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Abstract
Cavity optomechanics studies the interaction between light and the motion of mechanical oscil-
lators, which can have mass ranging from cold atom clouds to kilogram-scale mirrors. By opti-
mizing the optomechanical interaction and engineering the mechanical oscillators, researchers
have generated macroscopic quantum states, and developed techniques for high precision sens-
ing of mass, displacement and electric and magnetic fields. One of the most influential examples
of precision optomechanical sensing was the detection of gravitational waves. The technique
of cavity optomechanics can also be leveraged to investigate superfluids. Owing to its zero vis-
cosity, low optical absorption and high thermal conductivity, superfluid helium is an excellent
candidate for the mechanical oscillator of an optomechanical system. With the rich physics in
superfluid helium, the superfluid optomechanical system can be an ideal platform to study the
interdisciplinary field between quantum physics and condense matter physics.

The general optomechanical interaction is mediated by the optical forces exerted on the
mechanical oscillator, which typically exist in the form of radiation pressure and photothermal
effects. In the first experiment reported in this thesis, a silica Whispering Gallery Mode (WGM)
resonator is covered in a thin film of superfluid helium. Optical absorption in the WGM
microtoroid resonator causes superfluid flow and evaporation, resulting in a recoil force that
exceeds the radiation pressure force by one order of magnitude. Using this superfluid-enhanced
optical force, we demonstrate feedback cooling of a bulk mechanical mode of the microtoroid
with final mode temperature as low as 137 mK and final mechanical occupancy of 2110 ± 40.

In addition to using superfluid to control the motion of bulk modes of a microtoroid, we
also explore the native surface acoustic waves (third sound) that reside on the superfluid film
condensed on the surface of the WGM resonator. Including the aforementioned advantages of
superfluid helium, the small mass and the self-assembling nature of the thin superfluid film
enable third sound to be a mechanical oscillator of high quality and large optomechanical cou-
pling. We have theoretically developed a superfluid optomechanical system comprised of third
sound waves and a WGM disk resonator, and estimated that the system is capable to achieve
an ultra-strong coupling, i.e. the single photon optomechanical rate larger than the mechanical
frequency. Further, we theoretically and experimentally demonstrate that quantized vortices
in the thin superfluid film can interact with the third sound waves and lift the degeneracy
of third sound modes. With the optical field and vortices bridged by third sound, the vortex
dynamics can be probed using this superfluid optomechanical system. Experimentally, by mon-
itoring the third sound frequency splitting we interrogate the coherent evolution of an ensemble
of 17 vortices on the superfluid optomechanical resonator. The investigation of the coherent
vortex dynamics in a nanometer-scale thin superfluid confined at microscale allows us to study
the fascinating physics in strongly-interacting superfluids, and build practical applications like
high-precision inertial sensors.

Finally a major work in this thesis is to study the Brillouin interaction between phase-



matched travelling light and sound. The conventional Brillouin interaction is limited by the
large Young’s modulus of solid materials, which constrains the electrostrictive compression of
the material in response to light. The large mechanical compliance of the thin superfluid film
affords us a strong Brillouin interaction between the travelling light and third sound confined
on a superfluid optomechanical disk resonator. Enabled by the strong Brillouin interaction
a superfluid Brillouin laser is experimentally demonstrated to have the lowest so-far-recorded
lasing threshold power of 1.8 µW, with harmonics of the Brillouin scattering observed up to
the 6th order at 5.6 µW. Furthermore, the combination of a strong Brillouin interaction and
large Brillouin lasing amplitude allows the strength of the Brillouin-induced coupling between
counter-propagating optical waves to exceed the optical damping rate for the first time. This
strong optical coupling has potential applications for all-optical reconfigurable optomechanical
circuits and the generation of microwave frequency synthesis.
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Chapter 1

Introduction

What is the difference between signals and noise? This is a subjective question, because signals
are just something in the measurement which we are interested in, whereas noise is not. For
example, if we shine a laser beam directly onto a photodetector, the photocurrent generated by
the photodetector will always drift over some time scale, due to the “pick-up” of the environ-
mental noise (e.g. from vibrations of the optical table, sound in the lab, lab temperature, etc.).
Some particular “pick-up” from vibrations can be our signal, if we are interested in them. On
the other hand, the signals imprinted by vibrations in the environment on the bare laser beam
are typically very weak, since environmental vibrations generally have very low frequency, and
are spectrally broad (have low quality). The low quality factor of the environmental vibrations
is due to that they are a continuum of normal (eigen) mechanical modes, which are poorly
defined and leaky into the ports of the environment. What’s more, a bare laser beam generally
has very low detection sensitivity making us not able to resolve all these weak signals.

In the cavity optomechanics community, researchers are interested in particular mechanical
vibrations, and they then distinguish them from noise by engineering mechanical oscillators
which support high quality mechanical modes. These modes are defined by the boundary con-
dition of the mechanical oscillators, thus they are distinct normal modes instead of a continuum.
In addition to increasing the quality factor of mechanical modes, researchers also improve the
measurement sensitivity by employing an optical cavity, in which light circulates for a large
number of round-trips (namely, the finesse of the cavity which ranges typically from several
thousand up to several million), and thus interacts with the mechanical motion an equivalent
number of times.

This is the simple understanding of cavity optomechanics, which is composed of an op-
tical cavity and a mechanical oscillator. The resonance frequency of the cavity ranges from
microwave (∼ GHz) up to optical (∼ several hundred THz), while the mechanical frequency
ranges from Hz to tens of GHz, and the mass of the mechanical oscillator from dilute atom
clouds to kg mirrors.

Cavity optomechanics has been widely explored in both practical and scientific cases of

1
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scenario. For the practical case, cavity optomechanics is used for mechanical position mea-
surement, which is exhibited as the influence of the mechanical motion on the light. This
has enabled many practical applications, like precision sensing of masses [6], forces [7], and
gravitational waves [8]. For the case of fundamental science, cavity optomechanics is used to
investigate the interplay between the mechanical oscillator and light, where the backaction of
light affects the mechanical motion, and is used to generate and control the quantum state
of the mechanical motion. With the dynamical backaction people have demonstrated a wide
range of fundamental physics, including ground state cooling, squeezing and entanglement of
macroscopic mechanical oscillators, etc [9–14].

Here in this thesis, instead of usual bulk solid materials, thin superfluid helium films are
explored to form an optomechanical system with a silica Whispering Gallery Mode (WGM)
resonator. Superfluid helium is a type of Bose Einstein condensate, in which all the constituent
atoms at the energy ground state are described by one wavefunction, when helium gas is
cooled below a critical temperature of 2.17 K. Compared with solid materials, superfluid helium
has several advantages, such as zero viscosity [15], low optical absorption [16], high thermal
conductivity [17], the self-assembling nature of superfluid films [18], and it has very rich and
fascinating physics like Berezinskii–Kosterlitz–Thouless topological phase transition [19, 20],
and quantum turbulence and quantized vortices [21–24].

With the fascinating superfluid optomechanical system, many experimental and theoretical
results have been demonstrated in our lab. The ones related to this thesis are as following.
In the first work included in this thesis, the superfluid fountain effect (see § 3.2.2) is utilized
to enhance the optical force by one order of magnitude larger than radiation pressure, and
using the enhanced optical force we demonstrate feedback cooling of a mechanical mode of
the WGM resonator down to a phonon occupancy of 2110 ± 40 [1]. Next, to exploit the
advantages of superfluid helium, in contrast to conventional optomechanical systems we study
a superfluid optomechanical system, where surface acoustic waves on the thin superfluid film
evanescently interact with the intracavity optical field [2]. We theoretically estimate that the
superfluid optomechanical system can operate in the ultra-strong coupling regime, where the
single photon optomechanical coupling rate g0 is larger than the mechanical frequency Ωm.
Further, we theoretically investigate the vortex-sound interaction and show that the splitting
of sound modes can be detected using this optomechanical system. With the vortex-sound
interaction we also experimentally demonstrate the probing of the dynamics of an ensemble
of 17 quantized vortices [5]. Last, we theoretically and experimentally demonstrate ultra-low
threshold Brillouin lasing in the mechanically compliant superfluid thin film, in contrast to solid
materials where the electrostrictive force of light strains the material to amplify the Brillouin
acoustic wave. The Brillouin lasing in the superfluid thin film can mediate the strong coupling of
two counter-propagating optical modes, and can be potentially used to stir superfluid vortices.
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Thesis Outline

There are seven chapters in this thesis.
Chapter 2 summarizes the basic concepts and experimental skills involved in the superfluid

optomechanics experiment during my PhD.
Chapter 3 presents the basic theoretical formulation for cavity optomechanics, and gives a

brief introduction to superfluid helium.
Chapter 4 presents a conventional cavity optomechanics experiment, where we use the

superfluid fountain effect to enhance the optical force exerted on the mechanical motion of the
optical resonator.

Chapter 5 presents the theory developed for the optomechanical coupling between light and
superfluid acoustic waves. Based on the superfluid optomechanical coupling the probing of
vortex dynamics is both theoretically and experimentally demonstrated.

Chapter 6 presents the theory and experiment on the ultra-low threshold Brillouin lasing
in a thin superfluid film, where a superfluid surface acoustic mode, which matches well with
the intensity nodes of a WGM optical mode, and thus gets amplified by the optical field.

Chapter 7 concludes the thesis and gives the outlook for future superfluid optomechanics
experiments.



Chapter 2

Shopping List for an Optomechanics
Experiment

This chapter summarizes important optical components and useful techniques for cavity op-
tomechanics experiments. For example, beam splitters are the critical component for interfer-
ometers, which are widely used to measure weak optical signals and detect the quantum state
of light, as explained in the following section for homodyne and heterodyne detection. Optical
cavities are another type of powerful optical component, which is used to enhance light-matter
interaction. Basic concepts of the Fabry-Perot cavity and the Whispering Gallery Mode res-
onator are explained. Then the frequency locking technique and the fabrication process for
WGM resonators are introduced.

2.1 Beam Splitter
Beam splitters are the most common optical device in optical physics experiments, and they
are mostly used in interferometers. Fig. 2.1 illustrates a classical lossless beam splitter made of
a silica slide with a reflective dielectric coating. The dielectric constant of the three materials

E1

E2

E3

E4

nair

nair

nsilica

ncoating

Figure 2.1: Illustration of a beam splitter (the reflection at the two interfaces between the beam
splitter and air is neglected due to further anti-reflective coating).
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have such relation: nsilica > ncoating > nair, such that the two input electric fields (E1 and E2),
and two output fields (E3 and E4) of the beam splitter obey a linear relation:[

E3

E4

]
= S ·

[
E1

E2

]
, where S =

[
−r t

t r

]
(2.1)

is the transformation matrix of the beam splitter, r and t are respectively the amplitude
reflection and transmission coefficients along a particular path through the beam splitter. Note
that the minus sign in S11 is due to the π phase shift acquired from the reflection by a higher
refractive index material back into the lower refractive index material (the Fresnel equations).
As the beam splitter is assumed to be lossless, energy conservation requires that

∑
i S

∗
ijSik = δjk.

2.2 Modulators

2.2.1 Amplitude Modulation

Amplitude modulation is widely used in optical experiments and commercial telecommunication
applications. The modulation of the amplitude of an electromagnetic field can be expressed as
below:

E = E0(1 + β cosΩt)e−iωLt = E0

[
1 +

β

2

(
e−iΩt + eiΩt

)]
e−iωLt, (2.2)

where β is the modulation depth, ωL is the carrier frequency (original laser frequency), and
Ω is the modulation frequency. As shown by the definition equation, amplitude modulation
generates two side bands of frequencies ωL − Ω and ωL + Ω. Note that at t = 0, the two
sidebands point to the same direction in the phasor diagram with the carrier.

2.2.2 Phase Modulation

Phase modulation is another common modulation. Mathematically, it takes the form as below,
and with the Taylor expansion at small angle limit, we have:

E = E0e
−i(ωLt+β cosΩt) ≈ E0

[
1− iβ

2

(
e−iΩt + eiΩt

)]
e−iωLt. (2.3)

Note that although phase modulation also generates two sidebands, the two sidebands have
π/2 phase difference with the carrier at t = 0.

2.3 Detection Methods

2.3.1 Direct Detection

Direct detection is the simplest way to measure an optical signal Esig by shining the light
directly onto a semiconductor photodiode. Let us assume the photodiode converts the incident
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photons into electrons with a perfect efficiency. This eventually generates a photocurrent iout,
which is given by:

i ∝ Ē2
sig + Ēsig(δE

∗
sig + δEsig) (2.4)

where the optical signal Esig is decomposed into a real-valuded average component Ēsig and a
fluctuating part δEsig.

Although the cannonical quantization of electromagnetic waves is formally introduced later
in Chapter 3, to avoid the confusion of variables, here please allow me to briefly express the
electric field operator of an electromagnetic wave with continuum frequency in terms of the
annihilation â and creation â† operators [25]:

Ê(t, x) = i

∫ ∞

0

dω

(
ℏω

4πϵ0cA

)1/2 [
â(ω)e−iω(t−x/c) − â†(ω)eiω(t−x/c)

]
, (2.5)

where x is the propagation direction, A is the cross-section area of the laser beam or the fiber
core where the laser light is confined, ϵ0 is the vacuum permittivity, c is the speed of light. If the
signal light is assumed to be a single frequency (ωL) and propagate only in +x direction, we can
find this relation between the classical electric field and the mean value (α) of the annihilation
operator: |E|2 = ℏω

4πϵ0cA
|α|2. Then we can also decompose the annihilation operator âsig of

the signal field into a real-valued average component αsig and a fluctuating component δâsig.
Inserting them into the photocurrent equation, we have

i ∝ α2
sig︸︷︷︸

DC

+αsigX̂(t)︸ ︷︷ ︸
AC

. (2.6)

where X̂ = δâsig + δâ†sig is the fluctuations on the amplitude quadrature of the signal. Note
that this equation tells that we can increase the amplitude of the fluctuating photocurrent by
increasing the average input optical power.

From the detector’s point of view, the photocurrent is defined as:

i(t) =
ne(t) e

∆t
=

ηP (t)e

ℏωL

(2.7)

where η is the photodiode’s quantum efficiency of converting incoming photons into electrons,
e is the electron charge, ne(t)/∆t is the number of the photoelectrons generated by the detector
during a time interval ∆t, η is the detector quantum efficiency, P (t) is the optical power pro-
portional to |Esig(t)|2, and P (t)/(ℏωL) is the incoming photon rate. The average photocurrent
ī = ⟨i(t)⟩ is proportional to the average optical power P̄ , and eventually proportional to α2

sig.
Fourier transform of Eq. 2.4 gives the spectrum of the photocurrent: i(ω) ∝ α2

sig + αsigX̂(ω).

Esig i

Figure 2.2: Illustration of direct measurement of the amplitude of an optical signal
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The fluctuating term αsigX̂(ω), which can be measured using a spectrum analyzer, is generally
what we are interested in.

The fluctuations of the optical signal can be quantitatively analyzed using its variance
Var(i(t)) [26]:

Var(i(t)) = ∆

(
ne(t) e

∆t

)2

=
∆(ne(t))

2 e2

∆t2
. (2.8)

Assuming all the photoelectrons are independently generated, the counting statistics of the
photoelectrons obeys a Poissonian distribution with variance ∆(ne(t))

2 = ne = ī∆t/e. For
large numbers of electrons, this becomes a Gaussian distribution in each measurement interval
∆t with variance given by:

Var(i(t)) =
ī e

∆t
. (2.9)

In order to investigate the spectrum of the fluctuating component of the photocurrent, we
define the measurement bandwidth B from the Shannon theorem B = 1

2∆t
[27]. Then this

leads the photocurrent variance to

Var(i(t)) = 2 ī eB. (2.10)

This is the formula for shot noise for all electronics, and is also true for photodetection. Note
that this formula can be derived for any stream of independently generated electrons. Although
the shot noise of the photocurrent comes from the random generation of electrons, it is not a
property of the detector. It reflects the statistics of the light fluctuations as long as the detector
quantum efficiency η is high. When η = 1, the photoelectrons have the same statistics with
the incoming photons.

2.3.2 Homodyne Detection

Literally, homodyne can be understood as same (‘homo’) color (‘dyne’). Homodyne detection
measures signals by using an interferometer with two arms of the same frequency. Homodyne
detection measures the phase signal (δϕsig) on the weak arm by comparing to the high power
arm (Local Oscillator (LO)), which carries no signal and is from the same laser source with
signal beam [28]. Fig. 2.3 illustrates a homodyne detection setup composed of a beam splitter
and a balanced detector. The balanced detector measures the optical intensity of the two
output port (E3 and E4), and subtract the corresponding photocurrent (i3 and i4) from one
another, such that the DC photocurrent generated by the two input beam is subtracted, and
only the oscillating component is kept.

Assuming a 50/50 beam splitter and a constant relative phase difference ∆ϕ between the
two input fields (Esig and ELO), the two output fields are given by:

E3 =
1√
2

(
E0,LO e−i(ωLt+∆ϕ) − E0,sige

−i(ωLt+δϕsig)
)

(2.11a)

E4 =
1√
2

(
E0,LO e−i(ωLt+∆ϕ) + E0,sige

−i(ωLt+δϕsig)
)
, (2.11b)
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_

Esig

ELO

E3

E4

i4

i3 iout

ΔΦ

Figure 2.3: Illustration of a balanced homodyne detector.

where E0,LO and E0,sig are respectively the real-valued amplitude of the LO and signal fields.
As the photocurrent is proportional to the mod-square of the field, so the output photocur-

rent generated by the balanced detector is:

ihomo ∝ |E4|2 − |E3|2 = E0,LOe
i∆ϕE0,sige

−iδϕsig + E0,LOe
−i∆ϕ E0,sige

iδϕsig . (2.12)

Since the homodyne detection method is able to detect different quadratures of the signal, we
decompose the signal field E0,sige

iδϕsig into its amplitude and phase quadratures: X + iY =

E0,sig cos(δϕsig) + iE0,sig sin(δϕsig). Thus, the output photocurrent of the balanced detector is
further simplified as:

ihomo ∝ 2E0,LO [Xcos(∆ϕ) + Y sin(∆ϕ)] . (2.13)

This equation shows two advantages of homodyne detection over direct amplitude detection.
First, the weak signal is boosted by the large amplitude of the LO beam. Second, by adjusting
the constant phase difference ∆ϕ, we are able to measure an arbitrary quadrature of the signal.
For example, if the signal and LO arms of the interferometer is locked to have a constant
π/2 phase difference, the homodyne detector measures the fluctuations imprinted on the Y

quadrature of the signal. Whereas, when the two arms are locked to have zero phase difference,
we measure the fluctuations on the X quadrature.

2.3.3 Heterodyne Detection

Heterodyne detection is another useful approach to measure optical signals in quantum optics
experiments. Heterodyne detection is composed of an interferometer with two arms of different
frequencies. It has lower signal-to-noise ratio (SNR) than homodyne detection, given the same
experimental conditions. However, heterodyne detection can shift low frequency signals to
higher frequency band, and thus the technical noise dominating in the low frequency band can
be avoided. The heterodyne detection setup is almost the same as the homodyne detection
setup in Fig. 2.3, except that an additional Acousto-Optic Modulator (AOM) shifts the LO
frequency from ωL to ωL+Ω, where Ω is the AOM modulation frequency. With this, the output
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fields of the balanced beamsplitter in Fig. 2.3 are:

E3 =
1√
2

(
E0,LO e−i(ωLt+Ωt) − E0,sige

−i(ωLt+δϕsig)
)

(2.14a)

E4 =
1√
2

(
E0,LO e−i(ωLt+Ωt) + E0,sige

−i(ωLt+δϕsig)
)
, (2.14b)

and the corresponding photocurrent is:

ihetero ∝ |E4|2 − |E3|2 = E0,LOe
iΩt E0,sige

−iδϕsig + E0,LOe
−iΩt E0,sige

iδϕsig . (2.15)

Then the heterodyne photocurrent has the final form:

ihetero ∝ 2E0,LOE0,sig cos(Ωt− δϕsig), (2.16)

where the phase signal δϕsig is up-shifted to be the sidebands of the AOM frequency Ω. Com-
pared with the homodyne photocurrent [Eq. (2.16)], the heterodyne photocurrent signal is
rotating in the phasor diagram of the signal at the frequency of Ω. Thus, its root-mean-square
(RMS) sensitivity to a particular quadrature is

√
2 times smaller than the sensitivity of homo-

dyne detection. The advantage of heterodyne detection is that it allows us to resolve Stokes
and anti-Stokes sidebands separately, as the two sidebands would be located respectively at
the two sides of the AOM frequency Ω.

2.4 Fabry-Perot Cavity
Fabry-Perot cavities are the most common and well-studied cavities in optical physics [29–31].
Although the cavities used in this thesis are Whispering Gallery Mode (WGM) micro-resonators,
the transmitted field of a tapered fiber evanescently coupled to a WGM resonator has the same
input-output relation with the reflected field of the Fabry-Perot cavity [32].

Eout

L

teiδEin

rEin

r'tei2δEin

incoming

reflected

r't2ei2δEin

(r')2ei3δEin

(r')3ei4δEin(r')3t2ei4δEin

nsilica nsilicanair

Ein

Figure 2.4: Illustration of a Fabry-Perot cavity with optical fields reflecting between the two
mirrors.
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Figure 2.5: Spectral response of a Fabry-Perot cavity with the amplitude reflection coefficient
r = 0.96 (F = 38.5): (a) |R(ω)|2, (b) − arctan[Im(R)/Re(R)].

Let us take the Fabry-Perot cavity with no internal loss (Fig. 2.4) as the example. The
cavity length is L, the amplitude reflection coefficient from glass to air is r, and from air to glass
is r′ = −r. For simplicity, the two mirrors are assumed to have the same reflection coefficient
(critical coupling). For a laser with frequency ωL, the phase acquired by the field for a one-way
trip in the cavity is δ = LωL/c = 0.5ω/∆νFSR, and ∆νFSR = c

2L
is the Free Spectral Range

(FSR) of the cavity. The input field is Ein = E0e
−iωLt, and the output field Eout = E ′

0e
−i(ωLt+ϕ)

is the sum over all the reflected fields after each round-trip in the cavity in Fig. 2.4, while all the
transmitted fields (not shown) to the right side are treated as cavity loss. The sum over from
the second reflected field to the field with infinite round-trips is the power series of 1

(1−(r′)2ei2δ
.

Thus the amplitude reflection coefficient (transfer function) of the cavity is calculated:

R(ω) = Eout/Ein =
r
(
1− ei2δ

)
1− r2ei2δ

(2.17)

Using this equation, intensity and phase (ϕ) response of a typical Fabry-Perot cavity is plotted
in Fig. 2.5.

The finesse F of an optical cavity is proportional to the average number of round-trips
each photon can circulate inside. It quantifies the quality of the cavity, and quantifies the
enhancement of light-matter interaction by the cavity via Purcell effect [33]. For a Fabry-Perot
cavity with no internal loss, the finesse has the form:

F =
∆νFSR

κ
=

πr

1− r2
, (2.18)

where κ is the Full Width Half Maximum (FWHM) of the cavity resonances, and is also called
the bandwidth of the cavity.

2.5 Whispering Gallery Mode Resonator
Whispering Gallery Mode (WGM) resonators are another type of optical cavity, where the light
is not reflecting between two mirrors, but is confined by Total Internal Reflection (TIR) inside a
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circular geometry, which can have many forms, such as microtoroids, microspheres, microdisks,
ring resonators, and race-track resonators, etc [32, 34–41]. Fig. 2.6 illustrates a WGM disk
resonator evanescently coupled to a tapered fiber. The tapered region is much thinner than a
normal fiber, such that the optical field inside is less confined and evanescently extend up to a
few micrometers into the air. In experiments when the taper and WGM resonator are brought
close to each other using nanopoistioning stages, the absorption spectrum can be observed on
the output light aout by sweeping the laser wavelength through the resonance wavelengths. The
absorption dips happen when the laser is on resonance with one optical mode by meeting such
condition: 2πneffr ≃ mλ, where neff and r are respectively the effective refractive index and
radius of the resonator, m is the azimuthal number resulting from the angular dependence of
the solution of the electromagnetic wave equation for the circular geometry. In addition to the
azimuthal number, the dependence of the solution on the radial direction is exhibited as the
radial number p, corresponding the number of field maxima along the radial direction. Fig. 2.7
shows the simulation of WGMs confined on the circumference of a 5 µm radius micropillar using
Finite Element Modelling (FEM). Fig. 2.7(a) is a principle mode, the field of which is mostly
localized to the rim of the micropillar, whereas (b) is a third order mode with the electric field
energy mostly distributed inside of the micropillar.

Coupled Mode Theory for WGM resonators

The coupling of two WGMs is quite common, for example the coupling induced by the backscat-
tering caused by imperfections of the resonator geometry such as sidewall roughness [42]. Unlike
the mechanically induced optical coupling, this type of coupling is stationary, so we define a
fixed mutual coupling strength κb between the forward and backward propagating optical modes
ak and a−k. The Hamiltonian of the system derived from coupled mode theory is:

H = ℏωka
†
kak + ℏω−ka

†
−ka−k + ℏκb

(
a†ka−k + aka

†
−k

)
, (2.19)

where ωk and ω−k are the bare eigen frequencies of the two optical modes, and the associated a

is the annihilation operator of each mode. κb is the coupling rate. The subscript k is the wave

κextain aout

aka-k

Figure 2.6: Illustration of a Whispering Gallery Mode resonator coupled to a fiber taper.
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a b

Figure 2.7: Two dimensional FEM simulation (out of plane electric field Ez) of WGMs confined
at the circumference of a silica micropillar. (a) m = 14 and p = 1; (b) m = 8 and p = 3.

number of the optical modes, with the signs in the front indicating directions. The interaction
term is a beamsplitter interaction between the two optical modes.

Equations of motion

Including dissipation and drive, the equations of motion for the two coupled optical cavity
modes are obtained using Heisenberg equations of motion from the Hamiltonian [Eq. (2.19)] [43]:

ȧk = i∆kak −
κk

2
ak − iκba−k +

√
κext ain (2.20)

ȧ−k = i∆−ka−k −
κ−k

2
a−k − iκbak, (2.21)

where ∆k(−k) = ωL−ωk(−k) is the detuning, κk(−k) = κ
k(−k)
int +κext is the total optical decay rate

for the k (−k) optical mode. κext is the coupling rate to the tapered optical fibre, and κint is the
intrinsic optical cavity decay rate. The pump field ain drives the forwards propagating mode
ak via the fiber taper and its quantum noise is neglected. The amplitude of the pump field ain

is related to the incoming photon flux in the tapered fibre, via |ain|2 = Pin

ℏω , with Pin the input
laser power. Solving the equations of motion in the steady state, the forwards propagating
mode ak has the solution:

ak =

√
κext ain

−i∆+ κk/2 +
κ2
b

−i∆+κ−k/2

. (2.22)

The amplitude of the backscattered field a−k travelling in the opposite direction can be ex-
pressed as a function of ak:

a−k =
−i κb ak

−i∆+ κ−k/2
. (2.23)

Using the input-output theorem, the output light in the fiber after the cavity is [32]:

aout = ain −
√
κext ak . (2.24)

Thus, the normalised transmission spectrum in the fiber after the WGM cavity is:

T =

∣∣∣∣aoutain

∣∣∣∣2
=

∣∣∣∣1− √
κext ak
ain

∣∣∣∣2
(2.25)
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Figure 2.8: Normalised WGM transmission spectrum in the presence of backscattering, plotted
using Eq. (2.25). Blue: Normalized transmission. Yellow and green dashed lines refer respec-
tively to the forwards and backwards propagating field intensities |ak|2 and |a−k|2 in arbitrary
units, obtained from Eqs (2.22) and (2.23). (a) Intrinsic optical linewidth κint: 104 MHz, taper
coupling rate κext: 180 MHz, backscattering rate κb: 75 MHz.(b) Undercoupled regime with
intrinsic optical linewidth κint: 104 MHz, taper coupling rate κext: 6.4 MHz, backscattering
rate κb: 75 MHz.

The effect of the taper coupling rate κext on the ratio of forwards to backwards travel-
ling light intensity is illustrated in Fig. 2.8. This figure is plotted using typical experimental
parameters: an optical mode with an unloaded optical decay rate κint = 104 MHz, and a
backscattering coupling rate κb = 75 MHz. When the taper coupling rate is set to κext = 180

MHz, the resulting cavity transmission is plotted in Fig. 2.8(a). Because the total dissipation
rate κ = κint+κext is larger than κb, the mode splitting is not resolvable in the cavity transmis-
sion (blue curve). For the same reason, the intracavity intensity of the forwards propagating
optical field (yellow line) is around four times larger than that of the field propagating in the
opposite direction (green line). This intensity difference of the two optical modes leads to a
net forwards travelling optical field in the cavity. In contrast, when the taper coupling rate is
reduced such that the total dissipation rate is now comparable to the backscattering rate, the
lifted degeneracy between forwards and backwards propagating fields is revealed, as shown the
transmission in Fig. 2.8(b). In this regime, both optical fields are similarly populated, resulting
in a predominantly standing optical field.

2.6 Locking Techniques

2.6.1 Thermal Locking

The easiest way to lock the laser frequency on resonance with a WGM resonator is to use the
thermo-optic effect [44, 45]. Thermo-optic effect is due to the thermo-expansion of the WGM
resonator size due to the passive heating from optical absorption. This effect happens when the
laser frequency is swept from the blue-detuning side of an optical mode. As the laser detuning
decreases, the intracavity optical power increases, leading to stronger optical absorption and
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Figure 2.9: Examples of WGM resonator thermo-optic effect shown by the transmission spectra.

thermo-expansion, pushing the optical resonance to slightly lower frequency. This phenomenon
is illustrated in Fig. 2.9 as the soft side (blue-detuning side) of the optical mode. The thermo-
expansion eventually reaches an upper limit and the laser frequency snaps away from the lowest
resonance frequency the optical mode can be, as shown by the blue dashed line.

In optomechanics experiments, the soft side is a naturally stable side where the laser fre-
quency can be “locked”, owing to the natural negative feedback from the thermo-optic effect.
The advantage of thermal locking is its simplicity, but it has several disadvantages. First, it
does not work at low optical power. Second, since the laser frequency is stabilized on the blue-
detuning side, the measurement is limited for amplitude signals, and there will be dynamical
heating for mechanical modes. Third, it does not work at cryogenic temperatures.

