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Abstract 

 

In relation to human health and well-being, strategies that positively influence the composition and 

activity of the microbiota are keenly sought, and diet is widely accepted as being a major factor for 

altering the gastrointestinal microbiota. The overarching aim of my Ph.D. studies was to characterize 

how diets with varying profiles of carbohydrate content and intake affect the gut and the oral 

microbiota of healthy individuals. Two key groups of subjects were used in separate studies: elite 

male athletes (endurance walkers) and healthy conventional subjects. During my studies, advances in 

DNA sequencing (and related bioinformatics methods) have enabled transition from the taxonomic 

profiling of microbial communities, to the production of data representing their collective genetic 

potential (i.e. the metagenome). As such, I have used both approaches here, and provide new insights 

into the nature of the diet x microbiota interactions in healthy individuals.  

Chapter One reviews literature relating to diet x microbiota interactions with specific reference to 

how some diets (such as low FODMAP) affect the gut microbiota. Chapter Two provides the 

methodological details shared across the other research Chapters, and that samples either stored at 

sub-optimal temperatures, or that undergo repeated freeze-thaw cycles, are depleted of bacteria with 

a Gram-negative cell wall ultrastructure (e.g. Bacteroidetes, Proteobacteria). These results 

emphasized the importance of sample preservation and storage on these types of data generated from 

stool samples. 

Chapters Three and Four presents my results and conclusions about how the dietary pattern of elite 

race walkers during their period of intensified training affected their oral and stool microbiota, 

respectively. This research was undertaken in complement to the Supernova 1 study coordinated by 

Australian Institute of Sports. Stool and saliva samples were collected at the beginning and end of a 

three-week dietary intervention period, from elite male endurance race walkers choosing to consume 

either a High Carbohydrate (HCHO), High Carbohydrate-periodised (PCHO) or a Low Carbohydrate 

High Fat (LCHF) diet, and the microbial communities were examined using 16S rRNA amplicon 

sequencing. The results in Chapter Three show that the LCHF diet results in substantive changes in 
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the oral microbiota, and in particular, reductions in the relative abundance of bacterial taxa known to 

be key nitrate-nitrite reducers (Haemophilus, Neisseria, and Prevotella) whereas increased the 

relative abundance of Streptococcus not known to be associated with nitrate reduction in the oral 

cavity. The Results in Chapter Four showed that the athletes could be stratified into either a 

Bacteroides-dominant or Prevotella-dominant “enterotypes” and while the diets consumed during 

intensified training did not disrupt these enterotypes, the LCHF diet significantly increased the 

relative abundance of Bacteroides and Dorea spp., whereas the relative abundance of 

Faecalibacterium spp. were reduced in athletes consuming the LCHF diet. Furthermore, the relative 

abundance of Bacteroides and Dorea following consumption of LCHF diet were found to be 

significantly negatively associated with fat oxidation and economy measures, respectively. 

Collectively, these results suggest that a ketogenic LCHF diet invokes profound changes in the oral 

and stool microbiota of athletes and can be associated with athlete performance measures during 

intensified training and simulating race conditions.  

Chapter Five presents my findings of how a diet prepared from foods to provide either a low (LP 1-3 

g/day oligosaccharides; 0.50 g/day polyols) or moderate (MP 6-8 g/day oligosaccharides; 3.66 g/day 

polyols) daily intake of prebiotic carbohydrates affected the gut microbiota of healthy adults. The 

parent study was a single-blinded, randomised crossover study, managed by our collaborators with 

the Alfred Hospital (Monash University) Translational Nutrition program. Here, I first produced both 

16S rRNA and ITS-2 gene amplicon profiles to characterise the prokaryote and fungal communities, 

respectively. These analyses showed that the prokaryote richness is reduced and fungal richness is 

increased by the MP diet as compared to the LP diet. The reduction in prokaryote richness was 

reflected in a significant increase in the relative abundance of Bifidobacterium spp. with the MP diet. 

Saccharomyces-related fungal lineages were the most abundant across the cohort with both diets, I 

did find different prokaryote-fungal relationships with the LP and MP diets. I then used these same 

DNA samples for shotgun metagenome sequencing (MGS) analyses that further confirmed an 

expansion of Bifidobacterial spp. and revealed significant increase in gene counts for the metabolism 

of sorbitol and mannitol and related phosphotransferase transport systems (PTS) pathways in 

response to the MP diet suggesting a bifidogenic effect of moderate amounts of sorbitol and mannitol.  
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Chapter Six provides an integrated assessment and interpretation of the findings and potential impacts 

arising from my Ph.D. research. I believe my findings are novel and provide a better understanding 

of the diet x microbiota interactions in healthy individuals. I discuss these new insights with respect 

to what constitutes a healthy microbiota, and how a person’s diet can be rationally managed and 

personalised to sustain healthy gut function, nutrition, and well-being.  
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Chapter 1 General introduction and literature review 

 

Diet and the Microbiome 

1.1 An introduction to the gut microbiome 

 There is a vast diversity of microbes residing in the gastrointestinal tract (GI) of humans (Figure 1). 

The term “gut microbiome” in general refers to the collective genome of the microbial communities 

inhabiting the terminal or the large bowel region of the gastrointestinal tract (1). It has been long 

recognised that the gut microbiota maintains a symbiotic relationship with the host and imparts 

structural, nutritional and protective functions to the host (2). Fermentation of the carbohydrates by 

the colonic gut microbiota such as Bacteroides, Roseburia, Bifidobacterium and Fecalibacterium 

results in the synthesis of short chain fatty acids such as acetate, propionate and butyrate which further 

imparts energy and potential health benefits to the host (3). Even though it is now known about the 

potential health benefits of gut microbiota to the host, the ability to fully realize the importance of 

individual members was limited due to the conventional culture-based approaches. Isolation using 

the culture based approaches was an ardous task as it was partial, and only able to isolate and 

characterize 15-20% of the microbes thus making it more time consuming and difficult (2) to fully 

ascertain the roles specific microbes play in the above-mentioned ways.  
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Figure 1.1 Vast diversity of microbes residing in the gastrointestinal tract of humans. Reproduced 

from Clarke et al. (4) :  

 

There are several extant definitions of the term “microbiome,” a field of research that has become 

principally associated with the technological advances in DNA/RNA sequencing and computational 

biology. As such, the microbiome is still commonly defined as the collective genomic content of all 

microbes recovered from a habitat or ecosystem (eg: saliva and stool samples, skin swabs) (5). 

However, although such a definition captures the functional potential inherent to the microbiota 

(micro-), there is a need to place this knowledge in context with the interactions and processes 

contingent on the physicochemical attributes of their surrounding environment (-biome). This more 

holistic definition of the microbiome is applied throughout this thesis, in recognition of diet as a major 

influence on microbiome dynamics. By doing so, the concept of nutritional ecology is introduced: 

how the nutrient and its variations across temporal and spatial scales affect the gut and oral 

microbiota. I contend that nutritional ecology will provide the mechanistic bases for understanding 
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“diet and the microbiome,” which will translate into improved diagnoses and treatments for functional 

and organic diseases. 

1.2 General Concepts and Approaches of Microbiome Studies 

Morgan and Huttenhower present a well-structured and illustrated general overview of the techniques 

and approaches underpinning microbiome studies (6) (See Figure 1.2). Over the last two decades, 

microbiome studies have emphasised the use of polymerase chain reaction (PCR) techniques targeting 

regions within the gene encoding 16S ribosomal RNA (16S rRNA) in prokaryotes (i.e., bacteria 

principally, and archaea). When combined with the rapid advances in DNA sequencing technologies 

and a combination of ecologic, biostatistical, and computational methods, these 16S rRNA profiling 

methods have resulted in a taxonomy-based assessment of gut microbial communities’ resident in 

different regions of the gastrointestinal tract. Importantly, these approaches have afforded the 

differentiation of the microbiota to reveal specific microbes and microbial consortia indicative of 

alterations to gut homeostasis, which are generically referred to as “dysbiosis” (7,8). During the same 

period the National Institutes of Health Human Microbiome Project (9) has augmented these studies 

by producing the “reference genomes” of individual microbial species, which has supported the 

inference of the functional attributes inherent to the 16S rRNA profiles by such methods as PICRUSt 

(10). However, and because of the continued advances in sequencing technologies, the time and cost 

constraints to “shotgun metagenome sequencing” are being relaxed, which affords a scale and depth 

of sequence coverage that provides an actual (rather than inferred) representation of the functional 

attributes inherent to the microbiota (6).  
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Figure 1.2 Bioinformatics methods used for analyzing the microbiota  by 16S rRNA gene profiling 

or shotgun metagenomics approach. Reproduced from Morgan and Huttenhower (6). 

 

These studies have also substantiated that the microbial communities of the gut are readily 

differentiated according to their microbial (and gene) density, diversity, and distribution; as affected 

by anatomic structure, host secretions, and digesta residence times at different sites. Although the 
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esophageal, stomach, and small intestinal microbiota have now been characterised (1), most studies 

that have advanced the mechanistic understanding of diet-microbiome interactions have been 

undertaken using stool/fecal samples and/or tissue samples collected from the large bowel. As such, 

the term “gut microbiome” has come to define this (terminal) region of the gastrointestinal tract. 

During the last 5 years in particular, shotgun metagenome sequencing of stool microbiota and the 

associated metagenome-wide association studies has revealed that the form and function of the stool 

microbiota is altered in patient cohorts with type-2 diabetes, cirrhosis, and colorectal cancer (11–14). 

These differences have not only provided insights of how microbial metabolism contributes to 

disease, but the identification of candidate gene and organismal biomarkers of health and disease 

(11–14). Critically, these methods have also shown the gut microbiota of humans (and other animals) 

is rapidly altered by changes in habitual or available diet, leading to the perception that diet may exert 

a stronger selective pressure on the gut microbiota than host genetics (15,16). A particular focus in 

the last 10 years has related to obesity research, with Turnbaugh and colleagues (17) reporting an 

enrichment of microbial genes involved in carbohydrate, lipid, and amino acid metabolism in the 

obese adult gut. More recent studies have revealed that non-obese and obese individuals are 

characterised by variations in gene richness: subjects with a low gene count are characterised by 

increased adiposity, insulin resistance, and inflammation (18,19). The difference in gene richness has 

been suggested to be predictive of previous weight gain and in mice, could be partially reversed 

following a dietary intervention for weight loss (20). The links between diet and microbiome have 

also been further substantiated via fecal transplant studies in animal models. For instance, Turnbaugh 

and colleagues were among the first to show how the transfer of an obese (or lean) phenotype to a 

naive host (i.e., germ-free mice) can be effectively recapitulated using diet to exert the necessary 

selective pressure to sustain the microbiome (21). This type of an approach is being increasingly used 

to establish how either specific microbes or microbial consortia contribute to the onset of non-

communicable metabolic and immune-mediated diseases (22,23). Additionally, the benefits of 

existing and candidate next-generation probiotic strains, in terms of their capacity to attenuate 

inflammation and/or positively affect barrier function and host metabolism (eg, Bifidobacterium spp, 

Faecalibacterium prausnitzii and Akkermansia muciniphila), are being examined by their 
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introduction to either germ-free or conventionally reared mice (24–26). Table 1.1 provides a summary 

of some recent advances in the understanding of how diet and the gut bacteria, from ecologic, 

metabolic and immunomodulatory contexts, can affect gut function and health. In addition to the other 

contributions provided in this Chapter, there are numerous books (27) and reviews of the topic, 

especially as it pertains to diet-microbiome interactions during pregnancy and early life (28,29), 

obesity and metabolic diseases (30,31) and immune development and immune- mediated diseases 

(7,8,32–36). Indeed, these interrelationships are now being defined from conception to grave: from 

their influences on fetal and infant developmental biology and homeostatic processes, to triggering a 

plethora of acute and chronic (extra) intestinal diseases, through to defining rules for microbiome 

restoration to better treat diseases and prevent relapse. 
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Table 1.1 provides recent examples of diet microbiome interactions 

 

Dietary Metabolites 

 

Metabolic and/or Immunomodulatory Effects 

 

Microbiota Effect 

SCFA Metabolic effects via specific GPCR receptors  

Effects of butyrate on Treg cells 

Variations in proportions and total SCFA produced (42)  

Loss of butyrate producing commensals with inflammation 

(eg, F. prausntizii) (43) 

Trimethylamines Risk factor for cardiovascular and renal disease Microbial by-products of choline and creatinine (44) 

Branched-chain amino acids Promotes insulin resistance and diabetes Enrichment of these pathways in microbiome of T2D (11) 

Primary bile acid metabolites Variations in host signaling via NR and GPCR Gram-positive and sulfidogenic bacteria, Bacteroides (45) 

Riboflavin precursors Activation of MAIT cells Produced mainly by Gram-negative enteric bacteria (46) 

Anti-inflammatory peptides Anti-inflammatory effects Loss of F. prausnitzii associated with inflammation (47) 

Polyphenols Improve barrier function and proglucagon levels Stimulation of A. muciniphila populations (48) 

Diet Ecological Effect Microbiota Effect 

Breastmilk Provides human milk oligosaccharides Promotes growth of Bifidobacteria and Lactobacillus (32) 

Low FODMAP diet Mitigates IBS symptoms Alterations in bacterial taxa (37) 

Exclusive enteral nutrition Induces remission and promotes healing in CD Alters structure-function activity of the microbiota (33,38) 

Grains, resistant starches, “fibers” Promotes SCFA production and reduced pH Suppresses growth of Gram-negative Enterobacteria 

Anti-inflammatory effects Promotes growth of acetate and butyrate producers  

Stimulates Bifidobacteria and F. prausnitzii (39–41) 
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1.3 Fungi and the gut – the mycobiome in health and disease 

In addition to Bacteria and Archaea, the fungi represent another key component of the gut microbiota.  

A thorough and excellent review about the gut mycobiota, insights about analysis, environmental 

interactions and their role in gastrointestinal diseases was recently published by Richard and Sokol 

(49). It is possible to target the fungal communities using culture-based or metabarcoding sequencing 

approaches targeting the Internal Transcribed Spacer 1(ITS1) or ITS2 sequences between the fungal 

ribosomal subunits. However, the low abundance of fungi in comparison to the bacterial fraction of 

the community have provided some constraints to the use of shotgun metagenomics sequencing 

(MGS), with deep sequencing depth required to produce a detectable genomic signal; and suggests 

that fungi might constitute ~0.1% of the gut microbiome (50). However, fungal cells are ~100 times 

larger in volume than most bacteria, and thereby constituting a larger biomass on a proportional basis 

(49). Cross-sectional studies have recently provided evidence of there being differences in the gut 

mycobiome in health and disease. Fungi are also well known for their secretion of a diverse variety 

of enzymes and other metabolites that can affect the host response and gut homeostasis, even in small 

concentrations. For instance, Candida albicans and Saccharomyces boulardii have been shown to 

have a pro and anti-inflammatory effect, respectively, using in vitro cultures and a mouse model of 

colitis (51). Mycobiome alpha diversity appears to be reduced in IBS patients compared to healthy 

controls (52) and Sokol et al. (53) reported that there are reductions in the abundance of the phylum 

Ascomycota and an increase in the phylum Basidiomycota in IBD (53). Studies on both fecal and 

mucosal tissue samples have reported an increase in Candida spp. and a reduction in Saccharomyces 

cerevisiae in IBD patients compared to healthy subjects (53–56). Decreased stool mycobiota diversity 

has been reported for patients with polyps, early stage tumours, and colorectal cancer, with an increase 

in the Ascomycota/Basidiomycota ratio and the relative abundances of both Trichosporon and 

Malassezia (57). Compared to non-involved tissue, fungal diversity is reduced and with the phyla 

Glomeromycota and Chytridiomycota detectable in colorectal adenomas, with these profiles also 

associated with the stage of the carcinoma development (58). Taken together these findings suggest 

that like bacteria, the mycobiome dysbiosis is evident in stool and mucosal tissue samples from 



  

10 

 

patients with digestive diseases or disorders, with a reduction in alpha diversity as well as taxonomic 

variations apparent in health and disease.      

While these microbes are now being considered as a key contributor to gut function and health, there 

are still relatively few published studies in terms of how dietary patterns affect the mycobiome. The 

current understanding of the role of diet on the gut mycobiome outlined by Richard et al. (59) is 

illustrated in Figure 1.3. Mice that are fed high-fat diets possess different fungal and bacterial 

communities than the mice on standard low fat chow diet (60) predominantly Candida when fed high-

fat diets and Fusarium and Alternaria with standard chow. The relative abundances of Alternaria, 

Saccharomyces, Septoriella and Tilletiopsis spp. were also reduced in animals fed the high fat diet. 

In humans, a study of 98 healthy adult subjects by Hoffmann et al. (61) showed the relative abundance 

of Candida in stool samples was positively corrrelated with the consumption of carbohydrate-rich 

diets, and negatively correlated with the consumption of a diet with a greater content of protein and 

fat. Another study of 10 healthy subjects, by David et al. (16) also showed that the relative abundance 

of Candida and Penicillium was affected by the subject’s dietary preferences for plant-based or 

animal-based foods, respectively. Furthermore, the subjects who consumed a diet with relatively large 

amounts of animal-based foods were also found to have greater amounts of fungi in their stool 

compared to those who consumed plant-based diets. In contrast, Fusarium was reported to be the 

most abundant genus in stool samples from healthy subjects consuming a strict vegetarian diet, 

followed by Malassezia, Penicillium, Aspergillus and Candida (62).  
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Figure 1.3 Healthy mycobiota and its evolution with environmental factor- diet. Reprinted by 

permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nat Rev 

Gastroenterol Hepatol, The gut mycobiota: insights into analysis, environmental interactions and role 

in gastrointestinal diseases, Mathias L. Richard et al. (59), Springer Nature, 2019.  

 

In summary, the available published data suggests that the gut mycobiota is dynamic and responsive 

to alterations in dietary pattern and/or gut homeostasis. However, more in-depth research needs to be 

done in order to decipher the role of the predominant fungal taxa in health and disease, and how diet 

might be used to better manage this important component of the gut microbiota. 

1.4 Athletes and gut health  

We have learned much about how changes in the microbiota at different body sites begins at 

conception and extends throughout our entire lifespan, and how the microbiome contributes to the 

onset and potential treatment of non-communicable diseases. Importantly these studies have also 

revealed that our so-called “commensal” microbes, many of which remain elusive to culture, 

contribute a myriad of previously underappreciated goods and services, and often function as a 

community to realize changes in our health and well-being. The overwhelming amount of this 
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knowledge has been produced from human subjects with an underlying health condition or drawn 

from the general population. There are scant reports detailing the microbiomes of elite athletes and 

how their dietary choice and lifestyle might impact on their microbiomes. However, given the 

precedents now established from studies of the general population, it is entirely plausible to expect 

the microbiomes of elite athletes to directly or indirectly affect their health status, resilience to 

infection and allergy, and performance. Clarke et al. (63) reported that the gut microbiome of 

professional rugby players had higher alpha diversity as compared to both the low BMI and high BMI 

control groups. Additionally, the rugby players compared to the healthy controls had higher relative 

abundance of Akkermansia muciniphila which has been linked with improved metabolic health in 

both mice and recently in overweight/obese human subjects (63–65). Further shotgun metagenomic 

analysis revealed that the rugby athletes had higher abundance of amino acid and antibiotic 

biosynthesis and carbohydrate metabolism pathways as well as higher abundance of fecal SCFA’s 

than the control groups (66). Recent studies have also reported that an individual’s microbiome can 

change depending on the amount of exercise they do. A study reported active women who performed 

at least 3 h of exercise per week to have greater abundances of Faecalibacterium 

prausnitzii, Roseburia hominis, and Akkermansia muciniphila as compared to the sedentary controls 

(67). Peterson et al. (68) revealed the presence of 3 distinct clusters or “enterotypes” characterised by 

either a high Prevotella, high Bacteroides or a mix of several genera, in the gut microbiome of 

professional cyclists. The study also revealed increased abundance of Archaea Methanobrevibacter 

smithii in a number of professional cyclists when compared to the amateur cyclists (68).  In a recent 

study, members of the genus Veillonella have been associated with exercise performance in marathon 

runners (69). Veillonella was found to increase in marathon runners postmarathon and V. atypica 

isolated from the stool samples of these runners increased the exhaustive treadmill run time when 

inoculated into mice. The study also reported that the lactate or lactic acid produced during exercise 

is efficiently converted into propionate by the members of genus Veillonella (69).  In another study, 

32 sedentary adults including both lean and obese, participated in a 6-wk supervised endurance 

training program (30- to 60-min duration, 3x per week) with stringent dietary controls (70). Exercise 

increased Faecalibacterium in the lean subjects but reduced its abundance in the obese 
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subjects; unlike Bacteroides whose abundance was decreased in the lean subjects and increased in 

the obese subjects. Six weeks of endurance exercise also increased the abundance of butyrate-

producing taxa and fecal acetate and butyrate concentrations only in lean subjects. Interestingly, the 

shifts in the bacterial taxa and SCFAs levels were subsequently decreased during the 6-wk sedentary 

washout period, suggesting that the effects of exercise on the microbiota were both transient and 

reversible (70).  Taken together, all these findings suggest that the gut microbiome of athletes are 

different from those of mainstream healthy subjects, and diet, along with exercise, might be a 

principal driver behind these differences.  

1.5 Oral microbiome 

The oral microbiome can be defined as the collective genomes of microorganisms inhabiting the oral 

cavity (71,72). The oral cavity is a densely populated site of the human body comprising of more than 

700 bacterial species (72). It has been well characterised in relation to infectious and periodontal 

diseases and dental caries as well as its association with systemic diseases such as diabetes mellitus 

and cardiovascular disease (73). However, the effects of diets on the oral microbiome including both 

the mainstream healthy subjects as well as on elite athletes are not well defined. In relation to this 

recent studies have shown symbiotic associations between oral microbiota, host health and the nitrate-

nitrite-nitric oxide (NO) pathway contributing to the NO homeostasis (74,75). Studies in healthy 

human subjects have also shown the role of oral nitrate reducing bacteria in controlling the blood 

pressure (76). In another study, the supplementation of an antiseptic mouthwash was shown to reduce 

the abundance of nitrate reducing oral bacteria, reduction in the levels of circulating nitrite and the 

loss of gastroprotective effect against an ulcerogenic compound (77). Dietary nitrate supplementation 

from beetroot juice has been shown to decrease the relative abundances of bacterial taxa Veillonella 

and Prevotella whereas increase the relative abundances of Neisseria and Rothia in both young and 

old human subjects (78). Nitrate supplementation resulted in elevated plasma nitrite levels and 

decreased systemic blood pressure in old human subjects suggesting the association of dietary nitrate, 

oral bacteria and vascular health (78). Taken together, all these findings suggest the potential of the 

oral microbiome on host health and justify the need to investigate diet x oral microbiome interactions 

in humans.  
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1.6 The Conundrum of Diet, Microbiome and Irritable Bowel Syndrome 

Thorough and excellent reviews of the diet microbiome interactions affecting IBS treatment and 

symptom control have been published by Rajilić-Stovanović and colleagues (79) and Staudacher and 

Whelan (37). Samples from IBS subjects have been used and described in Chapter 2 of this thesis. In 

summary, there have been much fewer studies of diagnosed patients with IBS compared with patients 

with IBD, and most of these published studies have used 16S rRNA gene profiling studies as part of 

cross-sectional and observational studies. These studies have also principally used stool samples, 

often from cohorts representing more than one of the major subtypes of IBS: postinfectious IBS, 

constipation (IBS-C), diarrhea (IBS-D), and mixed. The findings of these profiling studies are best 

described as variable, with some genera assigned to the Firmicutes phylum, such as Dorea, 

Roseburia, Ruminococcus and Blautia spp.; along with members of the Gram-negative Proteobacteria 

being increased compared with healthy control subjects. Conversely, “good” bacteria, such as 

Bifidobacterium, Collinsella and Faecalibacterium spp, are often observed to be reduced in patients 

with IBS. Other bacterial taxa show mixed responses, either increased (or reduced) according to the 

IBS-C or IBS-D subtypes. Remarkable in  this regard are the increase in methane-producing 

archaebacteria reported in patients with IBS-C, and the reductions in bacteria affiliated with the 

Bacteroidetes phylum in IBS subtypes other than IBS-D, where these groups have been reported to 

increase (79). These variations are likely to be a consequence of how variations in gut transit time 

impose different selective pressures on the gut microbiota. For instance, bacteria with more rapid 

rates of growth are likely to be favored by the fast transit times associated with IBS-D, whereas 

microbes with slow growth rates and/or nutrient requirements including hydrogen and more reduced 

fermentation end-products (e.g., formate, short chain alcohols and methylated amines) predominate 

in microbiomes with longer transit times (IBS-C). 

The reviews noted previously also highlight the conundrum associated with the use of either 

probiotics or exclusion/reduction diets for treatment of IBS, because these interventions can result in 

somewhat contradictory effects on the gut microbiota. For instance, very low carbohydrate diets have 

been shown to improve the symptoms and quality of life in patients with IBS-D (80), and a low 

FODMAP diet, compared with habitual diets in either the United Kingdom or Australia, has been 
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shown via randomised control and a randomised and blinded crossover trial, respectively, to be 

effective in controlling the symptoms of IBS (81,82). Moreover, a study of patients with IBS who 

received either “standard” or “low FODMAP” diet advice concluded that patients who received the 

low FODMAP advice reported improvement in their IBS- associated symptoms, such as bloating and 

flatulence, than the patients who received standard dietary advice (83). Importantly, the studies by 

Halmos and colleagues (84) also suggest that although diets low in FODMAPs reduce the symptoms 

of patients diagnosed with IBS compared with when they consume a standard diet, no changes in the 

symptoms scores are observed in healthy controls subjects consuming either type of diet. In relative 

terms, there are scant reports of the microbiome changes associated with these diets, especially in 

terms of using the contemporary sequencing technologies and approaches outlined previously. 

However, the quantification of key bacterial groups by species-specific polymerase chain reaction 

has been informative. In that context, Staudacher and colleagues (82) first reported a reduction in 

Bifidobacterium spp. (and IBS symptoms) in British subjects as a consequence of their intake of a 

low FODMAP diet, which seems contradictory to at least some of the findings linking Bifidogenic 

effects and IBS symptom improvement with probiotic use in IBS sufferers (see Staudacher and 

Whelan (37) for a detailed review). Halmos and colleagues (84) have since compared specific 

populations of bacteria in stool samples preserved from their previous study, and the low FODMAP 

diet was linked with a reduction in the absolute abundance of total bacteria and specific taxa across 

healthy and IBS cohorts (81). These differences also translated into statistically significant reductions 

in the relative abundances of a major subdivision of the Gram-positive Firmicutes (Cluster XIVa) and 

A. muciniphila, widely considered to be a beneficial mucin-associated gut bacterium. Only one 

bacterium measured (Ruminococcus torques) showed a marginal increase in total abundance and a 

significant increase in relative abundance in response to the period of consuming a low FODMAP 

diet. Intriguingly, R torques is also known  to be mucin-associated, and other bacteria taxonomically 

affiliated with this bacterium have been reported to be positively associated with IBS symptom 

severity, and capable of mixed acid fermentation and gas production from substrates, such as 

FODMAPs (85,86). Collectively, these findings demonstrate that much still needs to be defined in 

relation to the diet x microbiome interactions for IBS symptom control and patient quality of life. In 
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that context, Halmos and colleagues (84) recommend that until such knowledge is available, caution 

should be applied with long-term adherence to a low FODMAP diet, even in patients diagnosed with 

IBS, and its use by asymptomatic healthy persons should be avoided.  

1.7 Dietary carbohydrate microbiota interactions and microbiota accessible carbohydrates 

(MACs): Food for the microbiota 

 

The part of the diet reaching the large intestine is largely composed of undigestible complex 

polysaccharides that gets fermented by the colonic microbiota. Fiber could broadly be divided into 

two types: soluble (example in oatmeal, nuts, apples, lentils, peas etc.) and insoluble (example in 

brown rice, whole wheat bread, whole grains). Prebiotic fibers such as inulin, FOS, GOS are examples 

of soluble fibers that have been reported to stimulate the growth of beneficial gut bacteria and promote 

host health in humans (87–90). In relation to this, the term microbiota accessible carbohydrates was 

coined which refer to complex carbohydrates or dietary fibres that cannot be digested by the host but 

are metabolised and fermented by the gut microbiota (91). In other words, MACs are indigestible 

short chain carbohydrates and fermentable fibres. The recommended daily intake of dietary fibre is 

30 g, however the Western diet provides a daily intake of only 15 g of dietary fibres (92). 

