandel, 2014; Harmes et al., 2013). It is a 

disease of infancy most prevalent in children under 2 years, with peak incidence from 6 to 18 months 

of age (Alho, Koivu, Sorri, & Rantakallio, 1991; Casselbrant, Mandel, Kurs-Lasky, Rockette, & 

Bluestone, 1995; Engel, Anteunis, Volovics, Hendriks, & Marres, 1999; MacIntyre et al., 2010; 

Paradise et al., 1997; Teele, Klein, Rosner, & the Greater Boston Otitis Media Study Group, 1989; 

Todberg et al., 2014; Wright, McConnell, Thompson, Vaughn, & Sell, 1985). Otitis media incidence 

declines after infancy with a secondary peak at 5 to 6 years of age when children enter school (Teele et 

al., 1989; Zielhuis, Rach, Bosch, & Broek, 1990). Ten to 17 percent of infants suffer from recurrent 

otitis media in the first year of life (Kero & Piekkala, 1987; Teele et al., 1989). These are a population 

of interest because they are at risk of speech and language delay as they spend a greater period of time 

with hearing loss.  

Recent research has found a decline in otitis media diagnoses in developed countries. It is estimat-

ed that in the United States otitis media prevalence in infants has declined by 20%, and in Canada, 

prevalence in 2- to 3-year-old children has decreased from 26% to 13% (Fortanier et al., 2014; 

Hoffman et al., 2013; Marom et al., 2014; Taylor et al., 2012). Factors contributing to decrease in 

prevalence estimates include the introduction of the pneumococcal conjugate vaccine, increased uptake 

of a “watchful waiting” approach to otitis media management by parents resulting in less General 

Practitioner (GP) visits (and therefore less diagnoses), stricter diagnostic criteria being used by GPs, 

children being less exposed to tobacco smoke, and introduction of the influenza vaccine (Taylor et al., 

2012). 

In Australia, it is estimated that 73% of infants will have at least one episode of otitis media in the 

first year of life (Mahadevan et al., 2012). Ear problems are the fourth most common issue managed by 

GPs, and otitis media accounts for 23% of all antibiotics provided to children (Gunasekera et al., 2007). 

Insertion of tympanostomy tubes for management of recurrent or chronic otitis media with effusion is 
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the second most common procedure performed in hospital on children (Kong & Coates, 2009). In 2003, 

there were an estimated 1,174,267 cases of otitis media in Australia with 68% of these occurring in 

children under 14 years old. Australian Indigenous children suffer a greater burden of otitis media with 

prevalence rates among the highest in the world. Morris et al. (2005) found otitis media was almost 

universal in 6- to 18-month-old Indigenous infants. Otitis media in Indigenous children is also less 

likely to resolve spontaneously and more likely to progress to chronic disease (Daly et al., 2010; Leach, 

1999; Mahadevan et al., 2012; Yiengprugsawan, Hogan, & Strazdins, 2013).  

Because of the extraordinarily high rate of otitis media in Indigenous children, research efforts in 

Australia have focused on this population. There is a lack of evidence about otitis media prevalence in 

the general population with only three studies investigating otitis media prevalence in the general 

population of Australia since 1980. Lehmann et al. (2008) followed 180 non-Indigenous children from 

birth to 2 years of age from 1999 to 2005 in Western Australia. Otitis media was diagnosed by LFT and 

at least one otology consultation (a limitation being that LFT was used in infants from three months of 

age). They found that prevalence peaked at 40% in 10- to 14-month-old infants and reduced to 28% by 

20 to 24 months of age. The authors concluded that in the non-Indigenous population, prevalence was 

comparable to studies from other developed counties. Brennan-Jones et al. (2014) reported on a cohort 

of 2280 children born in Western Australia between 1989 and 1991. Otitis media was diagnosed by 

parental report supplemented by otoscopy. Prevalence of recurrent otitis media (≥3 episodes of otitis 

media in the first 3 years of life) was 26.8%, and severe recurrent otitis media (≥8 episodes) was 5.5%. 

Yiengprugsawan et al. (2013) analysed data collected as a part of the Longitudinal Study of Australian 

Children, a large Australia-wide cohort of 4242 children born in 2003 to 2004, following them from 

birth until 7 years of age (as well as a cohort of older children). They found a peak prevalence of 

“ongoing” ear infections of 5.4% in 2- to 3-year-olds, which could include recurrent or chronic otitis 

media. This figure is lower than the recurrent otitis media prevalence at 3 years of age reported by 

Brennan-Jones et al. (2014), but very close to the severe recurrent otitis media figure they reported of 

5.5%. However, the question in the Longitudinal Study of Australian Children questionnaire used by 

Yiengprugsawan et al. (2013) was too general to make meaningful comparisons between the studies. 

An important consideration is that Yiengprugsawan et al. (2013) collected data after the introduction of 

the pneumococcal conjugate vaccine which is known to have lowered otitis media prevalence. Also, the 

Longitudinal Study of Australian Children only used parent-reported measures, which may have 

underestimated prevalence of an often asymptomatic condition (Zielhuis et al., 1990). 
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1.2.3.2 Complications and sequelae 

Although usually self-resolving, otitis media can progress to more severe forms of disease that can 

cause disability and even death. It is estimated that approximately 21,000 people die each year world-

wide due to complications from otitis media, mostly due to brain abscess and meningitis (Monasta et 

al., 2012). While these conditions do not often lead to deaths in developed countries, complications 

from otitis media can still be significant, and include serious conditions such as chronic suppurative 

otitis media, cholesteatoma and mastoiditis. Conductive hearing loss is the most common complication 

of otitis media in infants and can go on to affect language, auditory processing, learning, and behav-

iour.  

Tympanic membrane perforation is one of the most common complications of otitis media. The 

perforation may be either acute or chronic and can be accompanied by otorrhea (Bluestone & Klein, 

2007). A large perforation can cause significant conductive hearing loss (Klein, 2000). Over 87,000 

children experienced tympanic membrane perforation as a result of otitis media in Australia in 2008 

(Mahadevan et al., 2012). This condition is much more common in Indigenous children occurring in 

14% and 40% by 6 and 18 months of age, respectively (Morris et al., 2005).  

Otitis media can progress to chronic suppurative otitis media, a more serious form of ear disease 

that affects over 60,000 children in Australia each year (Kong & Coates, 2009). It is much more 

common in Indigenous children affecting 15% by 30 months of age (Morris et al., 2005). Chronic 

suppurative otitis media has associated conductive hearing loss in 60% of cases, usually more severe 

than the degree of loss typically caused by otitis media (Mahadevan et al., 2012). Without treatment, 

chronic suppurative otitis media can progress to more severe forms of disease such as cholesteatoma or 

mastoiditis (Bluestone & Klein, 2007). Cholesteatoma is a growth in the middle ear or mastoid sinus 

that occurs as a result of chronic otitis media that usually needs surgical management (Bluestone & 

Klein, 2007; Lee et al., 2013). It can cause erosion of the ossicles leading to permanent conductive 

hearing loss. Mastoiditis is an infection of the mastoid periosteum and air cells, caused by infection 

spreading from the middle ear to the mastoid structures (Lee et al., 2013; Qureishi et al., 2014). Over 

200 children under 14 years of age in Australia suffer from this disease each year (Mahadevan et al., 

2012). It can occur as a complication of either acute or chronic otitis media, and is a serious condition 

that can lead to meningitis or brain abscess without treatment (Bluestone, 1998; Mahadevan et al., 

2012).  

Otitis media is the most common cause of balance problems in children and can have lasting ef-

fects even after middle ear effusion has cleared (Bluestone & Klein, 2007; Casselbrant et al., 2000). 
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Labyrinthitis can occur if infection spreads to the inner ear through the round window and can result in 

severe to profound sensorineural hearing loss if untreated (Bluestone & Klein, 2007). Facial paralysis 

can be caused by infection spreading to the facial nerve which comes in close proximity to the middle 

ear. It can be a complication of acute otitis media, chronic suppurative otitis media, or mastoiditis 

(Bluestone & Klein, 2007). Intracranial complications can occur as a result of spread of infection from 

the middle ear and mastoid air cells to the brain meninges (Qureishi et al., 2014). This can lead to 

meningitis or brain abscess which are the main causes of otitis-media-related deaths worldwide 

(Bluestone & Klein, 2007; Monasta et al., 2012). Although rare in developed countries, intracranial 

complications do occur and can be life-threatening (Jung et al., 2013; Penido et al., 2005). Over 200 

children had intracranial complications as a result of otitis media in Australia in 2008 (Mahadevan et 

al., 2012). 

Conductive hearing loss caused by middle ear effusion is the most common complication of otitis 

media in the developed world (Klein, 2000). In Australia, over 350,000 children are affected by transi-

ent conductive hearing loss each year and 15 children will develop a permanent hearing loss as a result 

of otitis media (Hoffman et al., 2013; Kong & Coates, 2009; Mahadevan et al., 2012). Around 50% of 

children with otitis media experience mild conductive hearing loss and 5% to 10% develop a moderate 

loss. The degree of loss is determined by the amount of middle ear effusion (Fria, Cantekin, & Eichler, 

1985; Roberts et al., 2004a). Even a mild conductive hearing loss can cause difficulty hearing soft 

speech sounds (Klein, 2000). Olmsted, Alvarez, Moroney, and Eversden (1964) found that hearing loss 

associated with otitis media persisted for one to six months in 55% of children and for longer than six 

months in 12%. Otitis media is also associated with temporary and permanent sensorineural hearing 

loss (da Costa, Rosito, & Dornelles, 2009; Joglekar et al., 2010). Temporary sensorineural hearing loss 

can be caused by middle ear effusion increasing pressure on the round window of the inner ear 

(Bluestone & Klein, 2007). Permanent sensorineural hearing loss can result from the spread of toxins 

or infection into the inner ear through the round window or from complications such as labyrinthitis, 

chronic suppurative otitis media, and cholesteatoma (Bluestone & Klein, 2007; Klein, 2000). The 

extended high frequencies (10,000 to 20,000 Hz) are most commonly affected because the basal end of 

the cochlea is closest to the round window (Margolis, Rykken, Hunter, & Giebink, 1993; Margolis, 

Saly, & Hunter, 2000). Otitis media has also been linked to hearing problems later in life. An Australi-

an study found that hearing problems in 8- to 9-year-olds were predicted by ear infections at 4 to 5 

years of age (Yiengprugsawan et al., 2013). Childhood otitis media has also been linked to adult 

hearing loss and tinnitus (Aarhus, Tambs, Kvestad, & Engdahl, 2014; Dawes & Welch, 2010).  
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The effect of otitis media on speech and language development has been a controversial area of re-

search (Roberts, Rosenfeld, & Zeisel, 2004b). There are critical periods of language development 

during infancy, a critical period of phonology development occurs from 6 to 12 months of age, and 

complex language develops in the first two years of life (Ruben, 1997). It is thought that infants who 

suffer auditory deprivation due to otitis-media-related hearing loss during a critical period are at risk of 

speech and language delay (Klein, 2000; Ruben, 1997). However, there have been conflicting results in 

the literature with some studies finding an association between otitis media and language development, 

but others not. Keogh et al. (2005) showed that some children are more affected than others which is 

important because even if only a small proportion of children with otitis media are affected, it would 

still be a significant number because otitis media is such a common condition (Bluestone & Klein, 

2007; Klein, 2000). There are also special populations who are more at risk such as Indigenous children 

who typically have more severe otitis media earlier in life than non-Indigenous children (Aithal, 

Yonovitz, & Aithal, 2008; Morris et al., 2009; Williams & Jacobs, 2009).  

A review and meta-analysis in 2004 concluded that typically developing children with otitis media 

may not be at risk of speech and language delays. However, the authors cautioned that most studies in 

the review had used otitis media rather than hearing loss as the independent variable, potentially 

confounding results (Roberts et al., 2004a). They recommended that future research study the impact of 

duration and degree of hearing loss on speech development, rather than number of otitis media epi-

sodes. Two such studies have subsequently been conducted. Serbetcioglu, Ugurtay, Kirkim, and Mutlu 

(2008) found no association between results of a developmental screening test (Denver II) and otitis-

media-related hearing loss. They used a case-control study design with sixteen 3- to 6-year-old children 

with persistent bilateral otitis media with effusion. However, a significant limitation of the study was 

that the children’s hearing was tested when they completed the screening test, not during the earlier 

critical periods of development. In a prospective study that followed children from birth, Zumach, 

Chenault, Anteunis, and Gerrits (2010) found that hearing loss due to otitis media early in life affected 

language development. They showed that hearing loss during infancy affected phoneme perception at 7 

years of age. This is significant as poor phoneme identification and discrimination can cause problems 

understanding speech in background noise which can be problematic in educational contexts such as 

trying to understand the teacher in a noisy classroom.   

Otitis media early in life can also cause auditory processing disorder. Children with spatial pro-

cessing disorder often have history of chronic otitis media, and higher prevalence of spatial processing 

disorder has been found in Indigenous Australian children, likely due to the high burden of otitis media 

in that population (Cameron, Dillon, Glyde, Kanthan, & Kania, 2014). Animal models have demon-
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strated that conductive hearing loss during a critical developmental period has lasting effects on audito-

ry processing capability (Tucci, Cant, & Durham, 1999; Webster, 1984). However, these results cannot 

immediately be generalised to humans because the hearing loss in animal experiments has been greater 

than is typically caused by otitis media (Bluestone & Klein, 2007). Results of studies in human infants 

have been equivocal, but this may be due to the confounding effects of using otitis media as the inde-

pendent variable rather than hearing loss. In a prospective study using hearing loss as the independent 

variable, Zumach, Gerrits, Chenault, and Anteunis (2008) found that hearing loss caused by otitis 

media early in life affected results of speech-in-noise tests at school age. Recently, a study by Graydon, 

Rance, Dowell, and Van Dun (2017) confirmed previous research showing that conductive hearing loss 

early in life has long-term effects on binaural processing (Gravel & Wallace, 1992; Hall, Grose, & 

Mendoza, 1995; Moore, Hartley, & Hogan, 2003; Pillsbury, Grose, & Hall, 1991; Tomlin & Rance, 

2014). In a review, Whitton and Polley (2011) concluded that studies using hearing loss as the inde-

pendent variable consistently find long-term effects on auditory processing consistent with animal 

studies.  

The effects of otitis media on hearing, language and auditory processing can go on to affect educa-

tional outcomes. This has also been controversial, and a review by Roberts et al. (2004a) concluded 

that the evidence was inconclusive. However, a large cohort study found a relationship between early 

otitis media and difficulties with reading and writing in 11- to 18-year-old children (Bennett, Haggard, 

Silva, & Stewart, 2001). An Australian study found poorer reading ability in 6- to 8-year-old children 

with history of otitis media (Winskel, 2006). 

Behavioural issues related to otitis media include restlessness, disobedience, inattention, distract-

edness and limited social interaction (Bluestone & Klein, 2007; Klein, 2000). Children with 

socioeconomically disadvantaged background are more at risk (Paradise et al., 1999). Issues can persist 

throughout childhood. Gouma et al. (2011) found more hyperactivity in 6- to 8-year-old children with a 

history of otitis media compared to their peers and a longitudinal study by Bennett et al. (2001) found 

hyperactivity and inattention affected children with history of otitis media even into the teenage years.  

Otitis media can also affect psychosocial health. A longitudinal Australian study found that recur-

rent otitis media had a long term impact on the psychosocial health of children (Hogan, Phillips, 

Howard, & Yiengprugsawan, 2014). Gouma et al. (2011) reported higher rates of depression in 6- to 8-

year-old children with a history of otitis media compared to their peers. Children with recurrent otitis 

media have poorer quality of life than their healthy peers suffering disturbed sleep, loss of appetite and 

otalgia (Grindler, Blank, Schulz, Witsell, & Lieu, 2014). Otitis media puts extra stress on the family as 
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well due to loss of sleep and financial burden (Barber, Ille, Vergison, & Coates, 2014; Bluestone & 

Klein, 2007).    

1.2.4 The importance of early intervention  

Infants with early onset otitis media are at risk of recurrent and chronic disease (Daly & Giebink, 2000; 

Homøe, Christensen, & Bretlau, 1999; Marchant et al., 1984a), delays in language development 

(Ruben, 1997; Zumach et al., 2010), and auditory processing disorder (Tomlin & Rance, 2014; Villa & 

Zanchetta, 2014). Consequently, early intervention is of high importance. Watchful waiting is an 

appropriate management strategy for older children (Lieberthal et al., 2013), but many guidelines 

recommend immediate antibiotic treatment for acute otitis media in infants. The American Academy of 

Pediatrics recommends this only for infants with bilateral severe acute otitis media (Rovers et al., 

2007), but Hoberman, Ruohola, Shaikh, Tähtinen, and Paradise (2013) suggest this be changed to 

include all infants under 2 years of age with acute otitis media, including unilateral and apparently less 

severe cases. There are issues, however, with using antibiotics for otitis media treatment as it contrib-

utes to antibiotic resistance and can cause side effects such as vomiting, diarrhoea or rash (Tähtinen et 

al., 2011; Thomas & Brook, 2014; Venekamp, Sanders, Glasziou, del Mar, & Rovers, 2015). Inappro-

priate and excessive use of antibiotics for otitis media treatment has been identified as a significant 

contributing factor to antibiotic resistance, as antibiotics are often prescribed even when the diagnosis 

is uncertain due to difficulties diagnosing otitis media in infants (Goossens, Ferech, Vander Stichele, 

Elseviers, & ESAC Project Group, 2005; Klein, 2000; Mahadevan et al., 2012). These issues highlight 

the need for accurate diagnosis of otitis media for targeted use of antibiotics in order to maximize 

benefit but limit harm (Hoberman et al., 2011; Thomas & Brook, 2014).  

1.3 Diagnosing otitis media in infants 

Early detection is essential before intervention can occur but diagnosis of otitis media in infants is 

difficult (Aithal et al., 2013; Karma, Penttilä, Sipilä, & Kataja, 1989a; Lee et al., 2013; Morris et al., 

2009; Syggelou et al., 2011). Signs of ear infection, such as pulling the ear or ear pain are unreliable 

diagnostic markers, as otitis media in infants is often asymptomatic (Baraibar, 1997; Berkun et al., 

2008; Marchant et al., 1986; Marchant et al., 1984a; Zielhuis et al., 1990). Furthermore, the tools that 

have been developed and validated for diagnosis in older children and adults are often inaccurate and 

impractical when used in infants (Aithal et al., 2013). Research has showed that GPs are not confident 

in their otitis media diagnosis 58% of the time in infants under 12 months old (Froom et al., 1990). 

Another study found that accuracy of paediatricians diagnosing otitis media in infants under 2 months 
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of age was under 50% (Berkun et al., 2008). Accurate diagnosis of otitis media early in life is vital, but 

remains a significant challenge.  

1.3.1 Current methods of diagnosis 

1.3.1.1 Myringotomy and medical imaging  

Myringotomy and medical imaging are considered the gold standards for determination of presence or 

absence of middle ear effusion. Myringotomy is a surgical procedure that involves an incision into the 

tympanic membrane to sample or remove effusion. It is often performed in conjunction with tympanos-

tomy tube insertion. However, myringotomy may not be a perfect gold standard, as use of nitrous oxide 

during anaesthesia can increase pressure in the middle ear and cause fluid to drain through the Eusta-

chian tube prior to surgery (Nozza, Bluestone, Kardatzke, & Bachman, 1992; Sassen, Aarem, & Grote, 

1994). Use of myringotomy or medical imaging as gold standards in otitis media research is limited to 

clinical studies, as it is unethical to perform these procedures in healthy infants (Aithal, Aithal, Kei, & 

Driscoll, 2012; Hoffmann et al., 2013). 

1.3.1.2 Otoscopy and otomicroscopy 

Otoscopy involves visualisation of the tympanic membrane under magnification. It can be performed 

under pressurised or non-pressurised conditions. Non-pressurised otoscopy is not recommended as the 

primary method of otitis media diagnosis as it is unable to accurately identify middle ear effusion 

(Rosenfeld et al., 2004; Sassen et al., 1994; Takata et al., 2003). Pneumatic otoscopy changes the air 

pressure in the ear canal with an insufflation bulb while visualising the tympanic membrane. It is more 

accurate in identifying middle ear effusion than non-pressurised otoscopy, and has been recommended 

as the primary method for diagnosing otitis media in older children (Chianese et al., 2007). Pneumatic 

otoscopy diagnostic accuracy studies that have included infants using myringotomy as the gold stand-

ard have found sensitivity ranging from 68% to 93% and specificity from 58% to 81% (Cantekin et al., 

1979; Finitzo, Friel-Patti, Chinn, & Brown, 1992; Nozza, Bluestone, Kardatzke, & Bachman, 1994; 

Rogers, Boseley, Adams, Makowski, & Hohman, 2010). However, the age range of participants in 

these studies was wide and most of the subjects were older children, not infants. There have been no 

studies evaluating the test performance of pneumatic otoscopy in neonates.  

A major limitation of pneumatic otoscopy is that accuracy differs between testers (Marchant et al., 

1986). The amount of pressure applied to the ear canal varies widely because it is not standardised, and 

interpretation is subjective (Cavanaugh, 1989). The main factor in diagnostic accuracy is the skill level 

of the otoscopist (Rogers et al., 2010). Pneumatic otoscopy is accurate when a highly trained otologist 
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performs the test, but the accuracy decreases when GPs, paediatricians, registrars or nurses are testing 

(Froom et al., 1990; Pichichero & Poole, 2001; Rogers et al., 2010; Sorrento & Pichichero, 2001). 

Also, pneumatic otoscopy relies on clear visualisation of the tympanic membrane. Debris in the ear 

canal such as wax or vernix needs to be removed prior to testing but this is a difficult task in infants 

(Aithal et al., 2013; Baraibar, 1997; Chianese et al., 2007; Sakran et al., 2006; Syggelou et al., 2011; 

Turner et al., 2002). Available research reports pneumatic otoscopy as unreliable and difficult to 

perform in young infants due to the small compliant ear canals changing shape with insufflation 

(Marchant et al., 1986; Marchant et al., 1984a). The horizontal orientation of the tympanic membrane 

makes clear visualisation difficult, and even when visualised clearly, landmarks are difficult to interpret 

(Aithal et al., 2012; Baldwin, 2006; Iacovidou, Falaena, Alexaki, & Nika, 2010; Syggelou et al., 2011). 

Even healthy eardrums look opaque and are less compliant than those of older children leading to false 

positive diagnoses (Baldwin, 2006; Berkun et al., 2008; Cavanaugh, 1987; Marchant et al., 1986; 

Marchant et al., 1984a; Roberts et al., 1995; Syggelou et al., 2011). Furthermore, infants can find the 

procedure distressing and become uncooperative, further increasing difficulties in the assessment 

(Baraibar, 1997).  

Otomicroscopy examines the eardrum under a binocular microscope. It is more accurate than 

pneumatic otoscopy for otitis media diagnosis in older children (Lee, 2010). Diagnostic otomicroscopy 

studies that have included infants have found sensitivity ranging from 0.88 to 0.94 and specificity from 

0.89 to 0.94 (Rogers et al., 2010; Young, Ten Cate, Ahmad, & Morton, 2009). Level of training is an 

important factor in accuracy with consultant doctors being more accurate than registrars. Limitations of 

otomicroscopy are that the test requires a highly trained otologist and expensive equipment (Lee, 

2010). Even for otologists, the procedure is difficult in young infants because of the tiny structures of 

the ear and need for cooperation (Hoffmann et al., 2013). No studies have investigated the feasibility or 

diagnostic accuracy of otomicroscopy in young infants.  

1.3.1.3 Tympanometry 

Tympanometry is a test of middle ear function that measures acoustic admittance (Y) as a function of 

pressure in the ear canal. The resulting graph is called a tympanogram. Y is a complex measurement 

with a real part, conductance (G) and an imaginary part, susceptance (B). A previous limitation of 

tympanometry was that Y was measured in arbitrary units in the first generation of instruments. Thus, 

measurements were not comparable between subjects and interpretation was limited to qualitative 

pattern matching (Smith et al., 2006). The qualitative method of interpretation classifies a tympano-

gram as type A (normal) if there is a single peak close to ambient air pressure (~0 daPa), type C if there 



 

 14 

is a peak at negative pressure (suggestive of Eustachian tube dysfunction) and type B if there is no peak 

(indicating middle ear effusion) (Jerger, 1970). The next generation of equipment had automatic gain 

control allowing measurement in absolute physical units (mmho). This allowed for direct comparison 

between subjects and studies. As well as qualitative pattern matching, tympanograms could now be 

characterised by tympanometric peak pressure, peak compensated admittance magnitude (YTM), ear 

canal volume, and tympanometric width (Shanks & Shohet, 2009). Initially, LFT using a 220/226 Hz 

probe tone was found to be clinically useful for detecting middle ear effusion in children and adults 

(Jerger, 1970; Lidén, 1969). It soon became apparent, however, that LFT was inaccurate in infants 

under 7 months old, with high rates of false positives and false negatives (Alaerts, Luts, & Wouters, 

2007; Baldwin, 2006; Paradise, Smith, & Bluestone, 1976). Research using a 660/678 probe tone 

reported increased accuracy in detecting middle ear disorders, but often resulted in tympanograms with 

complex notching patterns that were difficult to interpret. Results of HFT studies using a 1000 Hz 

probe tone were easier to interpret, and more accurate than studies using 660/678 tympanometry 

(Alaerts et al., 2007; Baldwin, 2006).  

There have been various methods proposed for classifying HFT results. Baldwin (2006), used a 

qualitative method based on Marchant et al. (1986) where a line is drawn between the Y values at the 

positive and negative pressure extremes. A tympanogram is classified as normal if a peak extends over 

the line, otherwise abnormal. Other approaches have recommended a combination of qualitative and 

quantitative measures to interpret HFT results. The morphology plus magnitude compensated approach 

classifies a tympanogram as normal if there is a peaked trace and YTM compensated at +200 daPa (Y+200) 

lies within a predefined normative range. Alternatively, YTM  can be compensated at −400 daPa (Y-400) 

but this can be problematic as the ear canals of young infants collapse before reaching this point (Kei et 

al., 2003; Kei & Mazlan, 2012b; Margolis et al., 2003). The morphology plus component compensated 

approach is similar but the component parts of Y (G and B) are each compensated separately. It has 

been suggested that this approach may better separate normal from diseased ears because it results in 

larger values (Alaerts et al., 2007; Calandruccio et al., 2006; Kei & Mazlan, 2012b; Kei, Mazlan, 

Hickson, Gavranich, & Linning, 2007; Mazlan et al., 2009b). Which method is most accurate in 

identifying middle ear effusion is an area of ongoing research (Kei & Mazlan, 2012b). 

Table 1.1 summarises studies investigating the diagnostic accuracy of tympanometry that have in-

cluded infants. HFT studies that have included neonates have all reported a high specificity but 

sensitivity has been variable. HFT studies where the sample consisted entirely of neonates have all 

found poor sensitivity. However, only DPOAEs were used as the reference standard in these studies 

(Margolis et al., 2003; Swanepoel et al., 2007). Research using a stronger reference standard (otomi-
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croscopy or ABR) have shown much better sensitivity but these studies have had a broader age range, 

including young infants as well as neonates (Baldwin, 2006; Hoffmann et al., 2013). HFT studies 

including young infants 2 weeks to 6 months old have all reported high sensitivity and specificity 

(Baldwin, 2006; Hoffmann et al., 2013; Zhiqi, Kun, & Zhiwu, 2010). Notably, Baldwin (2006), Prieve 

et al. (2013b) and Zhiqi et al. (2010) reported high accuracy using a strong reference standard (ABR or 

computerised tomography scan). LFT studies in infants older than 6 months have mostly shown satis-

factory test performance with the exception of a study by Hoffmann et al. (2013) who found poor 

sensitivity in the 6- to 9-month age group and Palmu and Syrjänen (2005) who reported sensitivity of 

0.61 in a group of 7- to 10-month-old infants. Most studies of LFT in infants over 9 months old have 

reported good test performance. 

Table 1.1. Diagnostic accuracy studies of tympanometry that have included infants in the sample 

Study Age n f Reference standard Se Sp AUC 

Margolis et al. (2003)  15 to 76 h 87 1000 DPOAE 0.50 0.91  

Sanford et al. (2009)  9 to 58 h 230 1000 DPOAE 0.36 0.91 0.75 

Swanepoel et al. (2007)  1 to 28 d 143 1000 DPOAE 0.57 0.95  

Hoffmann et al. (2013)  <3 m 464 1000 Otomicroscopy 0.70 0.89  

Baldwin (2006)  2 to 21 w 211 1000 TEOAE and ABR (AC & BC) 0.99 0.89  

Hoffmann et al. (2013)  3 to 6 m 313 1000 Otomicroscopy 0.85 0.89  

Zhiqi et al. (2010)  42 d to 6 m 52 1000 CT 0.98 0.98  

Prieve et al. (2013b) 3 to 36 w 60  1000 Tone-burst ABR (AC & BC)    

Hoffmann et al. (2013) 6 to 9 m 99 226 Otomicroscopy 0.43 0.75  

Hoffmann et al. (2013)  6 to 9 m 99 1000 Otomicroscopy 1.00 0.93  

Palmu, Puhakka, Rahko, and 
Takala (1999)  

7 to 11 m 58 226 Myringotomy or PO 0.79 0.99  

Palmu and Syrjänen (2005)  7 to 10 m 630 226 Myringotomy or PO 0.61 0.99  

Hoffmann et al. (2013)   9 to 12 m 38 226 Otomicroscopy 0.88 0.75  

Chianese et al. (2007)  6 to 24 m 786 226 PO   0.83 

Smith et al. (2006)    6 m to 3 y 3686 226 PO   0.84 

Sassen et al. (1994)  5 m to 11 y 266 226 Myringotomy 0.83 0.63  

Finitzo et al. (1992)  6 m to 9 y 86 226 Myringotomy 0.90 0.86  

Nozza et al. (1992) 1 to 8 y 61 226 Myringotomy 0.90 0.86  

Nozza et al. (1994)  1 to 12 y 171 226 Myringotomy 0.80 0.82  

Prieve et al. (2013b) reported likelihood ratios (LR) rather than sensitivity, specificity or AUC: LR+ 32.03, LR− 0.073. 
ABR, auditory brainstem response; AC, air conduction; AUC, area under the receiver operating characteristic curve; BC, 
bone conduction; CT, computerised tomography; DPOAE, distortion product otoacoustic emissions; PO, pneumatic 
otoscopy; f, probe-tone frequency; se, sensitivity; sp, specificity; TEOAE, transient evoked otoacoustic emissions. 
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However, there are limitations to using tympanometry as a test of middle ear function. First, tym-

panometry is poor at detecting partial fluid in the middle ear (Palmu & Syrjänen, 2005; Shanks & 

Shohet, 2009). Also, the test requires pressurisation of the ear canal which some infants find distress-

ing. Pressurisation also causes the ear-canal wall to move in young infants. Significant change in ear 

canal volume in response to pressurisation has been recorded in neonates which violates the assumption 

that the ear canal behaves like a rigid-walled cavity (Holte, Cavanaugh, & Margolis, 1990; Prieve et al., 

2013b). Moreover, tympanometry utilizes only simple signal processing strategies which render results 

susceptible to artefact. This can be an issue when testing infants who are prone to move frequently 

during testing (Liu et al., 2008).  

1.3.1.4 Acoustic stapedial reflexes 

The ASR test uses a probe tone to measure changes in Y in response to an activation stimulus (pure-

tone or noise) presented to either the ipsilateral or contralateral ear. ASRs are usually performed at 

tympanic peak pressure, and therefore done in conjunction with tympanometry. In normal ears, the 

stimulus causes the stapedius muscle to contract, stiffening the middle ear system. This typically causes 

Y to decrease, but can also cause an increase through decoupling of the stapes from the inner ear. The 

ASR threshold is the lowest intensity level that the stimulus elicits a reflex. ASRs can be used to assist 

in differential diagnosis of auditory conditions including diagnosis of otitis media (Freyss, Narcy, 

Manac'h, & Toupet, 1979; Kei & Mazlan, 2012a; Marchant et al., 1986; Nozza et al., 1992, 1994). 

Traditionally, a 226 Hz probe tone has been used but researchers have found that using a high-

frequency probe tone (>800 Hz) to be more effective in neonates because the ASR is present more 

often in normal ears at lower activation levels (De Lyra-Silva, Sanches, Neves-Lobo, Ibidi, & Carvallo, 

2015; Jacob-Corteletti et al., 2015; Mazlan, Kei, & Hickson, 2009a; Weatherby & Bennett, 1980). An 

activating tone of 2000 Hz or BBN has been recommended for testing neonates (De Lyra-Silva et al., 

2015). 

Diagnostic accuracy studies using myringotomy as the gold standard that have included infants 

have found sensitivity from 0.86 to 0.92 and specificity from 0.52 to 0.85 (Cantekin et al., 1979; Nozza 

et al., 1992, 1994). Nozza et al. (1994) reported that using tympanometry in conjunction with ASRs 

helped to improve specificity from 0.65 to 0.78. As the youngest infants in these studies were 7 to 12 

months old, the test performance for infants younger than 7 months remains unknown.  

There are significant limitations to using ASR for otitis media diagnosis in infants. Results can be 

difficult to interpret, meaning it is not always possible to make a diagnosis (Nozza et al., 1992). Also, 

results are easily contaminated by artefact, testing requires the subject to remain absolutely still and 
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quiet which is often not possible when testing infants. Finally, the test requires loud sounds to be 

presented to the ear which infants can find distressing.   

1.3.1.5 Evoked otoacoustic emissions 

Otoacoustic emissions are low-level sounds produced by non-linear processes in the cochlea that can be 

recorded in the ear canal. Spontaneous otoacoustic emissions only occur in approximately 50% of 

normal-hearing subjects, and as such they are not useful clinically (Prieve & Fitzgerald, 2015). EOAEs, 

however, can be measured in almost all normal-hearing ears and are regularly used clinically in both 

diagnostic and screening contexts. EOAEs can be a useful aid in middle ear assessment as the stimulus 

and resulting emissions need to travel through the middle ear before being measured in the ear canal. 

EOAEs assess cochlear function, but can only be recorded when the middle ear is functioning normal-

ly. Consequently, the absence of EOAEs may be suggestive of middle ear pathology but could also be 

due to sensory dysfunction. The most commonly used EOAEs are TEOAEs and distortion product 

otoacoustic emissions (DPOAEs). TEOAEs are elicited with a click stimulus and DPOAEs are elicited 

through the interaction of two primary tones f1 and f2 (f1 < f2) with corresponding levels L1 and L2. The 

most commonly recorded emission clinically is 2f1 – f2 due to the large emission produced (Prieve & 

Fitzgerald, 2015).  

EOAEs are sensitive to a number of external and middle ear conditions affecting infants. Vernix 

occludes the ear canal in 13% to 28% of neonates in the first two days of life causing a temporary 

conductive hearing loss and TEOAEs to be attenuated (Chang, Vohr, Norton, & Lekas, 1993; Doyle et 

al., 1997; Doyle, Rodgers, Fujikawa, & Newman, 2000). TEAOEs are also reduced in newborn ears 

that have amniotic fluid in the middle ear, a condition that affects up to 50% of newborns and usually 

clears over the first two days of life (Doyle et al., 1997; Doyle et al., 2000). Both TEOAEs and 

DPOAEs are clinically useful in identifying middle ear effusion in infants and children (Choi, Pafitis, 

Herer, Zalzal, & Patel, 1999; Kei, Brazel, Crebbin, Richards, & Willeston, 2007; Yeo, Park, Park, & 

Suh, 2002). Two studies using older children (over 5 years of age) concluded that DPOAEs better 

differentiated between normal and diseased ears (Akdogan & Özkan, 2006; Thakur et al., 2013). The 

quantity of effusion in the middle ear has been shown to be a significant factor in emissions being 

present or absent (Koivunen, Uhari, Laitakari, Alho, & Luotonen, 2000). Animal studies have shown 

that emissions are not affected when fluid only half fills the middle ear, but are eliminated when the 

middle ear is full (Akinpelu, Funnell, & Daniel, 2015; Ueda, Nakata, & Hoshino, 1998). The quality of 

effusion is also an important factor as dense mucoid effusion is more likely to eliminate EOAEs than 

non-mucoid effusion (Amedee, 1995; Tas et al., 2004; Topolska, Hassman, & Baczek, 2000). Ear canal 
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air pressure also affects TEOAEs and DPOAEs, especially at frequencies below 2000 Hz (Naeve, 

Margolis, Levine, & Fournier, 1992; Osterhammel, Nielsen, & Rasmussen, 1993; Plinkert, Bootz, & 

Vossieck, 1994; Plinkert & Plok, 1994; Trine, Hirsch, & Margolis, 1993). A study including children 3 

to 39 months old found that although reduced, TEOAEs were still measureable in ears with negative 

tympanic peak pressure (Prieve, Calandruccio, Fitzgerald, Mazevski, & Georgantas, 2008). 

There is a dearth of evidence regarding the diagnostic accuracy of EOAEs in identification of mid-

dle ear effusion in infants and children. Available research report emissions being present in 0% to 

50% of infants and children with middle ear effusion/chronic otitis media (Amedee, 1995; Koivunen et 

al., 2000; Zhao et al., 2003). A study using 63 children aged 4 to 17 years found TEOAEs to have 

sensitivity of 0.83 and specificity of 0.94 (Koike & Wetmore, 1999). Driscoll et al. (2001) with a 

sample of 940 children aged 5 to 8 years old concluded TEOAEs had a sensitivity of 0.68 and specifici-

ty of 0.90.  

The limitations of using EOAEs in diagnosis of otitis media in infants are that they are sensitive to 

environmental and physiological noise and they are actually a test of inner ear function, they do not test 

the middle ear per se. Although EOAEs are often used as a reference standard for diagnostic accuracy 

studies in neonates, the test performance in this population is unknown.   

1.3.1.6 Tests of hearing acuity 

Tests of hearing acuity such as ABR and visual reinforcement audiometry can be used to determine the 

degree of conductive hearing loss caused by conductive conditions in infants. The ABR is an evoked 

potential useful for estimating hearing sensitivity in subjects either too young, incapable or unwilling to 

be tested by behavioural methods. Automated ABR is commonly used to screen for congenital sensori-

neural hearing loss in newborn hearing screening programs. A neonate passes the test if a response is 

detected in response to an air-conducted click stimulus of ~35 dB nHL (Northern & Downs, 2014). 

Automated ABR is not sensitive to middle ear effusion, and is therefore not recommended for diagno-

sis of conductive conditions in neonates (Aithal, Kei, & Driscoll, 2014a). Doyle et al. (2000) found that 

95% of neonatal ears with effusion passed an automated ABR test. Diagnostic ABR uses click or tone-

burst stimuli to measure air- and bone-conduction thresholds to determine the type and degree of 

hearing loss (Vander Werff, Prieve, & Georgantas, 2009). Diagnostic ABR is the gold standard hearing 

assessment for follow up of neonates who refer from newborn hearing screening (Joint Committee on 

Infant Hearing, 2007). Diagnostic ABR can be used to determine the degree of hearing loss caused by 

conductive conditions in young infants but the test is very time consuming and requires considerable 
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expertise (Aithal et al., 2015). Also, ABR cannot provide information about middle ear status as normal 

ABR results can be obtained in ears with otitis media (Aithal et al., 2012).  

Visual reinforcement audiometry is the gold standard hearing assessment for infants aged 6 months 

onward (Diefendorf, 2015). The test conditions infants to turn their head towards a visual reward 

(typically a puppet or picture) in response to auditory stimuli (usually puretone or narrowband noise). 

Stimuli can be presented either in the sound field as a global test of hearing, or under headphones to 

obtain ear-specific hearing information (Madell, 2014). Bone-conduction testing can be performed if 

the infant tolerates wearing the headband of the transducer. However, ear-specific bone-conduction 

thresholds cannot routinely be obtained as this requires masking noise to be presented to the contrala-

teral ear while the subject listens for the stimuli, a task that is cognitively too complex for infants. 

Limitations of visual reinforcement audiometry are that the test requires two highly-trained testers, 

infants do not always condition to the task, ear-specific air-conduction thresholds are often unable to be 

obtained and ear-specific bone-conduction thresholds cannot usually be obtained. Consequently, the 

use of this test to diagnose middle ear conditions is limited. 

1.3.1.7 Combining diagnostic tests in order to improve diagnostic accuracy 

No single test diagnoses otitis media perfectly, and as noted, all tests have limitations. Therefore, some 

researchers recommend using a battery of tests to improve diagnostic accuracy (Aithal et al., 2015; Kei 

& Zhao, 2012). Cantekin et al. (1979) suggested using a combination of otoscopy and tympanometry 

for diagnosis of otitis media in infants. Nozza et al. (1992) found improved sensitivity when combining 

tympanometry with ASR results, and Nozza et al. (1994) reported improved specificity when combin-

ing tympanometry with either otoscopy or ASR. The limitations of using a battery of tests are that it is 

time consuming, and requires clinicians with significant expertise able to perform and interpret all of 

the tests in the test battery.  

In conclusion, all currently available clinical tests for otitis media diagnosis in infants have signifi-

cant limitations. Pneumatic otoscopy and otomicroscopy have demonstrated high diagnostic accuracy 

in studies that have included at least some infants but these tests require highly skilled clinicians and 

are difficult, unreliable and have not been validated in young infants. The test battery approach may 

improve diagnostic accuracy but this is time consuming and requires significant training and skill 

which limits usefulness in contexts such as screening for otitis media. There remains the need for a 

quick test that is easy to administer and able to accurately diagnose middle ear dysfunction due to otitis 

media in infants. 
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1.3.2 Wideband acoustic immittance: An innovative test of middle ear function  

WAI is an innovative, high-resolution test able to quickly assess middle ear function over a wide 

frequency bandwidth (Feeney et al., 2013; Keefe & Feeney, 2009). WAI is an umbrella term encom-

passing a family of wideband measurements such as pressure reflectance (PR), energy reflectance (R), 

energy absorbance (A), acoustic impedance (Z) and Y. R was introduced by Stinson, Shaw, and Lawton 

(1982) and PR by Hudde (1983). Keefe, Ling, and Bulen (1992) developed a quick, non-invasive 

method of measuring WAI in humans based on a technique for measuring Z in cats described by Allen 

(1986).  
WAI has significant advantages over traditional middle ear measures that may prove important for 

assessment of middle ear function in infants. First, WAI is able to assess middle ear function over a 

greater frequency range than traditional immittance measures. Because R is the ratio of reflected to 

incident energy, it is theoretically insensitive to the location of the probe in the ear canal, and is accu-

rate up to frequencies as high as 8000 to 10000 Hz (Ellison et al., 2012; Liu et al., 2008; Stinson et al., 

1982). In comparison, traditional Y tympanometry cannot test at frequencies above 2000 Hz because 

standing waves become an issue when the wavelength of the probe tone is shorter than the length of the 

ear canal (Keefe & Feeney, 2009; Lilly & Margolis, 2013; Liu et al., 2008; Stinson et al., 1982). 

Secondly, the test time for WAI is very quick with detailed information about the middle ear obtained 

in just a few seconds (Vander Werff, Prieve, & Georgantas, 2007). Thirdly, WAI can be performed at 

both ambient air pressure and with the ear canal pressurised. Figure 1.1 shows an example of A meas-

ured under ambient (top panel) and pressurised (Ap; bottom panel) conditions in the same subject. 

Being able to test at ambient air pressure is ideal for testing infants, as some infants find pressurisation 

of the ear canal distressing. Also, tympanometric pressurisation of the ear canal causes significant 

movement in the canal wall of young infants and being able to test at ambient pressure removes this 

potential source of error (Aithal et al., 2015; Ellison et al., 2012; Sanford & Brockett, 2014; Vander 

Werff et al., 2007). However, WAI is not limited to testing at ambient pressure, and Ap, which 

measures A as a function of pressure, can be performed in a cooperative infant. The additional infor-

mation obtained may be diagnostically helpful (Liu et al., 2008).  
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Figure 1-1. Results of ambient and pressurized energy absorbance. 
Ambient results are shown in the top panel, and pressurized in the bottom. These measurements were made in the 
right ear of a 7-month-old male with normal middle ear function using the Interacoustics Titan system.  

1.3.2.1 Principles of wideband acoustic immittance 

The concept of Z is central to understanding the principles of WAI and assessment of middle ear 

function in general. Z is the ratio of sound pressure p (the output) to volume velocity u (the input) as a 

function of frequency. It is a complex measurement with magnitude |Z| and phase jZ (Hudde, 1983; 

Van Camp, Margolis, Wilson, Creten, & Shanks, 1986): 

2 =
4
5 . 1.1  
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Y is the reciprocal of Z and is also a complex measurement with a magnitude |Y| and phase jY: 

8 =
1
2 . 1.2  

Complex measurements can also be described in rectangular form as having a real and imaginary 

part. The real part of Z is resistance (Re) and the imaginary part reactance (iX) such that:  

2 = :; + =>. 1.3  

Alternatively, the real part of Y is G and the imaginary part iB: 

8 = @ + =A. 1.4  

The first step in determining PR is to calculate the characteristic impedance (Zc) of a tube with 

cross-section area S: 

2C =
DE
F , 1.5  

where r is the equilibrium density of air and c is the speed of sound (Keefe & Feeney, 2009). Us-

ing Zc in the calculation of PR normalises the results in terms of ear-canal diameter. This reduces 

problematic inter-subject variability that was found in earlier studies, making WAI measurements 

clinically useful (Allen, Jeng, & Levitt, 2005; Keefe, Bulen, Arehart, & Burns, 1993). PR is the ratio of 

the incident acoustic pressure wave to the reflected acoustic pressure wave (Allen et al., 2005) and is 

calculated as follows: 

I: =
2 − 2C
2 + 2C

. 1.6  

R equals the square of the absolute value of PR (Keefe et al., 1993). It represents the proportion of 

incident energy that is reflected back from the middle ear (Shahnaz, Cai, & Qi, 2014): 

: = I: L. 1.7  

A is closely related to R and represents the amount of energy that is absorbed by the middle ear: 

N = 1 − :. 1.8  

R and A are proportions falling between 0 and 1.  
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The assumptions of WAI are that: (1) no energy is lost through the ear canal wall during measure-

ment; (2) there are no abrupt changes in cross-sectional area along the length of the ear canal; and (3) 

there is a leak-free seal of the probe in the ear canal (Voss, Stenfelt, Neely, & Rosowski, 2013). As-

sumptions one and two were tested by Voss, Horton, Woodbury, and Sheffield (2008) who measured R 

in cadaver ears. Although results revealed minor violations of assumptions, the variability introduced 

amounted to only a small fraction of the total reflectance. The investigators concluded that this insignif-

icant amount of error did not undermine the integrity of the test. Violations of assumption three, 

however, can lead to significant error, so it is vital to obtain an air-tight seal when testing (Keefe et al., 

2000; Voss et al., 2013). Acoustic leaks can be identified by visual inspection of the R or A data 

subsequent to measurement. A of ≥0.3 in the low frequencies (or ≥0.7 for neonates) indicates an 

acoustic leak and the probe should be reinserted in attempt to obtain a leak-free seal (Aithal et al., 

2015; Groon, Rasetshwane, Kopun, Gorga, & Neely, 2015). 

1.3.2.2 Instrumentation and calibration  

Apart from custom-made devices, there are currently three available systems capable of making WAI 

measurements: the Reflwin Interacoustics system, the Mimosa Acoustics MEPA (middle ear power 

analyser), and the Interacoustics Titan WBT (wideband tympanometry). The Reflwin Interacoustics 

system is a research instrument, whereas the Mimosa MEPA and Interacoustics WBT are designed for 

clinical use. MEPA measures WAI at ambient pressure only, whereas the Reflwin Interacoustics and 

Interacoustics WBT systems can test under both ambient and pressurised conditions. The Reflwin 

Interacoustics system is the predecessor to Interacoustics WBT, and the calibration and measurement 

procedures are very similar for both units. Variation has been observed between WAI measurements 

made with the MEPA and Reflwin Interacoustics systems. These have been attributed to differences in 

calibration procedure, calculation of ear-canal cross-sectional area, and differences in probe tips used 

(Shahnaz et al., 2014; Shahnaz, Feeney, & Schairer, 2013). However, the small variability in measure-

ments between systems is clinically insignificant, and Shahnaz et al. (2013) found that using system-

specific norms did not improve accuracy in detecting otosclerosis.  

Calibration of the Interacoustics WBT system utilises two sets of two tubes. Each tube is closed at 

one end and each set of tubes consists of one long tube (295 cm) and one short tube (8.4 cm). One set 

has a large diameter (0.794 cm) and is for calibrating measurements made in older children and adults. 

