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Abstract

This thesis examines the critical transitions between distinct neural states associated with

the transition to neuron spiking and with the induction of anaesthesia. First, mathemati-

cal and electronic models of a single spiking neuron are investigated, focusing on stochastic

subthreshold dynamics on close approach to spiking and to depolarisation-blocked qui-

escence (spiking death) transition points. Theoretical analysis of subthreshold neural

behaviour then shifts to the anaesthetic-induced phase transition into unconsciousness

using a mean-field model for interacting populations of excitatory and inhibitory neurons.

The anaesthetic-induced changes are validated experimentally using published electro-

physiological data recorded in anaesthetised rats. The criticality hypothesis associated

with brain state change is examined using neuronal avalanches for experimentally recorded

rat local field potential (LFP) data and mean-field pseudoLFP simulation data.

We compare three different implementations of the FitzHugh–Nagumo single spiking

neuron model: a mathematical model by H. R. Wilson, an alternative due to Keener

and Sneyd, and an op-amp based nonlinear oscillator circuit. Although all three models

can produce nonlinear “spiking” oscillations, our focus is on the altering characteristics

of noise-induced fluctuations near spiking onset and death via Hopf bifurcation. We

introduce small-amplitude white noise to enable a linearised stochastic analyses using

Ornstein–Uhlenbeck theory to predict variance, power spectrum and correlation of voltage

fluctuations during close approach to the critical point, identified as the point at which the

real part of the dominant eigenvalue becomes zero. We validate the theoretical predictions

with numerical simulations and show that the fluctuations exhibit critical slowing down

divergences when approaching the critical point: power-law increases in the variance of

the fluctuations simultaneous with prolongation of the system response.

We expand the study of stochastic behaviour to two spatial dimensions using the
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Waikato mean-field model operating near phase transition points controlled by the infu-

sion or elimination of anaesthetic inhibition. Specifically, we investigate close approach

to the critical point (CP), and to the points of loss of consciousness (LOC) and recovery

of consciousness (ROC). We select the equilibrium states using λ anaesthetic inhibition

and ∆V rest
e cortical excitation as control parameters, then analyse the voltage fluctua-

tions evoked by small-amplitude spatiotemporal white noise. We predict the variance and

power spectrum of voltage fluctuations near the marginally stable LOC and ROC tran-

sition points, then validate via numerical simulation. The results demonstrate a marked

increase in voltage fluctuations and spectral power near transition points. This increased

susceptibility to low-intensity white noise stimulation provides an early warning of im-

pending phase transition.

Effects of anaesthetic agents on cortical activity are reflected in local field poten-

tials (LFPs) by the variation of amplitude and frequency in voltage fluctuations. To

explore these changes, we investigate LFPs acquired from published electrophysiological

experiments of anaesthetised rats to extract amplitude distribution, variance and time-

correlation statistics. The analysis is broadened by applying detrended fluctuation anal-

ysis (DFA) to detect long-range dependencies in the time-series, and we compare DFA

results with power spectral density (PSD). We find that the DFA exponent increases with

anaesthetic concentration, but is always close to 1.

The penultimate chapter investigates the evidence of criticality in anaesthetic induced

phase-transitions using avalanche analysis. Rat LFP data reveal an avalanche power-law

exponent close to α = 1.5, but this value depends on both the time-bin width chosen

to separate the events and the z -score threshold used to detect these events. Power-law

behaviour is only evident at lower anaesthetic concentrations; at higher concentrations the

avalanche size distribution fails to align with a power-law nature. Criticality behaviour is

also indicated in the Waikato mean-field model for anaesthetic-induced phase-transition

using avalanches detected from the pseudoLFP time-series, but only at the critical point

(CP) and at the secondary phase-transition points of LOC and ROC.

In summary, this thesis unveils evidence of characteristic changes near phase transi-

tion points using computer-based mathematical modelling and electrophysiological data

analysis. We find that noise-driven fluctuations become larger and persist for longer as

the critical point is closely approached, with similar properties being seen not only in
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single-neuron and neural population models, but also in biological LFP signals. These

results consistent with an increase of susceptibility to noise perturbations near phase tran-

sition point. Identification of neuronal avalanches in rat LFP data for low anaesthetic

concentrations provides further support for the criticality hypothesis.
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Preface

This thesis reports our investigations of neuronal phase transitions, attempting to identify

signs of criticality using computer-based mathematical modelling and by analysing elec-

trophysiological data. Specifically, this thesis analyses the state changes associated with

onset of spiking in a single neuron and induction of anaesthesia in neuronal populations.

The thesis proceeds as follows:

Chapter 1 provides an overview of basic neurophysiology, describing formation of

action potentials and the neurochemical basis of anaesthetic induction. We consider

that these neuronal behavioural changes can be treated as phase transitions that can

be investigated using a range of mathematical modelling approaches, briefly described

in this chapter. We summarise the literature on critical dynamics associated with phase

transitions, highlighting the role of scaling laws.

In Chapter 2, we analyse the simplest mathematical description of a single spiking

neuron, the FitzHugh–Nagumo model, comparing three implementations: Wilson, Keener

& Sneyd, and an op-amp equivalent circuit. The steady states and their linear stability are

analysed to identify the spiking phase transition boundaries. The subthreshold stochastic

dynamics for close approach to spiking threshold is analysed using variance, power spectra

and autocorrelation, and we find strong evidence supporting the notion of “critical slowing

down”.

The anaesthetic-induced phase transition is investigated theoretically and numerically

in Chapter 3, using the Waikato mean-field cortical model stimulated by low-intensity

white-noise. Our analysis unveils critical dynamics using theoretical predictions and nu-

merical simulation validation for close approach to the three transition points: loss of

consciousness, recovery of consciousness, and the critical point.

In Chapter 4, we apply our criticality analysis to biological measurements: local field

potential data recorded from anaesthetised rats. Brain activity under different anaesthetic



xxii ACRONYMS AND ABBREVIATIONS

concentrations is examined, engaging both traditional and modern analysis methodologies.

The behavioural changes linked with the anaesthetic phase transition are disclosed.

Chapter 5 reports neuronal avalanche behaviours with anaesthesia. The existence of

avalanche distribution scaling laws illustrates criticality dynamics for experimental local

field potential (LFP) data of anaesthetised rats. We find that power-law behaviour is only

evident at low anaesthetic concentrations. Then we examine numerical pseudo-LFP data

recorded using Waikato mean-field cortical model, and we observe power-law alignment

only at the loss of consciousness, recovery of consciousness, and critical transition points.

The thesis is concluded in Chapter 6 with a brief summary of the major findings,

and suggestions for future work.

In Appendices, I present the derivation of differential equations for op-amp equivalent

circuit for FHN model, LTSpice netlist and schematic diagram, a code for locating FHN

steady states, elements of Jacobian matrix for Waikato mean-field model and proof of the

DFA and PSD relationship.

Original contributions

The theoretical and numerical analysis and related Matlab codes, the codes for exper-

imental data analysis and interpretation, and most of the graphic presentations are my

own work, except:

• Matlab codes for numerical simulation, and codes for locating steady-states and

eigenvalues of Waikato mean-field cortical model written by D. A. Steyn-Ross

• Local field potential data provided by Jamie Sleigh, Waikato Clinical School (recorded

by Anthony G. Hudetz, Medical College of Wisconsin)

Conference presentations

• M.E. Chandrasiri, D.A. Steyn-Ross and M.L. Steyn-Ross. Examining critical fluc-

tuation of the Waikato mean-field cortical model near phase transition, New Zealand

Institute of Physics Conference, Dunedin, New Zealand, July 2017

• M.E. Chandrasiri, D.A. Steyn-Ross and M.L. Steyn-Ross. Exploring the dynamics

of the FitzHugh-Nagumo spiking neuron model, New Zealand Institute of Physics

Conference, Hamilton, New Zealand, July 2015



Chapter 1

Introduction

1.1 Basic neurophysiology

1.1.1 Neurons and synapses

A healthy human brain contains approximately 1011 neurons and ∼1015 synaptic connec-

tions for communication between neurons. The three major components of a neuron are

the soma or cell body containing the nucleus of the cell; dendrites, tree-like structures,

that acquire input from the other neurons; and an axon to transmit signals away from

the soma to other neurons. Long rang axons are covered with a myelin sheath which

helps to speed up the transmission of electrical signals via the axon. Figure 1.1 shows the

structure.

Axon terminals release neurotransmitter chemicals into synapses to complete the trans-

fer of information to other neurons. These synaptic connections transmit signals from the

presynaptic neuron to the target neuron (the postsynaptic neuron) via either chemical or

electrical synapses. Chemical synapses convert the electrical signal into a neurotransmitter

which is released from the presynaptic neuron and attaches to a receptor of the postsy-

naptic neuron which may excite or inhibit the receiving neuron. Chemical synapses are

classified into different types according to the released neurotransmitter which activates

specific ion channels. The major inhibitory neurotransmitter is GABA (γ-aminobutyric

acid) which activates GABAA (fast) and GABAB (slow) receptors. The primary excitatory

neurotransmitters are NMDA (N-methyl-D-aspartate acid) (slow) and AMPA (α-amino-

3-hydroxy-5-methyle-4-isoxazolepropionic acid) (fast). Figure 1.2 illustrates the chemical

basis of synaptic communication.

In electrical synapses, the signal is communicated directly via so-called gap junctions,

which allow transfer of electric currents, thus inducing voltage changes in the postsynaptic
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Figure 1.1: Basic structure of a neuron [30]

neuron.

A neuron collects input other neurons via synapses located throughout its dendrites.

These synapses produce transmembrane electric currents, which propagate to the soma

and induce postsynaptic potentials. If this potential exceeds a particular threshold, the

neuron is likely to generate one or more action potentials or “spikes” which will be trans-

mitted via its axon to downstream neurons.

1.1.2 Action potentials

The cell body of the neuron is covered by a membrane plasma, which acts as a thin

boundary between the extracellular (outside of the neuron) and intracellular (inside of

the neuron) fluids. The membrane plasma contains ion channels that allow electrically

charged ions such as sodium (Na+), potassium (K+), chloride (Cl−), and calcium (Ca2+)

ions to diffuse across the membrane. Some are voltage-gated channels, controlled by the

voltage difference across the membrane, and some are chemically-gated channels which

open or close as a result of interactions with chemicals in the extracellular fluid. The

differential ion flows between channels produce a voltage difference across the membrane

called the membrane potential. When the cell is at its resting state, the membrane

voltage maintains a negative potential relative to the extracellular fluid. The is called

resting membrane potential, and falls within the range of −40 to −90 mV.

Action potentials are electrical impulses that occur due to a sudden change of mem-

brane potential caused by the influx of Na+ ions through the membrane. This influx is
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Figure 1.2: Neuronal communication via chemical synapses [51]

triggered by an external stimulus that allows an initial flow of ions into the cell resulting

in depolarization. If the cell body becomes sufficiently depolarized, so that the membrane

voltage reaches threshold, the voltage-sensitive Na+ channels will open, allowing an influx

of Na+ ions, resulting in further depolarisation and a sudden jump of membrane potential

to about +30 mV, generating an action potential. The membrane voltage then starts

repolarizing as voltage-gated K+ channels open and efflux of K+ ions commences. At

the same time Na+ channels close and stop the influx of Na+ ions. Eventually, the K+

channels close, bringing the cell back to its resting state. Figure 1.3 shows the action

potential process.

1.1.3 General anaesthesia

General anaesthetic drugs are an essential component of modern medicine due to their

ability to block the unpleasant stimulus from surgery. General anaesthesia is a controlled
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Figure 1.3: Formation of action potential [42]

and reversible state of consciousness, which can be classified into five stages [12,13]:

• Unconsciousness: loss of sensitivity to stimulus

• Analgesia: loss of sensitivity to pain

• Akinesia: loss of movement

• Amnesia: lack of memory

• Physiological stability: maintenance of regular breathing, heart rate, blood pressure

and other physiological functions

There has been much research activity attempting to identify the mechanisms of

general anaesthesia. Anaesthetic drugs act to decrease cortical activity by acting on

neurotransmitter-gated ion channels by either decreasing excitation, or increasing inhi-

bition, or both [24, 97]. GABAergic drugs, such as propofol and sevoflurane, act by

increasing the activity of inhibitory GABAA receptors (Fig. 1.4), while non-GABAergic
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Figure 1.4: Propofol and sevoflurane effect on GABAA receptors. Propofol and sevoflurane
promote activity in the GABAA receptors resulting in neuronal inhibition [12]

drugs such as ketamine block excitatory NMDA receptors (Fig. 1.5). The GABAA re-

ceptor permits Cl− ions to flow into the neuron, resulting in a decrease of intracellular

voltage and consequent reduction in the probability of neuronal firing [28, 38]. On the

other hand, ketamine blocks the NMDA receptor, so decreases excitability. It does this

by choking off inflows of Na+ and Ca2+, and outflow of K+ (Fig. 1.5) [38].

The net inhibitory effect of anaesthetic drugs is to alter the behaviour of the brain,

producing synchronised neuronal activities that can be detected in electroencephalogram

(EEG) recordings [78]. GABAergic anaesthetic drugs change the frequency of cortical

oscillations: at lower anaesthetic concentration, oscillations are dominant in the beta

frequency range (1–30 Hz); as the concentration increases the oscillations slow down to

theta (4–8 Hz) and delta (1–4 Hz) bands [97]. At higher concentrations, anaesthetic drugs

produce high-amplitude episodic sharp wave patterns (usually lasting < 70 ms) among

background normal EEG patterns, which is called burst–suppressions [82, 97]. However,

these spectral alterations differ from one agent to another.

Analysis by Kuizenga et al. [49] demonstrates the “biphasic” nature of propofol, be-

ing excitatory at lower concentration and inhibitory at higher concentration with two

“biphasic” peaks per induction–emergence cycle between loss of consciousness (LOC) and
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Figure 1.5: Effect of ketamine on NMDA receptors. Ketamine blocks the NMDA receptor
which decreases excitation [12]

recovery of consciousness (ROC). There is a hysteretic separation between these two tran-

sitions as ROC occurs at a lower concentration than LOC, meaning subjects awaken at

lower anaesthetic concentration than that required to induce unconsciousness.

1.2 Neuronal modelling

Neuronal models describe the biological neuron using a mathematical formalism that may

contain biophysical and geometrical characteristics. These models attempt to explain the

quantifiable and measurable behaviours of both single neurons and neuronal networks, and

are typically validated by comparing experimental findings with model predictions. Their

mathematical structure consists of sets of differential equations that can be analysed

analytically and via numerical integration methods. Such models have been used to

describe the behaviours of the nervous system, predicting, for example, changes in state

of vigilance due to seizure, anaesthesia, and sleep.

1.2.1 Models of single spiking neuron

A single spiking neuron model is a mathematical description of a single cell that focuses

on the mechanism by which action potentials are generated.
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Figure 1.6: Equivalent circuit of an integrate-and-fire neuron model. The capacitor represents
the charged membrane, V is the membrane voltage, I is the stimulus current and Vrest is the
resting voltage

Introduced in 1907 by Lapicque, the integrate-and-fire model is one of the earliest

and simplest descriptions of a neuron, explaining the spiking behaviour using a linear

differential equation [1]. The basic electrical circuit equivalent to an integrate-and-fire

model is shown in Figure 1.6: a capacitor C in parallel with a resistor R driven by a

current I(t).

The most biologically consistent model was introduced by Hodgkin and Huxley on the

basis of a series of painstaking laboratory measurements. This is described next.

1.2.2 Hodgkin–Huxley equations

In the late 1940s and early 1950s, Alan Hodgkin and Andrew Huxley developed the core

mathematical framework for modern biophysically-based neuron modelling based on a

series of electrophysiological experiments on the giant squid axon [37]. This bio-realistic

but complex conductance-based model is formed with four state variables which describe

membrane potential, Na+ channel activation and subsequent inactivation, paired with K+

channel activation [37]. Their model is expressed as four coupled nonlinear differential

equations,
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Extracellular medium

Intracellular medium

gNa gCl gK C

|VNa| |VCl| |VK|

Figure 1.7: Equivalent circuit of Hodgkin–Huxley neuron model. Capacitor C represents the
membrane, gNa, gK are nonlinear conductances of voltage-gated channels, and gCl is the linear
conductance of the leakage channel. |VNa|, |VK|, |VCl| are resting voltages [37]

C
dV

dt
= −gNam

3h(V − ENa)− gKn
4(V − EK)− gleak(V − Eleak) + Iinput (1.1a)

dm

dt
=

1

τm(V )
(−m+M(V )) (1.1b)

dh

dt
=

1

τh(V )
(−h+H(V )) (1.1c)

dn

dt
=

1

τn(V )
(−n+N(V )) (1.1d)

where, as shown in Fig. 1.7, V is the voltage across membrane, gNa, gK, gleak are electrical

conductances, and ENa, EK, Eleak are equilibrium potentials of sodium, potassium and

leakage channels respectively.

FitzHugh–Nagumo model (FHN)

Although the Hodgkin–Huxley (HH) equations provide biophysically realistic descriptions

of neuron spiking dynamics, they are hard to analyse due to their complexity. This

motivated FitzHugh [26] and Nagumo [61] to introduce a highly simplified model that

contains only the essential nonlinear mathematical elements required for spike generation.

Their model describes neuron dynamics in terms of membrane voltage V and a recovery
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variable R [102],

dV

dt
= 10(V − V 3

3
−R + Idc) (1.2a)

dR

dt
= V − 0.8R + 1.2 (1.2b)

The FHN model will be examined in detail in Chapter 2.

Wilson spiking-neuron model

While the FHN equations capture the qualitative characteristics of neuron spiking dynam-

ics, they discard most of the physiological detail. H. R. Wilson developed an alternate

simplified description of the HH equations that retains reversal potentials and which is

capable of simulating action potential formation in both squid axon and cortical neu-

ron [102]. Like FHN, the Wilson neuron is described in terms of voltage and recovery

variables [102],

C
dV

dt
= −gNa(V − ENa)− gKR(V − EK) + Idc (1.3a)

τR
dR

dt
= −R +G(V ) (1.3b)

where gNa, gK are the respective ion-channel conductances, ENa, EK are the Na+, K+

reversal potentials, G(V ) is the steady state for recovery, C is membrane capacitance,

and τR is time-constant for recovery. (The subthreshold properties of the Wilson neuron

will be revisited in Section 1.3.1 of this chapter.)

1.2.3 Mean-field models

Mean-field models describe populations of inhibitory and excitatory neurons. The founda-

tion mean-field model is that due to Wilson and Cowan [20]. More recently, a population

model was developed at Waikato University to describe anaesthesia and cycles of natural

sleep [89] [90].

Wilson–Cowan model

First proposed in 1972, the Wilson–Cowan model describes the collective behaviour of

the interacting excitatory E and inhibitory I cortical neural populations. Rather than
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following details of spike formation, the equations relate to the average spiking frequencies

E(t), I(t) in the two populations [103],

τE
∂E(x, t)

∂t
= −E(x, t) + SE[wEE(x)⊗ E(x, t)− wIE(x)⊗ I(x, t) + P ]

τI
∂I(x, t)

∂t
= −I(x, t) + SI [wEI(x)⊗ E(x, t)− wII(x)⊗ I(x, t) +Q]

where E(x, t), I(x, t) = mean firing rate of excitatory and inhibitory neurons at position

x

τE, τI = time-constant of each population

wjk = density of the synaptic coupling between and within populations

SE,I = sigmoidal response function mapping voltage to firing rate

P,Q = external voltage inputs

⊗ ⇒ spatial convolution between synaptic coupling density and firing rate

Four types of interconnections are included: excitatory–excitatory, excitatory–inhibitory,

inhibitory–excitatory and inhibitory–inhibitory.