Supplementation of a low MAC diet for 7 weeks in mice have been shown to significantly reduce gut 

diversity. Low MAC diet feeding over three generations was shown to cause irreversible loss of gut 

members Bacteroidales and the loss of the carbohydrate degrading enzymes glycoside hydrolases 

(93).  Additionally, fiber deprivation or low dietary MACs have been shown to reduce the gut 

epithelial integrity and an enhanced pathogenic susceptibility in gnotobiotic mouse model (94). A 

study by Filippo et al. (39) showed that the gut microbiome of children from an African village-

Burkina Faso, consuming a diet high in fiber content was significantly different from the European 

children consuming a Western diet. The BF children were found to have significantly higher 

abundance of Bacteroidetes and reduced abundance of Firmicutes with the presence of genera 

Prevotella and Xylanibacter- bacterial genera having genes for cellulose and xylan degradation. In 

addition, increased SCFA levels and decreased abundance of pathogenic microbes 

Enterobacteriaceae were found in BF compared to the European children. Resistant starch is a type 
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of fermentable fiber where “resistant” means its ability to resist digestion (95). Multiple studies have 

shown the beneficial effects of resistant starches on the colonic function and host health (96–98). 

Collectively, all these studies suggest that supplementation of diet with complex fermentable 

carbohydrates stimulates the growth of beneficial gut microbes such as Bifidobacterium, butyrate 

producing bacteria and Lactobacillus and enhanced SCFA production. Dietary fibers and bacterial 

metabolites could also affect the gut and host health by modulating inflammation. The advancements 

in high throughput omics approaches have now enabled us to have a better understanding of the 

interactions between dietary carbohydrates, gut microbiota and the host.  

1.8 Summary and research goals 

Diet is now recognised to have a significant impact on the structure and function of the gastrointestinal 

microbiota. Knowledge also needs to extend beyond the bacterial world, to less common taxa such as 

archaea and fungi. There is a growing need to bring (meta)genomes to life and illuminate the 

functional and ecologic contributions from all forms of microbial dark matter to gut function and 

health. Although much remains to be discovered, the development of therapeutic dietary interventions 

that support the rational modulation of the gut microbiota is now a much more realistic and attractive 

strategy. With this in mind, the overarching aim of my Ph.D. was to investigate how diets with varying 

carbohydrate content can affect the oral and stool microbiota of healthy individuals. I have used two 

key groups of subjects in two separate nutritional trials: (1) elite endurance race walkers and (2) 

healthy conventional subjects. My Ph.D. project is a combination of microbiology, nutritional 

sciences and metagenomics coupled with high throughput sequencing technologies and 

computational biology approaches to examine and obtain a better understanding of the taxonomic 

profiles of microbial communities of gastrointestinal tract in addition to understanding their 

functional potential in response to the carbohydrate-based dietary interventions.  

  



  

18 

 

While more specific aims of my project included: 

1.) To investigate the effects of three-week dietary intervention with either a High Carbohydrate 

(HCHO), Periodised Carbohydrate (PCHO) or a Low Carbohydrate High Fat (LCHF) during 

intensified training on the oral microbiota of elite race walkers using 16S rRNA amplicon 

sequencing.  

 

2.) To investigate the effects of the above-mentioned dietary interventions during intensified training 

on the stool microbiota of elite race walkers using 16S rRNA amplicon sequencing. 

 

3.) To examine the effect of two diets; differing in their quantity of natural prebiotic carbohydrates 

(Low Prebiotic; LP and Moderate Prebiotic; MP) on the gut microbiome of healthy individuals to 

better understand the fibre-gut relationship using both amplicon-based (16S rRNA, ITS-2) and 

whole genome shotgun sequencing.  
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Figure 1.4 An overview of my Ph.D. research project aims and the approaches used to address these 

aims.  

 

I believe my findings will not only provide a stronger understanding of diet-microbiota interactions 

and critical new insights of what constitutes a healthy microbiota, but also provides insights about 

how a person’s diet can be rationally managed and personalised to sustain a healthy gut.   
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1.9 Published review article from Chapter 1 

          PubMed link of the published article: https://www.ncbi.nlm.nih.gov/pubmed/28164852 

 

 

 

 

 

                

  

https://www.ncbi.nlm.nih.gov/pubmed/28164852


  

21 

 

 

 

 

 

 

Chapter 2 

 

  



  

22 

 

Chapter 2 Research Design and Methodology 

 

2.1 Introduction 

The results and findings presented in Chapters 3-5 are derived from two separate nutritional trials, 

which are briefly described below. This Chapter also provides a description of the DNA extraction, 

PCR amplification and library construction, as well as the bioinformatics and statistical methods 

shared by each of these Chapters. Following the description of these methods, I present my findings 

using these methods with a collection of archived stool samples from our collaborators at Monash 

University. Here, I show how the long-term storage of the stool samples impacted on the results 

produced from the extracted DNA by 16S rRNA amplicon sequencing. In brief, storage at -20ºC 

and/or frequent freeze-thaw cycles resulted in substantive lysis of Gram-negative bacteria and 

produced a biased towards the Firmicutes bacteria.        

2.2 Supernova 1 study (Chapters 3 and 4)  

The Supernova 1 study was led by Professor Louise Burke, Australian Institute of Sport (AIS) and 

Australian Catholic University and undertaken in collaboration with Bond University scientists. The 

study was designed to examine how the diet consumed by elite endurance walkers during a period of 

intensive training affected athlete exercise economy and performance, and the parent publication was 

published in Journal of Physiology in 2017 (99). My contribution to this study was to separately 

characterise how these diets affected the oral (Chapter 3) and stool (Chapter 4) microbiomes of the 

athletes, using samples provided by each athlete at entry and after the period of dietary change. These 

samples were collected in OMNIgene preservative kits for stool and saliva samples and were shipped 

in dry ice and stored at -80ºC until processed for analysis. The Supernova 1 study was approved by 

the Ethics Committee of the Australian Institute of Sport (AIS, no. 20150802) and has been registered 

as a clinical trial, assigned the number ACTRN12618001529235 by the Australian New Zealand 

Clinical Trials Registry (ANZCTR). The DNA sequence data generation and analyses were 

performed under UQ-HREC 2015001965. 
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2.3 Using diet rich in dietary fibre to improve bowel habit and sense of well-being (Chapter 

5) 

This study was led by Dr Jane Muir and colleagues at the Translational Nutrition Science Group, 

Department of Gastroenterology, Alfred Hospital and the Monash University, Australia. The study 

has been conducted under ethics approvals MUHREC CF14/2904, 2014001593 and the microbiota 

analyses presented in Chapter 5 performed as part of UQHREC 2015000317. Subject recruitment and 

randomisation, diet preparations, and all clinical measures were conducted via the Alfred Hospital. 

The trial was conducted in two stages, each stage based on the consecutive recruitment of 9 healthy 

adults, and samples were provided in 2017 and 2018. The stool samples collected from the first 9 

patients recruited for this were provided in two different forms: as a raw stool sample that had been 

subjected to thawing for subsampling and pooling, then refrozen prior to shipment to Brisbane; and 

a single sample of raw stool transferred to OMNIgene gut tubes (DNA Genotek). All these samples 

were shipped from Melbourne to Brisbane in dry ice, and immediately transferred to a -80ºC freezer.    

2.4 Microbial DNA extraction  

All the stool samples were handled under aseptic conditions in a Biosafety Level 2 cabinet in the 

Morrison Laboratory at Translational Research Institute (TRI). Genomic DNA was extracted from 

all the samples using the repeated bead-beating procedure for cell lysis (100) and combined with an 

automated column-based DNA purification procedure (Maxwell® 16MDx system, Promega 

Corporation, WI, USA). Aliquots (250 µL) of the mixed stool sample stored in OMNIgene tubes were 

transferred into 2 mL screw capped tubes containing 0.4 g of sterile zirconia beads. Then 600 μL of 

lysis buffer (500 mM NaCl, 50mM TRIS-HCl (pH 8.0), 50 mM EDTA and 4% [w/v] sodium dodecyl 

sulfate) was added and the tubes were placed within a Precellys 24 homogeniser (Bertin Corp) and 

subjected to 3 x 60 second intervals of bead beating at 5000 rpm. The homogenised mixture was 

incubated at 70 ⁰C for 15 minutes, with gentle shaking by hand every 5 minutes, then centrifuged for 

5 minutes at 14,000 rpm. The supernatant was then transferred to a fresh 1.5 ml microcentrifuge tube 

and 30 μL of proteinase K was added to the supernatant and vortexed for 30 seconds. The mixture 

was then incubated for 20 minutes at 56⁰C, and applied to the Maxwell 16 MDx cartridges, and the 
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DNA collected within 65 μL of elution buffer (Promega, catalogue no. AS1290). The eluted DNA 

solutions were placed on a magnetic stand to remove traces of magnetic particles, and the clarified 

samples carefully transferred to a new microcentrifuge tube. Then 4 μL of RNase (10 mg/ml) was 

added to each sample, followed by incubation at 37⁰C for 20 minutes. The DNA concentrations were 

quantified using a Nano-Drop Lite Spectrophotometer (Thermo Fisher Scientific) and adjusted with 

elution buffer to a final concentration of 5 ng/μL for 16S rRNA amplicon library preparation. When 

required, a set of reagent controls were also processed to which no DNA was added. These reagent 

controls were processed in an identical manner to the samples for the 16S rRNA gene amplicon library 

construction and sequencing. 

2.5 16S rRNA library preparation and sequencing 

The PCR amplicon libraries (V6-V8) were produced using the Bacteria/Archaea specific primers 926-

forward and 1392-reverse, which had been modified to include overhang adapters compatible with 

Nextera Index PCR XT kit (Illumina Corp., San Diego, CA, USA) to produce bar-coded amplicons 

for individual samples (101). The amplicon PCR was carried out with a total volume of 25µL 

comprised of 12.5 μL of Q5® (New England Biolads), 5 μL each of 10 μM forward and reverse 

Illumina primers and 2.5 μL of template DNA. The thermo-cycling PCR conditions for amplicon 

PCR were 1 cycle at 95 ⁰C for 3 minutes, followed by 25 cycles of 30 seconds each at 95 ⁰C for 

denaturation, 55 ⁰C for annealing, 72 ⁰C for extension, and 1 final extension cycle of 5 minutes at 72 

⁰C and hold at 4 ⁰C. 

The Q5® Hot Start High-Fidelity (New England Biolabs, Massachusetts, USA) polymerase enzyme 

was used for the PCR instead of the recommended KAPA HiFi HotStart ReadyMix (Kapa 

Biosystems, Massachusetts, USA) polymerase enzyme, as it showed higher amplification efficiency 

with a lower error rate when used by other members of the lab. The resulting PCR products were 

purified using Agencourt AMPure XP beads, and a subsequent PCR (Index PCR) was performed 

using the Nextera Index PCR XT kit. The index PCR was carried out with a total volume of 50 µL 

comprised of 25 µL of Q5, 5 µL each of the Nextera forward and reverse primers with the overhangs, 

5 µL of cleaned amplicon PCR product and 10 µL of ultra-pure PCR grade water. Thermo-cycler 
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conditions for index PCR were: 1 cycle at 95 ⁰C for 3 minutes, followed by 8 cycles of 30 seconds 

each at 95 ⁰C for denaturation, 55 ⁰C for annealing, 72 ⁰C for extension, and 1 final extension cycle 

of 5 minutes at 72 ⁰C and hold at 4 ⁰C. The PCR product was again purified using Agencourt AMPure 

XP beads and quantified using the Quantus Fluorometer dye kit. The bar-coded amplicons were 

purified, quantified and subsequently pooled in equimolar quantities for Illumina Miseq sequencing 

performed at the Australian Centre of Ecogenomics (ACE), University of Queensland.  

2.6 Bioinformatics and statistical analyses  

Analysis of the microbiome data produced by Illumina sequencing platforms requires specialised 

packages and softwares. Throughout my thesis, I have used the Quantitative Insights Into Microbial 

Ecology (QIIME) software package version 1.9.1 on an Ubuntu Linux virtual machine (v5.0.12) 

(Canonical, London, UK). I used this software to demultiplex and perform quality control checking, 

paired-end-merging and filtering of the sequence data, with a minimum quality score of 20 set as the 

acceptability threshold (102). The sequences were then clustered into Operational Taxonomic Units 

(OTUs) using a threshold setting of 97% sequence identity and the open reference OTU picking 

method was used to assign sequences to their respective OTUs according to the Greengenes database 

version 75 (103). The OTU tables containing taxonomic and abundance data were generated for each 

individual sample, and any OTUs that were not identified as Bacterial or Archaeal, and/or OTUs that 

comprised ≤0.01% of the total sample sequence count, were removed from further analysis. 

USEARCH 6.1 was also used for reference-based chimera detection and any candidate chimeric 

sequences were removed (104). Samples less than 1000 reads were removed during QIIME analysis 

and the coverage of the biodiversity present in each sample was then assessed by rarefaction analysis; 

with a rarefied subsampled OTU table generated by random sampling to the minimum read count.  

The “Core_diversity_analyses” script in QIIME was applied to the rarefied OTU table to generate 

taxonomy plots from phylum to genus levels and used to calculate alpha- and beta-diversity metrics. 

The resulting profiles were then displayed as rarefaction plots for alpha diversity. Alpha diversity 

which is a measure of species richness or diversity within a sample was measured by Shannon’s, 

Simpson’s and Good’s coverage indices. Shannon index takes into account both the species richness 
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and evenness of the species present. Richness measures the number of species/taxa present in a 

sample whereas evenness represents how evenly distributed the species are within a sample. Good’s 

coverage is an estimate of the recovery of the total number of taxa present in each sample.   

Beta diversity assess the diversity of the microbial communities between samples. The QIIME 

workflow uses a “UniFrac analyses” as its key metric for measuring and comparing the beta diversity 

represented within a dataset. In brief detail, a phylogenetic tree is generated from the OTU tables and 

the branch lengths are used to quantify microbial diversity and compare how similar or different the 

microbial communities between different samples are. There is also a weighted and unweighted form 

of the analysis: the weighted (quantitative) takes into account the abundance of the observed OTUs, 

while the unweighted (qualitative) compares samples solely by the presence or absence of OTUs. The 

Unifrac distance metrics can be graphically displayed by Principal Coordinates Analysis (PCoA) 

plots, which uses the distance matrix to plot the samples in 2D or 3D space (105). Beta diversity was 

examined by weighted and unweighted UniFrac and Bray-Curtis distance matrices and used to 

ordinate samples by Principal Coordinate Analysis (PCoA). All the QIIME scripts used for processing 

the data are listed in the Appendix section 7.4 below.  

I also learned to use the Calypso software for mining, interpreting and statistical comparisons of the 

taxonomy profiles generated from my datasets (106). Multivariate methods such as Redundancy 

Analysis (RDA) and Analysis of Similarity (Anosim) were used to identify associations between 

microbial community composition and diet. RDA examines associations between the community 

composition and the study variables (for example in my thesis the explanatory variable studied is 

diet). Anosim uses dissimilarity matrices to investigate whether the microbiota profiles are 

significantly different between the groups. It generates a p value by comparing the intra-group 

distances with between-group distances.  

The nutritional studies described above afforded the collection of multiple samples from the same 

subject, and repeated measures over time. The “mixOmics” R package offers multivariate analysis of 

these types of datasets (107) including sparse Partial Least Squares Discriminant Analysis (sPLS-

DA) analysis via the Mixomics mixMC: multivariate data analysis framework in Calypso software. 
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The sPLS-DA is an extension to the sPLS program and enables the selection of most discriminative 

features between groups in a one-step procedure (108). I also used Linear Discriminant Analysis 

(LDA) Effect Size (LEfSe) within Calypso to identify individual taxa discriminatory for the different 

dietary patterns (109). Mixed effect linear regression (MELR) analysis was used to analyse the data 

with repeated measures between the dietary intervention groups. GraphPad Prism (version 7, 

GraphPad Software, San Diego, CA, USA) was used to perform the Spearman’s correlation between 

the individual taxa and athlete’s performance measures described in Chapter 3. GraphPad Prism 

(version 8) was also used to plot and perform Wilcoxon paired signed rank tests performed in Chapter 

5. The significance level was set to p < 0.05 for all the analysis. Correction for multiple testing by 

false discovery rate (FDR) with values < 0.05 were considered significant in MELR analysis. 

2.7 Effect of sample storage on the microbiota profiles 

At the start of my Ph.D., I first used a collection of stool samples provided by our collaborators at 

Monash University. A total of 123 stool samples from 6 healthy (H), 27 irritable bowel syndrome 

(IBS) and 8 Crohn’s disease (CD) patients were provided, collected as part of the nutritional trials 

examining the effects of either their habitual diet (B) or diets with either a low or high FODMAP 

content (denoted as Y and P, respectively) on these persons, and published by Halmos et al. in 2014 

and 2015 (81,84). These samples had been stored at both -20ºC and -80ºC for extended periods of 

time and subjected to repeated freeze-thaw cycles in support of other chemical analyses, as outlined 

by Halmos et al. (81,84). Genomic DNA was extracted and 16S rRNA gene amplicon libraries were 

prepared and sequenced, and the resulting data analysed according to the protocols described 

above. 

Table 2.1 shows the bacterial/archaeal profiles produced from these stool samples at the phylum-level 

of taxonomic classification. While all the major Phyla outlined in Chapter 1 are detected, these 

profiles were both remarkable and highly uniform, irrespective of the person’s health or dietary status. 

Specifically, OTUs assigned to the Firmicutes phylum account for as much as 85-90% of the 

biodiversity recovered, and there was a coordinate and very substantial decrease in the relative 

abundances of OTUs assigned to the Bacteroidetes (0.5–6.0%) and Proteobacteria (0.1-4.3%). These 
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microbiota profiles suggested that those bacteria with a Gram-negative cell wall were “lost” during 

the long-term storage of these samples, which will occur if stool samples are stored for long periods 

at suboptimal temperatures (-20ºC) and/or, undergo repeated freeze-thaw cycles. Unfortunately, both 

of these circumstances had arisen as part of the sample archiving since their collection and initial 

analyses (Muir and Gibson, pers. comm.) and I decided not to perform more detailed analyses of these 

specific samples.  

 

Table 2.1 Operational Taxonomic Unit distributions at the Phylum-level of classification from the 

stool samples of Crohn’s disease (CD), healthy (H) and Irritable Bowel Syndrome (IBS) patients. 

Stool samples were provided at study entry (B, habitual diet) and following their consumption of a 

diet containing either a high (P) or low (Y) FODMAP content, as described by Halmos et al. (81,84). 

While the taxa detected from these stool samples are typical of those reported from other human 

subjects and patients, the profiles are all remarkable for their extremely large proportion of Firmicutes 

and small relative abundances of Bacteroidetes and Proteobacteria. 

 

 Total CDB CDP CDY HB HP HY IBSB IBSP IBSY 

Taxonomy % % % % % % % % % % 

Euryarchaeota 2.6 2 2.6 1.8 1.8 1.9 2.4 4.2 2.7 3.8 

Actinobacteria 4 4 3.5 4.3 2.8 5.6 5.1 4.1 3.5 2.8 

Bacteroidetes 3.3 0.5 1.2 0.8 6.2 3.1 5.3 3.6 4.4 4.7 

Cyanobacteria 0 0 0 0 0 0 0 0 0 0 

Firmicutes 87.9 89 88.7 90.4 88.1 89.2 85 86 87.8 87.3 

Proteobacteria 1.6 4.3 3.6 2.4 1.1 0.1 1.2 0.7 0.3 0.4 

Tenericutes 0.4 0.1 0.2 0 0 0 0 1.3 1 0.6 

Verrucomicrobia 0.3 0.2 0.2 0.3 0.1 0.1 0.9 0.1 0.2 0.3 

 

 As noted above, stool samples from the Monash University study presented in Chapter 5 were 

provided in two forms: as a pooled sample for each subject, prepared from thawed stools  collected 

on consecutive days from each patient and then stored frozen at -80ºC until use (hereafter referred to 

as M1 samples); or a single sample of stool that on collection was preserved immediately by its 

transfer to OMNIgene gut tubes, and stored at -80ºC (hereafter referred to as M2 samples). Given the 
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results obtained above, I decided to prepare stool DNA extracts from all these samples and produce 

16S rRNA gene amplicon libraries that were sequenced and analysed according to the protocols 

described above. Table 2.2 shows there were remarkable differences between the profiles generated 

from the M1 and M2 samples, and in particular the relative abundance of OTUs assigned to the 

Firmicutes, Bacteroidetes, Actinobacteria and Euryarchaeota. Figure 2.1a shows the results of the 

PCoA analysis of the weighted Unifrac metrics for the M1 and M2 samples. There is a clear separation 

of the microbiota profiles generated from the two types of samples, further confirming that the method 

of stool preservation influenced the microbiota profiles. Figure 2.1b shows the Wilcoxon rank-test of 

the abundances scores for Gram-positive phyla (Actinobacteria and Firmicutes) which are greater for 

the M1 sample type, and the Gram-negative Bacteroidetes phylum, which is greater for the M2 

sample. All these differences were found to be statistically significant. 

 

Table 2.2 The relative abundance of OTUs assigned at the phylum-level of classification recovered 

from stool samples that had either been thawed and pooled (M1) or individual samples transferred 

immediately to OMNIgene gut tubes (M2). Both types of samples were stored at -80ºC until processed 

for analysis.  

 Total M1 M2 

Taxonomy (%) (%) (%) 

Euryarchaeota 3.4 5.5 1.4 

Actinobacteria 6.8 10.7 2.9 

Bacteroidetes 35.2 18.7 51.6 

Firmicutes 51 61.5 40.6 

Proteobacteria 1.5 1 2.1 

Tenericutes 0.4 0.5 0.3 

Verrucomicrobia 1.6 2.1 1 
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Figure 2.1 Effect of sample storage methods (M1 and M2) on the microbiota profiles. (a) The PCoA 

plots of the weighted UniFRAC beta diversity metrics for the samples stored using either the M1 

(red) and M2 (blue) method further confirms that method of storage impacts on between sample (beta 

diversity) profiles. b) Wilcoxon rank tests of the relative abundance scores for the Actinobacteria, 

Bacteroidetes and Firmicutes phyla from the two types of stool sample storage. The M2 storage 

method appears to better protect the Gram-negative Bacteroidetes present in these samples (All 

differences are significant at p<0.001).  

  

These results were produced during the first year of my Ph.D. program and highlight how important 

stool sample collection methods and storage are to the microbiota profile data that is produced from 

such samples. Based on these results, we recommended that all the stool samples collected by the 

Monash University group be immediately transferred to OMNIgene gut tubes and were kept frozen 

at -80ºC until processed. Any subsampling should be done prior to the first freezing of samples at  

-80ºC, to ensure the samples are thawed once, and prior to DNA extraction.    
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Chapter 3 Analysis of the Effects of Dietary Pattern on the Oral Microbiome of 

Elite Endurance Athletes 

 

3.1 Abstract 

Although the oral microbiota is known to play a crucial role in human health, there are few studies of 

diet x oral microbiota interactions, and none in elite athletes who may manipulate their intakes of 

macronutrients to achieve different metabolic adaptations in pursuit of optimal endurance 

performance. The aim of this study was to investigate the shifts in the oral microbiome of elite male 

endurance race walkers from Europe, Asia, the Americas and Australia, in response to one of three 

dietary patterns often used by athletes during a period of intensified training: a High Carbohydrate 

(HCHO; n=9; with 60% energy intake from carbohydrates; ~8.5 g kg−1day−1 carbohydrate, ~2.1 

g kg−1day−1 protein, 1.2 g kg−1day−1 fat) diet, a Periodised Carbohydrate (PCHO; n=10; same 

macronutrient composition as HCHO but the intake of carbohydrates is different across the day and 

throughout the week to support training sessions with high or low carbohydrate availability) diet or a 

ketogenic Low Carbohydrate High Fat (LCHF; n=10; 0.5 g kg−1 day−1 carbohydrate; 78% energy as 

fat; 2.1 g kg−1 day−1 protein) diet. Saliva samples were collected both before (Baseline; BL) and after 

the three -week period (Post treatment; PT) and the oral microbiota profiles for each athlete were 

produced by 16S rRNA gene amplicon sequencing. Principal coordinates analysis of the oral 

microbiota profiles based on the weighted UniFrac distance measure did not reveal any specific 

clustering with respect to diet or athlete ethnic origin, either at baseline (BL) or following the diet-

training period. However, discriminant analyses of the oral microbiota profiles by Linear 

Discriminant Analysis (LDA) Effect Size (LEfSe) and sparse Partial Least Squares Discriminant 

Analysis (sPLS-DA) did reveal changes in the relative abundance of specific bacterial taxa, and 

particularly, when comparing the microbiota profiles following consumption of the carbohydrate-

based diets with the LCHF diet. These analyses showed that following consumption of the LCHF diet 

the relative abundances of Haemophilus, Neisseria and Prevotella spp. were decreased, and the 

relative abundance of Streptococcus spp. was increased. Such findings suggest that diet, and in 

particular the LCHF diet can induce changes in the oral microbiota of elite endurance walkers.  
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3.2 Introduction 

Recent technological advances have enabled a more holistic definition and characterization of the 

microbes that colonise the human body, the “microbiomes”. The human oral cavity serves as the 

habitat for a numerically large and diverse microbiome (72), which has been extensively characterised 

with respect to infectious and periodontal diseases, and caries, as well as for its contributions to the 

onset and progression of chronic conditions such as diabetes, cardiovascular disease and cancer (73). 

However, the impacts of dietary pattern on the oral microbiome are not well defined, neither for the 

general population nor for cohorts who may follow specialised diets, such as elite athletes. In that 

context, recent studies have revealed a positive symbiotic association between the oral bacteria and 

host with respect to an enterosalivary nitrate-nitrite-nitric oxide pathway, which contributes to nitric 

oxide (NO) homeostasis (74,75). Here, facultative anaerobic bacteria in the mouth reduce salivary 

gland concentrated nitrate to nitrite, which is then swallowed and absorbed into the bloodstream 

before further reduction to NO. The critical role of the oral microbiota in this effect has been 

demonstrated, where a seven-day period of antiseptic mouth wash treatment was shown to disrupt the 

oral microbiota of healthy non-athletes and, in the absence of any dietary modifications, was 

associated with reductions in plasma and oral nitrite levels and an increase in blood pressure (77). 

These findings raise the spectre that diet may also invoke changes in the oral microbiota that manifest 

in alterations of this enterosalivary pathway and NO homeostasis but remains unexplored.  

A recent investigation (99) of the effect of diet and training on exercise metabolism and performance 

in elite endurance athletes provided an opportunity for pilot work on this theme. The “Supernova 1” 

study investigated parameters around endurance capacity in a cohort of elite endurance race walkers 

who followed one of the three popular dietary approaches during a three-week period of intensified 

training: a ketogenic Low Carbohydrate High Fat diet (LCHF), or a diet high in carbohydrates 

consumed either ad libitum (HCHO) or at specific periods on a daily/weekly basis (PCHO). While 

the HCHO diet is focused on optimal muscle and brain carbohydrate (CHO) stores for each training 

session, the PCHO diet involves a strategic combination of sessions with such dietary support as well 

as other which are undertaken with low muscle glycogen availability to promote greater metabolic 
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stress and cellular adaptation (110,111). Finally, the LCHF diet involves severe CHO restriction to 

promote adaptations that increase muscle capacity for fat oxidation. Details on the rationale for these 

radically different types of nutrition (99,110) and the actual protocols employed in this study can be 

found elsewhere (99,111). In summary, the Supernova 1 study found that each group of athletes 

achieved a significant improvement in their aerobic capacity over the training block, which was 

undertaken during the base phase of the annual training plan. However, while this was associated 

with improved economy and real-world race performance in the two groups who trained while 

consuming the HCHO and PCHO diets, the LCHF group experienced an increase in the oxygen cost 

of exercise supported by high rates of fat oxidation, and thereby failed to improve their race 

performance despite the gain in aerobic capacity (99). Based on these differential results, the overall 

aim of this study was to examine whether and how the oral microbiome of these athletes was affected 

by their diet during intensified training. This appears to be the first study that provides an in-depth 

investigation of diet x oral microbiome interactions in elite athletes.  

