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Abstract 21 

The vitrification of high-level nuclear waste within borosilicate glass and its disposition within 22 

a multi-barrier repository deep underground is accepted as the best form of disposal. Here, the 23 

ability of machine learning to predict both static and dynamic glass leaching behavior is 24 

analysed using large-scale unstructured multi-source data, covering a diverse range of 25 

experimental conditions and glass compositions. Machine learning can accurately predict 26 

leaching behavior, predict missing data, and time forecast. Accuracy depends upon the type of 27 

learning algorithm, model input variables, and diversity or size of the underlying dataset. For 28 

static leaching, the bagged random forest method predicts well, even when either pH or glass 29 

composition are neglected as input variables, additionally showing potential in predicting 30 

independent glass dissolution data. For dynamic leaching, accuracy improves if replacing final 31 

pH with a species dissolution rate as an input variable, although results show no preferred 32 

output species (Si, Na, or Al).  33 

 34 
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1. Introduction 43 

Historically in the UK, high-level radioactive waste (HLW) from the reprocessing of spent 44 

nuclear fuel is vitrified into a borosilicate glass matrix [1]; a well-established method of waste-45 

form immobilisation [2,3]. The glass is solidified within stainless steel containers and, as of 46 

2016, there was 870 m3 of vitrified HLW contained within 5,780 containers at Sellafield [4]. 47 

Current government policy is to store this glass within a multi-barrier geological disposal 48 

facility (GDF) deep underground [4]. For the safety case, this will require confidence that the 49 

initially contained radionuclides will not be released in any significant quantity into the 50 

environment. This represents a major challenge, given that glass dissolution is known to depend 51 

on many different factors, including temperature, pH, groundwater flow-rate, and both glass 52 

and groundwater compositions [5–8]. This issue is also an international one as many of the 53 

major nuclear waste generating countries have chosen vitrification as part of their radioactive 54 

waste strategy [9]. 55 

Such complexity ensures that robust techniques are needed to predict glass-leaching behaviour 56 

as a function of time, which is particularly difficult given the expected million-year design life 57 

of a GDF [10]. In the literature, these methods have primarily been mechanistic models, and 58 

arguably, the French glass reactivity with allowance for the alteration layer (GRAAL) model 59 

[11] is the current state of the art. Whilst it is widely accepted that glass dissolution evolves 60 

following distinct initial dissolution, rate-drop, residual-rate, and potentially rate resumption 61 

regimes [12], there are two competing theories of diffusion controlled corrosion versus 62 

interfacial dissolution and reprecipitation [13]; inevitably, differences do exist across 63 

computational models of these processes [14–17]. Therefore, it remains a challenge to have 64 

one model that can predict experimental leaching dissolution behaviour robustly, under a 65 

variety of different experimental conditions, for a range of different glass compositions. 66 
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As an alternative, predictive machine learning (ML) methods are potentially of value, 67 

particularly given that they reduce the need to make assumptions about underlying glass 68 

leaching mechanisms and that they could utilise the considerable amount of data that has been 69 

both collected and published in the field over the previous decades. Such techniques are 70 

becoming transformative across healthcare, manufacturing, consumer goods, financial 71 

services, the media, as well as other industries [18–23]. Nonetheless, their application to 72 

nuclear waste glass dissolution has been extremely limited. Krishnan et al. [24] demonstrated 73 

their value, accurately predicting logarithmic silicon initial dissolution rates from eight 74 

different aluminosilicate glasses. In addition, Jantzen et al. [25] applied an informatics 75 

approach to the ALTGLASS database, analysing the correlation between gel compositions and 76 

zeolite generation. Nonetheless, further research is required to examine predictive leaching 77 

performance of machine learning on both large-scale static and alternative dynamic datasets. 78 

To further analyse the capability of machine learning to predict glass leaching behaviour, this 79 

study first explores the ability to predict dissolution behavior using large-scale static leaching 80 

glass dissolution data. This includes: comparing leaching predictive performance across 14 81 

different learning methods, examining the effect of different experimental features on 82 

prediction, exploring the ability of machine learning to predict given missing experimental 83 

data, discerning the effect of dataset size on leaching prediction, and understanding the 84 

performance of trained networks on both group-independent data and in time-forecasting. 85 

Additionally, machine learning techniques are also further applied to predict glass initial 86 

dissolution rates using various dynamic-flow glass leaching data, building upon the work of 87 

Krishnan et al. [24] .  88 

This study is novel in a number of respects. To our knowledge, this is the first study to explore 89 

the effectiveness of machine learning prediction in static leaching and for nuclear waste glass 90 

dissolution in general. It makes use of primarily unstructured data, taken from across the 91 
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literature, internal to the University of Cambridge, and from multiple industrial vitrification 92 

campaigns. Furthermore, in a substantial expansion of the work of Krishnan et al. [24], 93 

dynamic leaching prediction considers both ‘geological’ and nuclear waste glass dissolution 94 

data, uses additional machine learning methods, and considers the effect of varying dataset 95 

size. In addition, rate prediction is not solely limited to three component (sodium 96 

aluminosilicate) glasses but to complex multi-component glasses, the effect of different 97 

experimental features on prediction is considered, and prediction is not solely limited to silicon 98 

release, but includes the release of species with more varied solubility such as sodium and 99 

aluminium. 100 

2.  Methods 101 

This paper separates glass dissolution prediction into two categories. Machine learning is firstly 102 

applied to static glass leaching data and then subsequently to dynamic flow data. The different 103 

machine learning methods are stated in Section 2.1 with the underlying experimental data being 104 

outlined in Section 2.2. The specific simulations performed are then detailed in Section 2.3. 105 

All code has been implemented using MATLAB [26] and is available upon request.  106 

2.1. Machine Learning Methods 107 

Machine learning [27,28] aims to predict one (or multiple) output variables as a function of 108 

different input variables. Each method learns a correlation using a training dataset, prior to 109 

determining its predictive ability using an independent test dataset. Neural networks use an 110 

additional validation dataset as part of training whilst tuning hyperparameters. The 14 111 

supervised machine-learning methods considered in this study to predict glass leaching 112 

behaviour are: neural networks, multiple, lasso, ridge, and elastic-net regression, support vector 113 

machines (SVM), Gaussian Process Regression (GPR), individual regression trees, boosted 114 

ensembles, and bagged random forests. SVM regression used either Gaussian, linear, or 115 
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polynomial kernel functions. GPR used either MATLAB ‘exponential’, ‘squaredexponential’, 116 

and ‘ardsquaredexponential’ kernel functions. The techniques are more extensively described 117 

in Table S1, and several of the methods have also been discussed by Krishnan et al. [24].  118 

2.2.  Experimental Data 119 

Dataset A  120 

Dataset A consists of 53 static leaching experiments on simulant UK Magnox radioactive waste 121 

glasses obtained at 90.0 ± 0.2oC. Tests primarily used an initial surface-area-to-volume ratio 122 

(SA/V) of 2000 (range 1726-2131) m-1, a 75-150 µm powder of mass 4.00 (range 3.01-4.06) 123 

g, and initial deionised water leachant volume of 40.0 (30.1-40.2) mL. Leaching used 124 

perfluoroalkoxy alkane (PFA, Savillex) 60 mL “standard jars”. The dataset was provided 125 

courtesy of the Nuclear Decommissioning Authority (NDA), taken over many vitrification 126 

campaigns. Glass composition and density have consequently varied significantly between 127 

experiments. Experiments used variable Magnox waste loadings, different ratios of Magnox to 128 

Thermal Oxide Reprocessing Plant (THORP) waste blends, and newer Ca/Zn base glass frits 129 

with and without different loadings of standard HLW and Molybdenum-rich post operational 130 

clean out (POCO) waste. All experiments were run for varying leaching time periods for a 131 

minimum of 100 days.  132 

Dataset B 133 

Dataset B consists of 18 static leaching experiments, obtained internally at the University of 134 

Cambridge. A deionised water leachant was used with a method which followed the ASTM 135 

product consistency test (PCT) [29]. The dataset contains: two different international simple 136 

glass (ISG) [30] compositions in which lithium had been substituted for sodium as two different 137 