The Wilson–Cowan model has provided the foundation for most modern mean-field

neural populations. For example, the treatment of neural tissue as a 1D or 2D spatial

continuum (rather than a discrete collection of spiking neurons), and the use of a sigmoidal

mapping from voltage to firing rate, are both elements that are found in the Waikato

mean-field model.

Waikato mean-field cortical model

The Waikato mean-field (WMF) cortical model represents the cortex as a two dimen-

sional continuum of excitatory and inhibitory neural populations. These neurons commu-

nicate locally through electrical synapses (resistive gap junctions) and neurotransmitter-

mediated chemical synapses as well as distant connections via long-range myelinated ax-

ons. The equations are defined for excitatory and inhibitory soma potentials, Ve and Vi,

that have been spatially averaged across the ∼1 mm2 area of a cortical macrocolumn [90],

τb
∂Vb
∂t

= V rest
b − Vb + ∆V syn

b +Dbb∇2Vb
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where τb = soma time constants for the neuron population b (b = e or i)

V rest
b = resting voltage

∆V syn
b = voltage perturbation from chemical synapses

Dbb∇2Vb = voltage perturbation due to gap-junction current diffusing between adjacent

neurons

The WMF model and its phase transition characteristics will be discussed in consid-

erable detail in Chapter 3.

1.3 Phase transition

In dynamical systems, the change of state of matter (e.g., solid � liquid, liquid � gas)

is called a phase transition, and is categorised as either first-order or second-order. First-

order transitions exhibit an abrupt change of state when a control variable (e.g., temper-

ature) is varied smoothly across the transition point; further, the current state depends

on the history of the control variable, a phenomena known as hysteresis. In contrast,

second-order transitions do not show hysteresis, and the state changes are smooth, so are

described as continuous phase transitions [35,86].

Mathematicians refer to the qualitative change in system dynamics produced by vary-

ing a control parameter as a bifurcation. A bifurcation occurs when a small smooth change

made to the stability properties of a steady point of a system causes a sudden qualitative

or topological change in its behaviour.

The steady state analysis and linear stability analysis of the Jacobian matrix of partial

derivatives evaluated at equilibrium provides insights as to the nature the bifurcation,

allowing classification into different bifurcation types [42,50,98]:

1. Saddle–node bifurcation: occurs when two steady states collide and annihilate, and

the dominant eigenvalue goes to zero; the system then evolves to some other state

2. Andronov–Hopf bifurcation occurs when the steady state owns a pair of complex

conjugate eigenvalues with non-zero purely imaginary eigenvalues. A supercritical

Hopf bifurcation leads to the appearance of small amplitude periodic oscillations

about the steady state; in contrast a subcritical or “hard” Hopf bifurcation evolves

directly to full-amplitude limit cycles
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3. Turing bifurcation: occurs with non-zero wave number which describes the spatial

frequency. In a Turing bifurcation, the system is temporally stable but spatially

unstable

4. Wave instability: spatial inhomogeneity emerges at a nonzero wavenumber with

nonzero frequency, resulting in wave propagation.

The equilibrium state located precisely at the transition between two qualitatively dif-

ferent phases is called the critical state, and fluctuations about this state exhibit statistical

properties that are described as critical. In this thesis, we examine signs of criticality asso-

ciated with phase transitions in single spiking neurons and in neural populations, looking

for insights about changes of dynamical behaviour on close approach to the critical state.

Critical dynamics in single spiking neuron is discussed in Chapter 2. The anaesthetic-

induced phase transition for neuronal populations will be investigated using the Waikato

mean-field cortical model and local field potential data recorded from anaesthetised rats

in Chapters 3, 4 and 5.

1.3.1 Phase transition in a single spiking neuron

The transition from resting state to spiking in a single spiking neuron can be considered

to be a change of phase. The type of bifurcation determines the excitable properties

of the neuron, which is influenced by the neuron’s electrophysiology. Hodgkin [36] and

Izhikevich [41] emphasised the clear difference in the dynamical behaviours between the

two types, and introduced the terms integrator for type-I and resonator for type-II.

For an individual spiking neuron, two bifurcation types have been identified: saddle–

node and Hopf. These distinct bifurcation behaviours at spiking threshold form the basis

of the type-I and type-II classifications. Threshold dynamics of type-II neurons show an

Andronov–Hopf bifurcation with the emergence of finite-frequency oscillations at spiking

transition. In contrast, type-I neurons exhibit a saddle–node bifurcation with very sparse

(“zero-frequency”) spiking at onset [41,87,95].

With minor changes to parameter settings, Wilson’s spiking neuron model (Eqs. (1.3))

[102] is capable of generating both type-I and type-II spiking behaviour. Figure 1.8

shows subthreshold stochastic simulations for both type-I (panel (b)) and type-II (panel

(a)) Wilson spiking neuron models. The squid giant axon model of Fig. 1.8(a) shows

an increasing tendency to oscillate at a characteristic frequency with larger amplitude
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Figure 1.8: Stochastic simulations for Wilson spiking neuron models (a) squid-axon, type-II
and (b) human neuron, type-I. The zoom-box illustrates subthreshold dynamics. Simulations
are run for five different IDC stimulation levels: (a) IDC = 0, 2, 4, 6, 7.7 µA/cm2; (b) IDC =
−100,−40, 0, 16, 21.4752 µA/cm2. Figure modelled on Fig. 1 of [87]

and less damping on close approach to threshold current. When the random stimulus

causes the membrane voltage to cross threshold, the neuron rapidly transitions from small

amplitude linear oscillations to huge amplitude nonlinear spike trains. In contrast, the

human neuron (type-I) shows noise-induced voltage fluctuations that become ever larger

and slower, eventually evolving into an isolated single spike rather than a spike train.

The difference in subtheshold behaviours was investigated by Rinzel and Ermentrout

using linear stability theory [74]. As the stimulus current increases towards threshold,

the real part of the dominant eigenvalue approaches zero from below. For type-I neurons,

the eigenvalues are real with a zero imaginary part, indicating zero frequency; for type-II

neurons the eigenvalues are complex with the imaginary part of the eigenvalue implying

a non-zero frequency pattern.

Figure 1.9 illustrates the steady states and eigenvalues of Wilson spiking neuron model

for the squid axon (type-II) and human neuron (type-I) models examined in Fig. 1.8.

These are two-variable systems, therefore the Jacobian matrix generates two eigenvalues.

The eigenvalue which has the largest real part is called the dominant eigenvalue. The

eigenvalues of squid axon (left panels) form a complex-conjugate pair: the real part gives

the damping with α = 0 marking the critical point: the non-zero imaginary part sets the

oscillation frequency, f0 = ω/2π. For the human neuron model (right panels) the approach

to the saddle–node turning point (panel (b)) is associated with the dominant eigenvalue
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(b) Human neuron model: Steady states
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Figure 1.9: Steady state and eigenvalues for Wilson type-II (left panels) and type-I (right
panels) spiking neuron models. Figures are modelled from [87]

approaching zero from below (panel (d)), thus fluctuations will become increasingly long-

lived, eventually causing the neuron to make a jump transition towards the unstable upper

branch at “zero” frequency.

1.4 Critical point

In a continuous phase transition, the critical point is defined as that coordinate in phase

space at which the two phases are indistinguishable. In thermodynamics, the critical state

marks the end point of the pressure–temperature curve, where vapour and liquid coexist

(see Figure 1.10 ).

At the (Pc, vc, Tc) critical point, the slope of the critical isotherm (constant temperature

line) on the pressure–volume (P -v) diagram goes to zero [46,56],

(
∂P

∂v

)
T

∣∣∣∣
(Pc,vc,Tc)

= 0

consequently the inverse ratio diverges,

(
∂v

∂P

)
T

∣∣∣∣
(Pc,vc,Tc)

→∞
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Figure 1.10: Thermodynamics P -v-T phase diagram [en.wikipedia.org/wiki/Phase diagram]

meaning that the specific volume (inverse density) becomes extremely sensitive to small

fluctuations of pressure. Molecular fluctuations grow sufficiently to cause scattering of

visible light so the coexisting liquid–vapour mixture appears cloudy, a phenomenon known

as “critical opalescence”.

We can identify an analogous “opalescent point” for the anaesthetic-induced phase

transition in the Waikato mean-field model (see Fig. 3.2). At the critical point, three

firing rate equilibrium states merge to a single value, and the two phases, conscious (high-

firing) and unconscious (low-firing), become indistinguishable.

The general properties of critical point fluctuations will be studied further in the next

section.
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1.5 Previous investigations of critical dynamics

Critical phenomena are of particular interest in many complex systems as a small change

in system inputs can dramatically affect system behaviour. In some cases the critical

transition is biologically useful, for example, allowing a neuron to rapidly switch from

quiescence to spiking to enable transmission of information via action potentials. On the

other hand, some critical transitions can be undesirable and pathological, as happens in

an epileptic seizure [58,87].

Criticality is a specific type of behaviour, exhibited by a system when it approaches a

transition marking the boundary between two qualitatively different types of behaviour.

To locate the critical state of a system, the relevant control parameter needs to be tuned

precisely to the appropriate value.

Branching parameter

One approach to identifying criticality in brain tissue is to make use of the theory of

branching processes, in which branching parameter σ can describe activity propagation

in cortical culture [33]. The branching parameter is defined as the average number of

descendants produced by one ancestor. In the subcritical state σ < 1, and σ > 1 in the

supercritical state, and it is assumed the critical value for the branching parameter is

σ = 1 [7,35].

Critical slowing down

The system response to external stimuli can provide evidence of criticality. For example

the system takes progressively longer to recover from small perturbations as it approaches

bifurcation; this phenomenon is called critical slowing down. Signs of critical slowing can

be elicited from the system by extracting the recovery rate after small perturbation, and by

detecting increased fluctuation amplitudes [58,62,87]. To quantify critical slowing, we can

monitor changes in the variance, autocorrelation and spectral content of the fluctuations.

Critical slowing down in a noise-stimulated spiking neuron has been demonstrated

by Steyn-Ross et al. (2006) [87] for Wilson type-I and type-II neuron models (see Sec-

tion 1.3.1), and by Bukoski et al. (2015) [14] for the Hodgkin–Huxley model. Meisal et
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al. (2015) [58] introduced scaling-laws for critical slowing down phenomena, deriving expo-

nents for saddle–node and Hopf–bifurcation transitions, which confirmed the 2006 results

reported by Steyn-Ross et al.

Criticality investigations have been extended to mean-field cortical models. Negahbani

et al. (2015) [62] analysed one-dimensional stochastic Wilson–Cowan model for saddle–

node, Hopf and Turing–Hopf instabilities. Cortical dynamics of Waikato mean-field model

in two-dimensions during natural sleep has been examined by Wilson et al. (2005) [104].

Power laws

Many recent studies have sought to identify power-law behaviour as potential evidence of

criticality in experimental and simulation data. If the distribution p(x) of a parameter x

follows a straight line on a log-log scale, then it follows that,

p(x) ∼ 1/xα

where α is the power-law exponent or scaling parameter. Realistically this relationship

cannot hold for arbitrarily small x-values, therefore a lower bound must be imposed

[19,96].

The standard way of calculating the power-law exponent α is to plot the frequency

distribution on a log-log scale; however this method is not particularly robust since the

slope is dependent on the choice of the binning process used to construct the frequency

distribution [19].

The slowing down phenomena can be related to the 1/f spectral noise characteristic of

critical systems. If a low-intensity noise induces system fluctuations, then at the critical

point, the power spectrum of fluctuations follows the power-law P ∼ 1/fα where α is a

constant. However, the converse is not necessarily true: detection of power-law noise is

not unique to critical systems since it also observed in many non-critical systems [17,35].

The power-law distribution is described as being scale-free since the form of the distri-

bution is, in principle, independent of the scale. This behaviour is characteristic of critical

systems with observations exhibiting the same patterns over different spatial or temporal

scales [35, 63].

Note that all of these criticality concepts are expected to be applicable to both indi-

vidual neurons and neuronal systems.
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Avalanches

Scale-free properties can also be identified in so-called self-organised critical systems. The

mechanism by which a system continuously tunes itself to the critical state is called “self-

organised criticality” (SOC). This concept was first introduced by Bak et al. in 1987

[4, 5] using the sandpile model. Self-organised critical models show avalanche behaviour:

cascades of activity that spread through the network, producing avalanche statistics that

are predicted to follow a scale-free power-law distribution at the critical state.

Power-law avalanche distributions have been observed for neuronal networks [6,32,68–

70, 81]. There is a ongoing debate as to whether neuronal systems can be considered as

being self-organised since the cortex is exposed to a continuous wash of external stimuli

and does not lie exactly at the critical point [10,35].

1.6 Identifying critical behaviour in single neurons and
in neuronal populations

If the transition between quiescent rest and active spiking in a neuron can be regarded

as a phase transition, then we should be able to observe characteristic precursor signals

such as critical slowing of responsiveness and increased sensitivity to perturbations as the

threshold point is approached. Similar critical behaviour should be evident in the case of

populations of neurons as they approach the induction and recovery tipping points during

an anaesthetic cycle. Emergence of power laws would provide evidence of increasingly

correlated fluctuations linking the neurons within the population.

In this thesis we will be looking for evidence for criticality in three distinct neuron

systems:

• the FitzHugh-Nagumo single-neuron model

• the Waikato mean-field population-based cortical model, and

• Local field potential (LFP) data for rats undergoing enflurane anaesthesia

Our general hypothesis is all three neural systems should exhibit critical slowing-down

characteristics on approach to the transition point, with scale-free power-law behaviour

at criticality.

Although the nonlinear “spiking” dynamics of the FHN neuron has been analysed

in previous studies [18, 42, 43, 102], there has been no investigation of its subthreshold
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stochastic dynamics. We will examine both the onset of spiking, and the death of spiking,

and will show that these events represent distinct Hopf bifurcations with critically pro-

longed subthreshold oscillations emerging at the two critical points, and with emergence

of an associated power-law for fluctuation variance, var ∼ 1/ε, where ε is the distance to

the relevant bifurcation point.

Although the Waikato mean-field model has been in continuous development since

1999, examining the dynamics of a variety of phase transitions, there has been no explo-

ration of possible power-law behaviour of noise-induced fluctuations, nor any examination

of cooperative avalanche behaviour. We will investigate three distinct anaesthetic induced

transitions:

• Loss of consciousness (LOC)

• Recovery of consciousness (ROC)

• Critical point (CP).

Voltage fluctuations will be analysed on close approach to these transition points, looking

for evidence of scaling-laws. Moreover, we will quantify the avalanche statistics for each

transition point, extracting power-law exponents for the size distributions.

Rat LFP changes under anaesthesia have been investigated in previous studies, but

have not been analysed for criticality. We will quantify LFP changes during anaesthetic

transition, analysing amplitude distribution, fluctuation variance and time-correlation,

and determine scaling-laws for power spectral density and long-range correlation using

detrended fluctuation analysis (DFA). Furthermore, criticality investigations will be ex-

tended to avalanche analysis.

In summary, we are aiming to unveil evidence of criticality in different types of neural

phase transitions by quantifying behavioural changes and mapping these to scaling-laws.

We seek to identify signs of criticality that are common to model of a single spiking

neuron, a mean-field neuronal population model, and electrophysiological measurements

in rat cortex.

The thesis is structured as follows: In Chapter 2 we will analyse the FitzHugh–Nagumo

mathematical model looking for evidence of critical prolongation characteristics. We

extend our analysis to the spatiotemporal domain using the Waikato mean-field cortical

model for anaesthesia in Chapter 3.
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Anaesthetic-induced changes in local field potential in anaesthetised rats will be ex-

amined in Chapter 4. Scale invariance properties at criticality are studied using rat local

field-potential data, and also in the Waikato cortical model. The power-law studies of

neuronal avalanches (in Chapter 5), power-spectrum and detrended fluctuation analysis

(DFA) will also be applied for these data (Chapter 4).



Chapter 2

Nonlinear oscillations and subthreshold

fluctuations in a spiking neuron

Dynamical systems typically exhibit a rapid transition between different states near a

threshold or tipping point. Critical phenomena are of particular interest as a small change

in system inputs can dramatically affect system behaviour [62, 79], and this has been

observed in many complex systems with examples reported in biology, ecology, climate

and economics [22, 99]. In some cases this transition is biologically useful, for example,

allowing a neuron to rapidly switch from quiescence to spiking to enable transmission of

information via the firing of action potentials. On the other hand, some critical transitions

can be undesirable and pathological, as happens in the onset of epileptic seizure.

One of the early warning signs of proximity to a tipping point is the increased suscep-

tibility or sensitivity to both external and internal perturbations, with the system taking

progressively longer to recover from small disturbances, as it approaches the bifurcation

point. This phenomenon is known as critical slowing down [58,62,87].

Changes in the characteristics of noise-induced fluctuation near the tipping-point tran-

sition from quiescence to spiking regimes have analysed in spiking neuron models. Steyn-

Ross et al. [87] reported growth of fluctuations and time prolongation using variance,

autocorrelation and spectral power in simplified point neuron models of the resonator

and integrator type. Bukoski et al. [14] extended this work to the full Hodgkin–Huxley

neuron near spiking onset, using fluctuation amplitudes, temporal autocorrelation and

power spectral densities demonstrating critically slowed voltage fluctuations and pro-

longed correlation decay times.

In this chapter, we focus on the simplest mathematical description of a spiking neuron,
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the FitzHugh–Nagumo (FHN) model. FitzHugh introduced this model in 1961 as a sim-

plification of the four-variable Hodgkin–Huxley model, and referred to it as the Bonhoeffer

Van der Pol (BVP) model [26]. Nagumo constructed an electronic circuit equivalent to

this model [61]. This two-variable FHN model approximates the electrochemical ion flows

of sodium (activation) and potassium (inactivation and recovery) to give a qualitative

description for action potential generation.

After investigating the nonlinear limit-cycle oscillations generated by three variants of

the FHN spiking neuron, we investigate their stochastic behaviour as each approaches its

bifurcation point. We perturb the model neuron with low-intensity white noise and anal-

yse the properties of the resulting voltage fluctuations [29]. Proceeding via an eigenvalue

stability analysis of the subthreshold steady state, we show that the linear predictions

for noise-induced fluctuation variance, autocorrelation and spectral power provide accu-

rate predictions for stochastic subthreshold behaviour. However, once the neuron crosses

the threshold into its spiking regime, the strongly nonlinear dynamics become dominant,

completely swamping the stochastic component of the dynamics.

2.1 Model equations

The dynamics of an active cell in the nervous system is well-described using a spiking

“point” neuron (meaning that the neuron has no spatial extent). The point neuron model

consists of a set of state variables and differential equations which define the time-course

of the state variables [42]. In the late 1940s and early 1950s, Hodgkin and Huxley de-

veloped the core mathematical framework to describe single-neuron dynamics based on a

series of electro-physiological experiments on the squid giant axon [37]. This biorealistic

conductance-based model is formed with four state variables which describe membrane

potential, Na+ channel activation and subsequent inactivation, paired with K+ channel

activation. Although the Hodgkin–Huxley equations provide biophysically sensible equa-

tions for neuron behaviour, they are hard to analyse due to their complexity. This mo-

tivated FitzHugh and Nagumo independently to introduce a reduced neuron model that

contains only the essential nonlinear mathematical elements required for spike generation.

This chapter illustrates the emergence of deterministic nonlinear oscillations (“spikes”)

in three variants of the FHN point neuron. This is followed by an analysis of noise-induced
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fluctuations during the approach to the birth of oscillations via stochastic theory and

simulation.