 

3.3 Materials and Methods  

3.3.1 Study Design and Sample Collection 

The group of world-class race walkers and the design of the “Supernova 1” study are described in 

detail by Burke et al. (99) and Mirtschin et al. (111). In summary, these male race walkers (aged 20–

35 years, BMI range 16–23 kg/m2) were from Australia, Canada, Japan, Italy, Poland, Sweden, Chile 

and South Africa, and all met International Association of Athletics Federations (IAAF) standards for 

international competition, with more than 75% participating in the major championships during the 

year of the study (i.e., 2016 Rio Olympic Games and 2016 World Walking Cup). Twenty-nine study 

experiences were gained from 21 elite athletes who participated in either one (n = 13) or both (n = 8) 

of the Supernova 1 research camps conducted at the Australian Institute of Sport. Each camp involved 

three weeks of intensified training and rigorously supervised dietary interventions. Saliva samples 

were collected from the athletes prior (baseline, BL) and after the three-week training-diet 
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intervention using the OMNIgene saliva collection and preservative kit and according to the 

manufacturer’s instruction (fasted collection, saliva collected by spitting into the tube).  

 

3.3.2 Allocation to Dietary Interventions  

The athletes were involved over several months of planning and received education about the range 

of likely effects of the diets on various aspects of health and performance. Each had ample time to 

choose a diet(s) according to his beliefs of the performance benefits from the chosen diet. Although 

this type of assignment was non-random, given that all athletes choose freely to be in the study and 

to be fed their diet of choice, this approach both promoted adherence to the intervention and controlled 

for the random effects of such rigorous dietary control (e.g., feeling anxious about losing personal 

freedom of dietary choice). Therefore, any effects on the oral microbiome could be attributed to the 

diet, including any additional intrinsic biochemical, physiological or psychological overlay that 

belongs to the diet itself.   

Three diets were compared: (i) a diet high in carbohydrate availability (HCHO; n = 9) comprised of 

60% of energy intake from CHO (~8.5 g/kg body mass (BM)/day), 16% protein (~2.1 g/kg BM/day), 

20% fat; (ii) a diet with periodised carbohydrate availability (PCHO; n = 10) of similar overall 

macronutrient composition as HCHO but consumed at different intervals across the day and 

throughout the week to support different training sessions with high or low CHO availability and (iii) 

a ketogenic low carbohydrate-high fat diet (LCHF; n = 10) comprised of 78% fat, 17% protein (~2.2 

g/kg/day) and 0.50 g/kg/day carbohydrate (3.5% energy). All the meals were prepared taking into 

consideration the nutritional requirement within the allocated dietary intervention. Mirtschin et al. 

reported the detailed nutritional information and meal plans for the above three dietary interventions 

of this study (111).  
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3.3.3 Oral Microbiota Analysis  

Genomic DNA was extracted and 16S rRNA gene amplicon libraries were prepared and 

sequenced, and the resulting sequence data was analysed according to the protocols previously 

described in Chapter 2. 

 

3.4 Results 

As mentioned previously, 21 elite race walkers were recruited in the study (with eight athletes 

recruited in both the camps). Table 3.1 provides the anthropometric details of the subjects enrolled in 

the study. According to Tukey’s multiple comparisons test, there were no significant differences in 

the age (p = 0.53 for HCHO vs. PCHO; p = 0.28 for HCHO vs. LCHF and p = 0.87 for PCHO vs. 

LCHF) and the BMI scores (p = 0.36 for HCHO vs. PCHO; p = 0.84 for HCHO vs. LCHF and p = 

0.67 for PCHO vs. LCHF) when athletes were grouped according to the dietary intervention they 

received.  

Table 3.1 Athlete cohort characteristics 

 
High Carbohydrate 

(HCHO) Diet 

Periodised Carbohydrate 

(PCHO) Diet 

Low Carbohydrate  

High Fat (LCHF) Diet 

Sample size n = 9 n = 10 n = 10 

Age (years) 25.4 ± 4 27.4 ± 4.6 28.3 ± 3.5 

BMI 

(kg/m2) 
20 ± 1.6 21 ± 1.3 20.4 ± 1.8 

Country of 

origin 

Australia, Canada, 

Japan, South Africa 

Australia, Canada, Japan, 

Poland, Sweden, Italy 

Australia, Canada, Japan, 

Poland, Sweden, Chile, South 

Africa 

Gender Male Male Male 

Note: Data for Age and body mass index (BMI) are shown as mean ± standard deviation  

 

The Shannon alpha diversity was reduced following the diet-training interventions when compared 

to their subject-matched BL measures; however, these reductions were not statistically significant (p 
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= 0.1 for BL vs. HCHO and BL vs PCHO; p = 0.62 for BL vs. LCHF). The PCoA analysis of the 

weighted UniFrac distances are shown in Figure 3.1 and did not reveal any distinct clustering of the 

saliva microbiome profiles, either with respect to the ethnic origin of the athletes or the dietary 

intervention. Similarly, the supervised analyses by RDA and Anosim did not identify any significant 

differences between the microbiota community composition at BL and following any of the three 

dietary interventions (data not shown). Taken together, these results suggest that the dietary 

interventions do not result in dramatic changes in the overall biodiversity of the oral microbiome, but 

rather more subtle changes in community composition. As mentioned previously in 3.3.1 above, eight 

athletes were recruited in both the camps, and the two baseline profiles (B1 vs. B2) of these eight 

athletes were compared. No substantive differences between the two microbiota profiles were 

apparent, as assessed by Shannon alpha-diversity and Anosim beta-diversity analyses. These tests 

indicate that the time between the study camps was sufficiently long to ensure a “washout” between 

the two camps, and, thereby, no potential carryover effects from the previous diet on the subsequent 

results/profiles. 

 

 

Figure 3.1 Principle component analysis of weighted UniFrac distances for the oral microbiomes of 

athletes at Baseline only (BL, a); and when combined with their profiles obtained after the diet-

training intervention period (b). Samples are colored based on the athlete’s country of origin and 

show no significant clustering indicative of a dietary and/or ethnic effect on the oral microbiomes.  
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3.4.1 Comparisons of Community Profiles of Saliva Samples between Baseline and Post 

Interventions 

LefSe analyses was used to identify discriminating taxa between baseline (BL) and post diet-training 

interventions. OTU’s affiliated to Streptococcus, Peptostreptococcus, Actinomyces, Granulicatella, 

Atopobium, Veillonella and Prevotella were found to be enriched following the consumption of 

HCHO diet, whereas Parvimonas was discriminatory and enriched for the BL samples from these 

same athletes (Appendix Figure 7.1). Analysis by the sPLS-DA of the same athlete samples identified 

Prevotella, Actinobacillus, Fusobacterium, Haemophilus and Gemella to be associated and increased 

in BL samples (Figure 3.2 below).  

MELR analysis of the oral microbiota profiles at BL and following HCHO diet training intervention 

was also examined using mixed effect linear regression, and the relative abundance of Atopobium 

was found to increase (p = 0.015), whereas Capnocytophaga (p = 0.027) and Porphyromonas (p = 

0.03) were decreased after consumption of HCHO diet, when compared to the BL (Appendix Figure 

7.2). However, no significant differences were observed once correction for multiple testing using 

false discovery rate was applied (FDR = 0.49). 

 

LefSe analysis was then used to compare the microbiota profiles between BL and PCHO diet and 

revealed that the OTU’s affiliated with Leptotrichia, Neisseria, Moryella and Actinomyces to be 

discriminatory and enriched for BL, whereas OTU’s affiliated with Streptococcus, Kingella, 

unclassified members of Neisseriaceae and Prevotella were increased and discriminatory in the same 

athletes after consumption of the PCHO diet (Appendix Figure 7.3). Analysis by sPLS-DA further 

showed that the relative abundances of Haemophilus, Neisseria, Porphyromonas, Leptotrichia, 

Kingella, Prevotella, Unclassified Neisseriaceae, Rothia, Selenomonas and Tannerella were 

increased following the consumption of the PCHO diet whereas Unc. Aerococcaceae, Unc. CW040, 

Lautropia and Parvimonas were distinct and increased in the BL samples of the same athletes who 
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later received the PCHO dietary intervention (Figure 3.3 below). The x axis in the sPLS-DA plot 

refers to the contribution (or importance) of the taxa on component 1(i.e. the x axis).   

MELR analysis showed that the genus Actinomyces (p = 0.04), Moryella (p = 0.05), Oribacterium (p 

= 0.04), Peptostreptococcus (p = 0.009) and some unclassified Erysipelotrichaceae (p = 0.04) were 

reduced in response to the PCHO diet as compared to BL (Appendix Figure 7.4). However, the 

statistical significance of all these differences was lost once correction for multiple testing using the 

false discovery rate was applied (FDR = 0.4) (Appendix Figure 7.4).  

 

 

 

 

 

Figure 3.2 Genera differentiating between the oral microbiota profiles of athletes at baseline (BL, 

red) and after their consumption of the High Carbohydrate diet (HCHO) identified by sparse Partial 

Least Squares Discriminant Analysis (sPLS–DA).  
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Figure 3.3 Genera differentiating between the oral microbiota profiles of athletes at baseline (BL, 

red) and after their consumption of the Periodised Carbohydrate diet (PCHO, blue) identified by 

sparse Partial Least Squares Discriminant Analysis (sPLS–DA).  

 

Discriminating taxa for BL and for the same samples following the LCHF diet training intervention 

was also identified using LefSe and sPLS-DA. LefSe analysis revealed Leptotrichia, 

Lachnospiraceae and TM-7 affiliated OTU’s to be increased in the BL samples, whereas 

Lactobacillales, Streptococcus, Neisseria affiliated OTU’s were discriminatory and increased in the 

LCHF group (Appendix Figure 7.5). The sPLS-DA identified Selenomonas, Unc. Planococcaceae, 

Unc. Enterobacteriaceae, Peptostreptococcus, Gemella, Granulicatella, Parvimonas, Unc. 

Clostridiaceae to increase following LCHF diet training intervention, whereas Unc. F16, Unc. 
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Neisseriaceae, Leptotrichia, Lactobacillus, Lautropia and Kingella to be distinct and enriched in the 

BL samples of same athletes (Figure 3.4 below).  

According to MELR analysis, the genus Fusobacterium (p = 0.02), Lautropia (p = 0.05), 

Aggregatibacter (p = 0.04), Leptotrichia (p = 0.040) and some unclassified F16 (p = 0.04) were 

reduced, whereas Granulicatella (p = 0.03), some unclassified Planococcaceae (p = 0.03) and 

Streptococcus (p = 0.048) were increased in response to LCHF diet when compared to microbiota 

profiles at their BL (Appendix Figure 7.6). However, no significant differences were observed once 

correction for multiple testing using false discovery rate was applied (FDR = 0.4). 

 

 

 

Figure 3.4 Genera differentiating between the oral microbiota profiles of athletes at baseline (BL, 

red) and after their consumption of the Low Carbohydrate High Fat diet (LCHF, blue)  identified by 

sparse Partial Least Squares Discriminant Analysis (sPLS–DA).  
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3.4.2 Comparisons of Community Profiles of Saliva Samples at the Conclusion of Dietary 

Interventions  

 Figure 3.5 below summarises the results of these analyses, showing the community profiles present 

in saliva samples at the conclusion of the dietary intervention periods, with annotations around some 

key genera and their inferred nitrate reductase capacity (Figure 3.5a). These profiles were compared 

with each other using sPLS-DA, which can be used to extract those taxa that most strongly 

discriminate the community structure between treatment groups (Figure 3.5b). Longitudinal 

comparison of the taxonomic profiles in the samples using sPLS-DA  showed the strongest effect of 

the LCHF dietary intervention and in particular increase in the abundance of Gram-positive 

(Firmicutes) bacteria such as Streptococcus, Peptostreptococcus, and Rothia (Figure 3.5b)   

LefSe analyses was also used to examine the differences in oral microbiomes post intervention and 

these analyses showed that the discriminating and enriched taxa (at the OTU level) were 

Streptococcus affiliated OTUs for the LCHF diet intervention, whereas Gram-negative bacteria (e.g., 

Haemophilus and Leptotrichia spp.) were among the enriched and discriminating taxa for the 

HCHO/PCHO diets (Figure 3.6) 
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Figure 3.5 Oral microbiome profiles (genus-level) of athletes consuming either a high carbohydrate (HCHO), periodised carbohydrate (PCHO) or a low-

carbohydrate high-fat diet (LCHF) after the diet-training intervention where bar plots represent: (a) relative abundance of genera in saliva samples after 

dietary interventions and their inferred nitrate reductase activity; (b) microbial families associated with different diets as identified by sparse Partial Least 

Squares Discriminant Analysis (sPLS-DA).  
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Figure 3.6 Linear Discriminant Analysis (LDA) Effect Size (LefSe) analysis at Operational Taxonomic Unit (OTU) level to compare the oral microbiome 

profiles of athletes post training diet interventions between Periodised Carbohydrate/Low Carbohydrate High Fat diet (PCHO/LCHF) (a) and High 

Carbohydrate-Low Carbohydrate high-fat diet (HCHO/LCHF) (b), respectively. 
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3.5 Discussion 

Despite the relatively small number of participants in this study, the dietary pattern consumed by 

these elite athletes during intensified training was shown to invoke remarkable effects on specific oral 

bacterial taxa- the bacterial communities in the mouth. The lack of a matching cohort of non-athletes 

(non-race walkers) and the lack of comprehensive data on the habitual dietary intake of athletes (i.e., 

BL samples) are acknowledged but were beyond the logistical and financial scope of the trial design. 

Furthermore, but understandably, the elite nature of the athletes ensured the group size is quite small, 

which also reduces the power needed for stringent statistical tests of significance, or the further 

subgrouping of the athletes according to ethnicity, etc. However, and despite these limitations, this is 

the first study of its type with elite endurance athletes, and one of the very few studies of the 

diet/nutrients × oral microbiota interactions affecting the physiology and/or metabolism of healthy 

human subjects. Furthermore, while fluctuations in the abundance and/or activities of nitrate-reducing 

bacteria in the oral microbiome are recognised to affect an individual’s responsiveness to nitrate 

supplementation (112), this is the first study of the effects of dietary manipulation on this specific 

microbiome.  

The bacterial taxa found in this study are similar to those represented in the Human Oral Microbiome 

Database (HOMD), as well as those typically reported in other studies of mainstream human subjects 

(71,113). The beta-diversity UniFrac principal coordinates analysis showed no apparent clustering of 

the oral microbial communities based on the ethnicity of the athletes nor any distinct effects of the 

dietary interventions under investigation in this study. This is similar to the findings of other studies 

of healthy individuals in which no significant clustering and bacterial taxa changes in the oral cavity 

have been reported (113). Nevertheless, more subtle changes within the bacterial communities in 

association with the diets were observed, with some of these representing potential alterations in 

community–host symbiosis. Here, the comparisons of the oral microbiome collected after three weeks 

of consuming one of three widely used diets by elite athletes during intensified training revealed that, 

unlike the CHO-rich diets, a ketogenic-LCHF diet appears to shift the balance of bacterial taxa that 

are widely considered to be key governors of the enterosalivary nitrate-nitrite-nitric oxide (NO) axis 
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within the oral cavity. This is an important finding since previous studies have demonstrated 

functional effects on host health when alterations to the oral microbiome interfere with this pathway 

(78). Facultative anaerobic bacteria in the mouth reduce salivary gland concentrated nitrate to nitrite, 

which is then swallowed and absorbed into the bloodstream, before further reduction to NO 

(74,75,78).  

The critical role of the oral microbiome in this effect has been recently demonstrated in healthy non-

athletes, where a seven-day period of antiseptic mouth wash treatment was shown to disrupt the oral 

microbiota and, in the absence of any dietary modifications, was associated with reductions in plasma 

and oral nitrite levels and an increase in blood pressure (114). Taken together, the changes seen 

following consumption of the LCHF diet, with respect to reductions in the relative abundances of 

well-known Gram-negative nitrate/nitrite reducers such as Haemophilus, Prevotella and Neisseria; 

and an increase in Streptococcus spp., which are not recognised to be directly involved in 

nitrate/nitrite reduction; raises the spectre that consumption of the LCHF diet can impair the 

enterosalivary nitrate-nitrite-NO axis. Indeed, further indirect support for this hypothesis can be found 

in a recent brief report that a three-day LCHF diet was associated with an impaired plasma 

nitrate/nitrite conversion following supplementation with potassium nitrate, compared with the 

response observed when people consumed a HCHO diet (115). This suggests that a LCHF diet might 

alter the baseline contribution of the nitrate-nitrite-NO pathway to NO-related health and performance 

benefits in athletes, as well as reduce their responsiveness to nitrate/beetroot juice supplementation 

as a performance aid (116). Further supporting evidence comes from the major outcome of the 

Supernova 1 study, which is the primary study to the current project and from which these saliva 

samples were derived. The study found a reduction in exercise economy (i.e., an increased oxygen 

cost of exercise) across a range of walking speeds in the LCHF group. It was originally hypothesised 

that this contributed to the failure of the LCHF group to improve their performance of a 10,000 m 

race walking event, despite the improvement in aerobic capacity that was seen across each of the 

study groups in response to the three-week block of intensified training It is plausible to attribute this 

loss of economy to the substantial increase in the contribution of fat oxidation to exercise substrate 

needs in the LCHF group, noting the longstanding recognition that CHO oxidation is slightly more 
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economical in generating ATP than fat oxidation per unit of oxygen utilization (117). Additionally, 

the increase in exercise tolerance and performance following acute and/or chronic nitrate 

supplementation include improved oxygen delivery to the muscle via the vasodilatory effects of NO, 

as well as a direct effect on mitochondria to reduce proton leak (116). However, these benefits are 

not universally observed across and within studies, and this variability is partially attributed to 

individual responsiveness, in addition to the more obvious contribution of unsuitable study protocols 

in relation to both the supplementation and exercise elements. However, based on the findings 

reported here, it is also plausible that part of the reduced exercise efficiency observed in the 

Supernova 1 study might be attributed to an altered oral microbiome, resulting in a reduction in 

nitrate/nitrite reducing activity and NO generation, with coordinate effects on circulation and 

mitochondrial function. 

 

In conclusion, the results presented here are the first direct comparison of the oral microbiota profiles 

of elite athletes, and the effects of the dietary pattern consumed during intensified training for race-

walking. The LCHF diet resulted in the most dramatic effects on the oral microbiota, with reductions 

in the relative abundance (Haemophilus, Neisseria and Prevotella), and with a coincident increase in 

the relative abundance of Streptococcus spp. The athletes participating in this study following 

consumption of the LCHF diet also showed a loss of exercise economy (i.e., an increased oxygen cost 

of exercise) across a range of walking speeds compared to athletes consuming the carbohydrate rich 

diets. The findings reported here therefore justify the need to examine how diet x oral microbiome 

interactions affect elite athlete performance; and, particularly, NO homeostasis, and any coordinate 

impacts on cardiovascular and circulatory physiology. 
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3.6 Published journal article detailing work carried out in Chapter 3 

          PubMed link of the published article: https://www.ncbi.nlm.nih.gov/pubmed/30871219 

 

 

 

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/30871219


49 

 

 

 

 

 

 

 

Chapter 4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



  

50 

 

Chapter 4 The Effects of Dietary Pattern during Intensified Training on Stool 

Microbiota of Elite Race Walkers 

 

4.1 Abstract 

I investigated extreme changes in diet patterns on the gut microbiota of elite race walkers undertaking 

intensified training and its possible links with athlete performance. Numerous studies with sedentary 

subjects have shown that diet and/or exercise can exert strong selective pressures on the gut 

microbiota. Similar studies with elite athletes are relatively scant, despite the recognition that diet is 

an important contributor to sports performance. In this study, stool samples were collected from the 

cohort at the beginning (baseline; BL) and end (post-treatment; PT) of a three-week intensified 

training program during which athletes were assigned to a High Carbohydrate (HCHO), Periodised 

Carbohydrate (PCHO) or ketogenic Low Carbohydrate High Fat (LCHF) diet (post treatment). 

Microbial community profiles were determined by 16S rRNA gene amplicon sequencing. The 

microbiota profiles at BL could be separated into distinct “enterotypes,” with either a Prevotella or 

Bacteroides dominated enterotype. While enterotypes were relatively stable and remained evident 

post treatment, the LCHF diet resulted in a greater relative abundance of Bacteroides and Dorea and 

a reduction of Faecalibacterium. Significant negative correlations were observed between 

Bacteroides and fat oxidation and between Dorea and economy test following LCHF intervention. 

 

  



  

51 

 

 

What are the new findings? 

➢The gut microbiota profiles of endurance race walkers could be separated into two principal 

“enterotypes.” 

➢The LCHF diet is associated with a significant reduction in the relative abundance 

of Faecalibacterium spp. and an increase in the relative abundance of Bacteroides and Dorea spp. 

➢The relative abundance of some bacterial taxa was correlated with measures of athlete performance 

and metabolic capacity. 

 

How might it impact on clinical practice in the foreseeable future? 

 

Dietary patterns appear to exert a subtle but meaningful impact on the gut microbiota of elite 

endurance race walkers. In particular, there appears to be a plausible link between a LCHF diet, the 

gut microbiome and impairments in exercise capacity, which may be monitored and managed to 

improve exercise economy and performance 

 

4.2 Introduction 

The gut microbiome is now widely recognised to be a functional and dynamic interface between host 

genetics, environmental and lifestyle choices. A virtual plethora of observational and case-control 

studies have investigated and reported on the variations in the gut microbiome of healthy subjects 

compared to those afflicted with acute, chronic and non-transmissible diseases (118–121). But 

relatively few studies to date have investigated the structure-function relationships of the gut 

microbiome of elite athletes, despite their remarkable physiology and metabolism compared to 

mainstream (regular healthy) members of the community. Clarke et al. (63) compared the gut 

microbiome of professional Irish rugby players with mainstream subjects of either matched BMI 

(>25) or average BMI (<25). Rugby players possessed greater bacterial diversity compared with both 

non-athlete groups, which could be readily linked to the greater intake of dietary protein measured 
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for these athletes. More recently, metagenomic and metabolomics analyses of these same cohorts 

have shown that the gut microbiota of rugby players were enriched for pathways involved in amino 

acid and carbohydrate metabolism and possessed greater amounts of faecal short-chain fatty acids 

(SCFA) as compared to the sedentary controls (66). Peterson et al. (68) have also compared the gut 

microbiota of professional cyclists and category 1 level (amateur) cyclists. These studies revealed the 

presence of three taxonomic clusters or “enterotypes” for all the cyclists: either Prevotella or 

Bacteroides dominated or a mixed taxa cluster. An increased abundance of Methanobrevibacter 

smithii was also evident in professional cyclists. Collectively, these studies confirm that the gut 

microbiota profiles of elite athletes are different to those of mainstream and/or non-elite control 

subjects and that diet might be a principal driver of these differences. 

Typically, elite endurance athletes follow special dietary practices, particularly during periods of 

specialised training or competition preparation, to benefit from exercise-nutrient interactions that 

underpin adaptation and performance (110). In the parent ‘Supernova study 1, Burke et al. (99) 

investigated aspects of endurance capacity in a cohort of elite race walkers who followed one of three 

popular dietary approaches to a 3-week block of intensified training: a ketogenic LCHF or diets with 

continuous or periodised exposure to high carbohydrate availability (HCHO or PCHO, respectively). 

Athletes consuming HCHO and PCHO diets were found to have improved exercise economy 

(increased speed achieved for a given oxygen utilisation) and race performance (event lasting ~40 

min) compared to those athletes consuming a LCHF diet. This suggests that the latter dietary pattern, 

which achieved significant alterations in host physiology (i.e., a major increase in capacity for fat 

oxidation) is not conducive for performance of endurance exercise conducted at sustained higher 

intensities, where oxygen delivery to the muscle becomes limiting. 

Given the scarcity of information on baseline (BL) gut microbiome profiles of elite athletes and the 

effect of dietary changes on the gut microbiota in such cohorts, the aim of the current investigation 

was to characterise the stool microbiome profiles elite race walkers that participated in the Supernova 

1 study, using samples collected before and after undertaking three weeks of intensified training while 

following different dietary programs under rigorous study control. I hypothesised that the BL profiles 
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might share features of the microbiota previously described in endurance athletes (cyclists) but that 

this might change in response to the radical dietary changes implicit in a ketogenic LCHF diet. 

 

4.3 Materials and Methods 

4.3.1 Study Design and Sample Collection 

A detailed description of the experimental design and physiological measures performed as part of 

the Supernova 1 study was provided by Burke et al. (99) along with justification for each of the dietary 

interventions (111). Briefly, a total of 21 male participants (aged 20–35 years), all of whom met 

International Association of Athletics Federations (IAAF) standards for international race experience, 

were accepted into the study. The dietary interventions were conducted over two separate training 

camps in November 2015 (n = 10) and January 2016 (n = 19) with 8 athletes recruited into both 

camps. During their 3-week training camp, the athletes were assigned to the specific diets according 

to their beliefs in the potential effect on their performance to either a diet high in carbohydrate 

availability (HCHO; n = 9) comprised of 60% of caloric intake from carbohydrate, CHO (~8.5 g/kg 

body mass (BM)/day), 16% protein (~2.1 g/kg BM/day), 20% fat; a diet with periodised carbohydrate 

availability (PCHO; n = 10) of the same macronutrient composition as HCHO but periodised in 

consumption across the day and throughout the week, so to support different training sessions with a 

high and low CHO availability; and a ketogenic low carbohydrate-high fat diet (LCHF; n = 10) that 

was comprised of 78% fat, 17% of protein (~2.2 g/kg BM/day) and <50 g/day of carbohydrate content 

(~3.5% energy). Stool samples were collected from the athletes at the beginning and end of the 3-

week training-diet intervention period using the OMNIgene stool collection and preservative kit. 

Physiological measures such as VO2peak and walking economy, 10 km race time, 25 km long walk 

time, respiratory exchange ratio and fuel oxidation rates were measured in the Supernova 1 study by 

Burke et al. (99). These data are used for the correlation analysis. 
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4.3.2 Stool Microbiota Analysis 

Genomic DNA was extracted and 16S rRNA gene amplicon libraries were prepared and 

sequenced, and the resulting data analysed according to the protocols previously described in 

Chapter 2.  

 

4.4 Results 

Burke et al. (99) reported that race walkers who consumed the LCHF diet during intensified training 

achieved a substantial increase (~tripling) in their rates of whole-body fat oxidation during exercise 

compared with BL , with peak rates of ~1.6 g/min (and up to 2 g/min in some individuals) being the 

highest reported values in the literature. However, this was associated with a reduction in exercise 

economy (increased oxygen cost to achieve the same walking speed) and a failure to improve 10 km 

race performance (change = 1.6% slower (90% CI = −8 to +5%) despite achieving an equal increase 

of 3–7% in aerobic capacity over the training block as the other groups. Conversely, athletes 

consuming either the HCHO (n = 8) or PCHO (n = 10) diets showed improvements in exercise 

economy and athlete performance as reported by Burke et al.(99) (mean race improvements = 6.6% 

(4–9%) and 5.3% (3–7%), respectively). These differences in athlete physiology and performance in 

response to diet provide a unique opportunity to examine whether and how the gut microbiome of 

these athletes is affected by diet and/or can be associated with changes in athlete physiology and 

performance. 

4.4.1 Bacteroides- or Prevotella-Enterotypes are Predominant in Elite Race Walkers 

Sample ordination by PCoA revealed that 28/29 athletes at BL could be separated into two distinct 

clusters, while one athlete showed a clear separation from both (Figure 4.1 a). The genus-level 

taxonomic profiles for the three clusters at BL are shown in Figure 4.1 c, with 7/29 athletes found to 

possess a “Prevotella-predominant” cluster and 20/29 athletes being “Bacteroides-dominant.” The 

remaining two points on the PCoA plot were from the same athlete who participated in both training 

periods and was a “Firmicutes-dominant” cluster with a remarkable level of methane-producing and 
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succinate-utilizing microbes (Methanobrevibacter and Succinivibrio). Furthermore, these clusters 

were sustained throughout the intensified training and diet-intervention period, as shown when these 

profiles were included in the beta diversity analysis (Figure 4.1 b). As noted in the Methods, a number 

of athletes participated in both camps, so the stool microbiota profiles of the two BL samples for these 

athletes were compared to each other. A combination of RDA and Anosim analyses as well as the 

Shannon diversity measures for the matched samples showed no remarkable or significant differences 

in these profiles. As such, the length of time between camps and the return of these athletes to their 

habitual diet was considered to be sufficient to ensure there were no carryover effects from the prior 

camp (and dietary intervention). In summary, the stool microbiomes of virtually all these elite athletes 

could be differentiated into either a Prevotella or Bacteroides-dominant enterotype and the dietary 

interventions and intensive training period had limited influence on the stability of these enterotypes. 
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Figure 4.1 Principal coordinates analysis (PCoA) of the weighted Unifrac distances produced from 

the stool samples of athletes collected at baseline only (a); and combined with their matching stool 

samples collected after the 3-week diet-training intervention period (b). The individual samples are 

coloured coded according to the athlete’s country of origin. The athletes are separated into three 

distinct clusters and importantly, this clustering did not appear to be disrupted in response to the diet 

consumed during the training period. The first three Principal Coordinates and the amount of variation 

each explains are shown (PC1, PC2, PC3). (c) The profiles of the predominant taxa present in the 

baseline stool samples of athletes with either a Prevotella-dominant (P, cluster 1; n = 7), a 

Bacteroides-dominant (B, cluster 2; n = 20) or a Firmicutes-dominant (F, cluster 3; n = 2) 

“enterotype”. 