Li:Na ratios were each leached at 40 and 90oC [31], a complex simulant Magnox waste glass 138 

of 25 wt.% waste loading (MW25, (Mixture Windscale)) glass at 40, 60, 70, 80, and 90oC for 139 
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up to 28 days, and two simple lithium-sodium borosilicate base glass frits employed in the UK 140 

vitrification process leached at 40 and 90 oC. A SA/V of 2000 m-1 was used for all experiments.  141 

Dataset C 142 

Dataset C contains nine variable composition sodium borosilicate experiments leached at 90 143 

oC using deionised water leachant. These results were previously published by Gin et al. [32].  144 

Dataset D 145 

Dataset D represents 12 long-term French complex simulant waste glass (SON68) experiments, 146 

taken under both static and dynamic conditions. These results were previously published by 147 

Frugier et al. [11].  148 

Dataset E  149 

Dataset E was data obtained using single-pass-flow-through (SPFT) experiments, extracted 150 

from the work of Vienna et al. [33] where boron initial dissolution rates were obtained for 19 151 

different complex glasses established across many different countries, each repeated at 152 

different temperature and pH values.  153 

Dataset F 154 

Dataset F contains nine SPFT experiments leached at pH 3 and 9, reported by Guo et al. [34] 155 

Simplified glass compositions with Si, B, and (Na) at molar ratios similar to UK glass were 156 

leached using deionised water leachant at 90oC.  157 

Dataset G 158 

Dataset G represents two MW25 initial dissolution rates, obtained at 40 and 90oC by Iwalewa 159 

et al. [6] using SPFT techniques. 160 

Dataset H 161 
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Dataset H gives initial dissolution rates computed by Ferrand et al. [35] using both SON68 and 162 

German designed, alkali-borosilicate (PAMELA) glasses, leached under alkaline conditions.  163 

Dataset I 164 

Dataset I provides initial dissolution rates found by Elia et al. [36] using ISG glass, leached 165 

under alkaline conditions.  166 

Dataset J 167 

Dataset J gives initial dissolution rates determined by Backhouse et al. [37] using ISG glass, 168 

under both acidic and hyper-alkaline (up to pH 11) conditions.  169 

Dataset K  170 

Dataset K is 299 initial dissolution rates obtained for nine sodium aluminosilicate glasses by 171 

Hamilton et al. [38], previously used in the Krishnan et al. machine learning study [24].  172 

2.3. Description of Simulations 173 

2.3.1. Static Leaching Simulations 174 

Using the static leaching data (Datasets A-D), this study firstly analyses the ability of the 175 

different machine learning methods listed in Section 2.1 to predict normalised boron (B) release 176 

(gm-2) as a function of different experimental input variables (see Table 1). This allows for 177 

both a comparison across different machine learning methods, as well as an analysis of the 178 

effect of different algorithms on predictive performance. Boron is considered because of its 179 

generally high release during leaching and inability to form secondary precipitates [39], as such 180 

it acts as a proxy for overall glass alteration. Concentrations measured in the static experiments 181 

were normalised to the mass fraction of the element within the pristine glass and SA/V after 182 

mass loss (of leachate) and blank corrections, known as the normalised release, NLi of element, 183 

i. With the exception of neural networks, each simulation has been performed by dividing either 184 
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the complete static data (Datasets A-D) or only Dataset A into training and test datasets using 185 

ratios of 0.7 and 0.3 respectively. For neural networks, ratios of 0.55, 0.15, and 0.3 have been 186 

used for the training, validation, and test datasets respectively. These ‘whole experiment’ 187 

simulations partition the data on a whole experiment basis, rather than partitioning specific 188 

time measurements within each individual experiment.  189 

Table 1: The different input variable combinations used in this study’s static simulations. Note that ‘All 190 

variables’ represent the combined experimental variables: elemental mass fractions, glass density, 191 

average powder mass (in time), average leachant volume (in time), average surface area to volume 192 

ratio (in time), time, pH (in time), elemental normalised release of Cr, Li, Mg, Mo, Na, and Si, in time. 193 

Simulation Number 

Input Variable 

Combination 

Simulation Number 

Input Variable 

Combination 

1 All variables 10 
All variables, excluding 

Li elemental release 

2 

All variables, excluding 

pH 

11 

All variables, excluding 

Mg elemental release 

3 

All variables, excluding 

surface area to volume 

ratio 

12 

All variables, excluding 

time 

4 
All variables, excluding 

powder mass 

13 

All variables, excluding 

Cr, Li, Mg, and Mo 

elemental release 

5 

All variables, excluding 

leachant volume 

14 

All variables, excluding 

elemental mass fractions 
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6 

All variables, excluding 

glass density 

15 

All variables, excluding 

all species elemental 

release 

7 

All variables, excluding 

pH and all species 

elemental release 

16 

All variables, excluding 

Cr, Li, Mg, Mo, and Na 

elemental release 

8 

All variables, excluding 

Si elemental release 

17 

All variables, excluding 

Cr, Li, Mg, Mo, and Na 

elemental release, adding 

flow rate to surface area 

9 

All variables, excluding 

Na elemental release 

- - 

Other related static leaching simulations have also been performed. These include examining 194 

the ability of the different machine learning algorithms to predict normalised B releases when 195 

there is missing experimental data. Here, different individual time-point results have been 196 

randomly removed from each experiment, using the same training/validation/test ratios and 197 

input combinations stated previously. Both these ‘missing data’ simulations and the ‘whole 198 

experiment’ simulations described above have also been implemented by using different 199 

starting fraction ratios of the full data. Ratios of 0.2, 0.4, 0.6, and 0.8 have been applied, 200 

referring to the fraction of data initially removed prior to training/test set partition. This allows 201 

for the effect of dataset size to be determined. In addition, the ability of each Dataset A trained 202 

model to predict independent group data (Datasets B-D) has been examined. The ability of 203 

each model to time-forecast under each Table 1 input variable combination was also assessed. 204 

This was achieved by using the initial half of each experimental duration in either Dataset A 205 

or Datasets A-D to predict the behaviour during the second half of the leaching duration. Again, 206 
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the effect of dataset size was analysed in time-forecasting, by using the same fraction values 207 

(0.2, 0.4, 0.6, and 0.8) as stated above. 208 

2.3.2. Dynamic Leaching Simulations 209 

Using the dynamic leaching data (Datasets E-J), this study has aimed to predict initial (log/non-210 

log) B glass dissolution rates as a function of temperature, pH, with and without mole 211 

percentage of oxides/halogens (Table 2). Note that due to the low solubility of halogens in 212 

glass, these form a very minor contribution to overall glass composition. Again, the 213 

performance of different algorithms was compared, as was the effect of dataset size, using the 214 

same fraction ratios (0.2, 0.4, 0.6, and 0.8) as in the static leaching simulations stated above. 215 

Training was implemented using either Dataset E or E-I. Trained models solely developed 216 

using Dataset E were subsequently applied on the remaining datasets F-J to analyse their ability 217 

to independently predict rates. Finally, following the approach of Krishnan et al. [24], the 218 

performance of different machine learning algorithms (considering variable dataset size) was 219 

assessed using Dataset K. This was to build upon the original work, going beyond predicting 220 

Si release, in order to: determine the relative accuracy of Si, Na, and Al initial dissolution rate 221 

prediction; determine the effect of the other input variables; analyse the influence of dataset 222 

size; and consider alternative learning algorithms (including SVM kernel variability, ridge 223 

regression, GPR (additionally considering kernel variability), and boosting). Nine different 224 

input-output variable combinations were trialled, as shown in Table 2. 225 

 226 

 227 

 228 

 229 

 230 
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Table 2: The different input-output variable combinations trialled using Datasets E(-J) and K. 231 

Simulation 

Number 

Datasets E(-J) 

Input Variable 

Combination 

Output 

Variable 

Combination 

Simulation 

Number 

Datasets E(-J) 