The other set has a small diameter (0.476 cm) and is designed for calibrating measurements in young 

children. The long tube is long enough that the incident signal can be separated from subsequent 

reflections, and the short tube is short enough that the response consists mainly of reflections (Keefe & 
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Simmons, 2003). The calibration procedure is the same for both sets of tubes. First, the probe is placed 

in the open end of the long tube. A graphical display of the waveform shows three spikes: the initial 

click, and the first two reflections (Figure 1.2, left panel). The probe is then placed in the short tube and 

the incident waveform (Q) and source reflectance (R0) curves are shown on a display as a function of 

frequency (Figure 1.2, right panel). Q is the pressure wave generated by the stimulus and R0 is the 

sound pressure at the probe tip (Shaw, 2009).  

  

Figure 1-2. Results of the calibration procedure from the Interacoustics Titan WBT system. 
These results are from the large diameter tubes. The left panel shows the click reflections. The large spike around 10 
ms is the initial click and the subsequent smaller spikes are the first and second reflections. The right panel shows 
the incident waveform (Q, red curve) and the source reflectance (R0, black curve).  

When measuring WAI in an ear, an appropriately-sized ear tip is chosen and the probe is placed 

into the ear canal. The stimulus is presented and the parameters calculated during calibration (Q and 

R0) are used to calculate the nominal pressure reflectance (Rn), which is PR that has not been normal-

ised for ear canal size: 

:P =
I − Q
:RI + Q

, 1.9  

where P is the mean of the sound-pressure spectrum. Y is then calculated from Rn and Zc (Equation 

1.5). As discussed, using Zc controls for differences in ear canal size (Keefe & Simmons, 2003): 

8 = 2CTU
1 − :P
1 + :P

. 1.10  

PR is then calculated from Y and Zc (this equation is the same as equation 1.6 but admittance has 

been substituted for impedance and then simplified, see Section 1.5: Appendix for working): 

I: =
1 − 2C8
1 + 2C8

. 1.11  
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A is then calculated as per Equations 1.7 and 1.8. The Interacoustics WBT system gives three vari-

ables as results of from an ambient WAI test: A, |Y| and jY from 226 to 8000 Hz at one twenty-fourth 

octave frequency resolution. 

1.3.2.3 Test-retest reliability 

The reliability of a test is how consistent it is over repeated measurements. It is an important factor in 

the clinical utility of a test because too much variability may limit the ability of the test to distinguish 

between normal and diseased subjects (Vander Werff et al., 2007). The test-retest reliability of WAI 

has been investigated in neonates, infants and children and studies have concluded that measurements 

are adequately reliable for clinical use (Hunter, Tubaugh, Jackson, & Propes, 2008b; Vander Werff et 

al., 2007; Werner, Levi, & Keefe, 2010). Infants have greater variability on retest than adults as they 

are prone to move around more during testing (Vander Werff et al., 2007). Variability is greater when 

the probe is reinserted between trials, and is highest in the low frequencies (<500 Hz). However, the 

mid-frequency range is stable and variability between test-retest is smaller than variability between 

normal and diseased subjects in this frequency range (Vander Werff et al., 2007; Werner et al., 2010). 

The most important factors in obtaining reliable measurements in infants are adequate probe fit, proper 

positioning of the probe (e.g., not obstructed by the ear canal wall) and subject state (Vander Werff et 

al., 2007; Voss et al., 2013).  

1.3.2.4 Effects of subject demographics on WAI measurements 

Details of studies investigating ethnicity, gender, ear and age effects on WAI measures are presented in 

Table 1.2. Ethnicity effects have been studied in older children (Beers, Shahnaz, Westerberg, & Kozak, 

2010) and neonates (Aithal et al., 2014a). Beers et al. (2010) investigated differences in R between 

Chinese and Caucasian school-aged children. Results showed a significant effect for ethnicity (with R 

higher in the Caucasian group at 2000 and 6000 Hz), but using ethnic-specific norms did not improve 

test performance. This was because differences between ethnic groups were small in comparison to 

differences between the normal and diseased groups. Aithal et al. (2014a) investigated differences in A 

between Indigenous and Caucasian neonates and found that Indigenous neonates had significantly 

lower A from 400 to 2000 Hz. Ethnic differences are thought to arise from body size or anatomi-

cal/functional differences in the middle ear system (Aithal et al., 2014a; Shahnaz & Bork, 2006; 

Shahnaz et al., 2013). 

 Gender and ear side differences in WAI have been investigated in neonates, infants and older 

children. Neonates have been studied by Aithal et al. (2014a), Aithal et al. (2013), Hunter et al. (2010), 
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Keefe et al. (2000) and Merchant, Horton, and Voss (2010) (see Table 1.2 for details). None of these 

studies reported significant differences between male and female ears except for Keefe et al. (2000), 

who found lower R in male ears at frequencies below 2000 Hz. The evidence concerning differences 

between neonatal right and left ears is equivocal with Keefe et al. (2000) and Merchant et al. (2010) 

finding a significant difference but results from Aithal et al. (2014a) and Aithal et al. (2013) did not 

show any difference.  

In infants older than neonates, effects of ear and gender have been investigated by Aithal, Kei, and 

Driscoll (2014b), Hunter et al. (2008b), Shahnaz et al. (2014) and Werner et al. (2010) (see Table 1.2 

for details). Of these studies, only Werner et al. (2010) found any significant ear or gender effects. In 

their sample, females had greater Re and X than males but there was no statistically significant gender 

effect for R. They also found a significant ear effect with R being lower in left than right ears. Howev-

er, although significant, ear and gender effects were small. A limitation of that study was that the 

investigators used LFT as a reference standard for infants under 6 months old. Studies measuring 

ambient WAI in older children have found no significant ear or gender effects (Beers et al., 2010; 

Hunter et al., 2008b). In a review, Kei et al. (2013) reported that data on differences in ethnicity, ear 

and gender are limited and more normative research is needed. Although there are conflicting results in 

the literature differences that have been reported are small enough to be clinically unimportant.   
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Table 1.2. Studies investigating developmental or normative aspects of WAI in infants and children.  

Study Age  n Sample Study design and purpose Sys WAI  WAI characteristics and main findings 

Keefe et al. 
(2000)  

Neonates 2081 Healthy 
neonates and 
NICU 
graduates 

Characteristics and validity of 
WAI in newborns; no reference 
standard used. First study to test 
WAI in newborns. 

CM  R & G Median R (250 to 8000 Hz) fluctuated from 0.1 to 
0.25 and was lowest at 2000 and 6000 Hz and 
highest at 1000, 4000 and 8000 Hz. 

Shahnaz 
(2008)  

Neonates 
(32 to 51 w 
GA) 

31 NICU 
neonates 

Characteristics of WAI for 
neonates who passed an AABR 
and TEOAE test. 

MA R & Y Mean R had a minima at 2000 Hz. 

Sanford et al. 
(2009)  

Neonates (1 
to 2 d) 

230 Healthy 
neonates 

Test performance of WAI and 
1-kHz tympanometry against a 
DPOAE reference standard. 

RI  A,  Ap, 
|Y|, & 
jY 

A of neonates who passed DPOAEs had two peaks, 
one around 1800 Hz and another around 7000 Hz. 

Hunter et al. 
(2010)  

Neonates (3 
to 102 h) 

324 Healthy 
neonates 

Normative data and test 
performance of R and 1-kHz 
tympanometry using a DPOAE 
reference standard. 

MA R Regions involving 2000 Hz had most predictive 
power. Median R peaked around 4000 Hz for the 
pass group. 

Aithal et al. 
(2013)  

Neonates 
(13 to 116 h) 

66 Healthy 
neonates  

Normative data using a test 
battery reference standard 
(HFT, ASRs, TEOAEs and 
DPOAEs). 

RI  R R was low at 1250 to 2000 Hz and high from 300 
to 800 Hz and 3000 to 4000 Hz. 

Merchant et 
al. (2010)  

Neonates (3 
to 5 d) and 
1-m-old 
infants  

18 Healthy 
infants 

Comparison of normative 
regions for newborn and 1-mth-
old infants who passed newborn 
hearing screening and DPOAE. 

MA R & A R was not significantly different between the two 
age groups, although there was a possible differ-
ence around 2000 Hz. 

Aithal et al. 
(2014b)  

Neonates 
and infants 
(1, 2, 4, 6 m)  

96 Healthy 
neonates and 
infants 

Prospective cross-sectional 
study using a HFT + DPOAE 
reference standard. 

RI  A A was greatest between 1500 to 5000 Hz and 
lowest <1500 and >5000 Hz for all age groups. 
There was a multi-peaked pattern for 0- to 2-
month-old and a single peak for the 4- to 6-month-
old groups. A developmental effect was observed 
with newborns and 6-month-olds different from the 
other groups. The 1- and 2-month-old groups were 
similar.  

Hunter et al. 
(2016) 

Neonates 
and infants 
(1, 6, 9, 12 
m) 

184 Healthy and 
NICU 
neonates  

Longitudinal study; reference 
standards of TEOAE/AABR at 
birth and DPOAE + TBABR + 
VRA in infancy 

CM A,  Ap, 
& GD 

There were large developmental effects on WAI 
variables over the first 6 months of life, especially 
at low frequencies for both ambient and pressurized 
responses. 
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Columns show age, number and characteristics of subjects, study design, the system used and WAI measured and a summary of main findings. A, ambient energy 
absorbance; Ap, pressurised energy absorbance; AC, air conduction; ASR, acoustic stapedial reflexes; AABR, automated auditory brainstem response; BC, bone 
conduction; CM, custom-made equipment; DPOAE, distortion product otoacoustic emissions; G, conductance; GA, gestational age; GD, group delay; HFT, high-
frequency tympanometry; LFT, low-frequency tympanometry; MA, Mimosa Acoustics MEPA system; jY, acoustic admittance phase angle; PTA, puretone audiometry; 
R, ambient energy reflectance; Re, resistance; RI, Reflwin Interacoustics system; Sys, system; TBABR, toneburst auditory brainstem response; TEOAE, transient evoked 
otoacoustic emissions; VRA, visual reinforcement audiometry; X, reactance; Y, acoustic admittance; Z, acoustic impedance. 

 

Keefe et al. 
(1993) 
 

Infants (1, 3, 
6, 12, 24 m) 

78 Healthy 
infants 

WAI measured in infants of 
different age groups to investi-
gate developmental effects. No 
reference standard used. 

CM R & Z R was high at low frequencies for all ages and was 
lower in 1-mth-old babies at frequencies <2000 Hz.  
R was lowest at all ages between 1000 to 4000 Hz. 
A systematic maturational effect was not complete 
by 2 years of age. 

Sanford & 
Feeney (2008)  

Infants (4, 
12, 27 w) 

60 Healthy full-
term infants   

Cross-sectional study investigat-
ing developmental effects on 
pressurised WAI measures. 

CM  R, |Y|, 
jY,  & 
G 

Not a lot of change developmentally from 750 to 
2000 Hz. All age groups were different from adults 
with the largest difference in the youngest group 
(1-mth-olds). 

Werner et al. 
(2010)  

Infants (2 to 
3 and 5 to 9 
m)  

458 Healthy full-
term infants 

Normative data for 2- to 9-
month-old infants using a LFT 
reference standard. 

CM  R, Re 
& X 

An age effect was evident. R was lowest from 1000 
to 4000 Hz for both age groups and results 
compared well with Keefe et al. (1993). Separate 
norms for different age groups are necessary. 

Shahnaz et al. 
(2014)  

Infants (1 to 
6 m) 

31 Normal 
hearing 
infants  

Longitudinal study (tested 
monthly) using a reference 
standard of HFT, ASRs and 
TEOAEs. 

MA R R systematically increased at low frequencies 
(<400 Hz) and decreased at high frequencies 
(>2000 Hz). Younger babies had lower R at low 
frequencies and higher R at high frequencies. The 
600 to 1600 Hz frequency region was relatively 
insensitive to developmental effects. Age-specific 
norms are necessary. 

Hunter et al. 
(2008b) 

Infants and 
children 3 d 
to 4 y 

97 Well infants 
and children  

Normative and reliability study 
using a DPOAE and tympa-
nometry (226 and 1000 Hz 
probe tone) reference standard. 

MA  R No differences were found across age groups 
except at 6000 Hz. This is the only study to not 
find significant developmental effects. 

Beers et al. 
(2010) 

Children 
(normal 
group, 5 to 6 
y) 

142 Elementary 
school-aged 
children  

Study comparing normal ears to 
ears with middle ear dysfunc-
tion using PTA (AC and BC), 
LFT and TEOAEs as reference 
standard. 

MA R Normative data for 5- to 7-year-old children. 
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WAI measurements show a systematic developmental trend throughout infancy and into childhood 

(Beers et al., 2010; Keefe et al., 1993; Kei et al., 2013). Most studies have found significant develop-

mental trends with the exception of Hunter et al. (2008b) who reported no differences except at 6000 

Hz in a sample of infants and children ranging from 3 days to 4 years old. This finding could be 

attributed to subjects being grouped into wider age ranges than other studies or from differences in 

probe design and calibration (Hunter et al., 2008b; Shahnaz et al., 2014). Variability between studies 

can occur for a multitude of reasons including different study methodologies, sample size and charac-

teristics, equipment, calibration procedure, test environment, age and reference standards (Aithal et al., 

2014b; Aithal et al., 2015; Kei et al., 2013).  

Changes in WAI have been reported as early as over the first few days of life (Hunter et al., 2010). 

Sanford et al. (2009) described changes in WAI measurements over the first two days of life and Keefe 

et al. (2000) found that 1-day-old neonates had higher R compared to neonates 2 to 4 days old. These 

changes were attributed to the clearing up of fluid and debris in the outer and middle ear after birth.  

Aithal et al. (2014b), Shahnaz et al. (2014), and Keefe et al. (1993) have investigated changes in 

WAI over the first six months of life (see Table 1.2 for details). Shahnaz et al. (2014) tested subjects 

monthly from 1 to 6 months of age using a longitudinal study design. Aithal et al. (2014b), using a 

cross-sectional design reported data from neonates and 1-, 2-, 4- and 6-month-old infants. Keefe et al. 

(1993) tested 1-, 3- and 6-month-old infants (a limitation being that they did not use a reference stand-

ard). Figures 1.3A–C show average A for each age group of these studies. All studies show that A 

decreases in the low frequencies and increases in the mid frequencies over the first six months of life. 

Aithal et al. (2014b) and Keefe et al. (1993) found a trend of A decreasing in the high frequencies also. 

This effect was not apparent in the Shahnaz et al. (2014) study but this could be because the highest 

frequency tested was 6300 Hz.  

Figures 1.4A–C show average A from normative studies for neonates, 6-, 12- and 24-month-old in-

fants (see Table 1.2 for details of these studies). Although there is variability between studies, 

especially in the six-month-old group, developmental trends are clear, and show a pattern of A system-

atically decreasing in the low frequencies, increasing in the mid frequencies and decreasing in the high 

frequencies throughout infancy. A in the neonatal period tends to have two maxima, one in the 1000 to 

2000 Hz region and one around 4000 to 6000 Hz, with two minima around 500 and 6000 Hz. This 

progressively changes to a single peak in the 2000 to 4000 Hz region that can be seen in the average A 

from 6- to 24-month-old infants in Figures 1.4B and C. Aithal et al. (2014b) found this change occurs 

as early as 4 months of age (Figure 1.3A). Developmental changes in WAI are attributed to a range of 

factors. There is a decrease in mass and an increase in stiffness in the outer and middle ear as a result of 
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growth in length and diameter of the ear canal. The bony portion of the ear canal wall increases and the 

tympanic membrane decreases in thickness and changes in orientation. There is a loss of fluid and 

mesenchyme from the middle ear and aeration of the mastoid cavity. The volume of the middle ear and 

size of the temporal bone increases and there are changes in the bone density of the ossicles (Aithal et 

al., 2014b).  
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Figure 1-3. Comparison of average ambient absorbance from developmental studies over the first six months of life. 
Panel A shows median absorbance reported in a cross-sectional study of infants 0 to 6 months old (Aithal et al., 
2014b). Panel B, Median absorbance from a longitudinal study of 1- to 6-month-old infants (Shahnaz et al., 2014). C, 
Mean absorbance of 1- 3- and 6-month-old infants reported by Keefe et al. (1993). Shahnaz et al. and Keefe et al. 
measured reflectance which has been converted to absorbance for ease of comparison.    
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Figure 1-4. Comparison of average ambient absorbance from normative infant studies. 
Panel A shows studies done in neonates; Panel B, 6-month-old infants; Panel C, 12- and 24-month-old infants. Aithal 
et al. (2014b), Aithal et al. (2013), Sanford et al. (2009) and Hunter et al. (2010) reported the median, all other studies 
the mean. Sanford et al. (2009) shows results from the first day of life. Studies that measured reflectance have been 
converted to absorbance for ease of comparison. 
  

Because developmental changes significantly affect WAI measurements, it is important to use age-

specific normative data and this is an area of ongoing investigation (Feeney et al., 2013; Kei et al., 

2013; Shahnaz et al., 2013). There are currently normative data available for A for neonates and infants 

up to 6 months of age but normative data from other WAI measures such as |Y| and jY are yet to be 

established. Normative data for infants older than 9 months are limited and further research is needed 

to investigate the normative aspects of WAI in this population.  
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1.3.2.5 Diagnostic performance   

The diagnostic accuracy of a test is how precisely it identifies the condition being tested for. Studies 

have consistently shown that A is reduced in ears with otitis media (Aithal et al., 2014a; Hunter, 

Bagger-Sjöbäck, & Lundberg, 2008a; Hunter et al., 2008b). Table 1.3 summarises diagnostic accuracy 

studies of WAI in infants and children. There have been four studies investigating the test performance 

of WAI for identifying otitis media or conductive hearing loss in children over two years old. Three 

used puretone audiometry as the reference standard (Keefe, Sanford, Ellison, Fitzpatrick, & Gorga, 

2012; Keefe & Simmons, 2003; Piskorski, Keefe, Simmons, & Gorga, 1999), and one used a reference 

standard consisting of a combination of pneumatic otoscopy, otomicroscopy and puretone audiometry 

(Beers et al., 2010). Results of all studies demonstrated that A is reduced (or R increased) in diseased 

ears. Keefe et al. (2012) found A was reduced from 700 to 8000 Hz and Piskorski et al. (1999) identi-

fied 2000 to 4000 Hz as a diagnostically important region. Beers et al. (2010) found a systematic 

increase in R from normal, to Eustachian tube dysfunction, to middle ear effusion. WAI accurately 

identified middle ear pathology in all studies with an area under the receiver operating characteristic 

curve (AUC) of 0.87 to 0.99. Beers et al. (2010) reported that 1250 Hz most accurately identified 

diseased ears with a sensitivity of 0.96 and specificity 0.95 (measuring R). With sensitivity fixed at 

0.90, Piskorski et al. (1999) reported a specificity of 0.94 (measuring A and Y). Keefe and Simmons 

(2003) found a sensitivity of 0.72 for A and 0.94 for Ap with specificity fixed at 0.9. The authors 

concluded that Ap outperformed A (AUC = 0.95 and 0.87 respectively), but Keefe et al. (2012) found 

that both A and Ap and performed with equally high accuracy (AUC = 0.98 and 0.99 respectively). 

Results of these studies have shown that WAI is more accurate than LFT in detecting otitis media with 

effusion and conductive hearing loss in children (Beers et al., 2010; Keefe et al., 2012). There is 

significant overlap of A between normal and diseased ears at low frequencies which could explain why 

LFT performs poorly in young infants (Ellison et al., 2012). WAI is at least as accurate as pneumatic 

otoscopy in diagnosing otitis media in children with the advantage that interpretation of results is less 

subjective than pneumatic otoscopy (Ellison et al., 2012). 

Two studies investigating diagnostic accuracy of WAI have been carried out in infants older than 

three weeks (Ellison et al., 2012; Prieve et al., 2013b). Both have used strong reference standards but 

were limited by small sample size. Ellison et al. (2012) used myringotomy or pneumatic otoscopy as 

the gold standard for diagnosing otitis media and included 88 children 6 months to 7 years old (median 

= 1 year old). Prieve et al. (2013b) used an air-bone gap demonstrated by ABR to diagnose conductive 

hearing loss in 60 infants aged 3 to 36 weeks. Ellison et al. (2012) concluded that A in the 1500 to 3000 
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Hz region is important diagnostically and Prieve et al. (2013b) found R was higher in the 800 to 2500 

Hz region in diseased ears (and also 6300 Hz). Both studies concluded that WAI accurately identifies 

conductive conditions in infants and children. Ellison et al. (2012) calculated AUC of 0.94 (95% CI, 

0.85–0.96). Prieve et al. (2013b) reported positive likelihood ratio (LR) of >10 and negative LR of <0.2 

at 1600 and 2000 Hz meaning that R at these frequencies can strongly predict the presence or absence 

CHL.  

Five studies have investigated the accuracy of WAI in identifying conductive conditions in neo-

nates (Aithal et al., 2015; Hunter et al., 2010; Keefe et al., 2003a; Keefe et al., 2003b; Sanford et al., 

2009). The Keefe et al. (2003a) and Keefe et al. (2003b) studies were a part of the Identification of 

Neonatal Hearing Impairment study and used subjects drawn from the same database. Choice of 

reference standard is an issue when studying middle ear dysfunction in neonates. Myringotomy and 

medical imaging are the gold standards for diagnosis of middle ear effusion, but these tests are not 

ethical for studies of healthy neonates. Air- and bone-conduction ABR is the gold standard for diagno-

sis of conductive hearing loss but not middle ear effusion per se, which only causes a measurable air-

bone gap approximately 50% of the time in infants and children (Fria et al., 1985). Pneumatic otoscopy 

is not feasible in neonates and LFT is inaccurate in infants under 6 months old. HFT is accurate in 

young infants but studies in neonates have shown poor sensitivity (Margolis et al., 2003; Swanepoel et 

al., 2007). EOAEs have been used as the reference standard in most diagnostic accuracy studies of 

neonates, however, the diagnostic accuracy of EOAEs in identifying middle ear effusion in neonates is 

unknown. Use of multiple tests in combination has been suggested to create a stronger reference 

standard for diagnostic accuracy studies in neonates. Aithal et al. (2015) reported that diagnostic 

accuracy of WAI improved using a battery of tests rather than a single test only.   

Results of studies exploring the test performance of WAI in neonates have found AUC of 0.78 to 

0.90. Aithal et al. (2015) concluded that the diseased group had lower A with best separation between 

groups in the 1000 to 2500 Hz region. Sanford et al. (2009) had similar findings with the best separa-

tion of A from 1400 to 2500 Hz, best separation of |Y| from 1000 to 2000 Hz (with normal and diseased 

groups overlapping above 4000 Hz) and best separation of jY from 750 to 1000 Hz and 2500 to 4500 

Hz. Hunter et al. (2010) reported that ears who failed a DPOAE test had higher R than ears that passed, 

but there was significant overlap between the groups.  

1.3.2.6 Predictive modelling 

Some studies have used univariate analysis of WAI variables and others have used multivariate 

techniques (see Table 1.3, Statistical Analysis column). There are benefits and drawbacks to both 
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approaches. Univariate analysis predicts how well a single WAI frequency (or average across a range 

of frequencies) identifies middle ear dysfunction. Aithal et al. (2015), Beers et al. (2010), Hunter et al. 

(2010) and Prieve et al. (2013b) have all taken this approach. These studies have compared univariate 

results for different frequencies and concluded that WAI measured at frequencies between 1000 and 

2000 Hz most accurately identify conductive conditions. Aithal et al. (2015) and Beers et al. (2010) 

reported that 1250 Hz is the most accurate frequency. Prieve et al. (2013b) found that WAI measured at 

1600 and 2000 Hz were most accurate and Hunter et al. (2010) found that 2000 Hz performed the best. 

The advantage of using univariate analysis in research is that results can be immediately implemented 

clinically using current-generation equipment (Prieve et al., 2013b). Also, clinicians may more readily 

adapt univariate measures as they are used to performing similar analysis with clinical tests such as 

tympanometry and EOAEs. The limitation of univariate analysis is that it does not use all available data 

in predictions.  

Multivariate analysis that combines the predictive power of multiple frequencies and multiple 

WAI variables is potentially more accurate (Prieve, Feeney, Stenfelt, & Shahnaz, 2013a). The chal-

lenge is in identifying the multivariate techniques that can best make use of the large amount of data 

produced by a single WAI test (Hunter, Prieve, Kei, & Sanford, 2013; Sanford & Brockett, 2014). 

Studies that have utilised multivariate techniques are outlined in Table 1.3 (Statistical Analysis col-

umn). Multivariate techniques have included log likelihood ratios, logistic regression and linear 

discriminant analysis. However, with the exception of the Identification of Neonatal Hearing Impair-

ment studies (Keefe et al., 2003a; Keefe et al., 2003b),  most of these studies have used many 

predictors in the model with only a small sample size (Ellison et al., 2012; Keefe et al., 2012; Keefe & 

Simmons, 2003; Piskorski et al., 1999; Sanford et al., 2009). They are therefore at risk of overfitting, 

which means that although the multivariate models accurately describe the data they were developed 

on, they may perform poorly in new samples (Steyerberg, 2008). Also, with the exception of the 

Identification of Neonatal Hearing Impairment studies, no studies have used any form of validation 

(Keefe et al., 2003a; Keefe et al., 2003b). Validation is a crucial aspect of multivariate modelling to 

verify that results will generalize well to new subjects. There are two types of validation, internal and 

external. Internal validation should be performed at the time of model development, and is used to 

assess the degree of “optimism”, or overfitting in the model, that is, whether it is likely to generalize 

well to unseen data (Moons et al., 2012b). The Identification of Neonatal Hearing Impairment studies 

internally validated their models by developing the model on one ear of subjects and validating using 

the opposite ears. No WAI studies have externally validated a model. External validation in a new 

sample is recommended prior to implementing a model clinically, to provide a realistic idea of model 
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performance, since results are usually poorer when applied to new subjects (Moons et al., 2012a). This 

can be due to overfitting, or differences in subject characteristics, environment, or equipment used in 

the new setting (Steyerberg, 2008). 

Multivariate analysis techniques that could be summarized into a single parameter would be valua-

ble as this would incorporate the benefits of multivariate accuracy and univariate utility (Sanford & 

Brockett, 2014). Prediction models have this property and may provide a useful way of analysing WAI 

data. Prediction models take a multivariable input and provide a probability estimate (between 0 and 1) 

that the subject has the condition (Steyerberg, 2008). This type of model is useful because it provides 

individualised predictions and models disease severity. As well as accurately discriminating between 

subjects that have or do not have the condition, a prediction model needs to be well calibrated, meaning 

that predicted probabilities align closely with actual probabilities (Harrell, 2015). Predictions from a 

model are reliable if they align closely with observed frequencies of the condition. For example, for 

neonates with predicted probability of 0.3, approximately 3 out of 10 should actually have conductive 

dysfunction (Steyerberg et al., 2010).  

Previous diagnostic WAI studies in infants and children have used a binary (pass/fail) outcome to 

assess test performance (Aithal et al., 2015; Beers et al., 2010; Ellison et al., 2012; Hunter et al., 2010; 

Keefe et al., 2003a; Keefe et al., 2012; Piskorski et al., 1999; Prieve et al., 2013b; Sanford et al., 2009). 

However, creating a dichotomous outcome from a disease that lies on a spectrum can lead to loss of 

information. Furthermore, there is growing evidence that WAI can detect mild pathology such as 

Eustachian tube dysfunction, as well as more severe conditions such as otitis media with effusion 

(Aithal, Aithal, Kei, Anderson, & Liebenberg, 2018; Beers et al., 2010; Ellison et al., 2012; Hunter et 

al., 2008b; Robinson, Thompson, & Allen, 2016; Shaver & Sun, 2013; Voss, Merchant, & Horton, 

2012; Werner et al., 2010). Studies of infants and children have found a systematic decrease in A as the 

severity of middle ear disease increases (Beers et al., 2010; Ellison et al., 2012; Hunter et al., 2008b). 

This indicates that models using an ordinal outcome may be appropriate for WAI data. Ordinal models, 

where the outcome is an ordered scale (e.g., normal, mild, severe) can also be easier to interpret and 

have increased power compared to binary outcome models (Agresti, 2013). 
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Table 1.3. Comparison of diagnostic performance WAI studies in infants and children 

Study Age  n Population sampled Ref Sys Variables fres Statistical analysis  AUC Conclusions 

Aithal et al. 
(2015) 

Neonates (8 
to 152 hr) 

192 (BE) Healthy babies Test battery RI A 1/3 Univariate 0.78 Test battery recommended over a single test for 
gold standard. 

Hunter et al. 
(2010) 

Neonates (3 
to 102 hr) 

324 (BE) Healthy babies DPOAE MA R Not 
stated 

Univariate 0.9  ! predicted DPOAE outcomes better than HFT. 
The most accurate predictors included 2000 Hz. 

Keefe et al. 
(2003a) 

Neonates 2638 ears 
(BE) 

Well babies and 
NICU graduates 
(drawn from same 
sample as Keefe et 
al., 2000) 

DPOAE, 
TEOAE, 
AABR, VRA 

CM R & G 1/2 Multivariate 
(logistic regression) 

0.86 A WAI test of middle ear function generalised 
well (AUC = 0.81 to 0.84) to false positives that 
failed two-stage newborn hearing screen (AABR 
+ TEOAE or DPOAE) 

Keefe et al. 
(2003b)  

Neonates  2766 ears 
(BE) 

Well babies and 
NICU graduates 
(drawn from same 
sample as Keefe et 
al., 2000) 

DPOAE & 
TEOAE 

CM R & G 1/2 Multivariate 
(logistic regression)  

0.79 Results generalized well to new data as validated 
by training (n=1278) and test set (n=1147; AUC 
= 0.82). 

Sanford et al. 
(2009) 

Neonates (9 
to 58 hr) 

230 (BE) Well babies   DPOAE RI A, At, |Y| & 
jY 

1/12 Multivariate (log 
likelihood ratio) 

0.87 (jY, 
CI, 0.82-
0.91) 

WAI predicted DPOAE status better than HFT. 
Test performance was similar for ambient and 
pressurised WAI. 

Prieve et al. 
(2013b) 

Infants   (3 
to 36 wk) 

60 (one 
ear) 

Mostly infants who 
referred from NHS  

 TB ABR (AC 
& BC)  

MA R 1/3 Univariate NA R and HFT both accurately identified CHL. 

Ellison et al. 
(2012) 

Infants and 
children 
(0.5 to 7 yr) 

88 (BE) Case control study 
(TT group and 
normal group) 

myringotomy 
or PO   

RI A, |Y| & jY 1/12 Multivariate (log 
likelihood ratio) 

0.94 (CI, 
0.88–
0.98) 

Multivariate analysis was more accurate. 
Highest accuracy was achieved by including all 
WAI variables. 

Beers et al. 
(2010)  

Children (3 
to 12 yr) 

142 (BE) Normal group and 
OME group 

PO and 
microscopy or 
PTA, 
tympanometry 
and TEOAE 

MA R 1/3 Univariate 0.97 (CI, 
0.94-0.99) 

R was more accurate than 226 Hz tympa-
nometry. 

Keefe et al. 
(2012)  

Children (3 
to 8 yr) 

50 (BE) Children with CHL 
and control group 
(age matched) 

PTA (AC and 
BC) 

RI A & At 1/12 Multivariate (log 
likelihood ratio) 

0.99  WAI predicted CHL better than tympanometry. 
Test performance of ambient and pressurised 
energy absorbance was the similar. 

Keefe & 
Simmons (2003)  

Children 
and adults 
(10 to 55 
yr) 

35 (BE) Normal hearing and 
CHL 

PTA (AC and 
BC) 

CM A & At Not 
stated 

Multivariate 
(likelihood moment 
analysis) 

0.87 (A), 
0.95 (At) 

Pressurised absorbance outperformed ambient 
measurements. 

Piskorski et al. 
(1999) 

Children (2 
to 10 yr) 

92 (BE) Normal group and 
CHL group 

PTA (AC and 
BC) 

CM R, G & Eq 
Vol 

1/3 Multivariate 
(logistic regression 
and DA)  

0.96 Logistic regression outperformed DA, 
multivariate analysis was more accurate than 
univariate. Analysis using one-third-octave 
frequency resolution was not better than one-
octave frequency resolution. 

AUC is the highest area under the ROC curve reported in a study. BE, both ears; CHL, conductive hearing loss; DA, discriminant analysis; Eq Vol, Equivalent volume; 
fres, frequency resolution; Ref, reference standard used; TT, tympanostomy tube; Otherwise as Table 1.2. 



 38 

1.4 Rationale and aims for this thesis 

Intervention for otitis media is vital early in infancy, as early onset is associated with recurrent and 

chronic conditions that can impact language and development. Early intervention is conditional on 

diagnosis but identifying otitis media in infants remains a significant challenge. The condition is often 

asymptomatic in this population, and currently available diagnostic tools are inaccurate and difficult to 

use in infants. WAI is an innovative, high-resolution test of middle ear function that is quick and easy 

to administer. Early studies in neonates have shown promising results (Aithal et al., 2015; Hunter et al., 

2010; Keefe et al., 2003a; Keefe et al., 2003b; Sanford et al., 2009) but further large-scale studies using 

a stringent reference standard are needed. Little is known about the diagnostic performance outside the 

neonatal period as most studies have been done using newborns (Aithal et al., 2015; Hunter et al., 

2010; Keefe et al., 2003a; Keefe et al., 2003b; Sanford et al., 2009). The only study with a sample 

consisting exclusively of infants outside of the newborn period has been Prieve et al. (2013b) who 

investigated diagnostic accuracy of WAI to detect conductive hearing loss in a sample of infants aged 3 

weeks to 9 months. Ellison et al. (2012) included infants as young as 6 months of age in their study, but 

the sample included children up to 7 years of age as well. Further research is needed into diagnostic 

performance of WAI in detecting middle ear pathology in infants outside the neonatal period.  

A single WAI test generates a large amount of data and research investigating the most effective 

ways of analysing and presenting these data is in its infancy (Hunter et al., 2013). It is thought that 

multivariate analysis techniques have an advantage over univariate methods, but studies using univari-

ate methodology in infants have found high predictive accuracy with AUC of up to 0.90 which is as 

high or higher than some multivariate studies (Hunter et al., 2010; Prieve et al., 2013a). Furthermore, 

many multivariate studies are likely to be overfitting the data as they have used many predictors, small 

sample sizes, and no validation (Ellison et al., 2012; Keefe et al., 2012; Sanford et al., 2009). Overfit-

ting means that the model has been fit of the idiosyncrasies of the data rather than the relationship that 

is generalizable to new subjects. It is a serious issue, as an overfitted model is likely to perform poorly 

in new observations meaning which would result in a high proportion of misdiagnoses if adopted 

clinically (Steyerberg, 2008). Prediction models may be a useful type of multivariate model for analysis 

of WAI data as they provide a clinically useful univariate summary in the form of a probability esti-

mate. Models that use an ordinal outcome may be appropriate for WAI data, since previous research 

has found that A systematically decreases as the severity of middle ear disease increases (Beers et al., 

2010; Ellison et al., 2012; Hunter et al., 2008b). It is vital that prediction models include internal 
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validation as part of development to assess for overfitting (Moons et al., 2012b). No predictive WAI 

models have been externally validated in a new sample, and research is needed in this area also.  

An issue with developing predictive models for use with infants, however, is that there are substan-

tial maturational effects on WAI that need to be controlled for (Aithal et al., 2014b; Hunter, Keefe, 

Feeney, Fitzpatrick, & Lin, 2016; Keefe et al., 1993; Shahnaz et al., 2014; Werner et al., 2010). One 

solution to this problem has been to create age-specific models, such as models that have been devel-

oped specifically for neonates (Keefe et al., 2003a; Sanford et al., 2009). Alternatively, age could be 

controlled for by using regions of the WAI response that are relatively unaffected by age as predictors 

in a model, or by including an interaction between age and WAI predictors in a model, which would 

allow interpretation of results to vary with age (Sanford & Feeney, 2008). Knowledge of maturational 

effects on WAI is needed to implement such strategies, however. Developmental effects over the first 

year of life on A and R have been investigated (Aithal et al., 2014b; Aithal et al., 2013; Hunter et al., 

2018; Hunter et al., 2010; Merchant et al., 2010; Sanford & Feeney, 2008; Sanford et al., 2009; 

Shahnaz et al., 2014; Werner et al., 2010), but little is known about  age effects over the second year of 

life. Keefe et al. (1993) measured R in 12- and 24-month-old infants but did not use any reference 

standard to assess ear status. There is a dearth of evidence about the effect of age for other WAI 

measures such as |Y| or jY through infancy.  

The overall aim of the thesis was to investigate the diagnostic performance of WAI in infancy by 

developing predictive models. Specifically, the research aimed to: 

1. Develop predictive models for specific infant age groups: Neonates, 6 months, and 12 months 

with appropriate internal validation (Chapters 2, 3 and 4, respectively).  

2. Investigate strategies for modelling WAI data (Chapters 2, 3, 4 and 6), including:  

a. Comparing univariate to multivariate modelling approaches (Chapters 2, 3 and 4). 

b. Approaches to reducing the large volume of WAI data, such as frequency averaging, 

predictor selection, and principal component analysis (Chapters 2, 3 and 4). 

c. Allowing WAI predictors to have a nonlinear association with the outcome (Chapters 2, 

4 and 6). 

d. Using an ordinal outcome in predictive WAI models (Chapters 4 and 6). 

e. Whether including demographics such as ethnicity and ear side improves diagnostic per-

formance of models (Chapters 2, 3 and 4). 

3. Investigate developmental effects of WAI through infancy, and establish normative data for 

various age groups (Chapter 5). 
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4. Development a model for use in a broader age range through infancy (6- to 18-months) control-

ling for developmental effects on WAI (Chapter 6, Study 1).  

5. Externally validate the model developed for neonates (Chapter 2) in a new sample to assess 

generalizability to new subjects (Chapter 6, Study 2). 
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1.5 Appendix: Pressure reflectance in terms of admittance 

Steps for writing the equation for pressure reflectance (PR) in terms of admittance (Y). The equation for 

PR in terms of impedance (Z) is: 

!" =
$ − $&
$ + $&

. A. 1  

First, replace Z with 1/Y (i.e. rewrite in terms of admittance): 

!" =

1
+ − $&
1
+ + $&

. A. 2  

Then, put the numerator and denominator terms over a common denominator: 

!" =

1
+ −

$&+
+

1
+ +

$&+
+

. A. 3  

And simplify: 

!" =

1 − $&+
+ 	

1 + $&+
+

. A. 4  

Which equals: 

!" =
+
+
×
1 − $&+
1 + $&+

=
1 − $&+
1 + $&+

. A. 5  
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 Chapter 2. Development of a Diagnostic Prediction Model for 
Conductive Conditions in Neonates Using Wideband Acoustic 
Immittance 

This chapter develops a prediction model for diagnosing conductive conditions using wideband acous-

tic immittance in neonates. It has been previously published in the article: Myers, J., Kei, J., Aithal, S., 

Aithal, V., Driscoll, C., Khan, A., Manuel, A., Joseph, A., Malicka, A. N. (2018a). Development of a 

diagnostic prediction model for conductive conditions in neonates using wideband acoustic immittance. Ear 

and Hearing, 39(6), 1116-1135.  

I made substantive contributions to the article in the areas of study design, data collection, data 

analysis and drafting of the article, as outlined below:  

 

Contributor Statement of contribution 

Joshua Myers (Candidate) Study design (60%) 
Recruitment and data collection (60%) 
Data analysis (100%) 
Wrote the article (100%) 

Joseph Kei Study design (20%) 
Edited the article (40%) 

Sreedevi Aithal Study design (5%) 
Edited the article (15%) 

Venkatesh Aithal Study design (5%) 

Carlie Driscoll Study design (5%) 
Edited the article (15%) 

Asaduzzaman Khan Study design (5%) 
Edited the article (15%) 

Alehandrea Manuel Recruitment and data collection (20%) 

Anjali Joseph Recruitment and data collection (20%) 

Alicja N. Malicka Edited the article (15%) 
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2.1 Abstract 

Purpose: Wideband acoustic immittance (WAI) is an emerging test of middle ear function with 

potential applications for neonates in screening and diagnostic settings. Previous large-scale diagnostic 

accuracy studies have assessed the performance of WAI against evoked otoacoustic emissions, but 

further research is needed using a more stringent reference standard. Research into suitable quantitative 

techniques to analyse the large volume of data produced by WAI is still in its infancy. Prediction 

models are an attractive method for analysis of multivariate data as they provide individualized proba-

bilities that a subject has the condition. A clinically useful prediction model must accurately 

discriminate between normal and abnormal cases, and be well calibrated (i.e., give accurate predic-

tions). The present study aimed to develop a diagnostic prediction model for detecting conductive 

conditions in neonates using WAI. A stringent reference standard was created by combining results of 

high-frequency tympanometry (HFT) and distortion product otoacoustic emissions (DPOAEs).   

Methods: HFT and DPOAEs were performed on both ears of 629 healthy neonates to assess outer and 

middle ear function. Wideband absorbance and complex admittance (magnitude and phase) were 

measured at frequencies ranging from 226 to 8000 Hz in each neonate at ambient pressure using a click 

stimulus. Results from one ear of each neonate were used to develop the prediction model. WAI results 

were used as logistic regression predictors to model the probability that an ear had outer/middle ear 

dysfunction. WAI variables were modelled both linearly and nonlinearly, to test whether allowing 

nonlinearity improved model fit, and thus calibration. The best fitting model was validated using the 

opposite ears, and with bootstrap resampling. 

Results: The best fitting model used absorbance at 1000 and 2000 Hz, admittance magnitude at 1000 

and 2000 Hz, and admittance phase at 1000 and 4000 Hz modelled as nonlinear variables. The model 

accurately discriminated between normal and abnormal ears, with an area under the receiver operating 

characteristic curve (AUC) of 0.88. It effectively generalized to the opposite ears (AUC = 0.90), and 

with bootstrap resampling (AUC = 0.85). The model was well calibrated, with predicted probabilities 

aligning closely to observed results.  

Conclusions: The developed prediction model accurately discriminated between normal and dysfunc-

tional ears, and was well-calibrated. The model has potential applications in screening or diagnostic 

contexts. In a screening context, probabilities could be used to set a referral threshold that is intuitive, 

easy to apply, and sensitive to the costs associated with true and false positive referrals. In a clinical 

setting, using predicted probabilities in conjunction with graphical displays of WAI could be used for 
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individualized diagnoses. Future research investigating the use of the model in diagnostic or screening 

settings is warranted. 
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2.2 Introduction 

Evaluation of the conductive pathway is an important aspect of neonatal hearing assessment. It is vital 

in diagnostic settings to aid in diagnosing the type of hearing loss (conductive, sensorineural, or 

mixed), and would also be valuable in the context of newborn hearing screening (Sanford et al., 2009). 

The goal of hearing screening at birth is to identify permanent hearing loss, but the majority of referrals 

(90%) occur due to transient conductive conditions of the outer/middle ear (Merchant et al., 2010; 

Thompson et al., 2001). Incorporating a test of middle ear function into the screening process could 

reduce the false positive rate for detecting permanent hearing loss. It could also facilitate improved 

management of neonates with middle ear dysfunction, who have higher risk of chronic otitis media in 

the first year of life (Doyle, Kong, Strobel, Dallaire, & Ray, 2004; Marchant et al., 1984b; Pereira, 

Azevedo, & Testa, 2010). 

However, diagnosis of middle ear pathology in neonates is challenging, as conventional instru-

ments are ineffective in this population (Aithal et al., 2013). Traditional 226-Hz tympanometry is 

inaccurate in infants under 7 months of age (Paradise et al., 1976), and using a higher frequency (1000 

Hz) probe tone has been recommended in this age group (Baldwin, 2006; Zhiqi et al., 2010). Prieve et 

al. (2013a) found that high-frequency tympanometry (HFT) accurately identified conductive hearing 

loss diagnosed with air- and bone-conduction auditory brainstem response (ABR) in a sample of infants 

aged 3 to 25 weeks. However, studies investigating the performance of HFT to detect middle ear 

dysfunction in neonates have shown good specificity (0.91 to 0.95), but poor sensitivity (0.36 to 0.57) 

(Margolis et al., 2003; Sanford et al., 2009; Swanepoel et al., 2007). These results indicate that HFT 

may accurately diagnose conductive pathology severe enough to cause conductive hearing loss, but 

could be insensitive to milder forms of outer and middle ear dysfunction in neonates such as partial 

occlusion of the ear canal with vernix, or incomplete filling of the middle ear cavity with fluid/debris 

(Northrop, Piza, & Eavey, 1986; Palmu & Syrjänen, 2005; Pitaro, Al Masaoudi, Motallebzadeh, 

Funnell, & Daniel, 2016).  

Wideband acoustic immittance (WAI) is an emerging tool for middle ear assessment with potential 

applications in neonates in both screening and diagnostic settings (Aithal et al., 2015; Hunter et al., 

2010; Sanford et al., 2009). WAI is an umbrella term encompassing a family of wideband acoustic 

transfer functions including pressure reflectance (PR), energy reflectance (R), energy absorbance (A), 

and acoustic admittance (Y). PR is the ratio of an incident to reflected acoustic pressure wave. R is 

|PR|2 and represents the proportion of incident energy that is reflected back from the middle ear. A is   

1 – R, representing the proportion of energy that is absorbed by the conductive pathway (Rosowski, 
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Stenfelt, & Lilly, 2013). Y is the ratio of volume velocity to acoustic pressure, and is a complex meas-

urement with magnitude (|Y|) and phase (jY) (Keefe & Levi, 1996). Age-specific normative data are 

needed for newborns and young infants, as the WAI response is affected by developmental changes in 

the outer and middle ear through infancy (Aithal et al., 2014b; Keefe et al., 1993; Kei et al., 2013; 

Shahnaz et al., 2014). In newborns, changes in A and R have been reported over the first few days of 

life, attributed to the clearing up of fluid and debris in the outer and middle ear after birth (Hunter et al., 

2010; Keefe et al., 2000; Sanford et al., 2009).  

Diagnostic studies in neonates have found that WAI accurately discriminates between normal, and 

ears with conductive dysfunction, with area under the receiver operating characteristic curves (AUC) of 

0.78 to 0.90 (Aithal et al., 2015; Hunter et al., 2010; Keefe et al., 2003a; Keefe et al., 2003b; Prieve et 

al., 2013b; Sanford et al., 2009). Aithal et al. (2015) used various combinations of evoked otoacoustic 

emissions (EOAEs), HFT, and automated ABR as reference standards. They found that ears with 

outer/middle ear dysfunction had reduced A compared to normal ears, with best separation between the 

groups in the frequency range from 1000 to 2500 Hz. Sanford et al. (2009) drew similar conclusions, 

using distortion product otoacoustic emissions (DPOAEs) as the reference test in a sample of 1-day-old 

neonates. They reported that A best separated between normal and abnormal ears from 1400 to 2500 

Hz, |Y| between 1000 and 2000 Hz, and jY in two regions: from 750 to 1000 Hz, and 2500 to 4500 Hz. 

Univariate analyses of A and R have found the frequency of highest accuracy to be between 1000 and 

2000 Hz. Aithal et al. (2015) reported 1250 Hz as the best discriminating frequency and Hunter et al. 

(2010) found that 2000 Hz best predicted DPOAE status. Less is known about the most important 

predictive frequencies for |Y| and jY. For A and R, the best discriminating predictors occurred in the 

frequency range from 1000 to 2500 Hz, where separation was greatest between normal and abnormal 

ears, and this is likely to be true for |Y| and jY as well.  

Large-scale diagnostic studies of WAI, to date, have used EOAEs as the reference test to deter-

mine outer and middle ear status (Hunter et al., 2010; Keefe et al., 2003a; Keefe et al., 2003b; Sanford 

et al., 2009). EOAEs are not a test of middle ear function per se, but the stimuli and response need to 

travel through the outer and middle ear, and significant dysfunction is thought to interfere with this 

process. A limitation of using EOAEs as a reference test for middle ear function is that they are affect-

ed by cochlear status, and may be reduced or absent due to sensory, as well as conductive pathology. 

