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Introduction

Ovarian tumours are common and occur at all stages 
of life. Real-time ultrasonography is widely used 
to characterise ovarian tumours as benign or malig-
nant. This may be achieved using the subjective 
impression of the examiner (Timmerman et al., 
1999), applying ultrasound based simple rules and 
descriptors (Kaijser et al., 2013; Timmerman et al., 
2010 a) or by using a variety of ultrasound based 
prediction models, such as the RMI (Risk of 

Malignancy Index) (Jacobs et al., 1990; Kaijser 
et al., 2013), and International Ovarian Tumour 
Analysis (IOTA) Group logistic regression models 
LR1 & LR2 (Kaijser et al., 2013; Sayasneh et al., 
2013; Timmerman et al., 2010 b). These prediction 
models rely on the examiner identifying different 
ultrasound features in real time and using these to 
calculate the risk of a lesion being benign and 
malignant. Such an approach is dependent on the 
experience and skill of the examiner. The pre-
operative classification of ovarian masses using the 
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Conclusion: We have shown that an SVM can classify static 2D B mode ultrasound images of ovarian masses into 
benign and malignant categories. The accuracy improves if texture related LBP features extracted from the images 
are considered. 
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will be used to assign a class. For example, an image 
will be predicted as a malignant case if it falls on the 
negative side of Hyperplane and as a benign case 
vice versa. Moreover, SVM performance is highly 
generalizable without the need to add a priori 
knowledge (Song et al., 2002; Sun et al., 2003). 

The aim of this study was to develop a compu-
terised system, capable of characterising images of 
ovarian masses as benign or malignant independent 
of an examiner being competent to identify the 
features required to make a diagnosis. For this study 
we used original or enhanced B mode static 
ultrasound images. 

Materials and Methods

This is a retrospective cohort study carried out on 
static ultrasound images of ovarian masses from 
women recruited into the IOTA study (Timmerman 
et al., 2010 b). All women in this study underwent 
surgical removal of the mass between November 
2005 and November 2013 with a known histological 
diagnosis. All women gave written informed con-
sent to use and analyse the data (Timmerman et al., 
2010 b). The 187 anonymous 2D ultrasound images 
were retrieved from the IOTA database (Astraia 
software gmbh, Germany) at the Department of 
Gynaecological Ultrasonography, Campus Gast-
huisberg, KU Leuven, Belgium. This study was 
granted ethical approval by the University of 
Buckingham’s School of Science & Medicine 

subjective impression of ultrasound operators has 
been shown to be less precise when assessing static 
ultrasound images compared to those obtained 
during real-time examination (Van Holsbeke et al., 
2008). In the latter study, the authors obtained an 
accuracy of 85% based on expert consensus opinion 
of static images compared to 89% for real-time 
ultrasonography (Van Holsbeke et al., 2008). 

The texture of static images refers to the appear-
ance, structure and arrangement of parts of an object 
within the image (Castellano et al., 2004). Studying 
texture features, which includes the visual patterns 
and properties of homogeneity can give important 
structural information about the surfaces in relation 
to the surrounding environment (Linares et al., 
2004). Texture analysis is widely used in image 
processing, such as face images for classification 
and segmentation. Local Binary Pattern (LBP) is an 
effective technique that captures grey-scale invariant 
texture information (Ojala et al., 2002). 

Different learning machines, such as Support 
Vector Machines (SVM), have been developed to 
classify data (Cristianini et al., 2000). An SVM is a 
computationally efficient classifier that learns the 
hyper-planes in a high dimensional feature space 
that separate examples (i.e. data points) of the 
positive class from the negative class (Cristianini et 
al., 2000). During the training stage, SVM builds a 
classification model based on training samples, 
which is a Hyperplane in the case of a linear SVM. 
To classify a new sample, the resulting Hyperplane 

Table I. — The histopathology of ovarian masses included in the study in the training and test groups.