Input Variable 

Combination 

Output 

Variable 

Combination 

1 

Temperature, 

pH, mole 

percentage of 

oxides/halogens 

B log-initial 

dissolution rate 

3 
Temperature, 

pH 

B log-initial 

dissolution rate 

2 

Temperature, 

pH, mole 

percentage of 

oxides/halogens 

B initial 

dissolution rate 

4 

Temperature, 

pH 

B initial 

dissolution rate 

Simulation 

Number 

Datasets K 

Input Variable 

Combination 

Output 

Variable 

Combination 

Simulation 

Number 

Datasets K 

Input Variable 

Combination 

Output 

Variable 

Combination 

1 

SiO2, Na2O3, 

Al2O3 mass 

oxide 

percentages, 

initial pH, final 

pH 

Si log-initial 

dissolution rate 

6 

SiO2, Na2O3, 

Al2O3 mass 

oxide 

percentages, 

initial pH, Si 

log-initial 

dissolution rate 

Na log-initial 

dissolution rate 

2 

SiO2, Na2O3, 

Al2O3 mass 

oxide 

percentages, 

Na log-initial 

dissolution rate 

7 

SiO2, Na2O3, 

Al2O3 mass 

oxide 

percentages, 

initial pH, Al 

Na log-initial 

dissolution rate 
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initial pH, final 

pH 

log-initial 

dissolution rate 

3 

SiO2, Na2O3, 

Al2O3 mass 

oxide 

percentages, 

initial pH, final 

pH 

Al log-initial 

dissolution rate 

8 

SiO2, Na2O3, 

Al2O3 mass 

oxide 

percentages, 

initial pH, Si 

log-initial 

dissolution rate 

Al log-initial 

dissolution rate 

4 

SiO2, Na2O3, 

Al2O3 mass 

oxide 

percentages, 

initial pH, Na 

log-initial 

dissolution rate 

Si log-initial 

dissolution rate 

9 

SiO2, Na2O3, 

Al2O3 mass 

oxide 

percentages, 

initial pH, Na 

log-initial 

dissolution rate 

Al log-initial 

dissolution rate 

5 

SiO2, Na2O3, 

Al2O3 mass 

oxide 

percentages, 

initial pH, Al 

log-initial 

dissolution rate 

Si log-initial 

dissolution rate 

   

 232 

For all static and dynamic leaching simulations, the performance of different algorithms was 233 

judged by computing R2 and mean square errors (MSE) across both training and test datasets. 234 

For neural networks, validation set errors were also considered. Other fine-tuned parameters 235 

included: regularisation parameters (lasso, ridge, elastic net regression), leaf size (individual 236 
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regression trees), number of trees (boosting/bagging), and neural network hidden layer sizes. 237 

These are important for optimising the learnt algorithm performances. Due to the random 238 

nature of dataset partition, averages on both R2 and MSE were performed across 100 iterations. 239 

In optimisation, regularisation parameters up to 0.01, leaf size/number of trees up to 150, and 240 

neuron numbers up to 52 were considered. Single hidden layer neural networks were 241 

considered with feed forward networks, Levenberg-Marquardt optimisation, with a maximum 242 

of 1000 epochs in the training. For bagged random forests, the minimum number of 243 

observations per leaf was 5. For boosted ensembles, the ‘LSBoost’ algorithm was used.  244 

3. Results 245 

For improved presentation, machine learning algorithms are given the following labels: 246 

multiple linear (1), SVM with Gaussian kernel (2), SVM with linear kernel (3), SVM with 247 

polynomial kernel (4), GPR with exponential kernel (5), GPR with square exponential kernel 248 

(6), GPR with ‘ardsquaredexponential’ kernel (7), lasso (8), ridge (9), elastic net (10), single 249 

regression tree (11), bagged random forest (12), boosted ensemble (13), and neural network 250 

(14). Input/Output (I/O) combinations are numbered consistently with the values given in 251 

Tables 1 and 2. Additional results are provided in Tables S1-9 and Figure S1. 252 

3.1. Static Leaching Results 253 

3.1.1. ‘Whole Experiment’ Simulations 254 

Table 3 states the ‘whole experiment’ mean R2/MSE test errors for Dataset A, which indicate 255 

the level of agreement between the simulated and experimental normalised B release curves 256 

over the test data. The term ‘whole experiment’ refers to simulations that partition the data into 257 

training and test sets on a whole experiment basis. Note that negative R2 errors indicate a fit 258 

worse than just using a horizontal straight line [40]. Each trained model was established using 259 
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Dataset A, 17 I/O combinations and 14 machine learning algorithms. See Section 4.1 for a 260 

discussion of these and other static leaching results. 261 

Table 3: ‘Whole experiment’ mean R2/MSE test errors as a function of I/O combinations and machine 262 

learning algorithms. Training and testing were performed using Dataset A considering the full 263 

available data. I/O numbers are given in Table 1. Machine learning algorithm numbers correspond to 264 

the algorithms given at the beginning of Section 3. Three relatively good and bad performing algorithms 265 

are highlighted in green and red respectively for each I/O combination. 266 

I/O Error Machine Learning Algorithm 

  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 

R2 <-10000 -0.03 0.94 -0.05 0.91 0.83 0.96 0.96 0.95 0.95 0.95 0.99 0.97 0.65 

MSE >10000 51.3 2.75 52.37 3.92 7.84 2.43 1.72 2.16 2.36 2.45 0.19 0.59 16.26 

2 

R2 <-10000 -0.03 0.95 -0.07 0.92 0.82 0.96 0.96 0.95 0.95 0.95 0.96 0.98 0.58 

MSE >10000 50.87 2.37 50.76 3.58 7.98 2.39 1.7 2.15 2.33 2.32 0.48 0.85 18.9 

3 

R2 <-10000 0.35 0.94 -0.12 0.98 0.96 0.96 0.96 0.95 0.94 0.95 0.99 0.99 0.63 

MSE >10000 34.01 2.69 60.25 1.11 2.31 1.93 1.73 2.1 2.29 2.64 0.48 0.6 17.15 

4 

R2 <-10000 -0.05 0.95 -0.07 0.92 0.86 0.96 0.96 0.94 0.95 0.95 0.98 0.95 0.67 

MSE >10000 55.67 2.22 53.88 3.89 7.02 2.04 1.77 2.69 2.44 2.42 0.52 1.16 14.52 

5 

R2 <-10000 -0.03 0.96 -0.06 0.91 0.82 0.96 0.96 0.95 0.95 0.95 0.98 0.98 0.63 

MSE >10000 49.96 1.81 52.61 4.21 7.6 2.34 1.65 2.28 2.31 2.5 0.3 0.85 17.35 

6 

R2 <-10000 -0.03 0.94 -0.05 0.91 0.85 0.96 0.96 0.96 0.94 0.95 0.99 0.96 0.6 

MSE >10000 51.24 3.09 55.55 4.43 7.33 2.05 1.66 1.97 2.3 2.6 0.27 0.73 18.1 

7 

R2 <-10000 -0.02 0.27 -0.05 0.16 0.13 0.19 -7.81 -5.16 -3.71 0.32 0.8 0.67 -0.02 

MSE >10000 49.12 34.53 48.68 37.13 39.72 35.84 314.32 217.5 224.34 31.22 7.01 11.96 49.81 

8 

R2 <-10000 -0.04 0.94 -0.07 0.91 0.83 0.96 0.96 0.95 0.95 0.95 0.99 0.97 0.53 

MSE >10000 53.03 2.55 52.35 4.11 7.62 2.3 1.64 2.09 2.36 2.51 0.43 0.71 18.01 
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9 