P 

B 
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4.4.2 HCHO and PCHO Diets Result in Subtle but Distinct Alterations in Firmicutes 

Lineages 

HCHO (n = 8 athletes) and PCHO (n = 10 athletes) diets resulted in only minor, subtle changes in 

microbial community composition. RDA and Anosim did not identify any significant associations 

between microbial community composition and HCHO and PCHO diets and no differences in alpha 

diversity were observed between BL and post dietary interventions. Furthermore, the HCHO and 

PCHO diets did not result in any significant changes in the relative abundance of any specific taxa 

once adjustments were made for multiple testing using false discovery rate according to MELR 

analysis. 

The less stringent tests LefSe and sPLS-DA did identify a restricted range of bacterial taxa affected 

by these diets. LefSe found an increase of Clostridiales, in particular, Ruminococcaceae, 

Coprococcus spp. and Akkermansia muciniphila in athletes consuming the PCHO diet relative to their 

BL profiles and an increase of Clostridiaceae, Lachnospiraceae and Ruminococcaceae in athletes 

consuming the HCHO diet (Appendix Figure 7.7a and b). The sPLS-DA suggested that OTU’s 

assigned to Unclassified (Unc.) YS2, Akkermansia, Bifidobacterium and Streptococcus spp. were 

increased whereas Bilophila was decreased following consumption of the PCHO diet (Figure 4.2). 
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Figure 4.2 Genera differentiating between the stool microbiota profiles of athletes at baseline (BL, 

red) and after their consumption of the Periodised Carbohydrate diet (PCHO, blue) identified by 

sPLS–DA (a); The sPLS-DA ordination plot of these same data for each athlete, the ellipsoids 

represent 95% confidence intervals for each sampling period (b).  

 

The relative abundances of Unc. YS2, Streptophyta and Clostridiaceae were all increased in athletes 

who consumed the HCHO diet compared to their BL samples, whereas OTUs assigned to 

Unclassified RF39 and Sutterella spp. were enriched and discriminatory of their BL samples (Figure 

4.3). Collectively, these results show that the effects of consuming a carbohydrate-rich diet in these 

athletes was subtle and principally restricted to members of Firmicutes lineage. 
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Figure 4.3 Genera differentiating between the stool microbiota profiles of athletes at baseline (BL, 

red) and after their consumption of the High Carbohydrate diet (HCHO, blue) identified by sPLS–

DA (a); The sPLS-DA ordination plot of these same data for each athlete, the ellipsoids represent 

95% confidence intervals for each sampling period (b).  

 

4.4.3 The Low Carbohydrate High Fat Diet Results in More Profound Effects on the Gut 

Microbiota 

The LCHF diet (n = 10 athletes) had a stronger impact on the stool microbiota profiles of the athletes 

than the HCHO and PCHO diets. RDA and Anosim both identified significant differences (p = 0.020 

and p = 0.029 respectively) between the stool microbiota profiles of athletes at BL and following the 

consumption of the LCHF diet (Figure 4.4a and b).  
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Figure 4.4 (a) Redundancy analysis (RDA) and (b) Anosim plots of the stool microbiota profiles for 

athletes either at baseline (BL, red) or after consuming the Low Carbohydrate High Fat (LCHF) diet 

(blue). In panel (b) the between plot is a measure of the magnitude of difference in profiles between 

the samples collected at BL and after consumption of the LCHF diet. Both analyses showed that the 

differences in the stool microbiota profiles between the two sampling periods are statistically 

significant (p= 0.005 and 0.029, for RDA and Anosim analyses, respectively).  

 

However, there was no significant change in the alpha diversity between BL and post LCHF 

consumption (Appendix Figure 7.8). Furthermore, the LCHF diet resulted in a significant reduction 

in the relative abundances of Faecalibacterium spp. (p = 0.0003), an increase in Dorea spp. (p = 

0.007) and several OTUs assigned to the genus Bacteroides (p = 0.002) (Figure 4.5 a-c). These results 

were further verified using Wilcoxon rank t-test (p = 0.002, p = 0.01, p = 0.003 respectively) 

(Appendix Figure 7.9). 
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Figure 4.5 Mixed effect linear regression (MELR) analysis after consumption of the Low 

Carbohydrate High Fat (LCHF) diet identified significant reductions in the relative abundances of 

Faecalibacterium ((a), p = 0.0003) and significant increases in the relative abundance of both Dorea 

((b), p = 0.0068) and Bacteroides ((c), p = 0.0022) Here, sampling time point was set as a fixed effect 

and athlete as a random effect. Baseline (BL) and LCHF refer to the relative abundances of these taxa 

measured at baseline and after consumption of the LCHF diet, respectively. Those data collected from 

the same athlete are connected by the lines.  

 

Analysis using LefSe also identified an increase of Dorea as well as Enterobacteriaceae in response 

to the LCHF diet and a reduction of Faecalibacterium and Bifidobacterium spp. (Appendix Figure 

7.10a and b). The sPLS-DA further found an increase in the relative abundance of OTUs assigned to 

Unc. Peptostreptococcaceae, Unc. RF39, Unc. Enterobacteriaceae and Unc. Barnesiellaceae and 

Akkermansia; while the relative abundances of Bifidobacterium, Veillonella, Streptococcus, 

Faecalibacterium, Succinivibrio, Odoribacter and Lachnospira spp. were reduced after consumption 

of the LCHF diet (Figure 4.6). In summation, these results suggest that the LCHF diet results in a 

stronger selective pressure on the gut microbiota of these athletes than the HCHO or PCHO diets, 

which were closer to their typical diets, leading to an increase in the relative abundance of bacterial 

taxa with recognised capabilities for lipid metabolism. 
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Figure 4.6 Genera differentiating between the stool microbiota profiles of athletes at baseline (BL, 

red) and after their consumption of the Low Carbohydrate High Fat diet (LCHF, blue) identified by 

sPLS–DA (a); The sPLS-DA ordination plot of these same data for each athlete, the ellipsoids 

represent 95% confidence intervals for each sampling period (b).  

 

4.4.4 Bacteroides and Dorea spp. Abundances are Negatively Correlated with Athlete 

Performance Measures Following Consumption of the LCHF Diet 

Based on the statistically significant differences in Bacteroides, Faecalibacterium and Dorea 

observed between the stool microbiota profiles of those athletes consuming the LCHF diet and their 

BL samples, these data were compared with various physiological and performance measures also 

collected at the beginning and the end of the diet-training period as part of the Supernova 1 study. 

Although no significant correlations were found between these taxa and any performance measures 

at BL, significant negative correlations (Spearman test) were apparent after consumption of the LCHF 

diet between Bacteroides abundance and fat oxidation (r = −0.72, p = 0.02); and Dorea spp. 

abundance and exercise economy (r = −0.65, p = 0.04, Figure 4.7). 
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Figure 4.7 The relationship between (a) the abundance of Bacteroides spp. and fat oxidation and; (b) 

the abundance of Dorea spp. and economy test, for athletes after their consumption of the low 

carbohydrate high fat diet. The Spearman correlation coefficient and p values for each are also shown 

and were statistically significant.  

 

4.4.5 Is There a LCHF × Enterotype Interaction? 

Given the LCHF diet had the strongest impact on the faecal microbiome of athletes and there was a 

balanced distribution of athletes between the Bacteroides (n = 5) or Prevotella (n = 4) enterotype at 

BL, we also examined whether there was a diet × enterotype interaction evident in these athletes. 

Interestingly, while all the athletes did show a decrease in the relative abundance of specific 

Prevotella affiliated taxa and an increase in the relative abundance of specific Bacteroides-affiliated 

taxa (Appendix Chart 7.1 and Chart 7.2) these alterations were not sufficient to disrupt their 

“enterotype.” 

Rank tests revealed there was also a significant (p < 0.05) reduction in the relative abundance of 

Faecalibacterium following the LCHF diet intervention, independent of their BL enterotype. In 

contrast, Bifidobacterium was significantly reduced and Sutterella increased in those athletes with a 

Bacteroides enterotype, whereas Unclassified members of Clostridiales were significantly increased 

in the athletes with Prevotella enterotype (Figure 4.8). Taken together, these findings suggest there 

were also LCHF × enterotype interactions in this athlete cohort. 
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Figure 4.8 Rank test of the changes in relative abundances of specific bacterial taxa between baseline 

(red) and following consumption of the Low Carbohydrate High Fat diet (LCHF, blue), when athletes 

are stratified according to their stool enterotype being either “Prevotella-dominant” (a) or 

“Bacteroides-dominant” (b) In athletes assigned to either enterotype, there was a reduction in the 

relative abundance of Faecalibacterium following consumption of LCHF diet. In those athletes with 

the Prevotella-dominant enterotype, a significant increase in Unc. Clostridiales was observed (p < 

0.05); whereas a significant reduction in Bifidobacterium and an increase in Sutterella was observed 

in athletes with the Bacteroides-dominant enterotype following consumption of the LCHF diet (p < 

0.05 in both instances). * represents significant differences (p < 0.05).  

 

4.5 Discussion 

Diet is now widely accepted as one of the major determinants of the composition and function of the 

gut microbiota, with concordant impacts on our nutrition and health. However, despite the robust 

evidence that diet is a critical factor in the metabolism and performance of endurance exercise/sport 

(122), very few studies have reported on the effect of specific dietary patterns during periods of 

intensified training on athlete physiology and the gut microbiota. Unfortunately, logistical constraints 

precluded the recruitment of a matching non-athlete (non-race walkers) cohort and the provision of 

comprehensive data on their habitual diet (i.e., prior to baseline). However, our study does provide 
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the first in-depth investigations of the effect of dietary interventions for periods of intensified training 

on the gut microbiome of elite athletes and is empowered by the repeated measures for each athlete. 

This not only provides a direct comparison of their stool microbiome pre- and post-intervention but 

also the capacity to compare how any changes in the gut microbiome might be correlated with athlete 

performance measures. Thus, our study still provides valuable insights about the diet, microbiome 

and performance interactions.  

The baseline samples from this study provided some insight into the gut microbiota profiles of elite 

endurance athletes (race walkers) when consuming their habitual diet ahead of intensified training. 

Our results show that the stool microbiota of race walkers could be clearly separated into two principal 

“enterotypes”: one being Prevotella-predominant (7/29) and another Bacteroides-dominant (20/29). 

In general terms, these two “enterotypes” bear similarities with those originally proposed by 

Arumugam et al. (123) from their analyses of cohorts of both patient and healthy subjects drawn from 

the general communities of western European countries; the enterotypes were also reported in a recent 

study of amateur and professional level cyclists by Peterson et al. (68). From their study of healthy 

non-athlete volunteers, Wu et al. (124) proposed that long term dietary patterns were the primary 

determinant of the persistence of either a Bacteroides or Prevotella enterotype, with diets favouring 

animal protein and fats supporting a Bacteroides-dominant enterotype; whereas a carbohydrate/fibre-

rich diet favoured the establishment of the Prevotella enterotype. In that context, while Clarke et al. 

(63) did not report there being similar enterotypes to those noted above, the stool microbiota profiles 

of professional rugby players could be differentiated from the BMI-matched and normal BMI non-

athletes by an increased relative abundance of taxa assigned to Akkermansia, Succinivibrionaceae, 

S24-7, RC9 and Succinivibrio. In our study, a single athlete could be separated from the two 

enterotypes noted above, because of the remarkable relative abundances of methane-producing 

archaea (Methanobrevibacter) and succinate-utilizing bacteria (Succinivibrio), as well as unclassified 

members of the phylum Tenericutes, order RF39 and Anaeroplasmatales. It is still unclear as to extent 

which environmental, genetic or lifestyle factors might contribute to the presence of enterotypes in 

the human gut microbiome, as host physiological factors such as BMI, age and so forth, do not seem 

to be strong drivers of these profiles. However, Vandeputte et al. (125) recently revealed that the total 
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bacterial load of the stool sample can be strongly associated with the enterotype predicted from the 

same stool sample. Furthermore, Korean et al. (126) have suggested that analytical factors such as 

the OTU picking method and the taxonomic level at which the data are studied, as well as the distance 

metric(s) and cluster scoring methods used, can also have some influence on data resolution and 

enterotype predictions. Here, our analytical methods clearly revealed the presence of enterotypes 

consistent with those reported for healthy mainstream subjects as well as other categories of elite 

athletes. Our analyses also suggest these enterotypes were resilient to change during the 3-week 

dietary intervention periods. Taken together, it therefore seems plausible that like in other healthy 

mainstream subjects, the stool microbiota enterotype of these elite athletes are resilient to short-term 

changes in their diet. Based on these results, future studies of elite athletes and/or where the number 

of subjects that can be recruited into the study might be constrained, a prospective assessment of the 

gut microbiome and enterotype representation be undertaken; to determine how subjects might be 

assigned to different interventions/treatments and to assess diet x enterotype interactions.  

Clarke et al. (63) reported significantly a greater relative abundance of Akkermansia in Irish rugby 

players as compared to the non-athlete controls and Peterson et al. (68) reported the presence of 

Akkermansia in 30/33 cyclists in their study. Here, OTUs assigned to the genus Akkermansia were 

detectable in some but not all the athletes and the different diets used here also appeared to have a 

limited effect on the relative abundance and/or prevalence of this genus. It is plausible that the 

difference in the relative abundance and/or prevalence of Akkermansia spp. between the specialist 

athlete groups could be linked with the differences in their dietary protein intake (16–17% daily 

caloric intake in race walkers, as compared to 22% in rugby players (63) and ~33% by most 

professional level cyclists (68). However, future studies need to be conducted to establish this 

hypothesis. 

The relative abundance of Faecalibacterium spp. was found to be decreased in athletes after their 

consumption of the LCHF diet. Interestingly, previous studies have not remarked on the relative 

abundance of this bacterium in athletes, despite it being one of the most abundant bacterial taxa 

present in the gut microbiota of healthy mainstream subjects. Faecalibacterium prausnitzii is also 
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widely recognised for its production of a suite of metabolites and peptides with anti-inflammatory 

effects (127). Studies with rodent models and human subjects of obesity and type 2 diabetes have 

shown reductions in the relative abundance of F. prausnitzii associated with these conditions. High-

fat diets are likely to change the both the amounts and profile of bile acid secretions reaching the large 

intestine (128), which could also result in reductions in the relative abundance of Faecalibacterium 

spp., as it is known to be a bile sensitive bacterium (129,130). Taken together, the significant 

reduction in the relative abundance of Faecalibacterium spp. in response to the consumption of the 

LCHF diet is both plausible and the potential effects of this change should be further investigated. 

The comparative analyses also showed there was an increase in the relative abundance of Dorea spp. 

in response to consumption of the LCHF diet. This finding is consistent with those reported from 

rodent-based studies of obesity and lipid metabolism using high-fat diets (131–133). Interestingly, 

positive associations have been reported between the relative abundance of Dorea spp. with serum 

total cholesterol and LDL concentrations in high fat-induced hyperlipidaemic rats (134). Furthermore, 

while the relative abundance of Dorea spp. is consistently increased by high-fat diets, this change can 

be counteracted in rats by the supplementation of their diets with either mono- or tributyrin; and both 

compounds are also associated with reductions in liver and serum biomarkers of hyperlipidaemia 

(134,135). Presently, much less is known about the possible roles of Dorea spp. in human obesity 

and lipid metabolism, but our findings provide further evidence that such studies are warranted. 

Despite the resilience of an athlete’s stool enterotype to short-term dietary change, there was a notable 

increase in the relative abundance of Bacteroides spp. in those athletes that consumed the LCHF diet. 

As noted above, high fat diets tend to increase bile acid secretion into the gut and David et al. (16) 

have reported an increase in the abundance of bile-tolerant bacteria in human subjects who consume 

a diet rich in animal-based proteins and fats and Bacteroides spp. are well recognised for their 

resistance to these host secretions. In that context, Wu et al. (124) have previously reported strong 

positive correlations between members of this genus and the intake of dietary fat- and protein-based 

nutrients as reported by questionnaire. Similarly, Shankar et al. (136) reported the gut environment 

of the group of US children studied was rich in metabolites arising from animal proteins and fats and 

Bacteroides-dominated; as compared to Egyptian children with greater concentrations of short chain 
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fatty acids and fibre-degrading genes and a Prevotella-dominated microbiota. In the larger, parent 

study supporting the research presented here (Supernova 1), Burke et al. (99) found that although all 

dietary groups improved their aerobic capacity over the 3-week training block, the LCHF diet was 

associated with a negative effect on exercise economy and performance in the elite race walkers, 

when compared to those athletes consuming either the HCHO or PCHO diets. Interestingly but 

somewhat paradoxically, our analyses revealed that after the consumption of the LCHF diet, the 

relative abundance of Bacteroides spp. was significantly negatively correlated with fat oxidation; and 

that the relative abundance of Dorea spp. was significantly negatively correlated with the economy 

test, measured as described by Burke et al. (99). Such findings suggest that an individual’s 

responsiveness to such a diet is complex and perhaps, can also be affected by the amount of dietary 

fat that actually reaches the distal gut, where it may have associative effects on the gut microbiota of 

the nature reported here. 

 

In conclusion, the stool microbiota profiles of elite endurance athletes bear gross similarities to those 

reported for healthy mainstream and other elite endurance athletes, in so far as the representation of 

Bacteroides and Prevotella-dominated enterotypes. While these enterotypes appear relatively stable 

in response to short-term changes in diet and despite the relatively small number of subjects available 

for study, a ketogenic low carbohydrate, high fat diet was still found to invoke significant alterations 

in the relative abundances of some key bacterial taxa. Although the findings of this pilot study cannot 

differentiate between cause versus consequence, the findings do justify the need for more detailed 

longitudinal studies that examine how diet x microbiome interactions may be better understood and 

managed to optimize athlete training and performance.  
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4.6 Published journal article detailing work carried out in Chapter 4 

          PubMed link of the published article: https://www.ncbi.nlm.nih.gov/pubmed/30682843 

 

 

  

https://www.ncbi.nlm.nih.gov/pubmed/30682843
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Chapter 5 Diets with different prebiotic content differentially alter the gut 

prokaryote and fungal microbiota 

 

5.1 Abstract 

Background: Prebiotics are defined as materials that, upon ingestion, can stimulate the growth of 

“beneficial” gut bacteria. Prebiotics are often consumed as dietary supplements (e.g. as powders or 

capsules) and while the impacts of this modality have been extensively examined, less attention has 

been given to diets prepared from foods containing varying amounts of prebiotics, and how 

differences in the “in situ” consumption of prebiotics might affect the entire gut microbiome (i.e. 

bacteria, archaea and fungi).   

Methods: In this randomised, single-blinded crossover study, stool samples were collected from 18 

healthy adult subjects after their consumption for three weeks of a diet prepared to provide either a 

low prebiotic content (LP 1-3 g/day oligosaccharides; 0.50 g/day polyols) or moderate prebiotic 

content (MP 6-8 g/day oligosaccharides; 3.66 g/day polyols), with a one week washout period 

between these diets. Stool DNA was extracted and subjected to prokaryotic 16S rRNA, fungal ITS2, 

and shotgun metagenomic sequencing (MGS). The taxonomic and functional gene profiles observed 

for the stool microbiota were examined and compared using the QIIME2 and HUMAnN2 

bioinformatic workflows, respectively.  

Results: Both 16S rRNA and MGS data analysis showed that Bifidobacterium spp. were significantly 

increased with the MP diet, with commensurate reductions in bacterial richness. While 

Saccharomyces spp. were the most abundant fungal group across entire cohort and for both diets, the 

ITS2 profiles indicate that fungal richness is increased in response to MP. The MGS data also 

reflected these trends and also showed that genes encoding polyol metabolism were enriched 

following consumption of the MP diet. Both diets supported distinct inter-Domain networks, 

indicative of changes in fermentation profiles and gas production.    

Conclusions: A diet comprised of foods providing a moderate daily intake of prebiotics in healthy 

subjects increases the relative abundance of Bifidobacterium but reduces bacterial and increases 
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fungal richness scores. The archaeal and fungal communities in these subjects were also impacted by 

the prebiotic content of the diet, and these inter-Domain relationships warrant further examination in 

the context of diet x microbiome interactions affecting gut function.       

 

What are the new findings? 

➢ The MP diet is associated with a significant increase in the relative abundance 

of Bifidobacterium spp. according to both 16S rRNA gene amplicon and MGS data.  

 

➢ The increase in Bifidobacterium spp. in healthy subjects was associated with reduced bacterial 

richness whereas an increase in fungal richness following consumption of MP diet. 

 

➢ Genes encoding polyol metabolism and phosphoenolpyruvate:sugar phosphotransferase 

system (PTS) pathways were enriched following MP dietary intervention. 

 

➢ Diet-related inter-Domain relationships were more effectively revealed by a combination of 

taxonomic profiling and MGS, rather than either approach alone.   

 

How might it impact on clinical practice in the foreseeable future? 

Diet is widely accepted to exert meaningful impact on the gut bacteria of healthy human subjects, but 

there is limited understanding of the impacts of diet on the non-bacterial members of these 

communities. These studies show there is are plausible links between the prebiotic content of the diet 

and the gut mycobiome and methanogenic archaea in healthy individuals, and the characterization of 

these inter-Domain relationships are relevant to improving our understanding of the consequences of 

diet on gut function.   
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5.2 Introduction 

According to the latest definition proposed by Gibson et al., prebiotics refer to “a substrate that is 

selectively utilised by host microorganisms conferring a health benefit” (137). While the prebiotic 

concept has expanded to include non-carbohydrate compounds (e.g. plant polyphenols) as well as the 

site of the beneficial effects of prebiotics beyond the colon; the most common and diverse class of 

prebiotics are indigestible short and medium chain-length oligosaccharides, which pass undigested 

through the upper GI tract and impart their impacts on the colonic microbiota, and particularly, 

bacteria such as Bifidobacteria and Lactobacillus Whereas probiotics includes live microorganisms 

such as Bifidobacteria and Lactobacillus, prebiotics are substrates that serve as nutrients for beneficial 

microbes residing in the gut (20). Certain soluble fermentable fibres can have prebiotic effects if they 

are selectively utilised by the host microbiota and promote health (41,138). However, not all dietary 

fibres can be classified as prebiotics. A prebiotic should elicit a biased response towards health-

promoting bacteria unlike dietary fibres such as pectins and xylans that favours the growth of a wide 

range of bacteria (137).  

Prebiotics such as inulin-type fructans (ITF), as well as arabinoxylan oligosaccharides (AXOS), 

fructooligosaccharides (FOS) and galactooligosaccharides (GOS) have all been reported via 

individual studies to increase the abundance of Bifidobacteria and other lactic acid bacteria 

(87,88,139–141). Furthermore, the bifidogenic effects of ITF and AXOS are attributed to the ability 

of Bifidobacteria to take up and degrade larger oligosaccharides, and cooperative relationship with 

microbe(s) capable of cross feeding on its fermentation products and monosaccharides (142–144). 

Such a cooperative interaction of Bifidobacterium with butyrate producers such as Anaerostipes spp. 

and Eubacterium spp. would also help explain how AXOS and ITF positively affect colonic butyrate 

concentrations (144,145).  

Although the effects of prebiotic “fibre” interventions such as inulin, FOS, GOS, AXOS on the gut 

microbiota have been relatively well studied, a recent systematic review and meta-analysis by So et 

al. (146) compared studies on fibre and prebiotics supplementation in healthy subjects, and has 

provided some interesting insights. This systematic review was based on 64 studies involving 2099 
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healthy human participants, and met the inclusion criteria of: a) randomised controlled trial (RCT), 

cluster RCT, or quasi-RCT; b) studies involving healthy adult participants (≥18 y of age); c) dietary 

interventions aimed at increasing fibre intake; d) studies that included a placebo for supplement 

interventions and either a low-fibre control or habitual diet group for food interventions as 

comparative groups and; e) studies that measured fecal microbiota related outcomes at the end of 

intervention. Based on this meta-analysis, So et al. (146) concluded that while prebiotics (and 

particularly, fructans and GOS) consistently increase the abundance of Bifidobacteria, a positive 

effect on other key “beneficial” bacterial taxa, including Roseburia spp., F. prausnitzii, E. rectale, 

and Ruminococcus bromii, as well as SCFA concentrations, was inconsistent , suggesting that the 

impact of prebiotics on the human gut microbiota is quite narrow and the beneficial effects arise from 

microbes other than the ones being routinely studied.  

Although much is reported about the effect of prebiotics on human gut bacterial communities, there 

appears to be little information about the impacts of different prebiotic carbohydrates on the gut 

archaeal and fungal communities in health and disease. Fungal communities rumen microbiomes 

communities have long been examined via the PCR-based amplification of Internal Transcribed 

Spacer (ITS) regions between the small-subunit ribosomal RNA (rRNA) and large-subunit rRNA 

gene (23, 24) and these approaches have recently been adapted for use with human stool samples 

(53). In that context, recent studies suggest that the Ascomycota, Basidiomycota and Zygomycota 

phyla are dominant in the gut of healthy human subjects (149,150). A study by Hoffmann et al. (61) 

in 98 healthy adults found that Candida relative abundance was strongly correlated with the recent 

(short term) consumption of dietary carbohydrates and negatively correlated with consumption of a 

diet with high protein and fat content. Furthermore, multiple studies conducted on both the fecal and 

mucosal tissue samples have reported an increase in the abundance of Candida spp. and a decrease 

in fungal diversity in Crohn’s disease patients (53–56). Few studies have revealed different fungal 

profiles in the healthy human gut with different types of diet (62,151). Candida was observed in 

samples from both the healthy vegetarian individuals and those on a western diet (62,151). Fungi 

Fusarium, Malassezia, Penicillium and Aspergillus were detected in more than 60% of the fecal 

samples collected from healthy vegetarian individuals whereas rarely detected in samples collected 
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from healthy individuals on a western diet suggesting the influence of diet on the gut mycobiome. 

Dysbiosis of the intestinal fungi have been associated with intestinal diseases such as IBD, colorectal 

cancer (CRC), colitis and obesity (24,28,33–35). Reduction in fungal diversity have also been 

reported in IBS subjects as compared to the healthy subjects (52). In summation, gut mycobiota seems 

to be an important participant in gut physiology and homeostasis and more in-depth research needs 

to be done to better understand the role of fungi in host health and how diet can be used to manage 

gut mycobiota.    

The human gastrointestinal tract, and the large bowel in particular, is also colonised by methanogenic 

Archaea (belonging to phylum Euryarchaeota), that produce methane as the end point of their 

anaerobic respiration. Methanobrevibacter smithii is the most prevalent and numerically abundant 

species, with Methanosphaera stadtmanae and the Methanomassiliiococcales found in lower 

numbers and are less prevalent (152,153). Methanobrevibacter spp. favours the hydrogen-dependent 

reduction of carbon dioxide and/or formate to methane (154) whereas the latter species appear 

restricted to the use of methanol (Methanosphaera spp.) and/or methylated amines 

(Methanomassiliiococcales  (155). As such, the populations of the methanogenic archaea will be 

governed by the provision of both hydrogen and specific carbon sources that are by-products of 

bacterial fermentation; suggesting that diet could have a potential impact on their abundance. 

However, the literature detailing the effect of diet on human gut methanogenic populations is scant. 

Hoffman et al. (61) reported in their study of healthy human subjects that there was a positive 

correlation between the relative abundance of Methanobrevibacter spp. and the intake of dietary 

carbohydrates, and accordingly, a negative correlation with dietary intake of proteins and amino 

acids. Additionally, the abundance of Methanobrevibacter spp. could be increased by a change in the 

subject’s habitual diet to include a greater amount of carbohydrates (61). In the human gut, when H2 

accumulates due to bacterial catabolism, archaeal growth is stimulated associated with the utilisation 

of H2 into methane (156). Thus, methanogenic archaea may play a key role via interspecies hydrogen 

transfer to sustain bacterial fermentation, similar to that observed in other animal gut systems (157–

159).   

https://www.sciencedirect.com/topics/immunology-and-microbiology/methanobrevibacter-smithii
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Methanogen prevalence and positivity is characteristic of persons deemed to possess slower 

gastrointestinal motility, irrespective of their health status or type of measurement used (160).  

