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Key Points:  19 

 Dust flux in the Dome C core is significantly lower than in the Dome Fuji core from the LGM 20 

to the early Holocene 21 

 Comparison of dust size and aspect ratio between the two cores suggest dominance of 22 

Patagonian dust source during the LGM 23 

 Most Cl was lost to the atmosphere from snow at Dome C, while it was preserved at Dome 24 

Fuji as NaCl and in solid solution in the Holocene 25 

 26 
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Abstract  27 

We analyzed the chemical compositions of dust and sea-salt particles in the EPICA Dome C (EDC) 28 

ice core during 26–7 kyr BP using an ice-sublimation technique, and compared the results with 29 

existing data of the Dome Fuji (DF) ice core. Combined with ion concentration data, our data 30 

suggested similar sea-salt fluxes in both cores and significantly lower dust flux in the EDC core. The 31 

differences in modal size and aspect ratio of dust particles between the two cores support the 32 

dominance of Patagonian source suggested by earlier works. The compositions of calcic dust showed 33 

major change at ~17 kyr BP, possibly reflecting a relative increase in dust transported via the upper 34 

troposphere. The calcium sulfate fraction was higher in the DF core than in the EDC core after ~17 35 

kyr BP, suggesting that higher Patagonian dust contribution to the DF region. Abundant NaCl 36 

particles were found in the DF core in comparison with the EDC core from the LGM to early 37 

Holocene, possibly because of the high concentration of terrestrial dust in the DF core that reduced 38 

acid availability for sea-salt modification. During the Holocene, the lower NaCl fraction and Cl
-
/Na

+
 39 

ratio in the EDC core suggested that most Cl
-
 was lost to the atmosphere from snow at Dome C, 40 

while it was preserved at Dome Fuji as NaCl and solid solution.  41 

 42 

1 Introduction  43 

Aerosols affect climate through direct and indirect effects, and radiative forcings 44 

associated with these effects depend on the size and type of aerosol particles, their atmospheric 45 

concentrations, chemical compositions, and mixing states (IPCC, 2007, 2013). Terrestrial dust 46 

supplies nutrients such as iron (Fe) to the ocean, and may play a significant role in marine biological 47 

activity and thus uptake of atmospheric CO2 (Martin et al., 1990; Martínez-Garcia et al., 2011). 48 

Sea-salt particles represent the major source of chlorine (Cl) in the atmosphere over the Southern 49 

Ocean and Antarctica and they play an important role in the biogeochemical cycling of halogens 50 

(Vogt et al., 1996). 51 

Antarctic ice cores contain impurities that originate from terrestrial dust and sea salts, and 52 

these have been extensively used for the reconstruction of past atmospheric aerosol content and 53 

transport, environment in source regions, and chemistry in atmosphere and snow (e.g., Petit et al., 54 

1999; Watanabe et al., 2003a; Wolff et al., 2006, 2010; Fischer et al., 2007; Lambert et al., 2008, 55 

2012; Dome Fuji Ice Core Project Members, 2017; Goto-Azuma et al., 2019). 56 

The concentrations of insoluble particles and non-sea-salt calcium (nssCa
2+

) in melted 57 

ice-core samples, as well as total concentrations of elements such as Al, Fe, and Ca, have commonly 58 
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been used as proxies for terrestrial dust (e.g., Legrand & Mayewski, 1997; Röthlisberger et al., 2000; 59 

Delmonte et al., 2002; Bigler et al., 2006, 2011; Fischer et al., 2007; Lambert et al., 2008; Ruth et al., 60 

2008; Sato et al., 2013; Dome Fuji Ice Core Project Members, 2017). The dust flux during glacial 61 

maxima in East Antarctica was one order of magnitude higher than during interglacial periods 62 

(Lambert et al., 2008; Dome Fuji Ice Core Project Members, 2017), probably because of the 63 

combinations of variations in dust emissions, dust source areas, atmospheric transport efficiency, and 64 

scavenging during long-range transport (Wolff et al., 2006, 2010; Fischer et al., 2007; Sugden et al., 65 

2009; Delmonte et al., 2017).  66 

Few studies have investigated the regional differences in dust flux. In East Antarctica, the 67 

nssCa
2+

 flux in the Last Glacial Maximum (LGM) was about 3 times higher in the EPICA Dronning 68 

Maud Land (EDML) ice core than in the EPICA Dome C (EDC) ice core (Fig. 1, Fischer et al., 69 

2007). The difference may reflect the proximity of these sites to southern South America, the major 70 

dust source during the LGM (e.g., Grousset et al., 1992; Basile et al., 1997; Delmonte et al., 2004b, 71 

2008; Mahowald et al., 2006). Model simulations have supported this view (Li et al., 2008; Albani et 72 

al., 2012; Neff & Bertler, 2015; Ohgaito et al., 2018). However, the spatial distribution of dust 73 

deposition fluxes has not been well established because of the uncertainty associated with 74 

quantitative comparison of data sets obtained by different laboratories and different techniques. For 75 

example, published insoluble dust flux at EDC is several times higher than at Dome Fuji (DF) 76 

throughout the past 720 kyr (Lambert et al., 2008; Dome Fuji Ice Core Project Members, 2017). This 77 

appears puzzling especially for glacial maxima, considering the distances of the core sites from 78 

southern South America. The nssCa
2+

 flux in the EDC core during the LGM (Wolff et al., 2006) was 79 

~65% that of the DF core (Oyabu et al., 2014), contradicting with the insoluble dust records [note, 80 

however, that calcic dust only represents a small (and variable) fraction (~1/10 to ~1/100) of total 81 

terrestrial dust (Lambert et al., 2012)]. 82 

Chemical compositions of calcic dust might provide information about transport pathways, 83 

especially in terms of altitude. Calcium nitrate (Ca(NO3)2) and calcium sulfate (CaSO4) are produced 84 

by chemical reactions between calcium carbonate (CaCO3) and nitric acid (HNO3) or sulfuric acid 85 

(H2SO4) in the atmosphere (Legrand et al., 1997; Gibson et al., 2006; Mahalinganathan & Thamban, 86 

2016). Legrand et al. (1988) suggested that nitrate (sulfate) might be transported through the upper 87 

and mid-troposphere (marine boundary layer) because the major sources of atmospheric HNO3 are in 88 

the mid- to upper troposphere and stratosphere (Wolff, 1995; Savarino et al., 2007), while the source 89 

of H2SO4 is dimethyl sulfide emitted from the sea (Davis et al., 1998).  90 

Sodium chloride (NaCl) undergoes acid displacement reactions with H2SO4, HNO3, and 91 

methanesulfonic acid (MSA) in the atmosphere to release hydrochloric acid (HCl) and deplete Cl in 92 
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sea salts (Newberg et al., 2005 and references therein). After deposition of sea salts onto the 93 

ice-sheet surface, the reactions may occur also in the snowpack (Röthlisberger et al., 2003), and the 94 

released HCl may escape to the atmosphere or remain in the snow and preserved. Thus, the chemical 95 

compositions and relative abundances of sea-salt particles in ice cores are thought to provide 96 

constraints on the magnitude of Cl depletion in sea-salt aerosols in the past atmosphere and snow.  97 

For deep ice cores covering glacial–interglacial timescales, earlier studies have provided 98 

inconsistent data and interpretations on the sea-salt composition in the Antarctic interior. The Cl
-
/Na

+
 99 

ratio was close to (significantly lower than) the seawater ratio in the EDC core during the LGM 100 

(Holocene), suggesting little (substantial) modification of sea salts (Röthlisberger et al., 2003). For 101 

the DF core during the LGM, however, Iizuka et al. (2008) suggested that about half the sea salt was 102 

Na2SO4 even though Cl
-
/Na

+
 was close to the seawater ratio (thus substantial existence of HCl), 103 

based on the considerations of ion balance and preferences of chemical reactions (e.g., CaCO3 reacts 104 

more readily than NaCl with H2SO4). The elemental analyses of individual microparticles in the DF 105 

core also supported this conclusion (Oyabu et al., 2014). On the other hand, Cl
-
/Na

+
 in the DF core 106 

during the Holocene is comparable with or even higher than the seawater ratio (Watanabe et al., 107 

2003a), suggesting either little sea-salt modification or preservation of HCl in ice (Domine & Thibert, 108 

1995a). The latter explanation was preferred from the ion balance and preference of chemical 109 

reactions (Iizuka et al., 2008). However, Oyabu et al. (2014) found a significant fraction of NaCl 110 

particles (~1/4 of all sea-salt particles) for the latter part of the last Termination and early Holocene 111 

from the direct observation of particles, and demonstrated that NaCl particles are able to reach the 112 

Antarctic inland and be preserved without modification. This illustrates the importance of direct 113 

measurements of individual particle compositions to accurately determine the abundance of sea salts 114 

and acids in the ice cores. 115 

Simultaneous measurements of the chemical compositions of dust and sea-salt particles 116 

may provide invaluable information about past atmospheric circulation, transport processes, and 117 

chemistry. Iizuka et al. (2009) developed such a method, in which nonvolatile particles (in both 118 

soluble and insoluble forms) are extracted from an ice sample by sublimating ice and their elemental 119 

constituents are measured using a scanning electron microscope (SEM) and an energy dispersive 120 

X-ray spectrometer (EDS) (hereafter, sublimation-EDS). Based on this method, previous studies 121 

have discussed the compositions and concentrations of sulfate and chloride salts in the DF core 122 

(Iizuka et al., 2012a; Oyabu et al., 2014) and Talos Dome core (Fig. 1, Iizuka et al., 2013), as well as 123 

the modification of modern sea-salt particles from surface snow measurements (Iizuka et al., 2012b, 124 