2.1.1 Wilson and Keener & Sneyd FHN models

The FitzHugh–Nagumo equations have a “fast” excitation voltage variable and a “slow”

recovery variable. A cubic nonlinearity in the voltage provides fast positive feedback; the

recovery variable has linear dynamics giving slow negative feedback. This model consists

of two coupled differential equations,

dv

dt
=

1

τv
(−f(v)− b1v − b2r + S) (2.1a)

dr

dt
=

1

τr
(b3v − b4r + b5 − b6S) (2.1b)

where v represents the membrane voltage and r is the recovery variable, combining sodium

channel inactivation and potassium channel activation. Their respective time constants

are τv and τr, where the recovery variable has a much slower time scale than membrane

voltage, typically τr ∼ 20τv. Here, f(v) is a cubic polynomial function of membrane

voltage as listed in Table 2.1. S represents the external stimulus.

Table 2.1: Definitions and values for the FHN models defined by the Wilson [102] and Keener
& Sneyd [45]. SHB

1 and SHB
1 are the experimentally determined Hopf bifurcation points for birth

and death of nonlinear oscillations.

Symbol Wilson FHN K & S FHN Electronic FHN Electronic FHN
(values) (symbols)

τv 0.1 0.01 0.1 ms C1R5

τr 1.25 2 5 ms C2R5

f(v)∗ v3

3 v3 − 1.1v2 2.56

(
v−9 tanh

(
v

3.6

))
R5
R3

(
v−Vr tanh

(
v

Vr/2.5

))
b1 −1 0.1 1 1

b2 1 1 9 (R5 −R4)

b3 1.25 2 1 1
R4

b4 1 1 1 1

b5 1.5 0 0 0

b6 0 0 1 1
R4

SHB
1 ∼ 0.9660641 ∼ 0.1050071 ∼ −2.0857867 V

SHB
2 ∼ 2.0339359 ∼ 1.2378076 ∼ 2.0857867 V

* In the electronic FHN circuit Keener & Sneyd used a piecewise-linear function f(v) which we
replaced with tanh (Figure 2.4).
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Table 2.2: Values of the electronic FHN circuit components

Symbol value units

R1 100 kΩ

R2 100 kΩ

R3* 3.9 kΩ

R4 1 kΩ

R5 10 kΩ

C1 0.01 µF

C2 0.5 µF

Vr* 9 V

* Fig 5.20 of [45] sets R3 = 2.4 Ω, but 2.4 kΩ was intended. We altered R3 from 2.4 kΩ to 3.9
kΩ to allow us to replace the dual supply rails of ±12 V and ±15 V in the original circuit with
a single supply of Vr = ±9 V.

0 5 10 15 20
-2

-1

0

1

2

0 5 10 15 20
0.5

1

1.5

2

2.5

0.5 1 1.5 2 2.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 2.1: Simulations for Wilson FHN model at S = 1.5: (a) excitation variable v(t), (b)
recovery r(t), (c) phaseplot of v(t) vs r(t). The model equations produce nonlinear limit-cycle
oscillations at frequency ∼300 Hz. The FHN equations were solved numerically using Euler
integration with time step of ∆t = 5 ms
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Figure 2.2: Simulations for Keener & Sneyd model at S = 0.5: (a) Excitation voltage v(t), (b)
recovery r(t), (c) phase plot showing nonlinear oscillations of frequency ∼1100 Hz

Figures 2.1, 2.2 and 2.5 compare the nonlinear oscillation behaviour of the Wilson [102],

Keener & Sneyd [45], and op-amp (described below) variants of the FitzHugh–Nagumo

model. The Wilson and op-amp implementation show slower oscillations than the Keener

& Sneyd FHN model as the latter has a smaller τv time constant. All three simulations

exhibit nonlinear limit-cycle oscillations whose shape roughly approximates the highly

non-sinusoidal form of an action potential spike.

2.1.2 Op-amp nonlinear oscillator

For many years there has been considerable interest in representing a biological neuron

as an electronic circuit. In 1907, Lapicque introduced the integrate-and-fire model which

modelled the neuron as a capacitor (cell membrane) in parallel with a resistor (providing

a path for leakage current) with the product of resistance R and capacitance C defining

the membrane time constant τ = RC [1]. Although this model does not produce the

shape or form of an action potential the RC element forms the basis of almost all neuron

equivalent circuits, and there have been many modifications and implementations using

this concept [39]. Many researchers have used multiple RC compartments to implement
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Figure 2.3: Keener & Sneyd electronic circuit equivalent to FitzHugh–Nagumo model [45]. Op-
amp based electronic circuit works as a nonlinear oscillator whose behaviour is set by control
voltage vg. Component values are listed in Table 2.2

a single neuron structure, and also for neuronal networks [25, 107]. Later studies have

implemented more modern electronic circuits to extend the variety of spiking patterns

[39,54,101].

Hodgkin and Huxley modelled the cell membrane of the squid giant axon as a capacitor

connected in parallel with three resistive current paths to represent Na+, K+ and Cl+ ion

channels. Each ion channel consists of a conductance driven by a battery that sets the

ionic equilibrium potential [37,85]. While FitzHugh crafted a mathematical simplification

of the Hodgkin–Huxley model, working independently Nagumo published an equivalent

electronic circuit for a spiking neuron in which a diode provides the cubic nonlinearity.

Keener and Sneyd [45] designed an op-amp implementation of the FitzHugh–Nagumo

equations. Their circuit, shown in Figure 2.3, couples two op-amps to act as a nonlinear

oscillator. We made minor modifications to the circuit to allow both op-amps to share a

common ±9 V supply (see caption of Table 2.2 for details).
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Figure 2.4: (a) Comparison between piecewise-linear function F1 (Eq. (2.3)) and hyperbolic
tangent function F2 (Eq. (2.4)). The tanh function provides a smooth approximation to the
piecewise description of an op-amp transfer characteristic

The excitation and recovery variables v and i obey a pair of coupled differential equa-

tions,

dv

dt
=

1

C1R5

(
− f(v)− v − (R5 −R4)i+ Vg

)
(2.2a)

di

dt
=

1

C2R5

(
v

R4

− i− Vg
R4

)
(2.2b)

(See Appendix A for derivation)

Excitation is expressed as the voltage across capacitor C1, and recovery as the current

through resistor R4. This circuit can be mapped to the general form of the FHN equations;

see Table 2.1. The f(v) function provides the essential nonlinearity in the model. In

the original Keener & Sneyd circuit, f(v) is defined to be a piecewise-linear fit to the

approximately cubic input-output transfer function of an op-amp,

F (v) =


v − Vr+, for v > aVr+

-R1

R2
v, for aVr− ≤ v < aVr+

v − Vr−, for v < aVr−

(2.3)

where a = 1/2.

We chose to replace this sharp-edged function with a smooth continuous definition
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(a) Matlab Simulation
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(b) LTspice Simulation

Figure 2.5: The Matlab simulations in (a) uses the tanh() function of Eq. (2.4) while the
LTspice simulation relies on internal library definitions of LM741 op-amp characteristics. While
wave shapes differ somewhat, frequencies and amplitudes of the two simulations are pleasingly
similar

that combines the known tanh() characteristic of a differential amplifier with a linear

voltage term to give a reasonable fit to the Keener & Sneyd piecewise function as shown

in Fig. 2.4,

f(v) =
R5

R3

(
v − Vr tanh

(
v

Vr/2.5

))
(2.4)

Equations (2.2) were simulated in Matlab using the f(v) definition of Eq. (2.4).

Equations were integrated using an Euler algorithm with time step of 5 µs. Figure 2.5(a)

shows the excitation output when the control voltage is set to vg = 1.0 V. The nonlinear

oscillations have frequency ∼375 Hz. The Matlab simulation was checked against the

LTSpice circuit simulator (See Appendix A for details) which uses “exact” library defi-

nitions for the LM741 op-amp characteristics. The agreement between the Matlab and

LTSpice output is very satisfactory. We bench-tested the circuit of Fig 2.3 and, using

an oscilloscope, observed voltage waveforms that were indistinguishable from the LTSpice

results (not shown). Note that we did not attempt subthreshold stochastic analysis of the

bench circuit implementation due to the challenges associated with constructing a reliable

white noise stimulus and measuring the expected sub-microvolt voltage fluctuations.
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Figure 2.6: Nullclines for the Wilson FHN model at S = 1.5. Solid line is the cubic nullcline
for dv/dt and dashed line is the dr/dt linear nullcline. The intersection of two nullclines locates
the steady state

2.2 Steady states

Equations (2.1) can be written as nonlinear functions, F1 and F2,

F1(v, r) ≡ dv

dt
=

1

τv
(−f(v)− b1v − b2r + S) (2.5a)

F2(v, r) ≡ dr

dt
=

1

τr
(b3v − b4r + b5 − b6S) (2.5b)

To investigate the dynamics of this system of equations, we locate the equilibrium states

as a function of stimulus S, then probe their stability with respect to small perturbations

about equilibrium. At steady state, the time derivatives dv/dt and dr/dt are simultane-

ously zero,

F1(v, r) = 0 (dv/dt nullcline)

F2(v, r) = 0 (dr/dt nullcline)

defining a pair of curves in (v, r)-space known as nullclines. Their intersection locates

the steady state coordinate (v0, r0) for the membrane voltage and the recovery variable.

Figure 2.6 illustrates the nullclines for the Wilson FHN equations at S = 1.5; these curves

intersect at the point (v0, r0) = (0, 1.5).
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2.3 Linear stability analysis

We define a two-variable state vector,

~X =

v
r


The stability of a given equilibrium state X0 = [v0, r0]T is determined by a Taylor

expansion to first order that is valid close to the X0,

d

dt
δ ~X = J|[v0,r0] δ ~X (2.6)

where J is the Jacobian matrix of partial derivatives evaluated at ~X0,

J =


∂F1

∂v

∣∣∣∣
[v0,r0]

∂F1

∂r

∣∣∣∣
[v0,r0]

∂F2

∂v

∣∣∣∣
[v0,r0]

∂F2

∂r

∣∣∣∣
[v0,r0]

 (2.7)

and δ ~X = [v− v0, r− r0]T is a small deviation from the equilibrium point ~X0. Evaluating

the four partial derivatives of the FHN equations (2.5) gives,

J =

 1
τv

(
− ∂f(v)

∂v

∣∣∣∣
[v0,r0]

− b1

)
− 1
τv
b2

1
τr
b3 − 1

τr
b4

 (2.8)

The linear stability of the steady state can be quantified by extracting its eigenvalues

since these predict the exponential decay or growth of small perturbations. If the dominant

eigenvalue λ = α±iω has a real part α that is negative (α < 0), then the perturbation will

decay, indicating a stable equilibrium point. If α > 0, then the perturbation will grow,

so the equilibrium point is unstable. If α = 0, with a nonzero imaginary part ω, then

a Hopf bifurcation of characteristic frequency ω/2π is predicted. This point of delicate

balance between exponential decay (α < 0) and exponential growth (α > 0) is known as

the “critical point” since it marks the transition from quiescence to firing [42,98].
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Figure 2.7: Steady-states and eigenvalues for the Wilson FHN equations. (a) Steady states:
Two critical points are identified, lower critical point is at drive stimulus S = SHB

1 ' 0.9660
(point A), higher critical point is at drive S = SHB

2 ' 2.0339 (B). (b), (c) The eigenvalues near
threshold form a complex conjugate pair, λ = α± iω, imaginary part ω predicts the oscillatory
frequency, the real part α is the damping rate. The steady-state is unstable when α > 0 (dashed
curve in (a)), leading to nonlinear oscillations. The zero crossings at α = 0 mark Hopf bifurcation
points. The numbered vertical dashed lines mark the stimulus values selected for simulation and
displayed in Fig. 2.10

By injecting low-intensity white noise into FHN “neuron”, we can quantify how close

the neuron is to its “spiking” transition by examining the altering characteristics of the

noise-induced fluctuations as a function of drive stimulus S. This motivates the FHN

stochastic analysis to follow in Section 2.4.

Figures 2.7, 2.8, 2.9 show respectively the steady states and eigenvalue distributions

for the Wilson, Keener & Sneyd and op-amp FHN models. All three FHN models have
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(a) Keener & Sneyd FHN model: Steady states
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Figure 2.8: Steady-states and eigenvalues for the Keener & Sneyd FHN model. Lower and
upper critical stimulus values are SHB

1 ' 0.1050 (point A) and SHB
2 ' 1.2378 (point B)

two critical points as identified by the zero-crossing of the α eigenvalue graph: there mark

the birth (SHB
1 ) and death (SHB

2 ) of small linear oscillations representing the onset and

offset of oscillatory behaviour. Intermediate values of drive stimulus, SHB
1 < S < SHB

2 ,

correspond to unstable steady states leading to nonlinear limit-cycle oscillations that are

supposed to serve as action potential “spikes” in the FHN model neuron [42,102].

Note that the steady state and eigenvalue distributions are sensitive to choice of pa-

rameter values in Equation 2.1. Parameter b1 to b5 determine the steady state, while τv

and τr affect eigenvalues and therefore locations of critical points.

Figures 2.10–2.12 illustrate a series of impulse response simulations for the three FHN

models. We added an impulse of 0.0001 V to the steady state at the start of the simulation
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(a) Electronic circuit FHN model: Steady states
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Figure 2.9: Steady-states and eigenvalues for the FHN electronic circuit model of Fig.2.3.
Steady-states are symmetric around Vg = 0 axis and lower and upper critical control voltages
are found at SHB

1 ' −2.0857 V (point A) and SHB
2 ' 2.0857 V (point B)

(v(t = 0) = v0 + 0.0001), and selected stimulus levels as indicated by the dotted/dashed

vertical lines in Figures 2.7, 2.8, 2.9. The top row of Fig. 2.10 shows simulation near the

first critical point. As stimulus S increases towards the lower critical point (panels (a)

and (b)), we see a slowing of the relaxation to steady state. At the critical point of bal-

ance between decay and growth (panel (c)), we see persistent small amplitude sinewave

oscillations. When S is within the unstable region (panels (d) and (e)) the equations

generate a large-amplitude persistent spike train. A mirror of this behaviour is demon-

strated near the second critical point (second row of Figure 2.10). At critical S, in panel

(f), small 500 Hz oscillations can be seen. Further away from the second critical point,
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Figure 2.10: Small signal impulse response for Wilson FHN model for eight stimulus (S) levels.
Upper four panels show responses near lower critical point (SHB

1 ' 0.9661); lower four panels
illustrate simulations near the higher threshold (SHB

2 ' 2.0339). (d, e) At S of 1.1 and 1.9,
the equations generate “spikes” since the system is now unstable. (a, b, g, h) When stimulus
lies outside the unstable region, the neuron recovers steady state. Near threshold, oscillations
persist for longer, evolving to ∼500 Hz sustained oscillations at thresholds (c, f), and spiking
limit cycles (d, e)

the oscillations decay increasingly faster as the real part of the eigenvalue become more

negative.

The Keener & Sneyd (Fig. 2.11) and op-amp FHN models (Fig. 2.12) show similar

behaviour for a small signal impulse.
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Figure 2.11: Small signal impulse response for Keener & Sneyd FHN model for eight settings
of stimulus, S. Upper subplots show voltage time-series close to the lower critical point (SHB

1 );
lower plots show responses near the second critical point (SHB

2 ). (b, g) Impulse response is
prolonged near threshold. (c, f) At threshold, small amplitude oscillations emerge. Oscillations
are at frequency ∼1600 Hz which agrees with the eigenvalue prediction of Figure 2.8(c). (d, e)
In the unstable region SHB

1 < I < SHB
2 large-scale nonlinear oscillations appear
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Figure 2.12: Small signal impulse response for op-amp FHN model for eight settings of gate
voltages. Upper subplots are voltage time-series for four voltage settings near the lower critical
gate voltage (V crit1

g ); lower subplots show responses near the second critical voltage (V crit2
g ).

(c, f) Persistent oscillations appear with small amplitude and frequency ∼675 Hz, in agreement
with the eigenvalue prediction of Figure 2.9(c)

2.4 Stochastic theory

In this section we examine the subthreshold response of the FHN “neuron” when exposed

to low-intensity noise. Biological neurons are exposed to a continuous background of

synaptic noise, and this randomness in the input stimuli might be expected to compromise

the reliable encoding and transmission, via the firing of action potentials, of information

to other neurons. In fact, we will show that there is a power-law growth in FHN neuron

sensitivity to noisy stimulation as the critical point is closely approached from below.

2.4.1 Stochastic differential equations

We form the stochastic version of the FHN model by adding white-noise perturbations to

the noise-free equations (2.1),

dv

dt
=

1

τv
(−f(v)− b1v − b2r + S) + σ1ξ1(t) (2.9a)

dr

dt
=

1

τr
(b3v − b4r + b5 − b6S) + σ2ξ2(t) (2.9b)
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where σ1,2 are constants which scale the amplitude of the two noise terms; ξ1,2(t) are a pair

of independent, Gaussian-distributed delta-correlated white-noise sources with zero-mean

and infinite variance,

〈ξ(t)〉 = 0, (zero mean) (2.10)

〈ξ1(t)ξ2(t′)〉 = δ1,2δ(t− t′) (delta correlation) (2.11)

where δ1,2 is the Kronecker delta and δ(t−t′) is the Dirac delta function. The angle-bracket

notation is short-hand for the temporal average

〈[· · ·]〉 = lim
T→∞

1

T

∫ T

0

[· · ·] dt

.

In our stochastic numerical simulations, the white-noise sources are approximated

using a zero-mean, unit-variance Gaussian random number generator, R(0, 1), divided by

the square-root of the sampling time step, ∆t,

ξ(t) =
R(0, 1)√

∆t

This multiplication by 1/
√

∆t ensures that the stochastic Euler increment

ξ(t)∆t = R(0, 1)
√

∆t

scales with the square-root of the time step (as required for a Brownian motion process),

and that ξ(t) has a variance that diverges to infinity as ∆t → 0 (as required for white

noise).

Here we are are specifically looking at the subthreshold dynamics, where fluctuations

are quite small. Therefore linearisation is applied to predict the subthreshold behaviour

of these nonlinear functions. We linearise the stochastic FHN equations about a given

subthreshold steady state to form an Ornstein–Uhlenbeck (OU) system [29],

d

dt

v
r

 = −A

v
r

+
√

D

ξ1(t)

ξ2(t)

 (2.12)
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where A is the 2× 2 drift matrix equal to the negative of the Jacobian matrix (A = −J)

evaluated at steady state. Here, D is the diffusion matrix,

D =

σ2
1/τ

2
v 0

0 σ2
2/τ

2
r

 (2.13)

2.4.2 Variance

For the Ornstein–Uhlenbeck process, Gardiner [29] derived a theoretical expression for

the covariance matrix Σ,

AΣ + ΣAT = D (2.14)

For a two-variable OU process, this implicit equation for Σ can be written out explicitly,

Σ =
det(A)D + [A− (tr(A)I]D[A− tr(A)I]T

2tr(A)(detA)
(2.15)

where I is the 2 × 2 identity matrix. Here det(·) and tr(·) are determinant and trace

operators that can expressed in terms of matrix eigenvalues,

det(A) = det(J) = λ1λ2

tr(A) = −tr(J) = −(λ1 + λ2)

where λ1,2 are the eigenvalues of the Jacobian matrix J. Then the theoretical expression

for the variance of the noise-induced voltage fluctuations can be obtained form the Σ11

entry of the 2× 2 covariance matrix,

var{v} =
λ1λ2D11 + A2

22D11 + A2
12D22

−2(λ1 + λ2)λ1λ2

(2.16)

2.4.3 Cross-correlation

The 2× 2 time-correlation matrix can be computed directly from the (v(t), r(t)) fluctua-

tions time-series,

C(τ) =

cov{v(0), v(τ)} cov{v(0), r(τ)}

cov{r(0), v(τ)} cov{r(0), r(τ)}

 (2.17)
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where τ is the lag-time. The theoretical expression for the time-correlation matrix is

defined,

C(τ) = e−AτΣ, where τ ≥ 0 (2.18)

and where e−Aτ denotes a matrix exponential that can be evaluated using the expm

function in Matlab. The C11(τ) element from time-correlation matrix, C(τ) provides

the theoretical expression for the autocorrelation function of the v(τ) voltage fluctuations.