Conversely, the relative abundance and prevalence of Methanobrevibacter spp. is frequently reported 

to be dramatically reduced in CD and UC patients from Western countries (161); although one small 

study has reported an increase in Methanobrevibacter spp. abundance in Indian IBD patients (162). 

Methanogen positivity is more frequent in patients suffering from IBS-C subtype, but infrequent in 

patients with IBS-D. Furthermore, recent studies suggest that Methanosphaera spp. are not only 

increased in IBD patients, but unlike the other two groups of methanogenic archaea, stimulates a 

strong proinflammatory response from gut-associated and peripheral immune cells (163,164). While 

the mechanisms underlying these pathologies are still unclear, these findings support the contention 

that diet x methanogen interactions may be relevant in terms of both gut function and host response 

via both arms of the immune system.  

 

In summary, there are only a small number of studies that have collectively examined the bacteria, 

mycobiome and archaeal populations within the human large bowel; although these studies suggest 

all three Domains of microbial life can affect the health and well-being of their host. I believe a better 

understanding of how diet influences these communities, and their interactions, is now possible by 

an integrated use of methods that provide taxonomic (i.e. 16S rRNA and ITS2) and functional (i.e. 

shotgun metagenomics sequencing) information of these communities. Here, I have applied this 

collection of methods to examine the effects of natural prebiotic diets on the gut bacterial, fungal and 

archaeal communities of healthy adult Australians, recruited as part of a randomised single-blinded 

crossover study of the impacts of these diets on other indices of colonic health. I present here the 

analyses of these data from the context of diet x microbiome interactions, and more specifically, how 

the amount and/or form of the daily intake of prebiotics impacts the diversity and inter-Domain 

relationships among the large bowel microbiota.    

 

 



  

77 

 

The aims of the current research are to characterize the changes in bacterial microbiota of the subjects 

in response to prebiotic diets through 16S rRNA analysis, study the fungal mycobiome of these 

subjects in response to the prebiotic diets using ITS2 sequence analysis, gain deeper insight into the 

taxonomic composition and metabolic potential of the gut microbiome by whole metagenome 

shotgun sequence analysis and studying how the natural prebiotic content of the diet affects the 

dynamic interrelationships of all three domains of microbial life (Bacteria, Archaea and Fungi) 

resident in the human gut.  

 

5.3 Materials and methods  

5.3.1 Study design and sample collection 

This research has been done in collaboration with colleagues at the Translational Nutrition Science 

group in the Department of Gastroenterology, Central Clinical School, Alfred Hospital and Monash 

University (under ethics approvals MUHREC CF14/2904, 2014001593 and UQHREC 2015000317). 

The aim of the study was to examine the responses of healthy adults to high fibre diets (~30 g/day) 

prepared to provide either a low (1-3 g/day oligosaccharides; 0.50 g/day polyols) or moderate (6-8 

g/day oligosaccharides; 3.66 g/day polyols) intake of prebiotic carbohydrates (hereafter referred to as 

LP and MP, respectively, Table 5.1). The healthy volunteers (n=18) were recruited by the Monash 

team and the study was conducted via this site as a randomised, single-blinded crossover study, with 

the LP and MP diets provided for three weeks and with a one week “washout period” in between 

(Figure 5.1). All the meals of the two diets LP and MP were prepared by university chefs at Monash 

University. The meals were delivered as frozen meals to the participant's homes weekly for the three-

week interventions. Food diaries were recorded, and compliance was measured from returned food 

diaries. These diaries were checked by the research dietician. SCFA measurements were also made 

by the Monash team. Briefly, SCFA concentrations were made in triplicates from the fecal contents 

by gas chromatography. Total SCFA (sum of SCFA) and individual SCFA (acetate, propionate, 

butyrate) concentrations were reported as µmol/g of fecal matter. SCFA data has been used in Chapter 

6. For microbiota analyses, stool samples were collected from the subjects using the OMNIgene stool 
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collection kit and provided as part of their site visits at entry, and after each of the three-week dietary 

intervention periods.   

 

 

Figure 5.1 showing the study design.  
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Table 5.1 Compositional attributes of the LP and MP diets consumed during the study period 

 Low Prebiotic (LP) diet Moderate Prebiotic (MP) diet p-value 

Sample size 18 18  
Energy (average kJ/day) 8419.38 ± 1430.87 8432.44 ± 1346.58 0.97 

Protein (g) 99.78 ± 14.40 99.30 ± 15.43 0.92 

Fat(g) 78.43 ± 18.40 72.42 ± 14.65 0.28 

Saturated fat(g) 27.16 ± 6.63 23.97 ± 4.90 0.1 

Carbohydrates (g) 206.93 ± 32.95 220.31 ± 34.16 0.24 

Sugars (g) 84.84 ± 16.77 93.67 ± 16.36 0.12 

Dietary fibre (g) 29.80 ± 5.22 35.77 ± 5.64 0.002 

Total oligosaccharides (g) 1.92 ± 0.62 7.02 ± 1.54 <0.001 

Fructans (g) 1.63 ± 0.60 5.31 ± 1.22 <0.001 

GOS (g) 0.29 ± 0.08 1.73 ± 0.39 <0.001 

Excess fructose (g) 1.28 ± 0.34 6.84 ± 1.73 <0.001 

Total polyols (g) 0.50 ± 0.17 3.66 ± 0.77 <0.001 

Sorbitol(g) 0.34 ± 0.11 2.10 ± 0.60 <0.001 

Mannitol (g) 0.16 ± 0.10 1.56 ± 0.32 <0.001 

Note: Data are shown as mean ± standard deviation 

 

5.3.2 Genomic DNA extraction and 16S rRNA library preparation and sequencing 

Stool DNA extractions, preparation of the 16S rRNA bar-coded amplicon libraries and sequencing 

workflows followed the protocols described in Chapter 2.  

5.3.3 ITS2 sequencing and library preparation 

Fungal library preparation and sequencing was performed at the Australian Centre for Ecogenomics 

(ACE) according to the methods described by Sokol et al. (53) which targets the Internal Transcribed 

Spacer 2 (ITS2) using primers 5’-GTGARTCATCGAATCTTT-3’ and 5’-

GATATGCTTAAGTTCAGCGGGT-3’. The ITS2 amplicon library preparation protocol 

(METABIOTE®, Genoscreen, Lille, France) was used and stool DNA was used as the template for 

PCR under the following conditions: 94°C for 2 min, 35 cycles of 15 sec at 94°C, 52°C for 30 sec 

and 72°C for 45 sec, followed by 7 min at 72°C. The resulting PCR amplicons were purified using 

Agencourt AMPure XP Beads (Beckman Coulters, Brea, CA). Purified DNA was indexed using 



  

80 

 

unique 8bp barcodes using the Illumina Nextera XT 384 sample Index Kit A-D (Illumina FC-131-

1002) and a second PCR of 9 cycles was then conducted under similar PCR conditions with Q5 Hot 

Start High Fidelity 2X Master Mix. Indexed amplicons were pooled in equimolar concentrations and 

sequenced on MiSeq Sequencing System (Illumina) with V.3 (300 bp) chemistry according to the 

manufacturer’s protocol.  

5.3.4 16S rRNA & ITS2 sequence bioinformatics analysis using QIIME2 

The bioinformatics analysis of the 16S rRNA and ITS2 amplicon sequence data presented here  have 

been processed using QIIME 2 (ver. 2018.8.0) (165), so those details different from those provided 

in Chapter 2 are described here. The raw sequence reads produced from the 16S rRNA and ITS2  

amplicon libraries were processed with FastQC (version 0.11.4, 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and then cutadapt (version 1.17) was 

used to remove those reads lacking primer sequences (166). Low quality reads were removed using 

Trimmomatic v0.32 (167) set with a sliding window of four bases using a Q-score criteria. All reads 

were then hard trimmed to 250 bases, and any with less than 250 bases were removed. The forward 

reads remaining following this procedure were then processed via QIIME2 for feature selection, 

abundance calculations and taxonomy assignments. First, the reads were de-noised (i.e. filtered, 

dereplicated, and chimeras identified and removed) using DADA2 (--p-trunc-len = 0) (168) and the 

relative frequencies of each resulting “representative feature sequence” were calculated. The 

taxonomies for these representative feature sequences were assigned by BLASTn alignments using 

the classify-consensus-blast function with default parameters, for each sequence against either the 

non-redundant SILVA (for 16S rRNA profiling: release 132, clustered at 99% identity, (169)) or 

UNITE (for ITS2 profiling: version 7.2, clustered at 99% identity (170)) databases. This feature table 

was then filtered to remove any sequences with a relative abundance of less than 0.01%, as well as 

those also deemed present in the control samples (i.e. reagents only), to produce a “filtered feature” 

table. Samples with less than 1000 reads were also removed from further analysis, of which 4 samples 

were excluded from the ITS2 dataset. The filtered feature table was rarefied to 16878 reads for 16S 

rRNA and to 1745 reads for fungal ITS2 sequence analysis.  
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5.3.5 Shotgun library preparation and sequencing  

Shotgun MGS library preparation and sequencing was conducted at UQ-ACE. Aliquots (10 ng) of 

genomic DNA from each sample was used for library construction with the Nextera DNA Flex 

Library Preparation Kit (Illumina #20018705) and bead clean up via the Mantis Liquid Handler 

(Formulatrix) and Epmotion (Eppendorf # 5075000301) automated platforms. Each library was then 

quantified, and QC was performed using the Quant-iTTM dsDNA HS Assay Kit (Invitrogen) as per 

the manufacturer’s protocol. The libraries passing QC were then pooled at equimolar amounts (2 nM) 

to create a sequencing pool. The library was then sequenced on the NextSeq500 (Illumina) using 

NextSeq 500/550 High Output v2 (2 x 150bp paired end) chemistry. 

5.3.6 Shotgun metagenome sequence (MGS) data analysis 

The workflow I have developed and used for these analyses is illustrated in Figure 5.2, and a brief 

description of the different modules is presented in Table 5.2. Illumina sequence adaptors were 

trimmed from the raw sequences using qc.illumina.py script and then concatenated the forward and 

the reverse trimmed reads into a single FASTQ file per sample. Human reads were removed from all 

the samples by mapping the reads against the human (hg19) database using bowtie2 (version 2.2.1) 

(171). Sequences that were unmapped to the human genome were used for taxonomic and functional 

pathways profiling using the HUMAnN2 pipeline (172). Taxonomy profiles predicted from the MGS 

data were produced using MetaPhlAn2 (173), and functional pathways were assigned to the MGS 

data using ChocoPhlAn as the reference pangenome database and UniRef50 as the protein reference 

database (i.e. assignments made for those reads with >50% identity). The output tables for each 

sample (gene families, pathway abundance and pathway coverage) were then joined using the 

humann2_join_tables.py function, normalised to copies per million (cpm) values and then reclassified 

into Gene Ontology (GO) and Protein Families (Pfam) categories, using the humann2_renorm_table, 

humann2_regroup_table and humann2_rename_table utility scripts. The resultant table was exported 

to QIIME and Calypso for downstream statistical analyses. FastQC was used to check the quality and 

Nonpareil was used to estimate the coverage of the metagenomic data (174,175). All the commands 

and the shell scripts used for these analyses are provided in the Appendix section.     



  

82 

 

5.3.7 Recovery and comparative genomics of Metagenome Assembled Genomes (MAGs)  

Trimmomatic v0.32 was used to trim adapter sequences and remove low-quality bases from the raw 

sequence shotgun sequence reads (167). These quality checked paired-end reads were then assembled 

using MEGAHIT (version 1.1.1) (176), and BamM (version 1.7.3) was used for read mapping and 

the generation of contiguous sequences (contigs). MetaBAT (version 0.32.4) was then used for 

binning and to recover the population genomes or Metagenome Assembled Genomes (MAGs) (177). 

CheckM (version 1.0.7) was finally used to check the quality of the recovered MAGs by estimating 

the percent contamination and completeness scores (178), and MAGs greater than 80% completeness 

and less than 10% contamination were used for comparative genome analysis. The MAGs were 

uploaded to Pathosystems Resource Integration Center (PATRIC) and the Similar Genome Finder 

service within PATRIC was used for taxonomic identification of the MAGs. Similar genome finder 

service compute genome distance estimation using MinHash (Mash) algorithm based on hierarchical 

clustering to the public genomes that are available on PATRIC (179,180).  

MAG alignments were constructed using progressiveMauve (181,182) which is a new method to 

align two or more genomes that have undergone rearrangements due to recombination. As such, 

progressiveMauve can accurately align regions that are conserved in some, but not all, of the genomes 

being compared; and it can also be applied to larger number (and more divergent set) of genomes 

than the original Mauve algorithm. The MAGs were also uploaded onto the software platform 

EDGAR for generation of an Average Nucleotide Identity (ANI) matrix and genome comparison 

(183). The ANI matrix provides a measure of nucleotide-level genomic similarity and compares 

genetic relatedness among prokaryotic genomes (184). I also used PATRIC to identify the 

carbohydrate degrading enzymes for each MAG. These enzymes were identified using the genome 

annotation service available within PATRIC which generates a features.txt file listing all the features 

of the genome.   



  

83 

 

 

Figure 5.2 Bioinformatics workflow developed for processing the shotgun metagenomics (MGS) data; developed in collaboration with Mr. Jing 

Jie. MGS data can be processed in two separate workflows as shown above: (Left panel) Community-based analysis that allows for the taxonomic 

and functional profiling of the microbial reads through HUMAnN2 pipeline after quality trimming the raw reads using Trimmomatic and removal 

of the human host reads using Bowtie2. (Right panel) The MGS data is also used to generate Metagenome Assembled Genomes (MAGs) where 



  

84 

 

the trimmed sequence reads are assembled using MEGAHIT, mapping the reads using BamM, then generating metagenomics bins using MetaBat 

and finally quality checking of the recovered bins or MAGs using CheckM. Only high-quality MAGs (completeness ≥ 80% and contamination ≤ 

5%) were then annotated using Prokka and comparative genome analysis performed using EDGAR and PATRIC.  

 

Table 5.2 Brief description of the modules used for the MGS data analysis 

Work module Reference Brief description 

Trimmomatic (167) Trimming tool to remove Illumina sequence adaptors 

Bowtie2 (171) Fast gapped read alignment tool to align against hg19 database for removing human reads from the 

samples 

BamM Github (a) BamM is used for mapping multiple sequencing libraries against an assembly 

MEGAHIT (176) Ultra-fast NGS de-novo assembler for assembling large and complex metagenomics data 

MetaBat (177) Tool for reconstructing single genomes from complex microbial communities 

CheckM (178) Tool to check the quality of genomes recovered from isolates, single cells or metagenomes 

PATRIC (185) Tool for curation of the genomic data or annotating the genomes 

Prokka (186) Tool for annotation of the genomes 

Metaphlan2 (173) For taxonomic profiling of the metagenomics shotgun data 

HUMAnN2 (172) For functional profiling of the metagenomics and metatranscriptomics data 

Github link: (a) http://ecogenomics.github.io/BamM/

http://ecogenomics.github.io/BamM/
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5.3.8 Statistical analyses  

Calypso (version 8.18), Prism8 and the R package were used for all statistical analyses, and all the 

scripts and the R-based code used are provided in the Appendix. The Shapiro-Wilk test confirmed 

the taxonomic count data were not normally distributed, and as such, were subjected to a square-

root transformation prior to repeated-measures statistical analysis in Calypso version 8.18 (187). 

Spearman’s correlations were also calculated from the non-normally distributed data, the correlation 

plots were made using the corrplot package, and the adjusted p values were calculated using the p-

adjust function in R. The threshold for statistical significance was set to p < 0.05 for all the analyses. 

The corrections for multiple testing by false discovery rate (FDR) with values < 0.05 were also 

considered to be statistically significant in mixed effect linear regression (MELR) and correlation 

analysis. 

 

5.4 Results 

5.4.1 Bacteria/Archaea community profiles based on 16S rRNA amplicon sequencing 

 Table 5.3 shows the Phylum-level assignments and prevalence rates of stool bacteria present when 

subjects consumed either the BL, LP, or MP diets. In general terms, the profiles are unremarkable, 

comprised predominantly of lineages affiliated with the Firmicutes, Bacteroidetes and Proteobacteria. 

Members of the Actinobacteria, Euryarchaeota, Lentisphaera, Verrucomicrobia and Tenericutes were 

found at lesser relative abundances but high prevalence rates; while Archaeplastida, Opisthokonta, 

SAR, and Synergistes were detected in only some of the samples. From these profiles, I have selected 

the 20 most abundant bacterial genera from across the cohort, and their relative abundances with the 

BL, LP and MP diets, are illustrated in Figure 5.2. Of these, 10/20 bacterial genera were found in all 

the samples (Bacteroides, Faecalibacterium, Blautia, Roseburia, Parabacteroides, Lachnospiraceae 

NK4A136, Ruminococcus1, Fusicatenibacter, Subdoligranulum and Collinsella). The most abundant 

genus was Bacteroides, frequently comprising >20% of the total bacterial community profile, 

although 9/50 samples possessed a much lower relative abundance (1%-7%). The Prevotella spp. 

could be divided into two distinct groups: Prevotella 7 and Prevotella 9 but were detected in only 
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32% and 22% of the samples respectively. Interestingly, the relative abundance of Prevotella 9 was 

notably greater (11%-21%) in those samples found to possess with low Bacteroides spp. Another 

10/50 samples were found to have Prevotella 7 with the relative abundance in the range of 2.61%-

18.30% and notably Prevotella 9 was not detected in these samples. Taken together, these results are 

consistent with the “enterotype” concept, with Bacteroides and Prevotella communities present. 

Notably, the top 20 groupings as part of QIIME2 include groupings annotated as “unclassified” 

(3.05%-21%), “uncultured” (0.44%-3.50%) and “uncultured_bacterium” (0.01%-25.27%). These 

groups relate to reads that via the SILVA database are either not assigned at the Domain level 

(unclassified), lack a cultured reference isolate (uncultured) or can’t be assigned beyond the family 

level of classification (uncultured bacterium). These results suggest that a notable proportion of the 

microbial communities of these subjects might be considered as microbial dark matter.  

Although the relative abundance of Bifidobacteria spp. compared to other bacterial taxa was low and 

as such, not included in the top 20 genera, there were still notable changes that appears attributable 

to consumption of the LP diet. In that context, Bifidobacteria spp. were detectable (0.005-4.78% of 

the rarefied data) in all stool samples following consumption of the BL and MP diets; whereas the 

genus was detected in only 13/18 samples collected after the LP diet, and also at a lower relative 

abundance (0.005-1.2%). These findings suggest that the LP diet was rate-limiting to the growth of 

Bifidobacteria in comparison to the subject’s habitual diet (i.e. BL) and the MP diet. Methanogenic 

archaea were also detectable in some of the stool samples. Methanobrevibacter spp. were the most 

prevalent and abundant, detected in 22/50 samples at 0.04%-7.03%; whereas Methanosphaera spp. 

were detected in 10/50 samples at 0.2%-2.0%.  
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Figure 5.3 The relative abundance scores for the top 20 bacterial “groupings” present in the stool 

samples collected from healthy adult subjects during consumption of their habitual diet (baseline, 

grey squares) and following their consumption of the LP (red triangles) and MP diets for three weeks 

(blue circles). These genera were ranked based on the mean relative abundance scores calculated from 

all the samples (i.e. n=50), based on the rarefied read counts. Those genera with a prevalence rate of 

100% are annotated by *. The groupings annotated as unclassified, uncultured and uncultured 

bacterium relate to reads that via the SILVA database are either not assigned at the Domain level 

(unclassified), lack a cultured reference isolate (uncultured) or can’t be assigned beyond the family 

level of classification (uncultured bacterium).   
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 Table 5.3 Total bacterial phyla and top 20 bacterial groupings abundance and prevalence in the samples .  

Phylum Range (%) Prevalence (%) Genus Range (%)  Prevalence (%)   

Actinobacteria 0.62-5.14 100 Bacteroides 1.22-39.32 100 

Bacteroidetes 24.46-43.67 100 Blautia 1.10-11.33 100 

Firmicutes 43.00-68.38 100 Collinsella 0.03-3.97 100 

Proteobacteria 0.47-8.56 100 Faecalibacterium 1.4-14.42 100 

Verrucomicrobia 0.01-5.1 80 Fusicatenibacter 0.05-3.32 100 

Lentisphaerae 0.01-3.41 78 Lachnospira 0.08-5.41 100 

Tenericutes 0.01-7.47 72 Lachnospiraceae NK4A136  0.14-5.40 100 

SAR 0.01-12.10 48 Parabacteroides 0.80-5.02 100 

Cyanobacteria 0.01-1.90 44 Roseburia 0.32-8.63 100 

Euryarchaeota 0.01-7.04 44 Ruminococcus 1 0.27-6.19 100 

Archaeplastida 0.01-9.11 24 Subdoligranulum 0.05-3.13 100 

Opisthokonta 0.01-1.24 24 Eubacterium hallii group 0.50-3.23 96 

Synergistetes 0.24-0.40 6 Alistipes 0.06-6.72 94 

 

Sutterella 0.47-4.47 68 

Prevotella 9 0.01-25.87 32 

Prevotella 7 0.01-18.30 22 

Asteroleplasma 0.01-25.60 16 
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5.4.2 Fungal community profiles based on ITS2-amplicon sequencing 

The fungal communities predicted from the ITS2 amplicon data are shown in Figure 5.4 and Table 

5.4.  The Phylum Ascomycota was found to be the most predominant with the relative abundance in 

the range of 54-100% and Saccharomyces the most abundant genus, present in all the samples with 

the relative abundance of 32-100% of the mycobiome. Other members of phylum Ascomycota such 

as Cladosporium, Candida, Penicillium and Kazachstania were detected in 52%, 43% ,41% and 13% 

of the samples respectively. (Figure 5.4 and Table 5.4). In addition to Ascomycota, members of the 

phylum Basidiomycota were detected in most but not all the samples (80% prevalence, Table 5.4), 

with  Agaricus and Malassezia the most abundant representatives, detected in 41% and 39% of the 

samples, respectively; and Rhodotorula and Cystofilobasidium detected in only 15% and 9% of the 

samples. In summation, the fungal profiles were dominated by members of phylum Ascomycota and 

particularly Saccharomyces, with lesser amounts of Agaricus and Malassezia (Basidiomycota) 

detected in some but not all samples. As such, these profiles are unremarkable relative to those found 

in other healthy human subjects.  

 

Figure 5.4 The relative abundance scores for the top 10 fungal genera present in the stool samples 

collected from healthy adult subjects during consumption of their habitual diet (baseline, grey 

squares) and following their consumption of the LP (red circles) and MP diets for three weeks (blue 

triangles). These genera were ranked based on the mean relative abundance scores calculated from 

all the samples (i.e. n=47), based on the rarefied read counts. Those genera with a prevalence rate of 

100% are annotated by *.   
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Table 5.4 Abundance and prevalence of phyla and top 10 fungal genera in the samples 

Phylum Genus 

Taxonomy Range (%) Prevalence (%) Taxonomy Range (%) Prevalence (%) 

Ascomycota 54.76-100 100 Saccharomyces (A) 31.80-100 100 

Basidiomycota 0.11-47.45 80.43478 Cladosporium (A) 0.06-40 52 

Mucoromycota 0.01 2.173913 Candida (A) 0.05-22.41 43 

 

Agaricus (B) 0.06-30.66 41 

Penicillium (A) 0.06-42.70 41 

Malassezia (B) 0.06-33.12 39 

Unclassified 0.06-95.64 33 

Rhodotorula (B) 0.11-36.10 15 

Kazachstania (A) 0.06-76.27 13 

Cystofilobasidium (B) 0.11-21.26 9 

Note: A and B refers to phylum Ascomycota and phylum Basidiomycota respectively.  

 

The relative abundance and the prevalence data obtained from both the PCR based and MGS methods is shown from all the samples collected at BL and 

post LP and MP dietary interventions. However, the statistical analysis has only been performed with the data collected following the consumption of 

either the LP and MP diet.
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5.4.3 The MP diet differentially affects bacterial and fungal richness scores but not other 

measures of alpha diversity. 

The Shannon diversity measures for the Bacterial/Archaeal and the Fungal communities were not 

significantly different from each other after consumption of the LP and MP diets (Figure 5.5a and d). 

This alpha diversity (i.e. within sample) metric is a representation of both the richness and evenness 

of the respective communities, so I then attempted to compare the bacterial and fungal species 

evenness and richness scores independently. There were no apparent differences in the evenness 

scores measured for both domains following consumption of the LP and the MP diets (Figure 5.5b 

and e). In contrast, the richness scores for Bacteria/Archaea and Fungi groups did show significant 

and contrasting differences in response to the MP diet, with Bacteria/Archaea richness decreased 

(p=0.05, Figure 5.4c) whereas the fungal richness scores increased with the MP diet. (p=0.02, Figure 

5.4f). These results suggest that the increase in dietary prebiotic intake has measurable but differential 

effects on the Bacteria/Archaea and fungal diversity in healthy subjects. 
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Figure 5.5 Alpha diversity measures calculated for prokaryotic (16S rRNA) and fungal (ITS2) data. There is a reduction in prokaryotic richness (p=0.052) 

and significant increase in fungal richness (p=0.025) when subjects consumed a diet with moderate prebiotic content. 
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5.4.4 MELR, LefSe and sPLS-DA analysis shows that both prokaryote and fungal taxa are specifically affected by the prebiotic content of the 

diet  

MELR analysis of the 16S rRNA and ITS2 data comparing the LP and MP diets (Figure 5.6) showed there were significant increases in the relative 

abundances of Anaerostipes (p < 0.001, FDR < 0.001) and Bifidobacterium (p < 0.001, FDR < 0.001) and a decrease in the relative abundance of 

Butyricoccus (p= 0.001, FDR= 0.022). The MELR analysis of the fungal ITS2 data also identified shifts in response to the prebiotic diets, with 

consumption of the MP diet associated with increases in the relative abundance of Candida (p=0.003, FDR= 0.087), Agaricus (p=0.033, FDR= 0.2) and 

Aspergillus (p=0.027, FDR= 0.2) (Figure 5.6). However, these changes in fungal taxa were not statistically significant once FDR correction was applied. 

Interestingly, the bacterial taxa noted above were not included as part of the top 20 most abundant genera ( Table 5.3) suggesting that the lesser 

abundant/dominant bacterial communities are more sensitive to the prebiotic content diets. In contrast, both Candida and Agaricus were among the top 

10 most abundant fungal genera (Table 5.4).  
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Figure 5.6 Mixed effect linear regression (MELR) analysis of 16S rRNA and ITS2 data identified significant increase in the relative abundance of 

bacteria Anaerostipes (p < 0.001, FDR < 0.001) Bifidobacterium (p < 0.001, FDR < 0.001) and significant decrease in the relative abundance of 

Butyricicococcus (p = 0.001, FDR= 0.022) after consumption of the Moderate Prebiotic (MP) diet. MELR also identified increase in the relative 

abundance of Candida (p = 0.003, FDR = 0.087) Agaricus (p = 0.033, FDR = 0.2) and Aspergillus (p = 0.027, FDR = 0.2) after consumption of the 

Moderate Prebiotic (MP) diet. Here, sampling time point was set as a fixed effect and individual subject as a random effect. Low Prebiotic (LP) and 

Moderate Prebiotic (MP) refer to the relative abundance of these taxa measured at LP and after consumption of the MP diet, respectively. Data collected 

from the same subject are connected by the lines. 
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LefSe and sPLS-DA analyses were then used in an attempt to identify any additional bacterial and/or 

fungal taxa that may be considered “discriminatory” for the communities observed following 

consumption of either the LP or MP diet. The LefSe analysis of the 16S rRNA and ITS2 profiles also 

showed that Bifidobacterium (LDA = 3.52) and Anaerostipes (LDA= 3.71) spp., as well as 

Aspergillus (LDA = 3.79) and Agaricus (LDA= 3.77), are discriminatory and enriched in response to 

consumption of the MP diet (Appendix Figure 7.11). The sPLS-DA analyses suggested that, in 

addition to Anaerostipes and Bifidobacterium, Prevotella 7 and members of Lachnospiraceae 

ND3007 group discriminate between the Bacteria/Archaea communities in response to the MP diet; 

and Haemophilus was discriminatory of the communities observed following consumption of the LP 

diet (Figure 5.7a).  

The sPLS-DA of the ITS2-derived profiles also supported the finding that Aspergillus and Agaricus 

are expanded and discriminatory in response to the MP diet, whereas Byssochlamys, Meira and 

Leucosporidium were discriminatory of the communities present following consumption of the LP 

diet (Figure 5.7b). Collectively, these results suggest that the prebiotic content of the diets affect both 

the bacterial and fungal community members in healthy subjects.  