2016). However, the chemical compositions of most dominant particles, i.e., insoluble particles 125 

containing silicate, have not been the focus of the previous research. Moreover, as the 126 
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sublimation-EDS method is relatively new and it has been applied only to the above-mentioned ice 127 

cores, it is desirable to apply it to other ice cores both to improve the understanding of the spatial 128 

variability of aerosol compositions and to investigate their causes. 129 

Here, we present the first comparison of the chemical compositions of nonvolatile particles 130 

including both terrestrial dust and sea salts between two inland dome cores in East Antarctica (EDC 131 

and DF) using the same analytical methods. The geographical setting of Dome C is similar to Dome 132 

Fuji in terms of distance from the nearest coast, i.e., ~950 and ~930 km for EDC and DF, 133 

respectively (Fig. 1), and both sites are on local dome summits (Watanabe et al., 2003b; EPICA 134 

Community Members, 2004). The patterns of temporal variations in water isotope and insoluble dust 135 

records are similar to each other (Jouzel et al., 2007; Lambert et al., 2012; Dome Fuji Ice Core 136 

Project Members, 2017). However, the deposition fluxes and chemical compositions of terrestrial 137 

dust and sea salts may be different because of environmental differences such as the distance from 138 

the major dust sources and air masses reaching the core sites with different trajectories and durations. 139 

By comparing sublimation-EDS data from the two ice cores from the LGM to the early Holocene, 140 

we discuss the differences in total dust flux (including both soluble and insoluble dust), transport 141 

pathways of dust, and modifications of sea-salt particles.  142 

 143 

2 Method 144 

2.1 Experimental procedure of the sublimation-EDS method 145 

The EDC ice core samples used in this study had been stored in the cold storage facility at 146 

the Institut des Géosciences de l’Environnement (IGE, formerly LGGE, Grenoble, France). We 147 

selected 30 samples at approximately regular time intervals from 222.75 m (Middle Holocene: 6.8 148 

kyr BP) to 570.50 m (LGM: 26.3 kyr BP). Each sample (length: 10 cm along with the depth of core, 149 

cross section: 3 × 2 cm) was cut from a 55-cm section at IGE. The samples were then transported to 150 

a cold laboratory at the Department of Physical Geography, Stockholm University where they were 151 

stored at −25 °C until sublimation treatment. 152 

We employed the experimental method developed by Iizuka et al. (2009); thus, only a brief 153 

description is given here. The method extracts nonvolatile particles (in both soluble and insoluble 154 

forms) from an ice sample by exposing it to a flow of cold dry air that sublimates the ice and volatile 155 

materials. The sublimation system employed in this study (constructed at Stockholm University) 156 

comprised an air compressor, air filters, sublimation chamber, and chest freezer, placed in a normal 157 

laboratory room (not a clean room).  158 
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The surface of each sample was first shaved off by 1–2 mm using a clean ceramic knife for 159 

decontamination. Then, about 1 g of ice was shaved off from the 7–10-cm-long cleaned surface with 160 

the knife and was placed on a polycarbonate membrane filter (ADVANTEC®, K040A013A, pore 161 

size: 0.40 μm, diameter: 13 mm) fixed in the stainless-steel sublimation chamber by using a 162 

polypropylene funnel. The chamber was then sealed in a plastic laboratory bottle precleaned with 163 

ultrapure water and ethanol. Great care was taken to exclude contamination from particles in the cold 164 

room, by handling the ice samples and sublimation chambers in a clean booth with precleaned tools 165 

(the sublimation chamber, ceramic knife, funnel, and tweezers for handling filter were cleaned with 166 

ethanol after each use). The laboratory bottle was placed in an insulated box and brought out from 167 

the cold room to the sublimation system, and the sublimation chamber was quickly taken out from 168 

the bottle and connected to the fittings inside the chest freezer. Clean air generated using an oil-free 169 

air compressor and a particle filter (pore size: 0.03 μm) flowed through a 5-m-long tube and the 170 

sublimation chamber placed in the freezer at −50 °C to sublimate ice and volatile materials. The ice 171 

sublimation was completed within 100 hours at a flow rate of 15 L min
−1

. After sublimation, the 172 

sublimation chamber was brought to the cold room in a cleaned plastic bottle. The membrane filter 173 

was taken out of the sublimation chamber and placed in a stainless-steel laboratory dish (with a lid) 174 

precleaned with ethanol. The dish was further sealed in a particle-free plastic bag to minimize its 175 

exposure to atmosphere, and brought to room temperature for storage at Stockholm University for up 176 

to two months. 177 

The sample filters were then transported in a plastic container designed for keeping the 178 

filters upright, and further sealed in a Tupperware, and hand-carried on passenger flights and trains 179 

to the Institute of Low Temperature Science (ILTS) Hokkaido University, Japan. There, each sample 180 

filter was coated with a Pt film to avoid electrical charging of the filter, and sealed again in a 181 

stainless-steel dish with lid and particle-free plastic bag, and stored in a desiccator until analyses. 182 

The SEM (JEOL JSM-6360LV) - EDS (JEOL JED2201) is installed in a normal laboratory room 183 

(not a clean room); thus, care was taken not to introduce microparticle contaminations to the samples 184 

(Iizuka et al., 2009). The sample filters were placed on a Cr sample holder and capped by a 185 

stainless-steel lid in a clean booth, and then placed on the sample stage of SEM. The lid was 186 

removed from the sample just before inserting it into the vacuum chamber of SEM. 187 

The elemental composition was analyzed using EDS in a point-analysis mode with beam 188 

diameter of 64 nm (JEOL JED2201). We measured particles larger than 0.5 μm of the longest 189 

diameter because of the limitation of the filter size (0.4 μm) and the analytical resolution of the EDS 190 

system. An accelerating voltage of 20 kV was used to observe the elemental compositions on the 191 

surface as well as within the particles. The X-ray spectrum of each particle was measured for 45–80 192 
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s to detect atomic ratios. The reproducibility of the atomic ratio for each element was ~40%. All data 193 

including atomic ratios are shown in the Appendix (Figs. A1 and A2).  194 

The instrument also detected C, O, Cr, and Pt but they contained artifacts from the 195 

membrane filter (C, O), sample mount (Cr), and filter coating (Pt); thus, they were not used for 196 

calculating the elemental ratios. We performed blank tests of the entire system by operating it 197 

without ice and we only found three to five particles containing C and O in each test; thus, 198 

contamination from the sublimation system was considered negligible. During the actual ice-core 199 

measurements, we found some large particles (larger than ~8 μm) with sharp corners and a strong Fe 200 

peak in the EDS spectrum, which were probably fragments of the sublimation chamber. As they are 201 

distinct from natural microparticles, we interrupted the EDS measurements after a few seconds for 202 

such particles. Fe was also detected in some particles mostly in combination with Si, and a single Fe 203 

peak was found in a few particles (<2% of all particles for each ice sample). We considered this as 204 

natural Fe in the terrestrial dust and thus included such data for the analyses of elemental ratios. 205 

Approximately 200 particles were randomly selected from all the particles on each filter (more than 206 

400 and up to several thousands). In this study, 6105 particles from 30 ice samples were analyzed.  207 

Area (A), maximum Feret diameter (DFeret max) and minimum Feret diameter (DFeret min) of 208 

each particle were analyzed with an image processing program (ImageJ, Schindelin et al., 2012). 209 

Feret diameter (also known as caliper diameter) is defined as the distance between two parallel 210 

tangents of the particle. Circular equivalent diameter (Dcirc) and aspect ratio (AR) were then 211 

calculated as follows.  212 

𝐷𝑐𝑖𝑟𝑐 = 2 × √𝐴/𝜋            (1) 213 

𝐴𝑅 =  
𝐷𝐹𝑒𝑟𝑒𝑡 𝑚𝑎𝑥

𝐷𝐹𝑒𝑟𝑒𝑡 𝑚𝑖𝑛
     (2) 214 

We note that the chemical compositions of the particles are not altered by reactions with 215 

acids in the ice during the sublimation process because of both the low temperature (−50 °C) and low 216 

probability of contact between the particles and acids (Iizuka et al., 2009; Oyabu et al., 2014, 2015). 217 

This was confirmed through previous studies on the DF core; the composition and abundance of 218 

soluble salt particles (mainly Na2SO4 and CaSO4) measured directly using Raman spectroscopy 219 

(Ohno et al., 2005, 2006; Sakurai et al., 2011) agreed well with those measured using the 220 

sublimation-EDS method for the LGM, last Termination, and Holocene (Iizuka et al., 2012a; Oyabu 221 

et al., 2014).  222 

 223 

2.2 Other data sets and chronology 224 
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We used published Ca
2+

, Na
+
, SO4

2-
, Cl

-
 and NO3

-
 ion concentration data of the EDC ice 225 

core (Littot et al., 2002; Wolff et al., 2006) to interpret our sublimation-EDS results. Briefly, Ca
2+

, 226 

Na
+
, SO4

2-
, Cl

-
 and NO3

-
 concentrations were measured from the surface to the depth of 788 m with 227 

~5-cm resolution (2.5 cm for some sections) at five laboratories (i.e., the University of Florence, 228 

Stockholm University, British Antarctic Survey, IGE, and University of Copenhagen) using ion 229 

chromatography (IC). Inter-laboratory comparison of the two Holocene ice samples revealed that 230 

Ca
2+ 

concentration varied by about ±30%, that Na
+
 and Cl

-
 concentrations varied by about ±10% and 231 

NO3
- 
concentration varied by > ±50% (but routine ice-core NO3

-
 analyses show better agreements) 232 

among the five laboratories (Littot et al., 2002). 233 

We also used published data from the DF core. These comprised elemental compositions 234 

of nonvolatile particles derived using the sublimation-EDS method (Oyabu et al., 2014), Na
+
, Ca