Furthermore, passing an EOAE test does not completely rule out conductive problems, as EOAEs have 

been recorded in ears of neonates, infants and children with known middle ear dysfunction (Aithal et 

al., 2015; Amedee, 1995; Doyle et al., 1997; Driscoll et al., 2001; Margolis et al., 2003). In a sample of 
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200 neonates, Doyle et al. (1997) found that 38% of 32 ears judged to have restricted tympanic mem-

brane mobility on pneumatic otoscopy passed a transient evoked otoacoustic emissions (TEOAE) test 

(pass = 50% reproducibility). In a study of 30 children aged 1 to 7 years (mean = 3 years), Amedee 

(1995) reported present TEOAEs (pass = 5 dB signal-to-noise ratio [SNR], and 70% reproducibility) in 

50% of ears with middle ear effusion diagnosed by myringotomy. Studies investigating the test perfor-

mance of TEOAEs for detecting middle ear dysfunction in children have reported higher specificity 

than sensitivity using typical clinical diagnostic criteria. Driscoll et al. (2001) reported on the diagnos-

tic accuracy of TEOAEs in a sample of 940 children aged 5 to 7 years. Test performance was measured 

against a reference standard consisting of puretone audiometry and 226-Hz tympanometry. Sensitivity 

increased (from 0.51 to 0.73), and specificity decreased (from 0.93 to 0.74) as the TEOAE diagnostic 

threshold increased from 3 to 9 dB SNR. A diagnostic criterion of 6 dB SNR resulted in specificity of 

0.86 and sensitivity of 0.60. Koike and Wetmore (1999) assessed diagnostic accuracy of TEOAEs in 63 

children aged 4 to 17 years using puretone audiometry and 226-Hz tympanometry as the reference 

standard. A TEOAE diagnostic criterion of 50% reproducibility resulted in specificity of 0.94 and 

sensitivity of 0.84. These results all indicate that passing an EOAE test using typical clinical diagnostic 

criteria (where a response is judged to be either present or absent), results in a test of middle ear 

function with high specificity (most normal ears are classified correctly), but lower sensitivity, some 

abnormal ears are incorrectly diagnosed as normal (i.e., the test misses some cases).   

Therefore, further diagnostic WAI research using more stringent reference standards has been rec-

ommended (Hunter et al., 2013). However, there is no gold standard available to determine the 

presence or absence of middle ear effusion in neonates. Use of myringotomy or medical imaging in a 

study of otherwise healthy babies would be unethical, and the shortcomings of available clinical tests 

limit their use as reference tests (Aithal et al., 2013). Some researchers recommend combining results 

from multiple tests, such as DPOAEs and HFT, to create a more accurate reference standard (Aithal et 

al., 2014a; Aithal et al., 2015). A two-test reference standard can classify an ear as abnormal if it fails 

both tests, the “both fail criterion”, or either test, the “either fail criterion” (Naaktgeboren et al., 2013; 

Pepe, 2003). The characteristics of the component tests can be used to decide which criterion to adopt. 

Tests with high specificity can be combined using the either fail criterion to retain high specificity 

while improving sensitivity (Alonzo & Pepe, 1999). This is because tests with high specificity correctly 

classify most normal ears as normal. Therefore, ears that fail the test are likely to have the condition, as 

the test is unlikely to mislabel normal ears as abnormal. A diagnostic test with poor sensitivity, howev-

er, may often misclassify subjects with the condition as normal. A test that has high specificity but 

lower sensitivity will have few false positives, but may have many false negatives. Combining tests 
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with high specificity and lower sensitivity using the either fail criterion can reduce the number of false 

negatives, as a subject who fails one of the tests is likely to have the condition (i.e., be a true positive). 

One test may identify some true positives that the other test missed, and vice versa.   

Both univariate and multivariate statistical methodologies have been used to analyse the diagnostic 

performance of WAI in previous research. Univariate analyses aim to find the most accurate diagnostic 

frequency in the response. The strength of this approach is that results are easy to interpret. Findings 

may therefore be readily adopted by clinicians, who are familiar with using results from similar re-

search with current clinical tests such as tympanometry and EOAEs (Prieve et al., 2013b).  

Multivariate analyses, however, incorporating multiple frequencies and/or WAI measures, could 

potentially use the additional information to develop a better performing statistical model (Prieve et al., 

2013a). Studies using WAI to identify conductive hearing loss in children have reported multivariate 

models to be more accurate than univariate (Keefe et al., 2012; Piskorski et al., 1999). Similarly, 

Ellison et al. (2012) found that adding information from |Y| and jY, along with A, improved accuracy in 

detecting middle ear dysfunction in children. However, because of the number of variables in the 

response, overfitting can be an issue with multivariate modelling of WAI (Piskorski et al., 1999). A 

model using many variables may accurately describe the data it was developed on, but is likely to 

perform poorly when applied to new samples (Steyerberg, 2008). As there are potentially hundreds of 

predictors, some form of data reduction or penalization is therefore necessary when modelling WAI. 

It is generally preferable for data reduction methods to be masked to the outcome. This avoids se-

lecting predictors based on the idiosyncrasies of the data, which could affect the generalizability of a 

multivariate model (Harrell, 2015). Diagnostic WAI studies from the Identification of Neonatal Hear-

ing Impairment project used principal component analysis to reduce the response to 5–7 factors (Keefe 

et al., 2003a; Keefe et al., 2003b). An alternative approach is to decrease the frequency resolution. 

Previous studies in neonates have used one-twelfth, one-third, or one-half octave frequency resolution 

(e.g., Aithal et al., 2015; Keefe et al., 2003a; Sanford et al., 2009). However, the frequency resolution 

need not be this fine, as studies have found high accuracy averaging A or R over single (Piskorski et al., 

1999), and even multiple octaves (Aithal et al., 2015; Hunter et al., 2010; Keefe et al., 2012). The 

resolution should be fine enough to capture important diagnostic information, but broad enough that the 

number of predictors in the model is not excessive (Keefe, Hunter, Feeney, & Fitzpatrick, 2015). 

Another way of achieving data reduction masked to the outcome is to select predictors based on expert 

opinion or previous research (Harrell, 2015). However, it can also be beneficial to take an iterative 

approach to data reduction, by selecting predictors based on relationships with the outcome in the 
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dataset at hand. This may be a useful in a new field of research where knowledge of the most important 

predictors is still developing (Bagherzadeh-Khiabani et al., 2016). 

Validation of a multivariate model is essential to assess how well it will generalize to new subjects, 

as performance is generally poorer in new samples (Steyerberg et al., 2001c). This can be due to 

overfitting (bias) in the model or differences in subject characteristics, environmental factors, or 

equipment used in the new setting (Steyerberg, 2008). Multivariate models therefore need to be vali-

dated both internally, to assess overfitting, and externally, to assess generalizability. Internal validation 

is performed during model development, using the same subjects that the model was developed on 

(Moons et al., 2012b). External validation assesses model performance in a new sample, that was not 

used in model development (Moons et al., 2012a).  

The authors of the Identification of Neonatal Hearing Impairment studies internally validated their 

models using the opposite ears of subjects. They found that the models validated well with a difference 

in AUC between development and validation samples of 0.03 to 0.04 (Keefe et al., 2003a; Keefe et al., 

2003b). An alternative approach to internal model validation is bootstrap resampling, which estimates 

the degree of overfitting in the model to provide a bias-corrected estimate of model performance 

(Harrell, Lee, & Mark, 1996).  

Research into the most effective multivariate methods for analysis of WAI data is still in its infan-

cy (Hunter et al., 2013). Clinically, a multivariate model that could be summarized into a single 

parameter would be valuable as it could incorporate the benefits of both multivariate accuracy and 

univariate clinical utility (Sanford & Brockett, 2014). Prediction models have this property as they 

convert multiple predictors into the probability that a subject has the condition. Probability of >0.5 

indicates that the subject is more likely to have the condition than not. Prediction models are particular-

ly suited to conditions that occur on a spectrum, such as outer/middle ear dysfunction, where the 

diagnostic threshold is somewhat arbitrary (Northrop et al., 1986; Palmu & Syrjänen, 2005; Vickers, 

Basch, & Kattan, 2008). Previous multivariate WAI research has focused on classification, correctly 

labelling a case as normal or abnormal (Keefe et al., 2012; e.g., Sanford et al., 2009). However, proba-

bilistic risk modelling could provide additional information about diagnostic certainty. This may be 

particularly useful to help clinical decision making in borderline, or difficult-to-diagnose cases (Keefe, 

Fitzpatrick, Liu, Sanford, & Gorga, 2010; Keefe et al., 2012). Presenting an interpretable numerical 

parameter such as probability, provides the clinician with extra information, rather than just a pass/fail 

result. For example, if the diagnostic criterion was probability >0.5, it would be useful for the clinician 

to know that one subject failed the test with probability of 0.55, where another one failed with probabil-

ity of 0.95. Both failed the test, but the diagnosis is more certain in the latter case.   
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A clinically useful prediction model must accurately discriminate between normal and abnormal 

cases, and have satisfactory calibration, that is, high agreement between predictions and observed 

results. (Steyerberg et al., 2010). Standard regression assumes that the relationship between continuous 

predictors and the reference test changes in a linear fashion over the entire range of predictor values. 

However, truly linear relationships are rare in biological data, and allowing continuous predictors to 

have a nonlinear association with the outcome often improves model fit, and thus, calibration (Harrell, 

2015). Including covariates that are strongly associated with the outcome can also help to improve 

model fit (Harrell, 2015).  

The purpose of the present study was to develop a diagnostic prediction model for detecting con-

ductive conditions in neonates using WAI. A stringent reference standard was created by combining 

HFT and DPOAE results using the either fail criterion. With the aim of developing a model that would 

generalize to new subjects, the number of predictors was limited with respect to the sample size. One 

ear of each neonate was used to create the prediction model. WAI variables were modelled both 

linearly and nonlinearly, to test whether allowing predictors to have a nonlinear association with the 

outcome improved model fit. The best fitting model was validated internally using the opposite ears, 

and with bootstrap resampling.     

2.3 Methods 

The study was approved by the Townsville Health Service District Institutional Ethics Committee 

(reference number: HREC/09/QTHS/30) and the University of Queensland Behavioural and Social 

Science Ethical Review Committee (reference number: 2010000842). Neonates were recruited from the 

Maternity Ward of the Townsville Hospital from July 2014 to August 2016. Parents were informed of 

the study by the neonatal hearing screening nurses and written consent was obtained from those who 

wished to participate. The initial newborn hearing screen (automated ABR) was performed before 

testing. Not all neonates born at the hospital were eligible to participate as data collection was limited 

to days of the week that a research audiologist was available to do the testing. Neonates who failed a 

second newborn hearing screen were followed up at the audiology department within 6 weeks for 

audiological assessment, including air- and bone-conduction ABR, to determine the type and degree of 

hearing loss.  

2.3.1 Subjects and test environment 

Six hundred and twenty-nine healthy neonates were recruited to the study (295 females and 334 males). 

Six neonates were excluded on the basis of age and hearing status. Five were over one week old, and 
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were not included in the study, since the normative aspects of WAI are known to change over the first 

month of life (Aithal et al., 2014b; Shahnaz et al., 2014). These neonates were excluded from the study 

as they may have belonged to a different population, but were too few in number to quantify this 

potential source of variability. One neonate with confirmed sensorineural hearing loss was also exclud-

ed because one of the component tests of the reference standard was a cochlear response. Therefore, 

this subject may have failed the DPOAE test, even with normal outer and middle ear function. Table 

2.1 shows characteristics of subjects included in the study: age, gender, ethnicity, gestational age at 

birth, birth type, birth weight, head circumference at birth, and birth length. Most babies were tested as 

inpatients, but were occasionally tested as outpatients if they were discharged from hospital before 

testing could be completed. 
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Table 2.1. Characteristics of neonates included in the study 

Characteristic Value 

Age (hours) 
     Median (IQR) 
     Range 

3 missing 
42 (28 to 52) 

8 to 163 

Gender (count)  
     Female (%) 
     Male (%) 

Missing 0 
291 (47) 
332 (53) 

Ethnicity (count) 
     Caucasian (%) 
     Asian (%) 
     Oceanian (%) 
     South American (%)  
     African (%) 

2 missing 
537 (86) 

52 (8) 
22 (3) 
6 (1) 
4 (1)                 

Gestational age (weeks) 
     Median (IQR) 
     Range 

4 missing 
39.2 (38.4 to 40.1) 

30.4 to 41.6 

Birth type (count) 
     Vaginal (%) 
     C-section (%) 

1 missing 
375 (60) 
247 (40) 

Birth weight (grams) 
     Median (IQR) 
     Range 

4 missing 
3460 (3150 to 3750) 

2170 to 5120 

Head circumference (cm) 
     Median (IQR) 
     Range 

7 missing 
35 (34 to 36) 

24.8 to 39 

Birth length (cm) 
     Median (IQR) 
     Range 

7 missing 
50 (49 to 52) 

37 to 58.5 

The number of subjects with missing data for each characteristic is provided in the Value column. IQR, interquartile range. 

All measurements were made by a research audiologist either at bedside, or in a quiet room in the 

Maternity Ward. Neonates were tested either in their crib or being held by a parent. Ambient noise 
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levels in the test environment ranged from 26 to 54 dBA (median = 38 dBA; IQR [interquartile range] 

= 34 to 41 dBA).  

2.3.2 Test procedure 

Measurements were made using an Interacoustics Titan device controlled by a windows laptop com-

puter running Titan Suite software (version 3.2, Middelfart, Denmark). The equipment was calibrated 

annually by the manufacturer and probe function was checked daily in a 2 cm3 cavity and with a 

biological test. Both ears of each neonate were tested, with the most accessible ear tested first. A 

suitably sized, soft plastic tip was attached to the probe, and DPOAEs, HFT and WAI were tested, in 

no particular order. All efforts were made to test neonates in a settled condition. If a baby was unset-

tled, testing was postponed if time permitted.  

DPOAEs were measured using pairs of primary tones f1 and f2 at f2 = 2000, 3000, 4000, and 

6000 Hz. The f2 / f1 ratio was 1.22 and the intensity levels of f1 and f2 were 65 and 55 dB SPL, respec-

tively. Emissions were considered present at a given frequency if the SNR was ≥6 dB with DPOAE 

level ≥–10 dB (Hunter et al., 2010). An ear was classified as normal if DPOAEs were present at three 

out of four f2 frequencies, otherwise as abnormal (Aithal et al., 2015; Sanford et al., 2009). If an 

abnormal result was obtained with noise levels ≥0 dB SPL at two or more f2 frequencies, the test was 

repeated to avoid the impact of physiological or environmental noise on the test outcome (Hunter et al., 

2010).  

HFT was performed using a 1000 Hz probe tone with an intensity of 85 dB SPL regulated by au-

tomatic gain control. Pressure was swept from +200 to –300 daPa at a speed of approximately 300 

daPa/s at the tails slowing down to 100 daPa/s around the peak of the tympanogram. Measurements 

were repeated if the trace was difficult to interpret due to artefact caused by a restless or noisy neonate. 

Tympanogram traces were classified using a method similar to Baldwin (2006). A baseline was drawn 

by hand on hard copy between the points at the positive (+200 daPa) and negative (−300 daPa) ex-

tremes of the trace. A trace was classified as normal if there was a peak above the baseline, otherwise 

abnormal. Baldwin (2006) had a third “indeterminate” category, where there was no clear peak above, 

or trough below the baseline. These traces were classified as abnormal in the present study (Prieve et 

al., 2013b).  

Ambient A, |Y|, and jY were measured at 1/24 octave frequency resolution in response to a 226 to 

8000 Hz broadband stimulus delivered at 96 dB peSPL. During a test, a series of 32 clicks was present-

ed to the ear and averaged, to minimize effects of artefact caused by physiological noise. The Titan 

system automatically checked for air leaks according to the criterion detailed by Sanford et al. (2009), 
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and did not allow testing to proceed if an air leak was determined to be present. As a secondary check 

for air-leaks, a graphical display of A was also manually monitored during testing and the test was 

aborted and the probe reinserted if A was ≥0.7 at low frequencies (<500 Hz, Aithal et al., 2015; Keefe 

et al., 2000). WAI values were obtained using the Titan’s Research Module which saves the data as a 

text file after each test. The WAI response was averaged into octave bandwidths for statistical model-

ling, which reduced the number of frequencies for each WAI measure from 107 to six. 

All tests were performed with a single insertion of the probe, if possible. Reinsertion of the probe 

was required if a hermetic seal was not obtained for HFT, WAI results indicated an air leak, or the 

probe was dislodged. 

2.3.3 Reference standard pass/fail criterion 

DPOAEs and HFT were used as the component tests of the reference standard to classify the out-

er/middle ear as normal or abnormal. It was not considered feasible to include otoscopy in the test 

battery as there was no paediatric otologist available to perform the test. As such, ears that failed the 

reference standard were diagnosed with a “conductive condition”, as it was not possible to differentiate 

between conditions of the outer and middle ear on the basis of the tests conducted (Sanford et al., 

2009).  

As discussed in the Introduction, available data indicate that both HFT and EOAEs have higher 

specificity than sensitivity for detecting middle ear dysfunction. As such, these tests will classify most 

normal ears correctly (true negatives), and ears that fail the test are likely to have the condition (true 

positives). There may be ears with conductive dysfunction, however, that pass the test (false negatives), 

as the test is not sensitive enough to detect these, perhaps, milder forms of dysfunction. Therefore, the 

either fail criterion was chosen to classify ears as “pass” or “fail”, to create a reference standard with 

improved sensitivity (Alonzo & Pepe, 1999). Ears were classified as pass if they passed both HFT and 

DPOAEs and fail if they failed either test. This is referred to as the “a priori” reference standard 

throughout this report.  

2.3.4 Missing data and statistical analyses 

Of the 623 neonates included in the study, 44 ears were removed from the dataset due to either missing 

reference standard, or WAI results. Ears that failed either HFT or DPOAEs with missing results for the 

other reference test were retained as an observation was classified as fail on the basis of failing only 

one test. Table 2.2 provides the number of ears with missing data for each test and reasons for absence. 

Ears with missing data were due to the baby being unsettled, inability to obtain a hermetic seal, or 
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technical issues. These were all considered to be “missing at random”, and since they made up only a 

small fraction of total observations (0.039), it was considered appropriate to remove them from the 

dataset for subsequent analyses. The dataset after removal of excluded neonates and observations with 

missing reference standard/WAI results is referred to as the “full sample” throughout this report. There 

were also some neonates with missing characteristics data (see Table 2.1). In the full sample (after 

removal of observations with missing reference standard/WAI results) there remained one neonate with 

missing data for age, one for gestational age at birth, one for birth weight, four for head circumference 

at birth, four for birth length, and one for ethnicity. How these were dealt with is detailed below, as it 

differed for univariate and multivariate analyses.    

Table 2.2. The number of missing observations for each test  

 Number of ears missing Reasons for absence 

DPOAEs 18 (10 right, 8 left) All due to unsettled neonates 

HFT 28 (14 right, 14 left) All due to unsettled neonates 

Reference standard 13 (7 right, 6 left)  

WAI 35 (18 right, 17 left) • 15 due to unsettled neonates 

• 11 because unable to obtain a hermetic seal 

• 9 because of technical issues 

DPOAEs, distortion product otoacoustic emissions; HFT, high-frequency tympanometry; WAI, wideband acoustic immit-
tance. 

Logistic regression was used to model the probability that an ear had a conductive condition. Since 

an assumption of logistic regression is independence of observations, one ear of each neonate was 

randomly selected to develop the model (the development sample), and the opposite ears were used for 

validation (the validation sample). Neonates with results for one ear only were included in the devel-

opment sample to maximize sample size. Figure 2.1 shows the flow of participants and observations 

through the study, including the number of ears that passed and failed the reference standard for the 

development and validation samples.  
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Figure 2-1. Flow of participants and observations (ears) through the study. 
The pass and fail reference standard (RS) boxes give the number of ears that passed and failed the a priori RS for 
the development and validations samples. 

2.3.4.1 Univariate analyses  

Results of previous research investigating the effects of covariates such as gender, ear side and ethnici-

ty on WAI outcomes have been equivocal (Aithal et al., 2014a; Aithal et al., 2013; Beers et al., 2010; 

Kei et al., 2013; Merchant et al., 2010; Shahnaz et al., 2013). Therefore, an unadjusted (univariate) 

analysis was initially performed on the development sample to investigate whether covariates were 

related to the results of the a priori reference standard (either fail). Ears with missing data for the 

covariate being modelled were removed from the training sample for that analysis. For example, the 

development sample contained 612 observations, one with missing data for age. Therefore, the univari-

ate analysis of age was done with 611 observations.  

Univariate analyses were also performed on the WAI data to identify the most predictive frequen-

cies. Univariate modelling was done using the a priori reference standard (HFT and DPOAEs 

combined with the either fail criterion), and also with other reference standards to compare the effect 
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that the reference standard criterion had on diagnostic performance. Three other reference standards 

were calculated for comparison with the either fail criterion: DPOAEs and HFT each used as the 

reference test in isolation, and both tests combined using the both fail criterion (fail = fail both HFT 

and DPOAEs, otherwise pass).  

2.3.4.2 Multivariate modelling  

As a general guide, to avoid overfitting, a logistic regression model should have at least 10 obser-

vations in the smallest group (usually the abnormal group) for each predictor (Agresti, 2013). However, 

this can be relaxed if the signal-to-noise ratio is high, and the shrinkage coefficient (2) can be used to 

assess whether too many model parameters (degrees of freedom) are being estimated (Harrell, 2015): 

γ =
LR	67 − 89	
LR	67

, 2.1  

where df is the total degrees of freedom from the predictors in the model, and LR c2 is the likeli-

hood ratio chi-squared statistic of the model (the statistical significance test of the model). If 2 indicates 

overfitting, further reducing the number of predictors may improve model generalizability (Harrell, 

2015).  

As there were 159 ears that failed the a priori reference standard in the development sample (see 

Fig. 2.1), the 10:1 observation to predictor rule limited the number of predictor variables to 15. There-

fore, data reduction was necessary, as at 1/24 octave frequency resolution there were 107 test 

frequencies for each WAI measure. As mentioned, averaging the response into octave bandwidths 

reduced the number of predictors to 18 (six for each WAI measure). This was still over the 10:1 ratio, 

but was thought to be acceptable, as the powerful discriminatory ability of WAI reported in the litera-

ture indicates a high signal-to-noise ratio. The full WAI response was initially modelled at octave-

frequency resolution. If 2 was under 0.9, overfitting was indicated, as the model was expected to 

perform over 10% worse on new data (Harrell, 2015). Hence, the number of variables was further 

reduced, using two methods: iterative and a priori. 

The iterative data reduction method included the top two most accurate univariate frequencies for 

each WAI measure as predictors. The a priori data reduction used predictors encompassing diagnosti-

cally important regions reported in the literature: A1000, A2000, |Y|1000, |Y|2000,	jY1000,	and	jY4000	(subscript 

numbers denote the centre frequencies of octave bandwidths). The single best univariate predictor was 

also modelled to investigate whether there was a multivariate advantage.  
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Also, a model was fitted including statistically significant covariates identified in the univariate 

analyses, along with WAI variables as predictors. This was done to assess whether including predictive 

covariates produced a better-fitting model than using WAI alone as model predictors. For these anal-

yses, covariates with missing data in the development sample were assigned a value using multiple 

imputation (Buuren & Groothuis-Oudshoorn, 2011). This was done so that all multivariate models 

could be fitted using a single dataset, without having to discard observations with complete reference 

standard and WAI results, missing data only for covariates. Multiple imputation of statistically signifi-

cant covariates in the development sample resulted in five imputed values being used: one for age, and 

four for birth length.  

Predictor variables were modelled both linearly and nonlinearly, to test whether relaxing the as-

sumption of linearity improved model fit. The logistic regression equation takes the form: 

Prob ear = 9ABC =
1

1 + DEFG
, 2.2  

where Prob is the probability that an ear has a conductive condition (fail), and e is Euler's number. 

HI represents IJ + IKHK + I7H7+. . . +ILHL, where the X’s (X1 to Xk) are the predictor variables in the 

model (i.e., WAI frequencies or covariates), IJ is the intercept, and IK to IL are	the regression coeffi-

cients for each variable. In models where predictors were modelled linearly, variables in HI (the X’s) 

were assumed to have a linear relationship with the outcome (the reference standard), but this assump-

tion was relaxed for the models with nonlinear predictor variables using restricted cubic splines (RCS). 

Cubic splines are piecewise, third-order polynomials that are allowed to differ between joining points 

called “knots”. Knots were placed at the 0.05, 0.275, 0.5, 0.725, and 0.95 percentiles of a predictor 

(Harrell, 2015). For example, when modelling A2000 as nonlinear, knots were placed at A of 0.15, 0.48, 

0.65, 0.78, and 0.87, which were the 0.05, 0.275, 0.5, 0.725, and 0.95 percentiles, respectively, for A at 

2000 Hz in the development sample. A five-knot RCS requires estimation of four model parameters 

(i.e., it “costs” four df). Continuous covariates (e.g., age, birth weight) were also modelled using 

restricted cubic splines for both the unadjusted (univariate) and multivariate analyses. The location of 

knots for all WAI predictors and covariates are provided in Section 2.6: Appendix A. 

Akaike's information criterion (AIC), a measure of model fit that penalizes complexity (overfit-

ting), was used to select the best fitting model (Burnham & Anderson, 2002). AIC was chosen as the 

metric for model selection because model fit, including both calibration and discrimination, is im-

portant for a clinical prediction model. A lower AIC indicates a better fitting model, if the models were 
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fitted using the same dataset. AUC was not used in the model selection process, as it does not penalize 

for overfitting, making it a poor metric for choosing between competing multivariate models. 

The performance of the final model was evaluated through measures of calibration and discrimina-

tion. Calibration was assessed with calibration curves, which plotted a smoothed graph (using locally 

weighted smoothing) of actual against predicted probabilities. Predictions from a model are reliable if 

they align closely with observed frequencies of the condition. For example, for neonates with predicted 

probability of 0.3, approximately 3 out of 10 should actually have conductive dysfunction (Steyerberg 

et al., 2010). Satisfactory calibration is vital if predictions are used in decision making, because a 

neonate could be misdiagnosed, or mismanaged if predictions are very different from actual probabili-

ties. However, calibration is not the only necessary condition for a model to be useful, discrimination is 

also critical. For example, a model would be perfectly calibrated, but uninformative, if it simply 

predicted the disease prevalence for each subject. A clinically useful model should make accurate 

predictions across a wide range of predictions, i.e., be well calibrated, and also discriminating (Harrell 

et al., 1996). The discriminative ability of the final model was assessed with AUC. This calculated the 

probability that for two neonates selected at random, one normal and one with conductive dysfunction, 

the model assigned higher probability of conductive dysfunction to the neonate with the condition 

(Steyerberg, Van Calster, & Pencina, 2011).  

The model was validated by applying the model coefficients to the validation sample (opposite 

ears) and through bootstrap resampling of the development sample. Bootstrapping was employed as a 

secondary form of validation due to correlations between the development and validation samples. The 

procedure involved sampling with replacement from the development sample, a sample the size of the 

original (a training sample). The model was fit on this bootstrapped (training) sample and the coeffi-

cients applied to the development sample (the test sample). The difference in performance between the 

training and test samples gave an estimate of the amount of bias in the model. This process was repeat-

ed 500 times and averaged. The estimated bias was subtracted from the model performance of the 

development sample to provide a bias-corrected estimate, that is, the expected performance of the 

model on new data (Steyerberg, 2008).  

Statistical analyses were performed with R (R Core Team, 2017), using the rms library (Harrell, 

2016). This report has been written to comply with the guidelines of the TRIPOD (transparent reporting 

of a multivariable prediction model for individual prognosis or diagnosis) statement for reporting 

multivariate clinical prediction models (Collins, Reitsma, Altman, & Moons, 2015). 
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2.4 Results 

2.4.1 WAI results and statistical modelling 

Median and IQR WAI for the pass and fail groups defined by the a priori reference standard are shown 

in Figure 2.2 as a function of frequency. Median A for the pass group was higher than the fail group 

across the entire frequency range and median |Y| of the pass group was greater up to 2800 Hz. Median 

jY had a more complicated pattern, with the pass group higher than fail from 500 to 1200 Hz; and 

lower from 226 to 500 Hz, and also 1200 to 8000 Hz. IQRs of the groups were completely separated 

from 1200 to 3000 Hz for A, 800 to 1800 for |Y|, and 1800 to 3500 Hz for jY.  
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Figure 2-2. Median and interquartile range for the pass and fail groups.  
The top panel (A) shows absorbance (A), the middle panel (B), admittance magnitude (|Y|), and the bottom panel, 
admittance phase (jY; C). The solid and dashed lines represent the median of the pass and fail groups, respectively. 
The shaded regions represent the interquartile range (IQR) for the pass (light grey) and fail (dark grey) groups. The 
darkest shaded areas show where IQRs for the groups overlap. Data are from the full sample plotted at 1/24 octave 
frequency resolution.   
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2.4.1.1 Univariate results  

Results of the univariate WAI analyses are shown in Figure 2.3 as a function of frequency for the a 

priori reference standard (either fail HFT or DPOAEs = fail, otherwise normal), the both fail reference 

standard (both fail HFT and DPOAEs = fail, otherwise normal), and DPOAEs and HFT used in isola-

tion as the reference tests. The top two predictors for the a priori reference standard were A at 1000 and 

2000 Hz (AUC = 0.77 and 0.85, respectively), |Y| at 1000 and 2000 Hz (AUC = 0.83 and 0.74, respec-

tively), and jY at 2000 and 4000 Hz (AUC = 0.83 and 0.73, respectively). The reference standard with 

highest AUC for each WAI measure was the both fail criterion (AUC = 0.91 for A2000, 0.91 for |Y|1000, 

and 0.92 for jY2000). The reference test with the second highest AUC for each WAI measure was HFT 

only (AUC = 0.87 for A2000, 0.89 for |Y|1000, and 0.89 for jY2000). The DPOAE only reference test 

results were similar to those of the a priori (either fail) reference standard. DPOAE had higher AUC at 

some frequencies, a priori at others, and they were almost identical at some frequencies. The frequency 

with highest AUC for each WAI measure was the same for both reference standards (A2000, |Y|1000, and 

jY2000), with a priori fail being slightly higher than DPOAEs for each: 0.853 compared to 0.846 for 

A2000, 0.83 to 0.82 for |Y|1000, and 0.83 to 0.80 for jY2000.  
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Figure 2-3. Results of univariate WAI analyses. 
AUC as a function of frequency is shown for the absorbance (A; A, top), admittance magnitude (|Y|; B, middle) and 
admittance phase (jY; C, bottom) WAI measures. AUC for each WAI measure is plotted at each frequency for four 
different reference standards: the a priori reference standard (either fail, i.e., fail either HFT or DPOAEs = fail, 
otherwise pass), both fail (i.e., fail both DPOAEs and HFT = fail, otherwise pass), DPOAEs only, and HFT only. The 
95% confidence interval bars are provided for the a priori reference standard. 

Results of the unadjusted (univariate) covariate analyses are presented in Table 2.3. Age, birth type 

and birth length were all statistically significantly associated with the outcome (the a priori reference 
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standard). Figure 2.4 shows the effect that changing each of the significant covariates had on the 

probability of conductive dysfunction. For age (left panel), the probability of conductive dysfunction 

increased sharply for neonates less than 40 hours old, and for birth length (middle panel), risk of 

conductive dysfunction increased under 52 cm.  

Table 2.3. Statistics for the unadjusted covariate models 

Covariate LR c2 df p-value AUC 

Ear side 2.19 1 0.139 0.534 

Age 40.59 4 <0.001 0.655 

Gender  0.08 1 0.773 0.507 

Ethnicity   1.54 5 0.908 0.519 

Gestational age 1.22 4 0.875 0.526 

Birth type 23.96 1 <0.001 0.608 

Birth weight  7.08 4 0.132 0.557 

Head circumference  5.59 4 0.232 0.561 

Birth length 13.36 4 0.001 0.576 

Age × Birth type 47.09 9 <0.001 0.684 

LR c2 and AUC results for the unadjusted (univariate) covariate models. Results for the model including age, birth type, and 
the interaction between the two (age × birth type) are also shown. Continuous variables had 4 df because they were 
modelled as nonlinear with 5-knot restricted cubic splines. Ethnicity had 5 df because there were 6 ethnic groups. The age × 
birth type model had 9 df: 4 for age, 1 for birth type, and 4 for the interaction. AUC, area under the receiver operating 
characteristic curve, df, degrees of freedom; LR c2, model likelihood ratio chi-squared statistic. 

Birth type (Fig. 2.4, right panel), however, had an unanticipated association, showing that neonates 

delivered vaginally had higher risk of conductive pathology than those delivered via C-section. This 

was unexpected as it has been reported that babies delivered via C-section are at higher risk of failing 

their initial newborn screen due to fluid/debris in the outer/middle ear (Smolkin et al., 2012). It was 

thought that age may be contributing to this finding, as the hearing screening team at Townsville 

Hospital follow the recommendation of Smolkin et al. (2012) of prolonging screening babies born via 

C-section until they are at least 48 hours old when possible. In the full dataset, median age of neonates 

born by C-section was 50 hours compared with median age of 32 hours for babies delivered vaginally. 
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Figure 2-4. The effect of varying statistically significant covariates. 
Statistically significant covariates from unadjusted (univariate) analyses showing the effect that varying age (left 
panel), birth length (middle panel), and birth type (right panel) had on probability of conductive dysfunction (y 
axes). The x axes labels and units are provided in the heading above each panel. For example, the x axis for the left 
panel is age in hours. The line for the plots of continuous variables (age and birth length) is the restricted cubic 
spline function truncated at the 10th lowest and 10th highest values. The shaded area denotes the 95% confidence 
interval. The 95% confidence interval for birth type is shown by the error bars. 

To further investigate this relationship, a model was fitted including age, birth type, and an interac-

tion between the two as variables (with age modelled as nonlinear). The results are shown in Figure 

2.5, which depicts the probability of conductive dysfunction as a function of age for each type of birth. 

This model shows that neonates delivered via C-section did have significantly higher risk of conductive 

dysfunction over the first day of life, although babies delivered vaginally had high risk over this period 

as well.     
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Figure 2-5. Predictions from the model including age and birth type. 
The effect that varying age (x axis) had on probability of conductive dysfunction (y axis) for neonates born vaginally 
(black line) or via C-section (gold line), from the model including age, bith type, and their interaction as variables.  

Age was the most important covariate from the unadjusted analyses (highest AUC and LR c2, and 

lowest p-value). To investigate the effect of age on the response, WAI was plotted for 1-, 2- and ≥3-

day-old neonates for the pass and fail groups determined by the a priori reference standard (Fig. 2.6). 

There was a systematic change in A over the three groups with older neonates generally having higher 

values above 1200 Hz for the pass group, and from 800 to 2200 Hz for the fail group. There was also a 

systematic increase in |Y|	from 600 to 3000 Hz for the pass group, with values decreasing above 2000 

Hz for the fail group. Again, jY had a more complex pattern with older ears from the pass group having 

higher values between 400 Hz and 1500 Hz, and lower values above 1500 Hz. The fail group had 

higher jY between 400 and 1000 Hz, and lower values from 1000 to 4000 Hz. 
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Figure 2-6. Age effects on WAI over the first three days of life. 
Median absorbance (A; A, top), admittance magnitude (|Y|; B, middle) and admittance phase (jY; C, bottom), for the 
a priori reference standard pass (grey) and fail (black) groups for 1-, 2- and ≥3-day-old neonates (full, dotted and 
dashed lines, respectively). Data are from the full sample plotted at 1/24 octave frequency resolution. 
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2.4.1.2 Multivariate modelling  

All multivariate modelling utilized the a priori (either fail) reference standard. The predictors in-

cluded in each model, along with explanations of the number of df are provided in Table 2.4. Statistical 

results of each model, including LR c2, 2, and AIC are presented in Table 2.5.   

Table 2.4. Details of the fitted models 

Name Predictors in model L/NL df Explanation of df 

Model A1 Best UV predictor (A2000)  L 1 1 predictor modelled as linear 

Model A2 A2000 nonlinear  NL 4 1 predictor nonlinear1 

Model B1 All WAI predictors2  L 18 18 predictors modelled as linear  

Model B2 All WAI predictors2 nonlinear NL 72 18 predictors modelled as nonlinear (4 df 
each) 

Model C1 Top 2 UV predictors nonlinear for 
each WAI measure3  

NL 24 6 predictors with assumption of linearity 
relaxed (4 df each) 

Model C2 Model C1 predictors, along with 
significant covariates from UV 
analyses4 

NL 37 6 nonlinear WAI predictors, plus 4 df 
each for age and body length (nonlinear), 
1 df for birth type, and 4 df for age × birth 
type interaction  

Model C3 Top UV predictor from each WAI 
measure5, along with significant 
covariates from UV analyses4 

NL 25 3 nonlinear WAI predictors (4 df each) 
plus 13 df for covariates as per Model C2   

Model D1 WAI predictors encompassing 
important diagnostic regions 
identified in prior research5 

L 6 6 predictors modelled as linear 

Model D2 Model D1 predictors5 nonlinear NL 24 6 predictors with assumption of linearity 
relaxed (4 df each) 

11 predictor modelled as nonlinear cost 4 df because a restricted cubic spline requires estimation of 4 model parameters. 
2A, |Y| and jY at 250, 500, 1000, 2000, 4000, and 8000 Hz.  
3A1000, A2000, |Y|1000, |Y|2000,	jY2000,	and	jY4000 (numbers in subscripts denote the frequency).  
4Significant covariates were age, birth type, and body length, an interaction was included between age and birth type.  
5A2000, |Y|1000,	jY2000.  
6A1000, A2000, |Y|1000, |Y|2000,	jY1000,	and	jY4000.  
Information about the fitted multivariate models, detailing the predictors included in each model, and explanation of the 
number of df. Models with linear predictors enforced the assumption that the relationship between continuous predictors 
and the probability of conductive dysfunction was linear. Models with nonlinear predictors relaxed this assumption by 
allowing predictors to have a flexible relationship with the outcome. However, this “cost” four df, rather than one. A, 
absorbance; |Y|, admittance magnitude; jY, admittance phase; df, degrees of freedom; L, linear; NL, nonlinear; UV, 
univariate. 
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The multivariate modelling process began by modelling the top univariate WAI predictor (A2000) 

by itself, for comparison with later multivariate models to assess whether there was a multivariate 

advantage. A2000 was modelled both as a linear, and nonlinear variable (Models A1 and A2, respective-

ly), to investigate whether relaxing the assumption of linearity improved model fit. The model that 

allowed A2000 to have a nonlinear association with the outcome (A2) was better fitting, with lower AIC 

(480.83 compared to 491.60).  

Table 2.5. Statistics for each of the fitted models 

 LR c2 df 2	 AIC 

Model A1 213.57 1 1.00 491.60 

Model A2 230.34 4 0.98 480.83 

Model B1 257.70 18 0.93 481.47 

Model B2 338.97 72 0.79 508.20 

Model C1 273.57 24 0.91 477.60 

Model C2 287.72 37 0.87 489.45 

Model C3 265.10 25 0.91 488.07 

Model D1 227.56 6 0.96 487.61 

Model D2 276.21 24 0.91 474.96 

LR c2, df, g, and AIC for each of the fitted models. p-values for the LR c2 were <0.001 for all models. AIC, Akaike's 
information criterion; df, degrees of freedom; g, shrinkage coefficient; LR c2, likelihood ratio chi-squared statistic of the 
model. 

Next, the full WAI response (250 to 8000 Hz, for each WAI measure) was modelled both linearly 

and nonlinearly (Models B1 and B2, respectively). These models were fitted to check for multivariate 

advantage compared to the univariate models (A1 and A2). The multivariate model with linear predictor 

variables (B1) had lower AIC than the univariate linear variable model (A1) (481.47 compared to 

491.60), indicating that including multiple frequencies as predictors improved model fit.  

Model B1 had 18 predictors (df) with 2 of 0.93 indicating that overfitting was not of concern (see 

Table 2.5). Model B2, however, had 72 df, because allowing a variable to be nonlinear “cost” four df 

(18 × 4 = 72). The corresponding 2 of 0.80 indicated this model may perform poorly on new samples 

(because it was <0.9). Therefore, to minimize risk of overfitting, it was necessary to reduce the number 

of variables in the model.  

The initial data reduction strategy (the iterative approach) involved including predictors based on 

the univariate WAI analyses. The first model fitted with this strategy (Model C1) included the top two 
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univariate predictors for each WAI measure as nonlinear variables in the model: A1000, A2000, |Y|1000, 

|Y|2000,	jY2000,	 and	jY4000. This model had 2 of 0.91, indicating that further data reduction was not 

necessary. Another model was also fitted that included statistically significant covariates identified in 

univariate analyses. This model (C2) had the same predictors as Model C1, and also included age, birth 

type, and birth length as covariates. Numeric covariates (age and length) were modelled as nonlinear 

and an interaction was included between age and birth type. This model may have been overfitting, 

with 2 of 0.87, so further data reduction was performed. The model was refitted (Model C3) using the 

same covariates, but including only the top univariate predictor for each WAI measure, allowed to be 

nonlinear (A2000, |Y|1000, and	jY2000). This model had 2 of 0.91, indicating that overfitting was no longer 

of concern. AIC for Model C3 was not better than Model C1 (488.07, compared to 477.60), suggesting 

that including covariates did not produce a better fitting model than using WAI predictors only.  

The second data reduction strategy was to use WAI predictors that encompassed diagnostically 

important frequency regions identified in prior research: A1000, A2000, |Y|1000, |Y|2000,	jY1000,	and	jY4000. 

Models were fitted using both linear and nonlinear predictor variables (Models D1 and D2, respective-

ly), to assess whether allowing nonlinearity improved model fit. The nonlinear predictor variable model 

(D2) had lower AIC (474.96 compared to 487.61), indicating that it was better fitting. Overfitting was 

not an issue for this model (2 = 0.91). Since AIC was lower for Model D2 than Model C1 (the best 

fitting model using the iterative data reduction strategy), Model D2 was chosen as the final model for 

interpretation and validation.  

The relative importance of predictors in Model D2 was investigated with a Wald analysis, which 

calculated the c2 statistic and associated p-value for each variable in the model. (An important variable 

will have a large c2 statistic, and therefore, low p-value.) The results are presented in Table 2.6. A2000 

was the most important variable with c2 of 25.92 which was more than double the c2 of the next 

highest predictor (|Y|2000, c2 = 13.11). The other four predictors, A1000, |Y|1000, jY4000, and jY4000, were 

not statistically significant in the model. The Wald analysis investigated the total contribution from 

each variable (linear + nonlinear), as well as the nonlinear components separately for each variable (see 

Table 2.6). The results show that the nonlinear components for each of the statistically significant 

predictors (A2000, and |Y|2000) were also statistically significant, and made up a significant proportion of 

the c2 statistic. For example, of the 25.92 c2 for A2000 (p < 0.0001), 20.96 (p = 0.0001) of this came 

from nonlinear contributions. Variables that were not statistically significant were still retained in the 

model, as statistical significance is a poor metric for predictor selection, especially when predictors are 

correlated, as with WAI data (Harrell, 2015). Variables that were not statistically significant may still 
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be contributing to the model, and retaining them is not detrimental if there is a reason for including 

them, and there are enough degrees of freedom to accommodate them (Gelman & Hill, 2007).  

Table 2.6. Wald statistics for Model D2 predictors 

Factor c2 df1 p-value 

Absorbance 1000 Hz 1.77 4 0.777 

     Nonlinear 1.50 3 0.683 

Absorbance 2000 Hz 25.92 4 <0.001 

     Nonlinear 20.96 3 <0.001 

Admittance magnitude 1000 Hz 3.34 4 0.502 

     Nonlinear 3.19 3 0.364 

Admittance magnitude 2000 Hz 13.11 4 0.011 

     Nonlinear 9.19 3 0.027 

Admittance phase 1000 Hz 5.05 4 0.282 

     Nonlinear 2.92 3 0.405 

Admittance phase 4000 Hz 6.27 4 0.180 

     Nonlinear 5.47 3 0.140 

TOTAL NONLINEAR 38.23 18 0.004 

TOTAL 161.47 24 <0.001 
1Each 5-knot restricted cubic spline required estimation of 4 parameters.  
The top line in the table for each predictor (next to the predictor name) summarizes the total (linear + nonlinear) c2 statistic 
and p-value. The second line (Nonlinear) summarizes the contribution of the nonlinear components only. c2, chi-squared 

statistic; df, degrees of freedom. 

To provide an intuition of how Model D2 functions, Figure 2.7 shows the effect that changing each 

variable in the model has on predicted probability, with other variables held at typical values (the 

median). For example, take two hypothetical neonates, whose WAI results differed only for A2000: for 

one neonate A2000 was 0.6, and for the other, it was 0.3. Results for all other variables for both neonates 

were typical (median) values (0.59 for A1000, 1.46 mmho for |Y|1000, 1.36 mmho for |Y|2000, 40.96 

degrees for OY1000, and 59.15 degrees for OY4000). We can now input the WAI predictor variable values 

into the equation for Model D2, to obtain the probability of conductive dysfunction for each neonate. 

For the neonate with A2000 of 0.6, this results in predicted probability of 0.2, and for the neonate with 

A2000 of 0.3, probability of 0.8. Figure 2.7 is a visual representation of this process, repeating it to 

calculate probability across the entire range of values for each variable (with other variables held to 
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typical values). Notice that for A2000 (top middle panel), risk of conductive dysfunction is low (<0.2) 

when A is >0.6, but increases sharply from A of 0.6 to 0.4 where the risk is quite high (around 0.8). 

Interestingly, risk begins to decline when A is <0.45. Relaxing the assumption of linearity for a variable 

allows the relationship to be non-monotonic in this way. A similar effect is evident for |Y|2000, as 

probability peaks at around 2 mmho, but then declines for |Y| below this. This seems to protect against 

false positives. There were 16 ears in the development sample with |Y|2000 less than 2 mmho and other 

variables greater or equal to median (typical) values. Of these, 13 passed the a priori reference stand-

ard, and 3 failed. Observations with |Y|2000 below 2 mmho when other variables were typical were more 

likely to be normal. However, this does not mean that all ears with |Y|2000 under 2 mmho will result in 

low predicted probability. Selecting observations in the development sample where |Y|2000 was under 2 

mmho and other variables were lower than the median resulted in 6 observations that all failed the 

reference standard, and this is reflected in the model. For example, inputting 10th percentile values for 

all variables into Model D2 (A1000 = 0.29, A2000 = 0.25, |Y|1000 = 0.52, |Y|2000 = 0.76, OY1000 = 17.43, 

OY4000 = 80.161), yields 0.83 probability of conductive dysfunction. 

 

 

 

                                                
1 For OY4000 this is the 90th percentile because at this frequency the fail group had higher median than the pass group (see 
Fig. 2). 
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Figure 2-7. The effect of varying Model D2 predictors 
The effect of varying Model D2 absorbance (A), admittance magnitude (|Y|), and admittance phase (OY) predictor 
variables (x axes) on predicted probability (y axes) with other variables held at median value. The lines are the 
restricted cubic spline function for a predictor variable truncated at the 10th lowest and 10th highest values for each 
variable. The shaded areas denote the 95% confidence interval. A1000, A2000, and |Y|1000 are shown on the top row (left 
to right); and |Y|2000, OY1000, and OY4000 are presented in the bottom row (left to right; the number in subscripts 
denotes frequency). The x axes labels and units are provided in the heading above each panel. For example, the x 
axis for the bottom left plot is |Y|2000 with units of mmho. Median values were: 0.59 for A1000, 0.65 for A2000, 1.46 
mmho for |Y|1000, 1.36 mmho for |Y|2000, 40.96 degrees for OY1000, and 59.15 degrees for OY4000. For example, the top 
middle plot shows how the predicted probability of conductive dysfunction changes as values for A2000 change (with 
other predictors held to their median). For A2000, risk of conductive dysfunction is low (<0.2) when A2000 is >0.6, but 
increases sharply from A2000 of 0.6 to 0.4 where the risk is quite high (around 0.8). 

The calibration plots for Model D2 for the development (apparent), bootstrapped (bias-corrected) 

and validation samples are shown in Figure 2.8. The calibration plots were fairly close to the ideal 

calibration line for the development and bootstrapped samples (predictions were slightly high between 

probabilities of 0.1 to 0.3). The plot for the validation sample showed that predictions were slightly 

high up to probabilities of 0.6, and slightly low for predictions >0.7. Overall, calibration for the devel-

opment, bootstrapped and validation samples was satisfactory. The distributions of predictions are 

depicted by the histograms (the small vertical lines) along the inside of the x-axes of the calibration 

curves (Fig. 2.8). The distribution is skewed right, with the majority of predictions falling between 0 

and 0.1 (the vertical lines are tallest in this region), as most ears were normal. There are tick marks all 
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the way along the x-axes, however, showing that Model D2 made predictions over almost the whole 

range of probabilities (0 to 1). This, in conjunction with the calibration lines being close to the ideal, 

indicates that predictions are reliable across the entire spectrum of probabilities. AUC for Model D2 for 

the fitted model (development sample), bias-corrected (bootstrapped), and validation samples are 

presented in Table 2.7. AUC for the fitted model was 0.88 (95% confidence interval [CI], 0.84–0.91). 