Histopathology N (total N = 187)

B
en

ig
n(

n 
= 

11
2)

Mature teratoma 23
Endometrioma/endometriosis 15
Mucinous cystadenoma 23
Functional cyst 5
Ovarian fibroma 6
Serous cystadenoma 21
Serous cystadenofibroma 13
Other benign 6

(1 tubal abscess, 1 Brenner tumour, 1 Multilocular peritoneal inclusion cyst MPIC, 
1 Mucinous cystadenofibroma, 1 subserous adenomyoma, 1 hydrosalpinx)

M
al

ig
na

nt
(n

 =
 7

5)

Borderline mucinous tumour 15
Borderline serous tumour 6
Serous cyst/adenocarcinoma 28
Mucinous cyst/adenocarcinoma 3
Endometrioid adenocarcinoma 6
Other ovarian cancer 17

(1 Lymphoma, 7 metastatic tumours (3 intestinal, 1 breast, 1 pancreatic,  
1 gastric, and 1 lung cancers), 1 leiomyosarcoma, , 1 stromal tumour,  

1germ cell tumour, 2 clear cell carcinomas, 2 carcinosarcomas,  
1 immature teratomas, 1 endometrial cancer)
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The image used for each mass was selected by 
author JK that on subjective impression was 
most representative of the final histopathology. 
In total 187 images were used from 177 patients 
(112 images of Benign and 75 images of malignant 
tumours). In ten patients we used an additional 
2D-image with another representative region of 
interest (ROI) that reflected the final histopathology. 
Histology results were available for all masses 
corresponding to the images used (Table I). 

Power or colour Doppler had been performed for 
ten images, but this did not affect the segmentation 
process of the grey scale features of the ROI, 
therefore they were accepted in the study. The 
analysis was confined to the grey scale information 
contained within the image. MATLAB (Matlab 
R2012a MathWorks, Natick, Massachusetts, USA) 
image processing software was used in this study. 

Pre-processing

The original images were received in JPEG digitized 
format. Each image was pre-processed in three 
steps as illustrated in Figure 1. Firstly, we used 
a Non Local mean (NL-means) filter (Buades et 
al., 2005) to de-noise the image and reduce the 
negative impact of the Speckle noise (Fig. 2). 
Then, we conducted a negative transformation of 
each denoised image in preparation of the last 

Ethics Committee in May 2012. We have followed 
the STARD guidelines for diagnostic accuracy 
studies (Bossuyt et al., 2003). 

Reference standard

The final outcome was the histological diagnosis of 
removed tissues as stipulated by the IOTA study 
protocol (Timmerman et al., 2010 b), and the 
classification of these as benign or malignant. 
Borderline tumours were classified as malignant. 
Tumours were classified using the criteria recom-
mended by the World Health Organisation (WHO) 
(Tavassoéli et al., 2003).

Static images

Each image represented the 2D B mode ultrasound 
features of the surgically removed adnexal mass. 

Fig. 2. — The NL-means de-noising method 
In an image, adjacent pixels mostly have similar neighbour-
hoods. However, if there is a structure in the image, non-
adjacent pixels will also have similar neighbourhoods. As In 
figure S1, the neighbourhoods of pixels p and q1 are more 
similar than the neighbourhoods of pixels p and q2. Most of the 
pixels in the same row as p will have similar neighbourhoods to 
p’s neigh bourhood. Because of this, pixel q1 will have a 
stronger influence on the de-noised value of p than q2.

Fig. 1. — Pre-processing the image before segmentation
The Absolute Difference is a basic image processing operation 
that takes the absolute value of the difference between the 
values of the two corresponding pixels I1(i) and I2(i), from the 
two input images I1 (here is the filtered image) and I2 (here is 
the negative of the filtered image)

where r (i) represents the ith pixel in the result image. We apply 
the absolute difference operation on the de-noised image from 
the NL-means filtering step and its negative image. This means 
that 
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enhancement step (Fig. 1). As a last step of the 
image pre-processing, we produced the enhanced 
copy of each image by obtaining the absolute 
difference between the de-noised image and its 
negative counterpart. As illustrated in Figure 1, the 
absolute difference has enhanced the edges in the 
original B mode image and produced a clearer 
texture of the cyst (the light grey shades in the 
resulting image).

Segmentation 

Image segmentation refers to separating the ROI 
(which in our study is the ovarian tumour) from the 
background of the whole image. Automatic seg-
mentation of the ROI is not a trivial problem and 
can be very difficult when the ROI shares the same 
greyscale colour as the background. In our work, we 
have manually segmented the ROIs by the first 
author SK and further confirmed the ROIs by an 
ultrasound examiner (author AS). Post segmentation, 
there are four types of output images: original whole 
image, original ROI, enhanced whole image, and 
enhanced ROI (Fig. 3)

Image histogram of intensity

An image histogram shows the number of pixels in 
an image at each different intensity value. For an 
8-bit greyscale image, there are 256 possible 
intensity values (0 is black and 255 is white), and 
the histogram of the image represents a frequency 
distribution of pixels amongst those values (Fig. 4). 