R2 <-10000 -0.03 0.95 -0.08 0.9 0.88 0.96 0.95 0.94 0.95 0.95 0.98 0.95 0.65 

MSE >10000 53.02 2.33 52.64 4.45 6.06 2.59 2.19 2.69 2.44 2.71 0.52 1.16 15.58 

10 

R2 <-10000 -0.03 0.94 -0.06 0.85 0.27 0.95 0.93 0.92 0.9 0.92 0.97 0.93 0.56 

MSE >10000 51.15 2.63 55.38 7.1 35.85 2.27 3.5 4.27 4.9 3.8 0.68 1.14 20.18 

11 

R2 <-10000 -0.03 0.95 -0.04 0.92 0.83 0.96 0.96 0.95 0.95 0.95 0.99 0.97 0.55 

MSE >10000 54.15 2.7 57.43 3.85 7.83 1.83 1.73 2.17 2.39 2.44 0.45 0.76 17.93 

12 

R2 <-10000 -0.02 0.95 -0.07 0.92 0.86 0.94 0.96 0.95 0.95 0.95 0.99 0.95 0.6 

MSE >10000 56.58 2.64 53.76 3.64 6.99 3.09 1.69 2.09 2.31 2.54 0.35 0.7 18.14 

13 

R2 <-10000 -0.03 0.94 -0.06 0.85 0.87 0.9 0.95 0.92 0.93 0.93 0.93 0.92 0.49 

MSE >10000 53.93 2.71 54.57 6.83 5.7 5.6 2.46 3.62 3.1 3.23 1.44 1.49 22.94 

14 

R2 0.94 -0.03 0.95 -0.05 0.93 0.83 0.89 0.97 0.97 0.97 0.95 0.99 0.98 0.93 

MSE 2.3 50.77 2.47 52.87 3.51 7.56 6.24 1.46 1.45 1.34 2.34 0.46 0.93 3.63 

15 

R2 <-10000 -0.01 0.32 -0.06 0.14 0.12 0.27 -4.29 -1.63 -0.54 0.37 0.77 0.58 0.07 

MSE >10000 50.93 36.53 54.82 42.8 41.09 33.92 250.1 106.37 81.07 33.05 7.67 12.78 43.59 

16 

R2 <-10000 -0.04 0.35 -0.05 0.16 0.08 0.32 -2.55 -0.68 -0.28 0.36 0.78 0.58 0.09 

MSE >10000 55.83 31.99 49.79 38.37 45.49 31.61 163.66 73.41 67.38 31.39 5.43 12.56 43.11 

17 

R2 <-10000 -0.02 0.33 -0.06 0.25 0.15 0.33 -2.55 -0.68 -0.28 0.36 0.86 0.7 0.11 

MSE >10000 49.89 33.66 51.99 39.62 38.69 31.03 163.66 73.41 67.38 31.22 4.31 12.83 45.15 

 267 

Using Table 3, the effect of I/O combinations and machine learning algorithms on ‘whole 268 

experiment’ predictive performance can be examined. As a first example, Figure 1 shows 269 

Dataset A mean R2/MSE test errors as a function of the 17 input/output combinations using 270 

both boosted ensemble and GPR (‘ardsquaredexponential’ kernel) methods. Maximised R2 and 271 

minimised MSE errors indicate I/O combination 7, and 15-17 performed poorly for both 272 

algorithms, although the remaining I/O combinations performed well. I/O 7 excludes all 273 



17 

 

 

 

elemental concentrations and pH, and I/O 15-17 also exclude all or potentially important 274 

species concentrations. Therefore, a poor performance is expected based on our existing 275 

knowledge of the leaching process (see Section 4). As a second example, Figure 2 presents 276 

Dataset A R2/MSE test errors across the machine learning algorithms for I/O combinations 1 277 

and 7. Again, R2/MSE test errors worsen for I/O combination 7 for which all elemental 278 

concentrations and pH are excluded from prediction. To finish, the predicted static leaching 279 

performance is illustrated (see Figure 3) for I/O combination 1 for both Dataset A test data 280 

using bagged random forest and GPR (square exponential kernel) methods and for independent 281 

group data (Datasets B-D) using a trained Dataset A bagged random forest method. Note that 282 

predicted normalised releases lie within experimental error of the dissolution data. In particular, 283 

Figure 3c demonstrates an important result because although algorithm training was achieved 284 

using dissolution data obtained with a complex glass, independent testing was performed with 285 

data that used a simplified four component glass. 286 

 287 

Figure 1: Mean R2/MSE test errors as a function of the 17 I/O combinations using boosted ensemble 288 

[Left] and GPR (‘ardsquaredexponential’ kernel) [Right] methods. Training and testing utilised the full 289 

Dataset A. 290 
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 291 

Figure 2: Mean R2/MSE test errors as a function of the 14 machine learning algorithms for I/O 292 

combinations 1 [Left] and 7 [Right]. Due to the large errors associated with multiple linear regression, 293 

this algorithm’s results are excluded from the graph. Training and testing utilised the full Dataset A.  294 

 295 

 296 

 297 

 298 

 299 

 300 

 301 

 302 
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  304 

Figure 3: Example predicted vs measured normalised B release versus time test data curves. Individual 305 

leaching experiments and their associated simulated predictions were selected. Training and testing 306 

used the full Dataset A with bagged random forest [a] and GPR (square exponential kernel) methods 307 

[b]. Additionally shown [c] is a full Dataset A bagged random forest trained model prediction made on 308 

data independent of Dataset A (a simplified four component glass). I/O combination 1 was used in all 309 

three cases. Whilst experimental triplicate errors were less than 10% on the mean, conservative 10% 310 

error bars have been added to experimental data in all of the plots. 311 

3.1.2. ‘Missing Data’ Simulations  312 

Table 4 presents the ‘missing data’ mean R2/MSE test errors for Dataset A, whereby ‘missing 313 

data’ refers to simulations that have partitioned training and test data on a specific time 314 

[b] 

[c] 

[a] 
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measurement basis within each individual experiment. The R2/MSE errors again indicate the 315 

level of agreement between the simulated and experimental B normalised release curves over 316 

the test data. Model training used Dataset A, 17 I/O combinations and 14 machine learning 317 

algorithms.  318 

Table 4: ‘Missing data’ mean R2/MSE test errors as a function of I/O combinations and machine 319 

learning algorithms. Training and testing were performed using Dataset A considering the fully 320 

available data. I/O numbers are given in Table 1. Machine learning algorithm numbers correspond to 321 

the algorithms given at the beginning of Section 3. Three relatively good and bad performing algorithms 322 

are highlighted in green and red respectively for each I/O combination. 323 

I/O Error Machine Learning Algorithm 

  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 

R2 0.99 -0.01 0.97 -0.01 0.96 0.99 0.99 0.99 0.99 0.99 0.96 0.99 0.98 0.99 

MSE 0.61 52.06 1.37 50.76 2.16 0.76 0.54 0.58 0.57 0.59 2.12 0.38 1.04 0.48 

2 

R2 0.99 -0.01 0.98 -0.01 0.96 0.99 0.99 0.99 0.99 0.99 0.96 0.99 0.98 0.99 

MSE 0.58 50.32 1.29 51.07 2.07 0.71 0.28 0.56 0.56 0.58 1.93 0.34 1.06 0.52 

3 

R2 0.99 0.33 0.97 -4.44 0.98 0.99 0.99 0.99 0.99 0.99 0.96 0.99 0.98 0.99 

MSE 0.57 35.95 1.32 267.54 0.79 0.69 0.27 0.56 0.57 0.59 2.08 0.41 1.04 0.46 

4 

R2 0.99 -0.01 0.97 -0.01 0.96 0.99 0.99 0.99 0.99 0.99 0.96 0.99 0.98 0.99 

MSE 0.62 51.43 1.37 51.38 2.32 0.7 0.43 0.57 0.57 0.59 2.07 0.44 1.04 0.5 

5 

R2 0.99 -0.01 0.97 -0.01 0.96 0.98 0.99 0.99 0.99 0.99 0.96 0.99 0.98 0.99 

MSE 0.57 52.25 1.44 52.54 2.28 0.8 0.36 0.57 0.57 0.59 2.23 0.31 1.04 0.53 

6 

R2 0.99 -0.01 0.97 -0.01 0.96 0.99 0.99 0.99 0.99 0.99 0.96 0.99 0.98 0.99 

MSE 0.56 52.86 1.35 51.75 1.99 0.75 0.3 0.56 0.57 0.59 2.22 0.47 1.04 0.44 

7 

R2 0.59 0 0.31 -0.01 0.39 0.37 0.87 0.6 0.6 0.6 0.76 0.85 0.72 0.83 

MSE 20.58 50.76 34.99 50.45 31.36 30.63 6.13 18.88 19.37 19.53 10.99 4.85 10.07 8.33 



21 

 