2+
, 235 

SO4
2-

, and Cl
-
 concentrations obtained by IC (Oyabu et al., 2014), and total Al and Na concentrations 236 

derived using the full-digestion method (Sato et al., 2013) from the LGM to the early Holocene, as 237 

well as the average NO3
-
 concentration for the early Holocene and LGM (Goto-Azuma et al., 2019). 238 

The sublimation-EDS measurements were performed at ILTS on 47 samples (295.0–579.8 m 239 

corresponding to 9.4 – 25.2 kyr BP) with mean resolution of ~300 yr. Of 47 samples in Oyabu et al. 240 

(2014), we reanalyzed 28 of particle images in this study. The IC measurements were performed at 241 

National Institute of Polar Research (NIPR) on 144 samples (298.9 – 580.6 m) with ~100-yr 242 

resolution, and NO3
-
 was also measured at NIPR. The full-digestion treatments were performed at 243 

Yamagata University and the sample measurements were performed at NIPR on the same 144 244 

samples as the IC measurements. 245 

We placed the above data sets on the AICC2012 age scale (Veres et al., 2013). Adopting 246 

AICC2012 for the EDC data is straightforward because the EDC core was originally included in the 247 

construction of AICC2012. Published volcanic synchronization between the EDC and DF cores 248 

(Fujita et al., 2015) was used to convert the DF chronology to AICC2012.  249 

Surface mass balance (SMB) data at EDC and DF are required for deducing ion fluxes 250 

onto the respective sites. We used recent SMB data at EDC based on the relationship between the 251 

hydrogen isotopic ratio corrected for mean oceanic isotopic ratio, vapor source temperature, and 252 

accumulation rate (Parrenin et al., 2016). For deducing SMB at DF, we used the ratio of SMB 253 

between the two sites based on the volcanic synchronization of the ice cores (Fujita et al., 2015; 254 

Parrenin et al., 2016). 255 

  256 

3 Results 257 
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3.1 Chemical constituents of observed particles 258 

We classify the measured particles into four categories: “terrestrial dust,” “sea salts,” “mixture 259 

of terrestrial dust and sea salts,” and “others/unknown,” according to the combinations of detected 260 

elements, which are consistent with previous works for the DF, Talos Dome and NEEM (Greenland) 261 

ice cores (Iizuka et al., 2009, 2012a, 2012b, 2013, 2016; Oyabu et al., 2014, 2015) (Fig. 2). Below, 262 

we describe the typical particle compositions for each classification and discuss the uncertainties 263 

associated with possible misclassifications.  264 

 (i) Terrestrial dust 265 

  - Si, Al, and/or Ti with neither S nor Cl (e.g., Fig. 3a, c). 266 

  - Si and Na. 267 

  - Ca without Na (e.g. CaSO4, CaCl2, Ca(NO3)2, and CaCO3).  268 

(ii) Sea salt 269 

  - Na (and/or Mg) and Cl with neither Si nor Ca (NaCl and/or MgCl2). 270 

  - Na and S with neither Si nor Ca (Na2SO4) (e.g., Fig. 3b, e).  271 

  - Na only (NaNO3). 272 

(iii) Mixture of terrestrial dust and sea salt 273 

  - Na, one of or both Si and Ca, and one of or both Cl and S (e.g., Fig. 3a, d).  274 

(iv) Others/unknown 275 

  - Minor particles not classified above, mostly containing combinations of Mg and S, K and S, or K 276 

and Cl, without Na and Ca, as well as those containing only S, Cl, or one of the following 277 

combinations: S and Si, S and Al, S and Fe, Cl and Si, Cl and Al, or Cl and Fe. Their sources are 278 

unknown or difficult to attribute explicitly to marine or terrestrial environments. Their total fraction 279 

accounts for only < 5 % of all measured particles. 280 

We note that our scheme inevitably misclassifies particles that can be interpreted as both 281 

terrestrial and sea-salt particles; thus, the results have inherent uncertainties as follows. 282 

(1) A mixture of terrestrial dust and NaNO3 (modified sea salt) is classified as “terrestrial dust” 283 

because nitrate is not measured. This misclassification should not introduce large uncertainty to 284 

the number fractions because there are only 5 particles that contain only Na (NaNO3 without 285 

dust) while particles containing only Na and S (Na2SO4 without dust) and Na and Cl (NaCl 286 

without dust) are abundant (1111 and 97 particles, respectively) among the ~6000 measured 287 
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particles.  288 

(2) Particles containing Fe and S or those containing Fe and Cl (both without Si) are classified as 289 

“others/unknown,” but they might be terrestrial dust particles. Such particles account for only 290 

0.5 % of all particles and therefore introduce little uncertainty.  291 

(3) All particles containing Ca are classified as terrestrial dust, although frost flowers (on sea ice) 292 

can produce calcium salts such as CaCO3 and CaSO4 (Sala et al., 2008; Geilfus et al., 2013), and 293 

sea spray is also a potential source of calcium compounds (Salter et al., 2016). The mass of 294 

ssCa
2+

 during the LGM is smaller than that of sea-salt (ss) Na
+
 by a factor of 20–50 (Bigler et al., 295 

2006; Hara et al., 2017). Considering that ssNa
+
 flux is comparable to nssCa

2+
, the 296 

overestimation of terrestrial dust introduced by ssCa
2+

 particles would be < ~10 % (based on Ca 297 

mass) during the LGM. On the other hand, the analysis of the Ca
2+

 and Na
+
 concentrations of the 298 

EDC core suggests that about 50 % of Ca
2+

 in the Holocene is ssCa
2+

 (Bigler et al., 2006). 299 

Similar analysis of the DF core using published ion data (Oyabu et al., 2014) suggests that the 300 

ssCa
2+

 represents ~20 % of the Ca
2+

. Thus, the terrestrial Ca particle fraction might be 301 

overestimated in the Holocene. However, the fraction of the relevant Ca-containing particles is 302 

only 14 and 10 % of all the particles in the Holocene for the EDC and DF cores, respectively. 303 

Thus, the error associated with ssCa does not affect our main conclusion on dust flux 304 

comparison (Section 4.1).  305 

(4) All particles containing Na and either Cl or S are classified as sea salts, but some of them could 306 

originate in terrestrial dust. For example, a particle containing Na, Mg, Al, Si, S, K, Ca and Fe is 307 

classified as a mixture of terrestrial dust and sea salts (a combination of Na2SO4, CaSO4, and 308 

silicate minerals), although it might be a mixture of terrestrial components (including CaSO4 and 309 

NaAlSi3O8). Also, terrestrial halide and marine clay include NaCl and they might represent 310 

major sources of nssNa especially during the LGM (Bigler et al., 2006). Nevertheless, their 311 

compositions are indistinguishable from sea salts, thus they are classified as sea-salt or mixed 312 

particles.  313 

To examine the possible magnitude of the misclassification regarding (4) above (Na in 314 

terrestrial dust), we estimated the mass fractions of Na in the terrestrial dust, sea-salt, and mixed 315 

particles based on our EDS data. They were then compared with the ratio of ssNa to total Na 316 

deduced from two published datasets: ion measurement for soluble Na of the EDC core (Littot et al., 317 

2002; Wolff et al., 2006) and that of the DF core (Oyabu et al., 2014), and acid digestion 318 

measurement for total Na of the DF core (Sato et al., 2013). For each filter sample, the mass of Na in 319 

the terrestrial dust, sea-salt, and mixed particles were calculated as follows: 320 
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 𝑚 𝑁𝑎 =  
𝑊𝑁𝑎

∑ 𝑊𝑖
 ×  

𝜋𝐷𝑐𝑖𝑟𝑐
3𝜌

6
    (3) 321 

where m is mass of Na of the terrestrial dust (mnssNa), ssNa of sea-salt (mssNa1) or ssNa of mixed 322 

particles (mssNa2), WNa is weight ratio of Na to all elements measured by the EDS, Wi is weight ratio 323 

of element i, Dcirc is particle diameter (defined above), and ρ is particle density. The subscript i refers 324 

to all measured elements. The density of terrestrial dust and sea salts were assumed equal (the mean 325 

density of crust and that of Na2SO4 is ~2.7 g cm
−3

). The ratio of the mass fraction of ssNa to all Na is 326 

written as: 327 

 (
𝑠𝑠𝑁𝑎

𝑁𝑎
)

𝑠𝑢𝑏𝑙
=

𝑚𝑠𝑠𝑁𝑎1+ 𝑚𝑠𝑠𝑁𝑎2

𝑚𝑛𝑠𝑠𝑁𝑎+ 𝑚𝑠𝑠𝑁𝑎1+ 𝑚𝑠𝑠𝑁𝑎2
   (4) 328 

and the result is shown in Fig. 4. Estimated uncertainties for (ssNa/Na)subl were ± ~3 – 8 % based on 329 

the EDS measurement error. Also, we assessed the maximum uncertainties associated with the 330 

assumptions about the shape and density. For the former, (ssNa/Na)subl under the assumption that all 331 

particles are flat are different from those with the spherical assumption by 3 and 8 % for the EDC 332 

and DF cores, respectively, on average. For the latter, (ssNa/Na)subl under the assumption that all 333 

sea-salt particles are NaCl (2.16 g cm
-3

) become smaller by 3 and 7% for the EDC and DF cores, 334 

respectively, on average.  335 

The values of ssNa from ion measurements was calculated using the following equation:  336 