Fig. 3. — An example of the features transformation using pre-
processing methods (left images column) and corresponding 
LBP processing (right images column). As a result 7 extra 
images were created from each original image.

Fig. 4. — Description of an ultrasound image of a functional cyst using a concatenated Local Binary Pattern histogram 
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malignant), was taken as the test examples and the 
rest for training the SVM (Fig. 5). We repeated this 
process 15 times with a different random selection 
of 100 images (50 benign and 50 malignant) to 
reduce the random effect. 

Statistical analysis

We calculated the average sensitivity, specificity 
and accuracy of the SVM for each of the 15 cycles. 
The same test was performed for each of the 8 main 
image groups. Medcalc software (MedCalc Soft-
ware bvba, version 12, 2013, Belgium) was used to 
calculate the difference in accuracies between 
different groups. The two-tailed t test was used to 
compare means and p <  = 0.05 was considered 
significant.

Results

The SVM learning machine was able to characterise 
static images of ovarian masses into benign or 
malignant with an average accuracy ranging 
between 0.62 and 0.78 (Table II). 

Histogram of Local Binary Pattern (LBPH) for 
Texture 

LBP normally refers to replacing image pixels with 
an 8-bit binary code that is derived from the pixel’s 
neighbourhood of pixels. It examines the eight 
neighbouring pixels ti (i  =  0, 1, 2, ,,,, 7) of t in a 
clockwise order starting with the top left corner, and 
assigns 0 to the i-the bit if the pixel value of ti is less 
than that of t and 1 otherwise (Fig. 4) (Ojala et al., 
2002). The corresponding LBP image is obtained by 
translating every 8-bit binary code into its decimal 
value in the range of 0 to 255. In this paper, we have 
used the LBP 256 bin obtained from window size of 
5 × 5. We refer to this LBP form as the (8, 2) code. 

Having obtained the LBP image we divided the 
image into 2 × 2 equal sized blocks, to capture 
localized texture information of ovarian tumours 
within the image. The 256-bin histogram was 
calculated for each block, and then the four 
histograms were concatenated and saved into a 
single feature vector for the whole image. That 
means we had 1024 feature components in one 
feature vector for each image (Fig. 4). The feature 
vector for the image was later used as a training 
instance for the SVM.

Designing the test and training groups

For the 187 images used in this study, we created 
the LBP images from the original images (Fig. 4) 
using the (8, 2) form. The same procedure was 
repeated for the enhanced, original ROI and 
enhanced ROI images (Fig. 3). As a result we 
obtained 8 groups of 187 feature vectors in each 
group. These groups were: histograms of intensity 
for the original whole, LBP-transformed original 
whole, enhanced whole, LBP-transformed enhanced 
whole, original ROI, LBP-transformed original 
ROI, enhanced ROI and LBP-transformed enhanced 
ROI images. 

In order to address the class imbalance prob-
lem between benign (112 cases) and malignant 
(75 cases) in each data set and to develop a fair 
classification model for both cases, we randomly 
sampled 50 images of benign and 50 images of 
malignant tumours, totalling 100 images for training 
and testing the SVM. The sampling (without 
replacement) was performed using the Randsample 
function in Matlab (50 benign with Randsample 
(112, 50), and 50 malignant Randsample (75, 50)). 
For evaluation of performance, we employed a 
stratified 50-fold cross validation, which means 
applying the leave-one-out strategy to utilise the use 
of training examples. In an iterative process, one 
partition, i.e. two samples (one benign and one 

Fig. 5. — A flow chart illustrating the randomised balanced 
cross validation process of selecting the training and test 
groups. This process was repeated 15 times to calculate the 
average diagnostic performance of the SVM in each one of the 
8 main images’ groups.
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with no significant difference for enhanced and non-
enhanced ROI images (average accuracy of 0.65 
and 0.66 respectively (p = 0.6) (Table II). However, 
when the LBP was applied on enhanced images, 
there was a significant improvement in the average 
accuracy of the SVM to characterise whole images 
(from 0.67 to 0.78, p < 0.0001) and ROI images 
(from 0.74 to 0.77, p = 0.03).  

In our data, we have tried the kNN (k-Nearest 
Neighbours) classifier, instead of SVM, using 
Euclidean distance metric when k = 1. However we 
found that the performance of the SVM was 
significantly better (Table III). We believe that this 
might be due to the better performance of an SVM 
with higher dimensionality.