Bootstrap resampling calculated a bias of 0.03, leaving a bias-corrected AUC of 0.85. Applying the 

model coefficients to the validation sample (opposite ears) resulted in an AUC of 0.90 (95% CI, 0.87–

0.94). This was unexpected, being better than the development sample, but 0.90 was within the 95% CI 

of the development sample. The equation for Model D2 to calculate probabilities is provided in Section 

2.7: Appendix B. A web application implementing Model D2 is available 

(https://joshmyers.shinyapps.io/WAIPredictions/), that can compute probabilities for a neonate using a 

file exported from the Titan Suite software, or by manually entering values. 

 

Figure 2-8. Calibration curves for Model D2. 
Calibration curves for Model D2 plotting predicted (x axes) against observed probability (y axes). The dashed lines 
show an ideal model where predicted equals observed frequency (probability). The histograms (vertical lines) along 
the inside of the x axes show the distribution of predicted values. A, calibration for the development sample (appar-
ent, dotted line), and after being corrected for bias using bootstrap resampling (solid line). B, Calibration of Model 
D2 applied to the validation sample (actual, solid line). 

Test accuracy characteristics including sensitivity, specificity, predictive values, and contingency 

table results for various diagnostic thresholds for Model D2 are presented in Table 2.8. Rationale for the 

thresholds presented is provided in the Discussion section. 
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Table 2.7. AUC for Model D2 for the development, bias-corrected, and validation samples 

Sample AUC (95% CI) 

Development  0.876 (0.840 to 0.911) 

Bootstrap training 0.897 

Bootstrap test  0.866 

Bias (bootstrap training – test) 0.030 

Bias-corrected (development – bias) 0.845 

Validation  0.903 (0.870 to 0.936) 

AUC, area under the receiver operating characteristic curve; CI, confidence interval. 

2.4.2 Reference standard criterion  

The rationale for using the a priori (either fail criterion) reference standard, was that ears that failed 

HFT but passed DPOAEs were likely to have conductive dysfunction. If this was indeed the case (and 

ears that failed one test only were not false positives), we would expect it to be reflected in the WAI 

results. Median WAI for ears that passed both tests in the reference standard (n = 899), failed HFT only 

(n = 39), failed DPOAEs only (n = 172), and failed both tests (n = 90) are plotted in Figure 2.9 as a 

function of frequency. For A and |Y|, ears that passed both tests generally had the highest values across 

the entire frequency range (apart from 2500 to 4000 Hz for |Y|). For ears that failed both tests, A mostly 

had the lowest values across the range of frequencies, and |Y| had the lowest values up to 1800 Hz. 

Median A and |Y| for ears that failed HFT only were generally higher than those that failed DPOAEs 

only (except for 1000 to 1800 Hz, and 6000 to 8000 Hz for A). Median OY had a more complex pattern. 

The group that passed both tests had highest values for frequencies below 1200 Hz, and lowest values 

from 1800 to 4000 Hz. The group that failed both tests had lowest OY from 300 to 900 Hz, and highest 

OY from 1200 to 5000 Hz. Median OY for ears that failed one test only lay between these extremes from 

300 to 800 Hz, and 1800 to 4000 Hz. The HFT-fail group had higher OY than the DPOAE fail group 

from 500 to 3000 Hz.  
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Table 2.8. Diagnostic accuracy statistics for various probability thresholds 

Threshold Description Sp Se NPV PPV TN FN TP FP 

0.08 Sensitivity = 0.9 0.46 0.91 0.94 0.37 209 14 145 244 

0.18 Point of symmetry 0.81 0.81 0.92 0.61 369 30 129 84 

0.37 Specificity = 0.91 0.91   0.75 0.91 0.75 414 39 120 39 

0.43 10th percentile pass 0.93    0.68 0.89 0.77 421 51 108 32 

0.60 1.5:1 HBR 0.96 0.60 0.87 0.84 435 64 95 18 

0.67 2:1 HBR 0.97 0.57 0.86 0.87 439 69 90 14 

0.75 3:1 HBR 0.98 0.48 0.84 0.88 442 82 77 11 

Specificity, sensitivity, predictive values, and contingency table results for different probability thresholds from Model D2. 
FN, false negatives; FP, false positives; HBR, harm-to-benefit ratio; NPV, negative predictive value; PPV, positive 
predictive value; Se, sensitivity; Sp, specificity; TN, true negatives; TP, true positives. 

2.5 Discussion 

2.5.1 Clinical application of the prediction model 

A well-fitting prediction model gives valid, individualized risk estimates. Prediction models also allow 

for grey zones (e.g., probability = 0.5), which is not possible when using group statistics such as 

sensitivity and specificity that are defined at a single cut-off point. Hunter et al. (2010) defined a region 

of uncertainty for A2000 between the 10th percentile of the pass group (0.44) and 90th percentile of the 

fail group (0.61).2 Using the developed model (D2), we can quantify how uncertainty changes over this 

region. With other predictors at median value, A2000 of 0.61 has probability of 0.19, and A2000 of 0.44 

has a probability of 0.72 (see Fig. 2.7). Probability of conductive dysfunction increases sharply over 

this region. This additional information could be useful when making a diagnosis for a neonate with 

results falling inside this region. For example, there is a substantial difference between a predicted 

probability of 0.3 and 0.7, and management for two neonates with these respective results may be very 

different, as the former is more likely to be normal, and the latter likely has conductive dysfunction. 

However, A2000 for both of these predictions lie within the region of uncertainty defined by Hunter et al.  

 

 

 

 

                                                
2 Hunter et al. (2010) actually calculated the 90th percentile of the pass group and 10th percentile of the fail group measured 
in R. 
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Figure 2-9. Median WAI stratified by reference test results. 
Median absorbance (A; A, top panel), admittance magnitude (|Y|; B, middle panel) and admittance phase (jY; C, 
bottom panel), for ears that passed both tests in the reference standard (green), failed high-frequency tympanometry 
(HFT) only (blue), failed distortion product otoacoustic emissions (DPOAEs) only (purple), and failed both tests 
(red). Data are from the full sample plotted at 1/24 octave frequency resolution. 
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Different diagnostic thresholds have been suggested in the literature. Hunter et al. (2010) and 

Aithal et al. (2015) used the 10th percentile of A from the normal group to set the threshold. Sanford et 

al. (2009) calculated thresholds on the ROC curve where: specificity = 91%, sensitivity = 90%, and 

sensitivity ~ specificity. Using these thresholds from Model D2 shows the test characteristics for the 

various cut-offs (see Table 2.8). Setting all model predictors to 10th percentile of the pass group 

resulted in a predicted probability threshold of 0.43. At this point specificity = 0.93 and sensitivity = 

0.68. The point where sensitivity = 0.90 (probability = 0.08) had specificity of 0.46. This is lower than 

Sanford et al. who reported specificity of 0.66 for OY at this threshold. Sensitivity for the point on the 

curve where specificity = 0.91 in the present study was 0.75, which is higher than results of Sanford et 

al., who reported sensitivity of 0.65 at this point for OY. The point of symmetry (the threshold where 

sensitivity ~ specificity) for the present study yielded sensitivity and specificity of 0.81 (using a proba-

bility cut-off of 0.18). This is slightly higher than the point of symmetry reported by Sanford et al. of 

0.78 for A and OY. 

A limitation to the above approaches to choosing the cut-off point is that they are data-driven, us-

ing thresholds derived from the test characteristics. Ideally, the cost of misclassification should come 

externally, from the severity associated with different types of misdiagnoses (D. J. Hand in discussion 

to Briggs & Zaretzki, 2008; Harrell, 2015). Predicted probabilities provide a simple and flexible way to 

set the referral threshold, taking into account the harm (or cost) associated with false positives. Setting 

the threshold at probability = 0.5 assumes that the costs of harms (false positives) and benefits (true 

positives) are equal (Steyerberg, 2008). The diagnostic thresholds used in previous research in Table 

2.8 are all <0.5, which implies that the cost of a false negative (missing a case) is higher than a false 

positive (over-diagnosis). However, in the context of using WAI as an adjunct test when screening for 

permanent hearing loss, the cost of false positives is arguably higher than false negatives. This indi-

cates that a threshold >0.5 would be more appropriate. For example, setting the threshold at 0.6, means 

that we consider false positives to “cost” 1.5 times true positives (odds = 1.5:1, or 6:4). Another way to 

think about where to set the threshold is to consider the maximum number of false positives the screen-

ing program would we be willing to bear for every true positive. For example, setting the threshold at 

0.6, implies that up to four false positives would be acceptable for every 10 refer results. The threshold 

could be adjusted depending on considerations such as available resources and the goals of the pro-

gram. 

The effect of increasing the threshold can be seen in Table 2.8. As the cut-off increases, specificity 

increases and negative predictive value decreases (as the number of false negatives increases), but 
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sensitivity decreases and positive predictive value increases (as the number of false positives decreas-

es).  

In a diagnostic context, probabilities could be used in conjunction with graphical depictions of 

WAI to aid diagnostic decision making. Figure 2.10 demonstrates an example of applying the model to 

a case, showing A, along with predicted probability from Model D2, for the right ear of a 29-hour-old 

male. Diagnosis is challenging, as A is within the 90% range at most frequencies, but is consistently 

toward the lower bound, and the clinician may be unsure if this is significant. Knowing that the proba-

bility is 0.61 for this ear may help with decision making, as a conductive condition is more likely than 

not. In a clinical context, there may still be a preferred diagnostic threshold that the clinic uses as a 

guideline (based on the relative costs of false positives and negatives). However, rather than only 

labelling a result as pass or fail, the probability provides the clinician with degree of diagnostic certain-

ty, in the form of an interpretable quantitative parameter. In the above example, a positive diagnosis 

carries a 39% chance or error (1 − 0.61).  

 
Figure 2-10. Example of applying the model to a case. 
Absorbance (A, black line) and predicted probability from Model D2 (Prob), for the right ear of subject 203, a 29-
hour-old male. The shaded area is the 90% range (5th to 95th percentile) of A for the normal group, derived from 
the full dataset. Data are plotted at 1/24 octave frequency resolution. 

2.5.2 Multivariate model development 

The aim of the present study was to develop a diagnostic prediction model for detecting conductive 

conditions in neonates. A clinically useful prediction model needs to be well fitting, both discriminat-

ing and well calibrated. Relaxing the assumption of linearity improved model fit, as shown by lower 

AIC in the models with nonlinear, compared to linear predictor variables. Model A2, which used the 

top univariate predictor (A2000), modelled as a nonlinear variable was better fitting (with lower AIC) 

than its linear variable counterpart (Model A1). Also, Model D2, the multivariate model with nonlinear 
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predictor variables fitted using a priori variable selection, was better fitting than Model D1, which had 

the same predictors assumed to be linearly related to the outcome (the a priori reference standard). 

Allowing a WAI predictor variable to be nonlinear “cost” more df (four rather than one), meaning that 

fewer frequencies were able to be included as variables in the model. However, including fewer 

predictors but allowing nonlinearity (Models C1 and D2) produced better fitting models than including 

the full WAI response with linearity imposed (Model B1). Furthermore, the nonlinear components of 

significant predictor variables (A2000, and |Y|2000) in the final model (D2) were statistically significant 

(see Table 2.6). Allowing the most significant variable (A2000) to be nonlinear seemed especially 

important, as probability increased sharply between A2000 of 0.65 and 0.45 (see Fig. 2.7).  

Including multiple WAI predictors also improved model fit. The multivariate models using linear 

predictor variables (B1 and D1), were better fitting (with lower AIC) than the equivalent univariate 

(linear predictor variable) model (A1). The multivariate WAI models that used nonlinear variables with 

acceptable 2 (>0.9; Models C1 and D2) were also better fitting than their univariate (nonlinear) counter-

part (Model A2).  

In summary, relaxing the assumption of linearity, and including multiple WAI frequencies as pre-

dictors, both improved model fit. The best-fitting model on the development sample (Model D2) used 

both of these strategies. Data reduction was necessary to be able to incorporate both nonlinearity and 

multiple predictors, as the nonlinear predictor variable model including the full WAI response was 

likely overfitting (2 = 0.79). The a priori data reduction method (Model D2) had lower AIC than the 

iterative approach using the best univariate predictors (Model C1), but only slightly (475 compared to 

478). The difference between the models was only one variable. Model D2 included OY1000, but Model 

C1 used OY2000 instead. There was a crossing in the OY of the pass and refer ears between 1000 and 2000 

Hz (see Fig. 2.2C), which suggests that including OY1000 included extra information that was not 

contained in OY2000 or OY4000. The a priori data reduction method was the preferable method, as it 

decreases the risk of fitting the model based on idiosyncrasies in the current dataset, which can affect 

generalizability.  

Including statistically significant covariates did not produce a better fitting model than using WAI 

variables only. The covariates were predictive (the Age × Birth type model had AUC of 0.68, see Table 

2.3), but this extra information did not improve model fit when combined with WAI predictors. This 

was not unexpected, as although including important covariates can improve model fit, it is not un-

common that variables that are predictive in univariate analyses, do not improve performance of a 

multivariate model (Steyerberg et al., 2011). Not having covariates in the model means that all infor-

mation needed to make a prediction is contained in the WAI response. This is beneficial, as a clinician 



 

 81 

would not need to obtain information such as birth length before using the model to test middle ear 

function of a neonate.  

Internal validation of the final model (D2) showed limited bias, with AUC for the bias-corrected 

and validation samples within the 95% CI of the development sample. The calibration plots for the 

development, bootstrapped, and validation samples all showed satisfactory calibration, which indicates 

that Model D2 was not overfitting the data.  

2.5.3 Discriminative ability of WAI  

AUC for the univariate and multivariate analyses in the present study are comparable with results 

reported in the literature. The multivariate AUC of 0.88 (95% CI, 0.84−0.91) for Model D2 for the 

development sample in the present study was similar to the best AUC of 0.87 for multivariate OY 

reported by Sanford et al. (2009). AUCs for the development and validation samples for Model D2 

(0.88 and 0.90, respectively) in the present study were comparable to the AUCs of 0.86 and 0.82 

reported by Keefe et al. (2003a), being slightly higher, but within the 90% CI for the development for 

the development sample and higher for the validation sample (opposite ears). Technical and methodo-

logical differences between the studies could account for the variation in results. Keefe et al. used 

EOAEs as the reference standard, different equipment, and different data reduction techniques (princi-

pal component analysis). Despite these differences, both studies demonstrated good internal validation 

(limited bias). 

Results of the univariate WAI analyses in the present study found A2000 to be the most accurate 

predictor. This is in agreement with Hunter et al. (2010), who reported R2000 as the best performing 

frequency (AUC = 0.90), using DPOAEs as the reference test. Results for A2000 against the DPOAE 

reference standard in the present study, however, was not as high (AUC = 0.85; 95% CI, 0.81−0.89; see 

Fig. 2.3). The present study differs from Aithal et al. (2015), who found 1250 Hz to be the most dis-

criminating frequency (AUC = 0.77), using a HFT-DPOAE reference standard. However, results from 

the present study are not directly comparable with Aithal et al., as they calculated AUC using a single 

threshold on the curve, after classifying A for a given frequency as pass or fail using the 10th percentile 

from a normal group.  

In summary, there are many similarities in AUC results between the present, and previous studies, 

but also some differences. Differences between studies could be due to sample size and characteristics, 

equipment, reference standards, data reduction techniques, and statistical methodology. Importantly, all 

studies have demonstrated that WAI accurately discriminates between normal, and ears with conduc-

tive dysfunction. 
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2.5.4 Covariates 

Statistically significant covariates were birth length, birth type, and age. Research in animals has found 

body size, including length, to be related to dimensions of the ear canal, middle ear and tympanic 

membrane (Huang, Rosowski, & Peake, 2000; Shahnaz et al., 2013; Werner & Igic, 2002; Werner, 

Montgomery, Safford, Igic, & Saunders, 1998). In the present study, having a longer birth length (>51 

cm, see Fig. 2.4) was protective. Having a larger ear canal and middle ear may make the system more 

efficient in removing fluid and debris from the outer and middle ear after birth. Age was the covariate 

with the highest LR c2 statistic and AUC, with younger neonates (<40 hours) more likely to have 

outer/middle ear dysfunction. This is consistent with previous research demonstrating that conductive 

dysfunction affects newborn hearing screening results in the first days of life (Chang et al., 1993; Doyle 

et al., 2000; Sanford et al., 2009; Thornton, Kimm, Kennedy, & Cafarelli-Dees, 1993). The fact that 

developmental trends were evident over the first three days of life, even in the group that passed both 

DPOAEs and HFT (see Fig. 2.6), indicates that the effect of age on the WAI response may be due in 

part to physiological maturation, and not solely due to the clearing of fluid and debris from the conduc-

tive pathway.  

Type of birth was also expected to be significantly related to conductive dysfunction, as previous 

research has found that babies delivered by C-section are more likely to fail an initial EOAE hearing 

screen (Smolkin et al., 2012). Results of the univariate analysis, however, showed that C-section 

delivery had a protective effect, because these babies were typically older. The model including birth 

type, delivery type, and their interaction, showed that neonates delivered by C-section did have sub-

stantially higher risk of conductive dysfunction over the first day of life (see Fig. 2.5). Since risk for C-

section babies was higher only for the first day, future research could investigate whether the recom-

mendation of postponing hearing screening of babies delivered by C-section until 48 hours after birth 

could be revised to 24 hours (Smolkin et al., 2012).  

2.5.5 Choice of reference standard and WAI results 

AUC for the univariate WAI results was fairly similar for the either fail (a priori) and DPOAE only 

reference standards. The either fail reference standard was slightly higher at some frequencies, and 

DPOAE at others, but AUC using the DPOAE reference test was within the 95% CI for either fail at all 

frequencies. However, this does not mean that including HFT along with DPOAEs in the a priori 

reference standard (using the either fail criterion) was not worthwhile. There were 39 ears that failed 

HFT but passed DPOAEs in the full sample (see Fig. 2.10), making up 12.5% of ears in the fail group 
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of the either fail reference standard. The a priori reference standard was adopted with the goal of 

creating a more sensitive reference standard (to identify more true positives), than using DPOAEs as 

the sole reference test. Although there was not a large effect on univariate AUC results, including the 

extra test identified an extra 39 ears with conductive dysfunction that would have been otherwise 

classified as normal using DPOAEs as the sole reference test. Given the high specificity of both HFT 

and DPOAEs, these 39 ears were more likely to be true positives than false positives. Also, ears that 

failed only one reference test (HFT or DPOAEs) generally had median WAI values that fell between 

the median for ears that passed and failed both tests, indicating that failing one test identified milder 

conditions (see Fig. 2.10). It is noteworthy that this was the case over most frequency regions thought 

to be diagnostically important for conductive conditions.  

Interestingly, univariate results showed that the both fail reference standard had the highest AUC, 

followed by HFT only, for the most accurate frequency for each WAI measure (A2000, |Y|1000, and 

OY2000). This was because these reference standards are stricter, failing only ears with (presumably) 

more severe conductive dysfunction, making the diagnostic task easier (Schmidt & Factor, 2013). In 

the development sample 159 ears failed the either fail reference standard, and 134 ears failed DPOAEs 

only. This is on the order of three times the 52 and 68 ears that failed the both fail and HFT only 

reference standards, respectively. These results demonstrate the importance of pre-specifying the 

reference standard based on the target condition (Rutjes, Reitsma, Coomarasamy, Khan, & Bossuyt, 

2007). In the present study, using a data-driven approach for choosing the reference standard would 

have resulted in using the both fail reference standard, as it had the highest AUC. However, it would be 

difficult to argue that ears that failed DPOAEs (with normal cochlear hearing) should be classified as 

normal, since they most likely failed the test due to conductive dysfunction (Hunter et al., 2010).  

The median and IQR of ears that passed or failed the reference standard were comparable with re-

sults from previous studies. The present study found best separation between groups for A from 1200 to 

3000 Hz. This compares favourably with results from Sanford et al. (2009) and Aithal et al. (2015). |Y| 

results from the present study best separated groups between 800 and 1800 Hz which also compares 

well with results from Sanford et al. In the present study, OY best separated groups between 1800 to 

3500 Hz which is comparable with Sanford et al. who found of a region of good separation between 

2500 to 4500 Hz. Sanford et al. also found a region of best separation from 750 to 1000 Hz for 1-day-

old neonates. In the present study, median OY was greater for the pass group from 500 to 1200 Hz but 

the separation between the IQRs was not as clear as the 1-day-old results from the Sanford et al. study. 

However, results from the present study are similar to the 2-day-old results reported by Sanford et al., 

which is closer to the median age in the present study.  
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2.5.6 Strengths, limitations, and directions for future research  

The modelling strategy was intended to avoid overfitting by limiting the number of predictors in the 

model. Internal validation with bootstrapping and the validation sample showed limited bias in Model 

D2, indicating that it was not substantially overfitting the data. The final model (D2) included predictors 

based on results of previous research, which increases the likelihood that the model will generalize to 

new subjects. However, the degree to which the developed model generalizes to new subjects needs to 

be assessed through external validation, by assessing performance on a sample separated from the 

development sample temporally/geographically (Moons et al., 2012a). Future research could investi-

gate external validation of Model D2, using a sample of neonates that were not used to develop the 

model.  

Recruiting neonates as a cohort enabled direct calculation of predicted probabilities which could 

potentially be useful in clinical or screening contexts. However, the model may need to be updated if 

being used only in neonates who failed the newborn hearing screen, as the prevalence of conductive 

conditions would likely be higher in that population than in the current sample (Thompson et al., 2001). 

This would not necessitate development of an entirely new model, however, as the prevalence in the 

new population can be used to update the intercept term of the present model (Moons et al., 2012a). 

Future research could assess the prediction model in clinical and screening settings, including in the 

population of neonates who failed newborn hearing screening.  

Although including covariates related to the outcome did not improve model fit in the present 

study, this may be important if developing a prediction model for babies in special care. Future re-

search could investigate whether including risk factors for middle ear dysfunction for neonates in 

special care, such as low birth weight and history of ventilation, improves model fit (Keefe et al., 

2000).  

A limitation of the present study was that data collection was not blinded. When testing a neonate, 

both the reference standard tests and WAI measurements were performed by the same research audiol-

ogist. However, interpretation of reference test results was objective, a tympanogram was either 

peaked, or not, and DPOAEs either satisfied the pass criterion, or did not. Doing all tests with the same 

insertion of the probe meant that neonates were not unsettled by changing of the probe tip between 

tests, and the status of the ear was unlikely to have changed from one test to the next (Aithal et al., 

2015). 
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2.5.7 Conclusions 

The developed prediction model accurately discriminated between normal and abnormal ears, and had 

satisfactory calibration, with performance and calibration verified in two ways. The model has potential 

applications in screening or diagnostic settings. In a screening context, probabilities could be used to 

set a cost-sensitive referral threshold that is intuitive and easy to apply. In a diagnostic setting, predict-

ed probabilities could be used in conjunction with graphical depictions of WAI for individualized 

diagnoses. Further research investigating the use of the model in clinical and screening contexts is 

warranted. 
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2.6 Appendix A: The location of restricted cubic spline knots 

The location of knots for continuous variables fitted with restricted cubic splines for Model D2 in 

Chapter 2.  

 Percentile 
 0.05 0.275 0.5 0.725 0.95 

Absorbance      
     250 Hz 0.15 0.39 0.50 0.55 0.67 
     500 Hz 0.20 0.34 0.42 0.48 0.59 
     1000 Hz 0.21 0.46 0.59 0.67 0.80 
     2000 Hz 0.15 0.48 0.65 0.78 0.87 
     4000 Hz 0.13 0.37 0.51 0.60 0.75 
     8000 Hz 0.13 0.45 0.63 0.80 0.91 
Admittance magnitude (mmho)      
     250 Hz 0.32 0.65 0.81 0.97 1.22 
     500 Hz 0.38 0.65 0.80 0.92 1.20 
     1000 Hz 0.40 1.08 1.46 1.79 2.50 
     2000 Hz 0.66 1.04 1.36 1.88 2.86 
     4000 Hz 1.04 1.57 2.00 2.52 3.68 
     8000 Hz 1.43 2.62 3.05 4.34 7.72 
Admittance phase (degrees)      
     250 Hz −1.00 12.50 23.03 38.29 62.24 
     500 Hz 12.60 32.88 40.19 47.17 57.90 
     1000 Hz 10.57 31.06 40.96 49.95 63.21 
     2000 Hz −5.58 11.36 23.83 41.86 77.98 
     4000 Hz 22.59 48.08 59.15 69.39 83.93 
     8000 Hz −8.13 29.85 48.16 66.05 84.68 
Covariates      
     Age (hours) 16     29 43 51 76 
     Gestational age (weeks) 37.0  38.4 39.2 40.1   41.2 
     Birth weight (grams) 2690 3190 3460 3710 4230 
     Head circumference (cm) 32.5  34.0   35.0 35.5 37.0 
     Body length (cm) 47  49 50 52 54 
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2.7 Appendix B: The equation for Model D2   

The logistic regression equation for Model D2 developed in Chapter 2, to calculate the probability 

(Prob) that an ear has a conductive condition (fail) is provided below. Model D2 included A1000, A2000, 

|Y|1000, |Y|2000,	 OY1000,	 and	 OY4000 as predictors, modelled as nonlinear with five-knot restricted cubic 

splines. A restricted cubic spline with five knots has six “slopes” or coefficients, one for each segment 

(therefore, there were six coefficients for each predictor in the model). A five-knot restricted cubic 

spline is modelled: 

 IJ + IK(R − A)TU + I7(R − V)TU + IU(R − W)TU + IX(R − 8)TU + IY(R − D)TU ,  

Where the Is are the slopes, a, b, c, d, and e are the knot locations, and k is the value of the predic-

tor (for a particular ear). The subscript “+” after a knot term, e.g., (x)+, means that the value of x is x if 

it is positive, otherwise, 0. Therefore, in the equation, if x is positive, its value is cubed, otherwise it is 

ignored. This is the mechanism that enforces continuity (i.e., makes the splines meet at the joins). The 

terms within parentheses are the predictor values minus the knot location, i.e., how far the predictor 

value is above the knot. If it is below the knot, the term is set to 0 and ignored. If it is above the knot, 

the coefficient is multiplied by how far above, forcing continuity. The term is cubed to make the join 

smooth. For an observation (i.e., a measurement from an ear), if the value for a predictor is less than the 

first knot, it is multiplied by I0 and all other terms are ignored (set to 0). More terms are added as the 

value of the predictor passes more knots. If the predictor value (k) is higher than the first knot but lower 

than the second knot, the value would be k times I0 + (I1 × how far k is above the first knot)3 (cubed), 

and so on.  

In the equation for Model D2 below, A2000 has knots at 0.18, 0.48, 0.65, 0.78, and 0.87 (rounded to 

two decimal places). The numbers outside the parentheses (the Is in the above equation) are the 

coefficients. So for A2000, I0 = 6.75, I1 = 57.91, and I2 = 289.93. So if, for example, A2000 was meas-

ured in an ear of a neonate at 0.5, the overall term for A2000 would be: (6.75 × 0.5) + 57.91(0.5 – 0.18)3 

+ 289.93(0.5 – 0.48)3. In this case the I3, I4 and I5 terms would all be set to 0 because 0.5 is lower 

than the 3rd knot (0.65).  
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The equation for Model D2 is: 

 
 

 

 

 

 

 

 

 

 

Prob{ear = fail} =
1

1 + exp(�X�̂)
, where

X�̂ =

0.3523545

�0.331527A1000 � 11.78557(A1000 � 0.2019479)3+
+20.75623A1000 � 0.4604719)3+ + 196.1606(A1000 � 0.5861042)3+
�334.7084(A1000 � 0.6729156)3+ + 129.5771(A1000 � 0.7955292)3+
+6.747808A2000 � 57.91562(A2000 � 0.14875)3+
+289.9319(A2000 � 0.4784832)3+ � 347.126(A2000 � 0.6467917)3+
+62.7052(A2000 � 0.7775833)3+ + 52.40457(A2000 � 0.8710521)3+
�3.589473|Y|1000 + 3.214916(|Y|1000 � 0.4037958)3+
�15.66089(|Y|1000 � 1.075514)3+ + 23.67445(|Y|1000 � 1.464896)3+
�12.60408(|Y|1000 � 1.791034)3+ + 1.375602(|Y|1000 � 2.500048)3+
+3.606295|Y|2000 � 1.807441(|Y|2000 � 0.6641479)3+
+3.578654(|Y|2000 � 1.038218)3+ � 3.090144(|Y|2000 � 1.36275)3+
+2.113073(|Y|2000 � 1.876652)3+ � 0.7941422(|Y|2000 � 2.857704)3+
�0.06509103'Y1000 + 6.467163⇥10�5('Y1000 � 10.56548)3+
�0.0003710368('Y1000 � 31.06615)3+ + 0.000520529('Y1000 � 40.95885)3+
�0.000230828('Y1000 � 49.9512)3+ + 1.666413⇥10�5('Y1000 � 63.20532)3+
�0.0254035'Y4000 + 2.152242⇥10�5('Y4000 � 27.5886)3+
�0.0001072373('Y4000 � 48.0814)3+ + 0.0003023625('Y4000 � 59.14977)3+
�0.0003343566('Y4000 � 69.39033)3+ + 0.0001177089('Y4000 � 83.92554)3+

and (x)+ = x if x > 0, 0 otherwise

1
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 Chapter 3. Diagnosing Middle Ear Pathology in 6- to 9-Month-Old 
Infants Using Wideband Absorbance: A Risk Prediction Model 

This chapter develops a prediction model for diagnosing middle ear pathology using wideband absorb-

ance in 6- to 9-month-old infants. It has been previously published in the article: Myers, J., Kei, J., 

Aithal, S., Aithal, V., Driscoll, C., Khan, A., Manuel, A., Joseph, A., Malicka, A. N.  (2018b). Diagnosing 

middle ear pathology in 6- to 9-month-old infants using wideband absorbance: A risk prediction model. 

Journal of Speech Language and Hearing Research, 61(9), 2386-2404. 

I made substantive contributions to the article in the areas of study design, data collection, data 

analysis and drafting of the article, as outlined below: 

 

Contributor Statement of contribution 

Joshua Myers (Candidate) Study design (60%) 
Recruitment and data collection (60%) 
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3.1 Abstract 

Purpose: The aim of this study was to develop a risk prediction model for detecting middle ear pathol-

ogy in 6- to 9-month-old infants using wideband absorbance measures.  

Methods: Two-hundred and forty-nine infants aged 23 to 39 weeks (median = 28 weeks) participated 

in the study. Distortion product otoacoustic emissions and high-frequency tympanometry were tested in 

both ears of each infant to assess middle ear function. Wideband absorbance was measured at ambient 

pressure in each participant from 226 to 8000 Hz. Absorbance results from one ear of each infant were 

used to predict middle ear dysfunction, using logistic regression. To develop a model likely to general-

ize to new infants, the number of variables was reduced using principal component analysis, and a 

penalty was applied when fitting the model. The model was validated using the opposite ears, and with 

bootstrap resampling. Model performance was evaluated through measures of discrimination and 

calibration. Discrimination was assessed with the area under the receiver operating characteristic curve 

(AUC), and calibration with calibration curves, which plotted actual against predicted probabilities. 

Results: AUC of the fitted model was 0.887. The model validated adequately when applied to the 

opposite ears (AUC = 0.852), and with bootstrap resampling (AUC = 0.874). Calibration was satisfac-

tory, with high agreement between predictions and observed results. 

Conclusions: The risk prediction model had accurate discrimination and satisfactory calibration. 

Validation results indicate that it may generalize well to new infants. The model could potentially be 

used in diagnostic and screening settings. In the context of screening, probabilities provide an intuitive 

and flexible mechanism for setting the referral threshold that is sensitive to the costs associated with 

true, and false positive outcomes. In a diagnostic setting, predictions could be used to supplement 

visual inspection of absorbance for individualized diagnoses. Further research assessing the perfor-

mance and impact of the model in these contexts is warranted.    
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3.2 Introduction 

Infants with onset of otitis media in the first year of life are at greater risk of recurrent and chronic 

infections (Homøe et al., 1999; Kværner et al., 1997; MacIntyre et al., 2010). Diagnostic tools able to 

quickly and accurately identify middle ear pathology early in infancy could help to facilitate timely 

intervention for these children (Hunter et al., 2008b). Wideband acoustic immittance (WAI) is an 

emerging technology for assessing middle ear function with significant advantages over established 

clinical tests such as tympanometry. WAI does not require pressurization of the ear canal, and can 

measure middle ear function over a wider frequency range than is possible with tympanometry (Stinson 

et al., 1982).  

The term WAI refers to a family of wideband measures including reflectance, absorbance, acoustic 

impedance, and acoustic admittance. Reflectance is the proportion of the forward-propagating energy 

that is reflected back from the middle ear. Absorbance is 1 – reflectance, and represents the proportion 

of energy absorbed by the middle ear (Rosowski et al., 2013). Absorbance and reflectance have been 

the most reported WAI measures in clinical research, as they have the desirable property of being 

theoretically insensitive to probe location in the ear canal (Voss et al., 2008). Numerous studies have 

investigated the accuracy of WAI for identifying conductive dysfunction in neonates (Aithal et al., 

2015; Hunter et al., 2010; Keefe et al., 2003a; Myers et al., 2018a; Sanford et al., 2009). However, little 

is known about the diagnostic performance of these measures for infants beyond the first month of life. 

Further research is needed in this population, as WAI could be a valuable tool for identification of 

middle ear pathology early in infancy.  

Two diagnostic performance WAI studies, to date, have included infants under 12 months of age 

beyond the neonatal period. Prieve et al. (2013b) found that reflectance accurately diagnosed conduc-

tive hearing loss in a sample of 70 infants aged 3 to 25 weeks (median = 10 weeks). Ellison et al. 

(2012) reported that absorbance and acoustic admittance performed well in detecting middle ear 

effusion in a case-control study using 88 children aged 0.5 to 7 years old (median = 1.3 years for cases, 

and 1.2 years for controls). However, results of those studies may not be directly applicable to infants 

in the second half of the first year of life, due to changes in the acoustic properties of the outer and 

middle ear over the first 12 months of infancy (Kei et al., 2013). Developmental changes over the first 

year of life have a significant effect on the WAI response, to the extent that age-graded diagnostic 

criteria are essential (Hunter et al., 2013; Keefe et al., 1993; Werner et al., 2010). Although Prieve et al. 

(2013b) and Ellison et al. (2012) both included some subjects in the second half of the first year of life, 

most infants in those studies were either under 6, or over 12 months old, respectively.  
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There is a lack of consensus about the effect of subject characteristics on WAI for infants beyond 

the neonatal period. Werner et al. (2010) reported a slight, but statistically significant ear-side effect, 

with reflectance lower for left ears compared to right, but this result has not been replicated by other 

studies (Aithal et al., 2014b; Hunter et al., 2008b; Shahnaz et al., 2014). Variations between ethnic 

groups have been reported (Aithal et al., 2014a; Beers et al., 2010), but using ethnic-specific norms for 

absorbance or reflectance has not been found to improve diagnostic accuracy (Shahnaz et al., 2013). 

Werner et al. (2010) reported that females had higher acoustic impedance than males, but no studies 

have found a statistically significant gender effect for absorbance or reflectance in infancy (Aithal et 

al., 2014b; Hunter et al., 2008b; Shahnaz et al., 2014; Werner et al., 2010). 

The large volume of data generated by WAI presents a challenge for interpretation of results. Both 

qualitative and quantitative methods have been used in previous research to analyse the diagnostic 

properties and performance of WAI. Qualitative methods seek to identify patterns and characteristics of 

WAI in normal and pathological ears to aid clinical diagnosis (e.g., Hunter et al., 2008b; Sanford & 

Brockett, 2014). Using quantitative statistical techniques, however, could help to improve accuracy, 

and reduce variability between testers (Sanford & Brockett, 2014). Quantitative methods could also be 

automated for use in screening contexts (Sanford et al., 2009).  

Both univariate and multivariate statistical methods have been used in previous quantitative diag-

nostic WAI research in infants and children. The goal of univariate analyses is to find the most accurate 

diagnostic frequency (or frequency bandwidth) in the response (e.g., Beers et al., 2010; Prieve et al., 

2013b). The benefit of this approach is ease of interpretation, but multivariate modelling combining 

results from multiple frequencies and/or WAI measures is potentially more accurate (Ellison et al., 

2012; Prieve et al., 2013a). This has been demonstrated in research in neonates and children, where 

multivariate methods have been shown to outperform univariate approaches (Keefe et al., 2012; Myers 

et al., 2018a; Piskorski et al., 1999).  

However, because of the many variables (frequencies) in the response, overfitting can be an issue 

when multivariate modelling WAI data (Piskorski et al., 1999). A model with many predictors can have 

high apparent accuracy, but may not perform well when applied to new subjects (Steyerberg, 2008). 

Piskorski et al. (1999) used stepwise regression to reduce the number of variables in their multivariate 

model. However, stepwise methods can lead to arbitrary inclusion of variables, especially if predictors 

are correlated, as with WAI data (Harrell, 2015). Data reduction methods should ideally be blind to the 

outcome (the reference standard results). The simplest way of achieving this with WAI data is to 

decrease the frequency resolution. However, care should be taken that the bandwidth is fine enough 

that important diagnostic information is not lost (Keefe et al., 2015). Principal component analysis 
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(PCA) is another effective data reduction method. This technique was used by Keefe et al. (2003a,b) to 

reduce the WAI response to 5–7 variables. PCA transforms the original variables (WAI frequencies) 

into new variables called principal components (PCs) that are ordered such that most of the variability 

(information) in the data is contained in the first few PCs (Jolliffe, 2002). All of the original variables 

contribute to each PC, but not equally. In a multivariate model, a subset of the PCs can be used as 

predictors instead of the original variables. This retains most of the information from the originals, but 

fewer variables need to be included in the model, reducing risk of overfitting (Harrell, 2015).  

In addition to limiting the number of variables, applying a penalty when fitting a model can help to 

improve generalizability. Previous multivariate WAI models developed in infants and children have 

been fitted using maximum likelihood estimation (Ellison et al., 2012; Keefe et al., 2012; Myers et al., 

2018a; Piskorski et al., 1999; Sanford et al., 2009). This method finds the best fitting model for the 

provided data, but the model may reflect idiosyncrasies (or noise) in the data, rather than generalizable 

relationships (the signal), especially if the sample size is small (Harrell, 2015). Penalized maximum 

likelihood estimation adjusts a model for optimism by applying a penalty to the parameter estimates, 

and has been demonstrated to improve generalizability (Moons, Donders, Steyerberg, & Harrell, 2004; 

Steyerberg, Eijkemans, Harrell, & Habbema, 2001a; Steyerberg, Eijkemans, & Habbema, 2001b). 

However, even with a penalty applied, there is a degree of bias in all multivariate models, as they 

are fitted using a particular dataset. Validation is therefore an essential component of multivariate 

model development, to assess how well the model is likely to generalize to new subjects (Steyerberg et 

al., 2001c). Performance in new samples may be lower due to overfitting, or because of differences in 

subject characteristics, the test environment, or equipment used in the new setting (Steyerberg, 2008). 

Internal validation investigates the impact of overfitting on a model, and is performed during develop-

ment, utilizing the same data used to create the model (Moons et al., 2012b). External validation 

assesses generalizability by evaluating the model in a new sample of subjects (Moons et al., 2012a). 

Previous multivariate WAI models have been internally validated only in neonates. Keefe et al. 

(2003a,b) and Myers et al. (2018a) used one ear of each subject for model development, and opposite 

ears for validation. Models in all three studies validated adequately, with a difference in AUC between 

development and validation samples of 0.01 to 0.04. A limitation of this approach is that the develop-

ment and validation samples are correlated. Therefore, Myers et al. (2018a) also employed bootstrap 

resampling as a secondary form of validation which estimated bias in the AUC of 0.03. Bootstrapping 

uses sampling with replacement to estimate the amount of bias (or overfitting) in the model to give an 

“honest” estimate of model performance in new samples (Harrell et al., 1996).  
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Research into useful multivariate techniques for analysing WAI data is still in its infancy. Multi-

variate methods that can summarize results from multiple frequencies into a single quantitative 

parameter are desirable, as this would combine the benefits of univariate utility and multivariate 

performance (Myers et al., 2018a; Sanford & Brockett, 2014). Diagnostic risk prediction models have 

this quality, as they take multiple predictors and provide a probability (between 0 and 1) that a subject 

has the condition (if probability >0.5, the condition is more likely to be present than not). Providing 

risk estimates has significant advantages over simply classifying ears as either pass or fail. Predictions 

are individualized, providing information about the degree of diagnostic certainty, and allowing for 

grey zones (e.g., probability = 0.5; Harrell & Slaughter, 2016). Such information is lost if the clinician 

is given only a single pass/fail threshold. Prediction models are especially useful for conditions such as 

otitis media that occur on a continuum of severity, where the pass/fail cut-off for diagnosis is somewhat 

arbitrary (Myers et al., 2018a; Northrop et al., 1986; Palmu & Syrjänen, 2005; Vickers et al., 2008).  

The aim of the present study was to develop a multivariate risk prediction model for diagnosis of 

middle ear pathology in 6- to 9-month-old infants using absorbance. Absorbance was chosen as the 

WAI measure for model development because of the desirable property of being theoretically insensi-

tive to probe position in the ear canal. Results from one ear of each infant were used to develop the 

model. To create a model likely to generalize to new subjects, the number of variables was reduced 

using PCA, and a penalty was applied when fitting the model. The model was validated using the 

opposite ears, and with bootstrap resampling. 

3.3 Methods 

Institutional review board approval was obtained from the Townsville Health Service District In-

stitutional Ethics Committee, and the University of Queensland Behavioural and Social Science Ethical 

Review Committee. This study was part of a larger project following a cohort of subjects through 

infancy who were recruited at birth from the maternity (healthy baby) ward of the Townsville Hospital. 

Seven hundred and thirty-seven infants have been enrolled in the project to date. Myers et al. (2018a) 

reported on 629 study participants who were tested as neonates. The present study aimed to follow up 

participants at around 6 months of age. Two hundred and forty-nine infants attended follow-up ap-

pointments between February 2015 and August 2017. Median age was 27.7 weeks with an interquartile 

range (IQR) of 26.6 to 29.5 weeks (range = 23.9 to 39.9 weeks). Two hundred and seven infants were 

reported by caregivers to be Caucasian (86%), 32 Asian (13%), and four others (African, South Ameri-

can, or unknown; 2%).  



 

 95 

All infants either passed the newborn hearing screening (automatic auditory brainstem response), 

or had a finding of normal hearing sensitivity at subsequent diagnostic audiology assessment. Diagnos-

tic audiology was performed within 6 weeks of screening, with normal hearing defined as passing a 

click-evoked ABR test, and also passing either TEOAEs or a tone-burst ABR test, as per the Healthy 

Hearing Program Audiology Diagnostic Assessment Protocol (Nicholls, 2016). The pass criterion for 

TEOAEs was ≥6 dB signal to-noise ratio (SNR) at 3/4 frequencies from 1000 to 4000 Hz, including at 

least 1000/1500 and 4000 Hz. For click-evoked ABR, a pass was a repeatable wave V present down to 

20 dB nHL, and for tone burst ABR, repeatable wave V present down to 30 dB nHL at 1000 Hz, and 20 

dB nHL at 4000 Hz.  

3.3.1 Test procedure 

Infants were tested by a research audiologist in a quiet room at a paediatric community health cen-

tre. All tests were performed using an Interacoustics Titan system connected to a laptop computer 

running Titan Suite software (version 3.2). Probe function was checked daily in a 2 cm3 cavity and the 

system was calibrated annually by the manufacturer. Infants were tested sitting on their parent’s lap. 

Both ears of each child were tested if possible, with the most accessible ear tested first. An appropriate-

ly sized plastic probe tip was attached to the probe, and high-frequency tympanometry (HFT), 

distortion product otoacoustic emissions (DPOAEs), and absorbance were tested, in no specific order. 

Otoscopy was also performed on each infant, to ensure that the ear canal was not occluded by wax.  

HFT was measured using a 1000-Hz probe tone presented at 85 dB SPL. Pressure was swept from 

200 to −400 daPa at 300 daPa/s, slowing to 100 daPa/s around the peak of the trace. Traces that were 

difficult to interpret due to artefact caused by activity or noise were repeated if possible. Tympano-

grams were classified using the method of Kei et al. (2003). This method was chosen based on the 

recommendations of Hoffmann et al. (2013), who found it the best performing in a sample of 577 

infants <12 months old. A tympanogram was classified as “pass” if there was a single or double peak, 

otherwise “fail”.  

DPOAEs were elicited in response to pairs of primary tones (f1 and f2), for f2 of 2000, 3000, 4000, 

and 6000 Hz. The f1 and f2 intensity levels were set to 65 and 55 dB SPL, respectively, and the f2 / f1 

ratio was 1.22. An ear was classified as pass if the SNR was ≥6 dB with an emission level ≥−10 dB, at 

three out of four f2 frequencies, otherwise fail. If an ear failed with noise levels ≥0 dB SPL at two or 

more test frequencies, the test was repeated, if possible, to avoid failing normal ears solely because of 

high noise floor levels (Hunter et al., 2010).  
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Absorbance was measured at ambient pressure at 1/24 octave frequency resolution using a 226 to 

8000 Hz broadband click delivered at 96 dB peSPL. Thirty-two clicks were presented to the ear and 

results averaged after removal of noisy responses as described by Liu et al. (2008). Results were 

monitored with a visual display during testing to check for air leaks. Testing was stopped and the probe 

reinserted if absorbance was high (≥0.3) at frequencies below 300 Hz (Groon et al., 2015). Absorbance 

data were obtained using the Interacoustics Titan Research Module which saves results as a text file 

after each test. As absorbance <0 is theoretically impossible, when this occurred, values were set to 0, 

as these results were likely due to calibration error (Piskorski et al., 1999). Although multiple WAI 

measures can potentially be used to develop a multivariate model (e.g., Ellison et al., 2012), other 

measures such as admittance were not considered in the present study, in order to restrict the number of 

candidate variables.  

3.3.2 Reference standard 

HFT and DPOAE results were used to evaluate middle ear function of each infant. HFT was cho-

sen over low-frequency (226 Hz) tympanometry, as studies comparing the two have found HFT to be 

more accurate in infants under 9 months old (Hoffmann et al., 2013; Zhiqi et al., 2010). DPOAEs were 

used in conjunction with HFT to create a more rigorous reference standard than HFT in isolation (Kei 

& Zhao, 2012). Although evoked otoacoustic emissions (EOAEs) are a cochlear response, they can be 

used to assess middle ear function, as the stimuli and emissions are transmitted through the middle ear, 

and significant conductive dysfunction interferes with this process (Choi et al., 1999; Zhao et al., 

2003). A limitation of using otoacoustic emissions to test for middle ear pathology is that they are 

affected by sensory, as well as middle ear disorders. However, in the present sample it is unlikely that 

emissions were absent due to sensory pathology, since all subjects either passed the newborn hearing 

screen, or follow-up diagnostic audiological assessment.  

When results of two tests are used to create a reference standard, an ear can be classified as fail if it 

fails either test (the “loose” criterion), or both tests (the “strict” criterion) (Turner, Frazer, & Shepard, 

1984). If the component tests have higher specificity than sensitivity, the loose criterion can be used to 

create a reference standard that improves sensitivity without sacrificing specificity (Alonzo & Pepe, 

1999). The loose criterion was, therefore, chosen for the present study, as there is evidence indicating 

that both HFT and EOAEs have higher specificity than sensitivity for detecting middle ear dysfunction 

in infants and children (Driscoll et al., 2001; Hoffmann et al., 2013; Koike & Wetmore, 1999). 

Hoffmann et al. (2013) reported HFT specificity of 0.90 and sensitivity of 0.77 in a sample of 577 

infants under 12 months old, using otomicroscopy as the reference test. Diagnostic performance studies 



 

 97 

of transient evoked otoacoustic emissions (TEOAEs) in children have also reported higher specificity 

than sensitivity using typical clinical pass/fail criteria. Driscoll et al. (2001), in a sample of 940 chil-

dren 5 to 7 years old, reported specificity of 0.86 and sensitivity of 0.60 using a pass criterion of ≥6 dB 

TEOAE SNR, against a reference standard consisting of puretone audiometry and 226-Hz tympa-

nometry. With the same reference standard, Koike and Wetmore (1999) reported specificity of 0.94 and 

sensitivity of 0.84 in a sample of 63 children aged 4 to 17 years, defining pass as >50% TEOAE 

reproducibility. 