2.6.2 Pound-Drever-Hall Locking

The Pound-Drever-Hall technique is a very powerful way to lock the laser frequency on res-
onance with an optical cavity [46]. The full PDH locking setup is shown in Fig. 2.10. The
modulated laser light is coupled to a WGM resonator via a tapered fiber and the transmitted

Laser
1550 nm

ain aout

a

PM

splitter 

mixerservo G 

cos(Ωt) 

piezo

oscilloscope 

detector

amplifier filter

function
generator 

Figure 2.10: Schematic of an optical setup with the laser locked on resonance with a WGM
resonator using PDH technique (PM: phase modulator).
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light through the fiber is measured by a photodetector. The error signal is generated via mixing
the photocurrent with the initial RF signal sent to the phase modulator. Assuming the RF
signal is cosΩt and the modulation depth β, the modulated optical field sent to the resonator
has a form like Eq. (2.3). Then in the frame rotating at the carrier frequency ωL, the three
independent equations of motion respectively for the three tones in the modulated optical field
are:

ȧ0 = i∆a0 −
κ

2
a0 +

√
κext ain,ca (2.26a)

ȧ1 = i(∆ + Ω)a1 −
κ

2
a1 +

√
κext (−i)ain,sie

−iΩt (2.26b)

ȧ2 = i(∆− Ω)a2 −
κ

2
a2 +

√
κext (−i)ain,sie

iΩt, (2.26c)

where ∆ = ωL − ωcav is the detuning of the carrier frequency, Ω is the modulation frequency,
the amplitude of ain,ca is proportional to the amplitude of the carrier tone E0, the amplitude
of ain,si is proportional to the amplitude of the two sideband tones β

2
E0, and the factor of −i

in the sideband tones is due to the phase modulation. Solving the equations of motion for the
steady-state, and applying the input-output relation [Eq. (2.24)] yields the output fields:

aout,0 = F (∆)ain,ca =
−i∆

−i∆+ κ/2
ain,ca (2.27a)

aout,1 = F (∆ + Ω)(−i)ain,sie
−iΩt =

−i(∆ + Ω)

−i(∆ + Ω) + κ/2
(−i)ain,sie

−iΩt (2.27b)

aout,2 = F (∆− Ω)(−i)ain,sie
iΩt =

−i(∆− Ω)

−i(∆− Ω) + κ/2
(−i)ain,sie

iΩt, (2.27c)

where the resonator is assumed to be critically coupled (κext = 0.5κ).
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Figure 2.11: Normalized PDH error signals with different phase modulation frequencies Ω.
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The photocurrent iout is proportional to |aout,0 + aout,1 + aout,2|2, which can be expanded as:

iout ∝ |ain,ca|2|F (∆)|2 + |ain,si|2{|F (∆ + Ω)|2 + |F (∆− Ω)|2}

+ 2|ain,ca||ain,si|Re{F (∆)[−iF (∆ + Ω)]∗ + F ∗(∆)[−iF (∆− Ω)]} cosΩt

+ 2|ain,ca||ain,si|Im{F (∆)[−iF (∆ + Ω)]∗ + F ∗(∆)[−iF (∆− Ω)]} sinΩt+ (2Ω terms) .

Mixing down the photocurrent with the initial RF signal (cosΩt) pulls out the term that is
proportional to cosΩt. Therefore, neglecting the DC terms and the 2Ω terms, the error signal
ϵ has the following form:

ϵ = 2|ain,ca||ain,si|Re{F (∆)[−iF (∆ + Ω)]∗ + F ∗(∆)[−iF (∆− Ω)]} . (2.28)

Using this equation, Fig. 2.11 plots the normalized error ϵ
2|ain,ca||ain,si| with various phase mod-

ulation frequencies.
Then we connect the error signal to a servo, and afterwards an amplifier. By connecting

the amplified error signal to the piezo of the laser, the feedback loop forms a complete PDH
frequency locking setup.

2.7 Fabrication of WGM Resonators
The fabrication of WGM silica microresonators is a standard photolithography process, and
is well described in this reference [47]. Here, I briefly summarize how we fabricate the silica
microdisk resonators used in our superfluid optomechanics experiments.

We use a 500 µm-thick silicon handling wafer with a two-micron thick thermal oxide layer
(Virginia Semiconductor) as illustrated in Fig. 2.12(a). Silica microdisks are fabricated via the
photomicrography process steps in Fig. 2.12(b)-(e):

b HMDS adhesion promoter and subsequently AZ1518 positive photoresist are spin-coated
on the wafer. Then the coating [pink layer in Fig. 2.12(b)] is heated at 100 degrees Celsius
for 2 minutes to prepare the photoresist for UV exposure.

fe

a b cSi

SiO2

d
Figure 2.12: Illustration of the fabrication process for WGM microdisk resonators.
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40 μm

Figure 2.13: Scanning Electron Microscope (SEM) image of a silica WGM resonator on the
silicon chip (radius 40 µm, thickness 2 µm).

c Fig. 2.12(c) shows the UV exposure process, where the black layer above the wafer is
the cross-section of the ultra-fine mask. After UV exposure, the wafer is heated at 110
degrees Celsius for 1 minute.

d Then after development with AZ726 for 25 seconds and photoresist removal, only the
unexposed regions of the photoresist are left [Fig. 2.12(d)]. Then we heat the wafer
again to slightly melt the remaining photoresist to smooth its edges. This heating step
is called photoresist reflow, which is necessary for making high quality (high finesse) disk
resonators.
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Figure 2.14: Example of the transmission spectrum of an optical mode from a 40 µm radius
microdisk resonator (Q ≈ 3× 105).
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e Hydrofluoric acid (HF) wet-etch will transfer the mask pattern to the silica layer. After
washing away the remaining photoresist with acetone and deionized water, the cross-
section of the wafer will have silica microdisks atop the silicon substrate as shown by
Fig. 2.12(e).

f Finally we under-cut the silicon substrate using XeF2 gas-phase etch, so that the silica
disks are released from the substrate. The XeF2 etch time determines the size of the
silicon pedestal, which affects quality-factor of the microdisk mechanical modes, as the
pedestal is a loss channel to the mechanical motion of the silica disk.

Fig. 2.14 shows the Scanning Electron Microscope (SEM) image of a silica microdisk res-
onator sample. The wedged edge of the microdisk sample is due to the isotropic HF wet-etch as
it etches also horizontally under the edge of the photoresist in Fig. 2.12(d). In the experiments,
the fabricated devices generally show a number of WGM families, with optical quality factors
in the 105 to low 107 range.
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Chapter 3

Theoretical Basics of Cavity
Optomechanics and Superfluid Helium

This chapter introduces the basic background knowledge on cavity optomechanics and super-
fluid helium-4. The knowledge will be useful for the following experimental chapters, as it
includes important definitions, mathematical conventions to follow, and basic theory and char-
acteristic phenomena of cavity optomechanics and superfluid. First, the cavity optomechanics
literature is reviewed and the motivation is explained. Then I will describe why the two ele-
ments (light and mechanics) are both simple harmonic oscillators, and how they couple to each
other. With that, the Hamiltonian and equations of motion for cavity optomechanics are intro-
duced, and solved to explain typical phenomena. In addition, superfluid as another important
element for my PhD research is briefly introduced, including its phenomenological description,
the Josephson effect, the fountain effect, the acoustic excitations and the quantized vortices in
superfluid helium.

3.1 Cavity Optomechanics

3.1.1 Two Simple Harmonic Oscillators

Cavity optomechanics basically studies the interaction between two oscillators, and often they
can be treated as linear simple harmonic oscillators with one resonant at optical (microwave)
frequency and the other at mechanical frequency (typically kHz to tens of GHz). Here in this
section the two constituent oscillators of cavity optomechanics will be introduced separately.
From classical to quantum, the two oscillators will be shown to have the exactly same physics:
simple harmonic oscillators. First, taking the movable mirror in Fig. 3.1 as an example, the
classical Hamiltonian of the harmonic oscillator is expressed as the sum of its kinetic energy

1The rate of the thermal phonons leaking into the mechanical oscillator from the bath

20
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Figure 3.1: Artistic illustration of an optomechanical system composed of a Fabry-Perot cavity
with a movable mirror acting as the mechanical oscillator. The notations describing all the
optomechanical parameters are: ain input light (including all the optical noises); aout output
light; κext coupling rate of the cavity determined by the reflectivity of the front mirror; κint

internal loss rate of the cavity (also a channel coupling to vacuum noise); a annihilation oper-
ator for the intracavity optical field; b annihilation operator for the mechanical oscillator; Ωm

mechanical resonance frequency; Γ mechanical loss rate; m mass of the movable mirror (not
shown); n̄bath thermal bath occupancy; Γn̄bath mechanical decoherence rate1.

and potential energy [43]:

H =
p2

2m
+

mΩ2
m

2
q2, (3.1)

where m is the mass of the movable mirror, Ωm is the frequency of the mechanical oscillator
related to the spring constant k by the equation Ωm =

√
k/m , q is the position, and the

momentum is p = mq̇ . We can confirm that p is the conjugate variable to q by checking the
Hamilton’s equations of motion:

q̇ =
∂

∂p
H =

p

m
(3.2a)

ṗ = − ∂

∂q
H = −mΩ2

mq (3.2b)

satisfy the equations of motion of the mechanical oscillator: q̈+Ω2
mq = 0. By putting a hat on

q and p, and imposing the usual canonical commutation relation:

[q̂, p̂] = iℏ , (3.3)

we have the Heisenberg equations of motion

˙̂q =
1

iℏ

[
q̂, Ĥ

]
=

p̂

m
(3.4a)

˙̂p = − 1

iℏ

[
p̂, Ĥ

]
= −mΩ2

mq̂, (3.4b)

which have the same form as the Hamilton-Jacobi equations.
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The annihilation b and creation b† operators for the quantum harmonic oscillator are intro-
duced as

b =

√
mΩm

2ℏ
q̂ +

ip̂√
2ℏmΩm

, b† =

√
mΩm

2ℏ
q̂ − ip̂√

2ℏmΩm

(3.5)

with the commutation relation: [b, b†] = 1. Using these expressions in Eq. (3.1), the Hamiltonian
becomes

Ĥ =
ℏΩm

2
(bb† + b†b) = ℏΩm(b

†b+
1

2
). (3.6)

Two important parameters of the mechanical oscillator are its zero point motion and phonon
occupancy. From Eq. (3.5), the position operator is expressed as: q̂ = xZPF(b+ b†), where

xZPF =

√
ℏ

2mΩm

(3.7)

is the zero point motion: the characteristic mechanical amplitude in the ground state. The
phonon occupancy is defined from Eq. (3.6) to be n̂ = b†b, while 1

2
ℏΩm is the zero point energy

(the energy from vacuum fluctuations).
Similarly, a single-mode intracavity optical field of the free space (vacuum) Fabry-Perot

cavity (see Fig. 3.1) can also be treated as a quantum harmonic oscillator [48]. Assuming
the standing electromagnetic wave in the cavity has electric field polarized in the y direction
(pointing inwards), and has the form

E(x, t) = ŷq(t)

√
2ω2

cav

ϵ0V
sin (Kx) , (3.8)

where K is the wavenumber and V is the mode volume. For this field to obey the wave equation
∇2E − 1

c2
∂2

∂t2
E = 0, the cavity resonance frequency must be ωcav = cK = c(mπ/L), where c is

the speed of light, m is an integer, and L is the length of the Fabry-Perot cavity, and the time-
dependent amplitude must obey the simple harmonic oscillator equation q̈ + ω2

cavq = 0. Based
on Ampere’s law of Maxwell’s equations and Eq. (3.8), the corresponding magnetic component
is:

B(x, t) = ẑ q̇(t)

c ωcav

√
2ω2

cav

ϵ0V
cos (Kx) . (3.9)

While the electric and magnetic field distributions describe the common case of a free-space
Fabri-Perot cavity, the case of a Whispering Gallery Mode (WGM) resonator used in our
experiment follows a similar derivation with minor changes such as taking into account the
material permittivity (see Chapter 5). The sum of the energy of the electric and magnetic
fields gives the total energy of the intracavity optical field:

H =
ϵ0
2

∫
dV
(
E2 + c2B2

)
=

1

2

(
ω2
cavq

2 + p2
)
,

(3.10)

where q is again the “position”, whereas the “momentum” is defined as p = q̇. Note that
Eq. (3.10) only refers to a vacuum cavity as illustrated in Fig. 3.1. In the case of a non-vacuum
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cavity with spatially varying refractive index, ϵ(r) should be inside the integral. Comparing
this Hamiltonian with the Hamiltonian for the mechanical oscillator Eq. (3.1), we see that they
both describe simple harmonic oscillators, with the energy oscillating back and forth between
q and p.

Quantization happens again with the canonical commutation relation Eq. (3.3). Then the
creation a† and annihilation a operators for the intracavity optical field are also similarly defined:

a† =
1√

2ℏωcav

(ωcavq̂ − ip̂) ; a =
1√

2ℏωcav

(ωcavq̂ + ip̂), (3.11)

with the Hamiltonian as:
Ĥ = ℏωcav

(
a†a+

1

2

)
. (3.12)

The electric and magnetic fields in the cavity mode are quantized as below [49]:

Ê =

√
ℏωcav

ϵ0V

(
ae−iωcavt + a†eiωcavt

)
sin (Kx) ẑ, (3.13a)

B̂ =

√
ℏωcav

c2ϵ0V

[
i
(
a†eiωcavt − ae−iωcavt

)]
cos (Kx) ŷ. (3.13b)

Since often people are more interested in the electric field, so we define the electric field ampli-
tude for the positive frequency component as:

Ê+ =

√
ℏωcav

ϵ0V
a, (3.14)

where
√

ℏωcav/(ϵ0V ) is the electric field for one photon.

3.1.2 Parametric Coupling

After talking about the mechanical and optical oscillators separately, here in this section we
discuss how the two simple harmonic oscillators with contrasting frequencies interact with each
other. Let’s look back at the illustration in Fig. 3.1 and consider a general cavity optome-
chanics model like the Fabry-Perot cavity with a movable mirror. The intracavity optical field
exerts a radiation pressure force (momentum transfer of the photons due to reflection) on the
movable mirror, affecting its position, and the mechanical motion of the movable mirror mod-
ulates the cavity resonance frequency, affecting the intensity of the intracavity optical field
and subsequently the strength of the radiation pressure force. This interplay is essentially the
parametric coupling between the intracavity optical field and the mechanical oscillator. Since
the mechanical motion modulates the cavity resonance frequency, the output light from the
cavity has two sidebands.

Given the average cavity length L and the position of the movable mirror x (see Fig. 3.1),
the resonances supported by this cavity have angular frequency ωcav ≈ m ·π c

L+x
, where c is the

speed of light and m is the integer mode number. The strength of optomechanical coupling is
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calibrated by the optical frequency shift per displacement, which is defined as [50]:

G = −∆ωcav

∆x
= m · π c

(L+ x)2

∣∣∣∣∣
x=0

=
ωcav

L
. (3.15)

The Hamiltonian of the optomechanical system illustrated in Fig. 3.1 is the sum of the
energy of the intracavity field and the mechanical oscillator:

H = ℏωcav(x)a
†a+ ℏΩmb

†b, (3.16)

where the hat notation on each operator is neglected for convenience. Due to the dispersive cou-
pling between the intracavity field and the mechanical oscillator: ωcav(x) = ωcav + x∂ωcav/∂x+

. . . ≈ ωcav − xG, the Hamiltonian including the optomechanical coupling is expressed as:

H = ℏ (ωcav − xG) a†a+ ℏΩmb
†b, (3.17)

where the position operator is as defined in Eq. (3.7): x = xZPF(b + b†). Thus the interaction
Hamiltonian, which describes the part of energy in the system sloshing between light and
mechanics, is:

Hint = −ℏg0a†a(b+ b†), (3.18)

where
g0 = GxZPF (3.19)

is the single photon optomechanical coupling rate, quantifying the fluctuations of cavity res-
onance frequency due to the mirror’s zero point motion. Since the interaction energy is only
sloshing between light and mechanics within the system, and does not dissipate out of the sys-
tem, the dynamics of this closed system are energy conserving, i.e. unitary, making radiation-
pressure mediated optomechanical systems a promising platform for macroscopic quantum
experiments.

From Eq. (3.18), we see that the coupling is between the mechanical amplitude (proportional
to (b + b†)) and the intracavity optical intensity (proportional to a†a). Thus the radiation-
pressure mediated optomechanical interaction is inherently nonlinear. General optomechanics
experiments can be approximated by a linearized model as following. In the limit that the
intracavity field is driven to a strong coherent amplitude, then it can be decomposed into an
average coherent amplitude α = ⟨a⟩ =

√
ncav e−iωLt (where ωL is the frequency of the input

laser, and ncav is the average intracavity photon number) and a fluctuating term δa for all
the optical noise, namely a = α + δa. The decomposition of the intracavity field leads the
interaction Hamiltonian to be:

Hint = −ℏg0(α + δa)†(α + δa)(b+ b†)

= −ℏg0(|α|2 + α∗δa+ αδa† + δa†δa)(b+ b†),
(3.20)

where the first term −ℏg0|α|2(b+ b†) is the product of the DC radiation pressure force (Frad =

−ℏG|α|2) and the mechanical amplitude [xZPF(b+ b†)]. This DC effect only offsets the system
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to a new equilibrium position. Let’s first neglect this term for the analysis of the system
dynamics. The fourth term is related to the second order of the optical noise, which generally
has amplitude much smaller than the coherent amplitude α, thus it is valid to neglect the fourth
term. Thus, the interaction Hamiltonian is linearized to be:

Hlin
int = −ℏg(δa† + δa)(b+ b†), (3.21)

where α is assumed to be real valued without loss of generality, and g = αg0 is the multi-photon
optomechanical coupling rate.

Depending on the detuning, we can take different Rotating Wave Approximations (RWAs).
When the laser is red-detuned by the mechanical resonance frequency ∆ ≈ −Ωm, only the
sideband which has higher frequency than the laser is on resonance. When the mechanical
frequency is larger than the cavity linewidth, by neglecting the non-resonant terms in the
interaction Hamiltonian, the RWA yields a beamsplitter-type interaction Hamiltonian:

−ℏg(δa† b+ δa b†). (3.22)

When the laser is blue-detuned ∆ ≈ Ωm, only the red sideband is on resonance. Thus the
resonant terms after RWA are:

−ℏg(δa† b† + δa b), (3.23)

which corresponds to a “parametric down-conversion” or “two-mode squeezing” interaction.
When ∆ = 0 or the mechanical frequency is smaller than the cavity linewidth, neither sideband
is biased, so we have to keep all the four terms in the linearized interaction Hamiltonian.

3.1.3 Equations of Motion

The original full Hamiltonian for the optomechanical system can be derived from Eq. (3.17).
Switching the intracavity optical field to a rotating frame at the input laser frequency ωL gives
the new Hamiltonian:

H = −ℏ∆a†a+ ℏΩmb
†b− ℏg0a†a(b+ b†), (3.24)

where ∆ = ωL−ωcav is the laser detuning from the cavity resonance frequency. Using Langevin
equations of motion, the equations of motion for a and b can be obtained. Including the
optical and mechanical damping, the optical and mechanical noises, and the optical drive, the
equations of motion have the form [50]:

ȧ = i∆a− κ

2
a+ ig0a(b+ b†) +

√
κext ain +

√
κint fin, (3.25a)

ḃ = −iΩmb−
Γ

2
b+ ig0a

†a+
√
Γ bin, (3.25b)

where ain includes the coherent laser drive and the external vacuum fluctuations coupling to the
cavity, κext is the coupling rate of the cavity to the laser drive, fin is the vacuum fluctuations
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coupled through the cavity intrinsic loss channel quantified by the intrinsic cavity loss κint.
Thus, the total cavity loss rate [Full Width Half Maximum (FWHM)] is κ = κint + κext. bin

is the thermal noise coupled to the mechanical oscillator through the mechanical loss channel
quantified by the mechanical damping rate Γ (FWHM). In the Markovian limit, these quantum
stochastic operators obey the temporal correlations as below [51]:

⟨ain(t)a†in(t′)⟩ = δ(t− t′), (3.26a)

⟨a†in(t)ain(t′)⟩ = 0, (3.26b)

⟨bin(t)b†in(t′)⟩ = (nth + 1)δ(t− t′), (3.26c)

⟨b†in(t)bin(t′)⟩ = nthδ(t− t′), (3.26d)

where the correlation relations for fin are the same as those of ain, and nth is the thermal
occupancy of the mechanical oscillator. Note that the difference between the optical and me-
chanical noises is only that the optical frequency is so high that the average thermal occupancy
of the optical field is zero (ℏωcav ≫ kBT , where kB is the Boltzmann constant and T is the
bath temperature).

Based on the optomechanical coupling rate g, optical linewidth κ, and mechanical linewidth
Γ, we introduce the optomechanical cooperativity defined as [52]:

C =
4g2

κΓ
. (3.27)

The cooperativity might be the most important figure of merit for cavity optomechanics. Its
form is a direct comparison between the optomechanical coupling rate and the optical and
mechanical loss rates. In this thesis it will be shown that optical damping/heating of mechani-
cal oscillators, optomechanically induced transparency/amplification discussed in the following
section and the Brillouin optomechanical amplification in Chapter 6 can be simply expressed in
terms of the optomechanical cooperativity. This figure of merit can be directly used to quantify
what regime an optomechanical system can be. For example, with C larger than 1, the optome-
chanical system is able to generate regenerative oscillation of the mechanical mode, where the
intrinsic mechanical linewidth is reduced to zero by the optomechanical amplification. With C
larger than the thermal occupancy nth, the optomechanical system can allow quantum exper-
iments, such as ground state cooling of mechanical oscillators [9, 10], observation of radiation
pressure shot noise [53], quantum coherent frequency conversion [54], quantum state transfer
and processing, etc [55–57].

Often it is useful to neglect the noise terms and have the classical version of the equations
of motion, which are valid in the case of large photon numbers. The mechanical annihilation
operator b is replaced by the actual position of the mechanical oscillator in such a way:

x(t) = 2xZPFRe(⟨b(t)⟩), (3.28)

while the annihilation operator a for light is approximated by the coherent optical amplitude
α(t) = ⟨a(t)⟩ with all the noise being averaged out. Thus, the equation of motion for the
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intracavity field in the classical limit can also be derived easily from Eq. (3.16):

α̇ = i∆α− κ

2
α + iGxα +

√
κext αin, (3.29)

where αin is only the coherent laser drive.
From complex analysis2, Eq. (3.28) gives dRe(⟨b⟩)/dt = Re(⟨ḃ⟩) = Re[(−iΩm − Γ/2)⟨b⟩ +

ig0|α|2], and further d2Re(⟨b⟩)/dt2 = Re(⟨b̈⟩) = Re[(−iΩm − Γ/2)⟨ḃ⟩], where |α|2 is the intra-
cavity photon number ncav. Thus, the equation of motion for the mechanical position can be
derived from Eq. (3.25b):

ẍ = 2xZPFRe[(−iΩm − Γ/2)⟨ḃ⟩]

= 2xZPFRe[−
Γ

2
⟨ḃ⟩+ (−iΩm)⟨ḃ⟩]

= 2xZPFRe{−
Γ

2
⟨ḃ⟩+ (−iΩm)[(−iΩm − Γ

2
)⟨b⟩+ ig0|α|2]}

= 2xZPFRe{−
Γ

2
⟨ḃ⟩ − Ω2

m⟨b⟩ −
Γ

2
(−iΩm)⟨b⟩+ Ωmg0|α|2}.

(3.30)

In the limit where the mechanical quality factor is very high (Qm = Ωm/Γ ≫ 1), the damping
and coupling terms in Eq. (3.25b) can be neglected, such that the approximation −iΩmb ≈ ḃ

is valid. Then the equation of motion for the mechanical position is simplified as:

ẍ = 2xZPFRe{−
Γ

2
⟨ḃ⟩ − Ω2

m⟨b⟩ −
Γ

2
⟨ḃ⟩}+ 2ΩmGx2

ZPF|α|2

= −Ω2
mx− Γẋ+

Gℏ
m

|α|2 .
(3.31)

3.1.4 Steady-state Solution

As stated in introducing the interaction Hamiltonian in § 3.1.2, these semi-classical equations of
motion are also nonlinear because of the α2 term representing the optomechanical coupling in
Eq. (3.31). In order to solve the coupled ODEs, we need to first linearize them by decomposing
the coherent optical amplitude and the mechanical position respectively into a constant term
for the steady state of the system, and a time-variant term which describes the dynamics of
the system. For the optical amplitude, the decomposition is: α(t) = ᾱ+ δα. The linearization
steps for the mechanical position lead to x(t) = x̄+ δx, where x̄ is the shift of the mechanical
equilibrium position by Gℏ|ᾱ|2/(mΩ2

m), and Gℏ|ᾱ|2 is the average radiation pressure force.
Inserting the DC shift of the mechanical position into Eq. (3.29) yields an equation for the
steady state of the intracavity optical amplitude:(

i∆− κ

2

)
ᾱ +

iℏG2

mΩ2
m

|ᾱ|2ᾱ +
√
κext αin = 0 (3.32)

As shown by this complex equation ᾱ can have multiple roots (although some of them might not
be physical), leading to the optomechanical static bistability of the average intracavity photon
number at large input laser drive. This optomechanical bistable behaviour is exhibited as the
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Figure 3.2: (a) Optomechanical bistability of the intracavity photon number versus laser de-
tuning [all the solid lines are direct plot of the mod-square of Eq. (3.32)’s numerical solutions].
The system parameters used in this figuer: m = 1 picogram, Ωm/2π = 3 MHz, κ/2π = 100
MHz, κext/2π = 50 MHz, G/2π = 0.5 GHz/nm. (b) Typical optomechanical bistability shown
on the experimental transmission spectrum of a WGM resonator.

hysteresis of the average photon number (ncav = |ᾱ|2) versus laser detuning (Fig. 3.2). Four
sets of solutions of Eq. (3.32) at different input power levels are plotted in this figure. Below
bistability threshold power the average intracavity photon number curve is composed of one
solution, and the intracavity photon number versus laser detuning curve is only skewed, which
means the skewed curve will be the same no matter in which direction the laser frequency is
swept through the cavity resonance frequency. When the input power is high enough, the green
and yellow solutions are disconnected and an unstable second solution (the purple line) appears,
resulting in an abrupt jump from one solution to the other when the laser frequency sweeps
through the cavity resonance frequency, and the detuning where the abrupt jump happens
depends on the laser sweeping direction. This phenomenon is the hysteresis generated by the
optomechanical bistability.

In addition to the optomechanical bistability, the steady-state solution also leads to the
change of the mechanical frequency (the spring constant). This is because the average intracav-
ity optical amplitude changes with mechanical position, which results in a mechanical-position
dependent average radiation pressure force. Since the original restoring force is also position
dependent F (x) = −kx, the mechanical-position dependent average radiation pressure force
modifies the spring constant, and thus the mechanical frequency. From Eq. (3.29) we can
obtain the average optical amplitude at a given mechanical position x:

ᾱ(x) =
−√

κext αin

i∆− κ/2 + iGx
, (3.33)

from which the position dependent average radiation pressure force is: F̄rp(x) = ℏG|ᾱ(x)|2.
Then the extra spring constant induced by the average radiation pressure force is δk =

2Assuming a complex function f(t) = x(t)+ iy(t), where x(t) and y(t) are real functions, we have ḟ = ẋ+ iẏ.
Thus, dRe(f)/dt = Re(ḟ).
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2mΩmδΩm = −dF̄rp/dx|x=0, where x = 0 is the new equilibrium position. Therefore, the
mechanical frequency change induced by the average radiation pressure force is obtained from
the derivative of the average radiation pressure force near the new equilibrium position:

δΩm =
−dF̄rp/dx|x=0

2mΩm

=
2g20κext|αin|2∆
(κ2/4 + ∆2)2

, (3.34)

where |αin|2 is the input photon flux, defined as the incident laser power Pin divided by the
photon energy ℏωL, and G is replaced by g0xZPF. If we introduce a new variable nmax

cav =

4κext|αin|2/κ2 for the maximum average intracavity photon number with zero laser detun-
ing at given input power, the mechanical frequency change can be further simplified to be
8∆nmax

cav

(
g0
κ

)2
/ [1 + (2∆/κ)2]

2. Note that δΩm has the same sign as the laser detuning ∆,
which means there will be spring hardening with a blue-detuned laser frequency, and spring
softening with red detuning.

3.1.5 Solution of the Dynamics

Subtracting the DC terms and neglecting the higher order terms of the dynamics variables from
Eq. (3.29) and Eq. (3.31) yields the linearized equations of motion for the system’s dynamics:

δα̇ = i∆δα− κ

2
δα + iGδxᾱ, (3.35a)

δẍ = −Ω2
mδx− Γδẋ+

Gℏ
m

(ᾱ∗δα + ᾱδα∗) . (3.35b)

Using the linearized interaction Hamiltonian (Eq. (3.21)), Heisenberg equations of motion give
the linearized equations of motion for the quantum case:

δȧ = i∆δa− κ

2
δa+ ig(b+ b†) +

√
κext δain(t) +

√
κ0 f(t), (3.36a)

ḃ = −iΩmb−
Γ

2
b+ ig

(
δa+ δa†

)
+
√
Γ bin(t) . (3.36b)

where g = g0
√
ncav , δain(t) is the external vacuum fluctuations coupled into the cavity, f(t) is

the vacuum fluctuations coupled into the cavity through the cavity internal loss channel, and
bin(t) is the thermal noise.

The equations of motion are two sets of coupled ODEs, and they are easier to solve in
the frequency domain, as the operation of differentiation in the time domain corresponds to
multiplication by the frequency. The equations of motion in the frequency domain are obtained
by performing a Fourier transform on the equations in time domain. Before proceeding to
solving the equations of motion, the convention for the Fourier transform used in this thesis is
first defined. Given a function of time, f(t), its Fourier transform is below:

f̃(ω) =

∫ ∞

−∞
f(t)eiωtdt. (3.37)

When this integral converges the function f̃(ω) is the Fourier form of the original function
f(t), whose magnitude represents the amount of that frequency component presented in the
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original function, and whose complex argument is the phase offset of the basic sinusoid at that
frequency. The inverse Fourier transform given below mathematically synthesises the original
function f(t) from the basis of harmonic waves e−iωt in the continuum limit:

f(t) =
1

2π

∫ ∞

−∞
f̃(ω)e−iωtdω. (3.38)

It is worth to state the convention that b(ω) and b†(ω) are defined as the Fourier transforms
of b(t) and b†(t) respectively3, and this convention will be obeyed consistently in this thesis.
Following this convention it can be proved that the operators and classical variables obey the
relations

a†(ω) = [a(−ω)]†, (3.39a)

δα∗(ω) = [δα(−ω)]∗. (3.39b)

Consistently following this relation in solving the equations of motion is very important.
Using Fourier transform the equations of motion (Eq. (3.35)) in the frequency domain have

the form:

−iωδα(ω) = i∆δα(ω)− κ

2
δα(ω) + iGᾱ δx(ω), (3.40a)

−ω2δx(ω) = −Ω2
mδx(ω) + iωΓδx(ω) +

Gℏ
m

[ᾱ∗δα(ω) + ᾱδα∗(ω)] . (3.40b)

In the linearized case, the optomechanical system is acting as a Linear Time-Invariant (LTI)
system [58], such that in the frequency domain the response of the system is equal to the product
of the power spectrum of the drive force and the transfer function of the system. The transfer
function of the mechanical oscillator is called its susceptibility, defined as χm(ω) = δx(ω)/F (ω).
For a general mechanical oscillator without optomechanical interaction, its susceptibility takes
the form of χ−1

m (ω) = m[(Ω2
m − ω2) − iΓω]. For a high quality mechanical oscillator (Q =

Ωm/κ ≪ 1), this can be approximated as χ−1
m (ω) = −imΩm[−i(ω − Ωm) + Γ] 4.

Optical Spring Effect and Optomechanical Cooling

Solving the equations of motion [Eq. (3.40)] with a weak force F (ω) exerted on the mechanical
oscillator, the solution of the mechanical position can be conveniently denoted as:

δx(ω) = F (ω) · χm,eff(ω), (3.41)

where χm,eff(ω) the effective mechanical susceptibility modified by the optomechanical interac-
tion is defined as χ−1

m,eff(ω) = χ−1
m (ω) + Σ(ω), χ−1

m (ω) is the original mechanical susceptibility,
and Σ(ω) is the part contributed by the optomechanical interaction. From the solution of the
equations of motion [Eq. (3.40b)], Σ(ω) has the form:

Σ(ω) = 2mΩmg
2

(
1

ω +∆+ iκ/2
− 1

ω −∆+ iκ/2

)
, (3.42)

3The Fourier transform of the conjugate transpose of an operator is not equal to the conjugate transpose
of the Fourier transform of this operator.