Discussion

In this study we have shown that computer-based 
image processing technologies can automatically 
categorise static B mode ultrasound images as being 
derived from either benign or malignant ovarian 
cysts. This accuracy of this technique is not 

We observed a general improvement in SVM 
average accuracy when images were processed by 
the LBP (8, 2) operator (Table II). This improvement 
in SVM diagnostic performance was statistically 
significant when LBP was applied to both original 
whole and ROI, as well as enhanced whole and ROI 
images (p value ranged between 0.0001 to 0.01) 
(Table II). Similarly, when the LBP was not applied 
(i.e. when the histogram of the spatial domain was 
used rather than the LBPH), the average accuracy of 
the SVM was improved when the learning machine 
was trained on ROI original images (0.66, 95%CI: 
0.63-0.69) compared to whole area original images 
(0.62, 95%CI: 0.59-0.65) (difference of 0.04, 
95%CI: -0.001 – 0.08, p = 0.06). 

When the LBP was applied, the latter difference 
in SVM average accuracy between ROI and whole 
image characterization increased to 0.07 (95%CI: 
0.04-0.08, p < 0.0001). Image enhancement alone, 
with no LBP did not improve the capability of the 
SVM to characterize the images, with an average 
accuracy of 0.62 (95% CI, 0.59-0.65) for both 
enhanced and non-enhanced whole images, and 

Table II. — Diagnostic performance of the Support Vector Machine on images processed using a Local Binary Pattern operator 
in the test group when using Radius R = 2.

Average diagnostics for SVM without LBP
 

Average diagnostics for SVM & LBP 
(P = 8,R = 2) LBP/Histogram 

diff in Accuracy p
2×2 block 
image

Sensitivity 
[95%CI)

Specificity 
[95%CI)

Accuracy 
[95%CI)

Sensitivity 
[95%CI)

Specificity 
[95%CI)

Accuracy 
[95%CI)

Original 
image

0.63
[0.60-0.66] 

0.61
[0.575-0.645]

0.62
[0.59-0.65]

0.69
[0.67-0.71]

0.66
[0.635-0.685]

0.67
[0.65-0.69]

0.05
[0.01-0.09]

0.01

Original 
ROI

0.68
[0.65-0.71]

0.645
[0.61-0.68]

0.66
[0.63-0.69]

0.75
[0.73-0.77]

0.72 
[0.71-0.73]

0.74
[0.73-0.75]

0.08
[0.04-012]

0.0008

Enhanced 
image

0.59
[0.54-0.64]

0.64 
[0.62-0.66]

0.62
[0.59-0.65]

0.80
[0.77-0.83]

0.77
[0.74-0.80]

0.78
[0.76-0.80]

0.16
[0.12-0.20]

0.0001

Enhanced 
ROI

0.66
[0.63-0.69]

0.65
[0.625-0.675]

0.65
[0.63-0.67]

0.77
[0.75-0.79] 

0.77
[0.75-0.79

0.77
[0.75-0.79]

0.12
[0.09-0.15]

0.0001

SVM: Support vector machine. LBP: Linear binary processor. ROI: Region of interest.

Table III. — Diagnostic performance of the kNN on images processed using a Local Binary Pattern operator. Euclidean 
distance metric when k = 1.

Average diagnostics for kNN & LBP (P = 8,R = 2) Average diagnostics for kNN without LBP 
2 × 2 block image Sensitivity 

[95%CI]
Specificity 
[95%CI]

Accuracy 
[95%CI]

Sensitivity 
[95%CI]

Specificity 
[95%CI]

Accuracy 
[95%CI]