3.3.3 Missing data and statistical modelling 

Table 3.1 shows the number of ears that passed and failed HFT, DPOAEs, and the reference stand-

ard, and provides the number of missing observations for each test, including absorbance. Ears that 

failed one reference test with missing results for the other were not considered missing, as they were 

able to be classified by the loose criterion on the basis of failing one test. Results were missing due to 

infants crying, or not tolerating the probe in their ear, and were considered to be “missing at random” 

(Harrell, 2015). Since they made up only a small proportion (0.07) of ears tested, they were removed 

from the sample for subsequent analyses. In total, 34 ears were removed, due to either missing absorb-

ance, or reference standard results. The dataset after removal of these observations is called the “full 

sample” in this report.  

Table 3.1. Number of ears passed and failed the reference tests 

Test Pass Fail Missing 

HFT 400 80 18 

DPOAEs 396 81 21 

Reference Standard 374 99 25 

Absorbance   24 

Number of ears with missing data for each test is also shown. DPOAEs, distortion product otoacoustic emissions; HFT, 
high-frequency tympanometry. 

The probability that an ear had middle ear dysfunction was modelled using logistic regression. As 

this procedure assumes that observations are independent, one ear of each infant was randomly chosen 

for model development (the development sample), and opposite ears were used for validation (the 

validation sample). Infants with results for only one ear were put into the development sample to 

maximize this sample size (Myers et al., 2018a). Figure 3.1 shows the progression of infants and 
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observations through the study, including how many ears passed and failed the reference standard for 

the development and validation samples. 

 

Figure 3-1. The flow of infants and observations through the study. 
The pass and fail reference standard (RS) boxes (bottom row) provide the number of ears that passed and failed the 
reference standard for each of the samples. A = absorbance. 

A general rule for fitting a logistic regression model is to have at least 10 observations in the 

smallest group (usually the fail group) for each variable included (Agresti, 2013). However, this is just 

a guide, and can be relaxed if the SNR is high. The shrinkage coefficient (2) can be used to assess 

whether the signal is strong enough to warrant the number of predictors being modelled (Harrell, 

2015): 

γ =
model	67 − 89
model	67

, 3.1  

where, model 62 is the likelihood ratio 62 statistic (the statistical test for the model), and df, is the 

total degrees of freedom from all variables in the model. If 2 suggests an issue with overfitting, further 

data reduction may be necessary.  
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As there were 44 ears that failed the reference standard in the development sample (Fig. 3.1), the 

10:1 ratio suggests that the number of variables included in the model should be in the vicinity of four. 

Data reduction was therefore necessary, as at 1/24 octave frequency resolution, absorbance was meas-

ured at 107 frequencies. PCA was used to reduce the number of variables for modelling. The procedure 

transformed absorbance results into a new set of variables (PCs), ordered such that the maximum 

possible amount of variability was explained by the first PC (PC1), then as much of the remaining 

information possible was explained by the second PC (PC2), and so on. PCA did not automatically 

reduce the number of variables, because as many PCs were created as original variables. However, the 

number of predictors could be significantly reduced with minimal information loss, since most of the 

variability could be explained by the first few PCs. The number of PCs (starting at PC1 and adding PCs 

sequentially) that explained >90% of the variance were used as variables for modelling. For PCA 

calculations, absorbance data were first centred to have a mean of 0. It is common to also scale varia-

bles to have variance of 1, but this was not necessary for the present study because absorbance 

variables were already all on the same scale. Furthermore, scaling assumes that all predictors are 

equally important. However, previous research in infants has shown that certain frequencies in the 

absorbance response are more predictive than others, with the 1500 to 6000 Hz region the most diag-

nostically important (Ellison et al., 2012; Prieve et al., 2013b).  

To make the composition of PCs more interpretable, the number of absorbance variables was re-

duced prior to PCA, by decreasing the frequency resolution. Reducing the number of variables made 

the PCs easier to interpret, since all variables (absorbance frequencies) contributed to each PC. For 

example, PCA on absorbance measured at 1/24 octave frequency resolution resulted in absorbance 

from all 107 frequencies contributing to each PC. However, this reduced to 11 variables when using 1/2 

octave resolution. Rather than making an arbitrary decision, the choice of frequency resolution was 

systematically investigated to find the optimal resolution for modelling. First, absorbance results were 

averaged into 1/12, 1/6, 1/3, 1/2, and 1 octave frequency bands. Next, PCA was performed for each 

resolution. The number of PCs explaining >90% of the variance were then used as model variables. 

Since this usually resulted in more than 4 variables (PCs) being included (the limit suggested by the 

10:1 rule), 2	was calculated for the model at each frequency resolution, to assess whether overfitting 

was an issue. A value of >0.9 for 2 was considered acceptable, as performance was not expected to be 

more than 10% poorer in new data (Harrell, 2015). Akaike's information criterion (AIC), a relative 

measure of model fit, was calculated for the model at each frequency resolution. A lower AIC indicates 

a better fitting model, if the models were fitted using the same dataset. The frequency resolution that 

resulted in the best fitting model was chosen as the one to proceed with.  
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Penalized maximum likelihood estimation was used to fit the models, with the aim of improving 

generalizability in new samples. The method used to choose the penalty was to maximize the modified 

AIC (AICM). AICM is model 62 −	2	×	effective df,	where	effective df is the degrees of freedom after 

penalization. In a standard model, each predictor “costs” one df. In a penalized model, effective df is 

lower than the number of predictors because the penalty reduces the number of parameters being 

estimated (Harrell, 2015). The penalty was chosen by performing a grid search over a range of possible 

values (0 to 5), and the value that maximized AICM was used as the penalty when fitting the model 

(Moons et al., 2004).  

Including predictive covariates in a multivariate model can help to improve performance (Harrell, 

2015). Given the equivocal nature of results from prior WAI research, univariate analyses of subject 

characteristics were performed, and any statistically significant covariates were included as multivari-

ate predictors, along with absorbance PCs, to assess whether this improved model fit. Univariate 

analyses were performed for gender, age, ethnicity, and ear side. These analyses were done using the 

development sample, with missing observations omitted. Subject characteristics for the development 

sample are summarized in Table 3.2, including the number of missing observations for each covariate. 

For multivariate analyses, covariates with missing observations were given a value using multiple 

imputation so that all analyses could be performed with the same dataset, without having to remove 

observations with complete absorbance and reference standard results, missing only covariate data 

(Buuren & Groothuis-Oudshoorn, 2011). This resulted in four values being imputed for ethnicity. A 

model was also fitted from the development sample on the best univariate predictor. This was done to 

compare with the multivariate models to test whether the additional information improved model fit, 

and/or performance. 
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Table 3.2. Characteristics of neonates included in the development sample 

Characteristic Value 

Age (weeks) 
     Median (IQR) 
     Range 

20 missing 
27.7 (26.6–29.5) 

23.9–39.9 

Gender (count)  
     Female (%) 
     Male (%) 

0 missing 
120 (50) 
120 (50) 

Ethnicity (count) 
     Caucasian (%) 
     Asian (%) 
     Other (%) 

1 missing 
207 (86) 
29 (12) 

3 (1)                 

Ear (count) 
     Right (%) 
     Left (%) 

0 missing 
109 
131 

The number of subjects with missing data for each characteristic is provided in the Value column. IQR, interquartile range. 

The model with the lowest AIC was taken as the final model for further evaluation and validation 

(Burnham & Anderson, 2002). When evaluating a prediction model, it is important to assess both 

discrimination and calibration. Discrimination measures how well the model differentiates between 

normal and diseased ears, and calibration assesses the quality of predictions. The performance of the 

best fitting model was evaluated with AUC, and calibration with calibration curves, which plot actual 

against predicted probabilities. The model was validated by applying the coefficients to the validation 

sample, and also with bootstrap resampling. Bootstrapping involved sampling with replacement from 

the development sample, a “training sample”, the same size as the development sample. A model was 

fitted to the training sample, and the coefficients applied to the original development sample (the “test 

sample”). The amount of bias was estimated by calculating the difference in performance measures 

(AUC and calibration) between the training and test samples. The process was repeated 500 times and 

averaged to give a stable estimate of the amount of bias in the model (Steyerberg et al., 2001c). The 

estimated bias was subtracted from final model’s performance measures to provide a bias-corrected 

estimate of future model performance (Steyerberg, 2008). The best univariate predictor model was also 

applied to the validation sample for comparison with the final multivariate model. The difference in 

AUC between the univariate and multivariate models was tested statistically using the method of 

DeLong, DeLong, and Clarke-Pearson (1988).  
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Statistical modelling was done with R (R Core Team, 2017), expanded with the rms library for re-

gression modelling (Harrell, 2016). This report has been written to conform to the recommendations of 

the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or 

diagnosis) statement for reporting multivariate clinical prediction models (Collins et al., 2015). 

3.4 Results 

3.4.1 Absorbance data and the reference standard  

Median absorbance for ears that passed the reference standard are compared with results from pre-

vious normative studies in Figure 3.2. The general shape of the response is similar to other studies with 

absorbance low in the low and high frequencies, and generally highest from 2000 to 6000 Hz, with a 

dip at 3000 Hz. However, with the exception of Aithal et al. (2014b), the magnitude of absorbance in 

the present study was generally smaller than for other studies.  

 
Figure 3-2. Median absorbance of normal ears compared with other studies. 
Aithal et al. (2014b) reported on fourteen 6-month-old infants (27 ears); Keefe et al. (1993), eleven infants aged 6 
months; Sanford and Feeney (2008), twenty subjects aged 6 months; Shahnaz et al. (2014), thirty-three ears from 6-
month-old infants; and Werner et al. (2010), two hundred and sixty subjects aged 5 to 9 months. Aithal et al. 
reported median absorbance; the other studies mean reflectance which has been converted to absorbance for 
comparison. Data from the present study are from the full sample, displayed at 1/24 octave frequency resolution.  

Absorbance median and IQR for ears that passed and failed the reference standard are depicted in 

Figure 3.3. Median absorbance for the fail group was lower than the pass group across the entire 

frequency range. Median absorbance for the pass group was higher than the third quartile of the fail 

group from 1000 to 2500 Hz, and 5000 to 7000 Hz. IQRs were almost completely separated from 1200 

to 2000 Hz.  
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Figure 3-3. Median and interquartile range absorbance for the pass and fail groups. 
The solid and dashed lines show the median, and light and medium grey shaded areas depict the interquartile range 
(IQR) for the pass and fail groups, respectively. The dark grey shading depicts where IQRs of the groups over-
lapped. Data were taken from the full sample and plotted at 1/24 octave frequency resolution.  

The reference standard assumed that ears failing only one test had middle ear pathology. If these 

ears were not false positives, and were actually dysfunctional, we would expect average absorbance to 

be lower for these ears than the normal group. To assess this, median absorbance for ears that passed 

both HFT and DPOAEs (n = 370), failed both tests (n = 58), failed DPOAEs only (n = 19), and failed 

HFT only (n = 17) are shown in Figure 3.4. Compared to the normal group, ears that failed DPOAEs 

only had lower absorbance from 1800 to 8000 Hz, and measurements in ears that failed HFT only were 

lower over almost the entire frequency range (except for around 3500 Hz). Ears that failed both tests 

generally had lowest absorbance compared to the other groups from 700 to 7000 Hz. 
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Figure 3-4. Absorbance stratified by reference test results. 
Median absorbance for ears that passed both tests in the reference standard, failed both tests, failed only DPOAEs, 
and failed only HFT. Data were taken from the full sample, and are shown at 1/24 octave frequency resolution. 
DPOAE = distortion product otoacoustic emissions; HFT = high-frequency tympanometry. 

3.4.2 Data reduction  

Results of the PCA models for choosing the frequency resolution are shown in Table 3.3. The 

number of PCs needed to explain over 90% of the variance is provided, along with 2 and AIC. General-

ly, more PCs were needed to explain over 90% of the variance as the frequency resolution increased. 

Four PCs explained 96% of the variance at 1 octave frequency resolution, but 6 PCs were needed to 

explain 92% at 1/24 octave resolution. The cumulative proportion of variance explained by the 1/2 

octave resolution PCs is depicted in Figure 3.5. Half of the variance was explained by the first PC, 

increasing to 0.88 with four PCs, and then 0.94 with five. Apart from 1 octave, all models needed more 

than 4 variables (PCs) to explain over 90% of the variance. However, 2 was acceptable (>0.9) for 

models at all frequency resolutions, indicating that overfitting was not of concern. Since the 1/2 octave 

model had the lowest AIC (indicating that it was the best fitting), it was chosen as the frequency 

resolution to proceed with (Table 3.3).  
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Table 3.3. Principal component analysis results for various frequency resolutions  

f resolution PCs Variance	 2	 AIC 

1 octave 4 0.96 0.94 188.82 

1/2 octave 5 0.94 0.95 155.03 

1/3 octave 5 0.92 0.94 180.19 

1/6 octave 6 0.96 0.94 174.45 

1/12 octave 6 0.92 0.94 161.03 

1/24 octave 6 0.92 0.93 178.59 

The number of principal components (PCs) included, proportion of variance explained, 2, and AIC for the PCA models 
fitted using various frequency (f) resolutions. AIC, Akaike's information criterion; 2, shrinkage coefficient; PCA, principal 
component analysis.  

The loadings for the first five PCs of the 1/2 octave PCA are provided in Table 3.4. Loadings are 

rounded to three decimal places for ease of interpretation. The actual loadings for all 11 PCs, as well as 

the centring factors, are provided in Section 3.6: Appendix A. The loadings show the degree to which 

absorbance at each frequency contributes to a given PC. A larger absolute value for a loading indicates 

a greater contribution to the PC by absorbance at that frequency. Loadings can be positive or negative, 

but the sign is arbitrary. Figure 3.6 is a visual depiction of the loadings, showing the contribution that 

absorbance at each frequency makes to each PC. The biggest contributors to PC1 were absorbance 

variables from 2000 to 8000 Hz. For PC2, 1000 to 2000, and 5657 Hz contributed the most.  
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Figure 3-5. Cumulative proportion of principal components.  
Cumulative proportion of variance explained (y-axis) by the principal components from the 1/2 octave frequency 
resolution principal component analysis (x-axis). 

The effect of the choice of frequency resolution was explored in Figure 3.7. The top panel (A) de-

picts univariate AUC for 1/24 (the raw data) and 1/2 octave frequency bandwidths. The general shape 

of the AUC as a function of frequency is the similar for both resolutions. AUC is highest in the 1500 to 

2000 Hz region, with a secondary peak around 6000 Hz. Highest AUC at 1/24 octave frequency 

resolution was 0.821 at 1682 Hz, and at 1/2 octave, 0.805 at 2000 Hz. The bottom panel (B) shows 

median absorbance for the pass and fail groups plotted at 1/24, 1/3, 1/2, and 1 octave bandwidths. The 

1/3 and 1/2 octave resolutions show a smoothing effect compared to the raw data (1/24 octave), but the 

shape of the response is very similar for all three resolutions. The 1 octave bandwidth, however, tends 

to depart from the raw data at frequencies above 2000 Hz, especially for the pass group.  
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Table 3.4. Loadings for the first five principal components 

Variable PC1 PC2 PC3 PC4 PC5 CF 
250 Hz 0.049 -0.102 0.177 -0.242 0.064 0.122 
354 Hz 0.066 -0.134 0.236 -0.323 0.084 0.168 
500 Hz 0.080 -0.171 0.275 -0.345 0.069 0.244 
707 Hz 0.074 -0.250 0.281 -0.235 0.089 0.324 

1000 Hz 0.067 -0.436 0.257 -0.025 0.193 0.409 
1414 Hz 0.180 -0.608 0.037 0.333 0.063 0.511 
2000 Hz 0.415 -0.363 -0.383 0.257 -0.316 0.595 
2828 Hz 0.401 -0.003 -0.449 -0.580 -0.200 0.557 
4000 Hz 0.415 0.175 -0.185 -0.120 0.591 0.677 
5657 Hz 0.579 0.349 0.302 0.364 0.216 0.529 
8000 Hz 0.323 0.189 0.465 -0.044 -0.632 0.183 
Loadings for the first five PCs and centring factors (CF) for the absorbance variables for the 1/2 octave frequency resolution 
PCA. The sign of the loadings is arbitrary, and can be ignored when considering the size of a variable’s contribution to a PC 
(i.e., consider only the absolute value). The CF column provides the centring factor used to set the mean absorbance to 0 for 
each frequency. The CF was subtracted from the absorbance value at a given frequency prior to performing the PCA 
analysis. PC, principal component; PCA, principal component analysis. 

3.4.3 Covariate analyses 

Results of the univariate covariate analyses are presented in Table 3.5. Ear side was significantly 

associated with the outcome (p = 0.04), and was therefore included as a candidate covariate for multi-

variate modelling. Figure 3.8 shows the effect of ear side (left panel) on predicted risk of middle ear 

dysfunction. Right ears had higher risk of middle ear dysfunction (0.24) compared to left (0.14). 

Although statistically significant, the size of the effect is fairly small (difference in risk between the 

ears of 0.1).  
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Figure 3-6. Principal component heatmap. 
Heatmap of the absolute value of the loadings for the first five principal components (PC; x-axis) for the absorbance 
frequencies (y-axis) from the 1/2 octave resolution principal component analysis. Darker blue in a cell indicates a 
larger absolute value.   

The effect of ear side on the absorbance response was explored in Figure 3.9 which depicts median 

absorbance for the pass and fail groups by ear side. Overall, median absorbance for ear side was very 

similar for right and left ears for both the pass and fail groups. Right ears that failed the reference 

standard did have lower median absorbance at the most important predictive frequencies (1500 to 2000 

Hz, and 6000 Hz), but only slightly.  
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Figure 3-7. AUC and the effect of frequency resolution.  
The effect of frequency resolution on univariate absorbance AUC (A, top), and median absorbance for the pass and 
fail groups in the full sample (B, bottom). The 95% confidence interval bars are provided for the 1/2 octave AUC 
results. AUC = area under the receiver operating characteristic curve.   

3.4.4 Statistical modelling 

Details of the fitted models, including model 62, AIC, and penalties are provided in Table 3.6. 

Model A was fitted on the best univariate predictor at 1/2 octave frequency resolution (2000 Hz). This 

was to compare with the multivariate models, to evaluate whether there was a multivariate advantage. 

The other models all used the first five PCs from the 1/2 octave PCA as predictors. Model B used only 

the absorbance PCs, but Model C also included ear side, the significant covariate, to assess whether this 

improved model fit. AIC for model C was not lower than Model B (156.77 compared to 155.03; Table 

3.6), indicating that including ear side did not improve model fit. Therefore, since Model B was best 

fitting, it was taken as the final model for interpretation and validation.   
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Table 3.5. Statistics from the univariate covariate analyses 

Covariate LR 62 p-value AUC 

Age 0.69 0.405 0.551 

Gender  2.80 0.094 0.570 

Ear side 4.05 0.044 0.584 

Ethnicity  5.66  0.059 0.580 

Model LR 62 (the statistical test), associated p-values, and AUC results for the univariate covariate analyses. These models 
were fitted using the development sample with missing observations omitted. AUC, area under the receiver operating 
characteristic curve; LR 62, model likelihood ratio chi-squared statistic.    

AUCs for Model B for the development, bootstrapped and validation samples are shown in Table 

3.7. AUC for the development sample was 0.887. Bootstrapping estimated bias of 0.013, leaving a 

bias-corrected AUC of 0.874. Applying the model to the validation sample resulted in AUC of 0.852. 

AUC for Model A (the model fitted from the best univariate predictor) for the development and valida-

tion samples is also presented for comparison (Table 3.7). Model B had higher AUC than Model A for 

both the development and validation samples (0.852 compared to 0.785 for the validation sample). The 

difference in AUC between the models when applied to the validation sample was statistically signifi-

cant (p = 0.008).  
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Figure 3-8. The effect of ear side on predicted probability of middle ear dysfunction.  
The error bars depict the 95% confidence intervals. 

Calibration curves for Model B for the development, bootstrapped and validation samples are 

shown in Figure 3.10. Risk estimates were close to the ideal line for the development and bootstrapped 

samples, with predictions slightly low for probabilities above 0.6. For the validation sample, predic-

tions were a little low across the entire range of probabilities, more so for probabilities between 0.1 and 

0.2. Overall, calibration curves were satisfactory for all samples. The equation for Model B to calculate 

risk predictions is provided in Section 3.7: Appendix B. A web application implementing Model B is 

available (https://joshmyers.shinyapps.io/WAIPredictions/) that can be used to make predictions for an 

infant either by manually entering absorbance values, or uploading a file exported from an Interacous-

tics Titan Device. 
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Figure 3-9. Median absorbance for the pass and fail groups by ear side.  
Data are from the full sample plotted at 1/24 octave frequency resolution. 

3.5 Discussion 

3.5.1 Clinical application of the model 

Predicted probabilities from the final model (Model B) could potentially be used clinically in both 

screening and diagnostic settings. In the context of screening, a referral threshold must be chosen. 

Previous WAI studies have recommended cut-offs based on visual inspection of results (Prieve et al., 

2013b), or statistically, using the ROC curve (Keefe et al., 2012; Piskorski et al., 1999; Sanford et al., 

2009). From a statistical perspective, the most efficient cut-off is the point at the top left hand corner of 

the ROC curve (Youden, 1950). The point where sensitivity and specificity are close to being equal 

(the “point of symmetry”) has also been suggested as a potentially useful cut-off in diagnostic WAI 

research (Keefe et al., 2012; Sanford et al., 2009).  
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Table 3.6. Statistical results for the fitted models 

 Variables in Model LR 62 Penalty df 2	 AIC 

Model A 2000 Hz 64.88 0.50 0.98 0.98 168.73 

Model B  First 5 PCs (1/2 octave f resolution) 88.52 1.11 4.75 0.95 155.03 

Model C Model B variables plus ear side 89.55 1.57 5.53 0.94 156.77 

Variables included, model LR 62 (the statistical test), penalty, degrees of freedom (df), shrinkage coefficient (2), and AIC 
for the fitted models. p-values for the model LR 62 statistic were <0.001 for all models. The models were fitted using the 
development sample with missing observations for covariates imputed. The penalty was chosen by performing a grid search 
over a range of possible penalty values (0 to 5), and the point that maximized AICM was used as the penalty. Model B is the 
same model as the 1/2 octave resolution model in Table 3.3. AIC, Akaike's information criterion; AICM, modified Akaike's 
information criterion; LR 62, model likelihood ratio chi-squared statistic.  

An issue with the above strategies is that the threshold is chosen based on the properties of the test. 

The decision-analytic approach, on the other hand, takes the cost of correctly identifying, or missing a 

case into consideration when choosing the threshold (D. J. Hand in discussion to Briggs & Zaretzki, 

2008; Steyerberg et al., 2011). However, formal decision analysis, where the utility (harm or benefit) of 

every possible outcome is considered, can be difficult to implement clinically, due to its complexity 

(Metz, 1978; Vickers, 2008). Using predicted risk to set the threshold simplifies the process, as only 

one value needs to be assigned (Vickers, 2008). The threshold is the point where there is enough 

concern (i.e., high enough risk) to warrant further action (e.g., review, or referral). It reveals the value 

associated with the benefits of accurately identifying the condition (true positives) compared to the 

harm (or cost) from unnecessary follow up (false positives). In the context of screening for middle ear 

dysfunction in infants, the benefits relate to timely intervention for early onset otitis media, and the 

costs include increased pressure on medical, audiology, and otology services to follow up infants who 

refer from the program. The threshold (T) is the point where the harms and benefits are equal (Van 

Calster et al., 2013). The odds of the chosen threshold (T/1−T) correspond to the perceived harms 

compared to the benefits (Vickers, 2011). For example, setting the threshold at 0.5 suggests that true 

and false positives are valued equally. Using a risk threshold of 0.6, implies that false positives “cost” 

1.5 times more than true positives (0.6/1−0.6). The threshold is flexible, and can be adjusted depending 

on the goals of the screening program.  
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Table 3.7. Discrimination and internal validation results 

 Sample AUC [95% CI] 

Model B 

Development  0.887 [0.826–0.948] 

Bootstrap training 0.893 

Bootstrap test  0.880 

Bias (bootstrap training – test) 0.013 

Bias-corrected  0.874 

Validation   0.852 [0.784–0.920] 

Model A 
Development 0.828 [0.746–0.909] 

Validation 0.785 [0.698–0.873] 

AUC for the development, bootstrapped, and validation samples for Model B and Model A. AUC, area under the receiver 
operating characteristic curve; CI, confidence interval. 

Once a threshold is chosen, statistics such as sensitivity and specificity can be calculated to see 

how well the model performs at the chosen threshold (Steyerberg, 2008). Sensitivity, specificity, and 

predictive values for various risk thresholds from Model B are provided in Table 3.8. Thresholds were 

calculated from the development sample, and then applied to the validation sample. Test performance 

statistics are provided for the point of symmetry, and cut-offs corresponding to threshold odds of 0.5 (T 

= 0.33), 1 (T = 0.5) and 1.5 (T = 0.6).  
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Figure 3-10. Calibration curves for Model B. 
Actual versus predicted probability for Model B for: A, the development and bootstrapped (bias-corrected) samples; 
and B, the validation sample. Perfect (ideal) calibration is shown by the diagonal dashed lines, and the histograms 
inside the x-axes depict the distributions of predictions.  

The cut-off for the point of symmetry was probability of 0.16. This threshold seems too low in the 

context of diagnosing middle ear pathology, as 16% risk of middle ear dysfunction in an infant hardly 

seems concerning enough to warrant further action. Choosing this threshold implies that true positives 

are 5.25 times more valuable than false positives (1−0.16/0.16). The resulting positive predictive value 

of 0.49 means that a clinician would be wrong approximately half the time if using this cut-off to make 

a positive diagnosis. As a starting point, a probability threshold of 0.5 (50% risk of middle ear dysfunc-

tion) seems reasonable, since at this point middle ear dysfunction begins to be more likely than not, and 

a clinician would probably want to follow this up. However, the cut-off is flexible, and can be adjusted 

depending on the goals of the screening program. One program may set the refer threshold at 0.5, but 

another, in a healthcare system with fewer resources may decide to set it higher to limit the burden on 

services (Myers et al., 2018a). Another consideration is that other tests (e.g., EOAEs) might be used in 

conjunction with absorbance to create a screening test battery. In this case, predicted risk of middle ear 

dysfunction could be used along with other results to create decision rules for further action. For 

example, a program may refer an infant directly to audiology if EOAEs are absent, and risk of middle 

ear pathology low. Alternatively, an infant with high risk of middle ear pathology and absent EOAEs 

might be scheduled for review. 
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Table 3.8. Diagnostic accuracy statistics at various thresholds 

Threshold Description Sp Se NPV PPV 

0.16 Se ~ Sp 0.78 0.74 0.91 0.49 

0.33 OddsT = 0.5 0.93 0.60 0.89 0.70 

0.50 OddsT = 1.0 0.95 0.56 0.88 0.76 

0.60 OddsT = 1.5 0.98 0.52 0.88 0.87 

Specificity (Sp), sensitivity (Se), and predictive values for various risk thresholds from Model B. The thresholds were 
calculated from the development sample and then applied to the validation sample. NPV, negative predictive value; OddsT, 
odds at the threshold; PPV, positive predictive value. 

In a diagnostic context, predicted probabilities from Model B could be used in conjunction with 

visual depiction of absorbance to provide individualized diagnoses. Clinical reasoning is inherently 

probabilistic and providing results as predictions complements this process (Sox, Higgins, & Owens, 

2013). If estimated risk is high or low, a clinician may confidently make a diagnosis, and an indetermi-

nate result (e.g., probability = 0.5), may necessitate further investigation or review. Using the model to 

supplement visual inspection of the data could be especially helpful for inexperienced clinicians, but 

even practiced users may benefit from the additional objective information. Importantly, the diagnostic 

decision point is flexible, and can be adjusted depending on the clinical context. For example, in a 

routine assessment with no parental concern, a clinician may decide to discharge if the result is border-

line (probability = 0.5). However, if there are concerns about development, the same result may 

warrant review. In the context of the audiological test battery, if hearing thresholds are elevated, 

EOAEs absent, and probability of middle ear dysfunction high, a clinician may suspect conductive 

hearing loss. Alternatively, the same hearing thresholds and EOAE results with low probability of 

middle ear dysfunction may alert the clinician to a possible sensorineural hearing loss (Blankenship et 

al., 2018).  

3.5.2 Model development and validation 

AUCs for Model B for the bias-corrected and validation samples were within the 95% confidence 

interval (CI) of the development sample, and the calibration plots for the development, bootstrapped, 

and validation samples all showed high agreement between predicted and actual probabilities. These 

results indicate that Model B may generalize well to new infants. Model B had a clear advantage over 

the best univariate model (Model A) on all performance measures (AIC and AUC). Previous studies 

have demonstrated a multivariate performance advantage for diagnosing conductive hearing loss in 

children (Keefe et al., 2012; Piskorski et al., 1999), and conductive conditions in neonates (Myers et 
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al., 2018a), but the present study showed this also extends to diagnosing middle ear pathology in 6- to 

9-month-old infants.  

Using 1/2 octave frequency averaging significantly reduced the number of absorbance variables 

(107 to 11), but did not result in substantial information loss, as the top 1/2 octave frequency AUC was 

only 0.016 lower than the most accurate frequency at 1/24 octave resolution. AIC for the 1/2 octave 

model was lower than 1/24 octave, indicating that the reduced frequency resolution actually improved 

model fit. PCA was also an effective data reduction method that resulted in interpretable PCs. The best 

performing absorbance frequencies from both the univariate analyses, and findings from previous 

research were well represented in the PCs used for modelling. The most predictive absorbance frequen-

cies from the univariate analyses were 1414, 2000 and 5657 Hz, with frequencies ≥1000 Hz having 

better performance than lower frequencies. Prior research has identified absorbance from 1500 to 6000 

Hz as the most important region diagnostically (Ellison et al., 2012; Prieve et al., 2013b). All of the 

important absorbance frequencies identified in the univariate analyses, and prior research contributed 

significantly to the first five PCs from the 1/2 octave PCA used to fit Model B.  

3.5.3 Absorbance and reference standard results 

The AUC for Model B for the development sample in the present study of 0.887 (95% CI, 0.826 to 

0.948) was not as high as Ellison et al. (2012), who reported AUC of 0.93 for absorbance. However, 

the AUC 95% CI of the present study included the result of Ellison et al. Overall, the median and IQR 

for the pass and fail groups from the present study compared favourably with results from Ellison et al., 

although there were some differences. The median for the fail group in the present study was not as low 

as Ellison et al. for frequencies between 500 and 2000 Hz, and differences between reference standards 

used in the studies may have contributed to this. Ellison et al. included only ears with confirmed middle 

ear effusion in the fail group, whereas the reference standard in the present study was designed to 

identify ears with even mild middle ear dysfunction. The IQRs for Ellison et al. had better separation 

between pass and fail groups from 250 to 1000 Hz, but not as clear separation from 5000 to 6000 Hz as 

was seen in the present study. Other factors that may have contributed to the differences between the 

studies include age of subjects and equipment used to measure WAI. Median age of subjects in Ellison 

et al. was substantially older than the present study (12 months old, compared to 6 months), and they 

used a prototype system for WAI measurements, whereas the present study used the commercially 

available Titan system.  

Median absorbance for ears that failed only one test in the reference standard had lower absorb-

ance than ears that passed both tests at many of the diagnostically important frequencies (Fig. 3.4; 
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Ellison et al., 2012; Prieve et al., 2013b). Previous research has demonstrated that ears with mild 

dysfunction (e.g., negative tympanic peak pressure on tympanometry, or moderately stiff eardrums on 

pneumatic otoscopy), have average absorbance that falls between normal, and ears with effusion in the 

1000 to 5000 Hz region (Beers et al., 2010; Ellison et al., 2012; Hunter et al., 2008b). In the present 

study median absorbance for ears that failed one test fell between ears that passed or failed both tests 

over much of the same region, indicating that these ears had milder dysfunction than ears that failed 

both tests.  

Ears that passed the reference standard in the present study had median absorbance similar to nor-

mative results from other studies (Fig. 3.2), although average absorbance was slightly lower in general, 

with the exception of Aithal et al. (2014b). As mentioned, possible factors such as age, equipment, and 

reference standard may account for differences.  

3.5.4 Strengths, limitations, and directions for future research 

Since the study sample was recruited from the general population, predicted probabilities from Model 

B would be most suitable for use in a similar population, such as screening in conjunction with a health 

check at 6-month-old immunizations. Although potentially useful in diagnostic or high-risk screening 

contexts also, the model may need to be updated to reflect the prevalence and typical disease severity in 

the new setting, as the prevalence is often higher, and disease more severe in these contexts (Moons et 

al., 2012a). For example, the model may need updating if being used in an otology clinic, as ear disease 

would likely be higher in prevalence, and more severe than typically seen in the general population. 

The modelling strategy aimed to develop a model likely to generalize to new infants through limit-

ing the number of predictors with data reduction, applying a penalty when fitting, and internally 

validating using two methods, to assess for overfitting. However, external validation of the model is 

needed to assess the degree to which differences in subject characteristics, equipment and environmen-

tal factors affect model performance (Moons et al., 2012a). Further research could evaluate the 

performance of Model B in a new sample of infants not used in model development. An external 

validation study would apply the centring factors and loadings from Section 3.6: Appendix A on 

absorbance results from a new sample, and then use the equation in Section 3.7: Appendix B to calcu-

late predictions, updating the model as appropriate (Moons et al., 2012a). 

A limitation of the present study was that data collection was not blinded. Both the reference tests 

and absorbance were measured by the same research audiologist. However, interpretation of the 

reference tests was objective, either meeting the pass criteria or not. Being able to complete all of the 

tests with a single insertion of the probe enabled results to be obtained quickly, resulting in a high 
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success rate for both absorbance and the reference tests in a difficult-to-test population (Shahnaz et al., 

2014). 

3.5.5 Summary and conclusions 

The aim of this study was to develop a prediction model for diagnosing middle ear dysfunction in 6- to 

9-month-old infants using wideband absorbance. Methods for data reduction, penalization and internal 

validation were applied, with the aim of creating a model likely to generalize to new infants. The model 

performed well on both measures of discrimination and calibration, and may be clinically useful. In a 

screening setting, predicted probabilities offer an intuitive and flexible mechanism for setting the 

referral threshold that takes into account the costs associated with true and false positives. In a diagnos-

tic context, risk estimates could be used to supplement subjective interpretation of absorbance results 

for individualized diagnosis of middle ear pathology. Future research assessing the performance and 

impact of Model B in these contexts is warranted. 
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3.6 Appendix A: Principal component analysis loadings 

The principal component analysis loadings and centring factors from Chapter 3. 

 Principal Components 1 to 4 

Variable PC1 PC2 PC3 PC4 

250 Hz 0.0489836914566045 -0.10243946467333800 0.1771267479374100 -0.2424551835520600 
354 Hz 0.0663486542738451 -0.13433669878202500 0.2357612482449830 -0.3231430134155570 
500 Hz 0.0804672893382117 -0.17054970229456500 0.2750095104975020 -0.3449762895962940 
707 Hz 0.0736980781612132 -0.25020948253632700 0.2807124529759180 -0.2345448527166250 

1000 Hz 0.0666297381024985 -0.43590476463258000 0.2574997502514360 -0.0246520981772233 
1414 Hz 0.1797435440830960 -0.60792929080639200 0.0368068444677677 0.3332597336042940 
2000 Hz 0.4149698049365220 -0.36276695151122000 -0.3832962063068450 0.2565032260200490 
2828 Hz 0.4010412337127480 -0.00273314771963196 -0.4494844247560330 -0.5802458175060310 
4000 Hz 0.4148312121592830 0.17514193947667900 -0.1849045775278440 -0.1201808059206920 
5657 Hz 0.5789888313208650 0.34926721285388500 0.3020703095587450 0.3636156898300010 
8000 Hz 0.3227968207825770 0.18949200178531200 0.4653641231518370 -0.0443335409051452 

 Principal Components 5 to 8 

Variable PC5 PC6 PC7 PC8 

250 Hz 0.0638377562597850 -0.2525423602344350 0.0386821460040066 -0.1775292523861350 
354 Hz 0.0840478103032062 -0.3635941960062980 0.0451338570879222 -0.2235629632959160 
500 Hz 0.0687641822818827 -0.3510140653952520 -0.0192572892379463 -0.0755906970367255 
707 Hz 0.0893750248844870 -0.0131558272513994 -0.1104780771210280 0.3546463108172130 

1000 Hz 0.1925244163245900 0.4510064360587900 -0.1564978991066850 0.4749467058769500 
1414 Hz 0.0632618032655485 0.2391620260320740 0.1141465261962870 -0.6154130982293710 
2000 Hz -0.3156395548928020 -0.4838480367047310 0.0881635702300124 0.3680319468761840 
2828 Hz -0.2002537391584820 0.3237930091401330 -0.3512556093681700 -0.1789451049560760 
4000 Hz 0.5906260637547510 0.1011477500393730 0.6151917977597290 0.0967997034473142 
5657 Hz 0.2164550044223570 -0.1001250811505480 -0.5064788799898650 -0.0751285704732589 
8000 Hz -0.6321825584446530 0.2466285716519680 0.4245400261569100 0.0149667177802476 

 Principal Components 9 to 11 and Centring Factors 

Variable PC9 PC10 PC11 Centre 

250 Hz 0.55420103171458800 -0.53403922025553200 0.45138213760472400 0.122301979166667 
354 Hz 0.29709489542237500 0.23832452229678800 -0.69368619845686700 0.167580166666667 
500 Hz -0.41806514005709500 0.46788707362349100 0.49201421180052500 0.243896157407407 
707 Hz -0.49462495670947000 -0.58454252661234300 -0.25625932870834200 0.323728939393939 

1000 Hz 0.38858967917302100 0.30031919715417100 0.08307638540554890 0.409447847222222 
1414 Hz -0.16142710008727700 -0.08004527231496300 -0.01637822556669920 0.511355659722222 
2000 Hz 0.07748863891831260 0.02269057471360320 0.00365807858279349 0.594627951388889 
2828 Hz -0.00619028377946813 -0.00328947192439493 -0.00652190003473820 0.556790173611111 
4000 Hz -0.04042054854413880 -0.00215626597675115 0.00822327075701300 0.676837847222222 
5657 Hz 0.01588102305875460 -0.00375149867861264 -0.00350228436270827 0.529095694444444 
8000 Hz 0.01319267276134030 0.01587395311821680 0.00102896873706815 0.183177152777778 

Centre is the centring factor. PC, principal component; PCA, principal component analysis 
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3.7 Appendix B: The equation for Model B  

The logistic regression equation for the final model (Model B) in Chapter 3, using principal compo-

nents (PC) as predictors to calculate the probability (Prob) that an ear has middle ear pathology (fail) is:  

 
 

 
 
 
 
 

 

 

 

Prob{ear = fail} =
1

1 + exp(�X�)
, where

X�̂ =

�2.231122� 3.425094 PC1 + 2.527118 PC2 + 0.1173496 PC3

�4.588192 PC4 + 0.9285594 PC5

1
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 Chapter 4. Diagnosing Middle Ear Dysfunction in 10- to 16-Month-Old 
Infants Using Wideband Absorbance: An Ordinal Prediction Model 

This chapter develops an ordinal prediction model for diagnosing middle ear dysfunction using wide-

band absorbance in 10- to 16-month-old infants. It has been previously published in the article: Myers, 

J., Kei, J., Aithal, S., Aithal, V., Driscoll, C., Khan, A., Manuel, A., Joseph, A., Malicka, A. N. 

(2019b). Diagnosing middle ear dysfunction in 10- to 16-month-old infants using wideband absorb-

ance: An ordinal prediction model. Journal of Speech Language and Hearing Research, 62(8), 2906-

2917. 

I made substantive contributions to the article in the areas of study design, data collection, data 

analysis and drafting of the article, as outlined below:  

 
Contributor Statement of contribution 

Joshua Myers (Candidate) Study design (60%) 
Recruitment and data collection (60%) 
Data analysis (100%) 
Wrote the article (100%) 

Joseph Kei Study design (20%) 
Edited the article (40%) 

Sreedevi Aithal Study design (5%) 
Edited the article (15%) 

Venkatesh Aithal Study design (5%) 

Carlie Driscoll Study design (5%) 
Edited the article (15%) 

Asaduzzaman Khan Study design (5%) 
Edited the article (15%) 

Alehandrea Manuel Recruitment and data collection (20%) 

Anjali Joseph Recruitment and data collection (20%) 

Alicja N. Malicka Edited the article (15%) 
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4.1 Abstract 

Purpose: To develop an ordinal prediction model for diagnosing middle ear dysfunction in 10- to 16-

month-old infants using wideband absorbance.  

Methods: Wideband absorbance, tympanometry, and distortion product otoacoustic emissions 

(DPOAEs) were measured in 358 ears of 186 infants aged 10 to 16 months (mean age = 12 months). 

An ordinal reference standard (normal, mild and severe middle ear dysfunction) was created from the 

tympanometry and DPOAE results. Absorbance from 1000 to 5657 Hz was used to model the probabil-

ity of middle ear dysfunction with ordinal logistic regression. Model performance was evaluated using 

measures of discrimination and calibration. Discrimination was assessed with the c-index, and calibra-

tion with calibration curves. Performance measures were adjusted for overfitting (bias) using bootstrap 

resampling. Probabilistic and simplified methods for interpreting the model are presented. The proba-

bilistic method displays the probability of ≥mild, and ≥severe middle ear dysfunction, and the 

simplified method presents the condition with the highest probability as the most likely diagnosis 

(normal, mild or severe middle ear dysfunction).  

Results: The c-index of the fitted model was 0.919 (0.914 after correction for bias) and calibration was 

satisfactory for both the mild and severe middle ear conditions. The model performed well for the 

probabilistic method of interpretation, and the simplified (most likely diagnosis) method was accurate 

for normal and severe cases, but diagnosed some cases with mild middle ear dysfunction as normal.  

Conclusions: The model may be clinically useful, and either the probabilistic or simplified paradigm 

of interpretation could be applied, depending on the context. In situations where the main goal is to 

identify severe middle ear dysfunction and ease of interpretation is highly valued, the simplified 

interpretation may be preferable (e.g., in a screening clinic that may not be concerned about missing 

some mild cases). A diagnostic clinical environment, however, may benefit from using the probabilistic 

method of interpretation. Future research could investigate the clinical impact of the model and the 

degree to which it generalizes to a new sample of infants. 
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4.2 Introduction 

Early onset of otitis media in infancy increases risk of frequent and persistent infections through 

childhood (Howie, Ploussard, & Sloyer, 1975; MacIntyre et al., 2010; Marchant et al., 1986; Shurin, 

Pelton, Donner, & Klein, 1979). Quick and accurate tools for assessing middle ear function in infants 

could help provide timely diagnosis and appropriate management for affected children (Hunter et al., 

2008b; Myers et al., 2018b). Wideband acoustic immittance (WAI) is an emerging test of middle ear 

function that is quick to administer and has several advantages over current routine clinical tests such 

as tympanometry. WAI can be tested at either ambient or pressurized conditions. It elicits a broadband 

response, assessing middle ear function over much of the frequency range important for understanding 

speech (Keefe et al., 1993; Keefe & Levi, 1996). WAI is an umbrella term that refers to a family of 

broadband middle ear tests including absorbance, reflectance, and acoustic admittance. Absorbance and 

reflectance have been the most used WAI measures in clinical research, because they are relatively 

insensitive to probe location in the ear canal (Voss et al., 2008).  

Numerous diagnostic WAI studies have shown high predictive accuracy in newborns (Aithal et al., 

2015; Hunter et al., 2010; Keefe et al., 2003a; Myers et al., 2018a; Sanford et al., 2009). However, 

much less is known about the diagnostic performance of WAI in infants beyond the neonatal period. 

Although preliminary studies in infants have reported strong performance (Ellison et al., 2012; Myers 

et al., 2018b; Prieve et al., 2013b), more diagnostic research in this age group is necessary, as WAI 

could be a valuable tool for identifying middle ear pathology early in childhood. Furthermore, research 

is needed on different age groups through infancy, as there are large developmental effects on the WAI 

response that are not yet complete by 24 months of age (Keefe et al., 1993; Kei et al., 2013; Myers et 

al., 2019c). Ellison et al. (2012) included some 12-month-old infants in their study, but the age of the 

88 children in the sample ranged from 6 months to 7 years. Hence, further research targeting infants 

aged around 12 months is needed.  

There is growing evidence that WAI can detect mild pathology such as Eustachian tube dysfunc-

tion, as well as more severe conditions such as otitis media with effusion (Aithal et al., 2018; Beers et 

al., 2010; Ellison et al., 2012; Hunter et al., 2008b; Myers et al., 2018a, 2018b; Robinson et al., 2016; 

Shaver & Sun, 2013; Voss et al., 2012; Werner et al., 2010). Studies of infants and children have found 

average absorbance or reflectance for mild cases falls between results for healthy ears and ears with 

severe middle ear dysfunction from 1000 to 6000 Hz (Beers et al., 2010; Ellison et al., 2012; Hunter et 

al., 2008b; Myers et al., 2018b).  
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Beers et al. (2010) measured reflectance in 142 children (average age = 6 years) diagnosed either 

by an audiological test battery (tympanometry, transient evoked otoacoustic emissions and puretone 

audiometry), or an otologist using pneumatic otoscopy and otomicroscopy. They found a systematic 

increase in ambient reflectance between 1000 and 5000 Hz from normal status, to negative middle ear 

pressure, to middle ear effusion. Ellison et al. (2012) measured absorbance in 88 children aged 6 

months to 7 years (average age = 1 year). They reported that absorbance from 1500 to 3000 Hz de-

creased as stiffness of the tympanic membrane increased (assessed with pneumatic otoscopy). Hunter et 

al. (2008b) measured reflectance in 97 children aged 3 days to 47 months against a test battery consist-

ing of otoscopy, tympanometry, and distortion product otoacoustic emissions (DPOAEs). They found 

that average reflectance from 1000 to 4000 Hz measured in ears with negative middle ear pressure fell 

between ears with normal and poor status. Myers et al. (2018b) measured absorbance in 249 infants 

aged 6- to 9-months against a reference standard consisting of 1000-Hz tympanometry and DPOAEs. 

They showed that infants with mild middle ear conditions (defined as failing one test) had average 

absorbance from 1500 to 6000 Hz that fell between normal (passed both tests) and severe conditions 

(failed both tests).  

Previous quantitative diagnostic WAI studies in infants and children have used a binary (pass/fail) 

outcome to assess test performance (Aithal et al., 2015; Beers et al., 2010; Ellison et al., 2012; Hunter 

et al., 2010; Keefe et al., 2003a; Keefe et al., 2012; Myers et al., 2018a, 2018b; Piskorski et al., 1999; 

Prieve et al., 2013b; Sanford et al., 2009). However, when using a binary outcome, it can be difficult to 

know how to treat ears with mild dysfunction. Some studies have left these ears out of the statistical 

analyses of diagnostic performance (Beers et al., 2010; Ellison et al., 2012). However, leaving out mild 

cases can cause test performance results to be biased, as the test is only being assessed on easy-to-

diagnose cases at the extreme ends of the disease spectrum (Bossuyt et al., 2003). Therefore, when 

using a binary outcome, mild cases should be included in either the pass or fail group. Myers et al. 

(2018a, 2018b) included mild cases in the fail group, with the rationale of wanting to create a reference 

standard sensitive to mild dysfunction. However, creating a dichotomous outcome from a disease that 

lies on a spectrum can lead to loss of information.  

Another approach would be to create a reference standard with more than two categories. Numer-

ous diagnostic WAI studies have used binary logistic regression models (Keefe et al., 2003a; Myers et 

al., 2018a, 2018b; Piskorski et al., 1999), but the outcome in logistic regression does not necessarily 

need to be dichotomous, and can be extended to incorporate multiple categories. The fact that previous 

research has shown that average absorbance systematically decreases as severity of middle ear dysfunc-

tion increases, indicates that an ordinal model may be appropriate (Harrell, 2015). Ordinal models, 
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where the outcome is an ordered scale (e.g., normal, mild, severe) can also be easier to interpret and 

have increased power compared to binary outcome models (Agresti, 2013). 

The aim of this study was to develop an ordinal prediction model for diagnosing middle ear dys-

function in 10- to 16-month-old infants using wideband absorbance.  