4Be aware that 1
π

Γ
(ω−Ωm)2+Γ2 is a normalized Lorentzian function and its integral is equal to unity.
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Figure 3.3: (a) optomechanical-interaction induced mechanical frequency shift δΩm(Ωm) ver-
sus optical linewidth normalized laser detuning ∆/κ; (b) optomechanical-interaction induced
mechanical damping Γopt(Ωm) versus optical linewidth normalized laser detuning ∆/κ. The
system parameters used in this figure: m = 1 picogram, input laser power = 100 µW, κ/2π =
100 MHz, κext/2π = 50 MHz, G/2π = 1 GHz/nm.

where G2|ᾱ|2 is replaced by g2/x2
ZPF. The real part of Σ(ω) contributes to the mechanical fre-

quency change (optical spring effect) due to the optomechanical interaction, and the imaginary
part corresponds to the mechanical linewidth change (optical damping effect). Thus we can
define the two parts of Σ(ω) as: Σ(ω) = m[2ΩmδΩm(ω) − iωΓopt]. From Eq. (3.42), δΩm(ω)

and Γopt are found to be:

δΩm(ω) = g2
(

ω +∆

(ω +∆)2 + κ2/4
− ω −∆

(ω −∆)2 + κ2/4

)
, (3.43)

Γopt(ω) = g2
Ωm

ω

(
κ

(ω +∆)2 + κ2/4
− κ

(ω −∆)2 + κ2/4

)
. (3.44)

In the resolved sideband regime (Ωm ≫ κ), when the laser is blue-detuned by the mechanical
frequency: ∆ = Ωm, the mechanical linewidth change is approximately: Γopt ≈ −4g2

κ
= −CΓ,

while when the laser is red-detuned by the mechanical frequency the mechanical linewidth
change is approximately: Γopt ≈ CΓ. The result of the optical spring and optomechanical
damping effects around the mechanical resonance are plotted in Fig. 3.3 for the unresolved
sideband regime (κ > Ωm). In Fig. 3.3(a) spring hardening and softening effects happens
at the blue-detuning and red-detuning sides respectively. When the system is deep in the
unresolved sideband regime (κ ≫ Ωm), Eq. (3.43) is approximately equal to its steady state
counterpart [Eq. (3.34)], as shown by the blue curve in Fig. 3.3(a), where the largest frequency
shift happens around the two steepest points of the optical detuning. Fig. 3.3(b) shows the
optomechanical cooling on the red-detuning side, and the optomechanical heating on the blue-
detuning side. Further, when the system approaches the resolved sideband regime, the highest
cooling (heating) efficiency detuning transitions from the steepest point of the optical mode to
the detuning equal to the mechanical frequency.
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Optomechanically Induced Transparency/ Amplification

The optomechanical interaction not only affects the mechanical linewidth and subsequently
generates heating and cooling of the mechanical motion, it also affects the effective optical
linewidth for some particular detunings, which is termed as Optomechanically Induced Trans-
parency/ Amplification (OMIT/OMIA) depending on whether the optical linewidth is narrowed
or broadened at that detuning. To investigate this effect, we need two optical fields: a1 for
the strong pump field and δa2 for the weak probe field, and assume for simplicity that the
system is in the resolved sideband regime (Ωm ≫ κ). Then the equations of motion in the
frame rotating at the pump field frequency ωL can be derived from the original optomechanical
Hamiltonian [Eq. (3.24)] to have a similar form with the general optomechanical equations of
motion [Eq. (3.36)]:

−iωa1(ω) = i∆1a1 −
κ

2
a1 + ig0α1(b+ b†) +

√
κext αin,1 (3.45a)

−iωδa2(ω) = i∆2δa2 −
κ

2
δa2 + ig0α1(b+ b†) +

√
κext δa2,in (3.45b)

−iωb(ω) = −iΩmb−
Γ

2
b+ ig0α1(δa2 + δa†2) , (3.45c)

where ∆1 = ωL−ωcav is the pump field detuning (fixed at ±Ωm respectively for OMIA/T), and
∆2 = ωL −ωpr is the frequency difference between the probe and pump fields, αin,1 is the drive
for the pump field, α1 is the steady state solution of the pump field. Note that the dynamics
of the strong pump field a1 is neglected, and the optomechanical interaction is boosted by
the steady state intracavity field of the strong pump field. To solve for α1, we neglect the
optomechanical interaction for the detuned strong pump field a1, assuming the steady state
of the pump field only changes the equilibrium position of the mechanical oscillator and the
optical cavity linewidth stays the same. Thus the pump field’s steady state solution is:

α1 =

√
κext αin,1

−i∆1 + κ/2
. (3.46)

With the rotating wave approximations mentioned in Eq. (3.22), for ∆1 = −Ωm the solution
for δa2 is:

δa2(ω) =

√
κext δa2,in

−i(ω −∆2) + κ/2 + g2

−i(ω+Ωm)+Γ/2

, (3.47)

where g = α1 g0, and ∆2 has to be −Ωm. The output spectrum of the cavity depends on whether
the reflection or the transmission is measured as output light, but the relative amplitude (dip-
depth) of the OMIT feature shown on the cavity response to the probe field is given by:

δa2(−Ωm)

δa′2(−Ωm)
=

1

1 + C
, (3.48)

where δa′2(−Ωm) =
√
κext δa2,in

κ/2
is the response of a bare cavity to the probe field, and C is the

multi-photon coorperativity.
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Figure 3.4: OMIT (a) and OMIA (b) exhibited on the normalized cavity intensity responses
to the probe field, plotted using the squared modulus of Eq. (3.47) and Eq. (3.49) respectively.
The system parameters used in this figure: m = 1 picogram, κ/2π = 10 MHz, κext/2π = 5
MHz, Ωm/2π = 300 MHz, Γ/2π = 300 kHz, G/2π = 0.5 GHz/nm..

Similarly for the blue-detuned pump laser ∆1 = Ωm, with the rotating wave approximations
mentioned in Eq. (3.23), the solution of δa2 is:

δa2(ω) =

√
κext δa2,in

−i(ω −∆2) + κ/2− g2

−i(ω−Ωm)+Γ/2

, (3.49)

where g = α1 g0, and ∆2 has to be Ωm. Then the relative amplitude of the OMIA feature on
the cavity response to the probe field is is given by:

δa2(Ωm)

δa′2(Ωm)
=

1

1− C
. (3.50)

Note that the theory for OMIA is only valid for C < 1, because when C larger than 1, the
effective optical linewidth, which is defined here as κ − 4g2/Γ based on the real part of the
denominator of Eq. (3.49), will be negative. In reality, when the effective optical linewidth
approaches zero, there will be extra optical attenuation from nonlinearities, which can cause
saturation. Note also that the OMIA feature appears on the reflected light only when the
Fabry-Perot cavity is under-coupled, but appears on the transmitted light for the Fabry-Perot
cavity with any coupling. Although the solutions for OMIT and OMIA look very similar, they
correspond to the pump laser detuning of different signs. The signs in the denominator of
Eq. (3.48) and Eq. (3.50) show the contrasting difference of these two phenomena.

From the results shown in Fig. 3.4, we will find if the strong pump field is blue-detuned
by the mechanical frequency and is strong enough to narrow the mechanical linewidth to
zero: Γopt = −Γ (phonon lasing), the effective optical linewidth (experienced by the probe
field) will be substantially narrowed. This phenomenon is called OMIA, which basically can
be understood as when the mechanical mode is driven to a strong coherent amplitude, the
probe field will be amplified by the coherent mechanical mode through the strongly biased
Stokes scattering. Similarly for OMIT, if the strong pump field is red-tuned by −Ωm and cools
the mechanical mode, the probe field will experience a large effective optical linewidth as it is
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strongly attenuated by the strongly biased anti-Stokes scattering. OMIT demonstrates that the
optical field is strong enough to obtain the coherent optomechanical interaction, equivalently
the cooperativity C = 4g2

κΓ
≥ 1.

Spectral Analysis

The solution of δx(ω) not only enables us to explain how the optomechanical interaction affects
the mechanical oscillator, it can also directly give the spectral response (power spectral density)
of the mechanical system. Before we proceed to calculate the power spectral density, the basic
statistics are introduced to deal with the stochastic driving forces in the equations of motion.

First, the autocorrelation is defined as the correlation of a signal at time t with a delayed
version of itself at t + τ as a function of delay τ , which can be intuitively understood as the
similarity between observations of the signal as a function of the time lag τ between them.
Given a wide-sense stationary random process 5 {Xt} with time-independent average µ and
variance σ2, where Xt is the value produced by a given run of the process at time t, the
auto-correlation of the random process are mathematically defined as:

RXX(t, t+ τ) = E[X(t)X∗(t+ τ)], (3.51)

and auto-covariance:

KXX(t, t+ τ) = E[(X(t)− µ)(X(t+ τ)− µ)∗] = RXX(t, t+ τ)− µµ∗ . (3.52)

The power spectral density Sbb(ω) of a fluctuation operator b(t) from a stationary process
is defined from the Wiener-Khinchin theorem as [51]:

Sbb(ω) =

∫ ∞

−∞
⟨b†(t)b(0)⟩eiω(t−0)dt, (3.53)

which is the Fourier transform of the autocorrelation of the operator b(t). Following this
definition, we prove that the power spectral density Sbb(ω) can also be calculated directly via
the Fourier transformed lowering and raising operators:

Sbb(ω) =

∫ ∞

−∞

⟨
1

2π

∫ ∞

−∞
b†(ω′′)e−iω′′tdω′′ · 1

2π

∫ ∞

−∞
b(ω′)e−iω′ 0dω′

⟩
eiωtdt

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
⟨b†(ω′′)b(ω′)⟩e−iω′′tdω′′ eiωt dt dω′

=
1

2π

∫ ∞

−∞
⟨b†(ω)b(ω′)⟩ dω′

(3.54)

Unless stated otherwise, all power spectra in this thesis are calculated in this way.
Since the mechanical position δx(t) is proportional to the real part of the mechanical an-

nihilation operator [Eq. (3.28)], the power spectral density of mechanical position is obtained
from the Wiener-Khinchin theorem [50]:

Sxx(ω) =

∫ ∞

−∞
⟨δx(t)δx(0)⟩eiωtdt =

⟨
|δx(ω)|2

⟩
. (3.55)

5A wide-sense stationary random process is a random processes which has constant 1st moment (i.e. the
mean) and autocovariance, and finite 2nd moment for all times.
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Figure 3.5: Power spectral density of a mechanical oscillator with m = 1 picogram, Ωm/2π =
3 MHz, T = 300 K, and various damping rates Γ: 30 Hz (blue), 3 kHz (red), 30 kHz (green).
Note that the integrated power spectral density is the same for all the traces.

Let us first discuss a mechanical oscillator assumed to be in thermal equilibrium of temperature
T and without the optomechanical interaction, the integration of the power spectral density
yields the variance ⟨δx2⟩ of the mechanical position for a thermally driven oscillator in equilib-
rium with a bath at temperature T . The equipartition theorem leads to ⟨δx2⟩ = kBT/(mΩ2

m),
which can lead us to the amplitude of the mechanical oscillator in thermal equilibrium. Let
us follow the assumption that the mechanical oscillator is only driven by thermal force Fth,
which according to the fluctuation-dissipation theorem obeys the temporal correlation rule
⟨Fth(t)Fth(t

′)⟩ = 2mΓkBTδ(t − t′) and has the power spectral density SFF(ω) = 2mΓkBT ob-
tained from the Fourier transform of the correlation rule [59]. With the power spectral density
of the thermal driving force, δx(ω) = χm(ω)Fex(ω) leads to the power spectral density of the
mechanical motion at temperature T : Sxx(ω) = 2mΓkBT |χm|2, where m is the mass of the
mechanical oscillator, kB is the Boltzmann constant, T is the temperature of the thermal bath,
Γ is the mechanical damping rate, and χm is the mechanical susceptibility. The power spec-
tral density of a mechanical oscillator thermalized to 300 K is plotted in Fig. 3.5, for different
mechanical damping rates Γ.

Similarly, solving the linearized equations of motion for the quantum operators [Eq. (3.36)],
we can obtain the solution of the mechanical annihilation operator b(ω). From the inverse
process of Eq. (3.53) we have the steady-state variance of the mechanical oscillator lowering
operator as below:

⟨|b(t)|2⟩ = 1

2π

∫ ∞

−∞
Sbb(ω) dω, (3.56)

which is equal to the average occupancy of the mechanical oscillator.
For convenience, let us assume a simplified optomechanical interaction which only cools

or heats the mechanical oscillator by changing the mechanical linewidth from the intrinsic
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linewidth Γ to the effective linewidth Γeff , which is defined as Γ ± 4g2/κ and the sign corre-
sponding to laser detuning by ∓Ωm. In addition, we also make the assumption that the optical
damping rate Γopt is approximately not frequency-dependent near the mechanical resonance
frequency, for example a system in the resolved sideband regime with laser detuning |∆| = Ωm,
where Γopt = ±CΓ. Then the solution of the equation [Eq.(3.36b)] of motion for the mechanical
annihilation operator takes the form:

b(ω) =

√
Γ bin(ω)

−i(ω − Ωm) + Γeff/2
(3.57)

From the temporal correlation [Eq. (3.26)] of the mechanical thermal noise bin(t), we get
the correlation relation in frequency domain as: 1

2π
⟨b†in(ω)bin(ω′)⟩ = nthδ(ω + ω′) 6. With this,

the mechanical occupancy under the simplified optomechanical interaction is:

nb =
1

2π

∫ ∞

−∞

1

2π

∫ ∞

−∞
⟨b†(ω)b(ω′)⟩ dω′dω

=
1

2π

∫ ∞

−∞

Γnth

(ω + Ωm)2 + (Γeff/2)2
dω

=
Γnth

Γeff

1

π

∫ ∞

−∞

Γeff/2

(ω + Ωm)2 + (Γeff/2)2
dω

=
Γnth

Γeff

.

(3.58)

This means that when the mechanical oscillator is coupled to two independent baths (an optical
bath and an environment thermal bath) the equilibrium mechanical occupancy is the mean of
the two bath occupancies weighted by the respective coupling rates (Γ and Γopt = ±CΓ) [52].
Additionally, when the laser is red-detuned by Ωm, Eq. (3.58) is reduced to be nb = nth/(1+C),
which proves that if the cooperativity is larger than the thermal occupancy the mechanical mode
can be cooled to its ground state.

3.2 Superfluid Helium-4
Unlike liquid, solid and gas phases, superfluidity is a quantum-mechanical phase of matter.
Simply speaking, when a gas which obeys Bose–Einstein statistics is cooled below a critical
temperature Tλ, all the constituent atoms of the Bose gas are in the quantum ground state,
and the interatomic distance becomes comparable to the thermal de Broglie wavelength [λth =

h/(mv)], such that the wave packet of the matter wave of each constituent atom overlaps and
interferes with one another [60]. Consequently via cooling below the critical temperature a
Bose gas undergoes Bose-Einstein condensation, and becomes a macroscopic quantum object
with long range coherence, and can be described by one unique wavefunction [61]

Ψ(r⃗, t) =
√

ρs(r⃗, t)/m eiϕ(r⃗,t), (3.59)
6This equation is derived via expressing the operators b†in(ω) and bin(ω

′) as the Fourier transform of the
corresponding operators in the time domain. Note that eiω

′t and 2πδ(ω + ω′) are a Fourier transform pair as
the exponent has a positive sign in the Fourier transform definition in the thesis.
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Figure 3.6: Helium-4 phase diagram. Adapted from [62].

where m is the mass of one atom, ρs(r⃗, t) is the density distribution of the condensate, and
ϕ(r⃗, t) is the phase of the wavefunction. The spatial gradient of ϕ(r⃗, t) gives the velocity of the
condensate:

v⃗s = ℏ/m∇⃗ϕ. (3.60)

The first discovered superfluid was superfluid helium-4, when Keesom and Kapitza observed
the abnormally high thermal conductivity and low viscosity of liquid helium below the lambda
point (2.17 K) [15, 63]. This superfluid phase is conventionally termed as Helium II, while the
normal fluid phase above 2.17 K is termed as Helium I, as is shown in the phase diagram of
helium-4 (Fig. 3.6). This phase transition from normal fluid to superfluid was first explained
as Bose-Einstein condensation of helium-4 atoms by London [64]. Following that Tisza and
Landau proposed the two-fluid model, and developed the hydrodynamics of superfluid helium-4
based on the two-fluid model [65, 66]. The two-fluid model states superfluid is composed of
two components: a superfluid component and a normal fluid component, which can also be
understood as each helium-4 atom below 2.17 K has a certain probability of being in the Bose-
Einstein condensate state. As shown in Fig. 3.7 below the lambda point, the fractional density
of the superfluid component increases, and eventually the superfluid component density is equal
to the liquid helium density, meaning every atom in the liquid helium has a unity probability of
being in the BEC state [67]. Note that unlike BEC of dilute Bose gas which has a micron-scale
quantum coherence length (also termed as the healing length ξ), the typical healing length of
superfluid helium-4 is at the Angstrom-scale [68, 69].

ξ(T ) = 0.34(1− T

Tλ

)−0.67 (3.61)

The typical healing length at our experimental temperatures of 20 mK is around 0.4 nm. Note
that the healing length diverges for T approaching Tλ from below.
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3.2.1 Superfluid Josephson Effect

The Josephson effect is widely used in superconducting circuits to build qubits (superconducting
quantum interference devices (SQUIDs)) for quantum computing. The Josephson effect is the
dissipationless tunnelling of electron Cooper pairs between two superconductors separated by a
thin insulating layer, as predicted Josephson [70]. The direct supercurrent with amplitude less
than the critical current flows with zero-voltage drop across the junction (DC Josephson effect).
In the case that a constant voltage V is established across the junction, there is a sinusoidal
supercurrent with frequency linearly dependent on the voltage (AC Josephson effect).

The Josephson effect in superfluid helium-4 happens in a similar way. Fig. 3.8 illustrates a
superfluid “Josephson junction” composed of two macroscopic reservoirs of superfluid helium in
equilibrium and separated by a thin membrane with a nanosized orifice. Since the two superfluid
reservoirs are separated by the thin membrane, they evolve adiabatically and independently
with their individual wavefunctions. The phase difference ∆ϕ of the two wavefunctions during
the evolution is determined by the chemical potential difference ∆µ between the two superfluid

ΨL = Ψ0 eiФLµL

nano orifice

ΨR = Ψ0 eiФRµR

Figure 3.8: Quantum interference between two weakly connected superfluid reservoirs where
the nano orifice working as a superfluid Josephson junction.
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reservoirs, following the Josephson-Anderson equation [71]:

d∆ϕ

dt
= −∆µ

ℏ
, (3.62)

where ∆µ is the chemical potential defined as:

∆µ = mHe(∆P/ρs − s∆T ) (3.63)

with ρs the superfluid mass density, ∆P the pressure difference, s the entropy per unit mass
and ∆T the temperature difference. The nano orifice in the thin membrane weakly links the
two wavefunctions, such that the “evanescent field” of each wavefunction extends into the other
superfluid reservoir. Although the characteristic length of the “evanescent field” is equal to the
healing length ξ on the order of a few Angstroms, the interference between the two wavefunc-
tions due to such “evanescent coupling” results in the quantum tunnelling of helium atoms
through the membrane barrier, which is the superfluid Josephson effect. Similar to the AC
Josephson effect in superconductors, if a constant chemical potential difference ∆µ is applied
across the weak link, there will be a sinusoidal superfluid flow [IJ = Icsin(∆ϕ + ϕ0)] through
the nano orifice. The Josephson effect in superfluid was first predicted by P. W. Anderson as
phase slippage [72, 73], which is the 2π phase decrease of the superfluid wave function when
superfluid flows above the critical velocity in a ’strong link’. This phase slippage phenomenon
was observed by Avenel and Varoquaux with a nano orifice slightly larger than the superfluid
healing length [74]. The big orifice they used acts as the “strong link”, so that when super-
fluid flow reaches the critical velocity, a vortex will be shed and the 2π phase slippage will
decrease the superfluid velocity abruptly [Eq. (3.60)]. Since the 1990s the Packard group at
University of California, Berkeley fabricated the nanosized orifice at the scale of the superfluid
3He healing length (tens of nanometers) [75]. With that they invented a bulk superfluid in-
terferometer/gyroscope analogous to a SQUID, and observed the interference exhibited as the
sinusoidal Josephson current [76–79]. Further, they found the transition from the phase slip-
page regime to the sinusoidal Josephson oscillation using the temperature dependence of the
healing length [68] and directly measured the quantum phase gradient in superfluid helium-4
flow [80].

3.2.2 Superfluid Fountain Effect

The superfluid fountain effect is also called the superfluid thermomechanical effect. It is the
direct manifestation of the two-fluid model, and results from the phase gradient origin of
superfluid velocity [60]. The historical experiment demonstrating the superfluid fountain effect
is described as following. Two vessels both contain superfluid helium. One vessel is assumed
be at 0 K and zero pressure. The two vessels are connected by a so-called superleak, which is
a fine porous plug, such that the superfluid component with zero viscosity can flow through
it, but the normal component is blocked [81]. When the temperature in the other vessel is
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Figure 3.9: Illustration of the superfluid fountain effect, adapted from [82]

increased, there will be a chemical potential difference between the superfluid in the two vessel,
and subsequently a phase gradient inducing superfluid to flow toward the heat source. After
superfluid flows through the fine power, the high temperature in the other vessel turns superfluid
into normal fluid. This eventually raises the pressure in the heated vessel and the helium inside
can squirt like a fountain. We will see in Chapter 4 how this effect can be leveraged to apply
strong forces at the micro-scale.

3.2.3 Acoustic Excitations in Superfluid

Among all the excitations in superfluid helium-4, there are mainly three types of acoustic ex-
citations, and they are named first sound (density wave), second sound (temperature wave)
and third sound. Third sound waves are a type of excitation unique to superfluid thin films
[18, 84–88], whereas the first and second sound waves exist only in bulk superfluid, where the
bulk form of superfluid is not assumed to be incompressible. As illustrated in Fig. 3.10 a third
sound wave is exhibited as film thickness fluctuations of the superfluid component, while the
normal fluid component (not shown) is viscously clamped to the substrate. Additionally, since
the superfluid component does not carry entropy, the crests where there is more superfluid com-
ponent have slightly lower temperature, and the troughs have slightly high temperature, such

substrate

cold hot cold

evaporationcondensation condensation

vs vs vs

η

d

ρn ρnviscously clamped

ρs
ρs

ρs
vs

Figure 3.10: Illustration of third sound on a thin superfluid film, adapted from [83].
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Table 3.1: Van der Waals coefficients αvdw for liquid helium on different substrate materials [2].

Material αvdw [m5s−2]
Silica 2.6× 10−24

CaF2 2.2× 10−24

Silicon 3.5× 10−24

MgO 2.8× 10−24

that the third sound wave also exhibits temperature alternations, accompanied by evaporation
and condensation [84]. With zero superfluid viscosity, third sound waves are expected to have
ultra-low loss. It is believed the evaporation and condensation process, the thermal contact
with the substrate and interactions with vortices might cause third sound loss [89,90]. However,
the loss mechanisms are still not perfectly understood. Third sound waves are analogous to
shallow water waves, but their restoring force is the van der Waals interaction between the
helium atoms and the substrate, instead of gravity for shallow water waves [91]. For superfluid
thin films the van der Waals potential at the film surface is:

U(d) = −αvdw

d3
, (3.64)

where αvdw is the van der Waals coefficient characterizing the strength of the attractive force
and is summarized for several substrates in Table 3.2.3, and d is the film thickness. The van
der Waals force per unit mass is the gradient of the potential along the direction of the film
thickness [92, 93]:

gvdw =
3αvdw

d4
. (3.65)

Since the healing length [Eq. (3.61)] of superfluid helium-4 is only a few Angstroms, classical
hydrodynamic theory is still valid to describe superfluid third sound waves down to truly
microscopic dimensions, with no need to worry about the complicated microscopic quantum
theory of superfluid helium-4. Assuming the superfluid film is incompressible, and in the
limits of long wavelength λ3 ≫ d and small wave amplitude η ≪ d, conservation of mass and
momentum as the basic laws of classical hydrodynamics give the continuity equation [94]:

∂η

∂t
= −d ∇⃗ · v⃗, (3.66)

and the Euler equation:
∂v⃗

∂t
= −g∇⃗η, (3.67)

where g is the linearized van der Waals acceleration at the film surface [Eq. (3.65)]. Substituting
the Euler equation into the continuity equation and eliminating v⃗ yields the wave equation of
third sound:

∂2η

∂t2
− d g∇2η = 0, (3.68)

from which the third sound speed c3 can be derived as:

c3 =
√

d g =

√
3αvdw

d3
. (3.69)
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Table 3.2: First eight values of the frequency parameter ζ0,n for fixed and free boundary con-
ditions. In the case of fixed (free) boundary conditions, these correspond to the zeroes of
J0(J

′
0).

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
Free 3.832 7.016 10.174 13.324 16.471 19.616 22.760 25.904
Fixed 2.405 5.520 8.654 11.792 14.931 18.071 21.212 24.353

r

z
θ d d

r

z
θ

(a) Fixed boundary (b) Free boundary

Silica disk Silica disk

Figure 3.11: Illustrated cross-section of third sound modes of a thin superfluid film of average
thickness d confined on a silica disk: (a) first three order Bessel modes of fixed boundary
condition; (b) first three order Bessel modes of free boundary condition.

Assuming the time dependent amplitude η(r, θ, t) in Eq. (3.68) has solutions which obey the
simple harmonic oscillator equation η̈ + Ω2

3η = 0, where Ω3 is the third sound resonance
frequency, the solutions must meet the relation of wave number K: Ω3 = c3K. With the
assumption of harmonic time dependence, solving the wave equation with appropriate boundary
conditions gives the solutions corresponding to third sound modes.

The experiments in this thesis focus on the third sound modes confined on the surface of a
silica disk of radius R. Solving the wave equation [Eq. (3.68)] with circular geometry boundary
conditions yields the Bessel mode profile in cylindrical coordinates (r, θ) [3]:

ηm,n(r, θ, t) = η0Jm

(
ζm,n

r

R

)
ei(mθ±Ω3t), (3.70)

where m and n are the azimuthal and radial mode numbers respectively, η0 is the amplitude
of the mode, Jm is the Bessel function of the first kind of order m, Ω3 = (ζm,n c3)/R is the
mode frequency, θ is the angular direction, the ± sign in the exponential function denotes
the travelling direction (clockwise or counter-clockwise) of the mode, and ζm,n is a frequency
parameter, which is dependent on the mode order and boundary conditions, as displayed in
Table 3.2.3.

There are two types of boundary conditions for the Bessel modes: the fixed [η(R) = 0]
boundary condition, where there is no displacement at r = R [Fig. 3.11(a)]; the free [∂rη(R) = 0]
boundary condition, also know as the ‘no flow’ boundary condition, where the radial velocity
of superfluid flow is 0 at the boundary [Fig. 3.11(b)]. The first three rotationally invariant
Bessel mode profiles for the two boundary conditions are plotted in Fig. 3.11. In the case of
free boundary condition the radial component of the flow velocity (v⃗3 ∼ ∇⃗η) at the boundary
is zero, which means there is no fluid flowing across the boundary during the oscillation of a
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free-boundary condition mode, and thus the volume of the superfluid inside the mode boundary
is conserved. This is indirectly illustrated in the profiles of the Bessel modes (especially obvious
for the fundamental mode) in Fig. 3.11. In the illustration the free boundary condition is volume
conserving, as the area underneath each free boundary mode profile curve is constant over time,
while the fixed boundary condition is not volume conserving. However, in the experiments the
boundary conditions are not fixed for the same host geometry, they can transition between
each other, and a superposition of them can exist depending on the superfluid film thickness.
For example, the transition from the free to fixed boundary condition has been observed in
circular helium-3 third sound resonators, when the film thickness is increased to above ∼ 200

nm [95, 96]. In our superfluid optomechanical resonator with thin films (typically below 20 nn
thickness) and sharp ‘knife-edge’ disk rim [97], the superfluid flow between the top and lower
surfaces is expected to be negligible, and thus the third sound modes supported by the disk top
surface are expected to have free boundary condition, which is consistent with previous works
on circular helium-4 third sound resonators [87, 92].

3.2.4 Quantized Vortices in Two Dimensional Superfluid

A quantized vortex in superfluid helium is the quantized circulation of superfluid flow around a
topological defect, which could be made of excited particles, air, vacuum, etc. The diameter of
a vortex core in superfluid helium-4 is typically of the order of a few Angstroms, as determined
by the healing length [Eq. (3.61)]. The existence of quantized vortices was first suggested by
Lars Onsager, and further developed by Richard Feynman [98]. As mentioned previously in
Eq. (3.59) superfluid can be described by a macroscopic wavefunction Ψ(r⃗, t), and the superfluid
velocity is proportional to the gradient of the phase of the wavefunction [Eq. (3.60)]. The origin
of superfluid velocity as the phase gradient leads to two consequences. First, the superfluid
flow must be strictly irrotational [69]:

∇⃗ × v⃗s =
ℏ

mHe

∇⃗ ×
(
∇⃗ϕ
)
≡ 0. (3.71)

Second, the superfluid circulation around any closed loop will accumulate a phase shift. As
required by the precondition that the superfluid wavefunction is single valued, the phase shift
must be zero if the enclosed region is simply connected, or an integer times of 2π if the region
is multiply connected. As a result, the superfluid circulation must be quantized [83]:∮

v⃗s · d⃗l =
ℏ

mHe

∮
∇⃗ϕ · d⃗l = nκ, (3.72)

where κ = h
mHe

is the superfluid circulation quantum, n is an integer corresponding to the
number of vortices inside the closed loop, and mHe is the atomic mass of helium-4.

Again since the dimensions in which the superfluid quantumness matters are within the
healing length, it is valid to use classical hydrodynamics to describe superfluid vortex dynam-
ics down to very microscopic dimensions. Owing to the incompressible, inviscid and irrotational
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superfluid flow, the potential flow theory allows us to use the phase ϕ of the superfluid wave-
function as the velocity potential function to satisfy conservations of mass and momentum, and
thus in two dimensional plane the superfluid velocity components in r and θ directions are re-
spectively v⃗r =

∂ϕ
∂r

and v⃗θ =
1
r
∂ϕ
∂θ

. The streamfunction Ψ is linked to ϕ via the Cauchy-Riemann
equations. The velocity potential ϕ and streamfunction Ψ of a two dimensional point vortex
with circulation κ are respectively given by [94]:

ϕ =
κ

2π
θ, (3.73)

Ψ = − κ

2π
ln (r) , (3.74)

and the corresponding velocity field of the point vortex in an infinite two dimensional plane is:

v⃗θ(r) = −dΨ

dr
=

κ

2πr
êθ, (3.75)

where êθ is the tangential unit vector and r is the distance from the vortex core.
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Chapter 4

Optical Force Enhanced by Superfluid

This chapter is based on the work published by the American Physical Society:
D. L. McAuslan, G. I. Harris, C. Baker, Y. Sachkou, X. He, E. Sheridan, and W. P. Bowen,
Microphotonic Forces from Superfluid Flow, Physical Review X, 6(2):021012, 2016.

Conventional cavity optomechanics studies the interaction between the motions of a me-
chanical oscillator and an optical resonator. This chapter presents superfluid optomechanics,
where the mechanical motions are acoustic waves in superfluid, instead of strain waves in bulk
solids or motion of dielectric slabs. In the first section, the research background of super-
fluid optomechanics is introduced, and the motivations for using superfluid for optomechanics
experiments are explained. In the second section, a conventional optomechanical feed-back
cooling experiment demonstrates that superfluid flow is able to enhance optical forcing on the
mechanical resonator, and thus increases the cooling efficiency. The third section explains the
coupling mechanism between superfluid motions and light, and theoretically estimates the op-
tomechanical coupling rate based on perturbation theory. The fourth section is the theoretical
and experimental investigations of quantized vortex detection in two dimensional superfluid
film using this superfluid optomechanical system. The last section concludes this chapter.