Original image 0.55 0.56 0.55 0.65 0.59 0.62
Original ROI 0.62 0.53 0.58 0.71 0.49 0.63
Enhanced image 0.57 0.69 0.63 0.66 0.59 0.63
Enhanced ROI 0.69 0.56 0.63 0.73 0.46 0.60
kNN: k-Nearest Neighbours LBP: Linear binary processor. ROI: Region of interest
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high order spectra features. However in this study 
the images were taken from only 20 patients (10 
benign and 10 malignant) (Acharya et al., 2012). 
Although the DT model had a higher accuracy than 
the approach we have reported, it was achieved 
using a large number of images (1000 images 
of benign and a further 1000 images from malig-
nant tumours) derived from the same 20 patients 
(Acharya et al., 2012). Compared to the latter study, 
our SVM model was trained with fewer training 
images, from a larger number of women and 
included a wider range of pathologies. Despite the 
appeal of producing comprehensive rules, DT 
classifiers have known limitations such as being 
sensitive to small changes in the training set, 
rectilinear decision boundaries, and locating split 
points for continuous features. On the other 
hand SVM’s have known advantages for handling 
high dimensional data with non-linear decision 
boundaries (Tan et al., 2006). Taking a different 
approach, Acharya et al used advanced imaging and 
data mining technologies to classify benign and 
malignant ovarian masses with an accuracy of 
99.8% (Acharya et al., 2014). This study used 
a probabilistic neural network (PNN) classifier, 
compared to the SVM used in our study. They also 
based the study on 20 patients, albeit examining 
2600 images (50% benign and 50% malignant) 
derived from this cohort. Colour Doppler and 3D 
images were also used in this study whereas we 
used only B mode ultrasound information (Acharya 
et al., 2014). It is possible that the addition of 3D 
and Doppler information may improve our results 
further. 

A strength of our study is the multidisciplinary 
cooperation between clinical experts in the IOTA 
group and the computing science team in the 
University of Buckingham. This cooperation was 
essential to understand the different features seen in 
static images of ovarian masses. Another strength is 
that we have access to a reasonable number of 
tumours with a diverse range of different benign 
and malignant pathological subtypes, with a 
prevalence of malignancy of 75/187(40%) in the 
study group. We also believe that the repeated 
randomized stratified cross validation of the SVM 
training and testing groups, is a robust methodology 
which has led to reliable results. 

A weakness of our study is that we manually 
segmented the ultrasound images when obtaining 
the ROI, which may have caused selection bias. 
This is largely due to the fact that our primary focus 
was on the automatic feature extraction and image 
classification. Automatic segmentation of the ROI 
from ultrasound images is a known unsolved 
problem (Sohail et al., 2010) which may require 

significantly different from the accuracy reported 
by ultrasound examiners using their subjective 
impression to read similar static ultrasound images 
(accuracy 0.85, difference of 0.08, 95% CI: -.0.006 
to 0.16. p = 0.08) (Newcombe, 1998; Van Holsbeke 
et al., 2008). We have also shown that average 
diagnostic accuracy is better using an LBP coding 
operator on enhanced images. To the best of our 
knowledge this approach has not been previously 
described. 

We believe our three-step enhancement method 
(non-local mean filter, negative transformation, 
absolute difference) together with the use of an LBP 
improved the ability of an SVM to correctly read 
images by highlighting the external and internal 
borders of the mass and improving the contrast in 
solid areas (Fig. 3). Others have described different 
automatic techniques for classifying ovarian masses 
images using static images (Zimmer et al., 2003) or 
by analysing the parameters data derived from these 
images (Biagiotti et al., 1999; Tailor et al., 1999). 
However, the novelty of our approach lies in using 
blocked non-uniform local binary pattern alone for 
the feature extraction stage on the enhanced images 
to achieve best result.  

The IOTA group has previously developed 
prediction models for the classification of ovarian 
masses using Bayesian least squares SVM and 
relevance vector machines (Van Calster et al., 2007). 
These approaches were fundamentally different to 
the current approach as they relied on ultrasound 
examiners identifying and recording ultrasound-
based variables in “real time” for model develop-
ment (Van Calster et al., 2007). Thus however 
sophisticated the model, the limiting factor is the 
competence of the ultrasound examiner. They found 
an accurate performance of the model in the test set 
with a sensitivity and specificity above 90% and 
80% respectively for all models (Van Calster et al., 
2007). Other studies have also approached the 
problem using automated assessment of images. In 
one, an SVM was successfully used with an average 
classification accuracy of 86.90%, to classify 
ultrasound images representing three types of 
benign ovarian cysts: simple, endometriomas, and 
benign teratomas (Sohail et al., 2010). In this study, 
histogram moments with Grey Level Co-Occurrence 
Matrix (GLCM) based statistical texture descriptors 
were used for image processing (Sohail et al., 2010). 
Recently, an accuracy of 95% was reported for the 
characterisation of ovarian tumours using an adjunct 
Computer Aided Diagnostic (CAD) technique and 
data mining algorithms on 3D acquired ultrasound 
images of the ovary (Acharya et al., 2012). In this 
latter study, the authors used a Decision Tree (DT) 
classifier on the four most significant texture and 
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Hildegard von Bingen: “In women, blood is comparable to the 
sun and its sweetness, which delicately warms the earth and 
makes it fertile.”
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