2.4.4 Frequency spectrum

Gardiner writes the spectrum matrix for the Ornstein–Uhlenbeck process as,

S(ω) =
1

2π
(A + iωI)−1D(AT − iωI)−1 (2.19)

Our two-dimensional FHN system of equations has a 2 × 2 spectrum matrix, with the

S11(ω) providing the power spectral density for voltage fluctuations about steady state,

S11(ω) =
1

2π

A2
22D11 + A2

12D22 + D11ω
2

(λ1λ2 − ω2)2 + (λ1 + λ2)2ω2
(2.20)

2.5 Subthreshold stochastic analysis

We now investigate the stochastic behaviour of the FHN model near the critical point.

We perform a series of numerical simulations and analyse the noise-induced subthreshold

fluctuation statistics comparing these results against the predictions of OU stochastic

theory.

Wilson FHN model

Figure 2.13(a) shows the voltage fluctuations near the first critical point for 2000 indi-

vidual simulations of the Wilson FHN model. Stochastic fluctuations are induced by

white-noise sources of amplitudes σ1, σ2 = 1 × 10−6. These noise amplitudes are chosen

to be sufficiently small to allow close approach to critical points.

The stochastic DEs were simulated using Euler–Maruyama integration with time-

step ∆t = 10 µs and with stimulus settings evenly spaced across the range from 0.8

to 0.9660. Each simulation ran for 2000 ms, with the largest positive and negative
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Figure 2.13: Voltage fluctuation as a function of stimulus S for the Wilson FHN equations
near the first critical point. (a) Each vertical grey line shows maximum excursions recorded
in a 2000-ms simulation; red curves display predicted ±3σv limits. (b) Variance vs epsilon
ε = (SHB − S)/SHB approaching critical point. Red curve shows the theoretical predictions,
black circles show the measured variance. (c) Log-log variation between variance and epsilon;
OU theory predicts a straight line with gradient −1

deviations (δv+and δv−) away from the v0 equilibrium being recorded as signed offsets

(δv+, δv−) = (vmax− v0, vmin− v0), and plotted in panel (a) as vertical grey lines. On this

was superimposed the ±3σ theoretical predictions representing three standard deviation

limits. The standard deviation was computed from Eq. (2.16) as σv =
√

var{v}. Figure

2.13(a) manifests pronounced growth of voltage fluctuations on close approach to thresh-

old, with good agreement between simulation and theory. The time-step, ∆t was chosen

to be a small fraction of the τv time-constant in order to ensure numerical stability.

To quantify distance from criticality, we define a dimensionless measure ε = (SHB −

S)/SHB which tends to zero as S → SHB, the (lower) critical point. Panel (b) predicts

that fluctuation variance will diverge strongly as ε→ 0, and the log-log var{v} vs ε graph

of panel (c) indicates that the divergence follows power-law

var{v} ∼ 1

ε
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Figure 2.14: Autocorrelation of white noise-driven subthreshold Wilson FHN equations for six
levels of S near first and second critical points: (a) 0.80; (b) 0.90; (c) 0.95; (d) 0.205; (e) 2.10; (f)
2.50. Red solid curves show numerical results; black solid curve represents the theoretical OU
predictions; dashed curve shows the exponential (exp(−ατ)) decay envelope, evaluated using
the real part of the eigenvalue, α = −Re(λ1,2)

with excellent agreement between measurement and OU theory across ∼1.5 decades of ε

values.

Growth of critical fluctuations in the FHN model also can be visualized by computing

their temporal autocorrelation (see Figure 2.14). We selected six different S settings, three

for approach to the lower threshold (SHB
1 ' 0.9660) and three for departure from the upper

threshold (SHB
2 ' 2.0339). For each setting of S, we ran 2000-ms nonlinear stochastic

simulations, then computed the C11 autocorrelation function for the time series using

Eqs. (2.17) and (2.18). Simulation results (black) are in good agreement with theoretical

predictions (red). We observe highly damped oscillations when far from threshold, and

much lower damping near threshold, consistent with the notion that oscillations would

become infinitely prolonged when precisely at the critical point where damping vanishes.

For the final demonstration of critically enhanced fluctuations, we compute the fluc-

tuation spectrum for the Wilson FHN neuron from the time-series, and compare with

the OU spectral prediction of Eq. (2.20). In Figure 2.15 we plot the root-mean-square

voltage amplitude spectra Vrms(f) =
√
S11(f), and note the strengthening resonance at

frequency ω0/2π ' 500 Hz, consistent with the eigenvalue frequency trend of Fig. 2.7(c).
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Keener & Sneyd FHN model

The subthreshold fluctuation dynamics for the Keener & Sneyd FHN neural model are

qualitatively similar to that of the Wilson FHN model. Figure 2.16 displays: (a) variation

of voltage fluctuations; (b, c) variance; (d) autocorrelation; and (e) power spectrum near

the first critical point (SHB
1 = 0.1050). Consistent with the Wilson FHN neuron, we see

increased susceptibility to small perturbations when approaching threshold. The fluctua-

tion spectrum (theory and numerical results) narrows and strengthens when approaching

the critical point to reveal a resonant frequency ' 1500 Hz.

Electronic circuit model

We repeated the previous analyses for the mathematical model of the op-amp circuit of

Fig. 2.3. The results presented in Figure 2.17 are consistent with both the Wilson and

the Keener & Sneyd subthreshold characteristics. In panel (a) the extremes of voltage

fluctuation for 2000 independent stochastic simulations (∆t = 5 µs) were recorded for

stimulus vg ranging from −2.5 to −2.087.
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Figure 2.16: Subthreshold impulse response for Keener & Sneyd FHN model. (a) Each vertical grey
line shows the maximum excursion for 2000 individual simulations that each ran for 2000 ms with time-
step ∆t = 1 µs. Red curves display predicted ±3σ limits. (b),(c) Calculated variance against ε (ε =
(SHB − S)/SHB) using theory (red line) and simulation (black). Variance increases towards threshold,
SHB
1 (SHB

1 ' 0.1050 V) and log-log relationship aligns with a straight line of slope −1. (d) Autocorrelation
for three control voltages levels near to SHB

1 ' 0.1050. Red lines denote theoretical predictions; these
align with simulation results (black lines). (e) Fluctuation spectrum for five control voltage settings.
Both theory and experimental results show peaks at frequency ∼1500 Hz and power increases as stimulus
is increased towards the critical point, SHB

1
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Figure 2.17: Subthreshold impulse response for FHN op-amp circuit model. (a) Grey vertical lines
mark extremes of voltage fluctuation for each control voltage for 2000 ms runs with ∆t = 5 µs timestep;
red curves show theoretically predicted limits of voltage fluctuations (±3σ). (b), (c) Calculated variance
against ε (ε = (SHB−S)/SHB) using theory (red line) and simulation (black). Variance increases towards
threshold, SHB

2 (SHB
2 ' 2.0857 V) and log-log relationship shows a power law with exponent −1. (d)

Autocorrelation for three control voltages near to SHB
2 . Theoretical predictions (red) align with the

simulation results (black). (e) Noise-induced fluctuation spectra for five control voltage settings. Red
dashed lines are theoretical predictions, and thick black lines are simulation spectra. Peak activity occurs
at frequency ∼675 Hz with power increasing as control voltage approaches the second critical point, SHB

2

from above
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The panels (b) and (c) illustrate the fluctuation variance (linear and log-log plots

respectively). Variance vs ε reveals a power-law with exponent of −1. The fluctuation

autocorrelation of the FHN circuit model in the time domain is illustrated in panel (d) for

three values of vg control voltage near the upper critical point, SHB
2 . Panel (e) compares

the theoretical and experimental power spectra for close approach to the upper critical

point SHB
2 from above. A strengthening resonance emergences at frequency ∼ 675 Hz.

2.6 Chapter summary

In this chapter we investigated the nonlinear dynamics and subthreshold stochastics of the

FitzHugh-Nagumo (FHN) neural model using three different parameterisations: Wilson,

Keener & Sneyd, and op-amp equivalent circuit. First we compared nonlinear oscillations

and computed steady states and analysed linear stability at each equilibrium state. Then

we examined the low-intensity white-noise induced voltage fluctuations for close approach

to and departure from spiking threshold.

As discussed in Chapter 1, Steyn-Ross et al. [87] investigated onset of spiking in the two

types of neuron elucidated by Wilson [102]: type-I integrator and type-II resonator (Note

that they did not examine the death of spiking that occurs when stimulus current becomes

excessively high). The FHN models investigated in the present chapter all exhibit type-II

resonant behaviour. This arises from the Andronov-Hopf bifurcation at the critical points

corresponding to the birth (onset at SHB
1 ) and death (offset at SHB

2 ) of large amplitude

nonlinear oscillations, which are sustained in the unstable region SHB
1 < S < SHB

2 . The

critical stimulus is located at the equilibrium point where the real part of the eigenvalue

becomes zero, while the imaginary part (frequency) is non-zero.

Subthreshold stochastic analyses of all three FHN models concludes with the following

results:

• Variance of voltage fluctuations increases on approach to threshold and aligns to a

power-law with exponent −1 : var{v} ∼ ε−1

• PSD also evinces the increase of fluctuation amplitude at a resonant frequency

near the critical point: growth of spectral power simultaneous with a narrowing of

spectral width

• Autocorrelation manifests a prolongation of settling time when approaching the

critical point.
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Unlike the type-I integrator neuron, FHN does not exhibit critical slowing down to zero

frequency. Instead, it shows increasingly resonant behaviour and prolongation of settling

time on approach to the critical point. Although FHN is the simplest model to represent

the single spiking neuron, it retains the subthreshold stochastic characteristics of more

biophysically realistic and mathematically more complicated spiking neuron models such

as the Wilson and Hodgkin–Huxley point neurons.





Chapter 3

Critical fluctuations in the Waikato

mean-field cortical model

In this chapter, we examine the dynamical behaviour of Waikato mean-field (WMF)

model of the cerebral cortex as it approaches the anaesthetic induced phase-transition.

Mean-field cortical models describe the spatially-averaged behaviour of populations of

excitatory and inhibitory neurons, and make no attempt to describe single neuron events

such as the birth and axonal propagation of individual spike events. The WMF model

has been in continuous development since 1999 [85, 89, 91, 92], drawing on ideas from

the continuum models of Liley et al. [52], Rennie et al. [72] and Robinson et al. [77].

Recently the model was extended to incorporate electrical gap-junction synapses [93, 94]

to complement communication via standard chemical synapses.

The primary state parameter of the model is mean excitatory firing rate, which is

presumed to represent the scalp-measured EEG [90]. The smallest cortical element is

considered to be the “macrocolumn” containing ∼100,000 neurons that are grouped into

excitatory (85%) and inhibitory (15%) populations according to their effect on other

neurons. These populations communicate locally via both chemical and electrical synapses

(gap junctions), and over longer ranges via myelinated axons.

The WMF model consists of a set of coupled partial differential equations. Flux activ-

ity generated by excitatory and inhibitory neuronal populations is received at a dendritic

synapses. Axonal flux transmission is modelled as a 2-D wave equation with Macdonald-

function connectivity [77]. The transmission efficiency of these chemical synapses is mod-

ified by the difference between the membrane voltage and its reversal potential [52, 72].

The net neuron voltage is determined by axono-dendritic activity at chemical synapses

plus diffusive current from adjacent neurons coupled via gap junctions.
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Figure 3.1: Unit-height impulse response for excitatory (light curve), inhibitory (bold), and
anaesthetic enhanced inhibitory (dashed) post synaptic potentials. λ is the anaesthetic effect
scale factor [89]

The postsynaptic potential at chemical synapses depends on (V − V rev), the voltage

of the receiving neuron V relative to its reversal potential V rev. If this difference is large,

firing activity is more effectively evoked by incoming stimuli; if this difference tends to

zero then transmission efficiency is diminished. For excitatory events V rev ' 0 mV, and

for inhibitory events V rev ' −70 mV [86].

General anaesthetic drugs reduce neural activity of the cortex by boosting the strength

of inhibitory synaptic events. In the WMF model, propofol-induced anaesthesia is mod-

elled by prolonging the duration of the inhibitory postsynaptic potential (IPSP) by a

dimensionless scale factor λ, assumed to be proportional to anaesthetic concentration.

The effect of λ on IPSP is shown in Figure 3.1.

The two contrasting states in the WMF anaesthesia model are termed “high-firing”

and “low-firing”, and are taken to represent the “conscious” and “unconscious” states re-

spectively. The transition from high-firing “conscious” state to a low-firing “unconscious”

state can be either smooth or abrupt, depending on the anaesthetic inhibitory effect and

on the level of background cortical excitation. For a certain range of anaesthetic concen-

trations, the model predicts multiple steady states for brain activity, and that at a critical



49

Figure 3.2: Steady-state manifold of excitatory firing rate Qe as a function of anaesthetic
inhibition (λ) and cortical tone (∆V rest). λ is used as control parameter and ∆V rest

e is the
additive offset representing cortical excitation. The yellow curve marks the edge of the reentrant
fold; dashed-black curve shows the projection of this edge onto the lower and upper surfaces,
bounding the zone of multiple steady states. Red-green-blue curve shows distribution of steady
states for varying anaesthetic inhibition at constant cortical excitation. CP marks the critical
point at which high- and low-firing states become indistinguishable. (From [90])

point of anaesthetic inhibition, the system can switch from a high-firing to a low-firing

state.

The smooth or abrupt change of cortical activity at phase transition can be understood

by studying the distribution of equilibrium states as a function of anaesthetic inhibition

λ and background excitation ∆V rest
e (see Fig. 3.2). These equilibrium states are located

by setting all time and space dependencies in WMF equations (3.1)–(3.10) to zero; then

there is no noise, no gap junction diffusion and no wave propagation through the cortical

sheet. Figure 3.2 shows the manifold of equilibrium states as a function of anaesthetic

inhibition λ and cortical tone ∆V rest
e . The yellow line indicates the reentrant fold, which

shows that for certain range of λ and ∆V rest
e the cortex can access three alternative states:

high-firing, low-firing, and an unstable intermediate state which separates the “conscious”

(high-firing) and “unconscious” (low-firing) states [21,89].

In this chapter, we analyse the loss of consciousness (LOC) and recovery of conscious-

ness (ROC) phase transitions, focusing on the changes of variance and spectral power

for small noise-induced voltage fluctuations on close approach to transition. Fluctuation

statistics are predicted using Ornstein–Uhlenbeck theory, then validated using numerical
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simulation of the stochastic WMF equations on a 25- × 25- cm square grid of cortical

tissue.

Previous investigations of the WMF equations have studied emergence of temporal

(Hopf) and spatial (Turing) bifurcations by respectively lowering the background (i.e.,

no anaesthetic) rate constant γ0
i of the inhibitory postsynaptic potential (IPSP), and by

raising the diffusion strength D2 that couples inhibitory neurons via gap junctions [21].

Since our emphasis here is on detecting and quantifying signs of critical slowing down

near transition, we choose to suppress both temporal and spatial instabilities by setting

γ0
i = 100 s−1 (no temporal oscillations via Hopf bifurcation) and D2 = 0 cm2 (no spatial

pattering via Turing bifurcation).

3.1 Waikato mean-field model equations

The Waikato mean-field cortical model represents the flattened cortex as a 2D network of

excitatory and inhibitory neurons (see Fig. 3.3). Neurons are connected locally through

both gap junctions and neurotransmitter-mediated chemical synapses, and over distance

via long-range myelinated axons. The cortex is represented as a continuum of excitable

tissue whose parameters are coarse grained over a spatial extent of order 1 mm2 which is

the area of a cortical macrocolumn [90]. The spatially-averaged excitatory and inhibitory

soma potentials Ve and Vi are expressed in the following pair of differential equations,

τe
∂Ve(~r, t)

∂t
=V rest

e + ∆V rest
e − Ve(~r, t) (3.1a)

+ [ρeψee(~r, t)Φee(~r, t) + ρiψie(~r, t)Φie(~r, t)] +D1∇2Ve(~r, t)

τi
∂Vi(~r, t)

∂t
=V rest

i − Vi(~r, t) (3.1b)

+ [ρeψei(~r, t)Φei(~r, t) + ρiψii(~r, t)Φii(~r, t)] +D2∇2Vi(~r, t)

Here τe,i is the soma (membrane) time constant, V rest
e,i is the soma resting voltage and

ρe,i is the chemical synaptic strength (see Table 3.1 for a list of symbol definitions and

parameter values). Gap junction inputs are presented as diffusion terms D1,2∇2Ve,i. The

nabla-square symbols denotes the 2D Laplacian operator ∇2 ≡ (∂2/∂x2 + ∂2/∂y2). As

explained above, we set diffusion to zero for the present work.
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Figure 3.3: Schematic of the Waikato cortical model. The dendrite response is an alpha-
function with rate constant γ; the soma response is an exponential function with time constant
τ [98]

The terms in square brackets are chemical-synaptic voltage inputs. These strengths

are scaled by dimensionless reversal-potential functions ψab (a = e, i; b = e, i),

ψab(~r, t) =
V rev
a − Vb(~r, t)
V rev
a − V rest

b

(3.2)

The Φeb,Φib functions are chemical-synaptic input fluxes obeying second-order differ-

ential equations,

(
∂

∂t
+ γe

)2

Φeb(~r, t) = γ2
e [N

α
ebφ

α
eb(~r, t) +Nβ

ebQe(~r, t) + φsc
eb(~r, t)] (3.3)(

∂

∂t
+ γi

)2

Φib(~r, t) = γ2
iN

β
ibQi(~r, t) (3.4)

Here γe,i are rate constants for the chemical synapses. The α and β superscripts

label longer-range (cortico-cortical) and local connectivity with Nα
eb, N

β
eb being the number

of these input connections, and φαeb, Qe,i the long-range and local spike-rate fluxes. φsc
eb

represents the unstructured subcortical stimulus entering from subcortical sources. This

background stimulus is modelled as a small spatiotemporal white-noise variation ξeb about
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a constant tone 〈φsc
eb〉,

φsc
eb(~r, t) = 〈φsc

eb〉+ a
√
〈φsc

eb〉ξeb(~r, t) (3.5)

where a is a dimensionless noise-amplitude scale-factor, the ξeb(~r, t) is a zero-mean,

Gaussian-distributed spatiotemporal white noise source, [62, 88]

〈ξ(~r, t)〉 = 0 (3.6)

〈ξm(~r, t)ξn(~r ′, t′)〉 = δmnδ~r ~r ′δ(t− t′) (3.7)

In numerical simulations we approximate continuous noise ξ(~r, t) with discrete noise, ξk,

using a Matlab random number generator randn,

ξk = randn/
√

∆t (3.8)

where ∆t is the time-step.

The local spike-rate fluxes Qe,i are determined by a sigmoidal mapping from soma

voltage to firing rate,

Qe,i(~r, t) =
Qmax
e,i

1 + exp[−C(Ve,i(~r, t))− θe,i)/σe,i]
(3.9)
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Figure 3.4: Sigmoidal mapping from soma voltage to firing rate
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Table 3.1: Definitions of symbols and standard values of the WMF cortical model

Symbol Description Value unit

τe, i soma time constants 0.04, 0.04 s
V rest
e,i neuron resting potential −64,−64 mV

V rev
e,i reversal potential at dendrite 0, −70 mV

ρe excitatory synaptic gain 1.00 ×10−3 mV
ρ0
i inhibitory synaptic gain at zero anaesthetic −1.05 ×10−3 mV
γe excitatory rate constant 170 s−1

γ0
i inhibitory synaptic gain at zero anaesthetic 100 s−1

D2 i↔ i gap-junction diffusive-coupling strength 0 cm2

D1 e↔ e gap-junction diffusive-coupling strength D2/100 cm2

Nα
eb longer-range e→ b axonal connectivity 2000 ...