4.1 Research Background and Motivations
With the development of laser physics in the past a few decades, optical forces which are usu-
ally minute, have broad applications in photonic circuits [99,100], micromanipulation [101,102],
and biophysics. In the field of cavity optomechanics, optical forces, including radiation pres-
sure forces, photothermal forces, optical gradient forces, and electrostrictive forces, have enabled
practical applications including: 1) high precision sensing of forces, fields and mass [39,103,104],
particularly represented by the ground-breaking work of gravitational wave detection [8], 2)
information processing techniques like all-optical routing [105], non-volatile mechanical mem-
ories [106], etc. Besides practical applications, optical forces also have been widely used to
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Figure 4.1: Artistic illustration of the optical force resulted from the recoil of the evaporated
helium atoms. The blue arrows are superfluid flow, and the red arrows are evaporated helium-4
atoms. (Image courtesy of Dr Christopher G. Baker)

demonstrate fundamental science, for example generation of squeezed states in a Bose-Einstein
condensate [107], ponderomotive squeezing [108], ground state cooling of a macroscopic me-
chanical oscillator [10], coherent state swapping [109].

In this section, a new type of optical forcing realised by superfluid convective flow is demon-
strated to have an order-of-magnitude stronger mechanical actuation than radiation pressure.
This convective flow of superfluid is frictionless, and is generated in response to a local heat
source, as explained by the fountain effect in § 3.2. The momentum of the flowing helium-4
atoms is transferred to a mechanical element via collision and recoil, resulting in kinetic forcing.
In our case a Whispering Gallery Mode (WGM) silica toroid resonator is coated with a thin
superfluid film as shown in Fig. 4.1. The heat source is localised along the circumference of the
mechanical oscillator, which the toroid resonator, whereby the incident superfluid atoms are
evaporated from the surface. The momentum transfer from superfluid flow and recoil of evap-
orated helium-4 atoms induces a photoconvective force, which is similar to, but stronger than
the standard photothermal force. It also has several additional advantages over the photother-
mal force. First, the photoconvective force from superfluid is not only able to provide strong
actuation capabilities, but is also able to work at cryogenic temperatures, which are necessary
to quench thermal noise for quantum experiments. Second, the large thermal conductivity of
superfluid helium-4 in this case could be used to greatly reduce the localised heating of the
mechanical element, which often degrades cryogenic quantum optomechanics experiments [110].
Third, superfluid flow, once initiated, has been observed to be very persistent [111]. This unique
flow persistence is able to apply endurable pressure on a mechanical element, even after the
optical field is removed, which could act as non-volatile optomechanical memory [106].

4.2 Photoconvective Force Mediated by Superfluid Flow
The configuration of of the superfluid photoconvective forcing experiment is illustrated in
Fig. 4.1. A nano-meter scale superfluid helium film self-assembly coats a microtoroidal WGM
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resonator, due to the van der Waals interaction between superfluid helium-4 atoms and the sub-
strate material. When laser light is coupled to the resonator via a tapered fiber (not shown),
the optical absorption inside the resonator locally heats the microtoroid periphery (red glow).
Due to the thermomechanical effect of superfluid, the local heating generates superfluid flow
through the pedestal towards the resonator periphery (blue arrows). At the periphery, the
recoil of the evaporated helium atoms (red arrows) exerts a force onto the toroid, directed
radially inwards and with a magnitude given by

Fradial = −d(mvradial)

dt

= 4ṁ vradial/π
2,

(4.1)

where ṁ is the mass flow rate of the evaporated helium atoms. The net radial velocity vradial is
from the integration of isotropically evaporated atoms in the outwards facing half-space with
a root-mean-square (rms) velocity of

vrms =

√
3kB Tevap

mHe

, (4.2)

where Tevap is the temperature of the evaporated atoms and mHe is the mass of a helium-4
atom.

In steady state, the mass flow rate ṁ is determined by equating the optical heating load
to the energy dissipated evaporation of helium-4 atoms. In contrast to bulk systems, which
dissipate through normal fluid counter-flow, the energy in thin superfluid films is dissipated
via evaporation, due to the viscous clamping of normal fluid component to the surface [84].
So in steady state, the superfluid mass flow rate given an absorbed optical power Pabs is
ṁ = Pabs/(L − ⟨µvdW⟩), where L is the latent heat of evaporation and ⟨µvdW⟩) is the van der
Waals potential of the superfluid film. Inserting the mass flow rate equation and Eq. (4.2) into
Eq. (4.1) yields the inward radial force from the recoil of the evaporated helium-4 atoms:

Fradial =
4

π2

√
3kB Tevap

mHe

Pabs

L− ⟨µvdW⟩
(4.3)

Note that, similar to photothermal forces [38], this radial force equation is not related to the
cavity finesse, allowing applications of photoconvective forces in the cases where there is only a
weak cavity, or even no cavity. For comparison, assuming the magnitude of intracavity power
equal to the absorbed optical power Pabs here, the radiation pressure force is FRP = PabsF/c 1,
where F is the finesse of the cavity and c is the speed of light. For evaporation of superfluid
at 1 K, the ratio Fradial/FRP ∼ 4 × 105/F indicates the superfluid convective force is similar
in magnitude to the radiation pressure force with a cavity finesse of around 400 000. Whereas
the cavity finesse in this experiment is 53 000, predicting that the superfluid convective force
is nearly 1 order of magnitude larger than the radiation pressure force.

1When a photon is absorbed, the momentum kick from the photon to the absorbent is ℏκ. Given an
absorbed optical power Pabs at steady state, the photon flux to be absorbed is Pabs/(ℏω), leading to a radiation
pressure applied on the absorbent of Pabs/c. The intracavity optical power is enhanced by cavity finesse to be
PabsF . Thus, given the absorbed optical power Pabs, the radiation pressure exerted on the cavity is PabsF/c.
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Figure 4.2: (a) Electronic control and measurement setup and homodyne optical setup used
to investigate the superfluid photoconvective forcing. A WGM optical cavity placed inside
a sample chamber of a helium-3 cryostat forms a part of an all-fibre interferometer built for
the balanced homodyne detection scheme. Electronic filters and amplification stages are im-
plemented for the feedback cooling experiment. The interferometer and the cavity locking is
utilized for stability of the interferometer phase and the laser frequency respectively. BS – fibre
beamsplitter, AM – amplitude modulator, SA – spectrum analyser, NA – network analyser,
PD – photodetector. (b) Displacement profile of the microtoroid flexural mode at 3 K. Inset:
FEM simulated displacement profile of the microtoroid flexural mode. Figure is reproduced
from Ref. [1] with modifications.

4.3 Experimental Setup
The setup shown in Fig. 4.2(a) is used to experimentally demonstrate the superfluid photocon-
vective force is 1 order of magnitude stronger than the radiation pressure force. A microtoroidal
WGM resonator resides in the superfluid-tight sample chamber of a helium-3 closed-cycle cryo-
stat (Oxford Triton). Inside the sample chamber laser light at 1555.08 nm is coupled to a
high-Q optical mode (linewidth κ/2π = 23.5 MHz) of the resonator via a tapered fiber. The
microtoroid is also a mechanical resonator, since its geometry defines a number of intrinsic
mechanical modes with frequency ranging from 1 to 50 MHz. With the homodyne detection
method shown in the setup, the mechanical thermal motion is detected as the phase fluctuation
in the signal arm, when laser light is locked on resonance with the optical mode. In principle,
the radial forces originated from both radiation pressure and superfluid convective flow interact
most efficiently with the radial breathing mechanical mode of the toroid. However, the radial
breathing mode’s frequency is 40 MHz, which is too high for superfluid flow to respond. In the
experiment the photoconvective force from superfluid flow is observed to only respond up to 2
MHz, possibly due to the breakdown of superfluidity when the flow speed is above the Landau
critical velocity [112]. Therefore, this experiment is done with the first-order flexural mode at
Ω/2π = 1.35 MHz, with a mechanical linewidth of Γ/2π = 530 Hz at the base temperature
(559 mK) of the cryostat. The single-photon optomechanical coupling rate of this mechanical
mode is g0/2π = 12.3 Hz. This mode is simulated using finite element modelling (FEM), and
its displacement profile is shown in the inset of Fig. 4.2(b).
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Figure 4.3: (a) Flexural mode temperature vs cryostat temperature as the cryostat is cooled
from 10 to 0.32 K. The microtoroid reaches a base temperature of 0.56 K with 100 nW of injected
optical power. (b) Mode temperature of the flexural mode as the probe laser is increased from
10 nW to 3.3 µW . Below 2.2 µW the temperature increases slightly as the laser power is
increased. Above 2.2 µW the superfluid boils off, causing a sharp rise in mode temperature.
Figure is reproduced from Ref. [1] with minor modifications.

4.4 Experimental Results

4.4.1 Calibration of the Microtoroid Temperature

The superfluid film is condensed from low-pressure helium-4 gass (19 mBar at 2.9 K) in the
superfluid-tight sample chamber at the base temperature of the cryostat. This gas pressure
which determines film thickness, is chosen to avoid frequency overlapping between superfluid
sound modes and toroid mechanical modes [18]. The helium-4 in the sample chamber under-
goes phase transition directly from gas into superfluid phase at 850 mK, coating all the inner
surfaces of the sample chamber including the microtoroid with a self-assembling superfluid film.
The flexural mode is used to do the thermometry of the microtoroid as the cryostat tempera-
ture is varied from 10 K to 320 mK. The temperature of the flexural mode is obtained from
the integrated power spectral density of the homodyne photocurrent. As shown in Fig. 4.3(a),
the microtoroid is very well thermalized to the cryostat from 10 K down to 600 mK; whereas,
at lower cryostat temperatures the microtoroid temperature is dominated by the optical ab-
sorption of 100 nW of injected laser power, as shown by the plateau of toroid temperature.
This temperature difference can be explained by the thermal gradient between the microtoroid
(where the optical absorption happens) and the thermometer of the cryostat.

The effects of optical absorption induced heating on the toroid is investigated via the toroid
mechanical mode temperature versus optical power. As shown in Fig. 4.3(b) the mechanical
mode temperature barely increases with laser power, and eventually an abrupt rise happens
when the superfluid film is boiled off at a threshold optical power. Varying the laser power by 2
orders of magnitude from 10 nW to 2.1 µW, the mode temperature only increases slightly from
510 mK to 730 mK. When the laser power is above 2.2 µW, the mode temperature abruptly
increases to 3 K as indicated by the red shading in Fig. 4.3(b), which corresponding to the
threshold power of superfluid boiloff in this configuration. This threshold phenomenon occurs
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because the optical absorption induced evaporation rate is larger than the replenishing rate
from superfluid flow. This upper limit of the replenishing rate is ultimately set by Landau’s
critical velocity of superfluid flow, eventually leading to the superfluid boiloff at the periphery
where the optical mode resides. Thereby, the microtoroid is no longer well thermally anchored
to the environment due to the significant reduction of thermal conductivity from superfluid
boiloff, resulting in a large temperature gradient between the microtoroid and the thermometer
on the cryostat coldplate.

4.4.2 Enhanced Driven Response

The photoconvective forces can be naturally described by the photothermal interaction from
superfluid. Therefore, a theoretical description of a generic photothermal force is first intro-
duced.

The equation of motion of the mechanical mode position x(t) is given as below:

meff

[
ẍ(t) + Γẋ(t) + Ω2x(t)

]
= Fth(t) + Fop(t), (4.4)

where Γ is the mechanical decay rate, Ω is the mechanical resonance frequency and meff =∫
drρU(r)/|max(U(r))| is the effective mass which is calculated using the density ρ and the

displacement profile U(r) given from FEM simulations. There are two forces exerted on the
mechanical oscillator: an optical force Fop and thermal noise Fth =

√
2ΓmmeffkbT ξ(t), where

ξ(t) is the unit white noise drive with the temporal correlation as ⟨ξ∗(t)ξ(t′)⟩ = δ(t− t′).
The photothermal effect can be treated as a random fluctuating force, and its temporal

correlations have a similar form to that of the thermal noise, since this effect is generated by
the thermal response to the random absorption of photons [113]. The optical force in Eq. (4.4),
Fop is decomposed into two terms: photothermal force and radiation pressure

Fop(t) = Frp(t) + Fpt(t) (4.5)

= ℏg0
[
a(t)†a(t) +

βA

τt

∫ t

−∞
du e

− t−u
τt a(u)†a(u)

]
, (4.6)

where g0 is the single photon optomechanical coupling rate, τt is the photothermal response
time and A is the absorption coefficient given by the ratio of absorbed to circulating optical
power. β is a dimensionless factor to quantify the strength of the radiation pressure normalized
photothermal effect: Fpt = βA

1+iωτt
Frp. To linearize the total optical force, the intracavity

field annihilation operator is expressed as a coherent amplitude with quantum fluctuations i.e.
a(t) = α + δa(t). Neglecting the second order fluctuations (δa†(t)δa(t)) and stationary terms
(α∗α) in the optical force, the expression of the total optical force in Fourier domain is:

Fop(ω) = 2ℏg0α
[
1 +

βA

1 + iωτt

]
δX+(ω), (4.7)

where δX+(ω) = 1
2
(δa†(ω) + δa(ω)) is the amplitude fluctuations of the intracavity field that

drives the mechanical motion. The two terms within the brackets of Eq. 4.7 are the radiation
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Figure 4.4: (a) Displacement spectrum of the flexural mode at 0.7 K and 2 K with a coherent
drive applied via optical amplitude modulation. The response to coherent drive is shown
to increase with the presence of superfluid helium; (b) Driven response of the flexural mode
as the cryostat is cooled (red points), showing a step increase in response at the superfluid
transition temperature. Black line represents a theoretical fit to the data. The gray shaded
area indicates that a superfluid layer has formed on the microtoroid surface. The pink shaded
area represents the theoretical force if Tevap is up to 1 K higher than the mode temperature.
Figure is reproduced from Ref. [1] with minor modifications.

pressure and photothermal terms respectively, while the coefficient in the front is normalized by
the strength of radiation pressure force. We arrive at this equation by approximating the time
integral for the photothermal effect [Eq. (4.6)] by a convolution with a Heaviside step function
H(t) before the Fourier transform. Thereby the functional form of the photothermal force is
effectively reduced to a low pass filter with a corner frequency determined by the characteristic
thermalization time, which tells basically how fast the photothermal effect can respond. In this
experiment, the superfluid photoconvective force is able to respond up to around 2 MHz, i.e.
τ−1
t ≈ 2 MHz.

To experimentally investigate the superfluid photoconvective force of this configuration, the
flexural mode is driven by applying a constant optical amplitude modulation at the frequency
of the mode, while the cryostat temperature is varied from 3 K to 0.325 K (see Fig. 4.4). The
reason why this mode can be driven by the optical amplitude modulation is that the modulation
can apply a resonant force through superfluid flow below the superfluid transition temperature,
and through radiation pressure above the transition temperature. The drive from the resonant
force is analogous to amplifying a pendulum’s motion by applying a force at the pendulum oscil-
lating frequency. The response of the flexural mode to this drive is measured using homodyne
detection of the phase quadrature of the output light. Above the superfluid transition temper-
ature, the optical force is only from radiation pressure [right of Fig. 4.4(a)], and it is shown
in Fig. 4.4(b) that the response to the drive mediated by radiation pressure is independent of
temperature. However, once the superfluid film is formed [the blue shading of Fig. 4.4(b)], the
response of the flexural mode to the drive sharply increases by 21 dB to a maximum of 540 fN
[the left plot of Fig. 4.4(a)], indicating that below the transition temperature the optical force
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mediating the drive is not dominated by radiation pressure. This large optical forcing of 540 fN
is from the photoconvective flow of superfluid. The overlap between the flexural mode and the
radial evaporative force is calculated using FEM simulation to be 0.037%, which gives a total
superfluid photoconvective force of 1.46 nN below the superfluid transition temperature. This
sharp increase of the driven response in Fig. 4.4(b) agrees very well with theoretical predictions,
corresponding to a superfluid convective force 11 times larger than the radiation pressure. In
the blue shading area of Fig. 4.4(b) the measured superfluid photoconvective force decreases
with the temperature. This phenomenon is due to the evaporated atoms having reduced rms
velocity [Eq. (4.2)] at lower temperatures, which manifests as a weaker recoil force onto the mi-
crotoroid. This reduction in the recoil force with temperature decrease can be fairly accurately
described by Eq. (4.3), with the superfluid evaporation temperature Tevap equal to the measured
microtoroid mode temperature Tm. Although the observed superfluid forces are observed to be
maximally 60% larger than the theoretical prediction, this discrepancy can be explained by the
temperature difference between the helium film and the evaporated atoms. It has been shown
in the literature that the temperature of the evaporated helium-4 atoms from a superfluid thin
film is around 1 K higher than the film temperature, depending on the power applied to heat
the film [114, 115]. To account for the temperature uncertainty of the evaporated atoms, the
pink shading is included in Fig. 4.4(b) showing the recoil force from the atoms evaporated at
temperatures from the mode temperature Tm to Tm + 1 K.

4.4.3 Feedback Cooling Using Superfluid Photoconvective Force

Feedback cooling is a well studied approach in the cavity optomechanics community to demon-
strate the cooling of mechanical modes, and the actuation forces can be both optical forces,
or external forces like the electrical gradient force [116–118]. One application of the strong
superfluid photoconvective forces is to feedback cool the flexural mechanical mode. Before re-
porting on the experimental demonstration of feedback cooling, the theory of feedback cooling
mechanism is first briefly introduced as below.

In homodyne detection, the motion of the mechanical oscillator imprints phase fluctuations
on the signal arm of the homodyne detection interferometer, and is eventually exhibited on the
photocurrent expressed as

δi(ω) = Gdetδx̃(ω) (4.8)

= Gdet (δx(ω) + δN(ω)) , (4.9)

where δN(ω) is measurement noise including both optical shot noise and electronic noise, and
Gdet is the total gain included in the detection apparatus (including the detector, interferometer
response and optomechanical interaction). Particularly in this experiment, the measurement
noise is dominated by the optical shot noise, which is flat in the power spectrum and propor-
tional to the optical power in the local oscillator arm. The photocurrent is fed back into an
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amplitude modulator in the setup [see Fig. 4.2(a)] before the microtoroid to generate an opti-
cal force [see Eq. (4.7) for why amplitude modulation can generate optical forces]. A feedback
optical force is generated from the cavity-response scaled amplitude modulation, ultimately
proportional to the photocurrent, namely Ffb(ω) ∝ δi(ω). Thus the feedback force in Fourier
domain has a form:

Ffb(ω) = −gχ−1(Ω)δx̃(ω) (4.10)

where g is the feedback gain (including the effects from detection, actuation and filtering), and
the term χ−1(Ω) is the spectral response of the feedback gain to make it unitless and facilitate
factorization into the mechanical susceptibility in following steps. Substituting the feedback
force equation into Eq. (4.4), and taking the Fourier transform of both sides yields

δx(ω) = χ′(ω)
[
Fth(ω)− gχ−1(Ω)δN(ω)

]
, (4.11)

where χ′−1(ω) = m−1
eff [Ω2 − ω2 + iΓ′Ω]

−1 is the mechanical susceptibility with modified linewidth
Γ′ = Γ (1 + g) depending on the feedback (gain and phase). Then the mechanical mode temper-
ature is calculated from the integral of photocurrent power spectral density Sx̃x̃(ω) = ⟨|δx̃(ω)|2⟩:

T̃ =

∫ ∞

−∞
dω Sx̃x̃(ω) (4.12)

=

(
1− g(g + 2)

SNR

)
1

1 + g
T0, (4.13)

where T0 is the initial temperature and the signal-to-noise ratio (SNR) is the ratio between
the mechanical signal peak power and noise level in the power spectral density: SNR =

Sx̃x̃(Ωm)/SNN(Ωm). The derivation of this equation has followed the idea of Eq. (3.58) that
the integral of a normalized Lorentzian function is unity.

To obtain an accurate estimation of T , one must consider the correlations between the
measurement noise and the mechanical motion, because the temperature estimate T̃ and the
feedback is derived from the same photocurrent. These correlations obscure the actual mode
temperature T . However, the correlations only occur at high gain and the obscuration can be
compensated using the SNR and gain. Therefore, the actual mode temperature, represented
by the dashed line in Fig. 4.5(a), can be shown to be

T =
SNR + g2

SNR− g(g + 2)
T̃ . (4.14)

To experimentally demonstrate the feedback cooling mediated by the strong photoconvec-
tive forces in our configuration, the homodyne photocurrent is filtered and amplified at different
stages, and is then fed into an Mach-Zehnder modulator (MZM) to amplitude modulate the
laser light coupling to the toroid resonator [see Fig. 4.2(a)]. The phase of the feedback loop is
carefully tuned to ensure the feedback force opposes the instantaneous velocity of the flexural
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Figure 4.5: (a) Feedback cooling of the flexural mode from 715 mK to 137 mK using superfluid-
mediated photoconvective forcing. With a fixed probe power of 1.9 µW , the feedback gain
is varied over 3 orders of magnitude, showing good agreement with the estimated mode tem-
perature from in-loop measurements (solid line). The out-of-loop mode temperature is then
inferred by a transformation (dashed line) that is derived in the Supplemental Material [36]; (b)
Displacement spectrum of the flexural mode with varying feedback gain. Figure is reproduced
from Ref. [1].

mode, otherwise the thermal motion of the mode will be amplified. The initial flexural mode
temperature T0 here is 715 mK. As the feedback gain increases in Fig. 4.5(b), the power spec-
tral density of the mode gets broadened, and its amplitude decreases. This results demonstrate
that the mode temperature decreases with the feedback gain, and the experimental results are
perfectly fitted by the theory curve (solid line) in Fig. 4.5(a). As shown by the calibrated mode
temperature curve (dashed line) the flexural mode is eventually cooled to 137 mK, correspond-
ing to a mechanical occupancy of 2110 ± 40 phonons.

The final phonon occupancy in feedback cooling generally depends on two factors: the
optomechanical coupling rate, which determines the conditional variance of the mechanical
oscillator under given measurement, and the maximum strength of the force which mediates
the feedback cooling [52]. In the photoconvective feedback cooling experiment here, the op-
tomechanical coupling rate of the flexural mode is fairly low (g0/2π = 12.3 Hz), limiting the
final phonon occupancy. However, given the mechanical mode and cryostat temperature here,
the maximum strength of the feedback force is 1.46 nN, making the superfluid feedback force
not a limiting factor for phonon numbers above n ≈ 0.015. Thus, the mechanical mode of
the resonator can be ground state cooled using the superfluid photoconvective force, if our
microtoroid parameters are improved to be similar to previous works [109, 119]. Further, the
superfluid photoconvective force together with backaction evading or non-linear measurements
could also be applied to generate non-classical mechanical states [11, 120–123].
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4.5 Conclusion
This chapter describes the experiments and theory on the superfluid thin film optomechanical
resonator based on previous publications [1]. First, it demonstrates that the superfluid photo-
convective force based on the fountain effect is able to enhances the optical forcing exerted onto
the mechanical motions of the optical resonator by 1 order of magnitude, and thus enhance the
feedback cooling capability with a final mechanical mode temperature of 137 mK.
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Chapter 5

Superfluid Optomechanics and Its
Application for Quantized Vortex
Detection

This chapter is based on the works published by IOP Publishing:
C. G. Baker, G. I. Harris, D. L. McAuslan, Y. Sachkou, X. He and W. P. Bowen, Theoretical
framework for thin film superfluid optomechanics: towards the quantum regime, New Journal
of Physics, 18(12):123025, 2016.
S. Forstner, Y. Sachkou, M. Woolley, G. I. Harris, X. He, W. P. Bowen, C. G. Baker, Mod-
elling of vorticity, sound and their interaction in two-dimensional superfluids, New Journal of
Physics, 21(5):053029, 2019.
and the work submitted for publication and is available on the arXiv:
Y. P. Sachkou, C. G. Baker, G. I. Harris, O. R. Stockdale, S. Forstner, M. T. Reeves, X. He,
D. L. McAuslan, A. S. Bradley, M. J. Davis, W. P. Bowen, Coherent vortex dynamics in a
strongly-interacting superfluid on a silicon chip, arXiv 1902.04409, 2019.

Conventional cavity optomechanics studies the interaction between the motions of a mechan-
ical oscillator and an optical resonator. This chapter presents superfluid optomechanics, where
the mechanical oscillator is the acoustic waves in superfluid, instead of strain waves in solids.
In the first section, the research background of superfluid optomechanics is introduced, and
the motivations for using superfluid for optomechanics experiments are explained. The second
section explains the coupling mechanism between the superfluid acoustic waves and light, and
theoretically estimates the optomechanical coupling rate based on perturbation theory. The
third section is the theoretical and experimental investigations of quantized vortex detection in
a thin superfluid film using this superfluid optomechanical system. The last section concludes
this chapter.
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5.1 Research Background and Motivations
As introduced in Chap. 3, conventional cavity optomechanics is a great platform for high preci-
sion sensing, information processing and testing fundamental physics, etc., but its performance
is more or less limited by 1) bulk heating of the mechanical oscillator due to optical absorption,
2) mechanical loss, 3) low optomechanical coupling due to poor overlap of the optical field with
the mechanical motions, 4) small zero point motion. A lot of research efforts have been focused
on overcoming these issues, but still people have to compromise among these four factors, which
really hinders optomechanical experiments to approach the quantum coherent regime.

One way to get around these drawbacks of the conventional optomechanics is to utilize
superfluid helium to form mechanical oscillators, because superfluid has advantages over its solid
counterparts: 1) it has extremely low optical absorption [17], 2) in principle zero mechanical
loss (zero viscosity) [15], 3) supports perfect overlap between the optical field and mechanical
motions, due to the self-assembling nature of superfluid [18], 4) it can be very flexibly engineered
to couple of atomic-layer thick film to obtain low effective mass (large zero point motion), 5)
the mechanical oscillators it supports exhibit strong Duffing nonlinearities, 6) it can be coupled
quantized vortices [22,92,124,125], 7) interact with electrons floating on the superfluid film [126],
enriching the variety of physics accessible via optomechanics.

Superfluid optomechanics was first started in Keith Schwab’s group at Caltech, using a nio-
bium superconducting cavity filled with 39.3 cm3 bulk superfluid helium-4 [16]. Acoustic modes
(first sound) with gram-scale effective mass in the bulk superfluid have been observed to have Q
up to 7× 106. The superfluid density fluctuations generated by first sound waves modulate the
permittivity inside the superconducting microwave cavity, resulting into the coupling between
the acoustic modes and microwave photons. However, due to low optomechanical coupling
rate, no dynamical backaction has been observed in this optomechanical system. First sound
modes in bulk superfluid have also been utilized for optomechanics experiment in Jack Harris’s
group, where the optical cavity is a 67.3 µm long Fabry-Perot cavity formed by two optical
fibre tips with Distributed Bragg Reflector (DBR) coating [17]. When the optical cavity is
cooled down to below 100 mK with helium-4 gas, the helium is condensed to superfluid phase
and conformally fills the hollow optical cavity, thereby the Fabry-Perot cavity supports both
the optical modes and longitudinal superfluid density acoustic modes, allowing near-perfect
overlapping between optical field and the mechanical mode. Because of a much smaller mode
volume, the optomechanical interaction strength is much stronger than the previous case. Ad-
ditionally, owing to the low optical absorption and high thermal conductivity of superfluid,
the optomechanical coupling is predominantly from the unitary electrostrictive force of light,
with the single photon coupling rate extracted from experiment having two components: the
electrostrictive coupling rate of around 3 kHz, and the non-unitary photothermal coupling rate
of around 1 kHz.

Different from those bulk superfluid optomechanics experiments, a new superfluid optome-
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chanics configuration has been developed in our group that uses femtogram-scale thin super-
fluid helium-4 films that self-assembles on the surface of a toroidal whispering-gallery-mode
resonator. Taking the advantage of high-precision sensing allowed by cavity optomechanics,
Brownian motion of superfluid third sound modes have been able to be tracked and controlled
in real-time [18]. The optomechanical interactions in this experiment are dominated by the non-
unitary photothermal effects, due to small radiation pressure from weak evanescent coupling of
superfluid acoustic modes with intracavity optical field. However, with modest improvements
radiation pressure is expected to dominate. Although the optomechanical interaction has the
photothermal component, the large interaction strength still highly motivates us in two aspects.
On one hand, the high sensitivity allowed by strong superfluid optomechanical interaction really
motivates us to probe excitations (phonons, vortices, etc.), since all previous investigations of
superfluid excitations are based on either driving the system far out of equilibrium or average
effect over a long period of time. On the other hand, the non-unitary imperfection of the strong
optomechanical interaction motivates us to optimize the system to reduce the photothermal
effect in order to push this superfluid optomechanical system into a fully quantum regime.

5.2 Theoretical Study on Light-Sound Interaction in Su-
perfluid

Previous chapter introduces a conventional optomechanics experiment, in which superfluid is
used to enhance the optical forcing applied on a toroid mechanical mode. Thus the system can
be termed superfluid enhanced conventional optomechanics. Here, mode perturbation theory is
used to prove that ultra-strong direct interactions between light and superfluid sound modes are
experimentally achievable, which is termed superfluid optomechanics. This section introduces
the improvement of the superfluid thin film optomechanical resonator, by optimizing the over-
lapping between superfluid film and optical field to maximize the dispersive radiation-pressure
optomechanical coupling. Using perturbation theory, the dependence of the optomechanical
coupling rate to resonator dimensions and superfluid film thickness is thoroughly studied. In
addition, the expressions for the effective mass and zero-point motion of superfluid third sound
acoustic modes are analytically derived.

5.2.1 Optimization of Light-Superfluid Coupling

The optomechanical resonator made of a circular whispering gallery mode (WGM) resonator
coated with superfluid thin film is shown in the artistic illustration in Fig. 5.1. There is
a type of acoustic waves existing in the superfluid thin film, termed as third sound which
is thoroughly introduced in § 3.2.3. The third sound waves are exhibited as film thickness
fluctuations. Although the relative permittivity of liquid helium is relatively low (ϵr = 1.058),
light experiences a slightly larger effective refractive index in regions with a thicker superfluid
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Figure 5.1: (a) Artistic illustration of a disk-shaped optomechanical resonator supporting an
optical resonance (red and blue) coated with self-assembling superfluid thin film. (b) Cross-
section of the finite element method (FEM) simulated optical intensity profile of the WGM
optical mode. Figure is reproduced from Ref. [2].

film, and a lower effective refractive index in regions with a thinner film, because of the optical
mode’s evanescent field outside the cavity. This leads to the dispersive coupling between the
intracavity optical field and the acoustic waves illustrated in Fig. 5.1, where the superfluid film
thickness fluctuations generated by a third sound wave modulate the effective refractive index
of the cavity, and consequently change the cavity path length. This dispersive coupling can be
described by the frequency shift shift ∆ω of a WGM mode in the presence of superfluid thin
film. Using perturbation theory, the frequency shift has a functional form [127]:

∆ω

ω0

= −1

2

∫
film

(ϵsf − 1)|E⃗(r⃗)|2d3r⃗∫
all
ϵr(r⃗)|E⃗(r⃗)|2d3r⃗

, (5.1)

where ω0 is the original optical resonance frequency with no superfluid, E⃗(r⃗) is the electric field
distribution of the WGM mode without the perturbation from superfluid, ϵr(r⃗) is the relative
permittivity, and the relative permittivity of liquid helium ϵsf is 1.058. The numerator is an
integral over the volume of the superfluid film on the resonator surface, and the denominator
is over the whole calculation space. Thus, Eq. (5.1) can be understood as the ratio between
the electromagnetic (EM) energy of the optical mode evanescently distributed in the superfluid
film and the total energy of the optical mode. This understanding is the basic idea of the
perturbation theory.