4.3 Methods 

This study was part of a larger project that followed 753 infants from birth (Myers et al., 2018a, 2018b, 

2019c). The project was approved by the Townsville Health Service District Institutional Ethics and the 

University of Queensland Behavioural and Social Science Ethical Review committees. This study 

presents results from 220 subjects who attended follow up appointments at approximately 12 months of 

age. All infants either passed the neonatal hearing screen (automated auditory brainstem response 

[ABR]), or had a diagnosis of normal hearing sensitivity at a follow-up diagnostic hearing evaluation. 

Diagnostic audiology was performed within 6 weeks of screening, with normal hearing sensitivity 

defined as passing click-evoked ABR, and also either tone-burst ABR (1000 and 4000 Hz), or transient 

evoked otoacoustic emissions.  

4.3.1 Test procedure 

Participants were tested in a quiet office in a paediatric community health centre. All tests were per-

formed using an Interacoustics Titan device that was calibrated annually by the manufacturer. Infants 

sat on their parent’s lap, and both ears were tested if possible. A suitably sized plastic probe tip was 

connected to the probe, and 226-Hz tympanometry, DPOAEs, and absorbance were tested, in no 

particular order. Each ear was also examined with otoscopy to ensure that the ear canal was not occlud-

ed with wax.  

Tympanometry measured peak compensated static admittance using a 226-Hz probe tone present-

ed at 85 dB SPL. Pressure was swept from 200 to −400 daPa at 300 daPa/s slowing to 100 daPa around 

the peak of the tympanogram. Traces were classified as: “type A” if there was a peak with |Y| ≥ 0.3 

mmho between −150 to 50 daPa, “type C” if a peak |Y| ≥ 0.3 mmho occurred at pressure <−150 daPa, 

and otherwise “type B” (Roush, Bryant, Mundy, Zeisel, & Roberts, 1995). DPOAEs were elicited using 

pairs of primary tones (f1 and f2) for f2 of 2000, 3000, 4000, 6000 Hz. The f2 / f1 ratio was 1.22, and f1 

and f2 intensity levels were 65 and 55 dB SPL, respectively. Results were classified as “pass” if the 

signal-to-noise ratio was ≥6 dB, with DPOAE level ≥−10 dB SPL for at least 3 of the f2 frequencies, 

otherwise “fail” (Gorga et al., 2005). Absorbance was measured at ambient pressure at 1/24 octave 

resolution with a broadband click delivered at 96 dB peSPL. Thirty-two clicks were presented to the 
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ear and averaged after removal of artefacts as described by Liu et al. (2008). A graph of absorbance 

was monitored during testing to check for air leaks. The test was stopped and the probe reinserted if 

absorbance was ≥0.3 at low frequencies (<300 Hz; Groon et al., 2015). Absorbance data were averaged 

into 1/2 octave frequency bands for statistical modelling to limit the potential number of predictor 

variables (Myers et al., 2018b). 

4.3.2 Reference standard and missing data 

The ordinal reference standard was created from the results of tympanometry and DPOAEs to cre-

ate a more rigorous reference standard than either test in isolation (Kei & Zhao, 2012). Although 

DPOAEs are a cochlear response, middle ear dysfunction affects the process of forward and reverse 

transmission of the stimuli and emissions through the conductive pathway, and therefore reflect middle 

ear, as well as sensory function (Choi et al., 1999; Zhao et al., 2003). A limitation of using DPOAEs to 

assess middle ear function is that they may be absent due to cochlear, as well as middle ear disorders. 

However, sensory disorders are unlikely in the present sample, since all subjects passed the newborn 

hearing screen or had a finding of normal hearing at subsequent audiology assessment.  

Ears were classified as: 1) “normal” if they passed DPOAEs with type A tympanograms; 2) “mild” 

middle ear dysfunction, likely Eustachian tube dysfunction, if they had type C tympanograms (regard-

less of DPOAE results), failed DPOAEs with type A tympanograms, or passed DPOAEs with type B 

tympanograms; or 3) “severe” middle ear dysfunction, likely middle ear effusion, if they failed 

DPOAEs with type B tympanograms. These classifications were chosen based on results of previous 

research. Beers et al. (2010) and Hunter et al. (2008b) found that ears with negative middle ear pressure 

had higher average reflectance than healthy ears, but not as high as ears with middle ear effusion. 

Myers et al. (2018a, 2018b) showed that ears that failed only one test in a test battery consisting of 

tympanometry and DPOAEs had absorbance that fell between ears that passed both tests and failed 

both tests (a fail on tympanometry being a flat trace). Therefore, the mild group in this study consisted 

of ears that had negative middle ear pressure on tympanometry (type C) or failed one test in the test 

battery (i.e., type B and passed DPOAEs, or type A and failed DPOAEs).  

Table 4.1 presents the tympanometry, DPOAE, and reference standard results, and also the number 

of ears with missing data for each test. In total, out of the 220 infants who attended follow up assess-

ments, there were 358 ears from 186 infants with complete reference standard and absorbance data. 

Data were missing due to the infant crying, or not tolerating the probe in her ear. The sample with 

missing absorbance and reference standard data removed for analyses is called the “study sample” in 
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this report. Characteristics of the study sample and reference standard results are presented in Table 

4.2.  

Table 4.1. Reference test results 

Test Results Missing 
Tympanometry (type A, C, B) 254, 17, 114 55 
DPOAEs (pass, fail) 288, 95 57 
Absorbance  63 
Test results from the 440 ears of 220 infants that attended follow up, including number of missing values. DPOAEs, 
distortion product otoacoustic emissions. 

4.3.3 Statistical modelling 

The probability that an ear had mild or severe middle ear dysfunction was modelled using propor-

tional odds ordinal logistic regression. The assumption of proportional odds is that the same regression 

coefficients can be used to predict the outcome regardless of the level of the reference standard being 

predicted. This assumption was assessed in the study sample by plotting the mean absorbance at each 

frequency stratified by levels of the reference standard with and without assuming proportional odds 

(Harrell, 2015). Models were fitted with data from both ears of an infant, if available, and Huber-White 

robust covariance matrix estimates were used to account for correlations between the ears. This method 

assumes that groups of correlated observations in the sample are independent, rather than the individual 

observations (Hardin, 2005), and works well when there is a large number of small clusters, as was the 

case in this study (Harrell, 2015). 
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Table 4.2. Subject characteristics 

Characteristic Value 
Age (weeks) 
     Median (IQR) 
     Range 

2 missing 
54 (52–57) 

43–70 
Gender (count)  
     Female (%) 
     Male (%) 

0 missing 
85 (46) 

101 (54) 
Ethnicity (count) 
     Caucasian (%) 
     Asian (%) 
     Other (%) 
Reference standard (count) 
     Pass (right, left) 
     Mild (right, left) 
     Severe (right, left) 

0 missing 
158 (85) 
19 (10) 

9 (5) 
0 missing 

232 (114, 118) 
54 (26, 28) 
72 (35, 37)                 

Characteristics of the 186 infants, and reference standard results for the 358 ears in the study sample. IQR, interquartile 
range. 

Univariate (UV) and multivariate (MV) models were fitted, to compare whether there was an ad-

vantage to including multiple absorbance variables in the model. Multivariate models can be more 

difficult to interpret, but may be worth the extra complexity if the resulting model is more accurate, as 

has been found in previous research (Keefe et al., 2012; Myers et al., 2018a, 2018b; Piskorski et al., 

1999). Both univariate and multivariate models used absorbance at 1/2 octave frequency resolution as 

predictor variables. Variables for the multivariate models were selected based on previous research in 

infants and children, which has found absorbance from 1000 to 6000 Hz to have an ordinal association 

with middle ear dysfunction (Beers et al., 2010; Ellison et al., 2012; Hunter et al., 2008b; Myers et al., 

2018b; Werner et al., 2010). Three multivariate models were fitted: 1) Model MVA only included 

absorbance variables as predictors, assumed to have a linear association with the outcome (i.e., simple 

ordinal logistic regression); 2) Model MVB included the same variables as MVA, with the assumption 

of linearity relaxed, i.e., variables were allowed to have a non-linear, flexible relationship with the 

ordinal outcome using restricted cubic splines (Harrell, 2015; Myers et al., 2018a); and 3) Model MVC 

was the same as MVA, with ethnicity (Caucasian and non-Caucasian), gender, and ear side included as 

covariates, to see if including demographic information improved model fit (Harrell, 2015). A general 

guide for fitting multivariate logistic regression models is to have at least 10 observations in the small-
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est group for each variable. However, if the signal-to-noise ratio is high, a higher observation-to-

predictor ratio can be accommodated without risking overfitting. We used the shrinkage coefficient (2) 

to assess whether too many parameters were being estimated for the strength of the signal in the data 

(Harrell, 2015): 

γ =
model	67 − 89
model	67

, 4.1  

where, model 62 is the likelihood ratio 62 statistic (the statistical test), and df, is the degrees of 

freedom. We took a value of 2 >0.9 to be acceptable for a model, as this indicates that performance is 

not expected to be more than 10% worse when applied to a new sample (Harrell, 2015). 

Akaike's information criterion (AIC), a relative measure of model fit, was used to compare models. 

A lower AIC suggests a better fitting model, if models were fitted using the same sample. The model 

with the lowest AIC was taken as the final model for further evaluation and interpretation (Burnham & 

Anderson, 2002). Performance of the final model was assessed with measures of discrimination and 

calibration. Discrimination assessed the ability of the model to discriminate between different levels of 

the reference standard, and calibration evaluated the quality of predictions (Steyerberg, 2008). It is 

important that a prediction model be well calibrated, since decisions are being made based on the 

predicted probabilities (Myers et al., 2018a). For example, approximately 30% of infants with predicted 

risk of 0.3 should actually have the condition (Steyerberg et al., 2010). Discrimination was assessed 

using the Somers’ D statistic, which was converted to the c-index (a generalized area under the receiver 

operating characteristic curve) for ease of interpretation: c-index = 0.5(Somers’ D + 1) (Harrell, 2015). 

Calibration was assessed with calibration curves, which plotted actual against predicted probabilities 

for the mild and severe middle ear pathology conditions (Myers et al., 2018a). 

Performance measures of the final model were internally validated for overfitting with bootstrap 

resampling. Bootstrapping sampled with replacement from the study sample, a sample the same size as 

the study sample (a “training sample”). A model was fitted on the training sample, and the coefficients 

applied to the original study sample (the “test sample”). The amount of bias (or overfitting) was 

estimated by calculating the difference in performance measures (c-index and calibration) between the 

training and test samples. This process was repeated 500 times and averaged estimate the amount of 

bias in the model (Steyerberg et al., 2001c). The bias estimate was then subtracted from final model’s 

c-index and calibration metrics to provide a bias-corrected estimate of model performance in new 

samples (Steyerberg, 2008). 
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Analyses were performed with R (R Core Team, 2017) expanded with the rms library for regres-

sion modelling (Harrell, 2016). This report has been written to conform to the recommendations of the 

TRIPOD (transparent reporting of a multivariate prediction model for individual prognosis or diagno-

sis) statement for reporting clinical prediction models (Collins et al., 2015). The data and code for the 

experiments are available online (https://github.com/Josh-Myers/Ordinal-Model-12-Months). 

4.4 Results 

Figure 4.1A shows mean absorbance as a function of frequency stratified by levels of the reference 

standard (normal, mild, and severe). The mean of the mild group lay between the normal and severe 

groups from approximately 600 to 7000 Hz. Figure 4.1B again depicts mean absorbance for the normal 

(type A and pass DPOAEs) and severe groups (type B and fail DPOAEs), but further stratifies the mild 

group by all possible combinations of reference standard results: ears with type A that failed DPOAEs, 

ears with type C that passed/failed DPOAEs, and ears with type B that passed DPOAEs. Mean absorb-

ance for all subgroups fell between the normal and severe groups from 1000 to 2500, and 3500 to 4000 

Hz.  
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Figure 4-1. Mean absorbance for levels of the reference tests.  
Mean absorbance stratified by: A) the reference standard results, and B) all possible combinations of tympanometry 
and distortion product otoacoustic emissions (DPOAEs) results. Data are from the 358 ears in the study sample 
presented at 1/24 octave frequency resolution. 

Results from the univariate models are presented in Table 4.3. Absorbance at 2000 Hz had the 

highest LR 62 and lowest AIC (lower AIC indicates a better fitting model), and 1414 Hz, the highest c-

index. Absorbance at 1000 and 4000 Hz had the third and fourth best performance, respectively, on all 

metrics.  
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Table 4.3. Statistics for the univariate models	

Model LR 62 p-value AIC c-index 

UV250 Hz 4.40 0.036 638.12 0.578 

UV354 Hz 5.46 0.019 637.06 0.581 

UV500 Hz 16.97 <0.001 625.55 0.624 

UV707 Hz 67.65 <0.001 574.87 0.734 

UV1000 Hz 149.76 <0.001 492.77 0.830 

UV1414 Hz 202.14 <0.001 440.39 0.861 

UV2000 Hz 209.45 <0.001 433.08 0.855 

UV2828 Hz 86.94 <0.001 555.59 0.719 

UV4000 Hz 103.92 <0.001 538.61 0.787 

UV5657 Hz 63.16 <0.001 579.36 0.725 

UV8000 Hz 10.59 0.001 631.94 0.611 

LR 62 statistics with associated p-values, AIC, and c-index results from the univariate (UV) models. AIC, Akaike's 
information criterion; LR 62, likelihood ratio chi-squared statistic. 

Plots assessing the assumption of proportional odds for the absorbance predictors in the multivari-

ate models (1000 to 5657 Hz) are shown in Figure 4.2. The solid lines and circles represent the simple 

stratified means, and the dashed lines the expected values if the assumption of proportional odds is met. 

The trend in the solid lines should be monotonic to satisfy the assumption of ordinality. The stratified 

means were monotonic for all variables, and the expected values were very close to the simple means 

for all variables except for 2828 Hz. Overall, the assumption of proportional odds was satisfied for 

these variables.  
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Figure 4-2. Testing the assumption of proportional odds.  
Plots assessing the assumption of proportional odds for the absorbance predictors used in the multivariate models. 
The circles connected by solid lines represent the simple stratified means (i.e., the raw data), and the dashed lines the 
expected values if the assumption of proportional odds is met. The trends in the simple stratified means should be 
monotonic to satisfy the assumption of ordinality. The trends for the stratified means are monotonic for all variables, 
and the expected values are very close to the simple means for all variables except for absorbance at 2828 Hz. 

Results from the multivariate models are presented in Table 4.4. The 2 was acceptable for all mod-

els (>0.9) and Model MVA (the simple linear model) was better fitting (with lower AIC) than both 

Model MVB (the nonlinear model), and Model MVC (the model including covariates). Model MVA was 

also better fitting than the best fitting univariate model (UV2000 Hz). Model MVA was, therefore, taken 

as the final model for further evaluation of discrimination and calibration.  
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Table 4.4. Statistics for the multivariate models	

Model Predictor Variables LR 62 df	 2 AIC 

MVA Absorbance from 1000 to 5657 Hz 298.92 6 0.98 353.61 

MVB Model MVA variables nonlinear 324.50 24 0.93 364.02 

MVC Model MVA variables + covariates 302.03 9 0.97 356.49 

LR 62, AIC, and c-index results from the multivariate (MV) models. The p-values for the LR 62 statistics were <0.0001 for 
all models. The absorbance predictor variables were 1000, 1414, 2000, 2828, 4000, 5657 Hz at 1/2 octave frequency 
resolution. Covariates in Model MVC were ear side, gender and ethnicity. AIC, Akaike's information criterion; LR 62, 
likelihood ratio chi-squared statistic; 2, shrinkage coefficient; df, degrees of freedom. 

The importance of predictors in Model MVA is investigated in Table 4.5. Absorbance at 2000 Hz 

contributed the most to the model (highest LR 62), followed by 1000, and then 5657 Hz. Absorbance at 

1414, 2828, and 4000 Hz were all relatively strong univariate predictors (c-index >0.7), but did not 

substantially contribute to Model MVA, possibly due to redundancy effects. For example, absorbance at 

1000 and 2000 Hz were important predictors in the model, but not the inter-octave variable, 1414 Hz, 

even though this variable had the highest c-index of the univariate models. This may be because 1414 

Hz did not contribute a lot of new information not already contained in the adjacent variables. Howev-

er, we retained the seemingly unimportant variables (1414, 2828 and 4000 Hz), since they may still be 

contributing, and  removing variables based on statistical testing is not advised (Gelman & Hill, 2007). 

Table 4.5. Statistics for Model MVA  

Variable LR 62 df p-value 

1000 Hz    11.69      1 <0.001 

1414 Hz     1.33      1   0.248 

2000 Hz    13.04      1    <0.001 

2828 Hz     <0.01      1    0.961 

4000 Hz     2.68      1    0.102 

5657 Hz     9.57      1    0.002 

TOTAL      72.57      6    <0.001 
Statistical analysis for the final model (MVA), showing the LR 62 statistics, associated p-values, and degrees of freedom (df) 
for each predictor variable in the model. LR 62, likelihood ratio chi-squared statistic; MV, multivariate. 

Apparent and bias-corrected (bootstrapped) c-index values for Model MVA are presented in Table 

4.6. Apparent performance was 0.919, with estimated bias of 0.003, leaving a bias-corrected c-index of 

0.914. This was higher than the best performing univariate model (UV1414 Hz, c-index = 0.861). Appar-
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ent and bias-corrected calibration curves for Model MVA, for predicting mild and severe middle ear 

pathology are presented in Figure 4.3. Predictions for mild middle ear dysfunction (A) were slightly 

low between 0.2 and 0.4, but were overall satisfactory. Predictions for severe dysfunction (B) had a 

nonlinearity, with predictions too low from 0.1 to 0.3, but the curve was satisfactory for predictions 

above 0.3. The nonlinearity is not a cause for concern, however, since probabilities falling in this 

region are unlikely to warrant further action, i.e., <0.3 probability of middle ear dysfunction would not 

be of enough concern to require review or referral (Myers et al., 2018b).  

Table 4.6. Discriminative ability of Model MVA 

Sample c-index  
Apparent  0.919  
Bootstrap training 0.921 
Bootstrap test  0.917 
Bias (bootstrap training – test) 0.003 
Bias-corrected  0.914 
The c-index results for the apparent, bootstrapped and bias-corrected samples for the final model (MVA). MV, multivariate. 

The equation for Model MVA to make predictions is provided in Section 4.6: Appendix. A web 

application implementing the model is available online 

(https://joshmyers.shinyapps.io/WAIPredictions/) that can make predictions using a file exported from 

a Titan Device, or by manually entering absorbance values at 1/2 octave frequency resolution.  

 



 

 137 

 

Figure 4-3. Calibration curves for Model MVA. 
Actual against predicted probability for the apparent and bias-corrected samples for A) the probability of ≥mild 
middle ear dysfunction; and B) the probability of ≥severe middle ear dysfunction. Ideal calibration is depicted by the 
diagonal dashed lines. 

4.5 Discussion 

4.5.1 Clinical application of the model 

There are 2 main ways that results from model MVA could be presented for clinical use. One option 

would be to present the probability (P) of ≥ mild and/or ≥ severe dysfunction: P(ME ≥ j|X), where ME 

is the condition of the middle ear, j the level of the reference standard (mild or severe middle ear 

dysfunction), and X the absorbance predictor variables in the model (1000 to 5657 Hz). Probabilities 

for one or both levels of the reference standard could be presented. For example, if only wanting to test 

for severe middle ear dysfunction, you could just present P(ME ≥ severe). The decision threshold 

would be the point where there is enough concern to warrant further action (Myers et al., 2018a). This 

could be set automatically in a screening program (e.g., P > 0.5), or on a case-by-case basis in a diag-

nostic context (Myers et al., 2018b). 

An alternative, simplified, approach would be to calculate the probability of normal, mild and se-

vere dysfunction: P(ME = j|X). P(ME = severe) is P(ME ≥ severe); P(ME = mild) is P(ME ≥ mild) – 

P(ME ≥ severe); and P(ME = normal) is 1 – P(ME ≥ mild) (since probabilities sum to 1). Probabilities 

for all three conditions could be presented, or the condition with the highest probability could be 

displayed as the most likely condition predicted by the model. Two examples are provided in Figure 
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4.4. Each panel shows the absorbance results for one ear of an infant, as well as the probabilistic P(ME 

≥ j|X) and simplified P(ME = j|X) model interpretation results. 

 
Figure 4-4. Examples of applying the model to individual cases.  
Each panel shows the absorbance results for one ear of an infant, as well as the probabilistic P(ME ≥ j|X) and 
simplified P(ME = j|X) model interpretations. j, reference standard level (e.g., mild or severe); ME, middle ear 
condition; P, probability; X, absorbance predictors in model MVA (1000 to 5657 Hz). 

Table 4.7 shows the most likely P(ME = j|X) diagnosis (simplified interpretation) predicted by the 

model compared to the reference standard labels for the study sample. Note that the range of probabili-

ties (in the “Predictions” column) used to classify ears never included the area of nonlinearity in 

calibration (0.1 to 0.3 for severe dysfunction). Looking down the columns of the table, this method of 

interpretation did very in well identifying normal ears (only 10 of 232 misdiagnosed). Severe cases 

were also correctly identified in most instances (10 of 72 misdiagnosed). However, over half of the 

mild cases were mislabelled (only 20 of 54 correctly diagnosed). Looking across the rows, of the 255 

predicted to be normal, 33 were incorrectly labelled (28 as mild, and 5 as severe); of the 31 predicted to 

have mild dysfunction, 11 were misdiagnosed (6 as normal and 5 as severe); and of the 72 predicted to 
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have severe dysfunction, 10 were mislabelled (4 as normal and 6 as mild). In general, the most likely 

diagnosis predicted by the simplified interpretation was correct. Ears predicted to be normal were 

normal 87% of the time, mild predictions were 65% correct, and severe predictions 86% correct. 

However, this method of interpretation was insensitive to mild dysfunction, because it resulted in some 

mild cases being misdiagnosed as normal.  

Table 4.7. Diagnostic accuracy of the simplified model interpretation 

  Reference Standard 
Predictions (Range) 
Normal (0.44–1.00) 
Mild (0.43–0.47) 
Severe (0.43–1.00) 

Normal Mild Severe 
222 28 5 

6 20 5 
4 6 62 

The most likely diagnosis (simplified method of interpretation) predicted by the model (rows) compared to the correspond-
ing reference standard labels (columns). The range of predictions used for a particular diagnosis is provided in parentheses 
in the left-hand column. For example, ears that were given a diagnosis of “mild” by the most likely diagnosis method (i.e., 
mild had a higher probability than normal or severe) had predictions ranging from 0.43 to 0.47.  

In diagnostic clinical contexts, where it is important to identify cases of both mild and severe dys-

function, it may be beneficial to use the more complex probabilistic P(ME ≥ j|X) paradigm for 

interpreting results, choosing the cut off for ≥mild and  ≥severe based on the level of risk where further 

action is warranted (Myers et al., 2018b). However, if the main goal is to identify severe cases of 

middle ear dysfunction, and ease of interpretation is preferable, the simplified method may be suitable 

(e.g., a screening program may wish for a simple interpretation and not be concerned about missing 

some mild cases). 

4.5.2 Absorbance results and model development 

Average absorbance for ears with mild dysfunction fell between normal and severe ears from 600 to 

7000 Hz, which is largely consistent with results of previous research (Beers et al., 2010; Ellison et al., 

2012; Hunter et al., 2008a; Myers et al., 2018b). This was true for all possible combinations of refer-

ence standard results, including ears with type A tympanograms but absent DPOAEs (Figure 4.1), 

which indicates that DPOAEs in these ears were most likely absent due to middle ear, not sensory 

dysfunction.  

Model MVA had powerful discriminative ability (bias-corrected c-index = 0.914), which although 

not as high as the 0.93 reported for absorbance by Ellison et al. (2012), was comparable, and within the 

margin of error reported by Ellison et al. Calibration of Model MVA was overall satisfactory. There 
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was a nonlinearity in the low predictions (0.1 to 0.3) in the calibration curve for predicting severe 

dysfunction, but calibration was acceptable over the regions relevant for clinical decision making 

(Myers et al., 2018b). Bias-corrected (bootstrapped) results were very close to apparent performance 

measures for both discrimination and calibration, indicating that the model was not significantly 

overfitting the data and may generalize well to new infants.  

Consistent with previous studies, we found that the multivariate model outperformed the best uni-

variate predictor (Keefe et al., 2012; Myers et al., 2018a, 2018b; Piskorski et al., 1999). Model MVA 

had higher c-index and lower AIC than the top two univariate models, UV1414 Hz and UV2000 Hz. Also 

consistent with other reports, we found that adding covariates such as ethnicity and gender did not 

improve performance (Beers et al., 2010; Myers et al., 2018a, 2018b; Shahnaz et al., 2013). Contrary to 

Myers et al. (2018a), however, allowing predictors to have a nonlinear association with the outcome 

did not improve model fit in this study. Age may be a contributing factor to this difference, as Myers et 

al. (2018a) developed a model for neonates, compared to 12-month-old infants in the present study, and 

developmental changes in the outer and middle ear over the first year of life have a substantial effect on 

the WAI response (Kei et al., 2013). Furthermore, Myers et al. (2018a) used a binary pass/fail outcome, 

compared to the ordinal outcome used in this study.  

4.5.3 Strengths, limitations, and directions for future research 

Developing an ordinal model better captured the spectrum of middle ear disease compared to a binary 

outcome, and it eliminated the problem of how to treat mild cases, as it can be difficult to know wheth-

er these should be classified as normal or diseased if using a dichotomous outcome.  

The modelling strategy was intended to reduce risk of overfitting by limiting the number of predic-

tors and bootstrap resampling correcting for bias indicated that the model may generalize well to new 

samples. However, the model would need to be applied to a new sample of infants to assess the extent 

to which differences in environment, subject characteristics, and equipment affect model performance 

(Myers et al., 2018b).  

 A limitation of this study was that it was not blinded, as the same researcher collected both the 

reference standard and absorbance data. Even though interpretation of the reference tests was objective, 

this may have introduced bias. Also, the reference standard used was not the gold standard for identify-

ing middle ear disease in infants. The mild group may not have been homogenous, ears in this group 

may have had Eustachian tube dysfunction, partial middle ear effusion, or both (Shaver & Sun, 2013). 

Future research could create a more rigorous ordinal reference standard using examination by an 

otologist with surgical confirmation for middle ear effusion.  
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4.5.4 Summary and conclusions 

We developed an ordinal prediction model for identifying middle ear dysfunction using wideband 

absorbance. The model may be clinically useful, and either the probabilistic or simplified paradigm of 

model interpretation could be applied, depending on the context. In situations where the main goal is to 

identify severe cases of middle ear dysfunction and ease of interpretation is preferable, the simplified 

method may be suitable (e.g., a screening program that may not be concerned about missing some mild 

cases). However, diagnostic clinical environments may benefit from using the more complex probabil-

istic method of interpretation. Future research could investigate the impact of the model and the degree 

to which it generalizes to a new sample of infants.  
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4.6 Appendix: The equation for Model MVA  

The ordinal logistic regression equation for the final model (MVA) in Chapter 4, using absorbance (A) 

at 1000, 1414, 2000, 2828, 4000, and 5657 Hz to calculate the probability (P) of middle ear (ME) 

dysfunction for the levels of the reference standard (j) is:  

 

 

 

 

 

 

P{ME � j} =
1

1 + exp(�↵j �X�)
, where

↵̂mild = 8.356191

↵̂severe = 6.291253

X�̂ =

�8.087252A1000 Hz � 1.749161A1414 Hz � 5.054438A2000 Hz

+0.05685856A2828 Hz � 1.646836A4000 Hz � 2.703953A5657 Hz

1
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 Chapter 5. Longitudinal Development of Wideband Absorbance and 
Admittance Through Infancy 

This chapter investigates developmental effects on wideband acoustic immittance measures through 

infancy. It has been previously published in the article: Myers, J., Kei, J., Aithal, S., Aithal, V., Dris-

coll, C., Khan, A., Manuel, A., Joseph, A., Malicka, A. N. (2019c). Longitudinal development of 

wideband absorbance and admittance through infancy. Journal of Speech Language and Hearing 

Research, 62(7), 2535-2552. 

I made substantive contributions to the article in the areas of study design, data collection, data 

analysis and drafting of the article, as outlined below:  

 
Contributor Statement of contribution 

Joshua Myers (Candidate) Study design (60%) 
Recruitment and data collection (60%) 
Data analysis (100%) 
Wrote the article (100%) 

Joseph Kei Study design (20%) 
Edited the article (40%) 

Sreedevi Aithal Study design (5%) 
Edited the article (15%) 

Venkatesh Aithal Study design (5%) 

Carlie Driscoll Study design (5%) 
Edited the article (15%) 

Asaduzzaman Khan Study design (5%) 
Edited the article (15%) 

Alehandrea Manuel Recruitment and data collection (20%) 

Anjali Joseph Recruitment and data collection (20%) 

Alicja N. Malicka Edited the article (15%) 
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5.1 Abstract 

Purpose: To study the normal longitudinal development of wideband absorbance and admittance 

measures through infancy. 

Methods: Two-hundred and one infants who passed the newborn hearing screen (automated auditory 

brainstem response) were tested at birth, then followed up at approximately 6, 12, and 18 months of 

age. Most infants were of either Caucasian (86%) or Asian (11%) descent. At each test session, infants 

passed tympanometry and distortion product otoacoustic emissions tests. High-frequency (1000-Hz) 

tympanometry was used at birth and 6 months, and low-frequency (226-Hz) tympanometry at 12 and 

18 months of age. Wideband pressure reflectance was also measured at each session, and analysed in 

terms of absorbance, admittance at the probe tip, and admittance normalized for differences in ear canal 

area. Multilevel hierarchical models were fitted to the absorbance and admittance data to investigate for 

effects of age, ear side, gender, ethnicity, and frequency.  

Results: There were considerable age effects on wideband absorbance and admittance measurements 

over the first 18 months of life. The most dramatic changes occurred between birth and 6 months and 

there were significant differences between all age groups in the 3000 to 4000 Hz region. There were 

significant ethnicity effects that were substantial for certain combinations of ethnicity, age, and fre-

quency (e.g., absorbance at 6000 Hz at 12 months).  

Conclusions: There are large developmental effects on wideband absorbance and admittance measures 

through infancy. For absorbance, we recommend separate reference data be used at birth, 6 months, 

and 12–18 months. For admittance (both normalized, and at the probe tip), we advise using separate 

normative regions for each age group (neonates, 6, 12, and 18 months). 
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5.2 Introduction 

The outer and middle ear are not fully mature at birth, and continue to develop throughout infancy. The 

ear canal increases in length and diameter (Keefe et al., 1993), and stiffens as the bony part of the canal 

wall lengthens (Wright, 1997). The tympanic membrane thins and increases in inclination, and the 

middle ear cavities increase in size and pneumatization (Hunter & Shahnaz, 2014). The mass and 

resistance of the conductive pathway (outer and middle ear) decrease, and stiffness increases, due to 

loss of mesenchyme, ossification of the ear canal, tightening of the ossicular joints and tympanic ring, 

and change in composition and orientation of the tympanic membrane (Wilson, 2012).  

These developmental changes affect the results of aural acoustic tests for assessing middle ear 

function. Traditional low-frequency (226 Hz) tympanometry (LFT) is not accurate for diagnosing 

middle ear pathology in young infants, due to energy absorption by the more compliant ear canal wall 

of these infants at low frequencies (Hunter et al., 2008a; Mazlan & Kei, 2012). High-frequency tympa-

nometry (HFT) using a 1000-Hz probe tone is more effective in infants under 7 months of age 

(Baldwin, 2006; Zhiqi et al., 2010) but is insensitive to conductive dysfunction in neonates (Margolis et 

al., 2003; Sanford et al., 2009; Swanepoel et al., 2007). Wideband acoustic immittance (WAI) is an 

emerging technology for middle ear assessment with several advantages over traditional tests such as 

tympanometry. WAI is more sensitive to conductive dysfunction in neonates compared to HFT (Hunter 

et al., 2010; Sanford et al., 2009), can assess middle ear function over a wide range of frequencies (e.g., 

226 to 8000 Hz), and does not require pressurization of the ear canal, which can cause significant 

distention of the compliant ear canal wall of young infants (Aithal et al., 2015; Prieve et al., 2013b; 

Vander Werff et al., 2007). These qualities make WAI a promising tool for assessing middle ear 

function in infants (Aithal et al., 2015; Ellison et al., 2012; Hunter et al., 2010; Keefe et al., 2003a; 

Myers et al., 2018a, 2018b; Prieve et al., 2013b; Sanford et al., 2009). 

The term WAI refers to a family of tests derived from the complex pressure reflectance (PR), in-

cluding energy reflectance (R), energy absorbance (A), acoustic admittance (Y), and acoustic 

impedance (Z). PR is the ratio of the reflected (incoming) to forward-propagating (outgoing) acoustic 

pressure wave amplitude (Keefe & Levi, 1996). R = |PR|2, and measures the proportion of energy 

reflected back from middle ear. A = 1 – R, and represents the proportion of energy absorbed by the 

conductive pathway. Y can be calculated from PR: 

+ = $&EK
1 − !"
1 + !"

. (5.1) 
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Zc, the characteristic impedance, is _c/Stube, where _	is the density of air, c is the speed of sound, 

and Stube is the cross-sectional area of the calibration tube used to estimate ear canal area when calculat-

ing PR (Keefe et al., 2015). Y is a complex measure that can be expressed in polar form with magnitude 

(|Y|) and phase (OY), or rectangular form in terms of its real and imaginary parts, conductance (G), and 

susceptance (B), respectively (Y = G + iB). Z is the reciprocal of Y, and is also complex, with a real 

part, resistance, and an imaginary part, reactance.  

It is generally accepted that maturational factors during infancy significantly affect WAI meas-

urements (Kei et al., 2013). Thus, there is a need to study the effect of age on the WAI response so that 

changes due to normal development can be distinguished from changes caused by dysfunction of the 

conductive pathway (Sanford & Feeney, 2008). Furthermore, such studies can give insight into the 

maturational developmental of the outer and middle ear, as WAI measures outer and middle ear func-

tion over a wide range of frequencies (Aithal et al., 2014b). A number of studies have investigated the 

effect of age on ambient A or R through infancy. Significant age effects have been found over the first 

few days of life (Hunter et al., 2010; Keefe et al., 2000; Myers et al., 2018a; Sanford et al., 2009), the 

first 6 months of life (Aithal et al., 2014b; Shahnaz et al., 2014), from 2 to 9 months (Werner et al., 

2010), the first year of life (Hunter et al., 2016), and from 1 to 24 months of age (Keefe et al., 1993). 

There is general agreement that the most rapid changes occur in the first 3 to 6 months of infancy 

(Aithal et al., 2014b; Hunter et al., 2016; Shahnaz et al., 2014), but development is not yet complete by 

24 months of age (Keefe et al., 1993). While longitudinal studies have shown differences with age, 

some cross-sectional studies have not. Hunter et al. (2008b) found no significant differences except for 

R at 6000 Hz in a sample of 97 subjects aged 3 days to 47 months, and Merchant et al. (2010) reported 

no significant differences in R between neonates and 1-month-old infants.  

Much less is known, however, about the effect of age on other WAI measures such as Y and Z. 

Knowledge of the effect of maturation is important for these measures also, as there is interest in using 

Y and Z, as well as A and R, for the diagnosis of middle ear pathology in infants (Aithal et al., 2017; 

Ellison et al., 2012; Keefe et al., 2003a; Myers et al., 2018a; Sanford et al., 2009; Voss, Herrmann, 

Horton, Amadei, & Kujawa, 2016). Keefe et al. (1993) studied changes in Z in a sample of infants aged 

1 to 24 months (n = 15 at 1 month, 18 at 3 months; 11 at 6 months; 23 at 12 months; and 11 at 24 

months). They found that resistance decreased with age through infancy. Growth in ear canal area 

accounted for much of the variability between age groups, and stiffening of the ear canal walls and 

growth of the tympanic cavity were also significant factors. Werner et al. (2010) measured Z in 458 

infants aged 2 to 9 months, and found a significant age effect on resistance and reactance in agreement 

with the results of Keefe et al. Sanford and Feeney (2008) studied developmental effects on Y measured 
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under pressurized conditions in a cross-sectional study of 60 infants aged 4 to 27 weeks, and found a 

trend of increasing |Y| with age and also increasing OY below 1000 Hz, indicating increased stiffness 

with age.  

However, there are limitations to these studies, and further research is needed. Apart from a case 

history, Keefe et al. (1993) did not use a reference standard to assess middle ear function in their 

participants, and Werner et al. used LFT as the reference test in young infants (<6 months old). Sanford 

and Feeney studied the effect of maturation on pressurized Y using an appropriate reference standard 

(distortion product otoacoustic emissions [DPOAEs] and HFT), up to 6 months of age, but there 

remains need to study maturational effects on ambient Y measures against an appropriate reference test 

through infancy. The aim of this study was to investigate the normal longitudinal development of 

ambient A and Y from birth to 18 months.   

5.3 Methods 

This study was part of a larger project recruiting infants at birth and following them up through infancy 

(Myers et al., 2018a, 2018b). A total of 753 infants have been recruited to the project. All healthy 

babies born in the maternity ward were eligible to be recruited to the study, which excluded high-risk 

neonates in the Special Care Nursery and Neonatal Intensive Care Unit. The present study presents 

results from 201 infants that were assessed to have normal middle ear function at birth, and attended at 

least one follow up session with a finding of normal middle ear function in at least one ear. Characteris-

tics of the study sample are presented in Table 5.1, and the number of infants, ears, and age range for 

each group are provided in Table 5.2. There is a high proportion of neonates born via C-section (43%) 

because infants were exclusively recruited from the Maternity Ward. There is also a Birth Centre at the 

Townsville Hospital where women return home the same day after giving birth, but we did not recruit 

from there due to time restraints. Neonates usually stay in the Maternity Ward because the mother 

needs to stay overnight in hospital, often due to having a C-section. 

Ethical approval for the study was obtained from the Townsville Health Service District Institu-

tional Ethics Committee, and the University of Queensland Behavioural and Social Science Ethical 

Review Committee.  
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Table 5.1. Characteristics of infants in the study 

Characteristic Value 

Gender (count)  
     Female (%) 
     Male (%) 

0 missing 
97 (48.3) 

104 (51.7) 

Ethnicity (count) 
     Caucasian (%) 
     Asian (%) 
     Oceanian (%) 
     South American (%)  
     African (%) 

1 missing 
173 (86.0) 
22 (10.9) 

3 (1.4) 
1 (0.5) 
1 (0.5)                 

Gestational age (weeks) 
     Median (IQR) 
     Range 

1 missing 
 39 (38.2–40.2) 

34–41.6 

Birth type (count) 
     Vaginal (%) 
     C-section (%) 

0 missing 
114 (56.7) 
87 (43.3) 

Birth weight (grams) 
     Median (IQR) 
     Range 

0 missing 
3460 (3180–3810) 

2390–4550 

Head circumference (cm) 
     Median (IQR) 
     Range 

1 missing 
35 (33.5–36) 

24.8–38.2 

Birth length (cm) 
     Median (IQR) 
     Range 

0 missing 
50 (49–52) 

37–58.5 

The number of infants with missing data for each characteristic is provided in the Value column. IQR, interquartile range. 

All ears included in this study passed a battery of tests. Neonates passed automated auditory brain-

stem response (AABR), HFT and DPOAEs. Infants in the 6-month group passed HFT and DPOAEs, 

and infants in the 12- and 18-month groups passed LFT and DPOAEs. Otoscopy was also performed 

on the 6- to 18-month-old infants to ensure that the ear canal was not occluded by wax.  
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Table 5.2. Sample size and age of infants in each age group 

 Number Ears (right, left) Median age (IQR, range, units) 

Neonate 201 328 (169, 159) 46 (34–56, 12–163, hours) 

6 months 160 265 (138, 127) 27 (26–29, 23–38, weeks) 

12 months 112 196 (95, 101) 54 (52–58, 46–64, weeks) 

18 months 81 139 (70, 69) 80 (78–81, 76–97, weeks) 

Number of infants, number of ears, and age of infants in each age group. IQR, interquartile range. 

5.3.1 Test procedure 

All tests were performed by a research audiologist, except for AABR, which was done by a nurse as 

part of the newborn hearing screening program. Neonates were tested in the maternity unit at Towns-

ville Hospital, and the other age groups were tested in a quiet office in a paediatric community health 

center. AABR was performed with a Natus ALGO 3 Newborn Hearing Screener which presented 

clicks at 35 dB nHL and used a template matching algorithm to pass or fail ears. AABR was always 

tested first on the neonates, so as not to interfere with the hearing screening program. All other tests 

were done using Interacoustics Titan devices which were annually calibrated by the manufacturer and 

checked daily with a 2-cm3 cavity. Both ears of participants were tested if possible. The most accessi-

ble ear was tested first and tympanometry (HFT or LFT depending on the age group), DPOAEs and 

WAI were performed in no particular order.  

Tympanometric measurements plotted peak compensated |Y| as a function of pressure for a 1000-

Hz (HFT) or 226-Hz (LFT) probe tone, delivered at 85 dB SPL. Pressure was swept from 200 to −400 

daPa at 300 daPa/s slowing to 100 daPa at the peak of the tympanogram. The pass criterion for HFT 

was a peaked trace extending above a baseline drawn between the positive and negative extremes of the 

tympanogram (Baldwin, 2006; Kei et al., 2003). The pass criteria for LFT was a peaked trace between 

−150 and 50 daPa with |Y| ≥0.2 mmho for the 12-month, and ≥0.3 mmho for the 18-month age groups 

(Roush et al., 1995). DPOAEs were recorded for primary tones f1 and f2 for f2 of 2000, 3000, 4000, 

6000 Hz, with an f2 / f1 ratio of 1.22, and intensity levels of 65 and 55 dB SPL for f1 and f2, respectively. 

The pass criteria were signal-to-noise ratio of ≥6 dB, and DPOAE level ≥−10 dB for at least 3 of the f2 

frequencies (Gorga et al., 2005). 

Ambient PR was measured at 1/24 octave frequency resolution in response to 32 broadband clicks 

(226 to 8000 Hz) presented at 96 dB peSPL. Results from the clicks were averaged after noisy respons-

es were removed as described by Liu et al. (2008). To check for air leaks, a graph of A was monitored 

during testing. The test was stopped and the probe reinserted if A was high (≥0.7 for neonates and ≥0.3 
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for other age groups) at low frequencies (<300 Hz; Groon et al., 2015). A, |Y| and OY data were ob-

tained with the Interacoustics Titan Research Module, which saved results as a text file after each test. 

Y data were also converted into G and B, since it is useful to depict Y in rectangular, as well as polar 

form. Because |Y|, G and B are affected by the volume of air between the probe tip and the eardrum, 

these variables were also normalized to reduce variability caused by differences in ear canal cross-

sectional area (Allen et al., 2005). We investigated developmental effects on both normalized Y and Y 

at the probe tip in this study, because commercially available WAI systems for clinical use provide 

results in one of these formats. In this report, normalized variables are denoted with a subscript “n” 

(e.g., |Y|n), and variables measured at the probe tip, with a subscript “t” (e.g., Gt). Yt variables were 

normalized by multiplying the value measured at the tip by Zce, which is the characteristic impedance 

of the ear canal for an individual ear (e.g., |Y|n = |Y|t × Zce). Zce is _c/S, where S is the acoustically 

estimated ear canal cross-sectional area, which is _c/<resistance>, with <resistance> being the acoustic 

resistance averaged across frequency (Keefe et al., 1993). The values for _	and	c for the calculations 

were taken from Benade (1968) for a temperature of 22 °C.  

5.3.2 Statistical analyses 

Multilevel hierarchical models were used for statistical analyses, due to the nested and longitudinal 

nature of the data, as multiple measurements were made at frequencies in ears that were nested within 

infants. WAI data were averaged into 1/2 octave bandwidths for modelling, the frequency bandwidths 

are presented in Table 5.3. The response was the WAI measure (e.g., A, or |Y|t), and the predictors were 

age group (neonates, 6 months, 12 months, 18 months), ethnicity (Caucasian or non-Caucasian), 

gender, ear side, and frequency (modelled as a factor). An interaction was included between frequency 

and age group because we expected the effect of age to vary with frequency (Hunter et al., 2016; Keefe 

et al., 1993). An interaction was also included between age and ethnicity because Hunter et al. (2016) 

found this interaction to be significant. Additionally, Ethnicity × Frequency, and Age × Ethnicity × 

Frequency interactions were included, because ethnicity, and Age × Ethnicity relationships may be 

moderated by frequency (Kenny, 2011; Shahnaz et al., 2013).  
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Table 5.3. Frequency bandwidths used for half-octave averaging  

1/2 octave f (Hz) min (Hz) max (Hz) 

250 226.00 297.30 

354 297.31 420.45 

500 420.46 594.60 

707 594.61 840.90 

1000 840.91 1189.21 

1414 1189.22 1681.79 

2000 1681.80 2378.41 

2828 2378.42 3363.59 

4000 3363.60 4756.83 

5657 4756.84 6727.17 

8000 6727.18 8000.00 

Minimum (min) and maximum (max) frequencies (f) used to average WAI data into 1/2 octave bandwidths 

We initially planned to use linear mixed models for all WAI measures, but preliminary models 

showed violations of the assumption of normally distributed residuals for all models. For A, the issue 

was that since it is a proportion, and (theoretically) bounded by 0 and 1, it was not normally distributed. 

Therefore, we used a beta generalized linear mixed model, which is appropriate for modelling a propor-

tion. A limitation of the beta distribution is that it cannot include values in the response ≤0. Therefore, 

for this model, values of A that were ≤0 were set to 0.0001. Since A < 0 is theoretically impossible, 

these results were likely due to calibration error, and adding a small fraction to 0 values to make them 

positive was thought to be acceptable. Similarly OY,	 which	 was a circular measurement, was not 

normally distributed, since the outer/middle ear is a passive system, which (theoretically) bounds OY by 

−90 and 90° (Keefe et al., 1993). This non-normality was not able to be improved with transformation, 

so instead of modelling OY, we modelled Yn in rectangular form instead with linear mixed models (Gn 

and Bn). We also modelled |Y|t and |Y|n to assess the effects of age on |Y| after removing the variability 

accounted for by ear canal area. S was also modelled to investigate age effects on acoustically estimat-

ed ear canal area.  

Preliminary |Y|t, |Y|n, Gn and Bn models showed a heteroscedastic pattern in the residuals, and the S 

model, a nonlinear pattern, indicating that transforming these variables before modelling may improve 

linearity. Various transformations were trailed including log, square root, and Box-Cox. The Box-Cox 
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method transforms a variable (x) using a parameter b, such that x(b) = xb – 1/b. The value for b was 

chosen by searching over a range of possible values (−2 to 2; Box & Cox, 1964). A constant was added 

to Gn and Bn before transformation to make them positive (+1 for Gn and +2 for Bn). The transform that 

resulted in the most normal looking residuals was used as the transform for that model. The Box-Cox 

transformation was used for Gn, and log transform for |Y|t, |Y|n, Bn and S. Residuals for all models 

appeared suitably normal after transformation. Model terms (variables and interactions) were analysed 

for statistical significance with 62 tests by comparing two models, one with the variable or interaction, 

and one without. Significant terms were further analysed by plotting estimated marginal (EM) means 

(a.k.a least squares means) with their corresponding 95% confidence intervals. Variables that had been 

transformed were first back-transformed onto the original scale before plotting to aid interpretability.  

Analyses were performed with R (R Core Team, 2017) extended with the glmmTMB, lme4, 

lmerTest, emmeans, and ggplot2 packages (Bates, Mächler, Bolker, & Walker, 2015; Brooks et al., 

2017; Kuznetsova, Brockhoff, & Christensen, 2017; Lenth, 2018; Wickham, 2009). The data and code 

for the experiments are available online (https://github.com/Josh-Myers/Longitudinal-WAI). 

5.4 Results 

5.4.1 WAI results  

Median A for each age group as a function of frequency is shown in Figure 5.1. A measured in neonates 

was higher than other age groups from 226 to 2200 Hz and 6200 to 8000 Hz. Average A increased with 

age from 3000 to 5500 Hz. Figure 5.2 depicts median Yt in both polar (panels A and B), and rectangular 

form (panels C and D). Median |Y|t increased with age across almost the entire frequency range (Figure 

5.2A). Neonates had lower median OY compared with other age groups up to 3200 Hz, and higher OY 

from 3200 to 7000 Hz. From 1800 to 3000 Hz median OY increased with age, and from 3200 to around 

6000 Hz, median OY decreased as age increased (Figure 5.2B). Median Gt generally increased with age, 

particularly in the 3000 to 6000 Hz region (Figure 5.2C). The higher Gt for neonates below 500 Hz was 

consistent with energy loss through the compliant neonatal ear canal wall (Keefe et al., 1993). Bt 

systematically increased with age from 400 to 3500 Hz, and then generally decreased with age from 

4000 to 6000 Hz. A zero crossing resonance was observed at around 6000 Hz for 6-month-old infants, 

which shifts to 4500 Hz by 18 months of age (Figure 5.2D).  
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Figure 5-1. Median absorbance (A) for each age group plotted at 1/24 octave frequency resolution. 