Nβ
eb,ib local e→ b, i→ b axonal connectivity 800, 600 ...

〈φsc
eb〉 e→ b tonic flux entering from subcortex 300 s−1

a subcortical noise scale factor 0.2 ...
v axonal conduction speed 140 cm s−1

Λeb inverse-length scale for e→ b axonal connection 4 cm−1

Qmax
e,i maximum firing rate 30, 60 s−1

θe,i sigmoid threshold voltage −58.5,−58.5 mV
σe,i standard deviation for threshold 3, 5 mV
Lx,y length and width of cortical sheet 25, 25 cm

where C = π/3, θe,i is population-average threshold for firing, σe,i is its standard deviation

and Qmax
e,i is the maximum firing rate. The sigmoidal Ve → Qe mapping is illustrated in

Fig. 3.4.

The cortico-cortical flux φαeb is generated by distant excitatory sources Qe,i and obeys

a 2-D damped wave equation,

[(
∂

∂t
+ vΛeb

)2

− v2∇2

]
φαeb(~r, t) = (vΛeb)

2Qe(~r, t) (3.10)

with Λeb being the inverse-length scale for axonal connectivity.

3.2 Modelling anaesthesia

As depicted in Fig. 3.1, the anaesthetic propofol prolongs the duration of inhibitory post

synaptic potential (IPSP) without changing its peak amplitude. The propofol effect is

modelled by scaling both the inhibitory rate constant γi and synaptic strength ρi by a

dimensionless scale factor λ [90],

γi = γ0
i /λ, ρi = λρ0

i (3.11)



54 Critical fluctuations in the Waikato mean-field cortical model

where γ0
i and ρ0

i are default values with no anaesthetic presence, so λ = 1 corresponds to

no propofol effect, and (λ− 1) is proportional to propofol concentration. An increase of λ

results in a decrease of γi and rise of ρi, enlarging the area of the IPSP response linearly

with propofol concentration while maintaining a constant IPSP peak height. The IPSP

responses shown in Fig. 3.1 are normalised alpha functions of the form

IPSP(t) ∼ ρiγ
2
i te
−γit anaesthetic−−−−−−→

effectλ
λρ0

i

(
γ0
i

λ

)2

te−(γ0i /λ)t

3.3 Equilibrium states

The homogeneous equilibrium states of the Waikato mean-field model are evaluated by

setting the noise stimulus in Eq. (3.5) to zero and zeroing all space and time derivatives

in the differential equations (∇2 = 0; ∂/∂t = 0; ∂2/∂t2 = 0). Then the equations are

solved numerically to locate the steady state firing rates (Qe, Qi) of the excitatory and

inhibitory neural populations. Figure 3.2 shows the steady state manifold as a function

of anaesthetic effect λ and excitation ∆V rest
e , and Fig. 3.5 shows the steady state diagram

for five different values of ∆V rest
e . Each trajectory forms a reverse S-shaped reentrance,

where top branch corresponds to the “conscious” high-firing state, and bottom branch

corresponds to the “anaesthetised” low-firing state.
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Figure 3.5: Steady state diagram of firing rate, Qe, for five steps of ∆V rest
e
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3.4 Linear stability analysis

We wish to examine the linear stability properties of a given homogeneous steady state.

We define the eight-variable state vector, X = [Ve, Vi,Φeb, Φ̇eb,Φib, Φ̇eb, φeb, φ̇eb]
T, then

interrogate the stability of a given steady state X0 by adding a small spatiotemporal

disturbance,

X(~r, t) = X(0) + δX(~r, t) (3.12)

where δX is a plane-wave perturbation,

δX(~r, t) = δX(t) ei~q·~r = δX(0) eΛt ei~q·~r (3.13)

with ~q being a wave vector with wave number q = |~q |. Λ is an eigenvalue whose real

part determines the growth rate of the δX(0) perturbation: if Re(Λ) > 0, then the steady

state is unstable. After substituting Eq. (3.12) into the WMF equations, then linearising,

we obtain the matrix equation,

d

dt
δX(~r, t) = J(q) δX(~r, t) (3.14)

where J is the 8 × 8 Jacobian matrix evaluated at the given steady state (see Appendix

B for a listing of the Jacobian matrix elements). The ∇2 Laplacians for excitatory and

inhibitory diffusion and wave propagation appear in J as −q2 terms. In this analysis, we

suppress spatial instabilities, therefore diffusion terms are disabled (D1, D2 = 0), but we

retain the wave equation.

3.4.1 Eigenvalue analysis

The eigenvalues characterise the linear stability of a given equilibrium state of the homoge-

neous cortex. Since the eigenvalues are derived from the 8×8 Jacobian matrix, there will

be eight eigenvalues, each of which will be wavenumber dependent. For each wavenumber

we rank the eigenvalues in terms of their real part, Re(Λ1) > Re(Λ2) > ... > Re(Λ8) and
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select the dominant eigenvalue Λ ≡ Λ1 since it represents the most strongly growing (or

most slowly decaying) mode at a given spatial frequency. Writing Λ in terms of its real

and imaginary parts,

Λ(q) = α(q) + iω(q)

If α is negative, the steady state is stable (exponential damping); if α is positive, the

equilibrium is unstable. Near the transition points the eigenvalues approach zero, so these

points become marginally stable meaning that small perturbations produce a prolonged

response.

The stability of bifurcations marking the LOC (loss of consciousness) and ROC (re-

covery of consciousness) transition points are analysed in Figures 3.6 and 3.7 respectively.

For the LOC transition, the dominant eigenvalue of the top branch is precisely zero at

q = 0, and the same is true for the ROC transition (Fig. 3.7) on the bottom branch.

At both LOC and ROC, α and ω become zero at q = 0 indicating that the transition

is a saddle–node bifurcation. This indicates that the lifetimes and amplitudes of noise-

induced fluctuations are predicted to increase significantly as the transition points are

closely approached.
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Figure 3.6: Linear stability predictions for homogeneous Waikato mean-field cortical model at
the LOC transition point λ ' 1.0160 6379 0864 507. (a) Steady state trajectory for ∆V rest

e =
1.5 mV with LOC transition point (solid black circle). (b), (c) Eigenvalue distribution: black and
red curves shows the real (α) and imaginary (ω) parts respectively of the dominant eigenvalue
(Λ) as a function wave number q. (b) Top branch is marginally stable as Λ approaches zero
from below (at q = 0). (c) Bottom branch is strongly stable (α < 0)
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Figure 3.7: Linear stability predictions for WMF model at the ROC transition point λ '
0.9330 1029 7130 724. (a) Steady states for trajectory of ∆V rest

e = 1.5 mV with ROC transition
point (solid black circle). Top branch (b) is strongly stable, the bottom branch (c) is marginally
stable as α and ω approach zero for q → 0
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Figure 3.8: Stability predictions of WMF model approaching the critical point CP at
(Eq. 3.15)). (a) Equilibrium states and selected points. (b) (c) Dispersion curves for points
away from the critical point and (d) at the critical point (CP). P1 is strongly stable; P2 is
weakly stable. At the critical point, eigenvalue components (α, ω)→ (0, 0) at zero wavenumber
(i.e., infinite wavelength)

Figure 3.8 shows the eigenvalue dispersion graphs for points along the trajectory P1-P2-

CP passing through the critical point. P1 and P2 are points along the trajectory, where

P2 is closer to the CP than P1. This codimension-2 cusp marks the point where the
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three-root region evolves into a “single” root. Locating this point requires simultaneous

tuning of λ and ∆V rest
e through the three root region of the equilibrium manifold until

the narrowing peninsula of distinct multiple roots converges into three identical roots. Its

coordinate, accurate to double precision, is

(λCP,∆V rest, CP
e ) ' (1.1032 3341 8766 981, 2.5397 7880 8756 027 mV) (3.15)

These turning point coordinates need to be as accurate as possible in order to quantify

variance vs ε power-law divergences (refer Section 3.6). However the true turning point

cannot be locate to be better than ∼16 significant figures due to numerical limitations

in Matlab (double precision). It is evident from Fig. 3.8(a) that point P1 is strongly

stable as α(q) is significantly negative across all wavenumbers. At P2, α approaches (but

does not reach) zero as q → 0 as the P2 equilibrium is closer to the critical point. At

the critical point, α and ω are precisely zero at q = 0, implying infinitely prolonged

perturbative recovery times and extreme low frequency responsiveness corresponding to

a “resonance” at zero frequency. Note that unlike the first-order “jump” transitions at

LOC and ROC, the passage through CP is smooth and continuous, so does not exhibit

hysteresis separation between LOC and ROC transitions since these effectively merge at

CP.

3.4.2 Correlation time

The correlation time, tcorr determines the (1/e) time period over which fluctuations from

steady state die away, and can be defined as the inverse of the dominant eigenvalue decay

rate,

tcorr = − 1

Re(Λ)
(3.16)

Figure 3.9 illustrates the correlation tcorr in the vicinity of the LOC, ROC, and CP

phase transition points. Correlation times increase on approach, diverging to infinity as

Re(Λ) → 0 at transition. Compared to LOC and ROC, critical point correlation times

show a much larger domain of slowed decay. This increase of correlation time near phase

transition is often described as “critical slowing down”.

Close to each transition point the correlation time graphs show a break in the flow (see

zoomed views in Figs. 3.9–3.11). This deviation corresponds to a change in the eigenvalue
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structure: real parts of the first and second eigenvalues have same value until the break

point, then the dominant eigenvalue approaches zero while second eigenvalue drops away

to more negative values.
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Figure 3.9: Change of theoretical correlation time on close approach to anaesthetic induced
phase transitions: (a) loss of consciousness; (b) recovery of consciousness; (c) critical point. The
domain of prolonged slowing is much larger for the CP transition than for LOC or ROC
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3.4.3 Theoretical expression for spatial variance

Gardiner [29] gives an implicit matrix equation for the covariance matrix, Σ of a multi-

variate noise-driven Ornstein–Uhlenbeck (OU) process,

A(q)Σ(q) + Σ(q)AT(q) = D (3.17)

where the drift matrix A = −J, the negative of the Jacobian matrix, and D is the 8× 8

diffusion (noise intensity) matrix. Only the (4, 4) element of D is non-zero,

D(i, j) =

 γ4
ea

2〈φsc
eb〉, for i = 4, j = 4

0, otherwise
(3.18)

For the special case of a two-variable OU process, Eq. (3.17) can be solved explicitly for

the Σ covariance matrix (e.g., the FHN model, see Eq. (2.15)), but for our eight-variable

linearised WMF equation set there is no analytic solution, so must be solved numerically.

Equation (3.17) is a form of Lyapunov equation that can be solved in Matlab using the

sylvester function,

Σ = sylvester(A,AT,D) (3.19)

The (1, 1) element of the covariance matrix gives the fluctuation variance of excitatory

soma potentials Ve at wave number q,

σ2
Ve(q) = Σ11(q)

and the spatial variance across the cortical grid is obtained by averaging across the full

range of accessible wavenumbers between qmin and qmax,

σ2
Ve,theory =

∫
qy

∫
qx

Σ11(q) dqx dqy∫
qy

∫
qx

dqx dqy
(3.20)
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Figure 3.12: Demonstration of radial integration.

where q2 = q2
x+q2

y, and Σ11 has cylindrical symmetry in (qx, qy) space since it only depends

on q2. Converting to polar coordinates, the double integral of Σ11(q) can be rewritten,

∫
qy

∫
qx

Σ11(q) dqx dqy =

2π∫
θ=0

qmax∫
q

Σ11(q) q dq dθ (3.21)

= 2π

qmax∫
q

qΣ11(q) dq (3.22)

Similarly the double integral of q can be written as,

∫
qy

∫
qx

dqx dqy = 2π

qmax∫
q

q dq (3.23)

= 2π
q2

2

∣∣∣qmax

qmin

=
2π

2
(q2

max − q2
min) (3.24)

giving

σ2
Ve,theory =

2

(q2
max − q2

min)

qmax∫
q=qmin

Σ11(q) q dq (3.25)
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where qmin is set by the side length L = Lx = Ly of the square cortical grid,

qmin =
2π

L
(longest representable wavelength = L) (3.26)

and qmax is determined by the grid resolution ∆x = ∆y = L/Nx = L/Ny

qmax =
2π

2∆x
(shortest representable wavelength = 2∆x) (3.27)

with Nx,y being the number of cells along the (x, y) axis directions respectively. Table 3.2

summarizes the three different grid configurations used in our numerical experiments:

• 250× 250 resolution, L = 25 cm (for variance calculations)

• 60× 60 resolution, L = 25 cm (for spectral calculations)

• 60× 60 resolution, L = 250 cm (“giant brain” tests near CP opalescent point)

We choose L = 25 cm as a reasonable side length for the flattened cortical tissue of

an adult cortex, and L = 250 cm as a “giant” test case to allow exploration of the critical

point.

We find that setting qmin ' 0 makes little difference to the variance and spectral

calculations, except when closely approaching the critical point. However, to obtain a

good match between theory and simulation we needed to raise qmax (see Table 3.2). This

adjustment is probably partly compensating for spatial aliasing effects in which high

spatial frequency components q > qmax are reflected about the qmax Nyquist mirror to

appear as (spurious) q < qmax activity. This is consistent with our finding that the higher

resolution grid (250×250) requires a smaller relative adjustment than the lower resolution

(60× 60) grid.

The theoretical fluctuation variance of the excitatory firing rate is calculated by lin-

earising about the steady-state fixed point on the sigmoidal Ve → Qe curve (Fig. 3.4).

Table 3.2: The calculated and used values for qmin and qmax

Grid L ∆x Theory

qmin/2π qmax/2π
[cm] [cm] [cm−1] [cm−1]

250× 250 25 0.1 0.04 5
60× 60 25 0.417 0.04 1.2
60× 60 250 4.17 0.004 0.12
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time

x

y

Figure 3.13: Illustration of the grid used for numerical experiments. Simulations are run on
a 250× 250 square grid with spatial resolution ∆x = ∆y = 1 mm (length of the grid = 25 cm).
The variance is calculated across the grid for one time instance, then averaged across all 25,000
time-samples

This allows us to map voltage standard deviation σVe to firing rate standard deviation

σQe ,

σQe,theory =
dQe

dVe

∣∣∣∣
ss

σVe,theory (3.28)

and hence the variance mapping reads

σ2
Qe,theory =

(
dQe

dVe

∣∣∣∣
ss

)2

σ2
Ve,theory (3.29)

This expected to be valid provided that fluctuations remain small.

We test the theoretical predictions using numerical simulations of a 25- × 25-cm cortex

on a 250 × 250 grid, giving an areal resolution of 1 mm2 corresponding to the nominal

area of a cortical macrocolumn. The time-step is set at ∆t = 0.4 ms, generating 2500
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grid updates per second. We run the simulation for 20 s but only analyse the final 10 s of

Ve(x, y, t) and Qe(x, y, t) membrane voltage and firing rate data. We compute the spatial

variance at each time step, then average across all time samples. For the simulated

membrane voltage Ve, the fluctuation variance is given by,

σ2
Ve,sim =

1

N

N−1∑
i=0

var{Ve(x, y)}i (3.30)

and for firing rate Qe,

σ2
Qe,sim =

1

N

N−1∑
i=0

var{Qe(x, y)}i (3.31)

where index i denotes time t = i∆t, and N =25,000 is the number of grid-slice samples.

3.5 Variance analysis

3.5.1 Loss of consciousness (LOC)

For a closely-spaced range of λ values, we step the anaesthetic effect through the high-

firing upper branch of the ∆V rest
e = 1.5 mV trajectory (arrowed curve of Figure 3.14(a))

towards the LOC turning point, then jump (dashed vertical line) to follow the trajectory
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Figure 3.14: WMF fluctuation variance for passage through anaesthesia LOC. (a) Steady state
trajectories for five values of ∆V rest

e . Cortex approaches LOC along the ∆V rest
e = 1.5 mV top

branch (arrow), then makes a jump transition (dashed vertical) to the bottom branch. (b), (c)
Variance versus λ trends for fluctuations in firing rate (upper panel) and membrane voltage
(lower panel), comparing OU prediction (black) with numerical simulation (red)
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along the low-firing bottom branch. For each value of λ, we compute the OU predictions

for Ve and Qe fluctuation power (Eqs. (3.25), (3.29)), and compare with spatial variance

values measured directly from the 250 × 250 grid and averaged over 10 s (i.e., 25,000

temporal samples at each equilibrium point).

The spatial variance trends for noise-induced fluctuations are illustrated in Fig. 3.14(b)

and (c). We observe strong growth in fluctuation power in Qe and Ve for close approach

to the LOC transition point. The simulation measurements track the OU predictions very

well.

3.5.2 Recovery of consciousness (ROC)

Now the transition point is approached from right to left along the bottom branch by

decreasing the anaesthetic effect, λ. We note that the ROC bifurcation point occurs at

a lower anaesthetic concentration compared to LOC (this is anaesthetic hysteresis: the

patient awakens at a lower concentration than that required to put her to sleep). The

trajectory of steady states ROC (for ∆V rest
e = 1.5 mV) is shown in Figure 3.15(a) (black

arrowed curve). At ROC, the system jumps to the high-firing upper branch (dashed

vertical line).
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Figure 3.15: WMF fluctuation variance for passage through anaesthesia ROC. (a) Cortex
approaches ROC transition through the ∆V rest

e = 1.5 mV trajectory along the bottom-branch
(arrow), then jumps to the top branch (dashed line). (b), (c) Fluctuation variance of firing rate
(upper panel) and membrane voltage (lower panel), where OU predictions (black) and numerical
simulations (red) are compared
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Figure 3.16: WMF fluctuation variance along the trajectory through opalescent point CP.
(a) Equilibrium states vs anaesthetic inhibition for stepped values of ∆V rest

e . (b) Fluctuation
variance of excitatory firing rate, Qe. (c) Fluctuation variance of excitatory soma voltage, Ve

Panels (b) and (c) illustrate the variance trends for firing rate and membrane voltage

respectively. As was the case for LOC, we see pronounced increases in fluctuation power

as the saddle–node bifurcation point is closely approached. Simulations results follow

theoretical predictions quite well.

3.5.3 Critical fluctuations through the opalescent point (CP)

The ∆V rest
e = ∆V rest, CP

e trajectory through CP is highlighted in black in Fig. 3.16(a).

We increase λ in small steps, starting from the high-firing branch. Panels (b) and (c)

illustrate the variance trends for firing rate and membrane voltage respectively. We see

increases in fluctuation power on close approach to the critical point. Simulations results

follow the theoretical predictions well.

3.6 Scaling law divergence for WMF fluctuation
variance

In this section, we wish to establish the scaling laws governing the divergence of fluctuation

power near transition. For each of LOC, ROC, and CP, we compute theoretical and

numerical variances var{Qe}, and var{Ve} as a function of epsilon,

ε = |λ− λcrit|/λcrit (3.32)
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the normalised distance to the relevant turning point, and plot the results on logarith-

mic scales in Figures 3.17 and 3.18. The measured scaling-law exponents for theoretical

variance are listed in Table 3.3. All three transitions exhibit scale-free divergences with

variance ∼ 1/εα.