[ssNa
+
] = c {[Na

+
] − [Ca

2+
] ∙ (Na

+
/Ca

2+
)nss} (5) 337 

where 𝑐 = [1 −
(

𝑁𝑎+

𝐶𝑎2+)
𝑛𝑠𝑠

(
𝑁𝑎+

𝐶𝑎2+)
𝑠𝑠

]

−1

.   (6) 338 

We used published values of (Na
+
/Ca

2+
)ss (=23) and (Na

+
/Ca

2+
)nss (Bigler et al., 2006). For 339 

(Na
+
/Ca

2+
)nss, we used the value from mean crust (0.56) (Bowen, 1979) and that from high-resolution 340 

analysis of the EDC ice core (0.94) (Bigler et al., 2006). The ratios of ssNa
+
 to Na

+
 thus obtained 341 

could be expressed as (ssNa
+
/Na

+
)Bowen and (ssNa

+
/Na

+
)Bigler for (Na

+
/Ca

2+
)nss of 0.56 and 0.94, 342 

respectively.  343 

For the DF core, ssNa was also estimated from total Na (tNa) and total Al (tAl) 344 

concentrations and the crustal ratio of Na to Al (=0.29) (Sato et al., 2013), 345 

[ssNa] = [tNa] − (Na/Al)crust ∙ [tAl].   (7) 346 

The (ssNa/tNa) ratio agrees with (ssNa
+
/Na

+
)Bowen (Fig. 4), which is reasonable because both method 347 

use the elemental ratios of mean crust. 348 
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The (ssNa
+
/Na

+
)Bowen, (ssNa

+
/Na

+
)Bigler, and ssNa/tNa ratios can be compared with 349 

(ssNa/Na)subl from our data (Fig. 4). The average (ssNa/Na)subl in the EDC core in the LGM, 350 

Termination and Holocene agree with both (ssNa
+
/Na

+
)Bowen and (ssNa

+
/Na

+
)Bigler within one 351 

standard deviation. Closer inspections of the data reveal that the average (ssNa/Na)subl is close to 352 

(ssNa
+
/Na

+
)Bowen and ~10 % higher than (ssNa

+
/Na

+
)Bigler for the LGM. This seems reasonable 353 

because our EDS-based classification may underestimate the terrestrial dust fraction and thus 354 

provides the upper bound for the ssNa/Na ratio. 355 

For the DF core, the average (ssNa/Na)subl for the LGM is similar to (ssNa
+
/Na

+
)Bowen and 356 

~20% higher than (ssNa
+
/Na

+
)Bigler, possibly suggesting underestimation of the terrestrial fraction of 357 

Na in our method. Conversely, the average (ssNa/Na)subl in the Holocene is ~30 and ~20 % lower 358 

than the average (ssNa
+
/Na

+
)Bowen and (ssNa

+
/Na

+
)Bigler, respectively. We note that the standard 359 

deviation for the Termination and Holocene (ssNa/Na)subl (11 and 28 %, respectively) is much larger 360 

than for the EDC core (4 and 4 %, respectively) due to a few DF samples with extremely low 361 

(ssNa/Na)subl. Thus, the average value of the 8 Holocene samples might not represent the true 362 

average over the period. It should also be noted that the (ssNa
+
/Na

+
)Bowen and (ssNa

+
/Na

+
)Bigler of the 363 

DF core vary more than those of the EDC core during the Holocene, suggesting that the composition 364 

of Na-particles deposited at Dome Fuji has greater variability than those deposited at Dome C. 365 

 366 

3.2 Geometric information of particles 367 

The circular equivalent diameter (Dcirc) and aspect ratio (AR) are shown in Fig. 5 and 6, 368 

respectively. In Fig. 5, the full-scales of y-axes are scaled within each type of particles by the ratios 369 

of total particle numbers between the LGM, Termination and Holocene  to aid visual comparison. 370 

The size and AR distributions were fitted with lognormal functions and their modes were calculated 371 

(Table 1 and 2).  372 

All the size distributions are unimodal with the modes around 2 μm. In each classification, 373 

68% (1 σg) of particles are distributed within a similar range (1.4–1.8 μm). The mode of the 374 

terrestrial dust of the EDC core in the LGM, Termination, and Holocene is 1.36, 1.46, and 1.56 μm, 375 

respectively. We note that the dust size from the Coulter Counter is larger for the Holocene than for 376 

the LGM (Delmonte et al., 2002, 2004a; Lambert et al., 2008), consistent with our result.  377 

The particle sizes are also different between terrestrial dust, sea-salt, and mixed particles. 378 

The sea-salt particles are smaller than terrestrial dust particles, although the difference is statistically 379 

insignificant for the LGM because of the small number of particles. Note that sea-salt particles in this 380 

study are mostly larger than 1 μm, whereas sea-salt aerosols are mainly distributed in sub-μm range 381 
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in the troposphere over Antarctic inland (Jourdain et al., 2008; Udisti et al., 2012). Thus, sea-salt 382 

particles measured in this study may have coagulated during precipitation and after deposition. As 383 

expected, the mixed particles are larger than sea salt and terrestrial dust particles because the mixed 384 

particles are produced by collision and coalescence of multiple particles (Fan et al., 1996; Niimura et 385 

al., 1998). 386 

The particle sizes in the DF core also show lognormal distributions centered around 2 μm 387 

(modal size). The modes of sea-salt particle size are smaller than the dust and mixed particles. 388 

However, the mode of dust particle size in the DF core is larger in the LGM than in the Holocene, 389 

which is opposite to the result of the EDC core. Also, the modal size of dust in the all period in the 390 

DF core are larger than those in the EDC core. 391 

The mode of AR of sea-salt particles is smaller than that of dust and mixed particles both 392 

in the EDC and DF cores, suggesting that sea-salt particles are closer to spheres than dust and mixed 393 

particles. The mode of AR for terrestrial dust particles is larger in the EDC core than that in the DF 394 

core for all the periods, but those for sea salts and mixed particles are similar for the two cores 395 

(Table 2). 396 

 397 

3.3 Number fractions of terrestrial dust and sea-salt particles 398 

In the EDC core, the fraction of terrestrial dust is the highest in all periods (40 – 64 %, Figs. 399 

7e–g) with large variability (~30 to ~80 %) (Fig. 7a). The sea-salt fraction is very low during the 400 

LGM (~5% on average), and it is relatively high from 17 kyr BP until 6 kyr BP (~30% on average, 401 

Fig. 7c). The fraction of terrestrial dust is similar for the LGM and Holocene, whereas the sea-salt 402 

fraction is ~4 times higher in the Holocene (Fig. 7e and 7g), thus the ratio of sea salts to terrestrial 403 

dust is also higher in the Holocene. This is consistent with the ratios of fluxes of insoluble dust and 404 

ssNa
+
 (Wolff et al., 2006; Lambert et al., 2008). We note that, due to potential coagulation of sea-salt 405 

particles during precipitation or after deposition, the ratio of number fractions of sea salts and dust 406 

from this study may not directly correspond to the ratio of aerosols in the past atmosphere. However, 407 

the relative change of the ratio over the deglaciation should reflect the atmospheric change, because 408 

the size of sea-salt particles is not significantly different between LGM and Holocene suggesting 409 

minor change of the degree of coagulation. 410 

In the DF core, the fraction of sea-salt particles is low in the LGM and it increases after 17 411 

kyr BP, whereas the terrestrial dust fraction is highest in all periods with large scatter and without 412 

clear difference between the LGM and Holocene (Figs. 7a, 7h–j). The terrestrial dust fraction is 413 

somewhat lower during the Termination. These features are common for the two ice cores. A notable 414 
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difference is that the fraction of terrestrial dust in the EDC core is lower than in the DF core for all 415 

three periods, as well as for the individual values for almost all data points. Conversely, the average 416 

sea-salt fraction is higher in the EDC core than in the DF core for all three periods. 417 

 418 

3.4 Composition of Ca-containing particles 419 

The Ca-containing particles are classified as terrestrial dust or mixed particles in this study. 420 

Their compositions reflect the original composition at dust sources (e.g. carbonate or gypsum) and 421 

the degrees of chemical reactions of calcium carbonate with nitrate or sulfate in the atmosphere, 422 

which in turn reflect the transport pathways of terrestrial dust considering the difference in altitudinal 423 

distribution of nitrate and sulfate (Legrand et al., 1988; Mahalinganathan and Thamban, 2016). 424 

Previous studies based on ion concentrations and Raman spectroscopy have suggested that almost all 425 

calcium salt particles found in Antarctic inland cores are calcium sulfate (CaSO4), including gypsum 426 

and secondary CaSO4 (by the reaction of CaCO3 with H2SO4) (Sakurai et al., 2011; Goto-Azuma et 427 

al., 2019). However, we found numerous particles with only a Ca peak (without an S peak) in the 428 

EDS measurements. Below, we estimate the chemical composition of calcium salt in our samples. 429 

Particles containing Ca and S (Ca and Cl) are identified to contain CaSO4 (CaCl2), and 430 

those containing Ca without any other element are denoted as Caonly particles. In order to avoid 431 

uncertainty from Na2SO4 in the discussion of Ca-containing particles, we only discuss here the 432 

particles containing Ca without Na (Fig. 2). In addition, if atomic ratio S/Ca = 1, the Ca containing 433 

particles are primary gypsum or fully modified calcium carbonate (by H2SO4). The particles with 434 

S/Ca < 1 are mixture of primary gypsum and calcium carbonate, or partially modified calcium 435 

carbonate. Similarly, if Cl/Ca = 2, the particles are fully modified calcium carbonate (by HCl), and if 436 