 

Yn results are presented in Figure 5.3, and show that much of the variability in |Y|t, Gt and Bt be-

tween age groups can be explained by growth in ear canal area (Keefe & Levi, 1996). Compared to 

other age groups, neonates had higher median |Y|n and Gn up to around 2000 Hz (Figure 5.3A and B), 

similar to median A results. All normalized measures showed increasing Yn with age around the 3000 

Hz region. Bn results showed that almost all of the variability in Bt up to 1200 Hz could be accounted 

for by ear canal area. Median Bn demonstrated increasing stiffness with age from 2000 to 3500 Hz, then 

generally decreasing at higher frequencies as age increased (Figure 5.3C). The middle ear efficiently 

transmits energy when G > B (Allen et al., 2005). Figure 5.4 shows Gn − Bn for each age group. Re-

gions of resonance are indicated where Gn − Bn > 0. These regions correspond to areas where OY was 

less than 45° (Keefe et al., 2015). For neonates, there are 3 regions where Gn > Bn: 226 to 600 Hz, 1000 

to 3200 Hz, and 7000 to 7800 Hz. For the other age groups there are 2 regions: around 2000 Hz, and 

then 3500 to 7000 Hz for 6 months, and 3200 to 7000 at 12 and 18 months. These regions relate to 

maxima in median A for each age group (Figure 5.1), and may represent diagnostically important 

frequencies, apart from the low frequency region for neonates, which is caused by a resonance in the 

ear canal wall (Hunter et al., 2010; Keefe et al., 1993; Keefe & Levi, 1996; Myers et al., 2018a, 2018b; 

Prieve et al., 2013b). 
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Figure 5-2. Median admittance at the probe tip (Yt) for each age group.  
Results are depicted in both polar (A and B) and rectangular form (C and D), plotted at 1/24 octave frequency 
resolution. B = susceptance; G = conductance; OY = admittance phase angle; |Y| = admittance magnitude.  	
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Figure 5-3. Median normalized admittance for each age group. 
The top panel (A) shows admittance magnitude (|Y|n), middle (B) conductance (Gn), and bottom (C) susceptance (Bn). 
Plots are at 1/24 octave frequency resolution. 

 

 

 



 

 156 

 
Figure 5-4. Normalized conductance (Gn) − susceptance (Bn) by age group.  
Regions where Gn > Bn occur when Gn – Bn > 0. Data are plotted at 1/24 octave resolution. 

5.4.2 Statistical models 

Results of statistical analyses testing model terms (variables and interactions) are presented in Table 

5.4. Age, ethnicity, and frequency were significant for all WAI models (A, |Y|t, |Y|n, Gn and Bn). Inter-

actions between age, ethnicity and frequency were also significant for all of these models, except for 

the 3-way interaction (Age × Ethnicity × Frequency) for the Gn and Bn models, as well as the Age × 

Ethnicity interaction in the Bn model. For the S model, only age was significant. To assess which ages 

and frequencies were significant, and the magnitude of effects, EM means and their 95% confidence 

intervals were plotted. Non-overlapping confidence intervals between groups is evidence of a statisti-

cally significant effect. Results were back-transformed onto the original scale before plotting to aid 

interpretation.  
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Table 5.4. Results of statistical significance testing  

 Model Statistic Age Ethnicity Ear Gender f Age × Ethnicity Age × f Ethnicity × f Age × Ethnicity × f 

A I GLMM 

62 5138.58 99.27 0.05 0.68 9545.56 65.48 4074.33 77.11 47.35 

DF 66 44 1 1 80 33 60 40 30 

p-value <0.001 <0.001 0.829 0.410 <0.001 <0.001 <0.001 <0.001 <0.001 

|Y|t 
LMM 

T = Log  

62 7893.50 100.35 0.19 2.31 10501.89 60.34 2955.61 80.00 45.23 

DF 66 44 1 1 80 33 60 40 30 

p-value <0.001 <0.001 0.659 0.129 <0.001 0.003 <0.001 <0.001 0.037 

|Y|n 
LMM 

T = Log  

62 4879.88 91.60 0.34 0.87 11383.02 52.05 3286.92 90.42 51.14 

DF 66 44 1 1 80 33 60 40 30 

p-value <0.001 <0.001 0.558 0.351 <0.001 0.019 <0.001 <0.001 <0.001 

Gn 
LMM 

T = BC  

62 5849.90 80.17 0.018 2.89 10033.78 53.07 4042.54 70.09 42.99 

DF 66 44 1 1 80 33 60 40 30 

p-value <0.001 <0.001 0.894 0.089 <0.001 0.015 <0.001 0.002 0.059 

Bn 
LMM 

T = Log  

62 3615.00 89.49 <0.01 0.62 4089.04 35.42 3282.18 83.30 35.05 

DF 66 44 1 1 80 33 60 40 30 

p-value <0.001 <0.001 0.982 0.430 <0.001 0.355 <0.001 <0.001 0.241 

S 
LMM 

T = Log 

62 1460.64 6.55 0.25 0.90  2.12    

DF 6 4 1 1  3    

p-value <0.001 0.161 0.618 0.344  0.549    

Statistics are shown for ear model term (i.e., variables and interactions). Transformations (T) used on variables before 
modelling are provided in the Model column. Constants of 1 and 2 were added to Gn and Bn, respectively, to make all values 
positive so they could be transformed. For the Gn Box-Cox transform, b	= −1.39. A, absorbance; Bn, normalized suscep-
tance; I	GLMM, beta generalized linear mixed model;	62, chi-squared statistic; DF, degrees of freedom; f, frequency; Gn, 
normalized conductance; LMM, linear mixed model; S, acoustically estimated ear-canal area; |Y|n, normalized admittance 
magnitude; |Y|t, admittance magnitude at the probe tip. 

The effect of age on EM means for A, |Y|t and Yn is depicted in Figure 5.5. For A, neonates were 

significantly different from other age groups except for 2000 to 3000, and 5000 to 6000 Hz, and the 

size of the effect was larger than differences between other age groups (Figure 5.5A). Note that our 

interpretation interpolates between 1/2 octave data points (e.g., 5000 Hz was not a variable in the 

model), but we think this is reasonable, as the shape of the WAI response is similar for 1/24 and 1/2 

octave frequency resolutions (Myers et al., 2018b). All age groups were significantly different from 

each other at 4000 Hz, and 12-month-old infants were different from other age groups at 6000 Hz. For 

|Y|t, neonates were significantly different at all frequencies except for 7000 to 8000 Hz (Figure 5.5B). 

Once normalized for ear canal area, the size of the effect up to 4000 Hz was much smaller (Figure 

5.5C). All age groups were significantly and substantially different for |Y|t, from 3000 to 4000 Hz, but 

once normalized, only 3000 Hz remained significant, and the size of the effect was diminished. The 

effect of age on EM means for Gn and Bn are presented in Figure 5.6. For Gn, the neonate group was 
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significantly different across almost the entire frequency range, apart from where results crossed over 

at around 2500 and 5000 Hz (Figure 5.6A). The 12-month group, was different from other age groups 

in the 6000 Hz region, and the 18-month group was significantly different from the 6-month group 

from 3000 to 4000 Hz. For Bn, neonates were significantly different for frequencies above 1500 Hz 

(apart from around 3200 Hz where there was a cross over), the 6-month group was different from other 

groups above 3500 Hz, and the 6-month group was different from 18-months at 3000 Hz (Figure 5.6B). 

EM means for the S model are presented in Table 5.5, and show that the neonate group had significant-

ly and substantially lower acoustically estimated ear canal area compared to other age groups, and the 

6-month group was slightly but significantly different from the 12- and 18-month groups.  
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Figure 5-5. Estimated marginal means for absorbance and admittance. 
Estimated marginal means (lines) and 95% confidence intervals (shaded areas) for absorbance (A; A, top), admit-
tance magnitude at the probe tip (|Y|t; B, middle), and normalized admittance magnitude (|Y|n; C, bottom) for each 
age group plotted at 1/2 octave frequency resolution. 
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Figure 5-6. Estimated marginal means for normalized conductance and susceptance. 
Estimated marginal means (lines) and 95% confidence intervals (shaded areas) for normalized conductance (Gn; A, 
top), and normalized susceptance (Bn; B, bottom) for each age group plotted at 1/2 octave frequency resolution.  

Table 5.5. Estimated marginal mean from the ear-canal area model  

 Neonate 6 months 12 months 18 months 

Lower 6.71 19.51 22.14 24.34 

Mean 7.06 20.64 23.66 25.95 

Upper 7.43 21.84 25.28 27.67 
Estimated marginal mean and 95% confidence intervals from the ear-canal area model for each age group. Results are in 
units of mm2, as they have been back-transformed to the original scale to aid interpretability. “Lower” and “upper” are the 
lower and upper bounds of the 95% confidence intervals for the estimated marginal means.  

To investigate the significant ethnicity effects and interactions, EM means by ethnicity (Caucasian 

compared to non-Caucasian) for the different age groups as a function of frequency for each model are 

shown in Figures 5.7 to 5.11. For A, confidence intervals did not overlap for the neonates at 1500 Hz 

(Figure 5.7), and for the 12-month group there was a large effect (>10% difference) at 6000 Hz. For |Y|t 

there was a significant effect at 6000 Hz for the 12-month age group, and 4000 to 8000 Hz for 18 
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months, which was relatively large from 4000 to 6000 Hz (Figure 5.8). For |Y|n, the only significant 

effect was at 6000 Hz for the 12- and 18-month groups (Figure 5.9), and for Gn at 6000 Hz for the 12-

month group (Figure 5.10). For Bn, there was an effect at 4000 Hz, and 6000 to 8000 Hz for 12 months, 

and 4000 and 6000 Hz for 18 months (Figure 5.11). Age could be a confounding factor in these results 

if one ethnic group was generally tested at a younger or older age within an age group. Therefore, t-

tests were conducted for each age group to investigate whether there were significant differences in age 

between Caucasians and non-Caucasians within age groups (Hunter et al., 2016). The results are 

presented in Table 5.6 and show that age was not a significant factor between ethnic groups for any age 

group.  

 
Figure 5-7. Absorbance estimated marginal means showing the ethnicity interaction. 
Estimated marginal means (lines) and 95% confidence intervals (shaded areas) from the absorbance (A) model by 
age group showing the relationship between ethnicity, age and frequency. 
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Figure 5-8. Admittance magnitude at the tip estimated marginal means showing the ethnicity interaction.   
Estimated marginal means (lines) and 95% confidence intervals (shaded areas) from the admittance magnitude at 
the probe tip (|Y|t) model by age group showing the relationship between ethnicity, age and frequency. 
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Figure 5-9. Normalized admittance magnitude estimated marginal means showing the ethnicity interaction.  
Estimated marginal means (lines) and 95% confidence intervals (shaded areas) from the normalized admittance 
magnitude (|Y|n) model by age group showing the relationship between ethnicity, age and frequency. 
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Figure 5-10. Normalized conductance estimated marginal means showing the ethnicity interaction. 
Estimated marginal means (lines) and 95% confidence intervals (shaded areas) from the normalized conductance 
(Gn) model by age group showing the relationship between ethnicity, age and frequency. 
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Figure 5-11. Normalized susceptance estimated marginal means showing the ethnicity interaction. 
Estimated marginal means (lines) and 95% confidence intervals (shaded areas) from the normalized susceptance 
(Bn) model by age group showing the relationship between ethnicity, age and frequency. 

Table 5.6. Results of t-tests between age group and ethnicity  

Age t-value DF p-value 

Neonate 0.77 36.25 0.446 

6 months 1.03 27.31 0.312 

12 months 0.46 18.63 0.651 

18 months −1.16 32.98 0.254 

Results of t-tests investigating whether the relationship between age group and ethnicity was statistically significant within 
age groups. DF, degrees of freedom. 

An interactive web application is available (https://joshmyers.shinyapps.io/WAINorms/), which 

has the normative reference data for each age group (overall or ethnic-specific) for various frequency 

resolutions. The application also shows the effect of frequency resolution on group average results, and 

has results from individual infants that attended all of the follow up sessions.  
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5.5 Discussion 

5.5.1 Comparison of WAI measurements with previous studies 

Median A, |Y|t and OY from this study are depicted along with results from selected studies in Figures 

5.12 to 5.14. Average A in this study generally compared well with other studies (Figure 5.12). For 

neonates, A results from our study are very similar to the majority of other reports, with three maxima 

at around 250, 1500–2000, and 6000–7000 Hz. For the 6-month age group, results from our study are 

generally lower than other studies, but overall compare well. Average A for the 12- and 18-month age 

groups compared favourably with previous research also. Median |Y|t in this study compared well with 

other studies, although |Y|t for our study was lower than other reports above 4000 Hz for the 6- to 18-

month age groups (Figure 5.13). Average OY for this study generally compared well up to 2000 Hz for 

all age groups, but at higher frequencies, our OY results were higher than reported by other research for 

the 6- to 18-month groups (Figure 5.14). Table 5.7 compares S from this study with other reports, and 

shows that our findings were smaller than those of Keefe et al. (1993), but were very similar to results 

from Hunter et al. (2016). However, Hunter et al. reported an Ethnicity × Age effect, which was not 

significant in our study. Differences in the Hunter et al. study were for infants mostly of African 

descent, though, while the ethnicity was majority Asian descent (other than Caucasian) in the present 

study. Other differences between results in this study and previous research could be due to a range of 

factors including differences in probe design and equipment, calibration procedures, methods for 

estimating ear canal area, age groupings, study design, and methodology (Aithal et al., 2014b; Shahnaz 

et al., 2014). 
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Figure 5-12. Comparison of absorbance with other studies. 
Median absorbance (A) for this study compared with results from other studies reporting ambient A or reflectance 
(R) at similar ages. Aithal et al. (2014b) measured median 1/3 octave A from 35 ears from 35 neonates, and 27 ears of 
14 infants aged 6 months; Hunter et al. (2016) presented 1/2 octave A estimated marginal means from one ear of 129 
neonates, 95 infants aged 6 months, and 93 infants aged 12 months; Sanford and Feeney (2008) reported 1/3 octave R 
for one ear of 20 infants aged 6 months; Werner et al. (2010) measured 1/12 octave R averaged into 15 analysis bands 
from 260 infants aged 5 to 9 months; Shahnaz et al. (2014) measured 1/3 octave R in 33 ears of 6-month-old infants; 
Hunter et al. (2010) reported median R data at 23 Hz frequency resolution for 324 neonates; Keefe et al. (1993) 
presented mean 1/3 octave R for 11 infants aged 6 months, 23 aged 12 months, and 11 aged 24 months; Merchant et 
al. (2010) measured mean R at 23 Hz frequency resolution in 8 neonates; and Sanford et al. (2009) results are median 
1/12 octave A from 53 neonatal ears measured on the second day of life. Studies that reported R have been converted 
to A for ease of comparison. For the 18 to 24 months panel, infants in the this study were approximately 18 months 
old and participants in Keefe et al. (1993) were 24 months of age. Results from this study are presented at 1/24 octave 
frequency resolution.  
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Figure 5-13. Comparison of admittance magnitude with other studies. 
Median |Y|t from this study compared with results from other studies that measured Yt or Zt at similar ages. Keefe et 
al. (1993) presented mean 1/3 octave Zt for 11 infants aged 6 months, 23 aged 12 months, and 11 aged 24 months; 
Keefe et al. (2000) reported median 1/2 octave Yt from 2081 neonatal ears; Sanford et al. (2009) results are median 
1/12 octave Yt from 53 neonatal ears measured on the second day of life; and Werner et al. (2010) reported 1/12 
octave Zt averaged into 15 analysis bands from 260 infants aged 5 to 9 months. Studies reporting Zt have been 
converted to Yt for ease of comparison. For the 18 to 24 months panel, infants in the this study were approximately 
18 months old and participants in Keefe et al. (1993) were 24 months of age. Results from this study are presented at 
1/24 octave frequency resolution. Yt = admittance measured at the probe tip; Zt = impedance measured at the probe 
tip.  
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Figure 5-14. Comparison of admittance phase angle with other studies. 
Median admittance phase angle (OY) from this study compared with results from other studies that measured 
admittance or impedance at	 similar	 ages. Studies reporting impedance have been converted to admittance to 
facilitate comparison. Details of the studies are given in Figure 5.13. Results from this study are depicted at 1/24 
octave resolution. 

Table 5.7. Comparison of average acoustic ear-canal area estimate with other studies 

 Hunter et al. (2016) Keefe et al. (1993) This study 

Neonate 6  7.51 

6 months 24 31.17 22.22 

12 months 22 38.48 25.66 

18 to 24 months  47.57 28.76 

Units are in mm2. Estimates from this study and Keefe et al. (1993) are the mean, and results from Hunter et al. (2016) are 
estimated marginal means. For the 18 to 24 months, infants in this study were approximately 18 months old and participants 
from Keefe et al. were 24 months of age. 

5.5.2 Developmental effects on WAI  

Developmental effects on A and Y in this study compared well with results from previous research, 

although there were differences. In our study, from birth to 6 months of age, A increased in the 4000 Hz 

region, and decreased below 2000 Hz and above 6000 Hz (Figure 5.1) in agreement with most pub-

lished reports (Aithal et al., 2014a; Hunter et al., 2016; Keefe et al., 1993; Sanford & Feeney, 2008; 

Shahnaz et al., 2014). However, our data showed a significant effect of increasing A with age from 6 to 

18 months at 4000 Hz, which has not been found in other studies (Hunter et al., 2016; Hunter et al., 

2008b; Keefe et al., 1993). Our |Y|t results compared favourably with other studies, with a trend of 
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increasing |Y|t with age (Keefe et al., 1993; Sanford & Feeney, 2008; Werner et al., 2010). However, 

average |Y|t in our study decreased substantially beyond 4000 Hz for the 6- to 18-month age groups, 

whereas in Keefe et al. (1993) it continued to trend upwards until above 6000 Hz. For OY, our results 

showed a general pattern of decreasing zero crossing with age, largely consistent with results from 

Keefe et al., although in our study this occurred at a higher frequency. We found a significant ethnicity 

effect and interaction with age, for both A and Y, in agreement with Hunter et al. (2016), and the effect 

was substantial for certain combinations of age, ethnicity and frequency (e.g., A at 6000 Hz for 12 

month-old infants; see Figure 5.7).  

5.5.3 Maturational factors contributing to developmental changes in WAI  

Consistent with previous reports, we have found that growth and development of the outer and 

middle ear significantly affect WAI measured in infants (Aithal et al., 2014b; Hunter et al., 2016; Keefe 

et al., 1993; Sanford & Feeney, 2008; Shahnaz et al., 2014; Werner et al., 2010). Contributing factors 

include stiffening of the ear canal, growth in ear canal length and diameter, clearance of mesenchyme 

and fluid from the middle ear, growth of tympanic cavity, and growth and development of the ossicles 

(Keefe et al., 1993). The higher A, |Y|n and Gn for neonates at low frequencies observed in this study is 

consistent with energy absorbed by the compliant and lossy neonatal ear canal wall (Aithal et al., 

2014b; Hunter et al., 2016; Keefe et al., 1993; Keefe & Levi, 1996; Sanford & Feeney, 2008; Shahnaz 

et al., 2014). It is generally accepted that the strongest effect is for frequencies below 1000 Hz, which is 

consistent with our results (Keefe et al., 1993; Keefe & Levi, 1996; Sanford & Feeney, 2008; Shahnaz 

et al., 2014). The effect decreases over the first few months of life as the ear canal wall stiffens and 

ossifies (Keefe et al., 1993; Wilson, 2012).  

The degree to which changes in ear canal area explain differences in Yt measurements between age 

groups can be seen by comparing Yt with Yn (Keefe & Levi, 1996). In our study, differences in ear 

canal area explained most of the variability in Bt up to 1200 Hz for all age groups, and for |Y|t, almost 

all of the variability from 6- to 18-months up to 2000 Hz. We conclude that ear canal area growth was 

an important factor for differences in Yt between age groups, consistent with the results of Keefe et al. 

(1993) and Keefe and Levi (1996). Ear canal length increases with age through infancy, if this signifi-

cantly contributed to differences in |Y|n, we would expect smaller |Y|n at low frequencies for younger 

infants, since |Y|n = kL / 2, where L is ear canal length, and k is the ratio of the angular frequency (2ef) 

to the speed of sound (Keefe et al., 1993; Keefe, Bulen, Campbell, & Burns, 1994). Given that |Y|n was 

larger for neonates than other age groups, and there was no difference from 6- to 18-months at low 
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frequencies, we conclude that growth in ear canal length was not a significant factor in differences in 

|Y|n observed in our study, consistent with the results of Keefe et al. (1993).  

The mass and resistance of the middle ear decrease as mesenchyme, amniotic fluid and debris clear 

after birth (Kei et al., 2013; Wilson, 2012). In our study, the greater mass for neonates compared with 

other age groups from 1200 to 3500 Hz for Bn (Figure 5.3C), and increase in Gn from 3000 to 5000 Hz 

is likely at least in part due to aeration of the middle ear cavity (Figure 5.3B). The increasing stiffness 

with age for Bn from 2000 to 3500 Hz is consistent with increasing stiffness of the middle ear possibly 

due to fusion of the tympanic ring, changes in the orientation and fibres of the tympanic membrane, 

and tightening of the ossicular joints (Figure 5.3C; Kei et al., 2013; Wilson, 2012). Growth of the 

middle ear cavity is thought to be a contributing factor to increasing Y with age (Holte, Margolish, & 

Cavanaugh, 1991). The tympanic cavity increases in size through infancy, and its volume also increas-

es due to pneumatization, as mesenchyme is absorbed and amniotic fluid and debris clear (Wilson, 

2012). This growth could be a contributing factor to increasing |Y|n with age from 3000 to 4000 Hz in 

our study (Figure 5.3A). The increase in mass with age above 3700 Hz for Bn could also be due to 

increase in middle ear size, as a smaller cavity is acoustically stiffer (Figure 5.3C; Keefe et al., 1993; 

Keefe & Levi, 1996). At high frequencies (above 6000 Hz), the increase in mass seen for Bn may be 

due to development of the ossicles, which change in orientation as the orientation of the eardrum 

changes, increase in size and weight, and ossify throughout infancy (Aithal et al., 2014b; Allen et al., 

2005; Keefe et al., 1993; Sanford & Feeney, 2008; Shahnaz et al., 2014; Wilson, 2012). 

5.5.4 Clinical significance  

Regions of resonance are indicated where G > B, and these areas related to maxima in median A for 

each age group (Allen et al., 2005). Therefore, A at frequencies where Gn > Bn may be important 

predictors of middle ear status (Figure 5.4), apart from the low frequency region for neonates (<600 

Hz), which is caused by an ear canal resonance (Keefe et al., 1993). This would indicate that A in the 

1500 to 2000 Hz region is diagnostically important for neonates, which is consistent with previous 

reports (Aithal et al., 2015; Hunter et al., 2010; Myers et al., 2018a). For older age groups our data 

indicate that 2000 Hz may also be important, as well as A at frequencies from 3500 to 6000 Hz, which 

is also generally consistent with results of other studies (Keefe et al., 1993; Myers et al., 2018b; Prieve 

et al., 2013b).  

There is a general consensus in the WAI literature that separate reference data are needed for dif-

ferent age groups (Kei et al., 2013). However, exactly which ages require their own normative  data is 

an area of ongoing research. Aithal et al. (2014b) and Hunter et al. (2016) recommended separate 
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normative A regions be used for neonates compared to 1-month old infants, but Merchant et al. (2010) 

found no significant differences between these age groups. Hunter et al. also suggested that A reference 

data could be collapsed for infants aged 6 to 15 months. Our A results, however, indicate a systematic 

age effect at 4000 Hz, with a reasonably large difference in EM means between the 6- and 18-month 

groups (>10%; Figure 5.5A), indicating that it may be beneficial to have separate normative data for 6-

month-old infants. The difference between 12 and 18 months at 4000 Hz was also statistically signifi-

cant, but overall, it seems reasonable to collapse reference data across those age groups. As mentioned, 

a possible reason for differences between studies could be different methods for estimating ear canal 

area. In our study, when calculating A, the Titan system used the area of the calibration tube as the 

estimated ear canal area, whereas Hunter et al. used an acoustic estimate of ear canal area.  

Most clinical WAI research has been focused on A and R since these measures are theoretically in-

sensitive to probe location in the ear canal. There is interest, however, in using Y as well as A in 

diagnostic applications both for objectively interpreted predictive models (Ellison et al., 2012; Myers et 

al., 2018a; Piskorski et al., 1999; Sanford et al., 2009), and subjectively interpreted visual displays of 

results (Aithal et al., 2017; Allen et al., 2005; Sanford & Brockett, 2014; Sanford & Feeney, 2008; 

Voss et al., 2016). Knowledge of developmental effects on Y are essential for both of these applica-

tions. Our results indicate that for subjective interpretation of results, different reference data would be 

necessary for each age group (neonates, 6, 12, and 18 months) for both Yt and Yn. Likewise, when using 

Y as a variable in a predictive model, these age effects should be taken into account by either creating 

age-specific models, or including interaction terms that allow the interpretation of Y to vary with age.  

For all WAI measures there were also substantial ethnicity effects for certain Age × Frequency in-

teractions. For example, there was over 10% difference between EM means for Caucasian and non-

Caucasians for A at 6000 Hz at 12 months, and for |Y|t at 4000 to 6000 Hz at 18 months, indicating that 

having separate ethnicity reference data or diagnostic criteria may be worthwhile, at least for certain 

age groups. However, taking ethnic differences into account has not been found to improve diagnostic 

performance in previous studies of infants and school-aged children (Beers et al., 2010; Myers et al., 

2018a, 2018b; Shahnaz et al., 2013).  

5.5.5 Strengths, limitations and directions for future research 

The longitudinal design of this study was a strength, but a limitation was that there were no follow up 

appointments between birth and 6 months of age, where the largest WAI developmental effects occur. 

Also, the DPOAE reference data used in this study were developed primarily in adults (Gorga et al., 

2005), but recent research has shown that these may not be optimal for use in infants (Blankenship et 
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al., 2018; Hunter et al., 2018). Future research could assess developmental effects on WAI using age-

appropriate otoacoustic emissions normative criteria.  

5.5.6 Summary and conclusions 

There were large developmental effects on measurements of A and Y through infancy. The most 

dramatic changes occurred between the neonate and 6-month age groups, but there were significant 

differences between all age groups at certain frequencies. In the 3000 to 4000 Hz region, A, |Y|t, |Y|n, 

and Gn increased with age. Bn and OY increased with age from 2000 to 3000 Hz and decreased from 

4000 to 6000 Hz. There were significant ethnicity effects moderated by age and frequency that were 

substantial for certain Age × Frequency combinations. For A, we recommend separate normative 

regions be used for neonates, 6 months, and 12–18 months. For Yt and Yn, separate reference data 

should be used for all age groups (neonates, 6, 12, and 18 months). Further research will be needed to 

ascertain whether using ethnic-specific normative data leads to improved diagnostic performance. 
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 Chapter 6. Diagnosing Conductive Dysfunction in Infants Using 
Wideband Acoustic Immittance: Validation and Development of 
Predictive Models 

This chapter develops an ordinal model for diagnosing middle ear dysfunction using wideband absorb-

ance that controls for the effect of age in infants aged 6 to 23 months, and externally validates the 

neonate model developed in Chapter 2 in a new sample. It has been previously published in the article: 

Myers, J., Kei, J., Aithal, S., Aithal, V., Driscoll, C., Khan, A., Manuel, A., Joseph, A., Malicka, A. N. 

(2019a).   Diagnosing conductive dysfunction in infants using wideband acoustic immittance: Valida-

tion and development of predictive models. Journal of Speech Language and Hearing Research, 62(9), 

3607-3619. 

I made substantive contributions to the article in the areas of study design, data collection, data 

analysis and drafting of the article, as outlined below:  

 
Contributor Statement of contribution 

Joshua Myers (Candidate) Study design (60%) 
Recruitment and data collection (60%) 
Data analysis (100%) 
Wrote the article (100%) 

Joseph Kei Study design (20%) 
Edited the article (40%) 

Sreedevi Aithal Study design (5%) 
Edited the article (15%) 

Venkatesh Aithal Study design (5%) 

Carlie Driscoll Study design (5%) 
Edited the article (15%) 

Asaduzzaman Khan Study design (5%) 
Edited the article (15%) 

Alehandrea Manuel Recruitment and data collection (20%) 

Anjali Joseph Recruitment and data collection (20%) 

Alicja N. Malicka Edited the article (15%) 
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6.1 Abstract 

Purpose: To validate the wideband acoustic immittance (WAI) model developed by Myers et al. [Ear 

and Hearing, 39(6), 1116-1135 (2018)] in a new sample of neonates, and to develop a prediction model 

for diagnosing middle ear dysfunction in infants aged 6 to 18 months using wideband absorbance. 

Methods: Tympanometry, distortion product otoacoustic emissions (DPOAEs) and WAI were meas-

ured in 124 neonates, and longitudinally in 357 infants at 6, 12 and 18 months of age. High-frequency 

(1000-Hz) tympanometry was measured in neonates and at 6 months, and 226-Hz tympanometry at 12 

and 18 months. Tympanometry and DPOAEs were used to assess middle ear function of each infant. 

Results from the neonates were applied to the diagnostic WAI model developed by Myers et al. (2018), 

and a new prediction model was developed using results from the 6- to 18-month infants. Absorbance 

was averaged into 1/2 octave bandwidths and 1000, 1414, 2000 and 5657 Hz were used as predictor 

variables in the model. Results from one ear of infants in each age group (6, 12 and 18 months) were 

used to develop the model. The amount of bias (overfitting) was estimated with bootstrap resampling, 

and by applying the model to the opposite ears (the test sample). Performance was assessed using 

measures of discrimination (c-index) and calibration (calibration curves).  

Results: The Myers et al. (2018) model had a c-index of 0.837 and was accurately calibrated when 

applied to a new sample of neonates. The model developed for 6- to 18-month infants had satisfactory 

calibration, and apparent, bias-corrected and test-sample c-index of 0.884, 0.867, and 0.887, respective-

ly. 

Conclusions: The Myers et al. (2018) model validated well to a new sample of neonates, and the 

model developed for 6- to 18-month infants was both discriminating and accurately calibrated. The 

models may be clinically useful, and further research validating, updating and assessing their clinical 

impact is warranted.  
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6.2 Introduction 

Infants with early onset of otitis media have increased risk of recurrent and persistent infections 

through childhood (Corbeel, 2007; Damoiseaux et al., 2006; Karma et al., 1989b). Diagnostic tools able 

to detect middle ear disease at a young age could help to identify affected infants for appropriate 

treatment (Hunter et al., 2008b; Myers et al., 2018b). Wideband acoustic immittance (WAI) is an 

innovative, high-resolution test of middle ear function that is suitable for use in infants from birth 

(Keefe et al., 2000). The term WAI encompasses a family of broadband measures including pressure 

reflectance (PR), energy reflectance (R), energy absorbance (A), and acoustic admittance (Y). PR is the 

ratio of the reflected to forward-propagating acoustic pressure wave amplitude (Keefe & Levi, 1996). R 

is |PR|2, and is the proportion of energy reflected back from the middle ear. A is 1 – R, and represents 

the proportion of energy absorbed by the middle ear (Rosowski et al., 2013). Y is the ratio of volume 

velocity to acoustic pressure, and is a complex measure with magnitude (|Y|) and phase angle (OY) 

(Keefe & Levi, 1996). 

Diagnostic studies have shown that WAI can accurately diagnose conductive dysfunction in neo-

nates (Aithal et al., 2015; Hunter et al., 2010; Keefe et al., 2003a; Myers et al., 2018a; Sanford et al., 

2009), and infants (Ellison et al., 2012; Hunter et al., 2008b; Myers et al., 2018b, 2019b; Prieve et al., 

2013a). Using WAI clinically typically involves subjective interpretation of visual displays. The high-

dimensional, multivariate nature of the response, however, can make interpretation difficult. Develop-

ment of objective predictive algorithms could assist clinical decision making in diagnostic settings, or 

be automated for use in screening contexts (Myers et al., 2018a; Sanford & Brockett, 2014; Sanford et 

al., 2009).  

An issue with developing such algorithms for use with infants, however, is that there are substan-

tial maturational effects on WAI that need to be controlled for (Aithal et al., 2014b; Hunter et al., 2010; 

Hunter et al., 2016; Keefe et al., 1993; Keefe et al., 2000; Kei et al., 2013; Myers et al., 2018a, 2019c; 

Sanford et al., 2009; Shahnaz et al., 2014; Werner et al., 2010). One solution to this problem has been 

to create age-specific algorithms, such as models that have been developed for neonates (Keefe et al., 

2003a; Myers et al., 2018a; Sanford et al., 2009) or different age groups through infancy (Myers et al., 

2018b, 2019b). Alternatively, models could be developed with age included as an interaction term with 

WAI, which would allow interpretation to vary with age (Myers et al., 2019c). Another approach 

would be to only include frequency regions that are relatively unaffected by age as predictors in a 

model (Myers et al., 2019c; Sanford & Feeney, 2008). For example, for infants aged 0 to 6 months, 

Shahnaz et al. (2014) found limited developmental effects on R from 600 to 1600 Hz, and Sanford and 
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Feeney (2008) recommended R from 800 to 2000 Hz as a developmentally stable region. For 6- to 18-

month infants, Myers et al. (2019c) found significant age effects on A from 3000 to 5000 Hz, so a 

model developed for this age group might include an interaction with age at these frequencies, or 

exclude them as predictor variables.  

Another issue in diagnostic WAI research is that although many predictive models have been de-

veloped (Ellison et al., 2012; Keefe et al., 2003a; Keefe et al., 2003b; Myers et al., 2018a, 2018b, 

2019b; Piskorski et al., 1999; Sanford et al., 2009), none have been validated in an external sample of 

subjects. Some studies have estimated the amount of bias (overfitting) in a model with bootstrap 

resampling, or by developing the model on one ear of subjects and applying it to the opposite ears 

(Keefe et al., 2003a; Keefe et al., 2003b; Myers et al., 2018a, 2018b, 2019b). Validating a model in a 

new sample, however, is recommended prior to clinical implementation, to provide a realistic idea of 

model performance, since results are usually poorer when applied to new subjects (Moons et al., 

2012a). This can be due to overfitting, or differences in subject characteristics, environment, or equip-

ment used in the new setting (Myers et al., 2018a; Steyerberg, 2008).  

Myers et al. (2018a) developed a model for diagnosing conductive dysfunction in neonates using 

octave-averaged A at 1000 and 2000 Hz, |Y| at 1000 and 2000 Hz, and OY at 1000 and 4000 Hz. The 

model was developed using results from one ear of subjects, and assessed for bias using the opposite 

ears, and with bootstrap resampling. Myers et al. (2018b, 2019) developed models using A specifically 

for 6-, and 12-month-old infants, respectively, but it may be useful to have a model that can be used 

with a broader age range of infants. There were two aims for this chapter: Study 1 aimed to validate the 

Myers et al. (2018a) model in a new sample of neonates, and Study 2 aimed to develop a predictive 

model for infants aged approximately 6 to 18 months using A, controlling for the effect of age.  

6.3 Methods 

Seven-hundred and fifty-three infants were recruited at birth and followed through infancy (Myers et 

al., 2018a, 2018b, 2019b, 2019c). Myers et al. (2018a) developed a diagnostic model using 629 neo-

nates, and the present study applied that model to the remaining 124 subjects. This sample is referred to 

as the “validation sample” in this report. Characteristics of the validation sample are presented in Table 

6.1. Infants were scheduled to be followed up at around 6, 12, and 18 months of age. Of the 753 infants 

recruited to the study, 357 attended at least one follow up appointment. Two-hundred and seventy-one 

attended at 6 months, 202 at 12 months, and 126 at 18 months of age. Data collected at the follow-up 

appointments is referred to as the “development sample” in this study. Characteristics of infants in the 
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development sample are provided in Table 6.2, and ages of infants in the validation and development 

samples are presented in Table 6.3.  

Table 6.1. Characteristics of the 124 neonates in the validation sample  

Characteristic Value 

Gender (count)  
     Female (%) 
     Male (%) 

1 missing 
55 (44) 
68 (55) 

Ethnicity (count) 
     Caucasian (%) 
     Asian (%) 
     Oceanian (%) 
     African (%) 

0 missing 
102 (82) 
12 (10) 

7 (6) 
3 (2)                 

Gestational age (weeks) 
     Median (IQR) 
     Range 

1 missing 
39 (38 to 39) 

36 to 41 

Birth type (count) 
     Vaginal (%) 
     C-section (%) 

0 missing 
71 (57) 
53 (43) 

Birth weight (kg) 
     Median (IQR) 
     Range 

2 missing 
3.4 (3.1 to 3.7) 

2 to 4.7 

IQR, interquartile range. 
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Table 6.2. Characteristics of the 357 infants in the development sample  

Characteristic Value 

Gender (count)  
     Female (%) 
     Male (%) 

0 missing 
177 (50) 
180 (50) 

Ethnicity (count) 
     Caucasian (%) 
     Asian (%) 
     Oceanian (%) 
     South American (%)  
     African (%) 

3 missing 
296 (83) 
39 (11) 
12 (3) 
3 (1) 
4 (1)                 

 

All infants either passed automated auditory brainstem response (ABR) neonatal hearing screen-

ing, or had a finding of normal hearing sensitivity upon diagnostic hearing evaluation. Diagnostic 

audiology defined normal hearing as passing a click-evoked ABR test, and also either tone-burst ABR 

(1000 and 4000 Hz), or transient evoked otoacoustic emissions.  

Table 6.3. Ages of infants in the validation and development samples 

 Median IQR Range Missing 

Neonates (hrs) 43 27－49  5－81 1 

6 months (wks) 28 26－30  23－39 23 

12 months (wks) 54  53－57  43－70 3 

18 months (wks) 80  79－82 75－100 4 

The missing column gives the number of subjects in that age group with missing age data. IQR, interquartile range. 

6.3.1 Test procedure 

Neonates were tested in the Maternity Ward at the Townsville Hospital, and other age groups in a quiet 

office at the local paediatric community health centre. The test procedure for the various age groups is 

described in Myers et al. (2019c). Briefly, tests were performed using Interacoustics Titan devices. 

Distortion product otoacoustic emissions (DPOAEs), tympanometry and WAI were measured in both 

ears of an infant if possible. Otoscopy was also performed at 6, 12 and 18 months to ensure that the ear 

canal was not occluded by wax. DPOAEs were measured for primary tone pairs f1 (65 dB SPL) and f2 

(55 dB SPL) for f2 of 2000, 3000, 4000 and 6000 Hz with an f2 / f1 ratio of 1.22. Emissions were 
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classified as present if the signal-to-noise ratio was ≥6 dB and DPOAE levels ≥−10 dB SPL for at least 

three f2 frequencies (Gorga et al., 2005). 

High-frequency (1000-Hz) tympanometry (HFT) was used for neonates and 6-month infants, and 

low-frequency (226-Hz) tympanometry (LFT) for the 12- and 18-month groups. For neonates, HFT 

results were classified according to the criteria described in Myers et al. (2018a). A line was drawn 

between the positive and negative extremes of a tympanogram, and ears were classified as “peaked” 

(pass) if a peak extended above the line, otherwise “not peaked” (fail). For the 6-month infants, HFT 

results were classified in a similar way (drawing a line), but with a third category of “negative peak” 

for peaked traces with tympanometric peak pressure <−150 daPa. LFT results for the 12- and 18-month 

groups were classified as “type A” if there was a peak |Y| ≥0.3 mmho between −150 to 50 daPa, “type 

C” if the peak (≥0.3 mmho) occurred at tympanic peak pressure <−150 daPa, and otherwise “type B” 

(Myers et al., 2019b; Roush et al., 1995). HFT results for the 6-month group (peaked, negative peak 

and not peaked) are also referred to as type A, type C and type B, respectively in this report since data 

from the 6-, 12-, and 18-month groups were analysed together.  

A, |Y| and OY were measured at ambient pressure at 1/24 octave frequency resolution. Thirty-two 

broadband clicks were delivered at 96 dB peSPL and results averaged after removal of artefacts as 

described by (Liu et al., 2008). A visual display of A was monitored during testing to check for air 

leaks. The test was stopped and the probe reinserted if A ≥0.7 below 500 Hz for neonates or ≥0.3 below 

300 Hz for the other age groups (Aithal et al., 2015; Groon et al., 2015; Keefe et al., 2000). 

6.3.2 Reference standards 

The validation study (Study 1) used the binary (pass, fail) reference standard described in Myers et al. 

(2018a). Ears were classified as “pass” if they passed both tests (present DPOAEs and peaked HFT), 

otherwise “fail”.  

The development study (Study 2) used the ordinal reference standard described by Myers et al. 

(2019b) which classified ears as either “normal”, or having “mild” or “severe” middle ear dysfunction. 

Ears were classified as normal if they passed both reference tests (present DPOAEs with type A 

tympanograms), and severe if they failed both tests (absent DPOAEs with type B tympanograms). The 

mild category consisted of ears with type C tympanograms (with present/absent DPOAEs), and ears 

with either present DPOAEs and type B tympanograms, or absent DPOAEs and type A tympanograms. 

The mild category was created because research has shown an ordinal association in A for infants and 

children from normal, to negative middle ear pressure/partial middle ear effusion, to severe dysfunction 

due to middle ear effusion (Beers et al., 2010; Ellison et al., 2012; Hunter et al., 2008b; Myers et al., 
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2018b, 2019b; Shaver & Sun, 2013). Therefore, ears with negative middle ear pressure were placed in 

the mild group (Beers et al., 2010; Hunter et al., 2008b), and also ears that failed only one of the tests 

(type B or absent DPOAEs), as previous research has found that these ears are likely to have mild 

dysfunction also (Myers et al., 2018a, 2018b, 2019b).  

6.3.3 Statistical modelling  

For the validation study (Study 1), WAI results were averaged into octave bandwidths to be applied to 

the model developed by Myers et al. (2018a). The predictor variables in the model were A at 1000 and 

2000 Hz, |Y| at 1000 and 2000 Hz, and OY at 1000 and 4000 Hz.  

 The development study (Study 2) used A only to develop the model, at 1/2 frequency resolution, 

in order to limit the number of potential predictors (Myers et al., 2018b). The probability of middle ear 

dysfunction was modelled using proportional odds ordinal logistic regression. Candidate predictor 

variables for modelling were A at 1000, 1414, 2000, 2828, 4000, and 5657 Hz, as previous studies have 

found an ordinal association between A and middle ear dysfunction in infants and children over this 

frequency range (Beers et al., 2010; Ellison et al., 2012; Hunter et al., 2008b; Myers et al., 2018b, 

2019b). Proportional odds logistic regression assumes that the same coefficients can be used to predict 

each level of the reference standard (mild and severe dysfunction). This assumption was tested by 

plotting the mean for A variables for each level of the reference standard, with and without assuming 

proportional odds (Harrell, 2015). 

One ear of infants from each test session (6, 12 and 18 months) was randomly selected to develop 

the model (the “training sample”). The model was assessed for bias (overfitting) with bootstrap 

resampling, and by applying it to the opposite ears (the “test sample”) (Myers et al., 2018a). Infants 

with results from only one ear were put into the training sample to maximize the size of this group. 

Bootstrap resampling involved sampling with replacement from the training sample a sample of the 

same size (a “bootstrapped sample”). A model was fitted to the bootstrapped sample, and then applied 

to the training sample. This process was repeated 500 times and the difference in performance 

measures calculated and averaged to estimate the amount of bias in the model (Steyerberg et al., 

2001c). Huber-White robust covariance matrix estimates were used to account for correlations in the 

training sample, since infants potentially had multiple records (i.e., results from 6-, 12- and 18-months) 

(Harrell, 2015; Myers et al., 2019b). The Huber-White method assumed that results from an infant 

were independent, rather than results from an individual observation (Hardin, 2005).  

Linear models were fitted (with predictor variables assumed to have a linear association with the 

outcome), and also nonlinear models, with the assumption of linearity relaxed (Harrell, 2015). Nonlin-
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earity was implemented with 5-knot restricted cubic splines using the method described by Myers et al. 

(2018a). Models were also fitted controlling for developmental effects by either including Age (in 

weeks) as an interaction term with A variables, or only using developmentally stable predictors (1000, 

1414, 2000 and 5657 Hz) (Myers et al., 2019c). The shrinkage coefficient (2) was used to evaluate 

whether a model was too complex, and likely to be overfitting:  

2 =
model	67 − 89
model	67

, 6.1  

where model 62	is the likelihood ratio 62 statistic, and df the total degrees of freedom from all pre-

dictors in the model. A 2 of >0.9 was considered acceptable, indicating that model performance in a 

new sample would not likely be more than 10% worse (Harrell, 2015; Myers et al., 2018a). Akaike’s 

information criterion (AIC), a measure of model fit with a penalty for complexity, was used to select 

the best-fitting model for further evaluation of performance (Burnham & Anderson, 2002).  

Performance was assessed with measures of discrimination and calibration. Discrimination was 

evaluated using the Somers’ D statistic, which was converted to the c-index (a.k.a area under the 

receiver operating characteristic curve) for ease of interpretation: c-index = 0.5(Somers’ D + 1). 

Calibration was assessed with calibration curves which plotted actual against predicted probabilities. 

Calibration evaluates the quality of predictions, which are accurate if they align closely with the 

frequency of the condition. For example, for infants with predicted probability of 0.3, approximately 

3/10 should actually have middle ear dysfunction (Myers et al., 2018a; Steyerberg et al., 2010).   

6.3.4 Missing data  

The number of ears missing either tympanometry, DPOAE or WAI data in the validation and develop-

ment samples is provided in Table 6.4. Results were missing due to an infant crying or not tolerating 

the probe in her ear. Observations with missing data for any of these tests were removed prior to 

modelling. Infants missing age data in the development sample (see Table 6.3) were imputed with the 

median age for their age group to avoid having to remove observations with complete reference test 

and WAI data, missing only age.   
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Table 6.4. Number of ears with missing data  

 Neonates 6 months 12 months 18 months 

Tympanometry 1 18 50 37 

DPOAEs 0 22 50 40 

WAI 10 27 55 39 

Number of ears with missing data for tympanometry, DPOAEs and WAI in the validation (neonates) and development (6, 
12, 18 months) samples. DPOAEs, distortion product otoacoustic emissions; WAI, wideband acoustic immittance. 

The study was approved by the Townsville Health Service District Institutional Ethics Committee, 

and the University of Queensland Behavioural and Social Science Ethical Review Committee. Anal-

yses was performed using R (R Core Team, 2017) expanded with the rms package for regression 

modelling (Harrell, 2016). This report has been written according to the recommendations of the 

TRIPOD (transparent reporting of a multivariate prediction model for individual prognosis or diagno-

sis) statement for the reporting of clinical prediction models (Collins et al., 2015). The data and code 

for the analyses are available online (https://github.com/Josh-Myers/WAI-All-Ages). 

6.4 Results 

The validation sample for Study 2 had results from 238 ears after removal of observations with missing 

HFT, DPOAE or WAI data. Results from both ears of neonates were applied to the model, since there 

were no assumptions about independence. The development sample had results from 1038 ears after 

removal of missing data: 508 at 6 months, 330 at 12 months, and 200 at 18 months. The development 

sample was split into a training sample of 536, and a test sample of 502 observations (the opposite 

ears). Table 6.5 shows the reference test (tympanometry and DPOAEs) and reference standard results 

for the validation and development samples after removal of missing data.  
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Table 6.5. Reference test results for the validation and development samples  

Age group Test Results 

 Tympanometry (pass, fail) 207, 31 

Neonate DPOAEs (pass, fail) 188, 50 

 RS (pass, fail) 177, 61 

 Tympanometry (type A, C, B) 399, 29, 80 

6 months DPOAEs (pass, fail) 427, 81  

 RS (normal, mild, severe) 380, 68, 60 

 Tympanometry (type A, C, B) 231, 15, 84 

12 months DPOAEs (pass, fail) 253, 77  

 RS (normal, mild, severe) 221, 48, 61 

 Tympanometry (type A, C, B) 146, 12, 42   

18 months DPOAEs (pass, fail) 166, 34 

 RS (normal, mild, severe) 141, 30, 29 

Reference test and reference standard (RS) results for the validation (neonate) and development (6, 12, and 18 months) 
samples after removal of observations with missing tympanometry, DPOAE or WAI data. DPOAEs, distortion product 
otoacoustic emissions. 