The exponents for LOC and ROC are closely similar for both membrane voltage Ve

and firing rate Qe fluctuations: α ' 0.0075. The rate of divergence near the CP opalescent

point αCP ' 0.02, about three times steeper than for LOC and ROC. We attribute this

to the fact that CP is a double-sided saddle-node bifurcation.

We plotted the variance trends for a wide range of ε values. If ε is set too low (< 10−9),

the theoretical variance calculations become saturated (not shown). This behaviour is

probably due to the limitations of double-precision calculations in Matlab.

We note that the WMF exponent values listed in Table 3.3 are much lower than

the well-established value of α = 0.5 for a type-I neuron that transits to spiking via a

saddle–node bifurcation [58, 87]. This difference arises because the WMF cortex has two

spatial dimensions to model a sheet of tissue, whereas the point neuron, by definition,

is zero-dimensional (i.e., occupies no space). The mean-field model integrates variance
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Figure 3.17: Log-log plot of variance of Qe and Ve as approaches to the transition point. Thick
lines and dots indicate theoretical and simulation results respectively. Panels (a) and (c) shows
the variance near to the LOC transition point, where power-law exponents are calculated from
theoretical predictions for each log-distribution as 0.0075± 0.0005, 0.0075± 0.0006 for σ2

Qe
and

σ2
Ve

respectively. Panels (b) and (d) illustrate the log-log plots of variance near ROC tipping
point and power-laws as 0.0075± 0.0004, 0.0056± 0.0006 for σ2

Qe
and σ2

Ve
respectively
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Figure 3.18: Log-log plot of variance of Qe and Ve as approaches to the critical point CP for
λ < λCP and λ > λCP. Calculated power-law exponents are mentioned in Table 3.3

contributions from all possible wave numbers, reducing the slope of the power-law. Note

that, only the q = 0 variance gives a slope of 0.5 for LOC and ROC (consistent with a

homogeneous cortex); for CP, we found a slope of α ' 2/3 (not shown).

Table 3.3: WMF scaling-law exponents α for OU predicted variance: var ∼ 1/εα

transition point λ < λcritic λ > λcritic

LOC α(σ2
Qe

) = 0.0075± 0.0004

α(σ2
Ve

) = 0.0075± 0.0004

ROC α(σ2
Qe

) = 0.0075± 0.0005

α(σ2
Ve

) = 0.0056± 0.0001

CP α(σ2
Qe

) = 0.020± 0.0007 α(σ2
Qe

) = 0.022± 0.0023

α(σ2
Ve

) = 0.029± 0.0012 α(σ2
Ve

) = 0.012± 0.0007

3.7 Fluctuation power spectra

3.7.1 Theoretical expression for power spectral density

The Ornstein-Uhlenbeck expression for the power spectrum matrix given in Eq. (2.19) is

now generalized to include wavenumber q dependence,

S(ω, q) =
1

2π
(A(q) + iω)−1D(A(q)T − iω)−1 (3.33)



70 Critical fluctuations in the Waikato mean-field cortical model

where A is the 8 × 8 drift matrix, and D is the sparse 8 × 8 noise intensity matrix (see

Eq. (3.18)).

The power spectrum for Ve fluctuations is provided by the S11 element of the spectrum

matrix.

SVe(ω, q) = S11 (3.34)

We apply the sigmoidal mapping of Eq. (3.9) to obtain the spectral density for firing

rate fluctuations,

SQe(ω, q) =

(
dQe

dVe

∣∣∣∣
ss

)2

S11(ω, q) (3.35)

then average across the full range of accessible wave numbers to compute the temporal

power spectrum,

SQe(ω) =
2

(q2
max − q2

min)

qmax∫
q=qmin

SQe(ω, q) q dq (3.36)

the wavenumber limits qmin, qmax are listed in Table 3.2.

For simulations, we calculate the temporal power spectral density for the time-series

generated by each grid cell, then average over the grid. Simulations are run in 60×60, 25-

cm length grid for 10 s (record for 20 s and extract the last 10 s) using Euler–Maruyama

integration with a time step of 0.4 ms.

3.7.2 Power spectrum analysis

Figures 3.19, 3.20 show the SQe(ω) power spectral density (PSD) as a function of wave

number q and frequency f = ω/2π for different λ values along the ∆V rest
e /mV = 2.5398 . . .

trajectory through the critical point. For λ values that are distant from λCP (e.g.,

Fig. 3.19(a–c) and Fig. 3.20(f)), we see fluctuation activity in the range ∼4–12 Hz across

a broad range of wavenumbers. This activity narrows dramatically as CP is approached

(Fig. 3.20(e) → (d)), focusing and strengthening at (q, f) = (0, 0). This particularly

evident in Fig. 3.21 with λ = 1.1032, very close to λCP (Eq. (3.15)), showing a spectral

peak that is ∼106 times larger than that for λ = 0.8 (Fig. 3.19(a)).
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Figure 3.19: Theoretical PSD of Qe firing rate fluctuations as a function of wave number q
and frequency f for different settings of anaesthetic effect along the CP trajectory (curve 2○ of
Fig. 3.16(a): ∆V rest

e /mV = 2.5398. . . ) (a) At λ = 0.8, there is a broad resonance around 12 Hz
at faster spatial frequencies that migrates and peaks at ∼6 Hz for smaller q-values. This trend
towards higher power at low wavenumber becomes more pronounced as λ increases to (b) 0.9,
and (c) 1.0. Note the change in vertical scale
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Figure 3.20: (Continuation of Fig. 3.19). The trend towards narrowing and strengthening
resonance at lower temporal and spatial frequencies is evident in (d) λ = 1.1, which is reasonably
close to the critical value (but compare with Fig. 3.21). (e, f) Points on the ∆V rest, CP

e trajectory
that are further from CP show a relaxing spectrum, with development of significant spectral
power in the ∼4–9 Hz range in (f)
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Figure 3.21: Theoretical PSD at λ = 1.1032 on the ∆V rest,CP
e trajectory, very close to the

critical point. Extremely high spectral power predicted at f ' 0 and q ' 0. Axes have been
zoomed to get a better view

To validate the theoretical PSD predictions, we elected to compute the wavenumber-

averaged SQe(ω) spectra of Eq. (3.36) since there can be plotted in 2D graphs. Simula-

tions are performed for each λ value and the PSD is calculated for each cell using the

spectrogram function in Matlab, then averaged across the grid (3600 cells for 60× 60

grid). The grid length is set at 25 cm. The qmin and qmax limits for the averaging over

wavenumber are as set out in Table 3.2.

Figure 3.22 illustrates the power spectrum for six distinct λ values in the vicinity of

the critical point. As expected, low-frequency spectral power surges strongly on approach

to the critical point. We see good agreement between simulation and theory when λ is

distant from λCP (panels (a), (b), (f)), but increasing mismatch on close approach (panel

(d)). This discrepancy is caused by the inability of an L = 25-cm cortex to sustain an

oscillation whose wavelength exceeds 25 cm, corresponding to a minimum wavenumber

qmin = 2π/L = 0.251 cm−1. Figures 3.20(e) (λ = 1.1) and 3.21 (λ = 1.1032) clearly predict

development of substantial spectral activity at q-values smaller than qmin. Because the

simulation uses periodic (toroidal) boundaries, these over-long waves will wrapped around

and interfere, resulting in distorted and inaccurate spectral estimates for grid simulations

very near CP.
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Figure 3.22: Wavenumber-averaged PSD for Qe fluctuation, comparing theory vs simulation
for 25 cm length 60 × 60 grid. Simulations run for 10 s using Euler–Maruyama integration
with ∆t = 0.4 ms. Theory and simulations are better aligned when away from the CP (at
λ = 0.8, λ = 0.9, λ = 1.5). Closer to the critical point, simulations deviate from theory

To check the validity of this statement we have run another set of simulations for

λ = 1.0, 1.1, 1.2 on a “giant cortex” of length L = 250 cm. This ten-fold increase in cortical

length results in a ten-fold decrease in minimum wavenumber: qmin → 0.0251 cm−1. As

shown in Fig. 3.23, spectral agreement between simulation and theory is much improved

for these near-CP numerical experiments.
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Figure 3.23: Wavenumber-averaged PSD theory vs “giant cortex” simulation for 250 cm length
60×60 grid. Simulations show much better agreement with theory when grid length is increased
by a factor of 10 (compare Fig. 3.22) for close approach to CP
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We can draw the following conclusions:

• close approach to the critical point leads to divergent growth of spectral power at

low spatial and temporal frequencies

• very close to the critical point, peak power occurs at q = 0, f ' 0, corresponding to

zero-frequency waves of infinite extent.

These results confirm that the Waikato mean-field model is showing signs of criticality:

increase of fluctuation power associated with critical slowing down on close approach to

the critical point.

3.8 Chapter summary

In this chapter we analysed anaesthetic induced phase-transitions in the Waikato mean-

field cortical model: loss of consciousness (LOC), recovery of consciousness (ROC), and

approach to critical point (CP). Linear stability analysis of WMF reveals that at all

three transition points, the real part and the imaginary parts of the dominant eigenvalue

becomes zero, signalling a saddle–node bifurcation.

Fluctuation spectra and variance were measured from grid simulations and compared

against Ornstein–Uhlenbeck theoretical predictions, and confirmed a consistent quanti-

tative behaviour: close approach to transition (LOC, ROC or CP) leads to divergent

growth in power at ever lower spatial and temporal frequencies. This “resonance at dc”

at the transition point is the basis of critical slowing down. The power divergences at

transition obey scaling laws of the form variance ∼ 1/εα with αLOC ' αROC ' 0.0075,

and αCP ' 0.02.





Chapter 4

Anaesthetic-induced changes of rat

local field potential recordings

The anaesthetic-induced phase transition using a mean-field neural model was analysed

and discussed in detail in the previous chapter. This chapter examines anaesthetic-induced

changes in electrocortical data in rats. For this investigation, I am using the local field

potential (LFP) data of anaesthetised rats, reported by Sleigh, Hudetz and colleagues1 in

2009 [82]. I will refer to this work as the Hudetz study.

Electroencephalogram (EEG) is a measure of electrical signals that represent electric

potentials detected on the surface of the scalp using noninvasive macroelectrodes. Elec-

trocorticogram (ECoG) is recorded from the subdural surface of the cortex using large

metal, glass, silicon electrodes. The ECoG signal measures the averaged electric voltage or

local field potential (LFP) of neuron populations that lie adjacent to the electrode. EEG

is also a population average signal, but it samples a larger neural area compared to LFP.

In addition, EEG detects signals that have been attenuated and filtered by propagating

through cerebrospinal fluid, skull and skin layers, so is a low-pass filtered brain signal.

ECoG eliminates this frequency loss by placing electrodes directly into the surface of the

cortex, thereby bypassing the filtering media [16,97]. Despite their differences, EEG and

LFP show similar behaviour in voltage fluctuations.

Anaesthetic drugs alter brain activity by reducing neural processing, interrupting in-

teractivity within and between neural populations. The transition from consciousness

to unconsciousness due to anaesthetic drugs can be visualised in EEG recordings as a

1Sleigh, J. W., Vizuete, J. A., Voss, L., Steyn-Ross, A., Steyn-Ross, M., Marcuccilli, C. J., & Hudetz,
A. G. (2009). The electrocortical effects of enflurane: experiment and theory. Anesthesia and analgesia,
109(4), 1253.
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Figure 4.1: Change of local field potential (LFPs) patterns from low to high enflurane con-
centration. (a) Low concentration enflurane (0.5 MAC) exhibits low-amplitude, high frequency
voltage fluctuations. (b) High concentration enflurane (2 MAC) shows PED pattern with periods
of suppression of activity. (Data supplied by J. Sleigh from Hudetz experiment [82])

change from low amplitude, high frequency to high amplitude, low-frequency electrical

fluctuations [82,97].

The Hudetz study induced enflurane anaesthesia in rats. Enflurane is a volatile

(breathable gas) general anaesthetic, which is not currently used in clinical practice due

to its pro-convulsant effects. Enflurane produces the same EEG patterns as most gen-

eral anaesthetic drugs: increasing amplitude and slowing of EEG as the concentration is

increased. At higher concentration, enflurane induces different patterns known as paroxys-

mal epileptiform discharges (PEDs). PEDs are high-amplitude abrupt waves, alternating

with periods of suppression (Figure 4.1). In the Hudetz paper, the main aim was to

compare PEDs generated by a theoretical model with real local field potential (LFP)

data.

The Hudetz experiment acquired multichannel LFP from rats at different enflurane

concentrations: 0.5, 1.0, 1.5, 2.0 and 2.5 MAC (minimum alveolar anaesthetic concen-

tration). This is a measure of anaesthetic potency, with a MAC of 1.0 representing the

median concentration required to prevent patient movement in response to a surgical
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Figure 4.2: Example of a microelectrode array [47]. This 10×10 array contains 100 electrodes.

stimulus in 50% of patients. Loss of consciousness typically occurs earlier at 0.3–0.5

MAC.

In this chapter I examine the Hudetz LFP data to investigate the changes that occur

with anaesthetic. Specifically, I will apply histogram analysis, temporal correlation, power

spectral and detrended fluctuation analysis (DFA). In the following chapter, I will present

investigations of the avalanche behaviour for the Hudetz LFP data.

4.1 Electrophysiological recording methods and
measurements

This section describes the methods used in the Hudetz study. The LFP electrophysi-

ological data for four rats under different concentrations of enflurane anaesthesia were

captured using a two-dimensional 8× 8 square array of electrodes (similar to that shown

in Figure 4.2) inserted into the visual cortex.

4.1.1 Experimental procedure

Preparing rats

Adult male Sprague-Dawley rats weighing 270–330g were used for the experiment. In-

spiratory and expiratory gas concentrations (oxygen, anaesthetic, and carbon dioxide)

were recorded using a clinical anaesthesia monitor. The head was secured in a stereotaxic

apparatus.
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Figure 4.3: Placement of electrode array of 64 electrodes inserted into the cortex, viewed from
the top. In the 8× 8 array spacing between electrodes was 400 µm.

Electrode placement

The electrodes were placed at the occipital cortex of the right hemisphere. A 4 × 4 mm

rectangular section of the skull bone was surgically removed in a craniotomy to uncover the

brain, but the dura, one of the membrane layers that protects the brain, was not removed.

An 8× 8 square electrode array (Cyberkinetics Inc) was inserted into the cortex through

the dura using a pneumatic device that inserted the electrode tips 0.3 mm deep into the

cortex. The cortex was then further pierced approximately 1 mm beneath the dura into

the layer V pyramidal cells using a fine micromanipulator. The reference electrode was a

platinum wire inserted into the scalp. The spacing between adjacent pairs of electrodes

is 400 µm and the height from electrode base to tip is 1.5 mm. Figure 4.3 shows the

placement of the electrode array on the cortex.

Change of enflurane concentrations

Electrical signals were recorded while increasing the enflurane concentration from 0.5

MAC to 2.5 MAC in 5 steps. Data were saved for 60 s following a 15-min settling time

after each increase in concentration level.
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Figure 4.4: Location of active electrodes for each day are shown with white background
(inactive electrodes have grey shading). A different rat was used on each day.

Measurements

Electrical signals acquired by the electrodes were recorded using a Cerebus data acqui-

sition system, amplified, and filtered. LFP data were sampled at 500 Hz and bandpass

filtered between 1 Hz to 250 Hz.
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4.1.2 Data availability

Data were recorded on four days for four different rats. For each array, it was found that

only a fraction of the 64 electrode sites were actually active, varying from 13/64 (20%) to

37/64 (58%). Table 4.1 shows the available data for each day.

Table 4.1: Data availability for LFP measurements

Day Recording date Concentrations # active electrodes
(dd.mm.yyyy) (MAC) (of 64)

rat 1 10.01.2006 0.5, 1.0, 1.5, 2.5 37 (58%)
rat 2 17.01.2006 0.5, 1.0, 1.5 19 (30%)
rat 3 23.01.2006 0.5, 1.0, 1.5, 2.0 13 (20%)
rat 4 01.02.2006 0.5, 1.0, 1.5, 2.0 22 (34%)

4.2 Statistical analyses of the anaesthetic-induced
transition

This section presents the analysis of LFP at distinct concentrations to quantify the voltage

fluctuations that occur in the cortex with increase of anaesthetic. Investigations are ac-

companied by statistical analyses: histograms of amplitude distribution, time-correlation

analysis (auto-correlation) and variance analysis.

4.2.1 Amplitude distribution

We examine the change of probability distribution (PDF) of LFP amplitude with anaes-

thetic concentration. We quantify the variation of PDF by computing skewness and

kurtosis statistics.

The LFP patterns reflects the change of behaviour of the cortex with anaesthetic

concentration by gradual increase of the LFP amplitude and decrease of frequency. At

higher anaesthetic concentrations, LFP exhibit high-amplitude burst patterns, with long

suppression periods. Figure 4.5 exhibits these differences of voltage patterns for different

anaesthetic concentration. These changes are clearly visualised in the histograms of LFP

amplitudes.
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Figure 4.5: Change of voltage patterns with increase of anaesthetic concentration. LFP data
are from electrode number 61 of rat 4. Burst-suppression patterns are clearly seen at deeper
levels of anaesthesia (> 1 MAC)
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Figure 4.6: Probability density of the local field potential at different anaesthetic concentra-
tions for rat 4. Panels (a) - (d) show narrowing PDF patterns and increasingly negative skewness
as anaesthetic concentration increases. (e) PDFs are normalised in height and compared with
normal distribution (µ = 0, σ = 136). These patterns deviate from normal distribution with
higher anaesthetic

Figure 4.6 illustrates the change of probability distribution for LFP voltage fluctu-

ations with anaesthetic concentration. Here I used the data of rat 4, aggregating the

LFP signals from all 22 active channels. The probability density functions (PDF) were

calculated for mean-subtracted LFP time-series to eliminate any residual DC offset. At

the lower anaesthetic concentrations 0.5 and 1 MAC, the LFP fluctuations are symmet-

ric about zero. Higher anaesthetic concentrations lead to more narrowed and asymmetric

distributions with a higher peak as a result of the emergence of burst-suppression patterns

seen in Figure 4.5(d). Distributions are skewed negatively because of the negative high

amplitude burst transients. These PDF patterns are compared in Figure 4.6(e) with a

unit-height normal distribution that approximately matches that of 0.5 MAC distribution

(µ = 0, σ = 136). Deeper anaesthetic increases the deviation, with higher concentrations

becoming increasingly narrower and more skewed.
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Figure 4.7: Skewness and kurtosis for LFP patterns for different anaesthetic concentration
on rat 4. (a) LFP distributions become increasingly negatively skewed at higher anaesthetic
concentrations. (b) The increase of the kurtosis parameter indicates the development of a heavy
tail in the PDF at high anaesthesia

Skewness and kurtosis for this data set are illustrated in Figure 4.7. Skewness quan-

tifies the degree of asymmetry in the distribution [23, 31]. For this data set, skewness

increases negatively to −9 at 2 MAC, while being close to zero at lower concentrations

(0.5, 1 MAC).

Kurtosis quantifies the shape and tailedness of the distribution [59, 100]. A normal

distribution has kurtosis value of 3. Lower anaesthetic concentrations produce fewer

non-normal outliers, so has a kurtosis of around 3. Kurtosis increases with anaesthetic,

exhibiting a high value around 130 as a result of infrequent high amplitude burst events.

Figure 4.8 summarises the skewness and kurtosis using the rat data across all four

rats. Skewness and kurtosis have been calculated for each electrode separately (black

dots); red circles mark the mean value for each concentration.

In general, at low anaesthetic concentrations, the LFP fluctuations are symmetric and

approximately normally distributed, while at high concentrations fluctuations become

increasingly heavy-tailed and negatively skewed.