 

 

Figure 5.7 Bacterial (16S rRNA) and Fungal (ITS2) genera differentiating the stool microbiota 

profiles of subjects after consumption of Low Prebiotic (LP; red) and after consumption of the 

Moderate Prebiotic (MP; blue) diet identified by sPLS-DA.
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5.4.5 Stool microbial communities inferred from MGS data  

Table 5.5 shows the genus and species level assignments and prevalence rates for the stool bacteria 

predicted from the MGS data and the 20 most abundant bacterial genera and species from across the 

cohort, and their relative abundance range from the samples collected at baseline, and after the LP 

and MP diets, are illustrated in Figure 5.8 and Table 5.5. Briefly, the profiles were similar to those 

identified from the 16S rRNA data with 9/20 of the most abundant bacterial genera shared between 

the datasets (Bacteroides, Faecalibacterium, Eubacterium, Subdoligranulum, Roseburia, Blautia, 

Coprococcus, Dorea and Parabacteroides). Bacteroides spp., were the most abundant with 2-65% of 

the MGS data assigned to this genus. At the species level, a number of Bacteroides (B. cellulosilyticus, 

B. dorea, B. massillensis, B. pectinophilus, B. plebeius, B. stercoris, B. uniformis and B. vulgatus 

comprised the list of the top 20 species detected in the samples. Furthermore, the variations in relative 

abundances of Bacteroides and Prevotella 9 observed from the 16S rRNA amplicon profiles was also 

retained within the MGS data; as those samples with a relatively small abundance of Bacteroides spp. 

(2-11%) possessed a greater abundance of Prevotella copri (18-43%), which according to the SILVA 

database, is a member of Prevotella 9 grouping. Similar to the 16S rRNA amplicon data, 

Faecalibacterium prausnitzii was found to be present in all the samples and the second most abundant 

taxon, representing 2-24% of the MGS data from individual samples. Additionally, Eubacterium spp. 

including E. eligens, E. rectale and E. halii were also abundant in the samples; and Subdoligranulum 

spp. and Ruminococcus obeum were detected in all the samples (Figure 5.8 and Table 5.5).  

In contrast to the 16S rRNA amplicon data, the representation and prevalence of methanogenic 

archaea within the MGS data was much less, but there was a detectable amount of viral DNA 

recovered from the samples. Methanobrevibacter spp. was detected in fewer samples (18/50 c.f. 

22/50) and frequently at a lesser relative abundance (0.2-2.5% c.f. 0.04-7%). The contrast was starker 

for Methanosphaera spp. detected from the MGS data in only one sample (at 0.1% relative 

abundance) in comparison to 10/50 samples (at 0.2-2.0%) in 16S rRNA amplicon profiles. Viral DNA 

was detectable within the MGS data from 8/50 samples, the C2-like virus most prevalent and 

abundant (5/8 samples, 0.1-1.1%) with Flavivirus (West Nile virus) also found in 3 samples (0.2-

1.1%).    
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Figure 5.8 The relative abundance scores for the top 20 a) genera and b) species present in the stool samples collected from healthy adult subjects during 

consumption of their habitual diet (baseline, grey squares) and following their consumption of the LP (red triangles) and MP diets for three weeks (blue 

circles). These genera were ranked based on the mean relative abundance scores calculated from all the samples (i.e. n=50), based on the Metaphlan2 

normalised read counts. Those genera with a prevalence rate of 100% are annotated by *.  
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Table 5.5 Abundance and prevalence of top 20 genera and species in the samples according to the MGS data obtained from all the samples collected at 

BL and post dietary interventions. 

MGS at genus level MGS at species level 

Taxonomy Range (%) Prevalence (%) Taxonomy Range (%) Prevalence (%) 

Bacteroides 2.03-65.15 100 Faecalibacterium_prausnitzii 1.69-31.73 100 

Blautia 0.47-8.17 100 Ruminococcus_obeum 0.15-5.38 100 

Coprococcus 0.23-14.04 100 Subdoligranulum_unclassified 0.55-21.22 100 

Dorea 0.31-5.74 100 Eubacterium_hallii 0.30-6.60 96 

Eubacterium 1.70-36.08 100 Bacteroides_dorei 0.001-47.71 94 

Faecalibacterium 1.70- 31.72 100 Bacteroides_uniformis 0.18-12.43 92 

Parabacteroides 0.02-4.31 100 Eubacterium_rectale 0.02-29.60 90 

Roseburia 0.48-16.31 100 Bacteroides_cellulosilyticus 0.03-21.01 88 

Subdoligranulum 0.55-21.21 100 Bacteroides_vulgatus 0.28-15.96 88 

Lachnospiraceae 

noname 

0.04-9.04 98 Eubacterium_eligens 0.01-7.94 84 

Alistipes 0.08-12.19 94 Bacteroides_caccae 0.01-5.28 80 

Ruminococcus 0.06-10.74 92 Alistipes_putredinis 0.13-8.10 70 

Barnesiella 0.01-5.55 88 Roseburia_intestinalis 0.002-15.09 66 

Bifidobacterium 0.10-25.06 84 Akkermansia_muciniphila 0.03-21.68 64 

Bacteroidales noname 0.05-7.61 78 Bifidobacterium_adolescentis 0.02-18.35 64 

Streptococcus 0.003-9.80 78 Bacteroides_stercoris 0.34-31.35 42 

Akkermansia 0.03-21.67 64 Bacteroides_massiliensis 0.44-11.67 40 

Dialister 0.08-5.87 36 Coprococcus_sp_ART55_1 0.65-13.62 26 

Prevotella 0.01-43.37 26 Bacteroides_plebeius 0.02-22.23 24 

Clostridiales noname 0.01-12.50 18 Prevotella_copri 18.09-43.36 22 
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Alpha diversity as measured by the MELR repeated measures test showed no significant difference 

in the Shannon index and evenness scores between the LP and the MP groups (Figure 5.9a and b); 

and a trend towards a decrease in bacterial richness in response to the MP diet (Figure 5.9c, p=0.08). 

However, the MGS data reflected the trends observed from the 16S rRNA data, of reduced bacterial 

richness in the MP group as compared to the LP group. In summation, based on the 16S rRNA  and 

the MGS data these results suggest that increasing the prebiotic content of the diet has no significant 

effect on the alpha diversity shannon index and the evenness scores however, there appears to be a 

reduction in bacterial richness measure with the increased prebiotic content diet.  

 

 

Figure 5.9 Alpha diversity measures calculated for prokaryotes from the MGS data. There is a 

reduction in prokaryotic richness (p=0.08) when subjects consumed a diet with moderate prebiotic 

content. Here, sampling time point was set as a fixed effect and individual subject as a random effect. 

Low Prebiotic (LP) and Moderate Prebiotic (MP) refer to the relative abundance of these taxa 

measured at LP and after consumption of the MP diet, respectively. Data collected from the same 

subject are connected by the lines. 

s 

5.4.6 MGS data analysis reflected the trends in bacterial shifts between the LP and MP 

groups as observed from the 16S rRNA data  

MELR analysis from the MGS data revealed significant increase in the relative abundance of genus 

Bifidobacterium (p < 0.001, FDR= 0.034) (Figure 5.10). Although analysis from the MGS data 

identified an increase in the relative abundance of Anaerostipes in response to the MP dietary 

intervention similar to the 16S rRNA profiles, this increase was not found to be statistically significant 

(p= 0.069, FDR= 1). At the species level, MELR analysis revealed an increase of Bifidobacterium 

species B. adololescentis (p= 0.003, FDR= 0.11), B. longum (p= 0.01, FDR= 0.17) and an increase of 
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Eubacterium rectale (p= 0.004, FDR= 0.11) following the consumption of MP diet (Figure 5.10). 

However, this increase was not statistically significant once FDR corrections were applied.  

 

 

Figure 5.10 Mixed effect linear regression (MELR) of the metagenomic shotgun (MGS) data  

identified significant increase in the relative abundance of genera Anaerostipes (p = 0.069, FDR = 1), 

Bifidobacterium (p < 0.001, FDR=0.034) and species B. adolescentis (p=0.003, FDR= 0.11), E. 

rectale (p = 0.004, FDR= 0.11) and B. longum (p = 0.01, FDR=0.17) after consumption of the 

Moderate Prebiotic (MP) diet. Low Prebiotic (LP) and Moderate Prebiotic (MP) refer to the square 

root transformed normalised relative abundance of these taxa measured at LP and after consumption 

of the MP diet, respectively.  

 

LefSe analysis for the MGS data identified species Eubacterium hallii (LDA=3.58) and 

Lachnospiraceae_5_1_63FAA (LDA = 3.51) to be discriminatory and enriched in response to the MP 

dietary intervention group as compared to the LP group (Appendix Figure 7.12). Analysis by the 

sPLS-DA of the same subject samples for MGS data further identified the relative abundance of 

Anaerostipes and Bifidobacterium to be enriched and increased in the MP samples and the relative 

abundance of Adlercruetzia to be higher following the LP dietary intervention (Figure 5.11a and b).  
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At the species level, Lachnospiraceae bacterium 5_1_63 FAA, Eubacterium rectale, Eubacterium 

hallii and Anaerostipes hadrus were identified to be discriminatory and enriched in subjects 

consuming a MP diet whereas Adlercruetzia equolifaciens was differentially affected and enriched 

when LP diet was consumed.  

 

 

Figure 5.11 Bacterial a) genera and b) species differentiating the stool microbiota profiles of subjects 

after consumption of Low Prebiotic (LP; red) and after consumption of the Moderate Prebiotic (MP; 

blue) diet identified by sPLS-DA from the MGS data.  

 

5.4.7 The taxonomic changes in gut bacteria in response to the MP diet are also apparent in 

functional characteristics predicted from the MGS data  

 Table 5.6 shows the MGS data metrics from the samples analysed in this study. The Bowtie2 

alignment against the human hg19 database removed ~1% of the reads, and the range of paired-end 

reads remaining was similar for all the dietary groups. The coverage of the MGS data produced from 

the individual samples was also found to be similar across the three groups with BL having a mean 

% coverage of 73% ± 18 (n=14), LP: 71.4% ± 15.2 (n=18) and MP: 71% ± 15.42 (n=18). 
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Table 5.6 Table showing the range of number of raw reads, filtered reads and % coverage of the MGS 

data 

Diet group 
Range (number of reads) 

before bowtie2 (x 106) 

Range (number of reads) after 

bowtie2 (x 106) 

Range % 

coverage 

BL (n=14) 1.2746- 21.6883 1.2742-21.6830 36-92 

LP (n=18) 1.7650-21.8615 1.7646-21.8513 51-91 

MP (n=18) 1.48865-21.6915 1.48828-21.6743 46-94 

 

The resultant gene family abundance output files were normalised to copies per million (cpm) and 

reclassified into Gene Ontology (GO) and Protein Family (Pfam) categories, which resulted in the 

highest regrouping of the gene family output files (56% and 49%, respectively) compared to KEGG 

Orthology (KO) and Enzyme Category (EC) categories, which resulted in only 12% and 8% of data 

being regrouped, respectively. Hence, subsequent functional data analysis has been performed on the 

GO and Pfam categories. I then used the regrouped GO functional data to compute alpha diversity 

metric scores and found that while there are no differences in the Shannon diversity and evenness 

scores, there was a significant decrease in the richness of the functional gene counts following 

consumption of the MP diet (Figure 5.12). This suggests that the MP diet results in a smaller repertoire 

of gut microbial metabolic functions as compared to the LP group.  

 

 

 

Figure 5.12 Alpha diversity measures calculated for functional Gene Ontology (GO) data produced 

from HUMAnN2 pipeline. There is a significant reduction in functional richness (p<0.001) when 

subjects consumed a diet with moderate prebiotic content. No changes in Shannon and evenness 

scores were observed between the two groups (p=1). 
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5.4.8 Distinct differences in functional microbial pathways between the LP and MP groups  

In total 7040 GO categories were revealed from the functional assignment by HUMAnN2. These 

categories are further divided into three sub-ontologies as GO provides description of the biological 

process (molecular events suitable for the functioning of living units), molecular function (activities 

such as catalysis and binding describing the action of a gene product) and cellular components (part 

of the cell or extracellular environment where the gene product is located) of gene products. Mixed 

effect linear regression analysis was performed on all the GO categories and the pathways exhibiting 

statistically significant differences (p<0.05) between the LP and the MP groups were organised 

according to the three broader annotations of GO terms: biological process, molecular function and 

cellular components (Figure 5.13a, b and c). However, the statistical significance was lost once FDR 

correction of <0.05 was applied.  

The MP group had higher abundance across 38 of the 74 biological processes categories (eg, 

translation, response towards cytokines, folic acid, vitamin A; alpha glucan biosynthetic process, 

sorbitol catabolism, mannitol metabolism, L ascorbic acid metabolism, antibiotic biosynthesis, fucose 

metabolism, cardiolipin biosynthesis, DNA restriction-modification systems and sulfur compound 

metabolism) (Figure 5.13a). A total of 20 molecular functions were significantly different (p<0.05) 

between the LP and the MP dietary interventions according to the MELR analysis. Of these 12/20 

were found to be greater in the MP group compared to the LP group (eg: nucleic acid, rRNA, mRNA, 

ATP, cation and DNA binding, transposase activity, etc.) (Figure 5.13b). Nine cellular components 

were found to be significantly different (p<0.05) between the LP and the MP groups according to the 

repeated measures MELR analysis; with the ribosome and large ribosomal subunit categories greater 

in the MP group as compared to the LP group. In contrast, components associated with outer 

membrane, periplasmic space, cell wall, and cell outer membrane were greater in the LP group (Figure 

5.13c).  
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Figure 5.13 Heatmaps of the significantly different (mixed-effect linear regression p <0.05) a) Biological processes b) Molecular functions and c) 

Cellular compartments between the LP and the MP groups generated by the HUMAnN2 pipeline. Displayed values represent Z score for the normalised, 

square root transformed data in copies per million.  

 

Less stringent sPLS-DA further revealed pathways associated with sorbitol metabolism, hydrolysis-driven protein transmembrane transporter activity, 

translation, ribosome structure and assembly, pyrimidine base metabolism, cardiolipin biosynthesis, and peptidoglycan turnover were all discriminatory 

of the microbiota changes in response to the MP diet (Figure 5.14). In contrast, pathways involved in peptidoglycan metabolism, glucuronate and mannan 

catabolism, methylglyoxal anabolism, and extracellular region were enriched and discriminatory of the microbiota in response to consumption of the LP 

diet (Figure 5.14). Based on these findings, the known differences in LP and MP content, and the taxonomic alterations in the gut microbiota outlined 

above, I chose to focus primarily on those pathways involved with carbohydrate metabolism.  
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Figure 5.14 Gene Ontology (GO) groups shown by sPLS-DA analysis to be discriminatory of the microbiota changes associated with consumption of 

the LP (red) and MP (blue) diets. The BP, MF, and CC annotations for each GO, represent functions assigned to the Biological Process, Molecular 

Function and Cellular Compartment categories, respectively.  
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5.4.9 Functional metagenome analysis of the Pfam data revealed higher abundance of PTS 

systems associated with the MP dietary intervention group 

sPLS-DA analysis was then performed on the regrouped Pfam functional data, which revealed that 

the relative abundances of Polysaccharide Lyase family 8, Glycoside Hydrolase families 2, 20 and 

30, alpha-fucosidase and Glycosyl Transferase family 4 are discriminatory of the microbiota 

following consumption of the LP diet. In contrast, protein families of PTS systems predicted to be 

involved with lactose/cellobiose, sorbitol, sorbose/mannose/fructose, as well as starch binding 

module 26 were found to be discriminatory of the microbiota changes observed following 

consumption of the MP diet (Figure 5.15) .   

 

 

 

Figure 5.15 Protein families (Pfam) differentiating the stool microbiota profiles of subjects after 

consumption of Low Prebiotic (LP; red) and after consumption of the Moderate Prebiotic (MP; blue) 

diet identified by sPLS-DA.   
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MELR analysis on these PTS pathways further confirmed the microbiota changes with the MP diet 

possess significantly greater gene counts of sorbose subfamily II component (p=0.0026, FDR=0.026), 

Glucitol sorbitol specific IIA component (p=0.0026, FDR=0.026), Lactose cellobiose specific IIB 

component (p=0.014, FDR=0.11) and Fructose IIA component (p=0.014, FDR=0.11) PTS pathways 

as compared to the LP group (Figure 5.16).  

In summation, these results suggest that in response to the compositional changes of the diet from LP 

to MP, the primary drivers of the microbiota changes appear to be an enrichment of microbes capable 

of utilizing the sugar alcohols provided by the MP diet.   

 

 

Figure 5.16 Mixed effect linear regression (MELR) analysis of the PTS pathways identified 

significant increase in the gene counts of of Sorbitol subfamily II component ((a), p = 0.0026, FDR= 

0.026), Glucitol sorbitol specific IIA component ((b), p = 0.0026, FDR= 0.026), Lactose Cellobiose 

specific II B subunit ((c), p = 0.014, FDR= 0.11) and Fructose IIA component ((d), p = 0.014, FDR= 

0.11) after consumption of the Moderate Prebiotic (MP) diet. Here, sampling time point was set as a 

fixed effect and individual subject as a random effect. Low Prebiotic (LP) and Moderate Prebiotic 

(MP) refer to the square root transformed TSS normalised gene counts of these pathways measured 

at LP and after consumption of the MP diet, respectively. Data collected from the same subject are 

connected by the lines.  
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5.4.10 MAGs recovered from the LP and MP groups show the differential capability to 

metabolise sugar alcohols 

The 3Gbp sequencing depth used enabled the recovery of 27 and 18 high quality (>80% complete 

and <10% contaminated) MAGs from the LP and MP datasets, respectively; and their taxonomy 

determined via PATRIC are consistent with the predominant bacterial taxa inferred from the MGS 

using MetaPhlan2 and the 16S rRNA gene amplicon data (Table 5.7).  

 



  

110 

 

Table 5.7 List of high-quality Metagenome Assembled Genomes (MAGs; >80% complete and <10% contaminated) extracted from the LP and the MP 

groups, taxonomically identified through hierarchical clustering using Mash in PATRIC.  

MAGs recovered from LP group 

 

BinId %completeness %contamination PATRIC taxonomy 

bin0.15 98.1 10.94 Coprococcus sp 

bin0.22 88.87 2.46 Roseburia CAG100 

bin0.23 96.43 7.84 Bacteroides spp. CAG 545 

bin0.26 93.89 8.9 Eubacterium spp. CAG252 

bin0.31 94.34 9.89 Catenibacterium sp. AM22-6LB 

bin0.32 88.81 3.86 Barnesiella spp 

bin0.35 95.59 7.75 Alistipes CAG 268 

bin0.37 80.96 5.06 Clostridium spp. 

bin0.4 89.85 2.84 Bacteroides sp. 

bin0.42 81.24 6.7 undefined 

bin0.43 83.42 6.97 Eubacterium spp. 

bin0.45 88.59 6.96 Roseburia spp. UBA11770 

bin0.47 97.99 4.77 Bacteroides spp. CAG144 

bin0.5 94.85 5.65 Ruminococcaceae st. UBA9126 

bin0.57 97.99 6.02 Butyrivibrio crossotus strain 

bin0.62 88.44 3.66 Clostridium spp. 

bin0.67 93.96 3.12 Eubacterium spp. CAG180 

bin0.71 95.39 5.35 Bifidobacterium animalis 

bin0.75 84.36 0.8 Ruminococcus spp. 

bin0.81 85.4 5.93 Ruminococcus 

bin0.86 87.14 10.17 Ruminococcaceae st. UBA2089 

bin0.87 83.06 2.2 Phascolarctobacterium faecium 

bin0.9 93.91 10.41 Bacteroides sp..CAG98 
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bin0.90 86.52 2.09 Alistipes putredinis 

bin0.92 80.41 1.76 Butyricicoccus 

bin0.94 82.82 6.63 Ruminococcus 

MAGs recovered from MP group 

BinId %completeness %contamination PATRIC taxonomy 

bin0.11 91.41 7.16 Bacteroides spp CAG 98 

bin0.23 95.84 10.08 

bin0.27 96.27 4.26 Eubacterium spp. 

bin0.29 91.99 5.79 Barnesiella sp. Strain UBA11816 

bin0.3 97.97 10.03 Eubacterium spp. 

bin0.32 95.11 6.93 Coprococcus 

bin0.4 92.07 6.98 Alistipes CAG 268 

bin0.46 86.13 8 Undefined 

bin0.53 94.42 7.63 Bifidobacterium adolescentis 

bin0.54 80.89 0.4 Ruminococcaceae bacterium 

bin0.59 80.84 3.38 Clostridium spp CAG 75 

bin0.63 85.21 3.89 Phascolarctobacterium faecium 

bin0.68 86.67 5.44 Clostridium spp. CAG 138 

bin0.69 85.81 4.79 Roseburia CAG18 

bin0.77 98.67 4.35 Undefined/Acholeplasmatales 

bin0.81 86.54 2.92 Alistipes putredinis strain UBA9494 

bin0.9 87.87 5.26 Clostridiales strain/Ruinococcaecae 

bin0.96 80.12 1.8 Bifidobacterium longum 

 

Undefined 
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Three Bifidobacterium MAGS were produced from the data, one from LP (bin .71) and two from the 

MP (bin .53 and .96) datasets. Given the MGS data showed that the MP diet not only supports an 

increased relative abundance of Bifidobacteria, but also drives a shift in their population structure, 

the Bifidobacterium MAGs recovered from the two dietary groups were compared. Re-ordering and 

aligning the MAGs (bin .71, bin .53 and bin .96) was first performed and B.animalis subsp. lactis 

DSM 10140 was used as the reference genome for the Mauve alignments. As expected, the alignments 

confirmed there was a large amount of genetic synteny between the MAGs, although the three MAGs 

were readily differentiated by their xenologous regions (unique to each MAG, Figure 5.17).  

The Average Nucleotide Identity (ANI) scores calculated for the Bifidobacteria MAGs are shown in 

Figure 5.18 and confirms the accuracy of the PATRIC-based assignments for MAGs Bin.53 and 

Bin.96 to B. longum and B. adolescentis, respectively and further confirms the abundance of different 

Bifidobacterial species in response to the LP and MP diets.  These findings further substantiate the 

results of the MELR analyses shown in Figure 5.10 above, where the significant increase in the 

relative abundance of Bifidobacterium spp. following consumption of the MP diet is attributable to 

increases in both B. adolescentis and B. longum. Furthermore, the CAZyme profiles of the three 

MAGs were also found to be consistent with the GO and Pfam analysis of the paired-end MGS data, 

in that the B. adolescentis and B. longum MAGs recovered from the MP datasets also possess a greater 

gene count for sorbitol/mannitol metabolism than the B. animalis MAG (Table 5.8).  

In summation, these findings further confirm that the composition of the MP diet has expanded the 

size of Bifidobacterial population via the selective enrichment of B. adolescentis and B. longum 

strains, and their ability to metabolise polyols such as sorbitol and mannitol.
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Figure 5.17 Mauve alignment of the Bifidobacterium MAGs produced from the LP (Bin.71) and MP (Bin.53 and Bin.96) MGS datasets and using the 

closed genome from B.animalis subsp. lactis DSM 10140 as the reference genome. All four genomes possess a large amount of genetic synteny as 

depicted by the individual coloured blocks, and particularly, between the B. animalis and Bin .71 genomes. The MAGs Bin .53 and Bin .96 possess some 

xenologous regions depicted as the blank spaces, and a greater degree of genome rearrangements, as depicted by the connecting lines.  
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Figure 5.18 The average nucleotide identity (ANI) matrix of the Bifidobacterial MAGs calculated from BLAST hits between orthologous genes of the 

core genome in EDGAR. The Average Nucleotide Identity (ANI) scores calculated for the Bifidobacterial MAGs revealed 99.64% identity between bin 

.71 and the reference genome B. animalis subsp. lactis DSM 10140 suggesting bin .71 to be a B. animalis strain. Reference genomes of B. longum 

NCC2705 and B. adolescentis ATCC 15703 were also included to build the ANI matrix. It revealed that bin .53 showed 97.7% identity to the reference 

genome of B. adolescentis ATCC 15703 and bin .96 had 98.53% identity to the reference genome of B.longum NCC2705.  
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Table 5.8 The gene counts of the enzymes known for carbohydrates and sugar alcohol degradation 

in the three recovered Bifidobacteria Metagenome Assembled Genomes (MAGs). 

Carbohydrates degrading enzymes (oligosaccharides & sorbitol) Bin.71 Bin.53 Bin.96 

Alpha mannosidase (EC 3.2.1.24) 0 3 2 

Alpha-xylosidase (EC 3.2.1.177) 0 2 0 

Beta galactosidase (E.C. 3.2.1.23) 8 7 5 

Beta glucosidase (EC 3.2.1.21) 2 5 2 

Beta xylosidase 0 2 0 

Periplasmic beta-glucosidase (EC 3.2.1.21) 0 2 0 

Sorbitol dehydrogenase (EC 1.1.1.140) 0 1 1 

Xylan 1,4-beta-xylosidase (EC 3.2.1.37) 2 3 1 

 

5.4.11 Correlation analysis shows significant specific bacterial-fungi associations in response 

to the prebiotic content of the diet 

In order to better understand the intra- and/or inter-Domain interactions following consumption of 

the LP and MP diets, I performed three different forms of correlation analyses, using the difference 

in the relative abundance values between the MP and LP diets of specific bacterial/archaeal and fungal 

taxa (i.e. Δ=MP-LP). First, I performed a correlation analysis using the 16S rRNA amplicon and ITS2 

datasets, to expand the analyses to lesser abundant taxa, such as the Archaea. Next, I combined the 

bacterial species profiles predicted from the MGS data using MetaPhlan2, with the ITS2 (fungal) 

profiles. Thirdly, I investigated whether different microbial networks were apparent following 

consumption of the LP and MP diets. The findings of these analyses are illustrated in Figures 5.18-

5.20, respectively.  

The correlation matrix using only the 16S rRNA and ITS2 datasets are shown in Figure 5.18. In 

particular, the ΔBifidobacterium values were positively correlated with ΔAnaerostipes, but negatively 

correlated with Δvalues for taxa assigned to Ruminococcaceae. ΔSaccharomyces values were 

positively correlated with the Δvalues calculated for Anaerostipes and E. hallii; and the ΔArchaea 

(Methanobrevibacter) values were positively correlated with the Δvalues calculated for the 

Ruminococcaceae family and Akkermansia. Furthermore, these results also showed a strong negative 

correlation between Methanobrevibacter and Akkermansia with both Faecalibacterium and 

Roseburia.     
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Figure 5.19 Spearman correlation analyses of the changes in relative abundance between the MP and 

LP diets (i.e. Δvalues) for the key bacterial, archaea and fungal taxa identified by from the 16S rRNA 

and ITS2 profiles. Only those correlations with adjusted P-values < 0.05 following a False Discovery 

Rate correction are shown. Red circles denote negative correlations and blue circles denote positive 

correlations, with both color intensity and the size of the circle proportional to the strength of the 

correlation.  

 

I then categorised the bacterial species profiles predicted from the MGS data into either primary 

carbohydrate degraders or secondary carbohydrate fermenters, because I wanted to investigate 

whether the fungal profiles were more readily correlated with either or both of these “metabolic 

guilds” of bacteria. Interestingly, Saccharomyces amongst all the other fungi had highest number of 

significant associations with the bacterial species (Figure 5.20) with significant positive correlations 

observed between ΔSaccharomyces and Δvalues for B. longum, A. hadrus and E. hallii. Positive 

correlations were also found between ΔAgaricus with the Δvalues calculated for B. adolescentis, B. 
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longum and A. hadrus. In addition to these bacterial-fungal interactions, the positive correlations 

predicted between Anaerostipes and E. rectale and E. hallii suggest mutualistic interactions between 

these bacterial taxa. Furthermore, positive associations were seen between ΔE.hallii with Δvalues 

calculated for B. adolescentis and B.longum. In contrast, a negative correlation was identified between 

the ΔSaccharomyces and ΔR. torques values. Negative correlations were also estimated between ΔR. 

obeum and Δvalues calculated for Agaricus and E. hallii. A negative correlation between 

Bifidobacterium animalis and E. rectale was found (Figure 5.20).  