Cl/Ca < 2, they are interpreted as partially modified. If all Ca, S and Cl are detected in a particle, it is 437 

interpreted to contain both CaSO4 and CaCl2. 438 

In the EDC core, the Ca-containing particles are dominated by CaSO4 (80%) in the LGM 439 

(Fig. 8a). After ~17 kyr BP, Caonly becomes dominant (62%) and the number fraction of particles 440 

with S/Ca < 1 also increased (Fig. 8a). Therefore, our data indicate significant contribution of 441 

non-CaSO4 calcium salt during the Termination and Holocene, despite high availability of H2SO4. 442 

The CaCl2 particles rarely present without discernible trend.  443 

In the DF core, particles containing CaSO4 are also dominant (82%) during the LGM, and 444 

the Caonly fraction increases thereafter (Fig. 8b). However, unlike in the EDC core, about half of the 445 

particles containing CaSO4 show S/Ca < 1 during the LGM. Moreover, the average fraction of Caonly 446 
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particles during the Termination to Holocene is smaller than in the EDC core, while the fraction of 447 

CaCl2 is higher than in the EDC core throughout the entire period.  448 

 449 

3.5 Compositions of sea-salt particles 450 

The fractions of the atomic ratios of Na, S, and Cl in individual particles are plotted on 451 

ternary diagrams to investigate sea-salt modification during the LGM and Holocene (Fig. 9). To 452 

exclude uncertainty from nssNa, we only analyzed sea-salt particles without dust components (Si, Al, 453 

and Ca). In the EDC core, few data are close to the initial sea-salt ratio, indicating that most of initial 454 

sea-salt particles are modified in both the LGM and Holocene (Fig. 9a and 9b). Most particles are 455 

distributed along the line with S = 0 or the line with Cl = 0 for both the LGM and Holocene, 456 

indicating that all Cl is lost from sea-salt particles if they react with H2SO4 or MSA. On the other 457 

hand, Cl loss is incomplete if sea-salt particles react with HNO3 (data along the S = 0 line). 458 

Comparison of the LGM and Holocene data reveals that the range of Cl loss by HNO3 (the spread of 459 

data along the S = 0 line) is similar for the two periods. Overall, 93 % (98 %) of initial sea-salt 460 

particles in the EDC core during the LGM (Holocene) are partially or fully modified by HNO3, 461 

H2SO4, or MSA. Among the fully modified sea-salt particles, approximately 24% (13%) are 462 

modified by HNO3 and ~89% (~96%) are modified by H2SO4 or MSA in the LGM (Holocene) (the 463 

addition of the two values exceeds 100 % because some particles are modified by both acids). 464 

Among the particles modified by H2SO4 or MSA (along the Cl = 0 line), modification by MSA is 465 

more significant in the Holocene than in the LGM. 466 

The modification of sea-salt particles is less severe in the DF core both in the LGM and 467 

Holocene (Fig. 9c and 9d). For the LGM, many data points are close to the initial sea-salt 468 

composition and there are few data with Cl ≈ 0, indicating that many of initial sea-salt particles are 469 

modified only slightly. For the Holocene, the magnitude of Cl loss by HNO3 is more variable (i.e., 470 

data along the line with S = 0 are distributed over a much wider range) than in the LGM. 471 

Approximately 58% (85%) of initial sea-salt particles are modified partially or fully during the LGM 472 

(Holocene). Approximately 24% (30%) of them are modified by HNO3 and ~52% (~79%) are 473 

modified by H2SO4 or MSA in the LGM (Holocene). The DF data also show that the fraction of 474 

sea-salt particles modified by H2SO4 and MSA is larger in the Holocene than in the LGM. 475 

To investigate the temporal changes in Cl depletion from the sea-salt particles from the 476 

LGM to early Holocene and their difference between the EDC and DF cores, we plot the fraction of 477 

atomic ratio of Cl in the sum of Na, S, and Cl in individual sea-salt particles (initial and modified) 478 

against the age of ice (Fig. 10). The area of markers (open circles) on the zero line is proportional to 479 
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the fraction of fully modified sea-salt particles (i.e. sea-salt particles with Cl = 0). The black and blue 480 

dashed lines indicate the Cl fractions for initial sea salts from seawater and sea ice, respectively, with 481 

the uncertainty range depicted by gray shading. 482 

For the EDC core, most data points are distributed less than 50 %, and most of them are 483 

fully modified. Only a small number of particles are unmodified. No discernable trend is observable 484 

for the distribution of the data of partially modified sea-salt particles (small dots above 0%) from the 485 

LGM to Holocene. On the other hand, fully modified particles are more abundant after 18 kyr BP 486 

than they are before.  487 

The DF data have similarity with the EDC data in that fully modified sea-salt particles are 488 

more abundant after 18 kyr BP. However, close inspection of the data reveals that the fraction of 489 

fully modified particles is sometimes small during the Termination and Holocene in the DF core, 490 

which is not the case for the EDC core (most are above > 90 %). The particles having the Cl fraction 491 

of initial sea salts are more abundant throughout the studied period in the DF core. Few data points 492 

are below 40 % before 18 kyr BP in the DF core, while the most data points are below that level in 493 

the EDC core. 494 

 495 

4 Discussion 496 

4.1 Dust fluxes in the EDC and DF cores 497 

The number fraction of terrestrial dust in the EDC core is lower than in the DF core during 498 

all climate periods (Fig. 7). We first consider the uncertainties in the classification scheme to 499 

examine the robustness of this result. As discussed in Section 3.1, for both the EDC and DF cores, 500 

our particle classification probably underestimates the number fraction of terrestrial dust particles 501 

containing Na, especially in the LGM, while it overestimates the fraction of terrestrial dust particles 502 

containing Ca in the Holocene. It can be seen from Fig. 4 that the (ssNa
+
/Na

+
)Bowen ratio is higher 503 

than (ssNa
+
/Na

+
)Bigler by ~10 and ~20 % for the EDC and DF cores, respectively (where 504 

(nssNa
+
/nssCa

2+
)Bigler = 0.94 is assumed) (Bigler et al., 2006). The larger discrepancy for the DF core 505 

suggests a more pronounced underestimation of the terrestrial dust fraction associated with nssNa. 506 

Regarding the Ca-containing particles, ion concentration analyses suggest that ssCa
2+

/Ca
2+

 in the 507 

EDC core (Bigler et al., 2006) is higher than in the DF core (Oyabu et al., 2014). Thus, the 508 

misclassification of ssCa particles into terrestrial dust is probably more significant for the EDC core 509 

than for the DF core. We also consider the possible misclassification of terrestrial Fe-containing 510 

particles into “others/unknown.” However, as they comprise only 0.5 % of all particles, the possible 511 

misclassification of Fe-containing particles is not a significant source of error. Therefore, although 512 
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quantitative estimations of the above errors are difficult, the misclassifications do not affect the 513 

overall finding that the number fraction of terrestrial dust is lower in the EDC core than in the DF 514 

core.   515 

The lower dust fraction in the EDC core does not necessarily indicate lower dust flux at the 516 

Dome C site. In the following, we explore the possibility of comparing dust number concentrations 517 

between the EDC and DF cores by combining our sublimation-EDS results with ion concentration 518 

data. We compare the fluxes of ssNa
+
 (from ion analyses) and sizes of ssNa particles (from 519 

sublimation-EDS) between the two cores, which are the basis for the comparison of dust 520 

concentrations. The average ssNa
+

Bowen fluxes for the EDC core are in accord with those of the DF 521 

core to within 8% in the LGM and Termination (Table 3, Fig. 11a). In the Holocene, the average 522 

ssNa
+
 fluxes in the EDC core are lower than in the DF core because of a small number of high values 523 

in the DF data (possibly related to outlier rejection in the published EDC dataset; all the measured 524 

data are included in the DF dataset), but the background values are similar. The EDS-derived 525 

elemental mass ratios of individual particles, together with the particle classifications, can also be 526 

used to divide Na
+
 fluxes into sea-salt and non-sea-salt components (ssNa

+
subl and nssNa

+
subl), which 527 

are independent of those estimated by the combination of Na
+
 and Ca

2+
. The ssNa

+
subl and nssNa

+
subl 528 

are derived with following equation,  𝑠𝑠𝑁𝑎𝑠𝑢𝑏𝑙
+ = (

𝑠𝑠𝑁𝑎

𝑁𝑎
)

𝑠𝑢𝑏𝑙
×  𝑁𝑎+, and  (8) 529 

 𝑛𝑠𝑠𝑁𝑎𝑠𝑢𝑏𝑙
+ = (

𝑛𝑠𝑠𝑁𝑎

𝑁𝑎
)

𝑠𝑢𝑏𝑙
×  𝑁𝑎+.  (9) 530 

(ssNa/Na)subl and (nssNa/Na)subl are derived from the equation (4) in the Section 3.1. The ssNa
+

subl 531 

and nssNa
+

subl fluxes in the EDC and DF cores agree with the ssNa
+

Bowen and nssNa
+

Bowen fluxes, 532 

respectively albeit with somewhat larger scatter (Fig. 11a and 11b). For the following discussion, we 533 

assume that each mixed particle consists of one sea-salt particle and one terrestrial dust particle and 534 

the average number concentrations of sea-salt particles are equal for the two cores in each period. 535 

Given these assumptions and the particle number fractions of terrestrial dust (Ndust), sea-salt (Nss), 536 

and mixed particles (Nmix) (Fig. 7), the number concentrations ratios of soluble and insoluble dust 537 

particles (including those attached to sea salts) between the EDC and DF cores (NCRDF/EDC) are 538 

obtained from: 539 

𝑁𝐶𝑅𝐷𝐹 𝐸𝐷𝐶⁄ =  
(𝑁𝐸𝐷𝐶,𝑠𝑠+ 𝑁𝐸𝐷𝐶,𝑚𝑖𝑥)  