Fig. 5.2(a) shows the FEM simulated electric field intensity profile of a transverse electric
(TE) WGM of wavelength λ = 1.5µm supported in a silica micro-disk of 40 µm radius and
2 µm thickness. The solid line is the electric field intensity distribution over the vertical axis
represented by the dashed line, which goes through the center of the optical mode. The intensity
distribution over the vertical axis shows that the intracavity optical field is tightly confined
inside the silica resonator, while there is weak evanescent field distributed at the top and
lower interfaces where the superfluid film resides. This weak evanescent field at the interfaces
leads to optomechanical coupling between the superfluid film and intracavity optical field, as
dictated by Eq. (5.1). The optomechanical coupling can be improved through optimizing the
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Figure 5.2: (a) FEM simulation showing the radial cross-section of a TE WGM of wavelength
1.5 µm confined in a silica disk of 40 µm radius and 2 µm thickness. Overlayed in black is a plot
of the |E⃗|

2
(z) mode profile along the dashed black line going through the center of the WGM.

The red region indicates the superfluid film on top and bottom. (b) Vertical mode profiles
|E⃗|

2
(z) for a 1.5 µm wavelength TM (resp. TE) WGM confined in a 400 nm (200 nm) thick, 40

µm radius disk. The dashed red lines mark the disk upper and lower boundaries. Inset: FEM
radial cross-section of |E⃗|2 for each WGM. (c) Value of E2 at the interface calculated using the
Effective Index Method, for TM (blue) and TE (orange) polarized modes. Right axis: optical
frequency shift per nm of superfluid G/2π. (d) Indicative optimal disk thickness for maximal
field at the interface and superfluid detection, as a function of disk material refractive index.
Figure is reproduced from Ref. [2].

resonator thickness and WGM polarization to maximize the evanescent field at the top and
lower interfaces. Fig. 5.2(b) compares the vertical intensity distribution of a transverse magnetic
(TM) polarized WGM in a 400 nm thick 40 µm radius silica disk, and a TE WGM in a 200 nm
thick disk of the same radius. This figure shows that with a smaller disk thickness the WGM
gets less confined by the silica material and is more exposed to the superfluid region, resulting
to a larger resonance frequency shift of the WGM for a given magnitude of film thickness
fluctuation.

This effect is systematically studied with the calculations shown in Fig. 5.2. The calculations
of the TE and TM mode profiles inside a slab waveguide with different thickness (normalized
such that

∫∞
−∞ ϵrE

2dz = 1) are done using the effective index method (EIM), and the value
of E2 at the interface is recorded at each thickness. The result of the calculations shows that
for each polarization the electric field intensity at the interface reaches a maximum when the
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disk thickness decreases to a certain thickness (roughly around 0.2 to 0.4 µm depending on the
polarization). Below this optimal disk thickness the electric field intensity at the interface starts
to drop again, because the disk is too thin that the electromagnetic wave is poorly confined
along z axis. Then the same calculation is repeated for the slab waveguide with different values
of refractive index, and the optimal thickness for TE and TM WGMs are plotted in Fig. 5.2.
It is not surprising that the higher the material refractive index is, the smaller the optimal
thickness required to have maximal evanescent field at the disk interface. For example, the
optimal thickness for the TM mode in a silicon or gallium arsenide disk is around 200 nm,
which is around half of the optimal thickness for silica disk. Although the result starts to
be inaccurate due to the limitations of the EIM, they are still very useful if we are going to
optimize the resonator geometries for strong optomechanical coupling between superfluid and
light. What’s more, these calculation results show that the optimal disk thickness for the TM
mode is larger than that for the TE mode. As shown by the mode profiles along over vertical
direction in Fig. 5.2, there is a step increase of the TM mode’s electric field intensity outside
the disk. This step increase is required by the continuity of the electric displacement field
(Dz = ϵrEz), since the dominant field component of the TM mode is Ez, which is perpendicular
to the top and lower interfaces. The step increase of the TM mode’s electric field intensity
outside the disk allows the TM mode stronger optomechanical coupling than the TE mode
with the same disk thickness.

The characteristic decay length of the evanescent field in the vertical direction is on the order
of hundred nanometers [see Fig. 5.2(b)], so the decay of E2 is negligible over the superfluid film
thickness typically of 1 to 30 nm. Therefore, rearranging Eq. (5.1) yields the optomechanical
resonance frequency shift per mechanical displacement G = ∆ω0/∆z:

G =
∆ω0

∆z
= −ω0

2

∫
interface

(ϵsf − 1)|E⃗(r⃗)|2d2r⃗∫
all
ϵr(r⃗)|E⃗(r⃗)|2d3r⃗

, (5.2)

where the integral in the numerator is over the resonator top interface, assuming there is only
superfluid film coated on the top interface. Applying Eq. (5.2) only to the vertical direction
gives G/2π as a function of resonator thickness in the right axis of Fig. 5.2(c). As is shown in
the figure, careful design of the resonator thickness is very crucial, since the G of the TM mode
can be improved by 20 times when the silica disk thickness changes from 2 to 0.4 µm. Thereby,
large G of up to 6 GHz/nm is a experimentally achievable with this superfluid optomechanical
resonator, although liquid helium’s optical properties are close to those of vacuum (ϵr = 1.058,
n = 1.029) [62]. Additionally, the G of this optomechanical resonator is not only large in
magnitude, but is also independent of resonator radius, and superfluid film thickness (as long
as the thickness is within 30 nm, which is true for most experimental cases).

Similarly, the couplings (G and Gvertical) between light and the superfluid films on the
lower interface and the vertical sidewall can also be calculated using EIM. In experiments,
when the thickness of the superfluid film covering the WGM resonator varies uniformly, the
optical resonance shift would be 2G + Gvertical > 10 GHz/nm. From an experimental point
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of view, assuming an optical mode of a 2 × 106 Q , with a 10 GHz/nm coupling rate, a 10
pm film thickness change (i.e. 1

36
th of a helium monolayer [128]) would change the resonance

frequency of the mode by one linewidth. Compared with widely used capacitive detection
methods [88, 129], the sensitivity to superfluid film thickness here is around two orders of
magnitude larger.

5.2.2 Superfluid Third Sound Modes

The basics of third sound waves [18, 84–86, 88, 130] has been introduced in §3.2.3. They are
similar to shallow water waves, exhibited as film thickness fluctuations, as shown in the left of
Fig. 5.3. Here in this section more details about third sound are introduced, specifically the
mode profile and the effective mass of acoustic resonant modes of third sound.

The optical disk resonator not only supports WGMs, but also confines third sound waves
on its top surface, forming third sound modes. The mode profile of the third sound modes is
determined by the geometry of the confinement. As shown in Fig. 5.3(a), given the circular
geometry of the disk, the mode profile has a functional form of Bessel functions from Eq. (3.70):

ηm,n(r, θ, t) = η0Jm

(
ζm,n

r

R

)
ei(mθ±Ωt), (5.3)

where m and n are the azimuthal and radial mode numbers respectively, η0 is the amplitude
of the mode, Jm is the Bessel function of the first kind of order m, Ω = (ζm,nc3)/R is the
mode frequency, θ is the angular direction, the ± sign in the exponential function denotes
the travelling direction (clockwise or counter-clockwise) of the mode, and ζm,n is a frequency
parameter, which is dependent on the mode order and boundary conditions, as displayed in
Table 3.2.3. The discussions below are focused on the rationally invariant Bessel modes, as they
modulate the optical cavity length most efficiently and thus has the largest optomechanical
coupling [38].

Before we proceed to calculate the effective mass and zero point motion, let us revisit the
boundary conditions of the third sound modes on a disk resonator from § 3.2.3. The two
types of boundary conditions for rotationally invariant Bessel modes are: the fixed (η(R) = 0)

boundary condition, where there is no displacement at the boundary; the free (∂rη(R) = 0)
boundary condition, also know as ’no flow’ boundary condition, where the radial velocity of
superfluid flow is 0 at the boundary. The first three rotationally invariant Bessel modes’ profiles
are plotted in Fig. 5.3(b). In addition to illustrating the boundary conditions, profiles of these
modes (especially the fundamental mode) can also indirectly show that the Bessel modes with
the free boundary condition is volume conserving, while the ones with fixed boundary condition
is not.

The effective mass meff is an important parameter in optomechanics, as it is required to
calculate the single photon optomechanical coupling rate g0:

g0 = Gxzpf = G

√
ℏ

2meffΩ
, (5.4)
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Figure 5.3: Superfluid third sound. (a) Left: schematic illustration of a superfluid third sound
wave with profile η(r⃗) on a film of mean thickness d (dashed orange line). The normal fluid
component [46] is viscously clamped to the surface, while the superfluid component ρs oscillates
mostly parallel to the substrate (blue arrows). Right: plot of the surface profile for the (m =
0; n = 3) Bessel mode with free boundary conditions. (b) Radial profile η(r) along the dashed
red line in (a) for the (m = 0; n = 1) –blue–, (m = 0; n = 2) –green– and (m = 0; n = 3) –red–
Bessel modes with fixed (left) and free (right) boundary conditions. (c) Comparison between
the trajectory described by a ’particle’ in a fluid (left) and a solid membrane (right).Figure is
reproduced from Ref. [2].

where xzpf is the zero point motion of the mechanical mode, Ω is the mechanical resonance
frequency. The effective mass of a continuum mechanical system can be calculated by shrinking
its volume to a reduction point A⃗, and treating the system with an equivalent point mass meff

at the reduction position A⃗ with velocity v(A⃗) having the same amount of kinetic energy Ek.
Mathematically, the definition of the effective mass of a continuous mechanical system is:

meff =
2Ek

v2A
=

∫
V
ρv2(r⃗)d3r⃗

v2(A⃗)
(5.5)

Applying the general definition of effective mass to rotationally invariant modes of circular
solid mechanical resonator of thickness d, the effective mass of the modes for a point on the
resonator boundary is [131]:

meff,solid = 2πρd

∫ R

0
rη2(r)dr

η2(R)
, (5.6)

where the velocity v(r⃗) for both in- and out-of-plane mechanical modes is assumed to be
independent of the z direction. However, the velocity field in superfluid film is related to its
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hydrodynamic equations, making it hard to get the analytical expression for the velocity field.
Thus, to avoid solving hydrodynamic equations, equipartition theorem is used to replace the
kinetic energy term in Eq. (5.5) with the van der Waals potential energy of the third sound
modes of amplitude η(r, θ). This replacement is valid because equipartition theorem requires
that the increase of the van der Waals potential energy due to the film thickness increase by
the third sound amplitude η(r, θ) is equal to the kinetic energy:

Ek = Epot = ρ

∫ 2π

θ=0

∫ R

r=0

(∫ d+η(r,θ)

z=0

U(z)dz

)
rdrdθ − ρ

∫ 2π

θ=0

∫ R

r=0

(∫ d

z=0

U(z)dz

)
rdrdθ

= ρ

∫ 2π

0

∫ R

0

(∫ d+η(r,θ)

d

U(z)dz

)
rdrdθ,

(5.7)

where U(z) is the van der Waals potential energy [Eq. (3.64)] of a unit mass of the film [10]:
In the limit that the third sound amplitude is very small compared to the average film

thickness η ≪ d, the increase of the van der Waals potential of a unit mass due to the third
sound amplitude can be approximated by the first two terms of the Taylor expansion of the
integral over the vertical axis z in Eq. (5.7), thus we have:∫ d+η(r,θ)

d

U(z)dz = −αvdwη(r, θ)

d3
+

3αvdwη
2(r, θ)

2d4
. (5.8)

Then Eq. (5.7) is simplified as:

Epot = 2πρ

∫ R

0

dr r

(
−αvdwη(r, θ)

d3
+

3αvdwη
2(r, θ)

2d4

)
. (5.9)

Focusing on the volume conserving free (‘no flow’) boundary condition (
∫ R

0
rdrη(r) = 0), the

effective mass of a point on the film surface at r = R is:

meff =
2Epot

v2(R)
=

6πραvdwd
−4
∫ R

0
rη2(r)dr

η2(R)Ω2
. (5.10)

With Ω = ζ c3
R

and third sound velocity [Eq. (3.69)]:

meff =

(
ρ

ρs

)(
R

d

)2
1

ζ2
× 2πρd

∫ R

0
rη2(r)dr

η2(R)
, (5.11)

which turns out to be the effective mass of a solid mechanical oscillator scaled by a prefactor
proportional to (R/d)2. Interesting result from this equation is that in contrast to the effective
mass meff of a solid circular membrane mechanical oscillator (like its real mass), the effective
mass of a third sound resonator on a superfluid film actually scales as R4/d, which means third
sound modes supported by thicker and heavier films will have smaller effective mass, and thus
larger zero point motion. This huge scaling difference between a solid mechanical oscillator
and a liquid mechanical oscillator are contributed by two factors: 1) the extremely nonlinear
van der Waals restoring force; 2) as illustrated in Fig. 5.3(c), the microscopic motion of a unit
mass of the liquid resonator is nearly horizontal, while the unit mass in a solid resonator has
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Figure 5.4: Optomechanical parameters.(a) Single photon optomechanical coupling strength
g0/2π and mechanical frequency Ω/2π for the fundamental (m = 0; n = 1) third sound mode
as a function of resonator radius, for a d = 30 nm thick superfluid film. Solid line: analytical
formula, points: individual FEM simulations. Inset: FEM simulation displaying the WGM
overlayed with the third sound mode displacement profile (colored line). (b) Ω/2π (blue) and
g0/2π (orange) as a function of film thickness for a R = 20µm disk. (c) Predicted single
photon optomechanical cooperativity C0 as a function of film thickness d, for a R = 20µm
disk. (d) Influence of third sound radial mode order n on g0/2π, for R = 20µm and d = 30 nm.
Inset: mechanical surface deformation profiles and FEM simulation showing the WGM mode
overlayed with the displacement profile of the (m = 0; n = 14) third sound mode. All results
are for free boundary conditions. Figure is reproduced from Ref. [2]

only vertical trajectory. In addition to the inverse scaling with superfluid film thickness, the
proportion of the third sound mode effective mass to R4 means that there can be a 5 × 108

effective mass reduction, when the resonator is decreased from a centimeter-scale to 40 µm
radius resonator.

5.2.3 Superfluid Optomechanical Coupling Rate

In the previous section we investigated the optomechanical resonance frequency shift per me-
chanical displacement G and the effective mass of third sound modes. Here the optomechanical
coupling rate g0 is studied based on Eq. (5.4). In Fig. 5.4(a) both the resonance frequency Ω/2π

and g0/2π of the fundamental (m = 0; n = 1) third sound mode are shown to have a linear
relation with disk radius. The yellow solid line is the g0 directly calculated using Eq. (5.4) and
Eq. (5.11) assuming a constant G/2π of 6.6 GHz/nm. This assumption is only valid for cases
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of disk radius above 20 µm, where the micro sized radial extension of the WGM is small com-
pared to R, and thus the displacement of the fundamental Bessel mode over the optical mode
region can still be approximated as flat surface fluctuations [see inset of Eq. (5.4)]. Whereas
for high radial order Bessel modes on small radius resonator, this approximation is no longer
valid, and g0 needs to be calculated in a more general approach through the overlap integral of
the optical field and the third sound displacement field:

g0 = −ω0

2

∫
interface

q(ϵsf − 1)|E⃗(r⃗)|2d2r⃗∫
all
ϵr(r⃗)|E⃗(r⃗)|2d3r⃗

, (5.12)

where q = η(r)
η(R)

xzpf is the zero point motion xzpf normalized third sound displacement profile
at R. The orange dots in Fig 5.4(a) are the FEM simulation results using the general g0

calculation method. As is shown, the solid line from the analytical calculation agrees with
the full simulation very well with disk radius larger than 20 µm. Below 20 µm disk radius,
the full simulation results start to become smaller than the analytical results, as the constant
G assumption is no longer valid. More importantly, this figure shows that our superfluid
optomechanical resonator could reach the ultra-strong coupling regime where g0 > Ω, as g0

increases faster than the third sound frequency Ω with smaller resonator radius R.
The effect of superfluid film thickness d on both g0 and Ω is shown in Fig. 5.4(b) for a 20

µm radius resonator. As the third sound resonance frequency Ω is proportional to d−3/2 and
g0 proportional to d5/4, g0 increases with film thickness, and Ω decreases with film thickness,
eventually resulted into ultra-strong coupling regime with g0 > Ω for 34 nm film thickness.
Fig. 5.4(c) plots the effect of film thickness on the single photon cooperativity C0 = 4g20/(κΓ).
Assuming an optical linewidth κ/2π = 20MHz (Q = 107) as demonstrated in thin silica disk
optical resonator of the same radius [35], and a mechanical Qm of 4000 as demonstrated in our
previous work with microtoroid resonators [13], the single photon cooperativity reaches 1 with
around 20 nm thickness, indicating that the strong optomechanical coupling is easily achievable
with this optomechanical resonator with thick superfluid films. These excellent performances of
large cooperativities and single photon optomechanical coupling rate can bring a wide range of
applications to this optomechanical system, like high precision sensing of acoustic excitations
in superfluid film [50], ground state cooling of acoustic modes [10], and reaching strong light
superfluid interaction [109, 132].

5.3 Vortex Detection Based on Superfluid Optomechan-
ics

Here I show that two dimensional vortex dynamics can also be optically probed using this
platform, where the third sound waves bridge the interaction between light and vortices. Prob-
ing vortex dynamics in two dimensional superfluid helium-4 is motivated by several reasons:
1) in two dimensional superfluid systems the topological phase transition (BKT transition)
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Figure 5.5: (a) Schematic of a microtoroidal resonator of radius R= 30µm covered with a
superfluid helium thin film, with one quantized vortex offset from the disk origin. The red
dot indicates the vortex core. (b) Illustrated frequency splitting of a Bessel mode due to the
presence of a vortex. Figure is reproduced from Ref. [3].

allowed by quantized vortices has not been well studied experimentally [19, 133]; 2) there is
a broad range of interesting physics in superfluid dynamics, like Onsager vortices, which are
collective vortex dipoles with negative temperature and large-scale order [134, 135]. So far the
experiments on superfluid dynamics have focused on weakly-interacting many-body systems
(Bose-Einstein condensates formed with ultra-cold gases) [136]. Furthermore, since the Gross-
Pitaevskii equation cannot give a valid microscopic model in the strongly-interacting regime,
strongly-interacting superfluids do not have a microscopic model [137]. Thus experimentally
probing vortices in strongly-interacting two dimensional superfluid is important and can help
us understand superfluid dynamics.

5.3.1 Vortex-Sound Interactions

Here we consider a simple model as illustrated by Fig. 5.5(a), where a vortex denoted by the red
dot residing in a two dimensional superfluid thin film coated on a microtoroidal resonator. The
vortex interacts with third sound waves dispersively, namely adding or subtracting the vortices
will change the resonance frequencies of the third sound modes. This dispersive interaction
is due to the vortex induced change of the background flow field and the density (thickness)
profile of the superfluid thin film, consequently leading to the modification of the eigen acoustic
modes supported by the superfluid film, and the lift-up of the degeneracy of the clockwise and
counter-clockwise rotating third sound waves, shown as the frequency splitting in in Fig. 5.5(b).
The change of the acoustic eigen frequency is associated with the change of the energy stored
in the acoustic mode. Because of the equipartition theorem, we use the kinetic energy change
of the acoustic mode’s flow field to approximate the change of its total energy. Therefore, this
interaction can be simply understood as the overlap integral of the vortex and sound velocity
fields.
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Figure 5.6: (a) Streamlines of v⃗v (r⃗) for a CW vortex (green dot) offset from the origin (red dot)
in a circular domain. (X1 = 0.5R; X2 = 2R). (b) Black arrows represent the instantaneous
superfluid flow field v⃗3 (r⃗), for a clockwise-rotating (m = 1; n = 2) Bessel-mode with free
boundary condition. Surface plot shows the associated surface deflection η (r⃗) (color code:
red = positive, blue=negative). CW nature can be seen by noticing that fluid starting to
accumulate ahead of the red peak, where ∇⃗ · v⃗3 < 0. The velocity field is positive under the
peaks, negative under the troughs, and irrotational, i.e. with

∮
v⃗3 · d⃗l = 0 for all contours

inside the superfluid. (c) Vector field of v⃗3 (r⃗) × η (r⃗). While from symmetry one sees that∫∫
v⃗3 · v⃗v = 0, multiplication by the surface deflection profile η (r⃗) leads to a non-zero energy

shift of the CW/CCW third-sound waves, see Eq. (5.19). Figure is reproduced from Ref. [3].

The streamfunction of a point vortex is given in Eq. (3.74), and its form for a circular
geometry can be described with Cartesian coordinates by:

Ψ = − κ

2π

(
ln

(√
(x−X1)

2 + y2
)
− ln

(√
(x−X2)

2 + y2
))

, (5.13)

and the components of its velocity field can be derived from the streamfunction as below:

vvx =
∂Ψ

∂y
; and vvy = −∂Ψ

∂x
. (5.14)

An example of the vortex velocity field is given by Fig. 5.6.
The displacement profile η of a travelling Bessel mode is introduced in Eq. (5.3), and the

corresponding flow velocity field is:

v⃗3 = ± i c23
Ωh0

∇⃗η (5.15)

where the ± sign denotes the travelling direction of the Bessel mode. Using this equation the
velocity field of a clockwise rotating Bessel mode (m = 1, n = 2) is plotted in Fig. 5.6.

Generally, for a flow induced by either vortices or acoustic motions, the kinetic energy of
the flow field is given by:

E =
1

2

∫
ρ v⃗2(r⃗)d3(r⃗), (5.16)

where ρ is the fluid density and v⃗ is the velocity field in the flow. This means that by integrating
the velocity field over the whole superfluid volume, we can calculate the kinetic energy carried
by the acoustic motion or vortices. Therefore the kinetic energy difference of the Bessel mode
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rotating in the same direction with the vortex and its direction-degenerate Bessel mode rotating
against the vortex is given below:

∆E (t) =
1

2
ρ

∫ 2π

θ=0

∫ R

r=0

∫ h0+η(r, θ, t)

z=0

(
||v⃗3 (r⃗, t) + v⃗v (r⃗)||2 − ||v⃗3 (r⃗, t)− v⃗v (r⃗)||2

)
r dr dθ dz (5.17)

Since the velocity fields are vectorial, this equation is valid for any sound mode and any vortex
position. Assuming v⃗3 and v⃗v are constant in the z direction, because there is no friction
between the inviscid superfluid film and the substrate, Eq. (5.17) is reduced to be:

∆E (t) = 2ρ

∫ 2π

θ=0

∫ R

r=0

v⃗3 (r, θ, t) · v⃗v (r, θ) (h0 + η (r, θ, t)) r dr dθ (5.18)

As shown in Fig. 5.6, vvx is an odd function of θ, vvy is an even function of θ, v3x is an even
function of θ, and v3y is an odd function of θ. The parity difference of these velocity components
over θ makes the integral

∫
v⃗3 · v⃗vdθ = 0. So cancelling the average film height h0, the equation

above is reduced to be:

∆E (t) = 2ρ

∫ 2π

θ=0

∫ R

r=0

v⃗3 (r, θ, t) · v⃗v (r, θ) η (r, θ, t) r dr dθ (5.19)

The product of the two vector fields v⃗3 · v⃗vd is basically the unnormalized projection of v⃗v onto
v⃗3, which can be understood as the change of the Bessel mode flow velocity due to the presence
of the vortex flow velocity. Thus the whole integral is the surface-averaged Doppler shift of the
Bessel mode flow kinetic energy, weighted by the displacement amplitude η of the Bessel mode.
Then we average the kinetic energy change over a Bessel mode oscillation period T :

⟨∆E⟩ = 1

T

∫ T

0

∆E (t) dt = 2 ρ

∫
r

∫
θ

r dr dθ

(
vv r

1

T

∫ T

0

v3 r η dt

)
+

(
vv θ

1

T

∫ T

0

v3 θ η dt

)
, (5.20)

where the vectorial velocity fields are decomposed into the components for radial and angular
directions. Comparing Eqs. (5.3,5.15) with the third sound flow velocity components below,
we find that v3r is out of phase with η, while v3θ is in phase.

v3r(r, θ, t) = iη0
c23R

ζm,nh0

Jm

(
ζm,n

r

R

)
ei(mθ±Ωt) (5.21)

v3θ(r, θ, t) = η0
c23R

ζm,nh0

m

r
Jm

(
ζm,n

r

R

)
ei(mθ±Ωt) (5.22)

Thus, the first integral in Eq. (5.20) is averaged to be zero over time, and the second integral
is resulted to be 1

2
|v3θ||η|. Inserting Eqs. (5.3,5.22) in to the result yields:

⟨∆E⟩ = ρm c23
Ωh0

∫ R

r=0

r dr η20
J2
m

(
ζm,n

r
R

)
r

∫ 2π

θ=0

vv θ dθ, (5.23)

which we rewrite, with η (r) = η0 Jm
(
ζm,n

r
R

)
, as:

⟨∆E⟩ = ρm c23
Ωh0

∫ R

r=0

dr

r
η2 (r)

∫ 2π

θ=0

vv θ r dθ (5.24)
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We find that the second integral over θ is equivalent to a closed contour integral
∮
v⃗vd⃗l over a

circle of radius r centered at the origin of the resonator. Eq. (3.72) tells that the closed contour
integral is equal to the circulation quanta κ if it encloses the vortex core, and to zero if it does
not. So the region within radius r does not contribute to the ⟨∆E⟩. Neglecting this region, we
get a modified radial integration lower bound:

⟨∆E⟩ = ρm c23 κ

Ωh0

∫ R

r=offset

dr

r
η2 (r) (5.25)

Since the energy E of a harmonic oscillator is proportional to Ω2, so we have ∆E
E

= 2∆Ω
Ω

and
the splitting ∆f (in Hz) equals:

∆f =
Ω

4π

∆E

E
, (5.26)

with the kinetic energy E of the Bessel mode flow field, for m > 0, given by [63]:

E =
1

2

∫
ρ v2 (r⃗) d3 (r⃗) =

π ρ c23
2h0

∫ R

0

η2 (r) r dr (5.27)

Combining Eqs.(5.24,5.27) yields:

∆f =
κm

2 π2

∫ R

offset
dr
r
η2 (r)∫ R

0
dr r η2 (r)

(5.28)

This result shows that the vortex-induced splitting of a Bessel mode is not influenced by the
superfluid parameters (film thickness, density), and it is linear with the circulation quanta (the
quantity of vortices) in a way that the splitting generated by an ensemble of vortices is equal
to the sum of the splittings generated by each single vortex at its position. In addition to
the circulation quanta, the radial position of each vortex also affects the total splitting. As
shown by Eq. (5.28), if a vortex drifts away from the center of the resonator, the contribution
of this vortex to the total splitting decreases. Furthermore, the splittings of different Bessel
modes induced by the same ensemble of vortices are also different. Some Bessel modes are
more sensitive to vortices, and thus have larger splittings, while some Bessel modes are less
sensitive to vortices. Therefore, monitoring different Bessel modes enables us to identify both
the vortex number and their distribution in radial direction.

5.3.2 Experimental Detection of Vortices in a Thin Superfluid Film

The vortex detection experiment is based on the experimental setup shown in Fig. 4.2. The
toroidal resonator is cooled with helium-4 gas to the base temperature of the helium-3 cryostat,
thereby the helium-4 is condensed into superfluid, coating the resonator with a thin superfluid
film. The laser light is locked on resonance with the resonator and the output light from
the resonator is measured using homodyne detection method, such that the motions of the
third sound waves on the resonator are imprinted as phase fluctuations of the output light and
eventually exhibited as the oscillations of the homodyne photocurrent.
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Figure 5.7: (a) Decay of frequency splittings of the (1,3), (1,4), (1,5), (1,7) and (1,8) thrd sound
modes, respectively corresponding to the bottom-to-top traces. The data was taken with a
large bandwidth and high memory-depth oscilloscope. During taking the data six continuous
measurements were taken, separated by data-saving periods of approximately ten seconds each.
(b)-(g) power spectra of different third sound modes before and after the frequency splitting
decay. Figure is reproduced from Ref. [5].

When the system is in equilibrium, the third sound mode spectra obtained from the homo-
dyne photocurrent display stable splittings, because the stationary geometry-imperfections lift
up the degeneracy between clockwise and counter-clockwise third sound modes. The geometric
splittings are shown as the gray curves in the experimental mechanical spectra in Fig. 5.7(b-g).
Using Finite Element Modelling (FEM) the third sound modes are identified fairly accurately
as shown in the insets of Fig. 5.7(b-g). However, when we drive the system out of equilib-
rium by injecting high laser power, the large superfluid flow due to the fountain effect or large
third sound mode amplitude causes superfluid velocity above the critical velocity, and even-
tually sheds vortices on the resonator. Then we reduce the laser power or recover the laser
frequency and interferometer lockings of the experimental setup, and measure the spectrum
of the third sound modes in real-time. The generation of vortex ensemble brings the system
out of equilibrium, leading to larger frequency splittings of the third sound modes than the
stationary geometric imperfections induced splittings, as dictated by the vortex-position de-
pendent splitting function (Eq. (5.28)). In Fig. 5.7(b-g) the large splittings are shown by the
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blue curves of the power spectra from the photocurrent signal right after vortices are shed. Via
annihilation and vortex-vortex interaction, the vortex ensemble evolve into new equilibrium
with lower system energy. Thus the third sound mode splittings decrease during the vortex
evolution. Fig. 5.7(a) shows the evolution of the splittings over time. This evolution of the
splittings is directly related to the vortex dynamics through the theory elaborated in the pre-
vious section (§ 5.3.1). The observed mode splittings in this experimental run agree very well
with point vortex simulations of the initial metastable state of vortex dipole containing 17 free
vortices with a total kinetic energy of Ktotal = 7.8+0.6

−0.3 aJ, or 16 vortices with Ktotal = 8.3+0.2
−0.6

aJ. The analysis of the simulations and the experimental results is elaborated in Ref. [5]. This
experiment demonstrates that we are able to monitor in real-time the vortex number and
the distribution of the vortex ensemble. In future experiments, with higher sensitivity (by
increasing light-sound and vortex-sound couplings) and larger measurement bandwidth of this
superfluid optomechanical system, it would be possible to detect single quantized vortex in two
dimensional strongly-interacting superfluid.

5.4 Conclusion
This chapter describes a new cavity optomechanical system composed of a disk WGM resonator
coated with thin superfluid films is theoretically developed. The theoretical estimation shows
that the optomechanical coupling of the sound in superfluid films with light can be larger than
the acoustic frequency, pushing the superfluid optomechanical system into quantum regime.
Last, the coupling between sound and quantized vortices in two dimensional superfluid is the-
oretically elaborated. With the vortices bridged by the sound to the light field, the superfluid
optomechanical system is experimentally demonstrated to be able to probe the coherent evolu-
tion of a vortex ensemble, which matches very well with point vortex simulations of the initial
metastable state of 17 free vortices with a total kinetic energy of Ktotal = 7.8+0.6

−0.3 aJ, or 16
vortices with Ktotal = 8.3+0.2

−0.6 aJ.
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Chapter 6

Ultra-low Threshold Brillouin Lasing

This chapter is based on the work submitted for publication and is available on the arXiv:
X. He, G. I. Harris, C. G. Baker, A. Sawadsky, Y. P. Sachkou, Y. Sfendla, S. Forstner, W. P.
Bowen, Strong optical coupling through superfluid Brillouin lasing, arXiv 1907.06811, 2019.