 

 

Figure 5.20 Spearman correlation analyses of the changes in relative abundance between the MP and 

LP diets (i.e. Δvalues) for the key bacterial, archaea and fungal taxa identified by from the MGS and 

ITS2 profiles. Only those correlations with adjusted P-values < 0.05 following a False Discovery 

Rate correction are shown. Red circles denote negative correlations and blue circles denote positive 

correlations, with both color intensity and the size of the circle proportional to the strength of the 

correlation.  
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The correlation networks produced using the abundance values (rather than the Δvalues) from the 

16S rRNA and ITS2 datasets for the LP and MP diets are shown in Figure 5.21 a and b, respectively. 

Both diets appear to sustain two separable networks, a smaller network comprised primarily of 

Saccharomyces, Methanobrevibacter, Prevotella 9 and Ruminocococcus 1; and a second larger 

network including Bifidobacterium, Bacteroides, Faecalibacterium, Roseburia and Anaerostipes.  

Interestingly, the bacterial and the fungal taxa that were increased following the consumption of MP 

diet were found to have positive associations within the same network. For example; Anaerostipes 

was found to be positively associated with Bifidobacteria and the fungi Agaricus. Notably, Candida 

appears to have positive correlations with the Eubacterium hallii group and have greater number of 

positive associations with other taxa in the MP group compared to the LP group. Taken together, these 

results suggest a complex relationship between bacterial and fungal communities in the gut 

environment and that specific alterations are present in LP and MP groups. The microbial networks 

predicted following consumption of the LP and MP diets include both prokaryote and fungal taxa, 

with a dense correlation network with the MP diet. 
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a) Network plots: LP 
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Figure 5.21 Network plots from the 16S rRNA and ITS2 data, showing positive (yellow, r>0.25) and 

negative (blue, r<-0.25) Spearman correlations among the top 20 bacterial and top 10 fungal taxa 

along with inclusion of Methanobrevibacter (Archaea), Bifidobacteria and Anaerostipes in the 

network plots following consumption of the a) LP diet b) MP diet.     

  

b) Network plots: MP 
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5.5 Discussion 

This Chapter presents a combination and integration of 16S rRNA and ITS2 profiles with MGS data 

to provide the first multi-Domain characterization of the effects from diets providing either a low or 

a moderate daily intake of prebiotic-containing foods in healthy human subjects. The differences in 

prebiotic intake specifically relate to the quantity of oligosaccharides and sugar alcohols (mannitol 

and sorbitol) present in these foods (Table 5.1 above) and as such, could also be described as diets 

providing a low or moderate daily intake of FODMAPS. This study was conducted in “healthy” 

subjects and did not report any abnormal or persistent gastrointestinal symptoms prior to the study. 

Care was taken to monitor participant compliance to the dietary interventions throughout the study 

and no marked changes were reported in terms of abdominal discomfort and/or pain with the LP and 

MP diets. These findings are consistent with those from other studies where the “healthy” subject 

groups show no marked changes in GI symptoms in response to the FODMAP content of their diet 

(81,188).  

5.5.1 Taxonomic variations in stool microbiome communities in response to diet. 

I have integrated the findings of the gut microbiota profiles predicted from the 16S rRNA (or ITS2) 

amplicon and MGS datasets in Figure 5.22. In summation, the results using both are both 

confirmatory and complementary and provide a more holistic insight of the stool microbiome than 

either method alone. The majority (11/20) of the top 20 taxa identified in the stool samples were 

present in both the PCR based and MGS datasets (i.e. Bacteroides, Faecalibacterium, Eubacterium, 

Subdoligranulum, Roseburia, Blautia, Coprococcus, Dorea and Parabacteroides). Furthermore, the 

statistical analyses of the community profiles derived from the 16S rRNA amplicon and MGS datasets 

both show that the MP diet is associated with increases in the relative abundances of Bifidobacterium, 

Anaerostipes, and Eubacterium spp. with a commensurate reduction in bacterial richness score. 

However, at the sequencing depth used here (3 Gbp) both the Archaea and Fungi were 

underrepresented in the MGS datasets, and therefore, the ITS2 amplicon profiles were the only way 

to reveal the significant increase in fungal richness scores and the relative abundances of Candida, 

Agaricus and Aspergillus that appear to occur in response to consumption of the MP diet. Overall, a 

combination of PCR based, and MGS based methods have provided insights on the effects of “in-

situ” prebiotic diets on the gut bacterial, fungal and archaeal communities.  
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Figure 5.22 Overview of the convergence and differences between Amplicon (16S rRNA and ITS-

2) and 3 Gbp MGS data, limited to the top 20 bacterial groups as identified by both the approaches 

and the top 5 fungal genera as identified by the ITS2 PCR based method have been shown here.   

 

The 16S rRNA amplicon data contained sequences assigned to Prevotella 7 and Prevotella 9 and both 

were in the top 20 genera. Prevotella was also identified to be one of the top 20 genera from the MGS 

data, with Prevotella copri found to be a major species. My examination of the SILVA database 

shows that Prevotella copri is assigned to the Prevotella 9 lineage. In the current study, the amplicon-

based 16S method effectively captured the gut archaeal signals as compared to the MGS method. 

While both Methanobrevibacter and Methanosphaera were detected by both these methods, they 

were detected in a higher number of samples from the amplicon-based method. Methanosphaera was 

detected in 10 samples from the amplicon-based method as compared to MGS method where it was 

detected in only 1 sample. Furthermore, Methanobrevibacter was detected in 22 samples from the 

amplicon-based method as compared to MGS method where it was detected in 18 samples. This 

difference between the MGS and amplicon-based methods in detecting the gut archaea could be due 

to the choice of the PCR primers (V6-V8 region of 16S rRNA gene) used in the amplicon method. 

These primers seem to better capture the archaeal signals compared to the MGS method not deep 

enough (3 Gbp) for complete coverage of these low abundant gut members.  For example, Pasolli et 

al. (189) recovered 150,000 MAGS from a total of 9,428 MGS datasets produced from different 

human body sites, ages, lifestyle and countries. However, most of the datasets used by Pasolli et al. 

(189) had limited to no coverage of the archaea, and only 675 good quality archaeal MAGS were 
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recovered and of these, 487 represent Methanobrevibacter smithii and related spp.  Furthermore, only 

four good quality Methanosphaera MAGs were recovered which suggests the low abundance of this 

archaea in the gut environment. Additionally, our MGS datasets appeared to possess no reads from 

fungi, despite the ITS2 sequencing validating the presence of a stool mycobiome responsive to the 

prebiotic content of these diets. Again, this may be more of a reflection of the low abundance of fungi 

in these microbiomes. A study by Nash et al. (190) mined the HMP faecal healthy cohort 

metagenomic sequence data produced at a depth of 10 gigabases per sample to recover the fungal 

genomes. In their study, out of the >27 billion metagenomic sequences produced, only 0.01% aligned 

to the fungal genomes. Overall, my findings suggest that while MGS can provide increased taxonomic 

resolution (to the species level of classification), these data come with a caveat of lower sensitivity 

and detection of important but less abundant taxa. Until the cost effectiveness of MGS sequencing 

allows greater sequencing depth, the amplicon-based methods (16S rRNA and ITS2) offer a cost-

effective and highly complementary approach to holistically examine the bacteria, archaeal and 

fungal communities resident within the human gut.   

Both the amplicon and MGS datasets show that bacterial richness is reduced by consumption of the 

MP diet, but no significant changes in either the Shannon alpha or evenness scores. Such findings 

suggest that the MP diet supports the expansion of numerically predominant members of the gut 

community such as Bifidobacterium, Anaerostipes and Eubacterium spp. which were all observed to 

increase following the MP dietary intervention and with limited impacts on bacterial evenness, but at 

the expense of lesser abundant bacterial species which will reduce bacterial richness. In that context, 

the mixed effect linear regression analyses of both the amplicon- and MGS-derived profiles showed 

that the relative abundance of Bifidobacterium spp. increased on consumption of the MP diet, which 

is consistent with the effects reported when prebiotic supplements such as fructans, galacto-

oligosaccharides and inulin have been added to the diets of healthy adult subjects (87,89,139,191–

194). The less stringent statistical tests such as sPLS-DA and LefSe also provided similar findings, 

but the MGS data provided a more detailed characterization of these changes. No less than 6 

Bifidobacterium spp. were identified in the samples analysed by MGS: B. adolescentis was the most 

abundant (and with 64% prevalence) with B. longum, B. animalis, B. bifidum. B. pseudocatenulatum 

and B. catenulatum present at lesser abundances. The increases in B. adolescentis and B. longum 

following consumption of the MP diet are consistent with the findings reported by Baxter et al. (194) 

from healthy young adults in response to adding inulin (20 g/day) to their diets. The 16S rRNA data 

also revealed significant increase in the relative abundance of genus Anaerostipes following the MP 

dietary intervention when compared with the LP group. I observed a similar trend from the MGS data 



  

124 

 

analysis, although this increase in relative abundance of Anaerostipes populations was not statistically 

significant.  

5.5.2 Functional variations in response to diet determined from MGS datasets.  

The MGS data also revealed an increase in the relative abundance of Eubacterium spp. (Eubacterium 

rectale and Eubacterium hallii) in response to consumption of the MP diet. A plausible explanation 

for the increase of Eubacterium and Anaerostipes spp. could be their utilization of Bifidobacterium-

derived fermentation products such as lactate and acetate  as well as prebiotic degradation products 

(144,195,196). In that context, culture-based studies with Anaerostipes spp. have shown it is not able 

to degrade oligofructose when it is provided as the sole carbon and energy source in mono-cultures, 

but will grow on the fructose released by oligofructose degradation when co-cultured with 

Bifidobacterium longum suggesting that the growth of Anaerostipes might be rate limited by the size 

of Bifidobacterial population and its provision of the depolymerizing enzymes (197). Furthermore, 

the bacterial and fungal correlation analysis showed that change in the relative abundance of B. 

adolescentis and B. longum are positively related to the change in the relative abundance of secondary 

fermenters E. hallii which is then positively related to Anaerostipes hadrus. This suggests another 

plausible distinct mechanism of metabolic cross-feeding of the partial breakdown products from 

complex substrates (Figure 5.20 above in results section).    

Interestingly, neither the amplicon nor the MGS data show any significant changes in the relative 

abundance of Faecalibacterium prausnitzii in response to the LP or MP diets. This bacterium is well 

known to metabolize and ferment prebiotics such as inulin (87,198). These findings are similar to 

what have been reported by Baxter et al. (17) where inulin increased the abundance of different 

species of Bifidobacterium, Anaerostipes hadrus and Eubacterium rectale but no other bacterial taxa. 

In addition, prebiotic supplementation in mice has also been associated with an increased abundance 

of Akkermansia muciniphila – a mucin degrader and a healthy gut commensal (64). However, in the 

current study I did not observe significant shifts in A. muciniphila populations in response to the LP 

or MP diets, although the MGS data shows it to be among the top 20 genera.  

In summary, these findings suggest the MP diet supported an expansion of numerically predominant 

members of the gut community such as Bifidobacterium, Anaerostipes and Eubacterium spp. which 

were all observed to increase following the MP dietary intervention, and at the expense of lesser 

abundance bacterial species such as Prevotella, A. muciniphila etc. These findings corroborate and 

expand those determined from the systematic review and meta-analysis by So et al. (146), who 

reported that only Bifidobacterium spp. showed a consistent, significant increase in its abundance in 

response to dietary fibre supplements in healthy individuals. Their analyses also suggest there are no 
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changes in Shannon alpha diversity in response to dietary fibre supplements, but importantly, my 

results do reveal there is a reduction in bacterial richness in response to consuming a diet with a 

moderate prebiotic content.  

In contrast to the bacterial taxa, my findings show that the MP diets increases fungal richness within 

the gut microbiome. Other studies have shown that the Ascomycota (genera Saccharomyces, 

Candida, Penicillium, Aspergillus, Cladosporium) and Basidiomycota (genera Malassezia) are the 

primary members of the fungal communities in the human gut (49,53,61,190,199). Here 

Saccharomyces spp. were the most dominant and prevalent genus detected in the entire cohort. Both 

S. cerevisiae and S. boulardii have been reported to reduce colitis in mice, exhibit anti-inflammatory 

properties in several colitis models, and have beneficial effects in the prevention of diarrhoea and C. 

difficile infection in human subjects (200–202). Furthermore, the relative abundance of S. cerevisiae 

was found to reduce in IBD subjects compared to the healthy subjects (53). Polysaccharide rich food 

supplement (3 g/d) obtained from the chemical hydrolysis of Saccharomyces cerevisiae is shown to 

reduce waist circumference and body fat in overweight and obese subjects (203).  Collectively these 

findings suggest the beneficial role of Saccharomyces towards human health and its high abundance 

and prevalence in the human gut might be a characteristic of a healthy gut mycobiome.  

Here, Candida, Agaricus and Aspergillus spp. were detectable following the consumption of the MP 

diet, and currently, there is very little information relating their prevalence and/or abundance with 

diet. Hoffman et al. (61) reported the abundance of Candida to be positively associated with the 

consumption of carbohydrate-based diets by healthy human subjects suggesting the potential impact 

of dietary carbohydrates on the abundance of Candida. Despite having low abundance reads and low 

prevalence rate of these fungal taxa in the samples, the increase in fungal richness scores following 

MP dietary intervention suggests a possible influence of diet on these taxa and future studies with 

more number of subjects needs to be conducted with stronger focus on these fungal communities. 

Interestingly, my correlation analyses revealed positive relationships between Saccharomyces and the 

change in the abundance and B. longum, A. hadrus and E. hallii (Figure 5.20 above in results section). 

Sokol et al. (53) also reported positive correlations between abundance of Saccharomyces and 

bacteria such as Bifidobacterium, Roseburia, Ruminococcus and Blautia that were reduced in IBD 

patients. Such findings suggest complex associations between the gut mycobiome and microbiome 

which can be further affected by factors such as nutrient availability (diet) and/or health status of 

subjects. In contrast, a study in mice reported an expansion of the gut mycobiome upon antibiotic 

treatment, and its reduction again upon antibiotic cessation, suggesting that the two kingdoms 

compete for the nutrients in the gut environment, and bacteria seems to outcompete fungi for the 
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shared nutrient niches (204). As such, it seems plausible to suggest that a consequence of the reduced 

bacterial richness in response to the MP diet is an increase in fungal richness. More detailed studies 

of the nutritional ecology of the gut mycobiome is warranted.    

The MGS data showed there is a significant increase in gene counts of sorbitol and mannitol metabolic 

pathways in response to the MP diet. As mentioned previously, in addition to the oligosaccharides, 

the polyol content was a key difference between the LP and the MP diets. Sugar alcohols are a type 

of low digestible carbohydrate and are found in certain fruits, vegetables and artificial sweeteners 

(205). As such, polyols are key component of the dietary FODMAPs, and a moderate amounts of 

polyols have been shown to increase Bifidobacteria abundance in healthy individuals (205). A study 

by Gostner et al. (206) evaluated the effects of consumption of controlled basal diet enriched with 

either 30 g isomalt or 30 g sucrose daily in 19 healthy volunteers over a double-blind, placebo-

controlled, cross over design study. The study reported an increase in Bifidobacteria in response to 

the isomalt diet compared with the sucrose diet showing the bifidogenic property of isomalt and 

suggesting its potential use as a prebiotic. Another randomised, longitudinal, double-blind study in 

75 healthy adults by Finney et al. (207) investigated the effects of low-doses of lactitol on the human 

fecal microbiome. In this study, 25-g tablets of milk chocolate containing 10 g sucrose and lactitol in 

ratios of 10:0, 5:5, or 0:10 were given to the subjects daily for 7 days. Significant increase in 

Bifidobacteria were reported in the group that consumed the 0:10 ratio suggesting that the low doses 

of lactitol might be bifidogenic and may function as a prebiotic (207). In another study, the effects of 

L-sorbose and xylitol were reported to promote the growth and metabolic activity of a butyrate 

producer Anaerostipes in healthy human fecal culture (208). Moderate amounts (10 g/day) of sorbitol 

or mannitol have been shown to induce gastrointestinal symptoms in IBS patients but did not have 

any effect on the healthy subjects (209). Given the evidence of other polyols on healthy human gut 

microbiome and my results from the current study, it is plausible that the higher polyol content of the 

MP diet might have a role in the increased Bifidobacterial and Anaerostipes abundance. Collectively 

these findings suggest that polyol sorbitol and mannitol consumption in moderate amounts by healthy 

human subjects induces a healthy colonic microbiome and can therefore be beneficial as potential 

prebiotics. Furthermore, I also observed an increase in the gene counts of the polyol associated 

Phosphoenolpyruvate-carbohydrate phosphotransferase systems (PTS) in response to the MP diet. 

The PTS pathways are associated with the transport of carbohydrates such as glucose, mannose, 

fructose and cellobiose into the bacterial cell and consists of cytoplasmic proteins- (Enzyme I and 

HPr) and different carbohydrate-specific Enzymes IIA, IIB and IIC to catalyze carbohydrate 

translocation, uptake and phosphorylation (210). These findings suggest that MP dietary intervention 

results in an increase of increases the expression of microbial pathways responsible for optimal 
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utilization of prebiotics in a more complex carbohydrate environment as compared to the LP group. 

Indeed, the recovered Bifidobacteria MAGs from the MP group were different from that recovered 

from the LP group, particularly in terms of their ability for sorbitol/mannitol metabolism.  

 

 

In conclusion, here I have reported for the first time that the “in-situ” prebiotic diet increases the 

relative abundance of Bifidobacteria (with increase in B.adolescentis, B. longum species) whereas 

increases fungal and decreases bacterial richness in healthy human subjects. MP diet was found to 

invoke significant increase in gene counts for polyol metabolism and associated PTS pathways. Inter-

Domain associations were found to be impacted by the prebiotic content of the diet. Overall, the 

findings show plausible links with the prebiotic content of the diet, gut bacterial, fungal and archaeal 

populations and improves our understanding of the consequences of prebiotic diets on the gut 

structure and function.  
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Chapter 6 General Discussion and Future Directions 

It is widely recognised that the commensal microbiota can impart positive impacts on the structural, 

nutritional and protective functions of the host gastrointestinal tract, contributing to homeostasis (211) 

and diet is one of the main contributors affecting the diversity and composition of these commensals 

in the gastrointestinal tract. The overall aim of this thesis was to investigate diet x microbiota 

interactions in two key groups of subjects: elite race walkers and healthy adults. Prior to my Ph.D., I 

had not worked with human clinical samples and microbiome data and joining the Morrison lab 

allowed me to develop new skills in working with these types of samples and analysing large 

microbiome datasets. To that end, I was able to learn and successfully use methods to work safely 

with human saliva and stool samples, extract genomic DNA from these, prepare 16S rRNA libraries 

and perform bioinformatics analysis of 16S rRNA, fungal ITS2 and MGS data analysis. 

 

My initial efforts are outlined in Chapter 2 and highlight the importance of appropriate handling and 

preservation of the stool samples for microbiome profiling studies. One of the initial steps that could 

potentially affect the microbiome analysis is proper sample storage conditions which are an integral 

part of any microbiome profiling study design. The results show that inappropriately stored stool 

samples are subject to degradation in Gram-negative bacterial biomass and reflected in high 

abundances of Firmicutes and lesser abundances of Gram-negative Bacteroidetes and Proteobacteria. 

As a healthy human gut would consist of somewhat equal abundances of Firmicutes and 

Bacteroidetes, this observed trend was quite abnormal (123). Several other studies have reported how 

the storage of samples at different temperatures and for varying times affects bacterial integrity, 

including one study that reported a significant decrease in the relative abundance of 

Bacteroidetes and an increase in Firmicutes phyla after 30 minutes compared to 15 minutes of 

fecal sample storage at room temperature, as measured by qPCR (212). In this Chapter, the results 

also show that stool samples collected, then thawed and pooled, despite being stored at -80ºC, also 

return profiles with a greater relative abundance of Firmicutes as compared to Bacteroidetes, at 

least when compared to a single sample transferred and stored in OMNIgene gut tubes. Other 

studies with rumen digesta samples have also reported a significant loss in Bacteroidetes when the 

samples were frozen without a cryoprotectant (i.e., glycerol/phosphate-buffered saline) and thereby 

thought to negatively impact the profiling of the archaeal and bacterial communities as measured by 

qPCR analysis of the 16S rRNA gene (213). During the course of my Ph.D. program, studies have 

also reported that the OMNIgene gut (OMR-200) collection tubes as a reliable way to collect high-

quality fecal samples for gut microbiome studies (214,215). Overall, my results show that it is 
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imperative to store the samples appropriately to avoid any post-collection biases in microbiome 

profiles that could lead to misleading interpretations. It is also important to ensure that all the samples 

are stored in the same manner to avoid any bias. For these reasons, all the samples collected as part 

of the work with AIS and Monash University were appropriately stored in OMNIgene tubes.   

 

The results in Chapters 3 and 4 were enabled by the Supernova 1 study via AIS, which aimed to 

investigate the effect of different approaches to dietary carbohydrate intake on metabolism, economy 

and performance of world-class endurance race walkers. The saliva and stool samples were collected 

from a cohort of 21 male athletes prior to the 2016 Brazil Olympics. While several studies have been 

published examining diet x microbiome interactions in elite athletes (63,68) these studies were 

conducted with “power sports” and to my knowledge, these results presented in Chapters 3 and 4 (and 

now published) are the first with elite “endurance sports” athletes.  

The human oral cavity harbours billions of bacteria and is one of the most investigated microbiomes 

due to its association with several oral infectious diseases, periodontal diseases, and caries. The oral 

microbiota is also known to contribute to significant non-communicable diseases such as diabetes, 

cardiovascular diseases and cancers (73). However, little is known about the oral microbiome of 

athletes, and any possible links with athlete performance. The analyses from Chapter 3 showed that 

following the consumption of the LCHF diet, the relative abundances of Haemophilus, 

Neisseria and Prevotella spp. were decreased, while the relative abundance of Streptococcus spp. 

was increased. Interestingly, the bacterial taxa found to decrease following the consumption of the 

LCHF diet are known to be the key governors of the enterosalivary nitrate-nitrite-nitric oxide (NO) 

axis within the oral cavity. Previous studies have demonstrated associations between the LCHF diet 

and impaired plasma nitrate/nitrite conversion following supplementation with potassium nitrate, 

compared with the response to a HCHO diet in healthy active men (115) suggesting that a LCHF diet 

might alter the nitrate-nitrite-NO pathway to NO-related health and performance benefits in athletes. 

One of the major outcomes of the parent Supernova 1 study was a reduction in the exercise economy 

(i.e. an increased oxygen cost of exercise) across a range of walking speeds in the LCHF group (99). 

So, it seems plausible that this reduced exercise efficiency might be attributed in part to an altered 

oral microbiome. In particular, the results from this work highlights interest in further investigation 

of the effect of ketogenic LCHF diets on the functional potential of oral microbiome, its relationship 

with NO homeostasis, and downstream impacts on cardiovascular, circulatory and metabolic 

function. 

 



  

131 

 

Results from Chapter 4 showed that the stool microbiota profiles of elite race walkers could be 

separated into “Bacteroides” and “Prevotella” dominated enterotypes similar to what has been 

reported on healthy mainstream subjects and other endurance athletes (68,123,124) and these 

enterotypes appeared to be stable after the 3-week dietary interventions. Highly digestible 

carbohydrates are often the preferred source of energy for endurance sports athletes, somewhat in 

contrast to the diets favoured by power athletes, where protein can account for considerably more of 

the total energy intake. As such, the somewhat subtle impacts from the HCHO and PCHO dietary 

interventions on the stool microbiota could be that these diets were similar to the typical diets 

consumed by the endurance athletes and/or the carbohydrate content of the diets might be digestible 

and with little resistant carbohydrates available to the colonic microbiota. The ketogenic LCHF diet 

did invoke more profound changes on the stool microbiota profiles of the athletes as compared to the 

HCHO and PCHO dietary interventions, with a significant increase in the relative abundances of 

Bacteroides and Dorea and decrease in the relative abundance of Faecalibacterium. Wu et al. (124) 

have shown that Bacteroides spp. and a Bacteroides-dominant enterotype is found in healthy 

mainstream subjects who report long-term dietary pattern rich in animal fats and protein, whereas the 

Prevotella-dominant enterotype was found in those subjects with a long-term dietary pattern of high 

fibre containing foods. Shankar et al. (136) have reported similar findings from their comparative 

study of US and Egyptian children, considered to consume diets rich in animal products and processed 

foods (US) or a Mediterranean-type diet of whole grains, complex carbohydrates and lesser amounts 

of animal proteins and fats. Furthermore, the relative abundance of Bacteroides and Dorea 

particularly in response to the LCHF diet were also found to be significantly negatively associated 

with fat oxidation and economy measures, respectively.  

Although the findings are largely enabled by the repeated sampling from each athlete (at entry and 

after the 3-week dietary intervention period), I feel the study would have enhanced and with greater 

impact if the Supernova 1 study had, like the studies of Clarke et al. (63) also recruited a non-athlete 

cohorts of subjects with similar or “normal” BMI, and consumed the same types of diets. 

Unfortunately, it was also not possible for the AIS team to compile a detailed food diary for each 

athlete during the study periods. Furthermore, the small sample size and the lack of comprehensive 

data on the athletes habitual baseline diet are some of the limitations of this work. However, and 

despite these limitations the results arising from these two Chapters do justify the additional studies 

of how diet x microbiome interactions could affect athletic performance, and in particular, the impacts 

of dietary pattern on the oral and stool microbiome and its effects on physiology and athlete 

performance.   
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The final Chapter of the thesis provided me more opportunities to expand my skills in microbiota data 

analysis via the combined use of 16S rRNA and ITS2 amplicon data as well as MGS data. It has 

expanded my knowledge from the bacterial world to fungal communities, and the potential impacts 

of inter-Kingdom associations on the function of the gut microbiome in healthy adults. I believe the 

study is the first of its kind to produce a combination of 16S rRNA, ITS2 and MGS data to investigate 

how a diet designed to provide a low and moderate prebiotic content affects the gut microbiota of 

healthy human subjects. The analysis showed that although MGS provides increased taxonomic 

resolution of the Bacterial Domain, the data produced at the intended sequencing depth (3 Gbp), 

which currently is a cost-effective compromise, comes with a caveat of limited or no detection of 

important but less abundant taxa such as gut fungi and archaea. Overall, the findings are similar to 

those reported by Douglas et al. (216) where 16S amplicon-based profiling performed better than 

MGS for detecting less abundant taxa. The sequencing was performed at ACE in two batches 

approximately one year apart (i.e. BL, LP and MP samples for subjects 1-9; and then BL, LP and MP 

samples for subjects 10-18). and the first batch of sequencing was found to produce less paired end 

reads, and the coverage estimates indicated differences in coverage between the first and second 

datasets. However, the alpha and beta diversity metrics for the 16S rRNA gene amplicon data 

provided clear evidence that  the comparisons between diets were consistent, and while the MGS 

sequencing might have a bearing on the statistical significance of the differences observed, it has not 

impacted the biological relevance of the findings presented here.  

Even though the principal aim of the study presented in Chapter 5 was to compare the effects of the 

prebiotic content of two diets on gut microbiome of the subjects, it still was worthwhile to study just 

the baseline profiles of the subjects, which represent the microbiota resident within these subjects in 

response to their habitual dietary pattern. Baseline samples were collected from 14 subjects. The 

unsupervised beta diversity PCoA plots of the 16S rRNA gene amplicon data using the Bray-Curtis 

distance measure revealed that the subjects at baseline could be separated into no less than 3 distinct 

clusters (Figure 6.1a). The genus-level profiles of these three clusters are shown in Figure 6.1c, with 

5/14 subjects found to possess a “Bacteroides-Faecalibacterium dominant” communities (cluster 1) 

and 6/14 subjects possessing remarkable abundance of Methanobrevibacter (cluster 2). The 

remaining 2 subjects clustering together and having higher abundance of “Prevotella 9” (cluster 3) 

and 1 subject having genus level profiles similar to that of cluster 1. Adonis further confirmed 

significant difference between clusters 1 and 2. I was unable to perform any statistical test on the 

remaining 3 points on the PCoA plot due to low number of samples in each group. Furthermore, these 

clusters were retained following the dietary-intervention periods, as shown when these profiles were 

included in the beta diversity analysis (Figure 6.1b).  
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Figure 6.1 Principal coordinates analysis (PCoA) of the Bray-curtis distances produced from 16S 

rRNA data of the stool samples of subjects collected at baseline (BL; red) only (a); and combined 

with their matching stool samples collected after the Low Prebiotic (LP; blue) and Moderate Prebiotic 

(MP; grey) dietary-interventions period (b). The subjects are separated into three distinct clusters and 

importantly, this clustering did not appear to be disrupted in response to the dietary intervention. The 

first two Principal Coordinates and the amount of variation each explains are shown (PCoA1, 

PCoA2). (c) The profiles of the predominant taxa present in the baseline stool samples of with either 

a Bacteroides (B) and Faecalibacterium (F)-dominant (cluster 1; n= 6), a Prevotella 9 (P) and 

Methanobrevibacter (M) dominant (cluster 3; n = 2) or a mixed cluster (cluster 2; n = 5) “enterotype”.  