(𝑁𝐷𝐹,𝑠𝑠 + 𝑁𝐷𝐹,𝑚𝑖𝑥)
 ×

 (𝑁𝐷𝐹,𝑑𝑢𝑠𝑡 + 𝑁𝐷𝐹,𝑚𝑖𝑥)

(𝑁𝐸𝐷𝐶,𝑑𝑢𝑠𝑡+ 𝑁𝐸𝐷𝐶,𝑚𝑖𝑥)
.    (10) 540 

The resulting NCRDF/EDC = 1.5, 1.5 and 1.6 for the LGM, Termination, and Holocene, respectively.  541 
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The modal sizes of dust in the DF core are larger than in the EDC core by a factor of 1.1–542 

1.4, thus the dust mass fluxes may be significantly higher in the DF core than in the EDC core. With 543 

our size data, we can roughly estimate the mass fluxes ratios of dust (including those attached to sea 544 

salts) between the two cores (MFRDF/EDC) by weighting the ratios of the number concentrations (as 545 

given above) with the ratios of modal volume of dust and sea-salt particles in the DF and EDC cores 546 

(MVRDF/EDC,dust and MVRDF/EDC,ss).  547 

𝑀𝐹𝑅𝐷𝐹/𝐸𝐷𝐶  =  𝑁𝐶𝑅𝐷𝐹/𝐸𝐷𝐶 ×
 𝑀𝑉𝑅𝐷𝐹 𝐸𝐷𝐶,⁄ 𝑑𝑢𝑠𝑡

 𝑀𝑉𝑅𝐷𝐹 𝐸𝐷𝐶,⁄ 𝑠𝑠
     (11) 548 

The MFRDF/EDC thus deduced are 3, 2 and 3 for the LGM, Termination and Holocene, 549 

respectively, suggesting that dust flux at Dome Fuji was higher than at Dome C in all studied periods. 550 

These ratios are inconsistent with those using published data of insoluble dust measured by different 551 

laboratories (Lambert et al., 2008; Dome Fuji Ice Core Project Members, 2017), which show higher 552 

dust flux at Dome C. On the other hand, our results are consistent with those from numerical 553 

modeling studies of dust transport and deposition, which simulated dust flux (or concentration) in the 554 

Dome Fuji region that are ~2 times higher than in the Dome C region in both the Holocene and LGM 555 

(Albani et al., 2012; Ohgaito et al., 2018). Fig. 12 shows re-analyzed model results of Ohgaito et al. 556 

(2018), focused on Antarctica at the highest available resolution. According to the analyses, the dust 557 

deposition flux at Dome Fuji at 21 kyr BP is estimated to be 1.6 times higher than at Dome C, which 558 

is qualitatively consistent with our estimation for the LGM (i.e., 3 times higher). The simulation 559 

suggests the importance of glaciogenic Patagonian dust in the LGM through sensitivity experiments 560 

with and without Patagonian dust flux (Ohgaito et al, 2018). The spatial gradient of dust deposition 561 

over Antarctica, including higher values at Dome Fuji than at Dome C, is linked to large-scale dust 562 

transport pattern (Fig. 12), which clearly shows decreasing deposition flux on the leeward of 563 

Patagonia with increasing transport distance. The smaller DF/EDC deposition flux ratio in the model 564 

result than in the ice-core data may be reasonable, because numerical models are expected to 565 

produce smoother spatial pattern than reality due to a phenomenon called numerical diffusion. 566 

For the LGM, the mode of AR for dust in the EDC core (1.42) are slightly higher than that 567 

in the DF core (1.38) (Table 2), which may be significant considering that the mode of AR for 568 

Holocene sea salts are the same for the two cores to the last digit (reasonable for abundant 569 

non-mineral particles). Also, the mode of circular equivalent diameter of dust in the EDC core (1.36 570 

μm) is significantly smaller than in the DF core (1.94 μm). These results suggest that dust particles 571 

transported to Dome C region are more elliptic and smaller on average than those at Dome Fuji, 572 

which may be due to longer transport of dust reaching Dome C than Dome Fuji from the dominant 573 

glaciogenic dust source in Patagonia. During atmospheric transport, dust particles with higher AR 574 
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may become more abundant with increasing transport distance, as inferred from much slower settling 575 

velocity of mineral particles than that of spheres of equivalent volumes (Cui et al., 1983; Pye, 1994). 576 

Longer transport pathway of Patagonian dust to Dome C than to Dome Fuji has also been 577 

demonstrated by an atmospheric trajectory model, albeit for modern climate (Sudarchikova et al., 578 

2015). Another important observation from our data is that the modal dust size in the EDC core 579 

shifted to a larger value (from 1.36 to 1.56 μm) from the LGM to Holocene, while the sign of change 580 

is opposite in the DF core (from 1.94 to 1.70 μm). The dust model of Albani et al. (2012) produced 581 

qualitatively consistent result for the EDC core (suggesting enhanced en route wet removal in the 582 

Holocene), but inconsistent result for the DF core. Possible explanations for the larger dust in the 583 

LGM DF ice may be enhanced meridional transport (shorter pathways) of Patagonian dust to Dome 584 

Fuji (Delmonte et al., 2004a) and/or enhanced dry deposition at the site (Albani et al., 2012).  585 

 586 

4.2 Change in composition of calcic dust  587 

As described in Section 3.4, most Ca containing particles contains CaSO4 during the LGM, 588 

but its fraction decreases and the fraction of Caonly (CaCO3 and/or Ca(NO3)2) increases after 17 kyr 589 

BP in both the EDC and DF cores (Fig. 8). These fractional changes may reflect changes in dust 590 

sources and transport processes. 591 

We first discuss chemical forms of the Caonly particles after 17 kyr BP. We speculate that 592 

they are mostly Ca(NO3)2 because CaCO3 is highly reactive with HNO3 (Usher et al., 2003) and 593 

NO3
-
 and Ca

2+
 concentrations in both cores are highly correlated (Röthlisberger et al., 2000, 2002; 594 

Watanabe et al., 2003a; Iizuka et al., 2008). Studies of modern surface snow from coastal to 595 

high-elevation sites in Antarctica (including Dome C) indeed suggest that Ca(NO3)2 forms during 596 

long-range transport of calcic dust (Udisti et al., 2004; Mahalinganathan and Thamban, 2016). 597 

Delmonte et al. (2017) found CaCO3 particles (calcite and aragonite) and diatom valves in the LGM 598 

section of the Dome B core and proposed that their source was exposed Patagonian continental shelf. 599 

The supply of such CaCO3 should decrease with rising sea level, thus it is unlikely to be the major 600 

component of Caonly particles after 17 kyr BP, whose fraction increases with time. Another possible 601 

component of Caonly is CaCO3 from sea-ice surface (ikaite and calcium carbonate monohydrate), 602 

which has been found in the Talos Dome (a coastal dome) firn core (Sala et al., 2008). However, 603 

considering the large fractions of modified sea-salt particles during the Termination and Holocene in 604 

the EDC and DF cores, we speculate that CaCO3, which is more reactive than NaCl, from the sea-ice 605 

surface is unlikely to be abundant in the Antarctic interior. Even if such CaCO3 were present in the 606 
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EDC and DF cores, its abundance should decrease with decreasing sea-salt concentrations during the 607 

Termination, which is again contradictory to our data. 608 

If CaSO4 and Ca(NO3)2 found in Antarctic snow and ice are mainly produced by 609 

atmospheric reaction of CaCO3 with H2SO4 and HNO3, respectively (Legrand & Mayewski, 1997; 610 

Gibson et al., 2006), such reactions may occur at different altitudes (Legrand et al., 1988; 611 

Mahalinganathan & Thamban, 2016). The principal source of atmospheric H2SO4 is photochemical 612 

oxidation of dimethyl sulfide emitted by marine biological activity (Davis et al., 1998), whereas 613 

HNO3 is formed from nitrogen oxides mostly in the mid- to upper troposphere and stratosphere 614 

(Wolff, 1995; Savarino et al., 2007). Therefore, the fractions of CaSO4 and Ca(NO3)2 particles may 615 

reflect the altitude of atmospheric transport of dust particles (marine boundary layer for CaSO4 and 616 

free troposphere for Ca(NO3)2).  617 

Previous studies on the mineralogy of EDC dust have identified that the dominant dust 618 

source area was Patagonia during the LGM and that multiple dust sources including Australia may 619 

have contributed after ~16 kyr BP (Delmonte et al., 2004b, 2008; Revel-Rolland et al., 2006; 620 

Siggaard-Andersen et al., 2007; Marino et al., 2008; Vallelonga et al., 2010; Wegner et al., 2012; 621 

Gili et al., 2016). Atmospheric model simulations have suggested that Patagonian dust is transported 622 

via the lower troposphere, while Australian dust is transported via the mid- to upper troposphere (Li 623 

et al., 2008; Krinner et al., 2010). Our results of the dominance of CaSO4 in the LGM and increased 624 

Caonly in the Termination and Holocene are thus consistent with the dominant dust contribution from 625 

Patagonian during the LGM and the hypothesis of increased Australian dust contribution during the 626 

Termination and Holocene. CaSO4 particles would partly originate in sea salt from open ocean or sea 627 

ice (Section 3.1). The contribution of ocean-origin CaSO4 is smaller (< 10 %) in the LGM than in the 628 

early Holocene (about 50 %) from ion concentrations, thus it does not affect the above conclusion. 629 