 

 

8 

R2 0.99 -0.01 0.97 -0.01 0.96 0.99 0.99 0.99 0.99 0.99 0.96 0.99 0.98 0.99 

MSE 0.57 52.87 1.48 51.54 2.12 0.66 0.25 0.57 0.59 0.59 2.28 0.35 0.85 0.46 

9 

R2 0.98 -0.01 0.97 -0.01 0.95 0.99 0.99 0.98 0.98 0.98 0.96 0.99 0.97 0.99 

MSE 1.09 49.83 1.85 52.16 2.45 0.74 0.73 1.01 1.01 0.96 2.28 0.45 1.3 0.69 

10 

R2 0.98 -0.01 0.96 -0.01 0.92 0.96 0.99 0.98 0.98 0.98 0.94 0.97 0.96 0.99 

MSE 0.99 51.72 1.83 53.08 4.12 1.78 0.46 0.94 0.97 0.98 3.21 0.76 1.41 0.52 

11 

R2 0.99 -0.01 0.97 -0.01 0.96 0.99 0.99 0.99 0.99 0.99 0.96 0.99 0.98 0.99 

MSE 0.57 52.06 1.44 51.25 2.16 0.74 0.4 0.56 0.56 0.58 2.18 0.48 1 0.48 

12 

R2 0.99 0.11 0.97 -0.01 0.99 0.99 0.99 0.99 0.99 0.99 0.96 0.99 0.98 0.99 

MSE 0.58 45.55 1.48 50.88 0.54 0.35 0.38 0.57 0.57 0.59 2.27 0.45 1.04 0.5 

13 

R2 0.97 -0.01 0.95 -0.01 0.91 0.98 0.98 0.97 0.97 0.97 0.94 0.98 0.97 0.97 

MSE 1.64 51.7 2.48 52.32 4.68 1.25 1.05 1.37 1.33 1.34 3.02 0.84 1.62 1.56 

14 

R2 0.98 -0.01 0.97 -0.01 0.96 0.98 0.96 0.98 0.98 0.98 0.96 0.98 0.98 0.98 

MSE 0.95 50.72 1.51 53.2 2.28 0.93 2.45 0.91 0.92 0.89 2.05 0.59 0.99 1.03 

15 

R2 -5.07 0 0.35 -0.01 0.38 0.37 0.89 0.63 0.61 0.61 0.74 0.85 0.74 0.71 

MSE 394.43 51.92 32.58 53.29 32.88 33.53 5.83 19.2 19.63 19.36 12.8 5.36 8.57 14.82 

16 

R2 0.62 -0.01 0.37 -0.01 0.37 0.38 0.9 0.65 0.65 0.66 0.73 0.9 0.77 0.71 

MSE 20.04 53 33.67 52.8 32.48 32.51 5.05 17.39 17.73 17.56 13.25 3.5 9.5 14.78 

17 

R2 -4.11 -0.01 0.38 -0.01 0.38 0.36 0.9 0.66 0.65 0.66 0.75 0.92 0.77 0.71 

MSE 233.26 53.81 31.91 51.63 30.62 33.49 5.04 17.47 17.73 17.56 13.08 3.43 9.5 14.96 

 324 

Using Table 4 data, Figure 4 presents mean R2/MSE test errors for Dataset A as a function of 325 

the 17 input/output combinations using both GPR (‘ardsquaredexponential’ kernel) and neural 326 

network methods. Figure 5 shows mean R2/MSE test errors for Dataset A across the different 327 

machine learning algorithms for I/O combinations 2 and 8. Maximised R2 and minimised MSE 328 

errors indicate GPR (‘ardsqexponential’ kernel) (learning algorithm 7) and bagged random 329 
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forest (learning algorithm 12) methods gave high and the most accurate predictions across both 330 

combinations. Figure 6 shows predicted (test data) versus measured normalised B release for 331 

the neural network method and I/O combination 1 when training/testing using only Dataset A 332 

versus when training/testing using Datasets A-D. All normalised B release test data across 333 

experiments are shown in the graphs. Predictive accuracy is shown to be high in both cases. 334 

 335 

Figure 4: ‘Missing data’ mean R2/MSE test errors as a function of the 17 I/O combinations using both 336 

GPR (‘ardsquaredexponential’ kernel) [Left] and neural network [Right] methods. Training and testing 337 

utilised the complete Dataset A. 338 

 339 

Figure 5: Mean R2/MSE test errors as a function of the 14 machine learning algorithms for I/O 340 

combinations 2 [Left] and 8 [Right]. Due to the large errors associated with ML algorithms 2 and 4, 341 

these algorithms are excluded from the graph. The full Dataset A has been used in the model training. 342 
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 343 

Figure 6: Predicted (test data) versus measured normalised B release curves. These used a neural 344 

network with I/O combination 1 with training being applied either on the full Dataset A [a] or on the 345 

full Dataset A-D [b]. Perfect performance would have training/test results following the black straight 346 

line. All normalised B release test data across experiments are shown in the graphs. 347 

3.1.3. ‘Forecasting’ Simulations 348 

Figures 7-8 present selected results taken from the ‘forecasting’ simulations. These were 349 

achieved by using the first half of each experimental duration to predict the behaviour in the 350 

second half. Figure 7 shows Dataset A’s mean R2/MSE test errors as a function of the 17 I/O 351 

combinations using both bagged random forest and elastic net methods. Maximised R2 and 352 

minimised MSE errors indicate the bagged random forest predicts accurately for I/O 353 

combinations 1-6, and 8-14. Figure 8 shows Dataset A’s mean R2/MSE test errors as a function 354 

of the 14 machine learning algorithms and I/O combinations 1 and 14. Here, results are 355 

presented after training using the full Dataset A data and 80 % of the full Dataset A data. Errors 356 

indicate the level of agreement between simulated and test experimental data for normalised B 357 

release in the second half of the experiments. In general, considering the different machine 358 

learning algorithms, performance is shown here to decrease (although not substantially) as 359 

higher fractions of data are removed prior to training/test partition.  360 

[b] [a] 
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 361 

Figure 7: ‘Forecasting’ mean R2/MSE test errors as a function of the 17 I/O combinations using both 362 

bagged random forest [Left] and elastic net [Right] methods. Training and testing utilised the full 363 

Dataset A. 364 

 365 

 366 

 367 

 368 

 369 



25 

 

 

 

  370 

 371 

Figure 8: Mean R2/MSE test errors as a function of the 14 machine learning algorithms for I/O 372 

combination 1 (full Dataset A) [Top Left], I/O combination 14 (full Dataset A) [Top Right], I/O 373 

combination 1 (80% Dataset A) [Bottom Left], and I/O combination 14 (80% Dataset A). Due to the 374 

large errors associated with ML algorithms 2 and 4, these algorithms are excluded from the plots.  375 

3.2. Dynamic Leaching Results 376 

3.2.1. Dataset E(-J) Simulations 377 

Table 5 states Dataset E mean R2/MSE test errors across the four I/O combinations and 14 378 

machine learning algorithms. These explore the ability of machine learning to predict initial 379 

(log/non-log) B glass dissolution rates as a function of temperature, pH, with and without mole 380 

percentage of oxides/halogens. The effect of the four I/O combinations on Dataset E mean 381 
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R2/MSE test errors is shown in Figure 9 for both neural network and bagged random forest 382 

methods. Performance is shown to improve for both learning algorithms when using log B 383 

dissolution rate (see for example, I/O combination 1) as an output variable than when using B 384 

dissolution rate (see for example, I/O combination 2). This is likely due to an algorithmic issue 385 

occurring from the wider range of fitable values if considering B versus log B rates. The effect 386 

of the machine learning algorithms is then illustrated in Figure 10 for the same data with I/O 387 

combinations 2 and 4. Results indicate that performance does not always diminish with the 388 

removal of mole percentage of oxides/halogens as an input variable. This is because for all 389 

other input variables the same, I/O 4 has the mole percentage removed whereas I/O 2 includes 390 

it. See Section 4.2 for a further discussion of these and other dynamic leaching results. 391 