In this chapter, we present the experiment on Brillouin lasing in a superfluid optomechanical
system. This experiment studies the Brillouin interaction between travelling acoustic waves
on the surface of a thin superfluid film and the intracavity optical field. First, the research
background of Brillouin scattering is introduced. In the second section, a theoretical model
is formulated based on coupled mode theory to explain the Brillouin interaction in a thin
superfluid film. Next, we explain the experimental setup, and present experimental results.
The final section concludes the chapter.

6.1 Research Background and Motivations
With recent improvement in the strength of interactions between optical fields and mechani-
cal oscillators, using cavity optomechanics it has become possible to control and manipulate
phonons -the energy quanta of mechanical motion- via radiation pressure using cavity optome-
chanics. The radiation-pressure mediated control of phonons has been key in a wide range
of fundamental physics experiments, including ground state cooling, squeezing and entangle-
ment of macroscopic mechanical oscillators [9–14]. Further, the ability to control and readout
phonons with high precision has enabled many practical applications, such as precision sensing
of mass [6], force [7], and gravitational waves [8], coherent frequency conversion [138], informa-
tion storage [139, 140], injection locking of oscillators [141], etc. An alternative approach to
control phonons is to utilise Brillouin scattering of light by acoustic waves [142].

Brillouin scattering is a type of inelastic scattering of light, commonly observed in fibre
communication, where the Brillouin frequency shift causes spectral broadening. Brillouin scat-
tering exists in optical fibres and waveguides because of the thermally populated acoustic waves
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Figure 6.1: Illustration of Brillouin scattering process in an optical fiber, where a longitudinal
acoustic wave generates compression and rarefaction of the fibre core material. Red: initial
laser light with ωL denoting its frequency; green: backscattered Stokes light with ωS denoting
its frequency; blue: Brillouin acoustic wave with ΩB denoting its frequency.

which propagate in them [143–145]. As illustrated in Fig. 6.1 an acoustic wave in an optical
fiber causes a strain field in the fibre core material resulting in alternating rarefaction and com-
pression. The mechanical deformation exhibited as rarefaction and compression changes the
permittivity of the fiber core material via the photoelastic effect for isotropic materials [146]:

∆(ϵ−1)ij = pijklSkl, (6.1)

where pijkl is the photoelastic tensor and Skl is the linear strain [147]. Thus, the refractive
index is typically higher in high density regions and lower in low density regions. In this way
the acoustic wave is able to create a refractive index grating travelling in the same direction as
the light.

In the particular case where the acoustic wave (shown in blue in Fig. 6.1) has a wavelength
equal to half of the light wavelength (λB ≈ λp/2), the refractive index grating generated by this
particular density wave acts as an efficient Bragg mirror for the light (red arrow with frequency
ωL in Fig. 6.1) propagating in the optical fiber. When this acoustic wave is travelling in the
same direction as the light, the refractive index grating reflects red-shifted light (Stokes: green
arrow in Fig. 6.1) due to the Doppler effect, and the frequency shift is equal to the frequency
of the acoustic wave, which is called as the Brillouin shift:

fB =
2neffva
λp

, (6.2)

where va is the acoustic velocity within the material, neff is the effective refractive index ex-
perienced by the pump light of freespace wavelength λp. Similarly, if this particular acoustic
wave propagates in the opposite direction to the laser light, the refractive index grating reflects
blue-shifted light (anti-Stokes, not displayed in Fig. 6.1). What’s more, due to electrostriction,
whereby the electric field of the light induces strain within a material proportional to the square
of the electric field, the beating of the reflected Stokes light with the initial laser light drives the
co-propagating acoustic wave, leading to the reflection of more Stokes light. This phenomenon
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can be described by the Brillouin intensity gain coefficient gB of the material [148]:

gB =
2πn7p212

cλ2
pρva∆fB

[m/W], (6.3)

where p12 is the longitudinal elasto-optic coefficient, ρ the density, ∆fB the full-width at half
maximum (FWHM) of the acoustic wave and c the vacuum velocity of light. With more Stokes
light reflected, this forms a positive feedback.

Generally, researchers use an optical cavity to resonantly enhance the interaction between
light and the Brillouin acoustic wave by engineering the cavity to have two optical modes with
frequency spacing equal to the Brillouin shift (or engineering the free spectral range (FSR) of
the cavity to be the Brillouin shift). If the pump power coupled to the cavity is increased
above a threshold power, the positive feedback from the Brillouin gain eventually amplifies
the co-propagating wave to a strong and coherent amplitude, much stronger than a thermally
driven acoustic wave, which is termed Brillouin lasing, and the Brillouin lasing threshold power
in micro-cavities is [149, 150]:

Pth =
π2n2AeffLeff

gBQpQBλ2
p

, (6.4)

where Aeff is the optical mode area, Leff is the round-trip length of the cavity, Qp and QB are
respectively the quality factor of the pump and Stokes optical modes. A different Brillouin
gain coefficient depending on the device design can be defined as GB = gB/Aeff . Using this
parameter, the Brillouin amplification rate per photon is given [151]:

g0 =
ℏωpc

2GB

2n2Leff

. (6.5)

In contrast to the amplification of the co-propagating acoustic wave detailed here, as explained
theoretically in § 6.2.2 the beating of the anti-stokes with the initial laser light attenuates the
counter-propagating acoustic wave, leading to less anti-Stokes reflection. This cooling effect of
the counter-propagating acoustic wave is also predicted by the theory developed in the following
section.

6.1.1 Overview of Existing Brillouin Systems

Researchers have invented various kinds of platforms using different materials to exploit the
Brillouin interaction between light and sound as briefly summarized in Fig. 6.2. Harnessing
of the Brillouin interaction has been demonstrated in a variety of practical and scientific ap-
plications. In Peter Rakich’s group suspended optomechanical silicon waveguides are used to
harness the strong Brillouin non-linearity of silicon. The suspended waveguide is connected to
the substrate via sparse thin tethers, which greatly reduce the acoustic loss through the sub-
strate. The length of the Brillouin interaction region is increased to centimetre scale to increase
the Brillouin gain. Two spatial optical modes and a Brillouin elastic wave are collocated in the
optomechanical waveguide. By leveraging the symmetry-breaking of Stokes and anti-Stokes
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Figure 6.2: A few examples of the wide variety of Brillouin systems realized with different
platforms and materials: (a) Stored light using Brillouin scattering in an optical fiber [152].
(b) Small-core photonic crystal fibre [153]. (c) Brillouin scattering from the vibrating air in a
hollow-core fiber [154]. (d) Suspended Silicon wire waveguide [155]. (e) Integrated spiral As2S3

rib waveguide [156]. (f) As2S3 chalcogenide waveguide [157]. (g) Silicon waveguide isolated
from the substrate on a narrow fin [158]. (h) Racetrack resonator with suspended Brillouin-
gain regions [159]. (i) WGM optica microdisk resonator [160]. (j) WGM silica microsphere
resonator [161], (k) Milimeter scale WGM CaF2 resonator [162]. (l) Centimeter scale Si3N4

ring resonator [151].

processes produced by phase matching in intermodal Brillouin scattering, a band of travelling-
wave phonons are cooled for the first time in linear waveguide systems without an optical cavity
or discrete phonon modes [163]. Further, a racetrack optical cavity is fabricated with two sus-
pended optomechanical waveguides and two unsuspended curving waveguides, where the two
spatial optical modes have a frequency difference equal to the Brillouin elastic wave frequency of
6 GHz. By pumping the higher frequency spatial optical mode, the other spatial optical mode
is populated by the coherent forward scattered Stokes light, which is the Brillouin scattering.
By further increasing the pump power above the Brillouin lasing threshold power of 10.6 mW,
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they have observed that the strong Stokes light is able to produce linewidth narrowing of the
elastic wave [159].

Although silicon is compatible with the current complementary metal–oxide–semiconductor
(CMOS) technology, its Brillouin gain is relatively low, due to low photoelastic nonlinearity and
large acoustic loss [164]. Especially the acoustic loss resulted from the higher stiffness of silicon
than that of the insulator substrate complicates the fabrication process of optomechanical
silicon waveguides, because the silicon waveguides need to be fabricated to be isolated from
the substrate to overlap better the optical and elastic waves, and more importantly avoid the
leak of acoustic energy to reduce the acoustic loss. To get around the drawback of silicon
waveguides, As2S3 waveguides of strong nonlinearity are intensively investigated in Eggleton’s
group at University of Sydney to generate stimulated Brillouin scattering on-chip, which leads
to wide range of applications, such as optical isolator, coherent photonic-phononic memory,
phase shifter and et al. [157,165–168]. The large non-linearity of As2S3 allows standard optical
waveguide fabrication and full integration into photonic circuits.

In addition to waveguides, Whispering Gallery Mode (WGM) resonators have also been
studied to enhance Brillouin scattering in low nonlinearity materials. One example is that a
sub-Hertz Brillouin laser in an integrated Si3N4 ring resonator from a group at University of
California, Santa Barbara. They have demonstrated that the linewidth of the Brillouin laser can
be significantly reduced to 0.7 Hz [151]. Using conventional semiconductor processing methods,
millimeter-scale diameter ultrahigh-Q disk resonators were fabricated in Kerry Vahala’s group
at Caltech. These resonators are fabricated without the typical reflow process to form high Q
silica microtoroid or microsphere resonators [169,170]. Despite this, the on-chip disk resonators
not only have the highest reported Q (875 million) for diameters larger than 500 µm, but also
enable a very fine control of the free spectral range (see § 2.4), which is very challenging to do
reproducibility in the reflow process. With these two advantages a low threshold Brillouin laser
is demonstrated in Reference [150]. By improving this ultrahigh-Q disk resonator Brillouin
laser they were also able to demonstrate a microwave synthesizer and an optical gyroscope
by realising cascaded Brillouin lasing [160, 171]. Although silica has very low optical loss,
its Brillouin non-linearity is very small. By using high non-linearity materials like CaF2 the
Brillouin lasing threshold is significantly reduced to 3 µW , and cascaded Brillouin lasing is
observed with BaF2 [162, 172].

The Brillouin interaction has also been exploited to achieve the strong coupling between
light and sound for cavity optomechanics experiments. In Peter Rakich’s group, a high Q
(quality factor) Fabry-Perot optical cavity with a bulk acoustic resonator inside is utilised to
realise Brillouin strong coupling. The Fabry-Perot cavity is fine-tuned to have a dispersively
engineered mode spacing equal to the Brillouin frequency, which selectively biases the system
for the Stokes process over the anti-Stokes process, when the pump light is on resonance with
the higher frequency mode. In this way, they have achieved a multi-photon optomechanical
cooperativity [Eq. (3.27)] larger than 1, and observed the lasing and optical cooling of the
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acoustic mode. Similarly, but instead of using a Fabry-Perot cavity with a bulk acoustic
resonator, Brillouin optomechanics experiments have also been realised with WGM silica micro-
resonators, which confine both acoustic and optical WGMs along the circumference of the device.
Using this platform, Gaurav Bahl’s group have observed strong optomechanical coupling (with
multi-photon optomechanical coupling rate g larger than both optical κ and mechanical Γ

linewidths) and spontaneous Brillouin cooling of the acoustic WGM [161]. These achievements
have proven that along with the conventional optomechanical coupling, the Brillouin interaction
provides a new way to coherently control and generate quantum states of mechanical oscillators.

In addition to the successful applications of Brillouin scattering in solid materials, stimulated
Brillouin scattering in liquid materials was first found by focusing laser beam onto water and
methanol droplets in 1988 [173]. Due to the absence of resonant enhancement from an optical
cavity, low Brillouin non-linearity and high acoustic damping in liquid droplets, the generation
of stimulated Brillouin scattering in this experiment was very difficult. Directly immersing
optomechanical systems in liquid was very challenging, but it is advantageous to use an optical
cavity to enhance the weak Brillouin interaction in liquid. Thus, in one of Gaurav Bahl’s work
a hybrid approach is taken to use a hollow core silica capillary resonator, where the WGM
optical modes are confined at the circumference of the hollow core silica capillary with around
30 µm thickness, while the liquid is confined in the hollow core [174]. The acoustic modes of
this system are also supported by the silica capillary. Thus, in this experiment the Brillouin
lasing is similar to the aforementioned WGM resonator based Brillouin laser, where the silica
resonators co-host both optical WGM and acoustic WGM. The difference of this experiment is
that the liquid inside the capillary can provide additional damping and frequency shift to the
acoustic WGM.

Very recently the resonantly enhanced Brillouin lasing has also been observed in 140 µm

diameter silicone oil droplets stably suspended at a fibre tip in Gagliardi’s group [175]. Since the
droplet is very stable, laser light is directly coupled from free space to the circumference of the
droplet. The Brillouin acoustic mode is also an acoustic WGM confined at the circumference of
the droplet. This scheme allows direct interaction of light and sound in the liquid, but the large
acoustic damping due to the liquid viscosity and the large size of the device lead to a relatively
high lasing threshold power of around 0.2 mW. Generally FSR engineering is challenging in
solid optical resonators and is even more so for liquid optical resonators, but in this experiment
the large optical linewidth and relatively low Brillouin shift relieved this Brillouin system from
FSR engineering, with both Stokes and pump light to be resonant with the same optical mode
as illustrated in Fig. 6.3.

As mentioned in Chap. 5, to get around the high acoustic damping from the viscosity of
normal liquid, in Jack Harris’s group, superfluid helium was used explore Brillouin interaction
between light and sound [17]. In the experiment the optical cavity is a Fabry-Perot cavity
formed between two optical fibre tips coated with Distributed Bragg Reflector (DBR) mirrors.
When the optical cavity is cooled down to below 100 mK with helium-4 gas, the helium gas
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is condensed to superfluid phase and conformally fills the hollow optical cavity, thereby the
Fabry-Perot cavity supports both the optical modes and longitudinal superfluid density acous-
tic modes, allowing near-perfect overlap between them. Since both the optical and acoustic
modes are standing waves rather than travelling waves, there is no symmetry breaking of Stokes
and anti-Stokes processes, leading to a modulation of the effective cavity length of the standing
optical mode by the spatial variation of helium density associated with the standing acoustic
wave, which is essentially a standard optomechanical interaction. Owing to the low optical
absorption and high thermal conductivity of superfluid, the optomechanical coupling is pre-
dominantly from the unitary electrostrictive force of light, with the single photon coupling rate
extracted from experiment having two components: the electrostrictive coupling rate of around
3 kHz, and the non-unitary photothermal coupling rate of around 1 kHz.

Although excellent results have been achieved with solid and liquid materials, there are
still disadvantages in these experiments. In solid material, the Brillouin interaction typically
relies on weak optical electrostrictive forces [16,17,146,162,171,176,177] (potentially boosted by
radiation pressure forces at the nanoscale [178]) to strain a high Young’s modulus solid material,
leading to weak optomechanical coupling strength (g0). High Brillouin non-linearity materials
like CaF2 indeed allow large optomechanical coupling strength, but are not compatible with
conventional semiconductor processing techniques. A second disadvantage with solid material
is that the large Brillouin shift from the high Young’s modulus requires either complicated
mode engineering across free spectral ranges to to ensure both pump and Stokes fields are
on resonance (see Fig. 6.3(a)) [142, 159, 161, 177]. The liquid Brillouin experiments described
above also present several disadvantages. First, if the optical and acoustic modes are confined
by a thick silica resonator, the influence of the liquid at the resonator interface has extremely
weak influence on both optical and acoustic modes. Second, if both the optical and acoustic
modes are confined by the liquid resonator, the optical absorption and viscosity of normal liquid
generate high loss rate for light and sound respectively, leading to inefficient Brillouin scattering.
This leaves several milestones yet to be demonstrated, including the strong Brillouin interaction
between light and ultra-low frequency acoustic waves„ and Brillouin-interaction induced strong
coupling between optical cavity modes.

Compared with the Brillouin experiments with solid materials, two key features distinguish
our experimental approach. First, the Brillouin active component is not silica, but rather a
thin superfluid film that resides on the surface and is evanescently coupled to the whispering
gallery modes (WGM) of the microdisk. Regions of high light intensity inside the resonator
continuously deform the superfluid interface by drawing in more superfluid by means of an
optical gradient force [179, 180], resulting in a periodically modulated refractive index grating
which scatters pump light, as illustrated in Fig. 6.3(c). The superfluid film has an exceedingly
weak restoring force1, affording a compliant dielectric interface that easily conforms in the

1the van der Waals pressure, is typically on the order of hundreds of Pa to ∼1 kPa, compared with typically
tens to hundreds of GPa bulk modulus for solid materials like SiO2, Si and Si3N4.
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Table 6.1: va longitudinal acoustic velocity. Note that the typical Brillouin shift wavelength
pump light depends on the effective refractive index and crystal direction.

material va (m/s) n typical ΩB/2π (GHz) gB (m/W)
As2S3 [144] ∼2400 2.44 7 7.2×10−10

Ge [181] ∼3500 4.02 6 3.2×10−10

Si [144, 155] ∼8433 3.42 9 ∼2.4×10−10

Si3N4 [151] ∼8550 1.96 11 ∼2.8×10−14

SiO2 [182] ∼5960 1.45 11 1.73×10−11

As2Se3 [183] ∼2250 2.8 8 6×10−9

CaF2 [162] ∼6600 1.43 12 2.8×10−11

Bulk superfluid [17] ∼230 1.028 ∼0.3 N/A
Thin superfluid film (this work) ∼ 5 1.028 ∼0.01 N/A

presence of optical forces [1,2,18]. This allows the single photon coupling rate to be substantially
higher than solid Brillouin systems. Second, this weak restoring force also corresponds to a
much smaller sound velocity in the superfluid film than in solids (m/s vs km/s) as shown in
Table 6.1.1. As a result, a low Brillouin frequency in the MHz range instead of more than ten
GHz in solids makes the Stokes and anti-Stokes photons reside well within the optical linewidth
(see Fig. 6.3 (b)). Therefore, we can leverage the advantage of three mode resonant enhancement
by scattering into the naturally degenerate WGM that propagates in the direction opposite to
the pump. This avoids the fabrication complexity associated to mode engineering across free-
spectral-ranges, or higher order modes, and allows the device to be further miniaturized while
maintaining resonant enhancement. These features have enabled an extremely low Brillouin
lasing threshold of 1.8µW , and a phonon mediated strong coupling between degenerate optical
modes.

Compared with other Brillouin experiments with liquid materials, the work described here is
a hybrid approach, where the optical mode is essentially confined by a thin silica disk resonator
while the acoustic mode is confined by the superfluid film. Motion in the film couples to the
optical mode by perturbing its evanescent field. This hybrid approach has four advantages.
First, the low optical absorption of silica and superfluid helium generally leads to high Q
optical modes in at near-infrared wavelengths. Second, the viscosity of superfluid helium nearly
vanishes at the fridge base temperature of around 10 mK, potentially enabling high Q acoustic
modes. Third, the evanescent field of the optical mode is very strong in the superfluid region,
owing to the small disk thickness (below 2 µm). Thus, the coupling of the acoustic mode to
the optical mode is very strong. Due to these three factors, this hybrid Brillouin system has
the lowest lasing threshold among all Brillouin systems to date. Last, the circular geometry of
the disk resonator allows travelling optical and acoustic waves, potentially leading to certain
interesting physics of non-reciprocity.

Moreover, this hybrid Brillouin system shows that the Brillouin acoustic mode when drive
to a large amplitude, induces strong coupling of two degenerate optical modes. The coherent
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Figure 6.3: (a) Due to large sound velocity in solid materials, the Stokes (red) and pump (blue)
are on resonance with two different optical modes; (b) due to the reduced speed of sound in the
superfluid, both pump (blue) and Stokes (red) are resonant with the same high Q WGM; (c)
schematic illustration of the Brillouin interaction in our superfluid system (top) and in a solid
material where the optical field is responsible for compression and rarefaction of the medium
(middle). Due to the fluid interface’s larger compliance, the optically driven refractive index
modulation (bottom) is larger in the fluid case.

coupling between the two optical modes can be switched on and off by the optically pumped
Brillouin lasing. In terms of information processing, this Brillouin lasing configuration is acting
as a router, where the pump light is able to control the information transfer between the
two optical modes. This can have potential applications, such as a mechanically mediated
quantum state transfer, applicable to reconfigurable all-optical quantum circuits [184]. In
addition, studying the Brillouin process in superfluid could improve our understanding of the
origin of dissipation in superfluid helium.

6.2 Theoretical Modelling

6.2.1 Model of Brillouin Scattering

Fig. 6.4 provides an overview of the hybrid Brillouin system. A silica microdisk supporting high-
Q optical WGM resonances is coupled to a tapered fibre and cooled to millikelvin temperatures
in a sealed sample chamber within a dilution refrigerator. Helium-4 gas injected into the
chamber forms a nanometer-thick self-assembling superfluid film coating the microresonator.
The pump light is coupled to the optical mode (ak) propagating in clockwise (CW) direction,
while Stokes and anti-Stokes light is backscattered into the naturally degenerate optical mode
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Figure 6.4: Illustration of the superfluid Brillouin optomechanical system composed of an
optical micro-disk resonator, a layer of superfluid thin film covering the disk, and a tapered
optical fibre coupling laser light into the resonator. Red arrows denote the two optical modes
propagating in opposite directions, with ak(−k) corresponding to the lowering operator of the
optical mode in clockwise (counter-clockwise) direction (the subscript k is the wavenumber
of the optical modes, and the sign in front of k indicates the direction); blue arrows denote
the clockwise and counter-clockwise acoustic modes with bq(−q) corresponding to their lowering
operators.

(a−k) propagating in the direction opposite to the pump light.
The microdisk, in addition to supporting WGM optical modes, provides confinement for

acoustic waves in the superfluid film —named third sound [84]— which manifest as film thick-
ness fluctuations with a restoring force provided by the attractive van der Waals interaction
between the helium atoms and the resonator as described in §. 3.2.3. Given the circular geom-
etry, these sound waves take the form of drumhead modes defined by Bessel functions, which
evanescently perturb the WGM field thus modulating the resonator’s effective length [2]. In
this Brillouin experiment, we focus on a particular high azimuthal order Bessel mode (like an
acoustic WGM mode) which resides at the rim of the microdisk. This Bessel mode has twice
the azimuthal order of the optical mode in order to have perfect overlap between the optical and
acoustic modes2. It is always valid to decompose this WGM acoustic mode into two travelling
acoustic modes in opposite directions (bq co-propagates with the pump light and b−q against the
pump light). As shown in the Section 6.2.2 this four mode system can be studied by coupled
mode theory [185].

2such that each peak in the superfluid matches an extremum in the optical intensity as illustrated in
Fig. 6.3(a)
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6.2.2 Hamiltonian Formalism

Here I detail the analytical Brillouin scattering theory, which describes the superfluid Brillouin
system in the non-depleted pump regime3, an approximation valid below the lasing threshold.
The general interaction Hamiltonian is determined by the overlap integral of the optical and
acoustic fields [2, 186]. It is derived below, based on a perturbation theory approach. The
energy shift ∆E experienced by the optical field due to the presence of the superfluid is given
by:

∆E =

∫ R

0

∫ 2π

0

∫ d0+η(r,θ)

0

1

2
ε0 (εsf − 1) |E|2 r dr dθ dz, (6.6)

where ε0 = 8.85 × 10−12 F/m is the vacuum permittivity, εsf is the relative permittivity of
superfluid helium, η is the out-of-plane displacement of the superfluid surface beyond a mean
height d0 due to the acoustic wave (third sound), E is the WGM electric field and R is the
radius of the disk resonator. Given the film thickness is only a few nanometres, the electric
field can be treated as constant over the height of the film. Thus the volume integral Eq. (6.6)
can be reduced to an integral over the surface of the disk resonator:

∆E =

∫ R

0

∫ 2π

0

1

2
ε0 (εsf − 1) (d0 + η (r, θ)) |E|2 r dr dθ (6.7)

Rewriting this expression in terms of photon and phonon annihilation and creation operators:

∆E =

∫
surface

1

2
ε0 (εsf − 1)

Ψb(r⃗)
(
bq + b†q + b−q + b†−q

)
︸ ︷︷ ︸

AC

+ d0︸︷︷︸
DC

 [|Ψa(r⃗)|2|ak + a−k|2
]
dA.

(6.8)
Here Ψa(r⃗) = E (r⃗)

√
ℏω∫

1
2
ε0 εsf E2 dV

is the electric amplitude per photon, Ψb(r⃗) is the acoustic
amplitude in the ground state, ak (bq) and a−k (b−q) are respectively the photon (phonon) anni-
hilation operators acting on the forwards and backwards propagating optical (acoustic) modes.
This equation shows the transition from classical optical energy shift to quantum interaction
Hamiltonian, and explains the essence of the physics in this experiment. To avoid the confu-
sion between quantum operators and their corresponding classical mean values, the connection
between the acoustic displacement and acoustic field annihilation and creation operators is
η = Ψb(r⃗)

⟨
bq + b†q + b−q + b†−q

⟩
, and similarly for the WGM electric field and intracavity op-

tical mode annihilation and creation operators E = Ψa(r⃗) ⟨ak + a−k⟩. The subscripts k (q)
refer respectively to the wavenumbers of the optical (acoustic) wave and the signs in front of
k and q indicate the propagation direction, with the convention that the optical pump travels
in the positive direction. In the limit that the Brillouin frequency is much smaller than the
optical frequency (ΩB ≪ ωopt), momentum and energy conservations require that q = 2k for
the Brillouin process.

The acoustic term in Eq. (6.8) can be decomposed into two components: a DC component
proportional to the mean film thickness d0 which gives the DC shift of the optical resonance

3this assumption states that the power in the pump beam is not altered by the Brillouin scattering process
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frequency due to the superfluid helium film covering the resonator, and an AC component
describing the interaction of the surface acoustic wave with the intracavity optical field. Ne-
glecting the DC part, the interaction Hamiltonian takes the form:

Hint = −
∫
surface

1

2
ε0 (εr − 1)Ψb(r⃗)|Ψa(r⃗)|2 dA (bq + b†q + b−q + b†−q)|ak + a−k|2

= −ℏ g0,rp (bq + b†q + b−q + b†−q)(a
†
k + a†−k)(ak + a−k),

(6.9)

where g0,rp is the single photon optomechanical coupling rate [2, 50], and the minus sign just
depends on how we choose the positive direction for the mechanical motion axis (see Fig. 3.1):

g0,rp =

∫
surface

1

2
ε0 (εsf − 1) Ψb(r⃗) |Ψa(r⃗)|2 dA (6.10)

The interaction Hamiltonian is further reduced by energy and momentum conservation argu-
ments to the following form:

Hint = −ℏ g0,rp(b†qaka
†
−k + b−qaka

†
−k + b†−qa

†
ka−k + bqa

†
ka−k) (6.11)

The first two terms correspond respectively to the Stokes and anti-Stokes scattering process
for the forward propagating optical field ak, while the third and fourth terms correspond re-
spectively to the Stokes and anti-Stokes process acting on the counter-propagating optical field
a−k.

Note that in many other works [142, 161], the resonator’s optical spectrum is engineered
such that pump and Stokes fields are resonant with two distinct optical modes separated by
the Brillouin shift. Compared with the pump and Stokes, the non-resonant anti-Stokes field
experiences a very low optical density of states and can therefore be neglected. Here, because
of the small Brillouin shift (∼ 6 MHz), we must keep both the Stokes and anti-Stokes terms.
In addition, the frequencies of the two counter-propagating optical modes are degenerate, such
that the frequencies of ak and a−k are both treated as ∆ in the full Hamiltonian description in
a frame rotating at the laser frequency ωL, where ∆ is defined as ωL − ωk:

H = −ℏ∆a†kak − ℏ∆a†−ka−k︸ ︷︷ ︸
optical

+ ℏΩBb
†
qbq + ℏΩBb

†
−qb−q︸ ︷︷ ︸

mechanical

−ℏg0,rp(bqa†ka−k + b†−qa
†
ka−k + b−qa

†
−kak + b†qa

†
−kak)︸ ︷︷ ︸

Brillouin interaction

(6.12)

6.2.3 Calculation of Optomechanical Coupling Rate G

In the experiment the optical modes are supported by a disk microresonator (see § 6.3) We com-
pute the optomechanical coupling strength G = ∂ω0

∂x
using FEM modelling software (COMSOL

Multiphysics). The silica microresonator dimensions are measured with a scanning electron
microscope (SEM) and summarized in Table 6.2. We simulate the optical eigenmodes of the
structure, which for thin disks are defined by their transverse electric (TE) or transverse mag-
netic (TM) polarization, and radial and azimuthal mode orders (p,m) [38]. The electric field
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Parameter Symbol Value Units source
Disk radius (top) Rt 30.6 µm SEM
Disk radius (bottom) Rb 38.6 µm SEM
Disk wedge angle - 14 degrees SEM
Film thickness d 6 nm cavity shift

8 nm Brillouin frequency
WGM azimuthal number mopt 186 - FEM
Mechanical azimuthal number m 372 - -
Optomechanical coupling rate G/2π −2.17× 1018 Hz/m FEM
Brillouin mode zero-point motion xZPF 9.5× 10−15 m analytical estimation
Single photon coupling strength g0,pt/2π 122 kHz fit to measurement

g0,rp/2π 11 kHz simulation

Table 6.2: Experimental parameters. SEM: Scanning Electron Microscope; FEM: Finite Ele-
ment Method.

(E) distribution of the (p = 1, m = 186) quasi-TE mode of the microdisk is plotted as an inset
in Fig. 6.12(b). G is computed from the E field distribution through [2]:

G =
−ω0

2

∫∫
interface

(εsf − 1)E2 (r⃗) d2r⃗∫∫∫
all
εr (r⃗)E2 (r⃗) d3r⃗

, (6.13)

where εr is the relative permittivity and εsf = 1.058 is the relative permittivity of superfluid
helium. The numerator surface integral is performed over both top and bottom resonator
boundaries, while the normalizing denominator volume integral is performed over all space. We
find values of G/2π clustered around −2.2× 1018 Hz/m for TE modes and around −2.4× 1018

Hz/m for TM modes, with little influence of the WGM radial order. The higher values of |G| for
TM modes is due to their stronger field at the interface due to the E field discontinuity [2]. We
identify our experimental WGM as a (p = 1,m = 186) quasi-TE WGM, as shown in the inset
of Fig. 6.12(b). As mentioned above, the optomechanical coupling G has a marked dependence
on the wedge angle. Indeed, while the fundamental TE mode’s |G|/2π ∼ 2.2 GHz/nm for a
14 degree wedge angle, this value increases to 2.5 GHz/nm for a 12 degree wedge, and drops
to 1.5 GHz/nm for a 20 degree wedge angle. The contribution to the total G from top and
bottom disk interfaces is well balanced, with respectively 51% and 49 % of the total coupling
rate coming from top and bottom for the fundamental TE mode.

6.2.4 Estimation of Single Photon Optomechanical Coupling Rate
g0

Calculation of the single-photon optomechanical coupling rate g0 = |G|xZPF [50] requires the
Brillouin mode zero-point motion xZPF. The Brillouin eigenmode can be well approximated
through a high-order azimuthal Bessel mode of a disk, for which the zero-point motion can be
calculated analytically [2]. The surface displacement η of the travelling Brillouin wave on both
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Figure 6.5: Example displacement profile of an acoustic whispering gallery-type mode (su-
perfluid Brillouin wave) of the kind used in the experiments. For clarity, we show here the
displacement η120,1 (r, θ) of the m = 120 Bessel mode with free boundary conditions at the
resonator edge [5], which has ∼ 3 times fewer nodes than the experimental m = 372 Bessel
mode. The displacement is essentially localized on the resonator edge, such that the eigenmode
is not perturbed by the presence of the pedestal on the microdisk underside.

top and bottom surfaces of the disk is given by:

ηm,n (r, θ, t) = η0 Jm

(
ζm,n

r

R

)
cos (mθ ± Ω t) , (6.14)

where m and n are respectively the azimuthal and radial mode numbers, η0 the mode amplitude,
Jm the Bessel function of the first kind of order m, and ζm,n a frequency parameter depending
on the mode order and the boundary conditions [2]. Energy and momentum conservation for
the Brillouin scattering process imply that the Brillouin mode azimuthal order be twice that
of the optical WGM, i.e. m = 2mopt = 2 × 186 = 372 (see Table 6.2). Such a mode has its
displacement localized on the periphery of the resonator, well colocalized with the optical field
intensity, forming a type of acoustic whispering gallery mode, as shown in Fig. 6.5. Note that
since the excitations exist on both the top and underside of the disk, the collective excitation
of the film on top and bottom has twice the effective mass, and hence 1/

√
2 the zero-point

motion of a mode residing only on the disk top surface. The azimuthal overlap between optical
and mechanical fields leads to a further factor two reduction: 1

2π

∫ 2π

0
2 cos2 (θ) cos (2θ) dθ = 1

2
.