A recent work proposed that CaSO4 in glacial periods may largely originate from primary 630 

gypsum (Goto-Azuma et al., 2019). If this was the case, our data is still consistent with the dominant 631 

Patagonian dust source during the LGM because the sources of gypsum lie in Patagonia (Drewry et 632 

al., 1974; Nickovic et al., 2012). Comparison of our EDC and DF data for the LGM reveals that the 633 

DF core contains abundant particles with Ca/S < 1 (comparable to the particles with Ca/S = 1), while 634 

the EDC core contains few particles with Ca/S < 1. Considering the longer distance from Patagonia 635 

to EDC than to DF, our data may suggest major contribution of CaSO4 derived from the reaction of 636 

CaCO3 and H2SO4. We note that our data do not necessarily contradict with the conclusion of 637 

Goto-Azuma et al. (2019) that biogenic sulfur emission was reduced in glacial periods, because the 638 

conclusion holds with large range of proportion of primary gypsum to total CaSO4. 639 
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The fraction of CaSO4 is higher in the DF core than in the EDC core after ~17 kyr BP, 640 

suggesting continuation of major Patagonian dust contribution to Dome Fuji region after 17 kyr BP. 641 

This is qualitatively consistent with the results of modern trajectory analyses (Neff & Bertler, 2015), 642 

which have shown that the Dome Fuji site receives a higher proportion of Patagonian dust than the 643 

Dome C site.  644 

 645 

4.3 Modifications of sea-salt particles  646 

Our results show that most initial sea-salt particles (NaCl) react with HNO3, H2SO4, or 647 

MSA in the atmosphere before reaching Dome C, or in snow after deposition in both the LGM and 648 

Holocene (Figs. 9 and 10). The DF core shows a higher fraction of modified sea-salt particles in the 649 

Termination and Holocene than in the LGM (Figs. 9 and 10). The results from the two ice cores are 650 

thus consistent in terms of the high fraction of modified sea-salt particles in the Holocene. 651 

The preservation of Cl
-
 from initial sea-salt particles may be estimated by comparing the 652 

Cl
-
/Na

+
 ratio of ice cores with the sea-water ratio of 1.8 (e.g., Röthlisberger et al., 2003). The Cl

-
/Na

+
 653 

ratio in the LGM is 1.65 and 1.70 for the EDC and DF cores, respectively (Littot et al., 2002; Wolff 654 

et al., 2006; Oyabu et al., 2014; Goto-Azuma et al., 2019), suggesting > 90 % preservation. Recently, 655 

Legrand et al. (2017) proposed higher Cl
-
/Na

+
 ratio in mobile sea-salt aerosols in the LGM of up to 656 

2.2 through the precipitation of mirabilite (Na2SO4∙10H2O) on expanded sea-ice surface. If we take 657 

2.0 as the initial Cl
-
/Na

+
 ratio, the same ion data suggest ~82 and ~85 % preservation for the EDC 658 

and DF cores, respectively. For the Holocene ice (Röthlisberger et al., 2003; Oyabu et al., 2014; 659 

Goto-Azuma et al., 2019), the estimated Cl
-
 preservation rates are ~28% and ~100% for the EDC and 660 

DF cores, respectively (Cl
-
/Na

+
 = ~0.5 and ~2, respectively). 661 

From this study, the number fractions of unmodified sea-salt particles (i.e. those within the 662 

gray band in Fig. 10a) in all sea-salt particles are 7 and 1 % in the LGM and in the Holocene, 663 

respectively, in the EDC core. These values are strikingly lower than the ion-based Cl
-
 preservation 664 

rate described above. The DF core shows higher rates of Cl
-
 preservation (42 % in the LGM, 15 % in 665 

the Holocene) than the EDC core, but they are also much lower than the ion-based Cl
-
 preservation 666 

rate.  667 

The large discrepancies between the Cl
-
 preservation rates from the sublimation-EDS and 668 

ion measurements indicate the existence of major non-NaCl substance in the ice sheet that include 669 

Cl
-
. Here, non-NaCl chloride salts are unlikely to be the major source of Cl

-
 because such particles 670 

comprise only 1% of all particles that we studied here. Therefore, most Cl
-
 should be present as HCl 671 

in the ice. Laboratory experiments have suggested that gaseous HCl may be incorporated in ice as 672 
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solid solution, aqueous solution, or HCl hexahydrate, and that HCl inclusion could occur during 673 

aerosol transport and snow crystal formation in the atmosphere, as well as after aerosol deposition 674 

during snow metamorphism (Domine and Thibert, 1995a, b; Thibert and Domine, 1997).  675 

A striking difference between the data from the two cores is that the sea-salt particles in 676 

the DF core are modified much less than those in the EDC core in both the LGM and Holocene (Figs. 677 

9 and 10). For the Holocene, the sum of acid concentrations ([SO4
2-

] + [NO3
-
]) is much higher than 678 

the sum of sea-salt and dust concentrations ([Na
+
] + [Ca

2+
] + [Mg

2+
]) in both the EDC and DF cores 679 

(Table 4). For the LGM, the sum of acid concentrations is lower than the sum of sea-salt and dust 680 

concentrations, and the magnitude of the imbalance is similar in the two cores. Thus, simple 681 

consideration of the ionic balance predicts similar rates of sea-salt modification for the two cores, 682 

which clearly contradicts the sublimation-EDS data. We suggest that the primary cause for the larger 683 

rate of unmodified sea-salt particles in the DF core is the high concentration of terrestrial dust, which 684 

reduces the acids available for sea-salt modification.  685 

The larger NaCl fraction in the DF core in comparison with the EDC core would not fully 686 

explain the much larger Cl
-
/Na

+
 ratio in the DF core in the Holocene. This suggests that most Cl

-
 was 687 

lost to the atmosphere from the snow at Dome C, while it was preserved at Dome Fuji as NaCl and 688 

solid solution. The significant difference in Cl
-
 preservation might be attributable to post-deposition 689 

snow redistribution and near-surface environmental properties (such as ventilation and light), which 690 

might affect the likelihood and magnitude of the reactions between sea salt and acids, and the rate of 691 

evaporation of HCl produced in snow. To clarify the causes of the higher modification rate of 692 

sea-salt particles as well as the greater Cl
-
 loss in the EDC core in comparison with the DF core, 693 

year-round observations of atmospheric aerosols and their deposition at the studied sites are 694 

desirable.  695 

 696 

5 Conclusions 697 

We measured the elemental compositions and size distributions of dust and sea-salt 698 

particles in the EDC core from the LGM to early Holocene (26–7 kyr BP), and compared them with 699 

the data from the DF core measured using the same method. The method extracts nonvolatile 700 

particles from ice samples by sublimating ice and volatile materials, which are measured using 701 

SEM-EDS. The main findings are summarized as follows.  702 

The sea-salt fluxes are approximately the same for both cores, whereas the dust flux in the 703 

EDC core is 2 – 3 times lower than in the DF core from the LGM to the Holocene. The significantly 704 

lower dust flux at Dome C during the LGM is consistent with model results of dust transport from 705 
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Patagonian glaciogenic dust source and deposition on those sites (Albani et al., 2012; Ohgaito et al., 706 

2018). The smaller modal size and larger aspect ratio of dust particles in the EDC core support the 707 

dominance of Patagonian source. The high fractions of CaSO4 in both cores during the LGM suggest 708 

that most dust particles were transported via the lower troposphere. During the Termination and early 709 

Holocene, the fraction of Ca(NO3)2 increases especially in the EDC core, which is consistent with 710 

the hypothesis that multiple dust sources including Australia contributed to the dust flux to the Dome 711 

C region. For the Dome Fuji region, the Patagonian source possibly continued to dominate the dust 712 

supply. The modal dust size shifted to a larger (smaller) value in the EDC (DF) core from the LGM 713 

to Holocene, which should reflect changes in dust source, transport pathways and en route removal 714 

processes.  715 

In the DF core, NaCl particles were found more abundant than in the EDC core in both the 716 

LGM and Holocene. A possible cause for this difference may be the higher concentration of 717 

terrestrial dust in the DF core, reducing acids to react with sea salts. However, the high NaCl fraction 718 

in the DF core is still insufficient to explain the very large Cl
-
/Na

+
 ratio (higher than seawater ratio) 719 

in the early Holocene, suggesting Cl
-
 preservation at Dome Fuji as both NaCl and solid solution, 720 

while most Cl
-
 was lost to the atmosphere from snow at Dome C. The significant difference in Cl

-
 721 

preservation might be related to post-depositional snow redistribution and near-surface 722 

environmental properties. Modern observations of aerosol transport and deposition at the studied 723 

sites could help improve the understanding of the processes of sea-salt modification and Cl
-
 loss in 724 

Antarctic inland regions. 725 

 726 

Appendix 727 

Figure A1. Atomic fractions of Ti, Fe, Al, Si, Na, Mg, K, Ca, S, and Cl of all the particles in the 728 

EDC core measured using SEM-EDS. δD is derived from Jouzel et al. (2007). Vertical lines in the 729 

figure of δD indicate measured sample age. 730 

Figure A2. Same as Fig. A1 but for the DF core. δ
18

O is derived from Dome Fuji Ice Core Project 731 

Members (2017).  732 
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Figure captions 1040 

Figure 1. Map of ice core sites cited in this study and locations of the potential sources for dust in 1041 

the Southern Hemisphere. The map was drawn using the Generic Mapping Tools (Wessel et al., 1042 

2013). 1043 

Figure 2. Classification scheme of nonvolatile particles. Numbers (%) indicate the number fraction 1044 

of particles in each category (red: EDC, blue: DF).  1045 

Figure 3. Examples of SEM images and EDS spectra of nonvolatile particles. a and b, images of 1046 

typical dust, sea-salt and mixed particles. Crosses on the particles indicate the points of EDS 1047 

measurements (beam diameter: 64 nm). c – e, EDS spectra of the particles 001 (terrestrial dust), 002 1048 