Table 5: Mean R2/MSE test errors as function of I/O combinations and machine learning algorithms. 392 

Training and testing used the full Dataset E. I/O numbers are given in Table 2. Machine learning 393 

algorithm numbers correspond to the algorithms given at the beginning of Section 3. Three relatively 394 

good and bad performing algorithms are highlighted in green and red respectively for each I/O 395 

combination. 396 

I/O Error Machine Learning Algorithm 

  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 

R2 0.93 0.38 0.93 -5.6 0.93 0.94 0.94 0.93 0.93 0.93 0.82 0.84 0.94 0.95 

MSE 0.07 0.6 0.07 6.4 0.07 0.06 0.05 0.06 0.06 0.06 0.18 0.16 0.06 0.05 

2 

R2 0.22 0.01 0.19 <-1000 0.39 0.31 0.41 0.27 0.28 0.28 0.46 0.53 0.51 0.65 

MSE 1.64 2.36 2.07 >10000 1.38 1.73 1.36 1.38 1.47 1.43 1.12 1.02 1.05 0.7 

3 

R2 0.86 0.8 0.86 <-10000 0.86 0.87 0.87 0.87 0.87 0.87 0.84 0.85 0.87 0.86 

MSE 0.14 0.19 0.13 >10000 0.13 0.13 0.13 0.13 0.13 0.13 0.15 0.14 0.13 0.13 

4 R2 0.31 0.36 0.13 <-10000 0.5 0.54 0.46 0.32 0.33 0.28 0.53 0.56 0.52 0.48 
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MSE 1.52 1.72 2.25 >10000 1.05 1.12 1.37 1.38 1.4 1.4 0.98 0.94 1.01 1.12 

 397 

 398 

Figure 9: Dataset E Mean R2/MSE test errors as a function of the four I/O combinations for neural 399 

network [Left] and bagged random forest [Right] methods. 400 

 401 

Figure 10: Dataset E mean R2/MSE test errors as a function of the 14 machine learning algorithms for 402 

I/O combinations 2 [Left] and 4 [Right]. Due to the large errors associated with ML 4, this algorithm 403 

is excluded from the graph for improved presentation. 404 

Model training was also applied on the collective Dataset E-J. Figure 11 presents predicted 405 

versus measured mean test boron log dissolution rates for I/O combination 1 using a neural 406 
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network. The two plots signify predictions determined after either training using only Dataset 407 

E or with the collective Dataset E-J.  408 

 409 

Figure 11: Predicted versus measured mean training/test dissolution rates for I/O combination 1 with 410 

a neural net method. The two plots signify predictions determined after either training with only the 411 

complete Dataset E [a] or with the collective complete Dataset E-J [b]. Perfect performance would have 412 

training/test results following the black straight line. 413 

3.2.2. Dataset K Simulations 414 

Table 6 states mean R2/MSE test errors across the nine I/O combinations and 14 machine 415 

learning algorithms. These illustrate the agreement between predicted and experimental test 416 

Na, Si, or Al initial dissolution rates, which represent a species that is soluble, moderately 417 

soluble and insoluble, respectively. To explore these results, Figure 12 shows predicted 418 

dissolution rates versus measured dissolution rates for I/O combinations 1 and 3 with a random 419 

forest method. Both combinations considered final pH as one of the inputs as opposed to a 420 

species initial dissolution rate, and the graphs indicate high predictive performance for both Si 421 

(I/O 1) and Al (I/O 3) rate prediction. As a second example, Figure 13 presents R2/MSE test 422 

errors as a function of the nine I/O combinations for both GPR (exponential kernel) and ridge 423 

methods. Predictive performance is shown to be worse for I/O combinations 1-3 (where final 424 

pH is considered as an input) than for I/O combinations 4-9 (whereby a species dissolution rate 425 

[a] [b] 



29 

 

 

 

is considered as input) across the different machine learning algorithms. Finally, Figure 14 426 

presents full Dataset K R2/MSE test errors as a function of machine learning algorithm with 427 

I/O combination 8. Using four of the high performing algorithms, the effect of dataset size is 428 

also illustrated. This I/O combination included Si initial dissolution rate as an input variable 429 

and aimed to predict Al initial dissolution rate. The graphs indicate high predictive accuracy in 430 

GPR (any kernel) and neural network methods. Moreover, performance appears to be 431 

approximately constant up to about a 0.2 ratio (fraction of data removed prior to training/test 432 

data partition) and then errors increase at an increasing rate as the fraction of data removed 433 

increases.  434 

Table 6: Mean R2/MSE Dataset K test errors as a function of I/O combinations and machine learning 435 

algorithms. The complete Dataset K was used for model training. I/O numbers are given in Table 2. 436 

Machine learning algorithm numbers correspond to the algorithms given at the beginning of Section 3. 437 

Three relatively good and bad performing algorithms are highlighted in green and red respectively for 438 

each I/O combination. 439 

I/O Error Machine Learning Algorithm 

  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 

R2 0.1 0.94 -0.04 <-10000 0.98 0.98 0.98 0.1 0.1 0.1 0.96 0.94 0.77 0.97 

MSE 1.32 0.08 1.54 >10000 0.03 0.04 0.03 1.26 1.26 1.27 0.06 0.08 0.33 0.05 

2 

R2 0.4 0.89 0.34 <-10000 0.94 0.94 0.94 0.4 0.4 0.41 0.93 0.93 0.81 0.93 

MSE 0.71 0.13 0.8 >10000 0.07 0.07 0.07 0.72 0.72 0.72 0.09 0.09 0.22 0.08 

3 

R2 0.3 0.94 0.28 <-10000 0.96 0.96 0.96 0.32 0.31 0.26 0.94 0.94 0.84 0.95 

MSE 1.07 0.09 1.11 >10000 0.06 0.06 0.06 1.04 1.04 1.07 0.08 0.09 0.24 0.07 

4 R2 0.93 0.97 0.92 0.11 0.99 0.99 1 0.93 0.93 0.93 0.94 0.96 0.95 0.99 

 
MSE 0.11 0.04 0.11 1.3 0.01 0.01 0.01 0.1 0.1 0.1 0.09 0.05 0.07 0.01 
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5 

R2 0.96 0.96 0.95 <-10000 0.99 0.99 0.99 0.96 0.96 0.96 0.97 0.97 0.98 0.99 

MSE 0.06 0.06 0.06 2.0 0.01 0.01 0.01 0.06 0.06 0.06 0.03 0.04 0.02 0.01 

6 

R2 0.95 0.95 0.95 <-10000 0.98 0.98 0.98 0.95 0.95 0.95 0.95 0.96 0.97 0.98 

MSE 0.06 0.07 0.06 >1000 0.02 0.02 0.02 0.06 0.06 0.06 0.06 0.05 0.04 0.02 

7 

R2 0.92 0.93 0.92 <-10000 0.98 0.98 0.99 0.92 0.92 0.92 0.93 0.94 0.96 0.98 

MSE 0.07 0.06 0.08 >100 0.02 0.02 0.01 0.07 0.07 0.07 0.06 0.05 0.03 0.02 

8 

R2 0.96 0.96 0.96 <-10000 0.99 0.99 0.99 0.96 0.96 0.96 0.97 0.97 0.98 0.99 

MSE 0.06 0.06 0.06 >100 0.01 0.01 0.01 0.06 0.06 0.06 0.04 0.04 0.02 0.02 

9 

R2 0.91 0.96 0.91 0.14 0.99 0.99 1 0.91 0.91 0.91 0.94 0.95 0.97 0.99 

MSE 0.14 0.06 0.14 1.3 0.01 0.01 0.01 0.13 0.13 0.13 0.09 0.07 0.05 0.01 

 440 

 441 

Figure 12: Predicted training/test dissolution rates vs measured dissolution rates for I/O combinations 442 

1 [a] and 3 [b] using a bagged random forest method. The full Dataset K was considered. Perfect 443 

performance would have training/test results following the black straight line. 444 