4.2.2 Variance analysis

The variance of the rat data was calculated to track the changes of fluctuation amplitude

of LFP with anaesthetic concentration. The variance is a measure of LFP fluctuation
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Figure 4.8: Summarised (a) skewness and (b) kurtosis for the rat data aggregated across all
four rats. Circles show the mean values. Red dashed lines indicate skewness and kurtosis values
for normal distribution (0 and 3 respectively)

energy. Figure 4.9 illustrates the deviation of variance with anaesthetic concentration for

rats 1 to 4. We calculated the variance for each electrode separately (black dots) and

computed the electrode-averaged variance for each concentration. The average variance

peaks at 1 MAC, then drops at 1.5 MAC, before rising strongly at 2 MAC due to emergence

of burst-suppression patterns. Similar anaesthetic-vs-concentration trends are evident for

the data for rats 1, 2 and 3. The phase transition is expected to happen around 1 MAC,

and this is consistent with the observe variance increases for three of the four rats.

However for the rat-1, the variance exhibits a quite dissimilar trend (Fig. 4.9(b)),

showing a gradual decrease in fluctuation intensity towards 1.5 MAC. This rat performs

differently, and it may have a different transition point which occurs before 0.5 MAC or

at 2 MAC where data are unavailable.

In conclusion, for three of the four rats, fluctuation variance tends to increase on

approach to the nominal 1.0 MAC phase transition point, but this pattern was not evident

for the fourth rat. As with humans, rats have differing sensitivities to anaesthetic, thus

different rats have distinct brain responses. Therefore, the transition point can vary from

rat to rat.



4.2 Statistical analyses of the anaesthetic-induced transition 87

0 0.5 1 1.5 2 2.5

Concentration [MAC]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
10

5 (a) Variance: rat 4

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

6
V

a
ri
a

n
c
e

 [
m

V
2
]

10
4 (b) Variance: rat 1

0 0.5 1 1.5 2 2.5

Concentration [MAC]

0

2

4

6

8

10

12

14

16

18

V
a

ri
a

n
c
e

 [
m

V
2
]

10
4 (a) Variance: rat 3

0 0.5 1 1.5 2 2.5

0

1

2

3

4

5

6

7
10

4 (a) Variance: rat 2

Figure 4.9: LFP variance as a function of anaesthetic concentration. Variance calculated for
each electrode separately (black dots) and median across all electrodes in each concentration
(blue circles). For rats 3 to 4, median LFP variance peaks strongly at 2.0 MAC because of
bursting events; a smaller peak is evident at 1.0 MAC for rats 2, 3 and 4. In contrast, rat-1
median activity decreases with anaesthetic depth, unlike data of rats 2, 3, 4

4.2.3 Temporal correlation analysis

This section investigates the change of temporal correlation of rat LFP with depth of

anaesthetic agent, and applies autocorrelation and spectral analysis of LFP to identify

LFP oscillation patterns.

First, the correlation coefficient (auto-correlation) is computed for different time-lags

for each electrode separately. Then to understand the overall behaviour of the temporal

correlation, I averaged the coefficient across all electrodes for each concentration; see
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Figure 4.10: Averaged correlation coefficient (auto-correlation) across all data sets for different
anaesthetic concentrations and different lags. Correlation decreases with lag. At lowest time-lag
of 2 ms correlation coefficient ∼1 indicating high correlation; there is a near zero correlation at
the highest time-lag of 1 s

Figure 4.10. The smallest time-lag of 2 ms gives a coefficient close to unity independent of

enflurane concentration. However, for the highest time-lag of 1 s, the correlation coefficient

is around zero. At 100 ms, higher concentrations show higher correlations (∼0.5) than

seen at lower concentrations, indicating slower, more prolonged LFP fluctuations.

This change of correlation is evident in the time-lagged phase plots of LFP (Fig.

4.11). Here I used an LFP data set of one channel for rat-4 data. The phase-plots tend

to align with the unity-slope line at smaller time-lags. As time-lag increases, phase-plot

points become scattered and do not fit the line. At higher time-lags, these broaden into

a roughly circular cloud indicating absence of any correlation. At the highest anaesthetic

concentrations, points are scattered into bands because of the transient high-amplitude

burst events.

These averaged correlations give a basic idea about how LFP autocorrelations change

with lag and concentration. Now we investigate the correlation for different dates indi-

vidually; we find that the rat data for different dates contain distinct frequency patterns.

The rat LFP autocorrelation patterns for two selected dates (rats 4 and 1) are shown in

Figures 4.12 and 4.13 respectively.



4.2 Statistical analyses of the anaesthetic-induced transition 89

Figure 4.11: Phase plots for different time-lag and different anaesthetic concentrations (elec-
trode 2 in rat 4). Each row corresponds to the distinct time-lags (2 ms, 10 ms, 100 ms, 1 s).
Black dashed line shows the line with slope of 1

Red curves in rat 4 (Figure 4.12) illustrate an exponential fit to each autocorrela-

tion. The 1/e correlation times were calculated for each exponential decay (red dashed

line). Increases of anaesthetic concentration lead to increases of correlation time of LFP

fluctuations.

The time-domain autocorrelation was computed for each electrode at each concentra-

tion and then averaged across all active electrodes. These patterns unveiled oscillations

that are unique to each rat. The rat recorded on rat 4 (Fig. 4.12) shows a frequency
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Figure 4.12: The autocorrelation of LFP data for rat-4 data (left-hand side panels) and
corresponding power spectra (right-hand side panels). The ∼5 Hz resonance evident at low
anaesthetic concentration moves to lower frequencies, then disappears at greater anaesthetic
depth. Red curves shows the exponential fit and dashed line indicates the 1/e correlation time
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Figure 4.13: Autocorrelation and spectra for rat-1 data. Oscillations at ∼11 Hz emerge at
1 MAC, slow to ∼10 Hz at 1.5 MAC, and disappear completely at 2.5 MAC
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Figure 4.14: (a) Correlation coefficient and power spectrum for electrode 52 at 1 MAC (rat
1). The grid in the right-side panel shows the electrode map. Electrodes marked in blue reveal
the same frequency patterns as selected electrode 52 (red dashed lines)

around 5 Hz at 0.5 MAC concentration, and this frequency decreases with concentra-

tion (∼3 Hz at 1 MAC), then disappears at higher concentrations with only very slow

oscillations remaining. (All active electrodes show the same frequency patterns.)

In contrast the rat recorded on rat 1 shows a resonance near 11 Hz at 1 MAC which

slows to ∼10 Hz at 1.5 MAC, then vanishes at 2.5 MAC. For these rat-1 data these

frequency patterns only appeared on a subset of electrodes (marked in blue on the right-

side panel in Figure 4.14).

The time-series and spectrogram of the LFP for electrode 52 are illustrated in Figures

4.15 and 4.16 respectively. It is hard to identify oscillations in the time-series, but these

are clearly evident in the power spectra. The ∼11 Hz resonance at 1 MAC lowers to 10 Hz

(plus harmonics) at 1.5 MAC. At the highest anaesthetic concentration of 2.5 MAC, these

resonances disappear, and burst-suppression patterns override the spectrum.

The question arises: Are these frequency patterns of real biological origin, or are they

an artefact due to external noise interference? The fact that the frequency diminishes,

then disappears at higher concentrations, strongly suggests that these signals originate in

the rat brain.

From the results of correlation and spectral analysis, we come to the following conclu-

sions:

• Temporal auto-correlation decreases at increasing lag times

• At higher concentrations these correlations become more prolonged
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• Oscillations that appear at lower concentrations become suppressed at higher con-

centrations.
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Figure 4.15: Time series for selected electrode 52 in Fig. 4.14 for rat-1 data. Corresponding
spectrograms are illustrated in Fig. 4.16
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Figure 4.16: Spectrograms for electrode 52 for different anaesthetic concentrations. (a) Con-
centration = 0.5 MAC: no dominant frequency, most spectral power at low frequency. (b)
1 MAC: spectral peaks at ∼11 Hz and its harmonics. (c) 1.5 MAC: harmonics at 10, 20, 30 and
40 Hz. (d) 2.5 MAC: bursting patterns dominate the spectrum
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4.3 Detrended Fluctuation Analysis

Detrended fluctuation analysis (DFA) is a method to quantify the self-correlation or long-

range dependence in a time-series. DFA was introduced by Peng et al. in 1994 to identify

the long-range mosaic correlations of DNA sequences [65]. DFA has been used for wide

range of applications such as heartbeat dynamics [66,67,106], neuron spiking [3,9], studies

on weather [40, 60], economic time-series [53, 75]. DFA is also been applied to EEG and

LFP signals to detect self-similarity in the time-series [11,57,76].

DFA is a form of root mean square analysis. Advantages of this analysis over other

methods include the fact that it can be applied to non-stationary time-series and also it

avoids false detection of long-range correlations caused by transient artefacts.

Here we use DFA to quantify the long-range correlation in LFP data of anaesthetised

rats. Our main focus is to determine the change of long-range correlation with anaesthetic

concentration. The LFP data sampled at the rate of 500 Hz and recorded for 60 s, so

each recording contains 30000 samples.

4.3.1 The DFA Algorithm

A continuous time-series x(t) is sampled and reduced to a discrete-time signal x(k), where

t = k∆t. First we ensure x(k) has zero mean by subtracting its mean,

u(k) = x(k)− x̄ (4.1)

where u(k) is the resulting zero-mean time-series. Then compute y(k), the cumulative

sum by summing u(k),

y(k) =
k∑
i=1

u(i) (4.2)

The cumulated signal y(k) is broken into m non-overlapping blocks, each of length

n, then the linear-fit trend for each block is computed before combining all trends into a

single time-series, ytrend(k). Figure 4.17(b) illustrates y(k) with its trend (red lines) for

m = 30 blocks each containing n = 2500 samples. The root-mean-square fluctuation of
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Figure 4.17: Illustration of DFA algorithm. (a) Raw signal, x(t). (b) Cumulated zero-mean
signal, y(k), illustrated in blue. Here the signal has been broken into m = 30 non-overlapping
blocks of length n = 2500, then the trend is calculated for each block (red line segments)

this summed and detrended time series is calculated by subtracting the local trend of each

box from y(k),

F (n) =

√√√√ 1

N

N∑
k=1

[y(k)− ytrend(k)]2 (4.3)

where N is the length of x(t). Typically the detrended fluctuation function, F (n) increases

with box size n. If a plot of logF (n) vs log n displays a linear relationship, then we deduce

the existence of a power-law connection between F (n) and n of the form,

F (n) = nα (4.4)

where α is the DFA exponent.

The correlation of the fluctuations can be categorized by the value of the exponent

α [66]:

• α < 0.5: anti-correlated signal
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Figure 4.18: Detrended fluctuation analysis (averaged over all the active electrodes) for 2 MAC
on rat 4 (date: 01.02.2006). The plot of log f(n) vs log n aligns with a linear-fit of slope α = 1.11

• α ≈ 0.5: fluctuations are completely uncorrelated (e.g., white-noise)

• 0.5 < α . 1: time-series is correlated

• α ≈ 1: 1/f (“pink”) noise, with power spectral density inversely proportional to

frequency, f

• α > 1: fluctuations are unbounded and nonstationary

• α = 1.5: Brownian noise.

We analysed the DFA signatures of the local field potential data of anaesthetised rats

to clarify the nature of the underlying correlations. Figure 4.18 shows the calculated DFA

at concentration of 2 MAC on rat 4. A plot of log f(n) vs log n (n changing from 12 to

800) aligns to a linear-fit of slope 1.11 so we deduce a DFA exponent α = 1.11 indicating

that the signal is correlated and nonstationary.

4.3.2 Change of DFA for different anaesthetic concentrations

Our motivation for using DFA is to identify how long-range LFP temporal correlations

vary with anaesthetic concentration. Here I compute DFA for each concentration; the

results are illustrated in Figure 4.19 for rat-4 data. Calculated DFA exponent values

increase slightly with concentration, but all lie within α = 1.05± 0.1, indicating temporal

correlation.
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Figure 4.19: Logarithmic plot DFA vs block size n for different concentrations on rat 4. Cut-off
points are marked by the dashed lines. The value of α is calculated for the range bounded by
the cut-off points n1 and n2. This range expands for higher concentrations. The DFA exponent
is approximately unity at all four concentrations, increasing slightly at higher concentrations.
For smaller and larger n the DFA trends deviate to steeper and shallower slopes respectively
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The DFA exponent was calculated for the mid-range linear-fit with 16 . n . 1000

corresponding to block durations 0.03 s . n∆t . 2 s . We see deviations away from

the mid-range trend for smaller and larger n. These lower and upper break-points relate

naturally to the spectral characteristics of the LFP signal; this is discussed further in

Section 4.3.3.

We draw the following conclusions from the rat DFA trends:

• Increase of anaesthetic depth leads to a slight increase in the value of α, suggesting

an increased degree of nonstationarity. This is consistent with the emergence of

bursting patterns for deeper anaesthesia

• For block durations 0.06 s . n∆t . 1 s, detrended fluctuations for 0.5 and 1.0 MAC

are well fitted with a DFA exponent that is close to unity, suggesting a 1/f spectrum.

4.3.3 Power spectral density analysis

Power spectral density (PSD) is a measure of the distribution of signal power as a function

of frequency and is one of the oldest signal processing methods. Although PSD was not

designed to measure long-range correlation, here we focus on its relation to the more

modern method of detrended fluctuation analysis.

We assume that there exists a simple power-law relationship between spectral density,

S(f), and frequency of the form [35],

S(f) ∝ f−β (4.5)

where β is the PSD power-law exponent.

Figure 4.20 illustrates the log-log plot of PSD vs frequency. We note the presence of

three spectral regions, and three distinct slopes. We calculate the power-law exponent β

from the mid-frequency range (0.5 Hz to 40 Hz), as this range is minimally affected by

the various filtering processes.

The low-frequency breakpoint at 0.5 Hz results from the 1 Hz highpass component

of the 1 – 250 Hz bandpass filter that was applied during data acquisition. The 40 Hz

upper breakpoint may be biological in origin, but could also be due to a spatial smoothing

(lowpass filtering effect) by the electrode elements. Each element of the multi-electrode

array has a finite area so detects a spatially-averaged signal.
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Figure 4.20: Log-log plot power spectral density (PSD) vs frequency (f) for concentration of
2 MAC on rat 4. A straight line is aligned to PSD in mid-frequency range, where slope is the
power-law exponent, β = 1.27± 0.13

We now compute the power-law exponent of PSD β for each concentration of each

rat, then compare against an established analytical relationship between PSD and DFA

exponents.

4.3.4 Comparison between DFA and PSD for rat LFP data

The analytic relationship between DFA and spectral analysis was introduced by Buldyrev

et al. in 1995 [15], and later proved by Heneghan and McDarby in 2000 [34]. The link

between DFA power-law exponent α and PSD power-law exponent β is given by,

2α = β + 1. (4.6)

(See Appendix C for an outline of the proof.)

Figures 4.19 and 4.21 illustrate the DFA and PSD for trends different anaesthetic

concentrations for rat 4 respectively. Dashed lines represent the limits of block size n and

frequency f within which DFA exponent α and PSD exponent β were calculated. The

frequency limits found in the PSD, due to lowpass and highpass filters, is related to the

cut-off points in the DFA distribution. We compute the characteristic period for
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Figure 4.21: Power spectral density vs frequency for different concentrations on rat 4. Left
panels illustrate the log-log plot of PSD vs f , right panels show linear plots. The power-law
exponent β was calculated for the mid-frequency range bounded by the upper and the lower
frequency limits f1 to f2 (shown by the dashed lines)



102 Anaesthetic-induced changes of rat local field potential recordings

Table 4.2: Comparison between α1 = 1
2(β + 1) computed from PSD exponent β and DFA α.

Error bounds are calculated using the polyfit Matlab function

MAC rat 1 rat 2 rat 3 rat 4

0.5
α 0.87± 0.01 0.95± 0.02 1.18± 0.02 0.98± 0.03
α1 0.91± 0.11 1.04± 0.12 1.25 ±1.12 0.98 ±0.16

1.0
α 0.95± 0.03 0.98± 0.02 1.23± 0.05 1.05± 0.02
α1 1.00 ± 0.11 1.02± 0.08 1.35 ±0.07 1.05 ±0.13

1.5
α 1.02± 0.03 1.01± 0.02 1.15± 0.04 1.14± 0.04
α1 1.05 ± 0.15 1.08± 0.11 1.27 ±1.14 1.16 ±0.07

2.0
α 1.09± 0.03 1.11± 0.06
α1 1.13 ±0.09 1.13 ±0.11

2.5
α 1.18± 0.03
α1 1.25± 0.06

each cut-off n (tcut-off = n∆t, dt is the sampling time), and calculate the corresponding

frequency (fcut-off = 1/tcut-off). We find that the frequency limits in PSD and fcut-off values

are similar.

In the previous analysis we found that, at higher concentrations, the rat brain generates

burst suppression patterns. However, DFA analysis shows linear behaviour and is not

noticeably affected by the burst-suppression events. The reason for this behaviour is that

DFA systematically removes trends in order to distinguish long-range fluctuations.

We computed the DFA exponent and PSD exponent for rat LFP data sets (averaged

across all electrodes) as summarised in Table 4.2. Exponent α1 was calculated from the

PSD exponent β using α1 = 1
2
(β + 1), then compared with the DFA-derived value of α.

Days 1, 2 and 4 provide consistent results as the α1 and α values are closely similar.

Moreover, DFA performs in the same manner as α shows lower values at lower concen-

trations and slightly higher values at higher concentrations. However, the data for rat 3

is less consistent.

These results give good support to the analytical relationship between DFA and PSD

exponents. Our DFA and PSD study leads to the following conclusions:

• DFA exponent is close to unity for anaesthetised rat LFP data, which indicates the

existence of long-range temporal correlations

• Slight increase of α at higher concentrations

• Experimental results validate the analytical relationship between DFA and PSD.
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In Section 4.2.3 we computed the 1/e correlation times for autocorrelation exponential

decay to give the short-range correlation R(lag) ∼ exp(−lag/τ). If there are long-range

correlations present, these should be maps to a power-law decay R(lag) ∼ lag−γ [44].

However, it is not possible to calculate power-law decay γ directly from a log-log plot

of the autocorrelation function because of the noisy oscillations about zero at larger lag

times.

4.4 Chapter Summary

This chapter investigated anaesthetic induced changes in electrophysiological data in rats.

Examination of the LFP amplitude histograms showed that:

• At lower concentrations, LFP fluctuations are symmetric and approximately nor-

mally distributed

• At higher concentrations, the distributions become increasingly negatively skewed

and heavy-tailed due to emergence of high-amplitude burst-suppression patterns.

• Fluctuation variance tends to peak at the nominal phase-transition point of 1.0 MAC.

However, the rat of day-1 shows a different pattern, possibly due to a difference in

anaesthetic sensitivity.

The autocorrelation investigations showed that correlation time increases with anaes-

thetic concentration. Interesting resonance patterns in LFP at lower anaesthetic concen-

trations become suppressed at higher concentrations.

Detrended fluctuation analysis (DFA) of the LFP fluctuations revealed:

• A mid-range DFA exponent value near 1 for the time range 0.03 s to 2 s, indicating

long-range temporal correlations in the anaesthetised LFP data

• Slight increase in the DFA exponent with anaesthetic concentration, suggesting

onset of unbounded non-stationary fluctuations.

Finally, we showed that the DFA and power spectral density power-law exponents

(α and β respectively) were in reasonable agreement with theoretical relationship α =

(β + 1)/2. Three out of four rats validate the relationship, while the fourth rat shows

poorer agreement.