(mixture of dust and sea salt), and 003 (sea salt), respectively. Asterisks denote background peaks 1049 

derived from the membrane filter (C, O), filter coating (Pt), and sample mount (Cr). 1050 

Figure 4. Mass fraction of Na in dust and sea salts, and concentration ratio of ssNa
+
 to total Na. 1051 

Color bars indicate mass fractions of Na derived from sublimation-EDS analysis and lines indicate 1052 

ratios of ssNa to Na. Here, (ssNa/Na)subl is the sum of the light blue and dark blue bars, 1053 

(ssNa
+
/Na

+
)Bowen is calculated with nssNa

+
/nssCa

2+
 = 0.56 (Bowen, 1979), (ssNa

+
/Na

+
)Bigler is 1054 

calculated with nssNa
+
/nssCa

2+
 = 0.94 (Bigler et al., 2006), and ssNa/tNa is calculated with the 1055 

crustal ratio of Na to Al (=0.29) (Sato et al., 2013). a, Dome C, and b, Dome Fuji. 1056 

Figure 5. Size distribution of all particles, sea salts, mixture of sea salts and dust, and terrestrial dust 1057 

in the Holocene, Termination, and LGM. Small panels in the size distribution of sea-salt particles in 1058 

the Holocene and Termination show size distribution of Na2SO4 (magenta) and NaCl (blue). Red 1059 

solid line in each panel shows lognormal fitting curve. 1060 

Figure 6. Distribution of aspect ratios of sea salts, mixture of sea salts and dust, and terrestrial dust 1061 

for the all period. Solid line in each panel shows lognormal fitting curve. 1062 

Figure 7. Number fractions of a, terrestrial dust, b, mixture of dust and sea salts, c, sea salts, and d, 1063 

others/unknown (dark colors: EDC core, pale colors: DF core). The 95% confidence interval of all 1064 

data plotted in this figure is estimated to be <5 %. e – g are number fractions of terrestrial dust, a 1065 

mixture of sea salts and dust, sea-salt, and others/unknown particles of the LGM (25–18 kyr BP), 1066 

Termination (17–12 kyr BP), and Holocene (11–9 kyr BP) for the EDC and DF cores.  1067 

Figure 8. Number fractions of CaSO4, CaCl2, and Caonly particles. a, EDC and b, DF. Dark blue: 1068 

particles containing Ca without Si, S and Cl, dark orange: atomic ratio of S/Ca is 1, pale orange: 1069 

atomic ratio of S/Ca is < 1, dark pink: atomic ratio of Cl/Ca is 2, pale pink: atomic ratio of Cl/Ca is < 1070 

2, and sky blue: particles containing both CaSO4 and CaCl2.  1071 
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Figure 9. Fractions of the atomic ratios of Na, S, and Cl in individual sea-salt particles (open circles). 1072 

Also shown are the fractions of fully modified sea salt by nitric acid (NaNO3, blue closed circles), 1073 

sulfuric acid (Na2SO4, red closed circles), and methanesulfonic acid (CH3SO3Na, green closed 1074 

circles), and initial sea salts from seawater and sea-ice surface (purple closed circles). Note that the 1075 

initial sea salt from seawater and sea-ice surface have similar fractions and thus indistinguishable on 1076 

the figure (Millero et al., 2008; Rankin and Wolff, 2002; Hara et al., 2017). 1077 

Figure 10. The fraction of Cl in the total number of Na, S, and Cl atoms for individual sea-salt 1078 

particles (crosses) except for data with Cl = 0, which are shown by open circles (circle area is 1079 

proportional to the fraction of number of particles). Samples without particles with Cl = 0 are 1080 

denoted by pluses on zero line. Black and blue dashed lines indicate Cl fractions for sea salts from 1081 

seawater (Millero et al., 2008) and sea ice (Rankin and Wolff, 2002; Hara et al., 2017), respectively, 1082 

with uncertainty range (gray shading). 1083 

Figure 11. Fluxes of ssNa
+
, nssNa

+
, and nssCa

2+
. a, ssNa

+
 flux calculated with nssNa

+
/nssCa

2+
 = 1084 

0.56 (Bowen, 1979) (red: EDC, blue: DF), b, nssNa
+
 flux calculated with nssNa

+
/nssCa

2+
 = 0.56 1085 

(Bowen, 1979) (red: EDC, blue: DF), and c, nssCa
2+

 flux calculated with ssNa
+
/ssCa

2+
 = 23 (Bigler 1086 

et al., 2006) (red: EDC, blue: DF. ssNa and nssNa fluxes estimated from the sublimation data are 1087 

represented in a and b, respectively (open circle with orange: EDC, open square with green: DF). 1088 

Figure 12. Modeled dust deposition flux for the LGM from an earth system model, MIROC-ESM 1089 

(data from Ohgaito et al., 2018). 1090 

 1091 

  1092 
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Table 1. Sizes of Particles Analyzed in the Dome C and Dome Fuji Cores. 1093 

  EDC  DF 

  Median Mode σg  Median Mode σg 

  (μm) (μm) (μm)  (μm) (μm) (μm) 

Holocene 

(9-11 kyr BP) 

All 1.83 1.56 1.60  2.26 1.70 1.76 

Dust 1.85 1.56 1.59  2.26 1.70 1.72 

Mix 1.97 1.56 1.67  2.72 2.28 1.74 

Sea salts 1.71 1.56 1.57  1.62 1.32 1.77 

         

Termination 

(12-17 kyr 

BP) 

All 1.75 1.51 1.62  2.31 1.80 1.72 

Dust 1.74 1.46 1.65  2.50 1.90 1.72 

Mix 1.91 1.56 1.65  2.35 1.80 1.73 

Sea salts 1.68 1.46 1.55  1.92 1.70 1.61 

         

LGM 

(18-25 kyr 

BP) 

All 1.75 1.41 1.64  2.39 1.99 1.58 

Dust 1.66 1.36 1.65  2.36 1.94 1.60 

Mix 1.94 1.56 1.63  2.58 2.18 1.53 

Sea salts 1.50 1.36 1.48  1.60 1.51 1.34 

Note: σg represents geometric standard deviation. 1094 

  1095 
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Table 2. Aspect Ratios of Particles Analyzed in the Dome C and Dome Fuji Cores. 1096 

  
EDC DF 

  
Mode Mode 

Holocene 

(9-11 kyr BP) 

Dust 1.40 1.38 

Mix 1.36 1.36 

Sea salts 1.36 1.36 

Termination 

(12-17 kyr BP) 

Dust 1.42 1.38 

Mix 1.40 1.40 

Sea salts 1.36 1.38 

LGM 

(18-25 kyr BP) 

Dust 1.42 1.38 

Mix 1.40 1.40 

Sea salts 1.42 - 

All period 

(9-25 kyr BP) 

Dust 1.42 1.38 

Mix 1.38 1.38 

Sea salts 1.36 1.36 

 1097 

  1098 
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Table 3. Average Fluxes of sea-salt (ss) Na and non-sea-salt (nss) Na in the Dome C Core and their Ratios 1099 

with the Dome Fuji Core 1100 

 1101 

 
EDC fluxa,b 

(mg m-2 yr-1) 

DF fluxc 

(mg m-2 yr-1) 
DF/EDC flux ratio 

 
9-11 

kyr BP 

18-25 

kyr BP 

9-11 

kyr BP 

18-25 

kyr BP 

9-11 

kyr BP 

18-25 

kyr BP 

ssNa+
Bigler

d 0.40 0.80 0.55 0.77 1.38 0.96 

ssNa+
Bowen

e 0.42 1.03 0.58 1.11 1.38 1.08 

ssNa+
subl

f 0.48 1.05 0.46 1.07 0.96 1.02 

       

nssNa+
Bigler

d 0.02 0.54 0.07 0.84 3.50 1.56 

nssNa+
Bowen

e 0.01 0.32 0.04 0.49 4.00 1.53 

nssNa+
subl

f 0.03 0.31 0.30 0.51 10.0 1.65 

 1102 

Note: Na+ flux is divided into ssNa+ and nssNa+ using published ion data (aLittot et al., 2002; bWolff et al., 1103 

2006; cOyabu et al., 2014) with nssNa+/nssCa2+ (dBigler et al., 2006 or eBowen, 1979) or with ssNa/Na from 1104 

the particle classification after sublimation (fthis study). The values from the different methods are denoted by 1105 

subscript letters. The DF/EDC flux ratios are calculated for the respective methods and periods. 1106 

  1107 
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Table 4 Average concentrations of six ion species in the early Holocene and LGM for the EDCa and DFb, c 1108 

cores.  1109 

 Age Cl- NO3
- SO4

2- Na+ Mg2+ Ca2+ 

EDC early Holocene (9 – 11 kyr BP) 0.78a 0.21 a 1.00 a 0.77 a 0.10 a 0.17 a 

EDC LGM (18 – 25 kyr BP) 5.17 a 0.81 a 2.18 a 4.71 a 0.79a 1.10 a 

        

DF early Holocene (9 – 11 kyr BP) 1.31b 0.39c 1.03 b 0.95 b 0.11 b 0.10 b 

DF LGM (18 – 25 kyr BP) 4.82 b 1.88c 2.17 b 4.37 b 0.77 b 1.59 b 

Note: aLittot et al. (2002), bOyabu et al. (2014), cGoto-Azuma et al. (2019). Unit is μmol l-1. 1110 
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