 445 

[a] 
[b] 
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 446 

Figure 13: R2/MSE test errors as a function of the nine I/O combinations with both GPR (exponential 447 

kernel) [Left] and ridge [Right] methods. The full Dataset K was used.  448 

  449 

Figure 14: Dataset K R2/MSE test errors as a function of machine learning algorithm with I/O 450 

combination 8 [a]. Here, the full Dataset K was considered in model training. Due to the large errors 451 

associated with ML 4, this algorithm is excluded from the graph for better visualisation. With four of 452 

the high performing algorithms, the effect of dataset size is demonstrated using I/O combination 8 [b] 453 

by plotting MSE test errors as a function of different starting ratios of Dataset K.  454 

4. Discussion 455 

4.1. Static Leaching 456 

Following ‘whole experiment’ model training using Dataset A, predictive performance has 457 

been shown to be poor for multiple linear and SVM (Gaussian/polynomial) methods, 458 

[a] [b] 
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irrespective of the I/O combination (Table 3). This is likely due to these algorithms 459 

ineffectively treating the non-linear nature of the data. High performing algorithms were 460 

bagged random forest and boosted ensemble methods for which these could accurately predict 461 

normalised B release for I/O combinations 1-6 and 8-14 (Figures 1 and 3, Table 3). For these 462 

combinations, errors were close in magnitude. This suggests that several experimental 463 

condition variables including SA/V, powder mass, leachant volume, as well as glass density, 464 

pH, Si, Na, Li and Mg elemental release in isolation, dissolution time, and species mass fraction 465 

within the pristine glass all had a small individual influence on the ability of these algorithms 466 

to predict glass leaching behaviour. The greater importance of pH/elemental release relative to 467 

initial experimental conditions is consistent with Figure S1 which shows much lower feature 468 

importance for initial experimental conditions (1-30) relative to elemental releases (32-37) for 469 

the bagged random forest. The accurate predictions show the value in making use of 470 

unstructured data obtained across many campaigns, even though the data may appear somewhat 471 

separate (for example, c.f. Dataset A with Ca/Zn versus MW25 glasses). Note also that pH may 472 

have had a small effect in isolation on prediction because all tests used deionised water as 473 

leachant, and as a consequence, the range of established pH values was relatively small (~7-474 

10). 475 

Test errors did increase for I/O combinations 7 (pH and all elemental normalised release 476 

excluded) and 15-17 (either no species normalised release, or all species except Si normalised 477 

release excluded, or all species except Si normalised release excluded additionally including 478 

the flow rate to glass surface to volume ratio respectively). The error on I/O combination 17 is 479 

redundant because flow rate is included as an input variable, while Dataset A was obtained 480 

solely under static leaching conditions. High I/O combination 15 and 16 errors suggest 481 

although a single species elemental release can be neglected as an input variable, multiple 482 

species elemental release cannot. Moreover, whilst the errors for I/O combination 7 were lower 483 
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than 15-17, they still indicate an inability to robustly predict static leaching behaviour when 484 

solely using experimental initial conditions as input variables and that predictive performance 485 

is strongly influenced by the combined effect of pH and the normalised release of elemental 486 

species. 487 

Test errors mostly increased when training using the collective Dataset A-D (Supplementary 488 

Table S2). This is expected given that many of the added experiments were significantly 489 

different from Dataset A, either in regard to composition or experimental methodology such as 490 

temperature, SA/V, or long-term dynamic flow compared with static conditions. Consequently, 491 

it would be expected that machine learning is less capable of making accurate predictions since 492 

there is a larger diversity in the methodologies of the combined data. 493 

For Dataset A-D simulation, bagged random forest followed by boosted ensemble methods 494 

again exhibited highest predictive accuracy across the I/O combinations. Both algorithms likely 495 

performed well due to their ability to handle non-linear data and having used multiple models 496 

to reduce the effect of weak learners. The type of kernel affected SVM and GPR methods as it 497 

also did for Dataset A simulation and neural network accuracy improved when adding the 498 

Datasets B-D, likely because Dataset A was too small individually for sufficient 499 

training/validation/test data partition. The accuracy division between both the I/O 500 

combinations 7, 15-17 and the remaining combinations also remained. Results show higher 501 

variation across I/O combinations 1-6 and 8-14 than in the case of a Dataset A trained model. 502 

Again, this is expected given the larger variation in Dataset A-D experimental conditions. 503 

Moreover, for these combinations, it can be seen that in the case of the highest performing 504 

algorithm (bagged random forest), either neglecting lithium (Li) elemental release or element 505 

mass fractions caused the largest relative increase in predictive error; highlighting the 506 

importance of considering the releases of all of the most mobile glass species.   507 
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Overall, this study finds that predictions made after training using Dataset A-D can accurately 508 

predict static leaching behaviour using a bagged random forest and I/O combination in the 509 

range 1-6 or 8-14. This is despite errors being worse than after training solely with Dataset A. 510 

Results additionally suggest (Supplementary Table S3) that for specific I/O combinations, the 511 

bagged random forest method can accurate predict Dataset B-D behaviour after training using 512 

Dataset A. Indeed, it appears that the bagged random forest does have the ability to predict 513 

leaching behaviour when static conditions, glass composition, and temperature are not 514 

substantially different from the underlying training data. This is illustrated in Figure 3, whereby 515 

a trained Dataset A model, could accurately predict the leaching behaviour of a substantially 516 

simpler composition glass. If significant differences exist between the training and test data, 517 

then predictive inaccuracies occur. However, this is expected given that the underlying training 518 

dataset should be sufficiently diverse to formulate appropriate model behaviour for the required 519 

experimental conditions. Note that performance generally decreased as higher fractions of data 520 

were removed prior to training/test partition.  521 

For the ‘missing data’ simulations and Dataset A trained models, both bagged random forest 522 

and GPR (‘ardsqexponential’ kernel) methods gave high and the most accurate predictions 523 

across the I/O combinations (Table 4, Figure 5). Neural network predictions were also often 524 

high (Figure 6), although SVM (Gaussian and polynomial kernel) performance was 525 

consistently poor. For Dataset A-D trained models, lasso, ridge, elastic net, and neural networks 526 

were also arguably high performing for I/O combinations 1-6 and 8-14 (Supplementary Table 527 

S4). Again, there was a division in predictive accuracy between I/O combinations 7, 15-17 and 528 

the remaining I/O combinations for both Dataset A and A-D trained models. However, results 529 

indicate that in the presence of missing data, machine learning can predict the data accurately, 530 

and this appears also largely true both for independent group data (Supplementary Data S5) 531 

and for I/O combination 7 whereby only experimental input conditions are given as inputs for 532 
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model training. Additionally, kernel variability again influenced predictive accuracy, and 533 

performance decreased at an increasing rate as a higher fraction of data was removed prior to 534 

training/test data partition.  535 

For the ‘forecasting’ simulations, additional data is given in Supplementary Tables S6 and S7. 536 

Small errors for I/O combinations 1-6 or 8-14 (Table S6, Figures 7 and 8) show the ability of 537 

the bagged random forest to forecast well considering Dataset A for model training. Again, this 538 

suggests that several experimental condition variables including SA/V, powder mass, leachant 539 

volume, as well as glass density, pH, Si, Na, Li and Mg elemental release in isolation, 540 

dissolution time, and species mass fraction within the pristine glass all individually had a small 541 

influence on the ability of these algorithms to predict glass leaching behaviour. As in the case 542 

of ‘whole experiment’ simulations, results suggest that it is still not possible to forecast when 543 

just considering experimental initial conditions as input variables (I/O 7). Moreover, with large 544 

errors associated with I/O combinations 15-17, it again does not appear possible to predict 545 

when considering the effect of flow rate or when neglecting multiple species elemental releases 546 

as inputs. After adding Datasets B-D, test errors increased (Supplementary Table S7) and it 547 

generally does not seem possible to accurately forecast due to the increased diversity of the 548 

collective dataset. Again, note that kernel type had an effect on predictions, and that 549 

performance generally decreased as higher fractions of data were removed prior to training/test 550 

partition (Figure 8).   551 

4.2. Dynamic Leaching 552 

After performing model training on Dataset E and the collective Dataset E-J, results indicate 553 

that predictive performance was higher for a given machine learning algorithms using log B 554 

dissolution rate as an output variable than using B dissolution rate (Table 5, Figure 9). 555 