6.4.1 Study 1: The validation study 

Mean A, |Y| and OY for the validation sample are compared with the results from Myers et al. (2018a) 

in Figure 6.1. Mean WAI of the pass group in the validation sample was slightly lower than Myers et 

al. at frequencies above 2000 Hz for A, and above 1000 Hz for Y, but overall, was similar for both 

groups between the samples. For both the Myers et al. and validation samples, mean A for the pass 

group was greater than the fail group across the entire frequency range. Mean |Y| for pass was greater 

than fail from 226 to 2800 Hz, and mean OY for pass lower than fail from 1200 to 8000 Hz. Median age 

of subjects in the validation sample was 43 hours (Table 6.3) which was similar to the median age of 42 

hours in Myers et al. Appling the validation sample to the Myers et al. model, resulted in a c-index of 

0.837 (95% CI 0.773－0.901). The calibration curve is presented in Figure 6.2 which shows predic-

tions were very close to the ideal calibration line across the entire range of probabilities.  
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Figure 6-1. Mean WAI compared with results from Myers et al. (2018a). 
Mean A, |Y| and OY (A, B and C, respectively) of the validation sample compared with results from Myers et al. 
(2018a) for neonates that passed and failed the reference standard.  
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Figure 6-2. Calibration curve for the validation study. 
The calibration curve (solid line) from applying the validation sample to the Myers et al. (2018a) model, plotting 
actual against predicted probability. The dashed line depicts ideal calibration.  

6.4.2 Study 2: The model development study 

Mean A in the development sample for the normal, mild and severe middle ear dysfunction groups, 

stratified by age group (6, 12 and 18 months), is depicted in Figure 6.3A. There was a clear age effect 

from around 3000 to 5000 Hz with A generally increasing with age for the normal and mild groups, and 

decreasing with age for the severe middle ear dysfunction group. There appears to be an ordinal 

association in mean A between the groups (normal > mild > severe) above 1000 Hz for 6 months, 

above 500 Hz for 12 months, and up to 7000 Hz for 18 months. Median A stratified by all possible 

combinations of reference test results is shown in Figure 6.3B. Median A for all subgroups of the mild 

group generally fell between results for the normal (pass both tests), and severe middle ear dysfunction 

(fail both tests) groups. An exception was that ears that ears that passed DPOAEs with type C tympa-

nograms had higher A than ears that passed both tests in the 3000 Hz region. Ears with type A 

tympanograms that failed DPOAEs had lower A compared to normal ears above 1200 Hz, indicating 

that these were likely to have failed DPOAEs due to conductive, rather than sensory dysfunction. Ears 

with type A tympanograms and failed DPOAEs had higher A than type C and failed DPOAEs from 

1000 to 3000 Hz, but were similar from 3000 to 6000 Hz. Ears with type C tympanograms and failed 
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DPOAEs were similar to type C and pass DPOAEs from 4000 to 6000 Hz, but had lower A at around 

1500 and 3000 Hz.  

To test the assumption of proportional odds, mean A of potential predictor variables (1000 to 5657 

Hz) for each level of the reference standard is depicted in Figure 6.4, with and without assuming 

proportional odds. The solid lines connected by circles show the simple stratified means, and the 

dashed lines the expected values under the assumption of proportional odds. The trend in the solid lines 

should be monotonic to satisfy the assumption of proportional odds. The stratified means were very 

close to expected values for 1000, 1400 and 2000 Hz, and were also fairly close for 4000 and 5657 Hz. 

For 2828 Hz, the stratified mean was further away from expected values, but the trend was still mono-

tonic, indicating that the assumption of proportional odds was satisfied.  

 
Figure 6-3. Mean absorbance stratified by reference test results.  
Mean absorbance (A) stratified by both age group and levels of the reference standard (A), and median A grouped 
by all possible combinations of reference test results (B). The mean was chosen for plot A because proportional odds 
logistic regression models the mean, and the median was chosen for plot B because of the small size of some groups.  
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Figure 6-4. Assessing the assumption of proportional odds.  
Plots assessing the assumption of proportional odds for candidate A predictors in the development study. The circles 
connected by solid lines show the simple stratified means, and the dashed lines the expected values under the 
assumption of proportional odds. A monotonic trend in the simple stratified means indicates that the assumption of 
proportional odds has been met.  

The modelling process began by fitting a simple baseline model, Model A, that included all candi-

date A predictors (1000 to 5657 Hz), with predictors assumed to have a linear association with the 

outcome. Next, Model B used the same predictors, but with the assumption of linearity relaxed using 

restricted cubic splines. Models C and D included Age as an interaction term with A variables: Model C 

assumed linearity, and Model D allowed nonlinearity. Model E was similar to Model D, but Age 

interactions were only included for frequencies with the largest developmental effects (2828 and 5657 

Hz) (Myers et al., 2019c). Finally, Model F was similar to Model B (nonlinear with no Age interac-

tion), but the predictor variables most affected by age were not included in the model (2828 and 4000 

Hz).  

LR 62, 2 and AIC for the models are presented in Table 6.6. Model B had lower AIC than Model 

A, indicating that allowing nonlinearity improved model fit. Model C also had lower AIC than Model 
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A, indicating that accounting for age also improved model fit. Model D, the nonlinear model with Age 

interacting with all A variables, had 2 of 0.88, indicating that it may be too complex for this dataset (2 

< 0.9). Model F had the lowest AIC, indicating that it was the best fitting model, and was therefore 

taken as the final model for further investigation and evaluation.  

Table 6.6. Statistics for the development study models	

Model Predictor Variables LR 62 df	 2 AIC 

Model A A from 1000 to 5657 Hz 290.11 6 0.98 582.26 

Model B Model A nonlinear 350.42 24 0.93 557.95 

Model C Model A × Age (all variables) 310.06 13 0.96 576.31 

Model D Model B × Age (all variables) 393.41 49 0.88 564.96 

Model E Model B × Age (2828 + 4000 Hz) 371.66 33 0.91 554.71 

Model F Model B – 2828 and 4000 Hz 341.45 16 0.95 550.92 

LR 62, df, 2, and AIC for the development study models. The p-values for the LR 62 statistics were <0.0001 for all models. 
The absorbance predictor variables were 1000, 1414, 2000, 2828, 4000, 5657 Hz at 1/2 octave frequency resolution. AIC, 
Akaike's information criterion; LR 62, likelihood ratio chi-squared statistic; 2, shrinkage coefficient; df, degrees of freedom. 

The importance of predictors in Model F is shown Table 6.7. A at 5657 Hz had the highest LR 62 

(47.19), followed by 1000 Hz (30.08), and then 2000 Hz (18.77). A at 1414 Hz was not significant in 

the model (p > 0.05), but it was retained, since it may still be contributing, and removing variables 

from a model based on the results of statistical tests is not good practice (Gelman & Hill, 2007). 

Nonlinear contributions were statistically significant, and accounted for a substantial amount of LR 62 

for the top three predictors, indicating that introducing nonlinearity was important in the model. The c-

index for Model F was 0.884, and 0.867 after being corrected for bias with bootstrap resampling. 

Applying the model to the opposite ears resulted in a c-index of 0.887. Figure 6.5 shows the calibration 

curves for Model F for ≥mild and ≥severe middle ear dysfunction (left and right columns, respectively) 

calculated for the training and test samples (top and bottom rows, respectively). The curves are overall 

satisfactory, being relatively close to the ideal calibration line for all samples.  
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Table 6.7. Statistical analysis for the final model  

Variable LR 62 df p-value 

1000 Hz 30.08    4      <0.001 

    Nonlinear 27.71 3 <0.001 

1414 Hz 6.82       4    0.146   

    Nonlinear 2.94 3 0.401 

2000 Hz 18.77     4     <0.001    

    Nonlinear 8.57     3      0.036    

5657 Hz 47.19 4 <0.001 

    Nonlinear 9.05 3 0.029 

TOTAL NONLINEAR 65.27 12 <0.001 

TOTAL 173.97     16         <0.001 

Statistical analysis for the final model (Model F), showing the LR 62	statistics, associated p-values, and degrees of freedom 
(df) for each predictor variable (total and nonlinear contributions) in the model. LR 62, likelihood ratio chi-squared statistic. 
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Figure 6-5. Calibration curves for the final model. 
Calibration curves for Model F plotting actual versus predicted probability for ≥ mild (left column, A and C) and ≥ 
severe middle ear dysfunction (right column, B and D). The top row (A and B) depicts the curves for the training 
(apparent) and bias-corrected (bootstrapped) samples, and the bottom row (C and D), the curves for the test sample 
(the opposite ears). The dashed lines depict ideal calibration.  

The equation for Model F to calculate probabilities is provided in Section 6.6: Appendix. An online 

application implementing the model is available (http://joshmyers.shinyapps.io/WAIPredictions/) that 

can make predictions either by uploading a session exported from a Titan device, or by manually 

entering A results.  
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6.5 Discussion 

6.5.1 Study 1: The validation study 

WAI results from the validation sample compared well results from Myers et al. (2018a) (Figure 6.1), 

and the model validated well to the new sample. The calibration curve was very close to the ideal 

calibration line (Figure 6.2). The c-index of 0.837 was lower than the apparent performance of 0.876 

reported by Myers et al., but was close to the bias-corrected estimate of 0.845. 

6.5.2 Study 2: The model development study 

Model F (the best fitting model) may be useful in both screening and diagnostic settings. Probabilities 

for one or both levels of the reference standard (mild and severe) could be calculated as needed, 

depending on the context. The cut off for further action would be the point where there is enough 

concern to warrant further action (Myers et al., 2018a). For example, a screening program wishing to 

test for severe middle ear dysfunction may only calculate the probability of ≥severe middle ear dys-

function, failing infants with probability >0.5, since middle ear dysfunction is more likely than not at 

this point. In a diagnostic setting probabilities for both ≥mild and ≥severe dysfunction could be pre-

sented along with visual depictions of WAI to aid clinical decision making. Figure 6.6 shows examples 

of applying the model to two cases, showing A results along with the predicted probabilities from the 

model. In the first example (A) the probability of both ≥mild and ≥severe middle ear dysfunction is 

high (0.99 and 0.95, respectively), indicating that severe middle ear dysfunction is likely. For the 

second example (B) mild middle ear dysfunction is likely, since the probability of ≥mild is high (0.79), 

but ≥severe is not (0.36).  

 Performance measures for Model F showed accurate discrimination and calibration, and results 

from bootstrap resampling and the opposite ears indicated that the model was not overfitting, and 

therefore may perform well when applied to new samples. Accounting for developmental effects and 

allowing nonlinearity both improved model fit, with Model F using both of these strategies. The c-

index for Model F of 0.884 (0.867 after being corrected for bias) was not as high as the 0.93 reported 

by Ellison et al. (2012), but was within the margin of error reported in that study. Results for Study 2 

were similar to Beers et al. (2010) with absorbance normal > mild > severe from 1000 to 6000 Hz. 

Results were also comparable to Hunter et al. (2008b), who found that ears with negative middle ear 

pressure fell between normal and severe conditions from 1000 to 4000 Hz, but in the present study this 

trend continued up to 6000 Hz. Factors contributing to this difference could include age differences 

between the studies, as Hunter, Tubaugh, et al. included subjects from 0 to 47 months, whereas infants 
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in Study 2 were 6 to 18 months old. Also, Hunter, Tubaugh, et al. used the MEPA (middle ear power 

analyser) equipment, whereas we recorded absorbance using the Interacoustics Titan WBT (wideband 

tympanometry) system. 

 
Figure 6-6. Applying the model to individual cases.  
Examples of applying the model to 2 cases, showing absorbance (A), and corresponding probabilities predicted by 
the model. The shaded region depicts the 90% range of normal ears from the 18-month group.  

6.5.3 Strengths, limitations, and directions for future research 

This study was the first to validate a WAI model in a new sample of neonates, and the model developed 

for 6- to 18-month infants took care to avoid overfitting, and controlled for the effect of age. A limita-

tion of the study, however, was that data collection was not blinded. The same researcher measured 

both WAI and reference tests, which may have introduced bias. Also, the validation sample was very 

similar to the sample used by Myers et al. (2018a) to develop the model. The model performed well 

when applied to the new data, but subjects were of similar age, and were tested by the same researchers 

using the same equipment in the same environment. Future research could validate the model in a 

sample tested in a different environment, updating the model if necessary. Another limitation was that 
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the reference standard used to develop the infant model was not the gold standard for diagnosing 

middle ear disease in infants. Future research using reference tests such as otomicroscopy and surgical 

confirmation for middle ear status could create a more stringent reference standard with well-defined 

pathologies for subgroups, for example, Eustachian tube dysfunction, partial, and complete middle ear 

effusion.  

6.5.4 Summary and conclusions 

The model developed by Myers et al. (2018a) validated well to a new sample of neonates and a new 

model was developed for 6- to 18-month infants that controlled for maturational effects on A. The 

validated and developed models may be clinically useful, and further research validating, updating and 

assessing their clinical impact in screening and diagnostic settings is warranted.  
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6.6 Appendix: The equation for Model F  

The ordinal logistic regression equation for Model F, the final model in Chapter 6, using absorbance 

(A) at 1000, 1414, 2000, and 5657 Hz expanded with 5-knot restricted cubic splines to calculate the 

probability (P) of middle ear (ME) dysfunction for levels of the reference standard (j) is:  

 

Note that there are 6 coefficients for each A frequency in the model due to being modelled with 5-

knot restricted cubic splines. The subscript “+” symbols after a term, signify that if the value of the 

term is positive, it is cubed, or otherwise it is set to 0. This ensures that the splines meet at the join. 

Cubing the terms makes the joins smooth.   

 

 

 

 

 

 

Prob{ME � j} =
1

1 + exp(�↵j �X�)
, where

↵̂Mild = 4.091712

↵̂Severe = 2.171674

X�̂ =

+11.64024A1000 Hz � 275.3909(A1000 Hz � 0.1921042)3
+

+500.0415(A1000 Hz � 0.3086042)3
+
+ 36.93358(A1000 Hz � 0.3941667)3

+

�309.9347(A1000 Hz � 0.4775937)3
+
+ 48.35041(A1000 Hz � 0.6629458)3

+

�8.732798A1414 Hz + 21.97317(A1414 Hz � 0.1545625)3
+

�45.78994(A1414 Hz � 0.4022917)3
+
� 10.02401(A1414 Hz � 0.5262083)3

+

+40.44765(A1414 Hz � 0.6351979)3
+
� 6.60688(A1414 Hz � 0.81625)3

+

�4.814025A2000 Hz + 1.510417(A2000 Hz � 0.10325)3
+

�4.627762(A2000 Hz � 0.4595312)3
+
+ 212.5867(A2000 Hz � 0.6344583)3

+

�361.1814(A2000 Hz � 0.7311146)3
+
+ 151.7121(A2000 Hz � 0.8645208)3

+

�5.744574A5657 Hz + 9.477814(A5657 Hz + 0.02235417)3
+

�54.01727(A5657 Hz � 0.3092812)3
+
+ 215.402(A5657 Hz � 0.5740833)3

+

�324.2183(A5657 Hz � 0.7481354)3
+
+ 153.3558(A5657 Hz � 0.8856458)3

+

and (x)+ = x if x > 0, 0 otherwise

1
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 Chapter 7. General Discussion  

7.1 Revisiting the rationale for the study 

Early intervention for otitis media in infancy is vital, because onset of the disease at a young age 

increases risk of recurrent and chronic infections that can impact development. However, early identifi-

cation of otitis media in infants remains a challenge, as the condition is often asymptomatic, and 

currently available clinical tools can be inaccurate and difficult to use. Wideband acoustic immittance 

(WAI) is an innovative, high-resolution middle ear test that is quick and easy to administer, and prelim-

inary studies in neonates have shown high diagnostic accuracy (Aithal et al., 2015; Hunter et al., 2010; 

Keefe et al., 2003a; Keefe et al., 2003b; Sanford et al., 2009). However, the need has been identified 

for additional research using a stringent reference standard in a large cohort of neonates. Furthermore, 

little is known about the diagnostic performance of WAI for infants beyond the neonatal period, with 

only two studies to date having included infants in this age range. Prieve et al. (2013b) has been the 

only study of infants entirely outside the newborn period (3 weeks to 9 months), and Ellison et al. 

(2012) included infants as young as 6 months, but also children up to 7 years of age.  

The high-dimensional nature of WAI is both an advantage and disadvantage. Whilst WAI provides 

insight into middle ear function of the over a wide range of frequencies, each test generates a large 

volume of data, which clinicians can find difficult to interpret. Research investigating the most effec-

tive ways to analyse, and present results is still in its infancy (Hunter et al., 2013). Both univariate and 

multivariate analytical techniques have been employed in previous research (Prieve, Feeney, et al., 

2013). Univariate methods have the advantage of being easier to interpret, but it has been suggested 

that multivariate techniques may be more accurate, since they are able to utilize more information from 

the WAI response (Prieve, Feeney, et al., 2013). However, studies using univariate methods have found 

high diagnostic accuracy with area under the receiver operating characteristic curve (AUC) of up to 

0.90, which is as accurate, and even more accurate than the AUC reported in some multivariate studies 

(Hunter et al., 2010; Prieve et al., 2013a). Furthermore, many studies utilizing multivariate techniques 

likely had issues with overfitting, as they developed models with many predictors, small sample sizes, 

and did not use internal validation (Ellison et al., 2012; Keefe et al., 2012; Sanford et al., 2009). 

Overfitting means that a model has been developed on idiosyncrasies in the data, which characterise the 

dataset at hand very well but fail to generalise to new samples. This is a serious issue, as clinical 

implementation of such a model would result in a high number of misdiagnoses (Steyerberg, 2008). 

Further research is needed into assessing whether there is a multivariate advantage when analysing 

WAI data, and if so, what are appropriate ways of presenting results to clinicians. Prediction models 
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may be a useful methodology to help clinical interpretation of results, as they provide an intuitive 

summary of multivariate data in the form of a probability estimate. Presenting results as a prediction 

also captures the spectrum of disease (rather than simply classifying as pass/fail), which is useful when 

diagnosing conditions such as otitis media that occur on a spectrum, where the diagnostic threshold is 

somewhat arbitrary (Northrop et al., 1986; Palmu & Syrjänen, 2005; Vickers et al., 2008). Furthermore, 

prediction models can be extended to use an ordinal outcome, rather than a binary (pass/fail) outcome, 

as has been used previously in diagnostic WAI research. Using an ordinal outcome may be appropriate 

when analysing WAI data, since previous research has found that absorbance systematically decreases 

as the severity of middle ear disease increases (Beers et al., 2010; Ellison et al., 2012; Hunter et al., 

2008b). 

As mentioned, overfitting can be a serious issue when developing multivariate models. It is im-

portant to internally validate models at the time of development to assess the degree to which they may 

be overfitting the data. The authors of the Identification of Neonatal Hearing Impairment studies 

internally validated their studies using the opposite ears of subjects (Keefe, Gorga, et al., 2003; Keefe, 

Zhao, et al., 2003). Another approach to internal validation is bootstrap resampling, which estimates 

the amount of overfitting (bias) in a model using sampling with replacement (Steyerberg, 2008). It is 

vital that future multivariate WAI research include internal validation as part of development to assess 

the extent of overfitting in a model (Moons et al., 2012b). External validation assesses model perfor-

mance in a new sample. This is an important step prior to implementing a model clinically, since model 

performance is usually poorer when applied to new samples. This can be due to overfitting, or differ-

ences in subject characteristics, environmental factors, or equipment used in the new setting 

(Steyerberg, 2008). No predictive WAI models have been externally validated in a new sample, and 

research is also needed in this area.  

There are substantial maturational effects on WAI through infancy that need to be controlled for 

when developing diagnostic models (Aithal et al., 2014b; Hunter et al., 2016; Keefe et al., 1993; 

Shahnaz et al., 2014; Werner et al., 2010). One approach to this problem has been to create age-specific 

models, such as those developed specifically for use in neonates (Keefe et al., 2003a; Sanford et al., 

2009). Alternatively, the effect of age could be controlled for by using developmentally stable regions 

of WAI as predictors in a model, or by including an interaction term between age and WAI predictors, 

which would allow interpretation of WAI results to vary with age (Sanford & Feeney, 2008). However, 

knowledge of maturational effects on WAI is a necessary first step before such strategies can be 

implemented. Developmental effects on absorbance and reflectance over the first year of life have been 

investigated (Aithal et al., 2014b; Aithal et al., 2013; Hunter et al., 2018; Hunter et al., 2010; Merchant 
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et al., 2010; Sanford & Feeney, 2008; Sanford et al., 2009; Shahnaz et al., 2014; Werner et al., 2010), 

but little is known about the effect of age on these measures over the second year of life. Keefe et al. 

(1993) measured reflectance in 12- and 24-month-old infants, but did not use any reference standard to 

assess middle ear status. There is a dearth of evidence about the effect of age for other WAI measures 

such as admittance through infancy.  

There is a need, therefore, to further investigate the diagnostic performance of WAI for identifying 

conductive conditions in neonates and infants, and also to research suitable methods for interpreting 

results. Prediction models may be an attractive method for presenting WAI results, since they simplify 

complex data into a single summary – the probability of disease. There are large developmental effects 

on WAI through infancy, however, which need to be controlled for when developing such models, 

either by creating age-specific models or by incorporating age into the modelling process.  

7.2 Revisiting the aims of the research  

The overall aim of this work was to investigate the diagnostic performance of wideband acoustic 

immittance (WAI) in infants by developing predictive models. This was achieved by creating age-

specific models for neonates, 6- and 12-month infants (Chapters 2, 3 and 4, respectively), investigating 

developmental effects on WAI through infancy (Chapter 5), then applying this knowledge in a model 

developed for use in a broader age range of infants (6 to 18 months; Chapter 6). Specifically, the 

research aimed to: 

1. Develop predictive models for specific infant age groups: neonates, 6 months, and 12 months 

using appropriate internal validation techniques (Chapters 2, 3 and 4, respectively).  

2. Investigate strategies for statistical modelling of WAI data (Chapters 2, 3, 4 and 6), including:  

a. Comparing univariate to multivariate methods (Chapters 2, 3 and 4). 

b. Approaches to reducing the large volume of WAI data, such as frequency averaging, 

predictor selection, and principal component analysis (PCA; Chapters 2, 3 and 4). 

c. Allowing WAI predictors to have a nonlinear association with the outcome (Chapters 2, 

4 and 6). 

d. Using an ordinal outcome in predictive WAI models (Chapters 4 and 6). 

e. Whether including demographic information such as age, ethnicity and ear side im-

proves diagnostic performance of WAI models (Chapters 2, 3, 4 and 6). 

3. Investigate developmental effects of WAI through infancy, and establish normative data for 

various age groups (Chapter 5). 
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4. Develop a predictive WAI model for use in a broader age range through infancy (6 to 18 

months), controlling for developmental effects (Chapter 6, Study 1).  

5. Externally validate the neonate model (Chapter 2) in a new sample to assess generalizability of 

the model (Chapter 6, Study 2). 

The main findings of the research with respect to each of these aims are discussed below. 

7.3 Discussion of main findings  

7.3.1 Development of predictive models for specific age groups 

The first aim of the research was to develop predictive models for specific infant age groups utilising 

appropriate internal validation techniques. Models were developed for neonates, 6-, and 12-month 

infants in Chapters 2, 3 and 4, respectively. All models showed that WAI has powerful ability to 

predict middle ear dysfunction in infants, with c-index/AUC results above 0.8 after internal validation 

for all models (0.85, 0.85, and 0.91, for the neonate, 6-, and 12-month models, respectively). Although 

AUCs of the developed models were not as high as some previous reports, they were overall compara-

ble (Beers et al., 2010; Ellison et al., 2012; Keefe et al., 2003a; Keefe et al., 2003b; Sanford et al., 

2009). Furthermore, many studies reporting very high AUC in the literature (>0.90), have had serious 

methodological issues, such as selection bias and/or likely overfitting due to including many predictors 

in a model compared to the sample size (Beers et al., 2010; Ellison et al., 2012; Keefe et al., 2012).  

The only previous WAI studies to include internal validation have been the Identification of Neo-

natal Hearing Impairment studies, which internally validated their models using the opposite ears of 

subjects (one ear of each subject was used to develop the models and the other for validation). They 

found that the models validated well with a difference in AUC between development and validation 

samples of 0.03 to 0.04 (Keefe, Gorga, et al., 2003; Keefe, Zhao, et al., 2003). No previous diagnostic 

WAI studies in infants outside the neonatal period have implemented internal validation in the model-

ling process. We internally validated the neonate, 6-, and 12-month models with bootstrap resampling, 

and the neonate and 6-month models with the opposite ears as well. Results were comparable with the 

Identification of Neonatal Hearing Impairment studies (Keefe, Gorga, et al., 2003; Keefe, Zhao, et al., 

2003), showing maximum difference in c-index/AUC between development and validation samples of 

0.03 for neonates (bootstrapped), 0.04 for 6 months (opposite ears), and 0.01 for 12-month infants 

(bootstrapped).  
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7.3.2 Strategies for modelling WAI data 

The second aim of the study was to investigate various strategies for modelling WAI data. These 

included comparing multivariate and univariate models, data reduction strategies, allowing nonlineari-

ty, using an ordinal (rather than binary) outcome, and including subject demographic information in 

models to assess whether this improved model fit.  

7.3.2.1 Comparing univariate and multivariate modelling approaches 

Multivariate models were shown to consistently outperform univariate, indicating that the extra com-

plexity of having multiple predictors in a model was worthwhile (Chapters 2, 3 and 4). Akaike’s 

information criterion (AIC) was always lower for multivariate models compared to univariate: 474.96 

compared to 491.60 for neonates, 155.03 compared to 168.73 for 6 months, and 353.61 compared to 

433.08 for 12 months. This is important, since previous studies reporting a multivariate advantage have 

had methodological issues, such as likely overfitting, and basing conclusions on improvements in the 

AUC (Keefe et al., 2012; Piskorski et al., 1999; Prieve et al., 2013a). Using the AUC to demonstrate 

multivariate superiority may be misleading, because it does not correct for overfitting, so a more 

complex model (with more predictors) may have higher AUC simply because it is overfitting the data. 

By using AIC to compare models, we showed that multivariate models outperformed univariate, even 

after controlling for model complexity.  

7.3.2.2 Data reduction 

Reducing the number of variables is an important aspect of modelling WAI data that has not previously 

received a lot of attention in the literature. The easiest way to decrease the number of variables for 

modelling is through simple frequency binning (averaging). In the 6-month model we compared 

various frequency resolutions (1, 1/2, 1/3, 1/6, 1/12 and 1/24 octave), and found that 1/2 octave fre-

quency resolution produced the best-fitting model (based on the AIC). We also explored other methods 

of data reduction including predictor selection and PCA. For the neonate model (Chapter 2), we found 

that a priori predictor selection based on previous research yielded a slightly better model than taking 

an iterative approach that used the best univariate frequencies as model variables.  

We also found PCA to be an effective for data reduction technique when developing the 6-month 

model (Chapter 3). PCA converts the original WAI frequency variables into new variables called 

principal components (PCs) that are ordered so that most of the information (variation) in the data is 

contained in the first few PCs (Jolliffe, 2002). All original WAI variables contribute to each PC, but not 

equally, and there are as many PCs as original variables. In a multivariate model, a subset of the PCs 
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can be used as predictors instead of the original variables. This retains most of the information from the 

originals, but fewer variables need to be included in the model, reducing risk of overfitting (Harrell, 

2015). The advantage of using PCA over predictor selection for data reduction is that the model utilizes 

information from the entire WAI response, rather than specific regions only. 

We found that using PCA in conjunction with frequency averaging for the 6-month model resulted 

in PCs that were readily interpretable – it was clear which frequency regions were contributing the 

most to each PC, and these corresponded well with known diagnostically important regions in the 

literature. The PCs were interpretable in this way because we did not scale variables to have a variance 

of 1. Scaling was not necessary because we only used absorbance frequencies as predictors in the 6-

month model, which were already on the same scale. If using absorbance as well as other WAI 

measures (e.g., admittance) as predictors, however, it would be important to scale the WAI results 

before performing PCA. Doing so might reduce interpretability, however, because scaling assumes all 

variables are equally important, so variables (frequencies) that are apparently contributing a lot to a PC 

may not reflect a clinician’s intuition about what the most important variables in the WAI response 

should be. This would not affect the accuracy of the model, only interpretability. A possible solution 

might be to do PCA separately for each WAI measure, and then use a subset of each as predictors in a 

model. For example, if using absorbance and admittance magnitude as predictors, one could do a PCA 

(without scaling) for absorbance (PCAA) and another for admittance magnitude (PCA|Y|). If using the 

first two PCs from each of the PCAs the model would have four predictors: PCA1 + PCA2 + PC|Y|1 + 

PC|Y|2. This approach would eliminate the need for scaling, and the resulting PCs from each WAI 

measure would be readily interpretable.  

7.3.2.3 Allowing nonlinearity 

An assumption of simple regression is that the relationship between predictors and the reference 

standard behaves in a linear fashion over the entire range of predictor values. This is not necessarily the 

case, however, and allowing the relationship to be modelled as nonlinear may result in a better fitting 

model, since truly linear relationships are rare in biological data (Harrell, 2015). Even if nonlinearity 

does not improve model fit, there is no harm in allowing it, since nonlinearity is not enforced, only 

allowed if it is in the data. We found that modelling WAI as nonlinear with regression (restricted cubic) 

splines improved model fit (based on AIC) for the neonate model (Chapter 2) and the 6- to 18-month 

model (Chapter 6), but not the 12-month model (Chapter 4). This may have been due to sample size, as 

the neonate and 6- to 18-month models were developed using larger samples than the 12-month model. 

The neonate model was developed using results from 612 infants, and the 6- to 18-month model on 
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results of 1038 observations from 357 infants. The 12-month model, however, was developed using 

results from 358 observations from 186 infants. The studies with larger samples may have been able to 

make better use of the additional information (i.e., the extra model parameters introduced with nonline-

arity).  

7.3.2.4 Using an ordinal outcome 

This was the first research to use an ordinal outcome to model WAI data (Chapters 4 and 6), rather than 

a binary (pass/fail) reference standard. Using an ordinal outcome to model WAI may be more appropri-

ate, given that otitis media is a disease that occurs on a spectrum, and WAI has been shown to behave 

in an ordinal manner with the degree of severity of disease in children (Beers et al., 2010; Ellison et al., 

2012; Hunter et al., 2008b). Using an ordinal outcome minimizes information loss, and may reduce the 

temptation for researchers to discard mild, or uncertain cases (i.e., not clearly normal or abnormal), 

which has been an issue with previous WAI research (Aithal et al., 2015; Beers et al., 2010; Ellison et 

al., 2012). The ordinal models we developed in Chapters 4 and 6 had powerful diagnostic performance, 

with a bias-corrected c-index of 0.914 and 0.867, respectively. The extra information provided by the 

models may be particularly useful in diagnostic settings. 

7.3.2.5 Using demographic information  

Including demographic variables (such as age) that are associated with the outcome as covariates in the 

model can help improve model fit (Harrell, 2015). In the case of middle ear dysfunction, age is the 

covariate that is most strongly associated with otitis media, since it is a disease of infancy. However, 

we did not find that controlling for demographic variables such as age, gender, ear side or ethnicity to 

improve model fit in our models (neonates, 6 months, 12 months, and 6 to 18 months), consistent with 

previous research (Beers et al., 2010; Shahnaz et al., 2013). This might be because these models were 

developed for specific age groups already. Including age as a covariate might be important, however, if 

developing a model for use in a wider age group, for example, from infancy through childhood, since 

infants will have higher baseline risk than older children.  

7.3.3 Developmental effects on WAI 

The third aim of the study was to investigate developmental effects of WAI through infancy, and 

establish normative data for various age groups. We found large developmental effects on WAI 

through infancy, consistent with previous reports (Chapter 5). The biggest changes occurred between 

birth and 6 months, and there were statistically significant differences between each age group (neo-
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nates, 6, 12, and 18 months) in the region of 3000 to 4000 Hz. For absorbance, we recommend separate 

reference data be used at birth, 6 months, and 12–18 months, and for admittance (magnitude and phase, 

or conductance and susceptance), we advise using separate normative regions for each age group 

(neonates, 6, 12, and 18 months).  

There were also substantial ethnicity effects for certain interactions with age and frequency for all 

WAI measures. For example, for absorbance at 6000 Hz at 12 months, there was over 10% difference 

between Caucasians and non-Caucasians, and also for admittance magnitude at 4000 to 6000 Hz at 18 

months of age. This indicates that having separate ethnicity reference data or diagnostic criteria may be 

potentially worthwhile for certain age groups. However, previous studies in infants and school-aged 

children have not found using ethnic-specific normative data to improve diagnostic performance (Beers 

et al., 2010; Shahnaz et al., 2013), and, as mentioned, in this study including demographic information 

such as age and ethnicity did not improve performance of the models (Chapters 2, 3, 4 and 6). 

7.3.4 Development of a model for a broader age range 

The fourth aim of the research was to develop a predictive WAI model for use in a broader age range 

through infancy (6 to 18 months), controlling for developmental effects. An issue with developing 

predictive WAI models for infants is that the substantial age developmental effects on WAI need to be 

controlled for (Aithal et al., 2014b; Hunter et al., 2010; Hunter et al., 2016; Keefe et al., 1993; Keefe et 

al., 2000; Kei et al., 2013; Sanford et al., 2009; Shahnaz et al., 2014; Werner et al., 2010). We over-

came this problem in Chapters 2, 3, and 4 by creating age-specific models for neonates, 6-, and 12-

month infants, respectively. An alternative approach is to develop models for use over a broader age 

range while controlling for the effect of age on the WAI response. We suggested that this could be 

achieved by either including age as an interaction term with WAI variables (frequencies), or by only 

using developmentally stable regions of the response as predictor variables in a model (Sanford & 

Brockett, 2014). In Chapter 6 (Study 1) we fitted models using both of these strategies, and found that 

for 6- to 18-month infants, using developmentally stable predictors (1000, 1414, 2000, and 5657 Hz) 

for this age group produced the best-fitting model (based on the AIC). Although this strategy resulted 

in the best fitting model in this case, including age as an interaction term may be a better strategy in 

other scenarios. For example, if developing a model for use over a broad age range (e.g., neonate 

through childhood), developmental changes may affect much, if not all of the WAI response. In this 

case, controlling for age with interactions may be a better approach, since there may not be a lot of the 

response that is developmentally stable over such a wide age range. 
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7.3.5 External validation 

The fifth aim of this work was to externally validate the neonate model in a new sample to assess 

generalizability. This was an important part of the research, since no previous WAI models have been 

externally validated in new subjects. Some studies have estimated the degree that the model may be 

overfitting with internal validation, using the opposite ears as a validation sample (Keefe, Gorga, et al., 

2003; Keefe, Zhao, et al., 2003), but assessing model performance in a new sample is advised before 

implementing a model clinically, to give a realistic idea of how well the model is likely to generalize, 

since performance is usually poorer when used on new subjects (Moons et al., 2012a). 

In Chapter 6 (Study 2) we applied the neonatal model developed in Chapter 2 to a new sample of 

124 neonates. The model generalized well both in terms of discrimination and calibration. When 

applied to the new sample, the AUC was 0.837 (95% CI 0.773－0.901), and calibration was excellent, 

with predictions aligning closely to observed frequencies of conductive conditions. Although the AUC 

was lower than the apparent performance of 0.876 at model development (Chapter 2) it was close to the 

bias-corrected (bootstrapped) estimate of 0.845, indicating that bootstrap resampling provided a 

reasonable estimate of future model performance. The fact that the model validated well in a new 

sample indicates that the strategies used to develop the neonate model, including limiting the number of 

predictors, predictor selection based on prior research, and allowing nonlinearity minimized overfitting, 

were effective.  

7.4 Strengths, limitations and directions for future research  

Strengths of this research included the relatively large sample sizes used to develop the models and 

investigate developmental effects on WAI. We employed careful modelling strategies and internal 

validation with the aim of developing models likely to generalize well to new samples, and introduced 

advanced statistical modelling techniques into the WAI literature, such as using regression splines, 

shrinkage, AIC for model selection, and bootstrap resampling for internal validation of model perfor-

mance. We used sophisticated methods to take into consideration correlations in the data, for example, 

using the Huber-White method for robust covariance matrix estimates in Chapters 4 and 6, and multi-

level hierarchical models in Chapter 5. We chose appropriate statistical techniques for analysing age 

and demographic effects on WAI data, such Beta generalized mixed models for absorbance, which is a 

proportion, and analysing admittance in rectangular, rather than polar form, since the polar form is 

circular in nature, therefore not normally distributed.  
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Although we utilized sophisticated statistical and modelling techniques, we sought to develop in-

terpretable, transparent and accessible models. We presented results in a manner that interested 

clinicians should be able to understand, and have provided the equations for all of the models in the 

Appendices (III, V, VI and VII). Implementing the models in an online application 

(https://joshmyers.shinyapps.io/WAIPredictions/), makes the models accessible to clinicians and 

researchers.  

This was the first research to use an ordinal outcome to develop predictive WAI models. We used 

this strategy for the 12-month, and 6- to 18-month models developed in Chapters 4 and 6. This ap-

proach was able to better capture the spectrum of middle ear disease compared to using a binary 

(pass/fail) outcome, and eliminated the problem of how to treat mild cases, as it can be difficult to 

know whether these should be classified as normal or diseased if using a dichotomous outcome (Aithal 

et al., 2015; Beers et al., 2010; Ellison et al., 2012). This difficulty can lead to a temptation to discard 

data that does not neatly fit into one of the assigned categories (normal or diseased), which has been an 

issue with some previous WAI studies in infants and children. Ellison et al. (2012) only included 

normal ears (judged by an otolaryngologist with pneumatic otoscopy) or ears with confirmed middle 

ear effusion on surgery. Ears that were found to be dry on surgery, and abnormal ears not severe 

enough for surgery were not included in the study. Similarly, Beer et al. had three groups, normal, 

negative middle ear pressure, and middle ear effusion, but only calculated AUC using the normal and 

middle ear effusion groups. Aithal et al. used a test battery as the reference standard, but only included 

ears that either passed or failed all tests in the test battery (e.g., both tympanometry and distortion 

product otoacoustic emissions). This exclusion of certain groups of subjects in these studies meant that 

the performance of WAI was assessed on a subset of subjects that had been selected based on the 

results of the reference tests. By removing mild or uncertain diagnoses, the test is only being assessed 

on easy-to-diagnose cases, so test performance measures (e.g., AUC) may be artificially inflated 

(overly optimistic; Bossuyt et al., 2003). From a clinical point of view, it is understandable why these 

cases were excluded in each of these studies, but the resulting selection bias is a problem when attempt-

ing to interpret the performance measures. In all of these studies, the problem could have been 

addressed by using an ordinal reference standard with a third “mild” or “uncertain” group.   

The longitudinal design of the developmental study in Chapter 5 was a strength, as observed de-

velopmental effects were likely due to real changes, rather that differences between subjects. A 

limitation, however, was that no data were collected between birth and 6 months of age, where some of 

the largest developmental effects on WAI occur. Furthermore, no predictive models were developed for 

infants in this age range in this study (1 to 5 months), which is an age group often seen for diagnostic 
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audiological follow up after the newborn hearing screen. Future research developing predictive models 

for use in this age group should be a priority.  

This research was the first to develop a model controlling for age effects over a broader age range 

of infants (Chapter 6, Study 1). The methods investigated, including using interactions with age, and/or 

developmentally stable regions of WAI, could be used to develop other age-independent models (e.g., 

models for use in an even wider range of paediatric subjects). However, although we developed a 

model for use in 6- to 18-month infants, this range is still relatively narrow compared to the age range 

of patients typically seen in a paediatric audiology, or doctor’s clinic. Future research could develop 

models for use over a larger age range of paediatric patients. For example, with a large enough sample, 

a model could potentially be developed that could be used in any paediatric patient (birth to 18 years). 

Such a model may include age as an interaction term with WAI variables and also age as a predictor 

(term) in the model, since infants have higher baseline risk of otitis media. However, neonates may still 

need their own model, since they are so different from other age groups and developmental changes in 

WAI are much more rapid at this age. Whether or not this is the case remains a question for future 

research.  

This study was the first to externally validate a WAI model in a new sample (Chapter 6, Study 2). 

A limitation of the external validation study, however, was that although the model generalized well, 

subjects in the validation sample were of a similar age, and tested in the same environment by the same 

researchers used to develop the model. Future research could validate this model (Section 2.6: Appen-

dix B) in a sample tested in a different environment, updating it as necessary. Further research could 

also externally validate the infant models (the equations in Sections 3.7, 4.6 and 6.6), and studies 

assessing the clinical impact the models would also be valuable. Research into clinical impact is 

important to assess whether implementing a model improves clinical decision making and patient 

outcomes (Kappen et al., 2018). 

A limitation of this research was that data collection was not blinded. When testing a neonate or 

infant, both the reference standard tests and WAI measurements were performed by the same research 

audiologist. Even though interpretation of the reference tests was objective, this may have introduced 

bias. Another limitation was that the reference standard used to develop the infant models was not the 

gold standard for diagnosing middle ear disease in infants (Chapters 3, 4 and 6). Future research using 

reference tests such as otomicroscopy and surgical confirmation of middle ear status could create a 

more stringent reference standard with well-defined pathologies for an ordinal reference standard such 

as Eustachian tube dysfunction, partial, and complete middle ear effusion.  
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Further research is also needed investigating the diagnostic performance of WAI in other paediat-

ric middle ear conditions. This research investigated developing predictive models for otitis media and 

Eustachian tube dysfunction, but there is evidence that WAI is sensitive to a number of other condi-

tions including conductive hearing loss, ossicular chain discontinuity, otosclerosis, perforated eardrum, 

hypermobile tympanic membrane, and superior semicircular canal dehiscence (Feeney, Grant, & 

Marryott, 2003; Feeney, Grant, & Mills, 2009; Keefe et al., 2012; Nakajima et al., 2012; Nakajima, 

Rosowski, Shahnaz, & Voss, 2013; Piskorski et al., 1999; Shahnaz, Longridge, & Bell, 2009; Voss et 

al., 2012). Predictive models could potentially be developed for specific conditions, or multiple condi-

tions in a single model. For example, a model could be developed using a nominal (unordered) 

outcome with multiple levels such as middle ear effusion, Eustachian tube dysfunction, perforated 

eardrum and hypermobile tympanic membrane.  

This work used traditional statistical risk modelling to develop predictive models, but there have 

been recent advances in the field of machine learning and artificial intelligence, in particular deep 

learning (models made up of layers of artificial neural networks), that have shown state-of-the-art 

predictive performance for image and speech recognition problems (Marcus, 2018). A difficulty in 

applying deep learning techniques (and machine learning methods in general) to health and medical 

problems, however, is the large amount of data needed to develop these models. Large WAI studies 

have hundreds, perhaps thousands of subjects, but a deep learning model is ideally fitted using tens of 

thousands of samples (Gulshan et al., 2016). Transfer learning, however, makes it possible to repurpose 

a deep learning model for a problem that may be quite different than the initial task it was designed for. 

In such cases, it is conceivable to fit a model with hundreds, perhaps thousands of observations, rather 

than needing tens of thousands. For example, if we think of predicting WAI results as an image classi-

fication problem, we could use a deep learning model that has been trained for an image classification 

task on millions of images, and repurpose (fine-tune) it using a sample of WAI “images”. This repur-

posing works because the initial layers of a deep learning model are not specific to the dataset used to 

create the model, being for more general tasks, such as identifying edges and contrasts (Yosinski, 

Clune, Bengio, & Lipson, 2014). Figure 7-1 shows how absorbance results might be presented for use 

in an image classification model. In this case the image (pixels) would be the predictor in the model 

rather than absorbance frequencies. Whether such a model would perform better than traditional 

modelling methods remains to be seen.  
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Figure 7-1. Potential way of preparing absorbance results as an image for use in a deep learning model. 
The x-axis is frequency and y-axis absorbance. Absorbance is depicted at 1/2 octave frequency resolution, although 
this need not be the case.  Results have been saved as a square image with axes and white space around the edges 
removed. The black border would be unnecessary.  

7.5 Conclusion 

This work developed predictive models for diagnosing conductive dysfunction in neonates, 6-, and 12-

month infants, investigated developmental effects on WAI, and used this knowledge to create a model 

that controlled for the effect of age for use in 6- to 18-month infants.  

The models developed for specific age groups (neonates, 6, and 12 months) accurately identified 

conductive conditions in infants. Models were carefully fitted and internally validated to increase the 

likelihood that they will generalize to new samples. Multivariate methods consistently outperformed 

univariate, and frequency binning (averaging), PCA, and selecting predictors based on prior research 

all worked well as data reduction techniques. Data mining approaches do have merit, however, and 

may be especially useful for informing subsequent studies. This may be especially important for studies 

of pressurized WAI, where little is known about diagnostically important features of the wideband 

tympanogram. If using PCA for data reduction for multilevel reference standard model (e.g., ordinal or 

multinomial), it would be advisable to limit the range of WAI frequencies used for PCA to those that 

show a separation between the various groups. For example, if using an ordinal model, it would be 

preferable to limit the WAI predictors in the PCA to those that show an ordinal association with the 

response (the reference standard levels; Harrell, 2015).  
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Allowing WAI to have a nonlinear association with the outcome did not always improve model fit, 

but did in two out of three models (Chapters 2 and 6), notably the models with larger sample sizes, 

which may have been able to make better use of the additional information (model parameters). We 

recommend trying this approach in future research, especially if there are enough degrees of freedom, 

since allowing nonlinearity is generally preferable to enforcing linearity (Harrell, 2015).  

This research was the first to utilise an ordinal outcome when modelling WAI data, and we rec-

ommend this approach for future research investigating conditions such as otitis media that have an 

ordinal association with WAI. Having a “mild” or “uncertain” category can avoid the problem of what 

to do with borderline or uncertain cases, and removes the temptation to omit these observations, which 

can introduce selection bias.  

We found statistically significant ear-side and ethnicity effects, but including demographic infor-

mation as predictors did not improve model performance. However, if developing a model for use in a 

larger age range, for example, a model encompassing infancy and childhood, it may be important to 

include age as a demographic predictor, since infants will have higher baseline risk of otitis media (i.e., 

it is more common in infants).  

We investigated developmental effects on the WAI response, and established normative data for 

various infant age groups. We also found statistically significant interactions for certain combinations 

of age, ethnicity and frequency. For example, 12-month infants had over 10% difference between 

Caucasians and non-Caucasians for absorbance at 6000 Hz. However, previous studies in infants and 

school-aged children have not found using ethnic-specific normative data to improve diagnostic 

performance (Beers et al., 2010; Shahnaz et al., 2013), and in this study including demographic infor-

mation such as age and ethnicity as predictors did not improve model performance (Chapters 2, 3, 4, 

and 6). The model controlling for the effect of age (Chapter 6, Study 1) performed very well in terms of 

discrimination (bias-corrected c-index = 0.867) and calibration.  

The neonate model developed in Chapter 2 validated well to a new sample (Chapter 6, Study 2). 

This was an important finding, as it was the first WAI model to be validated in an external sample. The 

developed models may be clinically useful, future research further validating the models and investigat-

ing clinical impact is warranted. A priority for future research should be to develop models for other 

age groups, particularly for infants aged 1 to 5 months. With a large and diverse enough sample could 

potentially develop a model encompassing most of childhood, although it may be advisable to have a 

separate model for neonates and possibly young infants, since there are such strong developmental 

effects for these age groups.  
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In conclusion, the developed models accurately identified conductive conditions in infants. The 

models were carefully fitted and internally validated, to increase the likelihood that they will generalize 

to new samples. The neonate model did effectively generalize to a new sample, which indicates that the 

strategies employed to minimize overfitting were effective. There were large developmental effects on 

WAI measurements, and this knowledge was used to develop a model that controlled for maturational 

effects through infancy. The models have potential applications in both screening and diagnostic 

settings. In a screening context, predictions could be used to set a referral threshold sensitive to the 

costs associated with true, and false positive referrals, that is intuitive and easy to apply. In a diagnostic 

setting, predicted probabilities could be used in conjunction with graphical depictions of WAI for 

individualized diagnoses of conductive dysfunction. Further research validating, updating, and as-

sessing the clinical impact of the models is warranted.  
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