Combined, and assuming perfect radial overlap, this estimation provides, for the WGM mode
used in the experiments a value of g0,rp/2π = 11 kHz. We ascribe the discrepancy with the
experimentally extracted value from the lasing threshold (Sec 6.4.4) to some degree to uncer-
tainties in the geometry (wedge angle, sidewall roughness) as well as potential photothermal
contributions [18] which may increase the effective optomechanical coupling.

6.2.5 Equations of Motion for Brillouin Interaction

From the Hamiltonian in § 6.2.2 we derive the equations of motion. Including the drive ain of the
pump field, the photothermal coupling (g0,pt = g0,tot−g0,rp), the native cavity backscattering κb,
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the thermal drive bin (b−in) of the acoustic fields bq (b−q) respectively [52,142] and dissipation,
we obtain:

ȧk = i∆ak −
κ

2
ak + ig0,rp(bqa−k + b†−qa−k) + iκba−k +

√
κext αin (6.15a)

ȧ−k = i∆a−k −
κ

2
a−k + ig0,rp(b−qak + b†qak) + iκbak (6.15b)

ḃq = −iΩBbq −
Γ

2
bq + ig0,tot a

†
−kak +

√
Γ bin(t) (6.15c)

ḃ−q = −iΩBb−q −
Γ

2
b−q + ig0,tot a

†
ka−k +

√
Γ b−in(t), (6.15d)

where κ is the optical decay rate, κext the coupling rate of the optical cavity to the tapered fibre,
nq (n−q) the thermal occupation of the co-propagating (counter-propagating) acoustic field, Γ
the intrinsic mechanical damping rate, and bin(t) the thermal drive, which obeys the Markovian
noise process such that ⟨b†in(t)bin(t′)⟩ = nq δ(t−t′) and ⟨bin(t)b†in(t′)⟩ = (nq+1)δ(t−t′) [52]. Note
that light can drive the acoustic wave through both the radiation pressure and photothermal
interactions, but the acoustic wave affects the intracavity optical field only through dispersive
coupling which can not be mediated by photothermal interaction.

Although the coupled equations [Eq. (6.15)] of motion have four modes and are nonlinear,
we can solve them via two approaches. The first approach is to use a Matlab ODE solver
to numerically simulate the full equations of motion with no approximation (see Sec. 6.4.4
for details of numerical simulations). The second approach is to analytically solve them with
linearization. We linearize the equations of motion by assuming that ak is a non-depleted
pump, and its steady state is not affected by the dynamics of the system. Then the equations
of motion can be linearized by assuming ak is not strongly affected by its time-variant part
δak, but is dominated by it average coherent amplitude αk given by the steady state solution.
First neglecting the Brillouin interaction and back scattering, and solving the steady-state of
the pump light from Eq. (6.15a) and Eq. (6.15b), we get:

αk =
√
ncav,k =

∣∣∣∣ √κext αin

−i∆+ κ/2

∣∣∣∣ . (6.16)

Here we define ncav,k as the intracavity photon number for the steady state solution of the
pump light: ncav,k = |αk|2.

To simplify the analytical model we perform full simulations of the equations of motion
(Eq. (6.15)) to understand at what level the different forms are important. We find from
the full simulations that given the amplitude of the input field ain the solutions of the full
equations of motion depend only on the product of g0,rp and g0,tot regardless of individual values.
Furthermore, the simulations also show that the backscattering effectively decreases the pump
field intracavity photon number ncav,k, and actively cools the co-propagating acoustic wave bq.
Therefore, in order to analytically solve the equations of motion to understand the underlying
dynamics of the system, we neglect the backscattering dynamics and rather define a parameter
ξ to quantify the effects of the native backscattering on the intracavity photon number, such
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that with the presence of the native backscattering, the intracavity photon number is modified
as ξncav,k, and the average intracavity field amplitude as

√
ξ αk.

Then we replace the effects of the native backscattering by substituting αk with
√
ξ αk,

Subtracting the steady state solutions from Eqs. (6.15), and neglecting all the optical noise and
higher order terms in the time-variant variables, the Fourier transformed equations of motion
are:

−iωa−k(ω) = i∆a−k −
κ

2
a−k + i

√
ξ grpb−q + i

√
ξ grpb

†
q (6.17a)

−iωbq(ω) = −iΩBbq −
Γ

2
bq + i

√
ξ gtota

†
−k +

√
Γ bin(ω) (6.17b)

−iωb−q(ω) = −iΩBb−q −
Γ

2
b−q + i

√
ξ g∗tota−k +

√
Γ b−in(ω), (6.17c)

where grp (tot) = αkg0,rp (tot) is the pump field boosted optomechanical coupling rate, b†in(ω) is
the Fourier transform of the complex conjugate of bin(t) following the convention of this thesis
such that b†in(ω) = [bin(−ω)]†, and the auto-correlations of the thermal drives at Markovian
limit, bin(ω) and bin(ω), have such functional forms:

⟨b†in(ω)bin(ω′)⟩ = 2π nq δ(ω + ω′) (6.18a)

⟨bin(ω)b†in(ω′)⟩ = 2π(nq + 1)δ(ω + ω′) (6.18b)

⟨b†in(ω)b−in(ω
′)⟩ = 0. (6.18c)

Solving the equations of motion yields the dynamical solution of the co-propagating acoustic
wave:

bq(ω) =

−ξg0,rpg0,totncav,k

√
Γ b†−in(ω)

(iω+iΩB−Γ/2)(−iω+i∆+κ/2)−ξg0,rpg0,totncav,k
+
√
Γ bin(ω)

−iω + iΩB + Γ/2− ξg0,rpg0,totncav,k

−iω+i∆+κ/2+
ξg0,rpg0,totncav,k

−iω−iΩB+Γ/2

=
−ξg0,rpg0,totncav,k

√
Γ b†−in(ω)χq(ω)

B(ω)
+
√
Γ bin(ω)χq(ω),

(6.19)

where we define

χ−1
q (ω) = −iω + iΩB + Γ/2− ξg0,rpg0,totncav,k

−iω + i∆+ κ/2 +
ξg0,rpg0,totncav,k

−iω−iΩB+Γ/2

, (6.20)

and
B(ω) = (iω + iΩB − Γ/2)(−iω + i∆+ κ/2)− ξg0,rpg0,totncav,k (6.21)

to simplify the notations of this equation.
The power spectrum of the co-propagating acoustic wave is calculated from the auto-

correlation function of its solution Eq. (6.19). With the thermal noise correlations given in
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Figure 6.6: (a) Power spectra of the co-propagating wave bq at different pump powers based on
the first term of Eq. (6.22); (b) Power spectra of the co-propagating wave bq at different pump
powers based on the second term of Eq. (6.22). Red: 1.8 µW ; yellow: 1 µW ; blue: 0.1 µW .

Eqs. (6.18), the co-propagating wave power spectrum is calculated as following:

Sbqbq(ω) =
1

2π

∫
dω′ ⟨b†q(ω)bq(ω′)⟩

=
1

2π

∫
dω′ ⟨[bq(−ω)]†bq(−ω)⟩

=
(ξg0,rpg0,totncav,k)

2 Γ(n−q + 1)|χq(−ω)|2

|B(−ω)|2
+ Γnq|χq(−ω)|2.

(6.22)

From the results above Sbqbq(ω) has two terms: one is related with the thermal noise of the
acoustic wave (b−q) that counter-propagates with the pump light, the other is related to the
co-propagating wave’s (bq) own thermal noise. The first term shows that the mechanical waves
travelling in opposite directions are coupled to each other via light.

Fig. 6.6 plots the power spectra of the co-propagating acoustic at different input powers,
with the following parameters: acoustic resonance frequency ΩB/2π = 6.37 MHz, laser (pump)
frequency wL/2π = 193 THz, fiber-to-cavity coupling rate κext = 180 MHz, backscattering-
modified total optical mode linewidth (κ +

4κ2
b

κ
)/2π = 363 MHz 4, the radiation pressure op-

tomechanical coupling rate g0,rp/2π is estimated to be 11 kHz in § 6.2.4 , optical detuning
∆ = ΩB, intrinsic mechanical linewidth Γ/2π = 85± 6 kHz, the factor for the backscattering
effect ξ = 0.2 and g0,pt/2π = 122 kHz.

However, sinc that the optical cavity linewidth κ is much larger than the acoustic resonance
frequency, the first term of the power spectrum of bq in Fig. 6.6(a) is negligible compared to
the second term. Then the dynamical solution of bq(ω) is reduced to be:

bq(ω) =
√
Γ bin(ω)χq(ω). (6.23)

In addition, in the denominator of χ−1
q (ω), the optical linewidth dominates over other terms

around the acoustic resonance frequency. So the denominator of bq can be further approximated
4The real part of the denominator of Eq. (2.22) gives the backscattering modified optical linewidth, showing

backscattering broadens the optical mode.
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Figure 6.7: Effective mechanical linewidth Γeff of the forward propagating acoustic wave versus
input laser power (blue line), plotted using Eq. (6.26). The orange shading corresponds to the
region above the Brillouin lasing threshold, for which the analytical theory is no longer valid.

as:
χ−1
q (ω) = −i(ω − ΩB) + Γ/2− ξg0,rpg0,totncav,k

−iω + i∆+ κ/2
. (6.24)

The first two terms are related with the original mechanical resonance of the co-propagating
wave. The last term describes how the interaction with light influences the co-propagating
wave. For convenience, the last term is denoted as

Σbq(ω) = iδΩB(ω)−
Γopt(ω)

2
=

−ξg0,rpg0,totncav,k

−iω + i∆+ κ/2
, (6.25)

where the influence of light on the acoustic wave is decomposed into two parts: the imaginary
part δΩB(ω) is related to the acoustic resonance frequency change (frequency pulling, or optical
spring effect) by light; the second part Γopt(ω)/2 is related with the acoustic linewidth change
(optical damping) generated by light. Again, due to large optical linewidth κ, Σbq(ω) is mainly
determined by the optical linewidth around the acoustic resonance frequency. Particularly,
when the pump laser is marginally blue detuned by the acoustic frequency (∆ = ΩB), the
imaginary part diminishes, with light only affecting the acoustic linewidth. Thus, when ∆ = ΩB,
the effective acoustic linewidth is defined as

Γeff = Γ− 4ξg0,rpg0,totncav,k

κ
. (6.26)

This is the intrinsic acoustic linewidth reduced by an optical damping term, which is, in the
limit of no phothermal effect (g0,tot = g0,rp), equal to the optical measurement rate [52]. Using
the same experimental parameters for Fig. 6.6, the effective linewidth versus input laser power is
plotted in Fig. 6.7. This figure shows that the effective acoustic linewidth has a linear relation
with the input laser power, and reaches zero at around 1.8 µW , where the spontaneously
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Figure 6.8: Power spectra of the counter-propagating acoustic wave versus input laser power,
showing the optical damping of the counter-propagating acoustic wave, plotted using Eq. (6.30).
Blue: 1.8 µW ; yellow: 1 µW ; red: 0.1 µW .

thermally excited Brillouin acoustic wave is optically amplified to a large coherent amplitude,
i.e. Brillouin lasing. The observation of Brillouin lasing implies a multiphoton cooperativity of
C = 1, an important threshold for the realization of quantum state transfer protocols.

Using the same method of deriving and simplifying the solution of bq(ω), from the equations
of motion in Eqs. (6.17) the solution of the counter-propagating acoustic wave b−q(ω) is obtained:

b−q(ω) =

√
Γ b−in(ω)

−iω + iΩB + Γ/2 +
ξg0,rpg0,totncav,k

−iω−i∆+κ/2

. (6.27)

Similarly, the last term in the dominator is defined as

Σb−q(ω) =
ξg0,rpg0,totncav,k

−iω − i∆+ κ/2
, (6.28)

which can also be decomposed into a real part and an imaginary part. At the limit of large
optical linewidth κ, when the optical detuning ∆ is roughly −ΩB, the imaginary part related
with frequency pulling is neglected. This approximation leads to the effective acoustic linewidth
in Eq. (6.27)

Γeff− = Γ +
4ξg0,rpg0,totncav,k

κ
. (6.29)

Different from the effective linewidth of the co-propagating acoustic wave, the effective linewidth
of the counter-propagating acoustic wave in Eq. (6.29) increases linearly with the pump laser
power. This means that light exerts a damping force on the counter-propagating acoustic wave.
This is shown in the counter-propagating acoustic wave power spectra below achieved in a
similar approach of deriving Eq. (6.22):

Sb−qb−q(ω) = Γn−q|χ−q(−ω)|2, (6.30)

where
χ−1
−q(ω) = −iω + iΩB + Γ/2 +

ξg0,rpg0,totncav,k

−iω − i∆+ κ/2
. (6.31)
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Figure 6.9: Analytical calculation of the reflected light power spectrum in the non-depleted
pump regime from Eq. (6.33), showing the lasing of the Stokes sideband. Curves corrspond to
Pin = 0.5µW (blue); Pin = 1µW (yellow) and Pin = 1.8µW (red - at phonon lasing threshold).

After the analysis of the two acoustic waves bq and b−q, inserting the simplified solutions
(Eq. (6.23) and Eq. (6.27)) back into the equations of motion Eq. (6.17), the solution of the
backscattered optical field a−k yields

a−k(ω) =
i
√
ξ g0,rpαk(b−q(ω) + b†q(ω))

−iω − i∆+ κ/2
, (6.32)

which is the sum of the two acoustic waves filtered by the optical cavity response.
The power spectrum of the reflected light is calculated using the self-correlation of Eq. (6.32):

Sa−ka−k
(ω) =

1

2π

∫ ∞

−∞
dω′⟨[a−k(−ω)]†a−k(ω

′)
⟩

= ξg20,rpncav,k|χ−k(−ω)|2
(
Γ (nq + 1)|χ∗

q(−ω)|2 + Γn−q|χ−q(−ω)|2
)
,

(6.33)

where χ−1
q (ω) is from Eq. (6.24), χ−q(ω) is from Eq. (6.31), and χ−k(ω) is:

χ−1
−k(ω) = −iω − i∆+ κ/2. (6.34)

Note that in the co-propagating acoustic wave part of Eq. (6.33), it’s the complex conjugate
χ∗
q(−ω) instead of χq(−ω), because it is b†q(ω) in the solution of a−k(ω) [Eq. (6.32)]. Eq. (6.33)

also shows that the backscattered light power spectrum is the power spectrum of the acoustic
waves scaled by the spectral response of the cavity.

Below the Brillouin lasing threshold, the co-propagating wave is amplified, while the counter-
propagating wave is optically attenuated. Unless there is certain type of saturation mecha-
nism showing a substantial amount of pump light is scattered backward to pump the counter-
propagating wave, the counter-propagating wave induced sideband (anti-Stokes sideband) is
extremely weak. Thus only the Stokes sideband is plotted in the power spectra of the reflected
light in Fig. 6.9.
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Note that this analytical result is valid as mentioned in the non-depleted pump regime,
and only describes the behaviours below the threshold. The above threshold behaviour can be
explained in the numerical simulation of the equations of motion without non-depleted pump
approximation. Nevertheless, this analytical approach is able to predict the dynamics and
estimate the performance of the system below the lasing threshold, for example the Brillouin
optomechanical coupling rate and lasing threshold. With experimental measurements of Bril-
louin linewidths at different input powers [Eq. (6.26)], this analytical approach can also help
extract the intrinsic acoustic linewidth.

6.2.6 Theory on Brillouin Induced Strong Optical Coupling

Here we calculate the modified eigenfrequencies of a pair of optical cavity modes introduced by
mechanically mediated scattering between them. For simplicity, we neglect the two interacting
terms in the full Hamiltonian [Eq. (6.12)] for anti-Stokes scattering, as the Brillouin interaction
is dominated by Stokes scattering and the anti-Stokes scattering in it is suppressed.

Ĥ = ℏωka
†
kak + ℏω−ka

†
ka−k − ℏg0

(
a†ka−kbq + aka

†
−kb

†
q

)
, (6.35)

where ωk and ω−k are the bare eigen frequencies of the two optical modes, and the associated a is
the lowering operator of each mode. g0 is the usual vacuum optomechanical coupling rate, and
bq is the lowering operator for the co-propagating acoustic wave, where the counter-propagating
wave is neglected. k and q are respectively the wave numbers of the optical modes and acoustic
wave, with the signs in the front indicating directions. The bare mechanical Hamiltonian has
been neglected here because we will instead just assume that the mechanical oscillator oscillates
at some frequency and at some amplitude (the exact frequency will turn out not to matter, but
should be expected to be very close to the bare mechanical resonance frequency).

This Hamiltonian models the Brillouin interaction of particular interest to this experiment,
but also a broader class of ”photon-phonon translator” type systems such as introduced by the
Painter group [187].

Equations of motion

From the Hamiltonian we directly obtain the equations of motion for the coupled optical cavity
modes in the absence of dissipation. While dissipation can have the effect of shifting the eigen
mode frequencies, for high quality optical cavities, as is the relevant case for this experiment,
this is a negligible effect. Neglecting the dissipation allows a simpler calculation.

The equations of motion are found to be:

ȧk = −iωkak + ig0a−kbq (6.36)

ȧ−k = −iω−ka−k + ig0akb
†
q (6.37)
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Then we treat the mechanical oscillator classically (we’re interested in the light scattered
due to its coherent oscillation rather than fluctuations) by substituting bq with βqe

−iΩt. βq is
the amplitude of oscillation and Ω can be thought of as the mechanical resonance frequency
though in fact our results do not require this (of course, the further away from resonance the
harder it will typically be to drive the oscillator to a given amplitude). We take βq to be
real, without loss of generality. This just determines the phase of the mechanical oscillation.
Defining the mechanical-amplitude boosted optomechanical coupling rate gopt = βq g0, we then
obtain

ȧk = −iωkak + igopte
−iΩta−k (6.38)

ȧ−k = −iω−ka−k + igopte
iΩtak. (6.39)

The terms on the right are coherent coupling terms that act to hybridise the two optical modes.
This results in a new pair of orthogonal eigenmodes with shifted frequencies.

To determine the shifted eigenmode frequencies we postulate solutions of the following form:

ak → αke
−iωt (6.40)

a−k → α−ke
−iωt (6.41)

where ω is the oscillation frequency. Again we are neglecting the fluctuations in the fields which
do not alter the eigen frequencies, with the α’s representing the coherent amplitude of each
field. We then find

−iωak = −iωkαk + igopte
−iΩtα−k (6.42)

−iωa−k = −iω−kα−k + igopte
iΩtαk. (6.43)

In matrix representation this can be written as

M ·α = 0, (6.44)

where

M =

[
ωk − ω −gopte

−iΩt

−gopte
iΩt ω−k − ω

]
and

α =

[
αk

α−k

]
Non-trivial (α ̸= 0) solutions to this matrix equation only exist when M is invertible and has
a determinant equal to zero. This gives a condition on the frequency ω:

|M| = (ωk − ω) (ω−k − ω)− g2opt = 0, (6.45)

which does not depend explicitly on the oscillation frequency Ω of the mechanical element.
Note that there is an implicit dependence, since achieving a large βq and therefore gopt is



CHAPTER 6. BRILLOUIN LASING IN SUPERFLUID 98

easier for oscillation frequencies near the mechanical resonance frequency. Similarly, choosing
appropriate bare optical frequencies can greatly enhance the ability of radiation pressure to
drive the mechanical response.

Solving this equation for ω gives two new shifted eigen frequencies ω± given by

ω± = ω̄ ±
√
∆2/4 + g2 , (6.46)

where ω̄ = (ωk+ω−k)/2 is the average of the two bare resonance frequencies and ∆ = ωk−ω−k

is their difference.
We can observe that when gopt ≫ ∆ the splitting between the resonances is given by

δ = ω+ − ω− = 2gopt as expected for strong coupling. However, in the reverse regime where
g ≪ ∆, δ = ∆ + g2opt/∆. In this case, the first term (∆) is just the initial splitting of
the resonances. The shift in splitting due to the mechanically-mediated coupling is g2opt/∆,
suppressed compared to the regime where gopt ≫ ∆ by a factor of 2∆/gopt. In this superfluid
Brillouin lasing experiment, the initial splitting of the two optical modes is zero, so the strong
optical coupling is observed.

6.3 Experimental Setup
To investigate the Brillouin interaction between the phase-matched optical field and acoustic
wave in superfluid. We cool down a silica disk microresonator with helium-4 gas in a indium-
sealed sample chamber inside a dilution refrigerator. Laser light is coupled to the resonator
by feeding through optical fibers into the fridge. Silica microdisks are fabricated from a 500
µm-thick silicon handling wafer topped by a two-micron thick thermal oxide layer (Virginia
Semiconductor). Disks are defined in the silica layer through a combination of photolithography
(AZ1518 positive resist and HMDS adhesion promoter) and hydrofluoric acid (HF) wet-etch. A

40 μm

Figure 6.10: Scanning Electron Microscope (SEM) image of a silica WGM resonator on the
silicon chip (radius 40 µm, thickness 2 µm).
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subsequent XeF2 gas-phase release selectively etches the silicon material and leaves the silica
disks isolated from the substrate atop a silicon pedestal, as shown in Fig. 6.10.

Unlike in previous experimental work [1, 18], the fabricated microdisks undergo no laser
reflow step to form a microtoroidal resonator, and maintain their wedged outer sidewalls. This
wedge shape serves a dual purpose: beyond enhancing the optical Q (over a vertical sidewalled
microdisk) by making the device less sensitive to fabrication-induced roughness [150], it also
serves to deconfine the optical mode and maximize the optical field intensity at the top and
bottom disk interfaces where the superfluid film resides, as shown in Fig. 6.12. Indeed, the value
of the WGM electric field at the silica interface is the parameter which should be optimized
in order to maximize the optomechanical coupling rate between light and superfluid [2], see
§ 6.2.3. Fabricated devices show a number of WGM families, with optical Qs in the 105 to low
107 range.

The experimental setup is shown in Fig. 6.11. The microresonator chip is positioned in-
side a superfluid-tight sample chamber at the bottom of a Bluefors dilution refrigerator (base
temperature 10 mK). Helium-4 gas injected into the superfluid tight sample chamber forms
a nanometer-thick self-assembling superfluid film coating the microresonator. Laser light is
injected into the dilution fridge through an optical fiber and is evanescently coupled into the
microresonators via a tapered optical fiber [18]. The Stokes and anti-Stokes light backscatterd
by the acoustic waves are collected using a circulator, and eventually beats with the Local Oscil-
lator (LO), the frequency of which is up-shifted by 80 MHz using an Acousto-Optic Modulator
(AOM). The beat of Stokes and anti-Stokes light with LO is sent to a large bandwidth balanced
photodetector (PD). This forms a heterodyne detection of the backscattered signal. Due to the
beat with LO, the anti-Stokes light shows sideband below the AOM frequency (80 MHz) on

80 MHz

Power 
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Dilution Cryostat

Figure 6.11: Schematic of the experimental setup. BS: beamsplitter; AOM: acousto-optic
modulator; blue box represents the sample chamber in the dilution refrigerator.
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the Spectrum Analyser, while the Stokes sidebands are above the AOM frequency. Inside the
sample chamber, precise fiber positioning is achieved through Attocube nanopositioning stages.
The fiber taper rests on support pads microfabricated on the chip alongside the resonators [1], in
order to eliminate taper drift and fluctuations. The experimental measurements are performed
with the pulse-tube cooler switched off to minimize vibrations. The sample chamber contains a
small volume of micronized alumina powder in order to increase the effective chamber surface
area (by ∼ 10 m2), leading to more precise film thickness control and greater film thickness
stability [87]. While at base temperature, helium-4 gas can be continuously injected from the
top of the cryostat into the sample chamber through a thin capillary. This allows for varying
of the film thickness, and thus in-situ tuning of the Brillouin frequency.

6.4 Experimental Results

6.4.1 Characterization of Superfluid Film Thickness

We first calibrate the superfluid film thickness to determine the third sound velocity. The thick-
ness of the superfluid film covering the microresonator can be assessed through two independent
means:

• First, through the magnitude of the WGM wavelength-shift across the superfluid transi-
tion temperature. When sweeping the cryostat temperature down from 1.1 K to 0.2 K,
all WGMs acquire a positive wavelength shift corresponding to the increased optical path
length due to the condensation of the superfluid film on the resonator surface5, as shown
in Fig. 6.12. Each WGM experiences a frequency shift G

2π
∆x, where G = ∂ω0

∂x
is the op-

tomechanical coupling strength describing the optical cavity angular resonance frequency
shift per unit deposited superfluid film thickness on the resonator boundary ∆x [2, 50].
The value of G is WGM dependent, and can be calculated through FEM modelling, as
detailed in § 6.2.3 below. With the knowledge of G, the magnitude of the experimentally
measured WGM frequency shift can be converted into a deposited film thickness.

• Second, through the Brillouin frequency. The Brillouin wavelength is imposed by the
wavelength of light through λB ≈ λlight/2, where λlight is the wavelength of light in the
silica given by λ0/neff , i.e. the freespace wavelength λ0 divided by the WGM effective
index. The Brillouin frequency ΩB/2π = c3/λB thus informs us on the speed of sound in
the superfluid c3, which is given by [84]:

c3 =

√
3
ρs
ρ

αvdw

d3
. (6.47)

Here the ratio ρs/ρ is nearly one at the low temperature used in our experiments, αvdw =

2.6×10−24 m5 s−2 describes the van der Waals interaction between the helium atoms in the
5Indeed, the magnitude of the thermo-optic shift [188] over this temperature range can be neglected.
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Figure 6.12: a) Microdisk optical spectrum, showing a number of high-Q WGMs separated by
a ∼ 7 nm free-spectral-range (FSR). WGM highlighted in gray near 1555 nm is the one used in
the experiments. b) WGM wavelength shift as a function of fridge temperature, for the mode
highlighted in (a). The vertical scatter in the data points is due to the 20 pm repeatability
error in the motor sweep of our tunable laser diode. Inset displays the electric field norm of
the (p = 1, m = 186) quasi-TE mode of the structure.

superfluid and the silica disk [2] and d is the superfluid film thickness. The experimentally
measured Brillouin frequency thus provides a second independent estimate of the film
thickness in the experiments.

The film thickness estimation through these two methods is provided in Table 6.2. We ascribe
the discrepancy to uncertainties in the exact device geometry. Indeed, variations in wedge angle
of a few degrees can shift G by over 30%, by altering the mode confinement of the WGM and
its interaction with the superfluid film. Surface roughness on the microresonator, not taken
into account in the simulations, may also increase the effective surface area of the resonator
and result in uncertainties in the G.

6.4.2 Influence of Surface Tension

In thin superfluid films, there are two types of forces which can act as the restoring force of
surface acoustic waves: van der Waals force and surface tension. The acoustic waves that these
two type of restoring forces correspond to are respectively third sound and ripplons. The type
of the acoustic wave in our system can be determined using the dispersion relation of thin
superfluid films. The dispersion relation giving the angular frequency Ω of a superfluid wave
under the influence of van der Waals and surface tension restoring forces is:

Ω =

√
3αvdw k2

d3
+

σ k4 d

ρ
, (6.48)

where σ = 3.54× 10−4 N/m is the superfluid 4He surface tension [189] and k = 2π/λ = ζm,n/R

the angular wavenumber. We plot this frequency Ω/2π in Fig. 6.13, along with the limiting
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Figure 6.13: Frequency Ω/2π of Brillouin wave in the presence of both van der Waals and
surface tension restoring forces (green), as well as the limiting cases of the frequency Ωvdw/2π
of a pure van der Waals wave (third sound - blue) and the frequency Ωσ/2π of a pure surface
tension wave (ripplon - orange). Values plotted with k = 107, corresponding to the Brillouin
wavenumber in our experiments.

cases of a pure van der Waals wave (third sound) of frequency Ωvdw/2π = 1
2π

√
3αvdw k2

d3
, and

a pure surface tension wave (ripplon) of frequency Ωσ/2π = 1
2π

√
σ k4 d

ρ
. For the film thickness

used in the experiment, the dominant restoring force is the van der Waals interaction, and the
Brillouin wave can be well approximated by a third sound mode. For thicker films (> 13 nm),
the restoring force becomes dominated by surface tension, and the wave crosses over into a
ripplon-like regime.

6.4.3 Transition from Standing-Wave ‘Optomechanics-like’ Interac-
tion to Travelling-Wave ‘Brillouin-like’ Interaction

There has been a recent push to theoretically unify the fields of cavity optomechanics and
Brillouin scattering [190]. While both fields deal with the inelastic interaction of photons with
a mechanical degree of freedom (phonons), the Brillouin scattering paradigm generally refers to
the interaction between a travelling optical field and a travelling mechanical wave which causes
a periodic refractive index modulation [see Fig. 6.14(a)]. In contrast, the optomechanical
paradigm —as illustrated by the archetypal Fabry-Perot cavity with a movable end-mirror
Fig. 3.1 — typically refers to the interaction between a standing optical field and a standing
mechanical wave, as illustrated in Fig. 6.14(b).

We show here that these two regimes can be accessed on the same device, and that the switch
can be performed in-situ, simply by tuning the position of the coupling fiber taper in order to
transition from a standing to a travelling intracavity optical field. Indeed, our microresonator
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Figure 6.14: (a) Illustration of ‘optomechanics-like’ interaction where the pump is scattered
by a standing refractive index grating whose strength is modulated in time, leading to sym-
metric Stokes and anti-Stokes sideband generation. (b) Schematic illustration of a travelling
wave ‘Brillouin-like’ interaction, where the pump scatters off a moving refractive index grating,
leading to single Stokes sideband generation. (c),(e),(g): normalized WGM transmission spec-
tra for increasing fiber taper coupling strength (blue line). The dashed and solid green lines
respectively refer to the photon numbers of the forwards and backwards travelling directions
|ak|2 and |a−k|2 (arbitrary units). By increasing the coupling the optical field changes from
predominantly standing to predominantly travelling: |ak|2/|a−k|2 at zero detuning goes from
0.53 (c) to 11.7 (e) and 162.4 (g). (d), (f) and (h): heterodyne power spectra respectively corre-
sponding to the cases (c), (e) and (g), illustrating the transition from symmetric to asymmetric
sideband generation.

possesses some native backscattering due to geometric imperfections such as sidewall roughness,
which introduces a coupling between forwards and backwards propagating directions. This
rate is experimentally measured to be κb/2π = 75 MHz, on the order of the intrinsic linewidth
κint/2π = 104 MHz, and manifests as the optical resonance taking on a characteristic doublet
lineshape [42], as shown in the blue trace in Fig. 6.14(c). The ‘Optomechanics-like’ interaction
occurs when the pump is scattered by a standing refractive index grating whose strength is
modulated in time, leading to symmetric Stokes and anti-Stokes sideband generation.