Performance did not always diminish with the removal of mole percentage of oxides/halogens 556 
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as an input variable (Table 5, Figure 10). This is not surprising given that for many algorithms 557 

increasing the number of features may lead to overfitting. Whether or not performance 558 

increases or decreases varies between the machine learning algorithms. For example, if 559 

considering log B initial dissolution rate as an output, removing the mole percentage of 560 

oxides/halogens as an input variable reduces the ability of the elastic net method but this is not 561 

the case for the SVM (Gaussian kernel) method.  562 

Following Dataset E training, results did not indicate one unique algorithm that outperformed 563 

all other algorithms across all I/O combinations (Table 5). For I/O combination 1, where 564 

logarithmic B rates were predicted using temperature, pH, and mole percentage of 565 

oxides/halogens as inputs, predictive performance was high, with neural networks producing 566 

smallest test errors, although many algorithms including lasso, ridge, elastic net, GPR (any 567 

kernel), and boosted ensemble methods also performed well. For I/O combination 2, which 568 

predicted B rates using temperature, pH, and mole percentage of oxides/halogens, neural 569 

networks performed best, although errors were significantly higher than I/O combination 1 570 

(Figure 10). For I/O combination 3, which predicted logarithmic B rates using temperature and 571 

pH, algorithm performance was similar to I/O combination 1 with predictive performance 572 

being high. Finally, for I/O combination 4, which predicted B rates using temperature and pH, 573 

the bagged random forest method performed best (Figure 10), although overall performance 574 

was still worse than for I/O combinations 1 and 3. It appears that SVM (both Gaussian and 575 

polynomial kernels) performed poorly across I/O combinations, as did multiple linear and SVM 576 

(linear kernel) methods for I/O combinations 2 and 4. 577 

Following Dataset E-J model training (results given in Supplementary Table S8), GPR 578 

(‘ardsqexponential’) demonstrated smallest test errors for I/O combination 1, although neural 579 

network method errors were similar. The performance of both algorithms was again similar for 580 

I/O combination 2, although neural network performed best for I/O combination 3. Moreover, 581 
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for I/O combination 4, it was GPR (exponential kernel) and neural networks that gave the 582 

smallest errors. Note that in general, SVM (both Gaussian and polynomial kernels) performed 583 

poorly across I/O combinations, and for I/O combinations 2-4, multiple linear, SVM (linear 584 

kernel), lasso, ridge, and elastic net methods were unable to accurately predict B initial 585 

dissolution rates. Furthermore, similarly to Dataset E, results have showed that the type of 586 

kernel does significantly influence predictive performance in both SVM and GPR methods.  587 

The addition of Datasets F-J to Dataset E reduced the performance of machine learning 588 

algorithms for a given I/O combination (Figure 11, Supplementary Table S8). Nonetheless, in 589 

the cases where predictions were accurate for Dataset E training, they remained high in the 590 

case of the collective Dataset E-J. The small reduction in performance is likely to be because 591 

many of the additional data added were obtained under highly alkaline conditions, and 592 

therefore models may have been unable to learn the effective correlations from the bulk Dataset 593 

E. Test F-J errors support this view (Supplementary Table S9) because the poor performance 594 

computed across the machine learning algorithms and I/O combinations indicate that model 595 

correlations learnt using Dataset E were unable to accurately predict the additional data. Note 596 

that as expected, as a higher fraction of data was removed from either Dataset E or Dataset E-597 

J, predictive performance decreased. Results were approximately constant up to 20 percent of 598 

the data being removed indicating some robustness in the machine learning algorithms.  599 

Considering the Dataset K simulations that extend the work of Krishnan et al. [24]., predictive 600 

performance has been shown to be worse for I/O combinations 1-3 than for I/O combinations 601 

4-9 (Table 6, Figure 13) across the different machine learning algorithms. This indicates that it 602 

may be better to consider species (Si, Na, or Al) dissolution rate as an input variable than final 603 

pH. For the different machine learning algorithms, there was no output species (Si, Na, Al) for 604 

which rate prediction consistently showed better performance considering the I/O 605 
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combinations 1-9 (Table 6, Figure 13). This is despite there being significant differences in the 606 

solubility across the species.   607 

For I/O combinations 1-3, where final pH was considered as one of the inputs as opposed to a 608 

species initial dissolution rate, GPR (any kernel), single regression tree, bagged random forest, 609 

and neural networks demonstrated high predictive performance (Table 6, Figures 12-13). 610 

Multiple linear, SVM (linear and polynomial kernels), lasso, ridge, and elastic net methods 611 

performed poorly (Table 6, Figure 13). For I/O combinations 4-9, whereby a species initial 612 

dissolution rate was considered as one of the inputs as opposed to the final pH, GPR (any 613 

kernel) and neural network methods consistently predicted initial dissolution rates accurately 614 

(see Table 6, Figure 14).  The remaining algorithms performed relatively worse, although errors 615 

were still small. Note that unlike Krishnan et al. [24], this study finds that SVM (Gaussian 616 

kernel) produces small test errors for I/O combination 1. The remaining results on the 617 

suitability of the other learning algorithms are consistent with those obtained by Krishnan et 618 

al. [24]. 619 

Again, Dataset K simulation results have demonstrated that the type of kernel appears to 620 

influence predictive performance. It is unsurprising that kernel type had an effect because of 621 

their differing functional ability to map features to outputs. For example, the study found larger 622 

variation in errors across kernel type for SVM than GPR methods. As expected, as a higher 623 

fraction of data was removed from Dataset K predictive performance decreased (Figure 14). 624 

Performance appears to be approximately constant up to about a 0.2 ratio (fraction of data 625 

removed prior to training/test data partition) and then errors increase at an increasing rate as 626 

the fraction of data removed increases. This suggests that machine learning algorithm initial 627 

dissolution rate prediction may be reasonably robust to dataset size. 628 
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Both the static leaching and dynamic leaching simulation results described above are important 629 

because they demonstrate that the machine learning methods previously applied to simplistic, 630 

three component, non-nuclear glasses by Krishnan et al. [24] can be used to accurately predict 631 

the dissolution behaviour of more compositionally complex nuclear glasses. The work of 632 

Krishnan et al. [24] demonstrated that machine learning can be used to predict initial 633 

dissolution rates within the envelope of well-structured experimental data. However, this study 634 

has used highly unstructured data, and shows the value in using machine learning to predict 635 

both static and dynamic leaching behaviour, making use of data that is not well designed for 636 

machine learning analysis. 637 

5. Conclusion 638 

Machine learning techniques can predict both the static and dynamic leaching behaviour of 639 

radioactive waste glasses. The use of large datasets obtained from a variety of different sources, 640 

covering a diverse range of experimental conditions and glass compositions shows an accurate 641 

performance that is comparable with similar methods applied to simplistic non-nuclear glasses 642 

from more limited datasets. Machine learning can accurately predict leaching behavior, predict 643 

missing data, and time forecast. This is provided that the type of machine learning algorithm, 644 

model input variables, and diversity or size of the underlying dataset are carefully chosen.  645 

For static leaching, the bagged random forest method can yield highly accurate predictive 646 

performance, even when either pH or individual species normalised release or glass 647 

composition or several experimental initial condition variables (glass density, powder mass, 648 

etc.) are neglected as input variables. It also shows potential in predicting independent group 649 

dissolution data, except when using data with increased diversity in the experimental 650 

methodology, including where substantial variations in leaching temperature, glass 651 

composition, and dynamic compared with static conditions exist.  652 
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For dynamic leaching, predictive performance is higher if replacing final pH with a species (Si, 653 

Na, or Al) dissolution rate as an input variable, although there is no preferred output species 654 

(Si, Na, or Al), despite the difference in solubility between these species. If predicting B rates, 655 

the bagged random forest method gives smallest errors using temperature and pH, although 656 

neural networks perform best if additionally using the mole percentage of oxides/halogens as 657 

an input. 658 
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