 

I then wanted to investigate whether there was a prebiotic diet x cluster interaction evident in these 

subjects similar to what was found with LCHF x enterotype interaction in Chapter 3. However, paired 

t-test revealed no significant differences between the BL vs. LP, BL vs. MP and LP vs. MP groups in 

either of the two clusters (Appendix Figure 7.13 and Figure 7.14). This suggests that even though 

there appears to be some clustering of the subjects at BL, there were no diet x cluster interactions and 

the clustering observed from BL data had no significant effect on the response of these subjects 
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towards the prebiotic dietary interventions. As there was no statistical difference between the groups 

at BL, further analysis was performed using the group samples as an LP vs. MP comparison.  

The results presented in Chapter 5 show that a specific impact of the MP diet was to increase the gene 

counts involved with sugar alcohol metabolism and their associated transport (via PEP-PTS systems). 

Polyols such as lactitol and isomalt are well recognised to selectively enrich Bifidobacterium spp. 

abundance (206,207) and I believe the moderate amounts of both sorbitol and mannitol provided with 

the MP diet are the key factor behind the increase of select Bifidobacterium spp. with this diet. In that 

context, the Bifidobacterial MAGs that were produced from the MGS data from subjects consuming 

the MP diet favoured strains with the distinct ability to metabolise sugar alcohols, which further 

validates the veracity of the taxonomy and the functional profiling results. In addition to 

Bifidobacterium, an increase in relative abundances of Anaerostipes and Eubacterium following the 

consumption of the MP diet was also observed. Additionally, from the correlation analysis, significant 

positive associations of these taxa with found with Bifidobacterium, suggesting mutualistic cross-

feeding interactions between these bacterial communities.  

The results from the ITS2 amplicon profiles identified increase in the relative abundances of Candida, 

Agaricus and Aspergillus in response to the MP diet. Though not much is known about the effect of 

diets on gut fungi, one study has reported a positive association of carbohydrate-based diets and 

Candida in healthy subjects (61). However, the biological importance of these gut fungi in host health 

warrants further consideration. Scant reports are available on the bacterial-fungal-archaeal 

associations in the healthy human gut. Disease specific trans-kingdom alterations between IBD and 

healthy subjects have been shown by Sokol et al (53) and in this regard, the results have also shown 

distinct associations between the bacterial and fungal community members of the gut. Amongst the 

fungi, Saccharomyces was found to have more associations with bacterial taxa, and interestingly, 

strong positive correlations with B. longum, A. hadrus and E. hallii; all of which are increased 

following the consumption of the MP diet.   

Fermentable fibres stimulate the growth of colonic microbes and the production of microbial 

metabolites including short-chain fatty acids (SCFA). The systematic review and meta-analysis by 

So et al. (146) reported that while fecal butyrate concentrations are increased in response to dietary 

fibre supplements in healthy individuals, no significant changes in other SCFA concentrations are 

observed. I have calculated the molar proportions of acetate, propionate and butyrate in stool samples 

and found there were no significant differences in the molar ratios of these SCFAs between the LP 

and the MP diets (Figure 6.2). These results suggest that the magnitude of the microbiota shifts 

induced by the MP diet are not sufficiently large to drive a shift in the SCFA profiles in stool. These 



  

135 

 

findings corroborate those reported by Baxter et al. (194) that showed microbiomes with relatively 

larger populations of Bifidobacteria do not result in an increase in butyrate production in response to 

inulin or resistant potato starch even though increase in the relative abundances of butyrate producers 

such as A. hadrus and E. rectale were observed.  
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Figure 6.2 Molar ratios of short chain fatty acids (SCFAs) acetate, propionate, butyrate and 

acetate:propionate (C2:C3) and acetate:butyrate (C2:C4) ratios in subjects following the consumption 

of Low Prebiotic (LP; red) and Moderate Prebiotic (MP; blue) diets.  

 

In relation to the studies presented in Chapter 5 there are several possible directions for future 

research. Our collaborators at Monash University have collected data measuring gut symptoms, stool 

frequency and output, as well as measures of ammonia, p-cresol and SCFA. It will be interesting to 
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determine whether and how these data might be associated with the gut microbiota profiles that were 

observed following consumption of the LP and MP diets. The production of more detailed 

metabolomics data would also advance our understanding of the interactions between the microbes, 

their metabolites, dietary factors and the host. Such a multi-omics approach was beyond the scope of 

my Ph.D. research. The DNA samples could also be used to determine the absolute abundances of 

select bacterial, fungal and archaeal taxa. For instance, qPCR analyses of select Bifidobacteria (B. 

longum, B. adolescentis and B. animalis) would further confirm the enrichment of these species in 

response to either the LP or MP diet. Similarly, qPCR analyses of other bacterial taxa such as 

Anaerostipes and Eubacterium spp. could also be performed. However, the adaptation of qPCR 

approaches to fungal taxa such as Saccharomyces, Candida, Agaricus, and Aspergillus would further 

confirm the actual population size of the microbes in gut communities and how shifts in their absolute 

abundance relative to bacteria and archaea affect health. The cross-over study design used for the 

Monash study does raise the possibility that “carry over” effects might have influenced the changes 

in microbiota profiles. Although I feel my results are not significantly impacted by any carryover 

effects, I would recommend sampling at the end of the washout period (as well as increasing the time 

for the washout period) to ensure that the microbiota profiles at the end of the washout period are 

similar to the subject’s habitual or baseline microbial profiles, so any effect(s) arising from 

intervention can be assessed.    

  

 

In conclusion, this thesis presents novel insights of diet x microbiome interactions from samples 

collected as part of two longitudinal nutritional trials of either healthy mainstream adults, or elite 

endurance athletes. I believe more of these types of studies are needed, to better understand the 

nutritional ecology of the gut, the characteristics of a “healthy microbiome”, and how elastic the 

healthy gut microbiome may be to dietary interventions. Such understanding is needed to complement 

the relative extensive examination of the microbial dysbiosis observed with chronic, non-

communicable diseases such as IBD, obesity and other diet-related disorders. Only when the “healthy 

microbiome” is better characterised can the development of diets with either preventative or 

corrective impacts on the gut microbiota be developed and used with greater confidence for 

meaningful impacts on health or well-being. To that end, I believe my efforts are both meaningful 

and insightful to our achievement of these goals for improved health and nutrition.  
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Chapter 7 
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Chapter 7 Appendix 

 

7.1 Sequence clean up protocol  

Reagents needed: 

AMPure XP beads (bring to room temp)  20µL per sample 

80% ethanol (prepare fresh)               400µL per sample 

10mM Tris pH 8.5                52.5µL per sample 

Magnetic bead stand 

Dispensing trough (for multichannel pipette) 

 

1. Use 25µL of the amplicon PCR product, in PCR tubes/96-well PCR plate for the clean-up.  

2. Centrifuge the amplicon PCR plate at 1000 x g for 1 min (can use little green benchtop spinner; 

or large benchtop centrifuge if using plate). 

3. Vortex AMPure beads for 30 sec. Add to dispensing trough. 

4. Add 20µL of beads to each PCR sample (use multichannel). Gently pipette up and down 10 times 

to mix. 

5. Incubate at room temp. for 5 mins.  

6. Place in magnetic stand for 2 mins, or until supernatant has cleared.  

7. While still in the magnetic stand, remove and discard supernatant (use multichannel) 

8. While still in the stand, wash the beads with 80% ethanol.  

a. Add 200µL of ethanol to reaction PCR tube (use multichannel) 

b. Incubate for 30 seconds 

c. Carefully remove and discard supernatant.  

9. Repeat a second ethanol wash as above. After this one, use a P20 pipette to remove any residual 

ethanol.  

10. While still in the magnetic stand, let the beads air dry for 10 mins.   

11. Remove amplicon PCR tubes from stand. Add 52.5 µL of 10mM Tris to each PCR tube. Gently 

pipette up and down 10 times to mix. Make sure beads are fully resuspended. 

12. Incubate at room temp for 2 mins.  

13. Place in magnetic stand for 2 mins, or until supernatant has cleared.  

14. Carefully transfer 50µl of the supernatant into a clean labelled tube.  
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7.2 Supplementary figures Chapter 3 

 

 

Figure 7.1 Genera differentiating between the oral microbiota profiles of athletes at baseline (BL, 

red) and after their consumption of the High Carbohydrate diet (HCHO, blue) identified by LefSe.  

 

 

 

 

 

Figure 7.2  Mixed effect linear regression analysis of the oral microbiota profiles at BL and following 

High Carbohydrate (HCHO) diet training intervention identified significant reductions in the relative 

abundances of Capnocytophaga (p=0.027) and Porphyromonas (p=0.032) whereas significant 

increase in the relative abundance of Atopobium (p=0.015) following the HCHO diet training 

intervention. Relative abundance was compared by mixed effect linear regression, including sampling 



  

141 

 

time point as fixed effect and athlete as random effect. BL: baseline. Samples collected from the same 

individual are connected by lines.  

 

 

 

 

Figure 7.3 Genera differentiating between the oral microbiota profiles of athletes at baseline (BL, 

red) and after their consumption of the Periodised Carbohydrate diet (PCHO, blue) identified by 

LefSe.  
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Figure 7.4 Mixed effect linear regression analysis of the oral microbiota profiles at BL and following 

Periodised Carbohydrate diet (PCHO) training intervention identified significant reductions in the 

relative abundances of Actinomyces (p=0.043), Moryella (p=0.053), Oribacterium (p=0.042), 

Peptostreptococcus (p=0.009) and Unc. Erysipelotrichaceae (p=0.042) after consumption of the 

PCHO diet. Relative abundance was compared by mixed effect linear regression, including sampling 

time point as fixed effect and athlete as random effect. BL: baseline. Samples collected from the same 

individual are connected by lines.  

 

 

 

 

 

 

Figure 7.5 Genera differentiating between the oral microbiota profiles of athletes at baseline (BL, 

red) and after their consumption of the Low Carbohydrate High Fat diet (LCHF, blue) identified by 

LefSe.  
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Figure 7.6 Mixed effect linear regression analysis of the oral microbiota profiles at BL and 

following Low Carbohydrate High Fat (LCHF) diet training intervention identified significant 

reductions in the relative abundances of Fusobacterium (p=0.020), Lautropia (p=0.048), 

Leptotrichia (p=0.040), Aggregatibacter (p=0.044) and Unc. F16 (p=0.040) whereas significant 

increase in the relative abundances of Granulicatella (p=0.038), Streptococcus (p=0.048) and 

Planococcaceae (p=0.038) after consumption of the LCHF diet. Relative abundance was 

compared by mixed effect linear regression, including sampling time point as fixed effect and 

athlete as random effect. BL: baseline. Samples collected from the same individual are connected 

by lines.  
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7.3 Supplementary figures Chapter 4 

 

 

 

 

Figure 7.7 Genera identified by LefSe analyses that differentiate between the stool microbiota 

profiles of athletes at baseline (BL, red) or after their consumption of the Periodised Carbohydrate 

diet (PCHO, blue) (b) Genera identified by LefSe analysis that differentiate between the stool 

microbiota profiles of athletes at baseline (BL, blue) and after their consumption of the High 

Carbohydrate diet (HCHO, red).  
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Figure 7.8 Shannon and Simpson alpha diversity measures of the stool microbiota profiles for athletes 

at baseline (BL) and after their consumption of the Low Carbohydrate High Fat diet (LCHF). The 

diversity measures at the two sampling times were compared by mixed effect linear regression, 

including sampling time point as fixed effect and athlete as a random effect, and were not statistically 

different.  

 

 

 

Figure 7.9  Wilcoxon rank t-test of the stool microbiota profiles for athletes at baseline (BL) and 

after their consumption of the Low Carbohydrate High Fat diet (LCHF) identified significant 

reductions in the relative abundances of Faecalibacterium (p=0.0003) and significant increases in 

the relative abundance of both Bacteroides (p=0.0022) and Dorea (p=0.0068) after consumption of 

the LCHF diet.  
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Figure 7.10 Genera identified by LefSe analysis that differentiate between the stool microbiota 

profiles of athletes at baseline (BL, red) and after their consumption of the Low Carbohydrate High 

Fat diet (LCHF, blue) at either the OTU level (a), or at the genus level (b).  
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Chart 7.1 Pie charts showing the genus level profiles of those athletes with the Prevotella-dominant 

enterotype at: (a) Baseline (BL) and (b) Post treatment (PT), i.e. after consumption of the Low 

Carbohydrate High Fat (LCHF) diet. The relative abundance of Bacteroides and Unc. Clostridiales 

were increased, whereas the relative abundance of Faecalibacterium was decreased in these athletes, 

PT.  

 

 

Chart 7.2 Pie charts showing the genus level profiles of those athletes with the Bacteroides-dominant 

enterotype at: (a) Baseline (BL) and (b) Post treatment (PT), i.e. after consumption of the Low 

Carbohydrate High Fat (LCHF) diet. The relative abundance of Bacteroides and Sutterella were 

increased, whereas the relative abundance of Faecalibacterium was decreased in these athletes, PT.  
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7.4 Supplementary figures Chapter 5 

 

 

Figure 7.11 Bacterial (16S rRNA) and Fungal (ITS2) genera differentiating the stool microbiota 

profiles of subjects after consumption of the Moderate Prebiotic (MP; red) diet identified by LefSe. 

 

 

 

 

Figure 7.12 Bacterial species (from the MGS data) differentiating the stool microbiota profiles of 

subjects after consumption of the Moderate Prebiotic (MP; red) diet identified by LefSe. 
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7.5 Supplementary figures Chapter 6 

 

 

 

Figure 7.13 Wilcoxon rank paired t-test of stool microbiota profiles of healthy subjects from Cluster 

1 (high Bacteroides and high Faecalibacterium cluster, n=6) identified no significant changes in the 

relative abundances of bacteria when comparisons were made between Low Prebiotic (LP) vs 

Moderate Prebiotic (MP); Baseline (BL) vs. LP; BL vs. MP groups.  
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Figure 7.14 Wilcoxon rank paired t-test of stool microbiota profiles of healthy subjects from Cluster 

2 (mixed cluster, n=5) identified no significant changes in the relative abundances of bacteria when 

comparisons were made between Low Prebiotic (LP) vs Moderate Prebiotic (MP); Baseline (BL) vs. 

LP; BL vs. MP groups.  
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7.6 Bioinformatics scripts 

16S rRNA sequence analysis: QIIME 1  

• Unzipping all the .gz files and joining the paired end reads (To combine the forward and the 

reverse reads) 

gzip . -rd *fastq.gz  

multiple_join_paired_ends.py -i fastq_files -o joined_output 

• Split Libraries (Quality control and demultiplexing step) 

 

• To make a list of all the sequence file names and write to a file called output_names.  

(cd joined_output && ls -d */) > output_names 

• To make a comma-separated list of the sequence names and write to a file called step1.   

sed 's_/_/fastqjoin.join.fastq_g' joined_output/output_names | tr "\n" , | sed 's/,$//' | sed 

's/^/split_libraries_fastq.py -i /' > step1  

• To make a barcode comma list and write to a file called step2.   

tr "\n" , < sample_ids.txt | sed 's/,$/ --barcode_type 'not-barcoded' -q 19 -o split -m 

dummy_map.txt/' | sed 's/^/ --sample_id /' > step2  

• To combine the files step1 and step2 together into a file called step3.  

cat step1 step2 > step3  

• Putting and running the script together.   

sed -i "1 i\shellscript" step3  

sed 's/shellscript/#!\/bin\/sh\n/' step3 > run_split_script.sh  

chmod 700 run_split_script.sh  
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./run_split_script.sh 

This result in a seqs.fna file which is then used for chimera filtering step. 

• Identifying and filtering chimeras using USEARCH 

identify_chimeric_seqs.py -i seqs.fna -m usearch61 -o usearch_checked_chimeras/ -r 

gg_97_otus_4feb2011.fasta 

filter_fasta.py -f seqs.fna -o seqs_chimeras_filtered.fna -s chimeras.txt -n 

• Assigning OTU’s by open reference picking 

pick_open_reference_otus.py -i seqs.fna -o workflow1/ -r 97_otus.fasta -s 0.1 -a  

• Downstream filtering steps (Filtering low abundance OTU’s (<0.01%), contaminated 

samples, blanks and samples with less than 1000 reads) 

filter_otus_from_otu_table.py -i otu_table_micro.biom -o otu_table_micro_filtered.biom --

min_count_fraction 0.0001  

filter_samples_from_otu_table.py -i otu_table_filtered_excluded_below_1000reads.biom -o 

otu_table_filtered_excluded_below_1000reads_final.biom --sample_id_fp 

discard_controls.txt --negate_sample_id_fp 

 

  

• Rarefaction of the OTU table 

single_rarefaction.py -i otu_table_filtered_excluded_below_1000reads_final.biom -o 

otu_table_even1000.biom -d 1000 

 

• Core diversity analysis  

core_diversity_analyses.py -i otu_table_even1000.biom -o core_output -m map.txt -c Diet -t 

rep_set.tre -e 1000 
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Running Trimmomatic to remove adaptor sequences 

[tnmurtaz@uqdi-login Nida]$ module load java 

[tnmurtaz@uqdi-login Nida]$ java -jar 

/dmf/uqdi/HPC/PBSHOME/shared/applications/Trimmomatic-0.36/trimmomatic-0.36.jar PE -

threads 24 SC7710_S1_R1_001.fastq.gz SC7710_S1_R2_001.fastq.gz S1_trimmed_1.fastq.gz 

S1_unpaired_1.fastq.gz S1_trimmed_2.fastq.gz S1_unpaired_2.fastq.gz 

ILLUMINACLIP:/dmf/uqdi/HPC/PBSHOME/shared/applications/Trimmomatic-

0.36/adapters/NexteraPE-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 

CROP:10000 HEADCROP:0 MINLEN:50 

 

Merging the trim reads (R1 and R2) 

[tnmurtaz@uqdi-login Nida]$ cat S1_trimmed_1.fastq.gz S1_trimmed_2.fastq.gz > S1.fastq.gz 

 

Mapping against hg19 database to remove the human reads from the sample 

[tnmurtaz@uqdi-login Nida]$ module load bowtie2_2.2.1 

Bowtie2 (2.2.1) module loaded. 

[tnmurtaz@uqdi-login Nida]$ bowtie2 -x hg19 -U S1.fastq.gz -S S1_mapped_and_unmapped.sam 

 

Converting sam to bam format 

 

[tnmurtaz@uqdi-login Nida]$ export 

MODULEPATH=/dmf/uqdi/Immunology/Morrison_Group/modules:$MODULEPATH 

[tnmurtaz@uqdi-login Nida]$ export 

MODULEPATH=/dmf/uqdi/HPC/PBSHOME/shared/modules:$MODULEPATH 

[tnmurtaz@uqdi-login Nida]$ module load samtools-1.3.1 

[tnmurtaz@uqdi-login Nida]$ samtools view -bS S1_mapped_and_unmapped.sam > 

S1_mapped_and_unmapped.bam 

 

Extracting unmapped reads from bam file 

[tnmurtaz@uqdi-login Nida]$ samtools view -b -f 4 S1_mapped_and_unmapped.bam > 

S1_unmapped.bam 

 

Converting unmapped bam to fastq  

[tnmurtaz@uqdi-login Nida]$ samtools bam2fq S1_unmapped.bam > S1_unmapped.fastq 

 

Script to run HUMAnN2 on unmapped fastq file 

#!/bin/bash 

#PBS -l select=1:ncpus=48:mem=248gb 
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#PBS -l walltime=100:00:00 

pwd 

cd /share/uqdi/Immunology/Morrison_Group/Nida 

module load humann2/0.11.1 

module load biopython/1.66 

module load metaphlan/2.0 

humann2 --input S1_unmapped.fastq --output S1_hummann2_50 --nucleotide-database 

/dmf/uqdi/Immunology/Morrison_Group/Nida/ACE/humann2/chocophlan --diamond 

/dmf/uqdi/Immunology/Morrison_Group/JingJie/POCER_MGS/diamond --protein-database 

/dmf/uqdi/Immunology/Morrison_Group/Nida/ACE/trial_humann2/uniref50/ --metaphlan-

options="--mpa_pkl /dmf/uqdi/HPC/sw/MetaPhlAn/2.0/databases/mpa_v20_m200.pkl --bowtie2db 

/dmf/uqdi/HPC/sw/MetaPhlAn/2.0/databases/" --threads 30 

 

Joining multiple output tables  

[tnmurtaz@uqdi-login genefamilies_all]$ humann2_join_tables –i genefamilies_all -o 

merged_genefamilies.tsv --file_name genefamilies 

 

Normalising the merged output table (unit as copies per million) 

[tnmurtaz@uqdi-login genefamilies_all]$ humann2_renorm_table --input merged_genefamilies.tsv 

--output merged_genefamilies_cpm.tsv --units cpm   

 

Regroup and rename to GO categories    

[tnmurtaz@uqdi-login genefamilies_all]$ humann2_regroup_table -i merged_genefamilies_cpm.tsv 

-c ../utility_mapping/map_level4GO_uniref50.txt -o regroup_genefamilies_GO.tsv 

 

[tnmurtaz@uqdi-login genefamilies_all]$ humann2_rename_table -i 

regroup_genefamilies_cpm_GO.tsv -c ../utility_mapping/map_level4GO_name.txt -o 

rename_genefamilies_GO.tsv 

 

Regroup and rename to Pfam categories  

[tnmurtaz@uqdi-login genefamilies_all]$ humann2_regroup_table -i merged_genefamilies_cpm.tsv 

-c ../utility_mapping/map_level4ec_uniref50.txt -o regroup_genefamilies_cpm_Pfam.tsv 

[tnmurtaz@uqdi-login genefamilies_all]$ humann2_rename_table -i 

regroup_genefamilies_cpm_Pfam.tsv -c ../utility_mapping/map_level4ec_name.txt -o 

rename_genefamilies_Pfam.tsv 

 

R corrplot script for correlation analysis 
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MM = read.csv("change.csv") 

MM_M = cor(MM,method="spearman") 

library(corrplot) 

MM.P = cor.mtest(MM_M) 

M.adp = c() 

as.data.frame(M.adp) 

for (i in 1:28) 

{ 

  MM.adp = p.adjust(MM.P$p[,i],method = "bonferroni") 

  M.adp = cbind(M.adp,MM.adp) 

} 

col <- colorRampPalette(c("#BB4444", "#EE9988", "#FFFFFF", "#77AADD", "#4477AA")) 

corrplot(MM_M, #col=col(200),   

         type="lower",  

         addCoef.col = "null",  #Add coefficient of correlation 

         tl.col="black", tl.srt = 50, tl.cex = 1, number.cex = 1, #Text label color and rotation 

         # Combine with significance 

         p.mat = M.adp, sig.level = 0.05, insig = "blank",  

         # hide correlation coefficient on the principal diagonal 

         diag=FALSE  

) 

 

Script to run FastQC to estimate the number of metagenomic reads 

#!/bin/bash 

#PBS -l select=1:ncpus=24:mem=128gb 

#PBS -l walltime=24:00:00 

module load fastqc 

module load java/1.8.0 

pwd 

cd /dmf/uqdi/Immunology/Morrison_Group/Nida/ACE/shotgun/J228/repeat 

fastqc S1.fastq.gz 

 

Script to run Nonpareil to estimate metagenomic coverage 

#!/bin/bash 

#PBS -l select=1:ncpus=24:mem=200gb 

#PBS -l walltime=200:00:00 

module load fastqc 

module load java/1.8.0 

pwd 

cd /dmf/uqdi/Immunology/Morrison_Group/Nida/ACE/shotgun 

export MODULEPATH=$MODULEPATH:/dmf/uqdi/HPC/PBSHOME/shared/modules 
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module load Miniconda-2.7 

source activate nonpareil 

nonpareil -s sample.fastq -T kmer -f fastq -b sample 

 

Script to run qcIllumina  

#!/bin/bash 

#PBS -l select=1:ncpus=48:mem=248gb 

#PBS -l walltime=24:00:00 

pwd 

cd uqdi/Immunology/Morrison_Group/Nida/qc 

module load Miniconda-2.7 

module load samtools-1.3.1 

module load bbmap 

python /dmf/uqdi/Immunology/Morrison_Group/Useful_software/qcIllumina/qcIllumina.py nextera 

SC3298_S1_R1_001.fastq.gz SC3298_S1_R2_001.fastq.gz S1 

 

Script to run MEGAHIT 

#!/bin/bash 

#PBS -l select=1:ncpus=38:mem=148gb 

#PBS -l walltime=400:00:00 

pwd 

cd /dmf/uqdi/Immunology/Morrison_Group/Nida/Assembly 

/dmf/uqdi/HPC/PBSHOME/shared/applications/megahit/megahit-v1.1.1-2-g02102e1/megahit --

memory 0.7 --num-cpu-threads 30 --tmp-dir /scratch/nmurtaza/ -1 S1.qc.1.fq.gz,S2.qc.1.fq.gz -2 

S1.qc.2.fq.gz,S2.qc.2.fq.gz -r S1.qc.singletons.fq.gz,S2.qc.singletons.fq.gz -o Megahit 

 

Script to run BamM 

#!/bin/bash 

#PBS -l select=1:ncpus=38:mem=200gb 

#PBS -l walltime=672:00:00 

export PATH=/dmf/uqdi/HPC/PBSHOME/shared/applications/bwa-0.7.3a/:$PATH 

export PATH=/dmf/uqdi/HPC/PBSHOME/shared/applications/samtools-1.3.1/bin/:$PATH 

export PATH=/dmf/uqdi/HPC/PBSHOME/shared/applications/BamM-

test/bamm/:/dmf/uqdi/HPC/PBSHOME/shared/applications/BamM-

test/bin/:/dmf/uqdi/HPC/PBSHOME/shared/applications/Miniconda/bin/:$PATH 

pwd 

cd /dmf/uqdi/Immunology/Morrison_Group/Nida/Assembly 

bamm make -d /dmf/uqdi/Immunology/Morrison_Group/Nida/Assembly/final.contigs.fa -c 

S1.qc.1.fq.gz S1.qc.2.fq.gz S2.qc.1.fq.gz S2.qc.2.fq.gz -t 30 -o 

/dmf/uqdi/Immunology/Morrison_Group/Nida/all_bamm 

pwd 

 

Script to run MetaBat 
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#!/bin/bash 

#PBS -l select=1:ncpus=38:mem=148gb 

#PBS -l walltime=400:00:00 

cd /dmf/uqdi/Immunology/Morrison_Group/Nida/metabat 

export PATH=/dmf/uqdi/HPC/PBSHOME/shared/applications/BamM-

test/bamm/:/dmf/uqdi/HPC/PBSHOME/shared/applications/BamM-

test/bin/:/dmf/uqdi/HPC/PBSHOME/shared/applications/Miniconda/bin:/dmf/uqdi/HPC/PBSHOM

E/shared/applications/metabat_v0.32.4_static_binary/:$PATH 

runMetaBat.sh /dmf/uqdi/Immunology/Morrison_Group/Nida/Assembly/final.contigs.fa 

/dmf/uqdi/Immunology/Morrison_Group/Nida/all_bamm/final.contigs.S*.qc.1.bam 

 

 

Script to run CheckM 

#!/bin/bash 

#PBS -l select=1:ncpus=38:mem=148gb 

#PBS -l walltime=400:00:00 

cd /dmf/uqdi/Immunology/Morrison_Group/Nida/checkm 

export MODULEPATH=/dmf/uqdi/Immunology/Morrison_Group/modules:$MODULEPATH 

export MODULEPATH=/dmf/uqdi/HPC/PBSHOME/shared/modules:$MODULEPATH 

module load pplacer-1.1 

module load prodigal-2.6.3 

module load hmmer-3.1b2 

module load Miniconda-2.7 

module load anaconda2 

module load CheckM-1.0.7 

checkm lineage_wf -t 25 -x fa /dmf/uqdi/Immunology/Morrison_Group/Nida/metabat 

/dmf/uqdi/Immunology/Morrison_Group/Nida/checkm 
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7.7 Ethics approval letters 

 

Supernova 1 study (Chapter 3 and 4) 
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Using diet rich in dietary fibre to improve bowel habit and sense of well-being (Chapter 5) 
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