Based on coupled-mode theory formalism (see § 2.5), one can compute the relative amount
of light travelling in the forwards and backwards direction as a function of detuning in this
regime, as shown in the green traces in Fig. 6.14(c)-(g). Due to the backscattering rate κb being
of comparable magnitude to the loss rate κ, both circulation directions are similarly populated,
leading to a predominantly standing optical field, as described in Fig. 6.14(b). Indeed, we
verify that in this regime the Stokes and anti-Stokes sidebands are comparable in magnitude,
as shown in Fig. 6.14(d).
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Next, we increase the coupling rate κext of the cavity by approaching the fiber taper. As
the cavity was previously undercoupled, this increases the depth of the transmission dip, while
broadening the width of the resonance, as shown in Fig. 6.14(e). In this regime, the backscatter-
ing rate κb is no longer larger than the linewidth κ = κint + κext, and the forwards propagating
field is predominantly populated (green curves), leading to a predominantly travelling optical
field. This can be understood by looking at Eqs. (2.20, 2.21). Both propagation directions
experience a loss rate κ = κint + κext which depends on κext. However, while increasing κext

increases both the loss rate and the pump rate of the forwards field (see Eq. (2.20)), it only
increases the loss rate of the backwards propagating mode, which is pumped at a fixed rate
proportional to κb (see Eq. (2.21)). Increasing the coupling rate to the taper therefore biases
the system towards a forwards travelling optical field and a situation analogous to the Brillouin
case described in Fig. 6.14(a). Indeed, in this coupling regime the asymmetry between Stokes
and anti-Stokes sidebands reaches 22 dB, as shown in Fig. 6.14(f). Further increasing the ta-
per coupling rate well into the overcoupled regime (Fig. 6.14(g)) leads to an even higher ratio
of forwards to backwards optical intensity (|ak|2/|a−k|2 = 162 on resonance), and a sideband
asymmetry reaching 33 dB (Fig. 6.14(h)).

6.4.4 Brillouin Lasing Measurement and Simulation

Backwards Brillouin scattering is an inelastic process, whereby each Stokes scattered photon
is accompanied by the emission of one phonon into the forward travelling acoustic wave. This
optical pumping results in a modified effective mechanical linewidth Γeff for the acoustic wave,
which, based on the quantized interaction Hamiltonian in the non-depleted pump regime, can be
expressed analytically as Eq. (6.26), with ncav the intra-cavity photon number, κ = κint + κext

the loaded optical linewidth, g0 the single photon optomechanical coupling rate (including
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Figure 6.15: Effective acoustic linewidth Γeff vs input power, along with fit by Eq.(6.26).
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both radiation pressure and photothermal interactions) and Γ the intrinsic linewidth of the co-
propagating wave. When the effective linewidth reaches zero, spontaneously occurring thermal
excitations in the superfluid film are optically amplified to a large coherent amplitude, i.e
phonon lasing.

To experimentally measure the onset of lasing we select an optical mode at λ = 1555 nm
with intrinsic linewidth κint/2π = 104 MHz. This mode is natively split due to geometrical im-
perfection (backscattering coupling rate between clockwise (CW) and counter-clockwise (CCW)
WGM κb/2π = 75MHz). We observe that changing the cavity coupling strength κext through
the taper position enables us to tune the optical field from a standing wave to a travelling
wave, resulting in a change to the coupling of the corresponding standing or travelling acoustic
wave (see Supplemental Material for more details). For the rest of this work we operate in the
overcoupled regime (κext/2π = 180 MHz corresponding to a loaded Q ≃ 7 × 105) in order to
overcome the native backscattering and ensure a travelling-wave Brillouin excitation.

We measure the Stokes and Anti-Stokes signals in the reflected light via a heterodyne
detection scheme, as shown Fig. 6.11. Fig. 6.16 plots the Stokes signal peak power as a function
of input laser power, while Fig. 6.15 shows the Stokes linewidth versus input power, along with
a fit through Eq. (6.26), yielding an intrinsic acoustic linewidth of Γ/2π = 85 ± 6 kHz and
a Brillouin lasing threshold power of 1.8 µW. Further, the numerical simulation of the full
equations of motion (Eq. (6.15)) gives a photothermal single photon coupling rate of g0,pt/2π =

122 kHz and a backscattering factor ξ (defined in Eq. (6.17)) of 0.2 with the 1.8 µW lasing
threshold power and g0,rp/2π fixed to be the finite element modelling result of 11 kHz (see
§ 6.2.3). The improved optical overlap with the superfluid excitations [2] in these devices means
the optomechanical coupling is dominated by the radiation-pressure interaction, in contrast to
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Figure 6.16: Stokes sideband peak power versus input laser power (blue circles). Solid red line
is an analytical fit to the data in the non-depleted pump regime, while dashed red line is a fit
obtained by numerically solving the full equations of motion). Shaded region above 1.8 µW
marks the onset of Brillouin lasing.
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Parameter Symbol Value Units
Acoustic damping rate Γ/2π 85 kHz
Acoustic (Brillouin) frequency ΩB2π 6.3 MHz
Laser detuning ∆ 0 MHz
Intrinsic cavity decay rate κint/2π 104 MHz
Input coupling (external) cavity decay rate κext/2π 180 MHz
Backscattering decay rate κb/2π 75 MHz
Single photon coupling strength (radiation pressure) g0,rp/2π 11 kHz
Single photon coupling strength (photothermal) g0,pt/2π 122 kHz

Table 6.3: System parameters used in numerical simulation.

our earlier work with silica microtoroids, where the optomechanical coupling was dominated by
non-conservative photothermal effects [18]. As pointed out earlier, the fluid’s greater compliance
accounts for the coupling rate g0,rp being close to three orders of magnitude larger than what
is achieved using the electrostrictive interaction in similar sized silica microspheres [161].

Using the extracted values of g0,pt and Γ, the functional form of the Stokes sideband peak
power is fitted to analytical solutions (solid red line in Fig. 6.16), with only measurement
transduction efficiency and detector noise as free parameters. The linewidth vanishes at 1.8
µW, corresponding to the Brillouin lasing threshold.

While this microwatt-range value is amongst the lowest reported Brillouin lasing thresholds
[162], Eq. (6.26) reveals a quadratic dependence of the lasing threshold on cavity Q, through
the decrease in κ and corresponding increase in ncav. Reducing the optical linewidth to 20 MHz
(Q = 107) through a better control of sidewall roughness [150] would reduce the threshold down
to nano-Watts. Pico-Watt range lasing would even be accessible with a modest improvement
in acoustic dissipation, significantly below what can be achieved with solid state systems.

Beyond the lasing threshold, the pump light is depleted by scattering off the strong su-
perfluid travelling refractive index grating, such that the linearised theory is no longer valid.
The above-threshold behaviour is therefore fitted by numerically solving the full equations of
motion of the optical and acoustic fields.

The full equations of motion [Eq. (6.15)] are numerically solved in the time domain using
a Matlab numerical solver function (ode23s), with the thermal noise terms

√
Γ bin(t) and

√
Γ b−in(t) replaced by an initial weak amplitude (initial “kick”), as we are not doing stochastic

simulation. The initial weak amplitude is valid, because the optical input amplifies the co-
propagating acoustic wave through the Brillouin interaction, and the initial weak amplitude
only affects the very start of the simulation, not the steady state of the system reaching lasing
regime.

The numerical simulation returns the solutions of the four variables respectively for the
four fields for a given simulation time interval. The simulation parameters are summarized
in Table 6.3. Fig. 6.17(a) and (b) directly plot the temporal solutions of the co-propagating
acoustic wave (bq) for 0.03 ms simulation time at 1.2 µW and 1.8 µW input power, respectively.
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The displacement is oscillating at 6.3 MHz, so the envelope in the two plots shows how the zero-
point-motion normalized acoustic amplitude evolves. In Fig. 6.17(a) the Brillouin amplification
at 1.2 µW input power can not compensate the acoustic damping (Γ), so the simulation result
shows the decay of the co-propagating acoustic wave after the “kick” given at the start of the
simulation. Whereas, when the input power is set at around 1.8 µW, the Brillouin amplification
compensates the acoustic damping, so that the initial “kick” generated acoustic amplitude does
not decay over simulation time, which means the effective mechanical linewidth Γeff [Eq. (6.26)]
reaches zero at this input power.

With g0,rp/2π fixed to 11 kHz, and the system parameters extracted from the experiment
summarized in Table 6.3, the 1.8 µW lasing threshold from the numerical simulation agrees
with the experimentally measured lasing threshold, when g0,pt/2π in the simulation is tuned
to 122 kHz. Further, we need to note that the full numerical simulation takes into account
the native backscattering (κb) observed in the experiment, whereas in the analytical approach
the parameter ξ is introduced to take into account the two effects of the backscattering to-
gether: decreasing the pump field intracavity photon number ncav,k, and actively cooling the
co-propagating acoustic wave bq. By feeding the g0,pt extracted from the full numerical simula-
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Figure 6.17: (a) Temporal evolution of the zero-point-motion normalized displacement of the
co-propagating acoustic wave at 1.2 µW input power (the decaying envelope shows the co-
propagating wave is ringing down after the initial “kick” at the start of the simulation, because
there is no thermal drive in the simulation.); (b) Temporal evolution of the zero-point-motion
normalized- displacement of the co-propagating acoustic wave at around 1.8 µW input power
(the envelope shows that the mechanical amplitude is almost constant over time, because the
Brillouin amplification at 1.8 µW compensates the acoustic damping rate.); (c) Multiple har-
monics from Brillouin lasing measured at 5.65 µW input power, (top: experimental spectrum;
bottom: numerical simulation). The small amount of native coupling between CW and CCW
WGMs explains why all Stokes and Anti-Stokes orders are visible in the backscattered light.
Note that Stokes sidebands appear at higher frequencies due to the heterodyne detection.
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tion lasing threshold of 1.8 µW back to the experimental mechanical linewidth fit (Fig. 6.15), ξ
is determined to be 0.2, with the intracavity photon number calculated using Eq. (6.16). Note
that g0,pt and ξ are not independent parameters, we need both the numerical simulation and
the experimental mechanical linewidth fit to determine them.

We can not only do the simple temporal analysis of the acoustic amplitude evolution, but
also do the spectral analysis of the numerical simulation solutions by performing Fourier trans-
form in Matlab. The peak power of the simulated power spectra of the backscattered field (a−k)
gives a good agreement to the measured Stokes power scaling (dashed red curve in Fig. 6.16),
and also provides a confirmation of the saturation mechanism: above threshold, the counter-
propagating Stokes field becomes strong enough to initiate its own Brillouin lasing process. At
5.65 µW input power the simulated power spectrum of the backscattered field shows higher
harmonics to the 6th order, with an excellent agreement to the experimental result showing in
Fig. 6.17.

6.4.5 Experimental Demonstration of Strong Optical Coupling

The lasing of the co-propagating acoustic wave generates creates a large refractive index grating
travelling at the speed of sound, mediating a coupling between the initially quasi-degenerate
CW and CCW propagating optical fields. If this coupling is sufficiently strong, it will lift
their degeneracy resulting in a new set of optical eigenfrequencies given by Eq. (6.49), where
gopt = g0 β is the phonon boosted optomechanical coupling rate:

ω± = ω̄ ±
√

∆2/4 + g2opt . (6.49)

Here ω̄ = (ωk+ω−k)/2 is the average of the two bare optical resonance frequencies and ∆ = ωk−
ω−k is their original difference. The strong pump depletion above the lasing threshold, visible
in Fig. 6.17, hints towards strong coupling between the CW and CCW propagating optical
fields. To measure this effect, a weak tunable diode probe laser is added to the heterodyne
setup shown in Fig. 6.11. While the pump laser is set on resonance with the optical mode,
the probe laser is repeatedly swept at 100 Hz across the optical resonance. The transmitted
optical photodetector signal is low-pass filtered (filter bandwidth = 20 kHz) and averaged 256
times on an oscilloscope in order obtain the optical cavity spectrum, free from any potential
modulation due to the Brillouin lasing process.

Fig. 6.18 shows the optical resonance measured with this pump-probe setup. With the
pump laser off (Fig. 6.18(a)), the optical mode appears non-split. Next, the pump laser is
switched on, injecting 5 µW of optical power. Since the pump power is above threshold, this
initiates spontaneous Brillouin lasing, as verified through the reflected light power spectrum.
Due to the large refractive index grating generated by the Brillouin lasing process, the probe
laser now detects two distinct cavity resonances (Fig. 6.18(a)): a lower frequency resonance
(red) sensing the peaks of the superfluid Brillouin wave, and a higher frequency resonance (blue)
—spatially shifted by λB/2— sensing the troughs, see inset of Fig. 6.18(b). The magnitude of
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Figure 6.18: (a) With the pump laser off, the optical mode measured by the probe beam is
non-split. (b) At 5 µW pump power, the lasing of Brillouin wave splits the optical mode into
a doublet.

the splitting provides the coupling rate (gopt/2π)=187 MHz, larger than the intrinsic linewidth
of the optical mode.

In contrast to solid systems where optical modes are separated by many GHz (i.e. large ∆),
here the combination of a compliant low-frequency fluid interface with the high optomechanical
coupling rate afforded by microscale confinement enables, for the first time, the observation
of mechanically-mediated strong optical coupling between degenerate modes. This could open
up the possibilities of low power, superfluid based, optical switches and reconfigurable optical
circuits [184].

6.4.6 Orthogonality of WGMs in Brillouin Mediated Strong Cou-
pling

The whispering gallery modes form the complete orthogonal eigenmode bases of the electromag-
netic field confined inside the optical resonator. Because of this orthogonality, the superfluid
surface deformation (and its associated refractive index modulation) caused by driving one
WGM should in principle leave other WGMs unaffected. This is indeed what we observe in the
experiments. Fig. 6.19(a) shows a transmission spectrum of our microresonator, with the WGM
used in the experiments (m = 186) highlighted in red. The WGM of the same mode family
with the next azimuthal order (m+1 = 187), separated from the first by a free spectral range, is
highlighted in green. Using the pump-probe setup shown in Fig. 6.11, we use the strong pump
tuned to the m WGM to initiate Brillouin lasing. In this regime, the weak probe scanned over
the m WGM reveals a doublet splitting (Fig. 6.19(b)), a manifestation of the strong coupling
between forwards and backwards propagating directions mediated by the superfluid index grat-
ing. In contrast, sweeping over the adjacent m+1 WGM in the same lasing regime shows this
mode remains unaffected and maintains its Lorentzian shape, see Fig. 6.19(c).
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Figure 6.19: a) Normalized cavity transmission spectrum, showing the optical mode used in the
experiments (m = 186) near 1555 nm (dashed red box), along with the next azimuthal order
WGM (m+ 1 = 187) separated in wavelength by an FSR (dashed green box). In the presence
of the strong refractive index grating created by pumping mode m above the Brillouin lasing
threshold, the adjacent optical mode m + 1 measured by the probe laser remains unsplit (b),
while the pumped mode reveals strong mechanically induced optical coupling (c). d) Schematic
illustration of mode orthogonality between mode m = 10 (red) and its associated refractive
index modulation (blue) and mode m+ 1 = 11 (green).

A schematic illustration of this orthogonality is shown in Fig. 6.19(d), with lower azimuthal
orders plotted here for clarity. The top panel shows the intensity profile, proportional to E2,
of the m = 10 WGM along the circumference of the resonator (red), along with the associated
superfluid film deformation generated by the Brillouin scattering process (blue). The lower
panel shows this same surface deformation (blue) along with the field intensity of the m+1 = 11

WGM. Because of the WGM orthogonality, the refractive index modulation created by mode
m leads to net change in optical path length for the m + 1 WGM, and hence no energy shift
(Eq. (6.6)) and a zero g0 and gopt, (see § 6.2.6).

6.5 Conclusion
This chapter describes the experiment of ultra-low threshold Brillouin lasing based on the
superfluid optomechanical disk resonator. First the research background of Brillouin lasers
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is reviewed, with platforms from optical fibers to silicon nanowires, from nonlinear optical
waveguides to optical resonators, with materials from solid to liquid, etc. The advantages and
disadvantages of different platforms and materials are compared. For example, compared with
conventional optical fiber and waveguide Brillouin systems, As2S3 nonlinear optical waveguides
and silicon suspended optomechanical waveguides of higher Brillouin nonlinearity are inten-
sively investigated for integrated Brillouin laser applications. Compared with solid materials,
liquid materials have advantages like low speed of sound which leads to the low Brillouin shift,
and large mechanical compliance which leads to the large coupling rate. The research back-
ground summary gives a broad view of this field, and helps us find the motivation for realizing
Brillouin lasing in the superfluid optomechanical system.

Following the research background of Brillouin scattering, the theoretical modelling and
experimental results of the superfluid Brillouin optomechanical system are described. In the
theoretical modelling part we develop the interaction Hamiltonian for the intracavity opti-
cal field and the superfluid third sound based on the perturbation theory, which manifests the
essence of the physics of this experiment. In order to quantify the Brillouin interaction strength,
we numerically calculate the radiation pressure single photon optomechanical coupling rate g0,rp
to be 11 kHz based on the experimental parameters of the superfluid optomechanical disk res-
onator. In addition to the theoretical modelling, we introduce the experimental setup of the
heterodyne measurement of the Brillouin backscattered light. With this setup, we first show
that the optical frequency shift per unit mechanical displacement G/2π can be measured by
decreasing the cryostat temperature through the superfluid transition temperature. Second,
we demonstrate that by tuning the taper-cavity coupling rate to change the intracavity field
from standing to travelling wave, we can transition from standard optomechanics to travelling
Brillouin optomechanics. This is shown by the experimental result that the difference between
Stokes and anti-Stokes sidebands is only 2 dB with weak taper-cavity coupling, whereas the
difference is 33 dB when the taper-cavity coupling is strong. Third, by measuring the power
spectra of the Stokes sideband at different input laser power, we determine the Brillouin lasing
threshold of 1.8 µW, and the measured linear relation between the Stokes sideband linewidth
and input optical power agrees very well with Eq. (6.26) obtained from the analytical approach.
Furthermore, we perform full numerical simulation of the nonlinear equations of motion which
take into account the native resonator backscattering. Combining the experimental results of
the Stokes linewidth and the numerical simulation the photothermal optomechanical coupling
rate g0,pt and the native resonator backscattering parameter ξ are determined to be 122 kHz
and 0.2, respectively. Last, taking advantage of the ultra-strong Brillouin interaction in the su-
perfluid optomechanical system, we demonstrate that the Brillouin backscattering can mediate
strong coupling of the two counter-propagating degenerate optical modes. The experimental
results show that with high pump laser power the optical mode displays normal mode splitting
larger than the intrinsic optical linewidth.

Further improvements for the superfluid Brillouin experiment are possible, although the
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Brillouin lasing threshold is already the lowest in the literature. First of all, lowering the
acoustic dissipation and optical linewidth by smoothing the sidewall of our current devices
could reduce the threshold power into picowatt range. Second, depending on whether future
experiments investigate quantum or classical applications, the photothermal optomechanical
coupling should be correspondingly reduced or enhanced. For example, one possible solution
to reduce the photothermal effect is to utilize the optical resonator made of a circular slot-
waveguide, where the optical field and superfluid co-locate in the slot between the dielectric
material. Using the slot-waveguide ring resonators, the optical absorption of the resonator
material can be minimized. Furthermore, the native backscattering due to the resonator ge-
ometry imperfections can be avoided with better nano fabrication technique. Without the
native backscattering, the Brillouin lasing threshold can be further reduced, and the system
can have potential applications, such as non-reciprocal optical devices and precision Brillouin
gyroscopes.



Chapter 7

Conclusion

In this thesis I have presented the research work on superfluid optomechanics, where the tech-
niques of cavity optomechanics are leveraged to probe the superfluid excitations, such as third
sound and vortices. Owing to the strong coupling between light and superfluid motion in this
system, it can be potentially used to cool sound modes down to their energy ground state, and
to detect single quantized vortices in a nm-thick superfluid film. These potential applications
can help people understand the physics of strongly-interacting superfluids, which has not been
well studied.

7.1 Summary
Chapter 1 introduces the essence of cavity optomechanics. This chapter also presents the
motivations and brief overview (e.g. high precision sensing and macroscopic quantum state
generation, etc.) for the research in this field. Based on conventional optomechanical systems,
a superfluid optomechanical system is introduced, where the advantages of superfluid helium
expand the technique of cavity optomechanics to a new and unexplored field.

Chapter 2 briefly summarizes several very useful experimental concepts and techniques, such
as shot noise and detection methods (§ 2.3), optical cavities with the coupled mode theory and
the input-output relation (§ 2.4), frequency locking methods (§ 2.6), and the nanofabrication
process for on-chip WGM resonators (§ 2.7).

Chapter 3 goes through the basic concepts and theories for cavity optomechanics and su-
perfluid. We first formally introduces the canonical quantization respectively for a mechanical
oscillator and a single cavity optical mode (§ 3.1.1). Based on the separate Hamiltonians for
the mechanical oscillator and the cavity mode, we introduce the optomechanical interaction
Hamiltonian for a Fabry-Perot cavity with a movable mirror (§ 3.1.2). Then the equations
of motion are derived from the full optomechanical Hamiltonian. We solve the equations of
motion for both the steady state (§ 3.1.4) and the dynamics (§ 3.1.5), and present several char-
acteristic phenomena of cavity optomechanics, including optomechanical bistability, optical

113
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spring effect, optomechanical cooling, optomechanically induced transparency/ amplification,
which are widely observed in experiments and are useful to calibrate optomechanical systems.
Then the spectral analysis of the dynamical solution of the equations of motion is introduced
(§ 3.1.5). Furthermore we go through the phenomenological description of superfluid helium
(§ 3.2), derive the wave equation for third sound acoustic waves on the surface of a thin super-
fluid film (§ 3.2.3), and briefly explains the quantization of circulation (quantized vortices) in
a thin superfluid film (§ 3.2.4).

Chapter 4 presents the experimental work on the superfluid enhanced optical force. The
optical force is termed photoconvective force, which mediated by the superfluid fountain effect,
where the helium atoms flow toward the optically heated region and evaporate. The photo-
convective force resulted from the recoil of the evaporated helium atom is estimated to be one
order of magnitude larger than radiation pressure force given the optical cavity condition (§ 4.2).
Then a homodyne detection setup is used to measure a mechanical mode of the microtoroid
resonator. By monitoring this mechanical mode we are able to calibrate the mode temperature,
which is also used as the thermometer for the cryostat (§ 4.4.1). Next, the driven response
of the optical force is measured at temperatures both above and below the superfluid transi-
tion temperature, showing that the photoconvective force is 11 times larger than the radiation
pressure force (§ 4.4.2). Last, feedback cooling of the mechanical mode is performed using the
strong photoconvective force, and we show that the phonon occupancy of the mechanical mode
can be cooled down to of 2110 ± 40 (§ 4.4.3).

Chapter 5 presents the work on an optomechanical system composed of a WGM resonator
and surface acoustic waves on the thin superfluid film coated on the resonator. We first the-
oretically estimate the optomechanical coupling rate based on the mode perturbation theory,
showing that the optical frequency shift per unit mechanical displacement (G) can be up to 6
GHz/nm (§ 5.2.1). Then the acoustic modes confined on the circular geometry of the resonator
are analysed and the zero point motion of the acoustic modes is calculated (§ 5.2.2). Based
on the G and the zero point motion, the single optomechanical coupling rate can be larger
than the mechanical frequency of the acoustic waves (§ 5.2.3). Using this high performance
superfluid optomechanical system we theoretically and experimentally demonstrate that vortex
dynamics in the thin superfluid film can be probed by monitoring the frequency splittings of
the acoustics waves, and the experimental result shows the coherent evolution of 17 vortices
(§ 5.3.1).

Chapter 6 presents the experiment on the ultra-low threshold Brillouin lasing in a thin
superfluid film. We first introduce the background and state of the art of Brillouin scattering
systems (§ 6.1). Then based on the coupled mode theorem the dynamics of the superfluid Bril-
louin system with a WGM disk resonator is theoretically modelled, showing that the acoustic
wave travelling in the same direction with the pump field will be amplified, and the acous-
tic linewidth linearly decreases with the pump power, eventually leading to Brillouin lasing
(§ 6.2). In the experiment, we first calibrate the film thickness from two independent methods:
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the optical frequency shift from a given G, and the acoustic frequency shift. From this we
also confirm the G to be 2.17 GHz/nm. Then the Brillouin acoustic mode is measured using
a heterodyne detection setup. The Brillouin lasing threshold is observed at 1.8 µW, which
gives a radiation pressure g0,rp of 11 kHz, and a photothermal g0,pt of 122 kHz. In addition,
we demonstrate the transition from conventional optomechanics to Brillouin optomechanics
by tuning the intracavity optical field from standing wave to travelling wave, with the tuning
implemented by changing taper-cavity coupling strength. Last, the experiment also shows that
the Brillouin wave with large amplitude is able to mediate the strong coupling between the
direction-degenerate optical modes (§ 6.3).

7.2 Future Outlook
Here in this section I mention two possible improvements to the current superfluid optome-
chanics experiment in our lab.

Being able to probe and control surface acoustic waves on a thin superfluid film is truly one
of the great advantages of this experiment. Based on this capability, we have demonstrated
cooling and Brillouin lasing of the surface acoustic modes, and by optimizing the system pa-
rameters we would be able to demonstrate ground state cooling of the surface acoustic modes,
detect quantized vortices, and study topological phase transition in strongly interacting su-
perfluids. These potential applications make this optomechanical system really a fantastic
platform to study the interdisciplinary field between quantum physics and condense matter
physics. Whereas, due to the double-edge sword of the thin superfluid film’s self-assembling na-
ture, the boundary condition of the acoustic modes might be dependent on the pedestal of the
WGM resonator. This is not a clearly defined boundary condition, and leads to several painful
issues in the experiment. First, there are many “unexpected” modes appearing in the acoustic
mode spectrum. Second, the Bessel type acoustic modes defined by the circular geometry of
the WGM resonator are valid for sure, but need some corrections. Third, the unclear boundary
condition also limits the mechanical Q of the acoustic modes. Fourth, this also hinders future
experiments, since the effective mass of the modes might be hard to calibrate. Thus, I think it
is really necessary to “carve” some pattern (or design some thin tethers) on the WGM resonator
to isolate the superfluid film which interacts with the optical field away from the rest of the
film in the sample chamber.

The second point we can improve in the current experiment is the photothermal effect due to
optical absorption in the silica resonator. Although the superfluid fountain effect can make the
photothermal effect here more efficient, such that the photothermal interaction in our superfluid
experiment is less non-unitary, it is still necessary to minimize the photothermal effect. There
are several options to do so. For example, we can design certain type of optical cavity where
light is confined in the vacuum within the dielectric material, such that the optical absorption
only happens with the weak evanescent field in the dielectric material. Another example would
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be superconducting LC cavities like the electromechanical system with a drum capacitor in the
References [9, 191], although the optomechanical coupling strength may be sacrificed to some
extent due to the low dielectric constant of liquid helium.
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Appendix

.1 Cryogenic Designs
Cryogenic engineering takes a large amount of time for the superfluid optomechanics experiment,
although it is not very critical to the physics behind the experiment. Most of the cryogenic
engineering in the experiment can be categorized into two types: vacuum sealing and thermal
isolation (or its opposite thermal link). Here I briefly summarize several important cryogenic
designs for the superfluid optomechanics experiment.

Indium Sealing

Due to zero viscosity, superfluid helium can leak through microscopic openings that even air
cannot leak through. Thus, in the experiment superfluid helium has to be generated by cooling
helium gas in a specially sealed sample chamber. Usually the sealing is made by compressing
a indium wire on the lip of a sample chamber lid as illustrated by the yellow circles between
the sample chamber wall and the lid in Fig .1. When the indium wire is slowly compressed in
the tiny gap by slowly and carefully screwing the lid onto the chamber, it forms a molecular
bond with the surfaces of the sample chamber wall and lid. It is this molecular bond that
seals the superfluid inside the chamber from leaking out. The indium sealing is widely used in

thread 
hole

indium wire 
cross-section

sample chamber
wall cross-section

chamber nid
cross-section

Figure .1: Illustration of the indium sealing for a superfluid-tight sample chamber.
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the superfluid community, for both bulk and thin film superfluid experiments. The advantage
of the indium sealing is that it is very robust to avoid superfluid leak, is easy to make, and
is replaceable. The disadvantage is also obvious. It is quite hard to clean the indium sealing
after the chamber is open. It is really mentally hard to clean the indium sealing many times,
especially when the cryogenic setup inside the chamber is under test.

Optical/ Electrical Feedthrough

The indium sealing mentioned above is for large openings, such as sample chamber lids, windows,
etc. Generally in experiments, measurements require to send certain optical and/or electrical
signals into and out from the sample chamber by feeding through the corresponding optical
fibers and electrical wires (e.g. coax cables, etc.) into the sample chamber. Ideally, it would be
really great and convenient to use the vacuum feedthroughs at room temperature for cryogenic
experiments. Unfortunately, often room temperature vacuum feedthroughs do not work at
cryogenic temperatures due to thermal expansion/ shrinking. Although superfluid experiments
have stricter requirement for feedthroughs than general experiments, I do find that in Schuster’s
group hermetic SMA connectors (GPO Male FD to GPO Male FD Thread-in Hermetic Feed-
thru by Corning Gilbert, DC-18 GHz) are used for feedthroughs of their superfluid sample
chamber.

Here I only introduce a common cryogenic feedthrough solution for optical fibers and elec-
trical wires as illustrated in Fig. .2. The yellow area is the cross-section of the sample chamber
wall or the flange fixed on the sample chamber wall. Normally a several millimeter diameter
opening is big enough to feed through one optical fiber or electrical wire. The first solution we
try is just to glue the fiber in the opening from both sides. Although this solution works and
is fairly reliable, it is still less endurable than the solution illustrated in Fig .2, where a thin
stainless steel tube is laser welded at the small opening of the sample chamber. Generally laser
welding between metals can be superfluid tight, but the welding process is too hot for optical

stycast
epoxy

flange cross-section

laser
welding

optical fiber

thin stainless
steel tube

Figure .2: Illustration of optical fiber feedthrough for a superfluid-tight sample chamber.
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fibers and electrical wires. With the thin stainless tube, the optical fiber can be glue at the end
of the stainless tube using cryogenic Stycast epoxy. The advantage of this method of gluing
is that during cool down, the Stycast epoxy will shrink a lot, but the stainless tube will not.
Thus, the epoxy outside the tube will compress the tube, making it less likely to have a leak
at the feedthrough region. Whereas in our first solution, when the epoxy shrinks more than
the flange metal, this shear force will tear off the molecular bond between the epoxy and the
flange. After several thermal cycles, leaks would happen in the feedthroughs with only epoxy.

Optical Fiber Taper Preparation

Optical fiber tapers are widely used in cavity optomechanics experiments to couple laser light
from a fiber into an optical cavity. The fabrication process of fiber tapers is very mature and is
standardized, but the taper used for cryogenic experiments needs a few extra cares, since the
space for the experimental setup in a cryostat is usually limited, and the fragile taper has to
undergo fairly large thermal shrinking during the cool-down to cryogenic temperatures. Taking
into account these two factors, the fiber taper clamp has to be designed to be smaller than
the ones for room temperature experiments, but not too small that the tapered region gets
contaminated by the glue used to fix the fiber taper onto the clamp. For the thermal shrinking
during the cool-down, the material for the taper clamp should be glass, which has roughly
the same thermal expansion coefficient with the fiber core material. Additionally, from my
experience the taper undergoes more thermal shrinking than the glass taper clamp, possibly
due that the taper is so thin. Thus, I tension the taper a bit less for the superfluid experiments.



A: Every life is undergoing decoherence.
B: No, born to be classical!

Anonymous
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