Chapter 5

Neuronal avalanches and scaling

behaviour

5.1 Introduction

Avalanches are cascades of events that propagate spatially and temporally through an as-

sembly of connected “units”. One unit reaches threshold for change of state, and commu-

nicates this information to other units which may also change state, resulting in outward

propagation to larger areas. Avalanche behaviour can be seen in many dynamical com-

plex systems, such as forest fires, earthquakes, magnets and nuclear reactions [7, 27, 55].

Avalanches can also propagate through an assembly of neurons: an individual neuron in-

tegrates inputs from thousands of neurons; when the summed input exceeds threshold, the

neuron generates an action potential that is distributed back to the network to influence

firing of other neurons. This integration and redistribution allows neuronal activity to

propagate through the cortex to create spreading cascades of neuronal activations [7,27].

Neuronal avalanches are spontaneous events that propagate along the superficial layers

of the cortex. These random events are correlated in space and time [81] but do not take

the form of waves or oscillations [7, 96]. Avalanches manifest as irregular and isolated

population bursts occurring across a wide range of spatial and time scales. The variations

in length and durations have characteristic statistical properties, chief among these being

so-called “power-law behaviour” [7, 69, 73,96].

Power-law distribution in avalanches is a characteristic behaviour of self-organised

critical (SOC) systems. If a system can approach a critical state without any external

perturbation or tuning of a control parameter, it is called as a self-organised critical

system. The concept of self-organised criticality was first introduced in the sandpile model
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by Bak, Tang, and Wiesenfeld in 1987 [4]. This model displayed spatial and temporal

power-law and scale-invariant properties [4, 71].

Although the term “avalanche”is applied to both SOC systems and neural networks,

it actually refers to different classifications of activity. In SOC systems, an avalanche is

a cascade of activities that initiate from a single point and that is separated from other

avalanches by a distinct pause in activity. In contrast, neuronal avalanches typically

overlap, with no clear pauses between them, so it can be challenging to identify the end of

one avalanche event and the start of another. Therefore, it is standard practice in neuronal

avalanche analysis to segment the data into “bins”, investigating how the distribution of

avalanche events varies with epoch length and spatial extent. For this reason, neuronal

avalanche statistics are described as being bin dependent [71].

Neuronal avalanche analysis has been applied to both in vitro and in vivo models.

Initial work focused on cell cultures and slices [6, 7, 69, 81]. Later studies progressed to

anaesthetised and freely behaving rats [48,73], awake monkeys [68], cats [96] and human

brain [2, 64].

In this chapter we will be applying avalanche analysis to two distinct types of data:

electrophysiological recordings from anaesthetised rats, and simulation results from the

Waikato mean-field cortical model placed close to its critical point.

5.2 Properties of avalanches and their statistics

5.2.1 Power-law distribution

The term “power-law” is a statistical relationship between two variables in which a rel-

ative change in one variable results in a proportional change in the other. A random

variable x is said to follow a power-law distribution when its probability distribution,

p(x), obeys the following equation [19,63,96],

p(x) = C
1

xα

where α is a constant exponent known as the scaling parameter of the power-law. C is a

normalisation constant that ensures p(x) has unit area,
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∫
p(x) dx = 1

Taking the logarithm of the power-law distribution,

log p(x) = −α log x+ logC

showing that a plot of log p(x) vs log x gives a straight line of slope α.

Because of the anticipated scatter in the log p(x) vs x distribution, there will be

uncertainty in the “best” value of the power-law slope. We choose to use the maximum

likelihood method [19, 63], then evaluate goodness-of-fit between the data and evaluated

power-law using the Kolmogorov–Smirnov (KS) test [19].

Before applying power-law analysis to avalanche size distributions, first we will inves-

tigate power-law behaviour using an idealised data set: random real numbers generated

using a power-law probability distribution for a specific value of α. The following calibra-

tion experiment is drawn from the review article by Newman (2005) [63].

Calibration experiment using artificial data

Following Newman [63], we generate random numbers r uniformly distributed in the

range 0 ≤ r < 1, then produce power-law-distributed random numbers in the range

xmin ≤ x <∞ with exponent α using,

x = xmin(1− r)
−1

(α−1) (5.1)

Here we set α = 2.5 and xmin = 1. The histogram for uniformly distributed r and the

probability density for power-law distributed x are shown in figure 5.1. Sample Matlab

code is shown below.

alpha = 2.5; % define power-law exponent
x_min = 1; % minimum of x
n = 1000000; % 1 milion samples
% generate uniformly distributed random numbers
r = rand(n,1);

% generate power-law distributed random numbers
x = x_min*(1-r).ˆ(-1/(alpha-1));

figure(1)
% first subplot: histogram for r
subaxis(1,3,1);
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h = histogram(r, [0:0.02:1]); % compute and plot histogram for r
title(’(a) Histogram for r’)

% Calculate histogram for x with 50000 number of bins
bins = linspace(1,max(x),50000);
[freq,edges] = histcounts(x,bins); % generate histogram

Prob = freq/sum(freq); % Calculate probability distribution

% second subplot: PDF for x
subaxis(1,3,2);
plot(edges(2:end), Prob, ’ok’)
title(’(b) PDF for x’)

% third subplot: log-log PDF for x
subaxis(1,3,3);
loglog(edges(2:end), Prob, ’ok’)
title(’(c) log-log PDF for x’)

% calculate cumulative probability
cumProb = cumsum(prob,’reverse’);

figure(2)
loglog(edges(2:end), Prob, ’ok’)
loglog(edges(2:end), cumProb, ’*b’)

To illustrate the power-law nature of the probability density of x, we plot the prob-

ability density function (PDF), p(x) on logarithmic scales. Figure 5.1(c) shows that the

log-log plot p(x) is aligned with a straight-line of slope −2.5. However, the results get

noisy in the right-hand tail for x & 100. This is because for larger values of x, the number

of samples in the bins becomes small or even zero. This fluctuating bin count results

in an increasingly noisy distribution for large x. To alleviate this problem, we construct

the cumulative distribution (CDF), P (x) denoting the probability of encountering a value

larger than x,

P (x) =

∫ ∞
x

p(λ) dλ

=

∫ ∞
x

Cλ−α dλ

=
C

α− 1
x−(α−1) (5.2)

We note that the cumulative distribution, P (x) also follows a power-law, but with an

exponent (α−1) which is 1 less than that for p(x). Figure 5.2 shows that for α = −2.5, the

cumulative distribution has a slope −1.5. We observe that the cumulative distribution has
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Figure 5.1: Histograms and distribution for calibration data. (a) Random numbers r, are
uniformly distributed in the range 0 ≤ r < 1. (b) Probability density for power-law distributed
numbers with α = 2.5. Smaller numbers are common and larger numbers are rare. (c) Log-log
plot of the probability distribution of x. Straight line has a slope of −2.5

a smoother shape because of the integration. This reduces the noise in the tail, thereby

extending the range of analysis by ∼2 orders of magnitude.

Calculating the exponent of the power-law

The artificial data were generated using a predetermined α value. In practical situations

the exponent is unknown so we need to estimate α from the data. The standard method

is to fit a straight line to the log-log plots and determine the slope of that line. However

this method is not reliable and can be biased because of the uneven variations in the tail.

Instead, Newman [63] provides a simple and reliable numerical method to estimate α:

α = 1 + n

[ n∑
i=1

ln
xi
xmin

]−1

(5.3)

where n is the number of data points and xmin is the minimum of x. The statistical error

in the exponent σ is given by,

σ =
√
n

[ n∑
i=1

ln
xi
xmin

]−1

=
α− 1√

n
. (5.4)

These equations are derived by using maximum likelihood estimation of power-law

distribution [63]. For our artificial data set of one million random numbers Eqs (5.3) and
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Figure 5.2: Comparison between probability distribution p(x) (black circles) and cumulative
distribution P (x) (blue asterisks). Data are well fitted by straight lines of slopes −2.5 and −1.5
respectively

(5.4) estimate the exponent to be α = 2.499± 0.001.

We use Eqs (5.3) and (5.4) to estimate the power-law exponent of the avalanches with

xmin being chosen to give a best power-law fit for the distribution.

5.2.2 Detection of an avalanche

In this chapter we analyse local field potential (LFP) data from rat electrophysiological

recordings and from numerical simulations of the Waikato mean-field model. Here we

discuss the signal processing methods required to detect peaks and avalanche events in

the respective time-series.

Signal processing

The first step in processing the sampled LFP signals is to ensure that each recording has

zero mean. This is done by subtracting the whole-of-recording mean from each sample

value x,
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Figure 5.3: LFP time-series for four selected electrodes for 1 MAC on day 4 (01.02.2006). Left
scale shows raw LFP voltage in µV, right scale applies a z -score normalisation to compensate for
differing electrode sensitivities: z = (x− x̄)/s with mean x̄ and standard deviation s calculated
for each channel
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x′i = xi − x̄ with x̄ =
1

N

N∑
i=1

xi

where N is the number of samples per LFP recording. For sample rate of 500 s-1 and

duration of 60 s, N = 30000.

We then map to a z-score by dividing by the standard deviation,

zi =
x′i
s

=
xi − x̄
s

with s =

√∑N
i=1(xi − x̄)2

N − 1

The LFP data are collected from different electrodes which evidently have different

sensitivities. Converting to z -scores is an attempt to compensate for these variations in

effective channel gains.

Figure 5.3 shows a comparison between raw signal (in µV – see left-hand scale) and

z -normalized signal (right-hand scale) for four representative LFP channels.

Peak detection

Peaks are defined as the extremes of the time-series which cross a specified positive or

negative amplitude threshold. We record the amplitude and time of occurrence of each

peak.

The selection of an appropriate threshold requires some care: if the value is set too

low then the algorithm will be triggered by peaks of noise content, but if the threshold is

too high, we may lose important events. The influence of threshold selection in avalanche

analysis is further explained in Section 5.2.5.

Definition of an avalanche

In our standard LFP avalanche analysis we consider all active electrodes for a given rat

on a given day (the number of active electrodes varied from 13 to 37). But to clarify the

methods used for extracting avalanche statistics, we have chosen to use a subset of just

four selected electrodes in the following discussion of what is meant by the “size” of an

avalanche. This tutorial introduction will then be followed by an analysis of the full LFP

data.

Detected peaks for four chosen electrodes are shown in the Figure 5.5. Events were

binned into time-bins or frames of width ∆t. We define an avalanche as a sequence of
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Figure 5.4: Detected negative and positive peaks with threshold (in z -score units) of (a) −3
and (b) +3. Dashed lines indicate threshold setting, red circles are the detected peak events

consecutively active frames which are bounded by “blank” or inactive frames containing

no peak events. Figure 5.5(e) shows the ten detected avalanches.

In this illustration we select a bin width ∆t = 0.2 s. Altering the width of the time bin

changes the apparent size of avalanches. Smaller time bins result in smaller avalanches,

while longer ∆t captures larger-size avalanches resulting from the combination of many

small events [7]. Therefore the extracted avalanche behaviour and size distribution de-

pends on bin size. This is further discussed in Section 5.2.4.

5.2.3 Size distributions of avalanches

Avalanche behaviour quantified by its size distribution. The size of an avalanche can be

defined in three distinct ways. The most popular definition is the total number of peaks

in an avalanche [7]. Also used is the absolute-sum of amplitudes of LFP peaks [7,96]. The
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Figure 5.5: Defining an avalanche using peak detections across four selected electrodes.
Vertical-dashed lines show temporal binning with a time resolution of 0.2 s. (e) An avalanche is
defined as a sequence of active time-frames bounded by blank frames (grey areas) in which no
activity present. The ten avalanches detected here are labelled A1, A2, ... A10
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Table 5.1: Sizes of detected avalanches according to three definitions: number of peaks (npk),
the summation of amplitudes (namp), number of active electrodes (nelec).

Event A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

npk 2 5 1 3 2 2 5 2 2 3

namp 6.40 17.45 3.15 15.51 8.04 7.85 25.56 7.00 10.45 13.82

nelec 2 4 1 3 2 2 3 2 1 3

third definition is the number of active electrodes, ignoring any repeated activity in the

avalanche by same electrode [48]. Table 5.1 illustrates these three measures of avalanche

size for the four selected electrodes of Figure 5.5.

Once all avalanche events for a given (multichannel) LFP recording have been ex-

tracted, we convert the size distribution to a probability distribution p(n), the probability

of an avalanche of size n. The power-law exponent can then be extracted from a log-log

plot of p(n) vs n (or equivalently, by applying Eqs (5.3) and (5.4)).

The following sections apply avalanche analysis to all active electrodes of a selected

rat LFP data set (date 01.02.2006) for 1 MAC.
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Figure 5.6: Electrode placement in the 8×8 grid. The 22 active electrodes for date 01.02.2006
are shown with a white background
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Number of peaks during the avalanche (npk)

Initially, we set avalanche size to be number of peaks per avalanche. Figure 5.7 presents

the size distribution for rat LFP data on day 01.02.2006 (dd.mm.yyyy) concentration of

1 MAC. Here ∆t = 0.01s and we fixed the z -score threshold at −1.5. We recorded and

analysed the events detected at the active 22 electrodes shown in Fig. 5.6.

Note that the size of avalanches is not limited by the number of electrodes in the grid:

some avalanche sizes are larger than the maximum number of electrodes. This is because

some electrodes appear more than once in the same avalanche. Beggs and Plenz [7]

explained that this unusual behaviour can occur when the avalanche travels through the

grid then returns to the initial point, creating another event at the same electrode.

The log-log plot of p(npk) vs npk reveals a power-law with α = 1.50± 0.02 (calculated

using Eqs (5.3), (5.4)). As per previous studies, this linear relationship should have

a cut-off point determined by the maximum number of electrodes available within the

array [7,48,68]. It is evident in our analysis that the line breaks earlier than the expected

cut-off point (vertical dotted line), and this is most obvious in the cumulative distribution

(Fig. 5.7(b)). Only 22 electrodes were active from the 8× 8 electrode array, and they are
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Figure 5.7: (a) Probability distribution of avalanche size expressed as number of peaks per
avalanche. Bin width ∆t is equal to 0.01 s; threshold is −1.5. Red dashed line illustrates the
linear-fit to the log-log plot. Black dotted line indicates the cut-off size set equal to 22, number
of electrodes available. (b) Cumulative probability distribution. The linear-fit fails prior to the
cut-off point
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Figure 5.8: (a) Probability distribution of size based on summation of amplitude of peaks
per avalanche. Peak amplitudes are measured in (dimensionless) z -score units. Time-bin width
= 0.01 s, threshold = −1.5 (b) Cumulative probability distribution

not spread evenly across the grid (see Fig. 5.6). Therefore we might miss some avalanche

events, causing the misalignment with the expected cut-off.

We evaluated the power-law exponent using Eq (5.3), restricting the fitting to one

order of magnitude in avalanche size, as points in the tail are scattered, then applied

the KS criterion to test for agreement between the fitted power-law and the avalanche

distribution.

Sum of amplitudes (namp)

Here avalanche size is expressed as the absolute summation of the z -score amplitudes of

those peaks that exceed the defined threshold. Figure 5.8 presents the size distribution,

showing power-law behaviour with exponent α = 1.46± 0.02.

Number of electrodes activated (nelec)

To eliminate repetitive events from the same electrode we now count, nelec, the number

of unique active electrodes in the avalanche. Figure 5.9 illustrates the size distribution

for the same data set used in the previous sections. Note that the size of an avalanche

cannot exceed the maximum cluster size of 22 active electrodes.

All three definitions gives power-law distributions exponents falling within ±0.04 of

the average value α = 1.5. Among the three definitions, number of peaks shows best
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Figure 5.9: The size distribution of avalanches, when size is the number of active electrodes
per avalanche (∆t = 0.01 s, threshold = −1.5). The red dashed line denotes the slope with
power-law exponent, α = 1.54± 0.03. Here size is limited to the cluster size

alignment with the linear fit. Therefore, where there is a choice, we preferred to use the

size definition npk, the number of peaks per avalanche.

5.2.4 Impact of width of the time bin

As explained earlier in Section 5.2.2, the apparent behaviour of avalanches varies with

the width of time-bin, ∆t. This section investigates this claim in more detail. We use rat

LFP data at concentration of 1 MAC.

Figure 5.11 illustrates the variation of size distribution with ∆t for the three size

definitions. Left side figures, (a), (c), (e) show the size distributions, with different colours

for different time-bin sizes. The z -score threshold for peak detection is set at −1.5.

Although it seems all distributions align to a power-law, the value of α decreases slightly

by a few percent (∼ 6%) as ∆t is increased by a factor of 2.

Figure 5.10 elucidates of the impact of variations in time-bin width on avalanche sizes.

Here we consider three values for ∆t: 0.2 s, 0.4 s, 0.8 s. When the time-bin width is short,

it separates longer avalanche sequences into smaller avalanches. This is clearly illustrated

in box A where a longer avalanche breaks into three smaller avalanches. Increasing the

number of smaller avalanches leads to a power-law with a steeper slope. If ∆t is long, then
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smaller avalanches integrate into longer avalanches resulting in more long avalanches and

fewer small avalanches, thus decreasing the slope of the power-law. Box B illustrates this

phenomenon: five identified avalanches at ∆t = 0.4 s combine into one long avalanche

when ∆t is doubled to 0.8 s. Therefore we need to establish an optimal time-bin width

for avalanche analysis.

Previous studies have suggested that the averaged inter-event interval (IEIavg) pro-

vides the optimum time-bin width [7, 68]. The inter-event interval is defined as the in-

terval between two events. The averaged interval between LFP activity peaks across all

the electrodes defines the averaged inter-event interval, IEIavg. It has been established

experimentally in previous studies of rat LFP that α = 1.5 when ∆t = IEIavg [7]. It has

been argued theoretically that when the system is at criticality the power-law exponent

should be α = 1.5 [7, 68]. This will be discussed further in Section 5.2.6.

In our analysis, IEIavg = 0.017 s for a z -score threshold = −1.5. Setting ∆t = IEIavg

gives α = 1.43 ± 0.02 for first two size definitions (number of peaks and summation of

amplitudes) and α = 1.50± 0.02 for the third definition (number of unique electrodes).
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Figure 5.10: Detecting avalanches for three different time-bin widths. (a) ∆t = 0.2 s; (b)
∆t = 0.4 s; (c) ∆t = 0.6 s. If the time-bin width is short then one long avalanche divides into
several shorter avalanches as illustrated in box A for ∆t = 0.6 s to ∆t = 0.2 s. Box B exhibits
the integration of smaller avalanches into one long avalanche when ∆t changes from 0.4 s to
0.6 s
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Figure 5.11: Size distributions for different time-bin widths, ∆t. Left figures (a), (c), (e)
demonstrate the probability distribution of avalanche sizes for five values of ∆t. The slope of
the power-law, α decays with ∆t as shown in right-side figures (b), (d), (f)
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Figure 5.12: Change of power-law with different negative thresholds for rat LFP data from date
01.02.2006 at 1 MAC. Left-hand panels show probability distribution for (a) p(npk): number of
peaks; (b) p(namp): sum of absolute amplitude; (c) p(nelec): number of unique electrodes. In all
three cases power-law exponent tends to increase with absolute threshold (right-hand panels)
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Figure 5.13: Power-law dependence on choice of positive z -score threshold for same rat LFP
data referenced in Fig 5.12. Left-hand panels illustrate the probability distribution for each
definition: (a) p(npk); (b) p(namp); (c) p(nelec). The exponent α increases with the threshold
level in all three cases
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Figure 5.14: Detection of peaks with (a) low threshold and (b) high threshold. At low z -score
threshold of −1, more events with shorter separations are revealed. The higher threshold of −3
results in few peaks with huge amplitude and larger time-gap

5.2.5 Change of size distribution with threshold

The previous section showed how the value of the power-law exponent depends on the

choice of bin-width ∆t. Our studies reveal that α also depends on the chosen threshold

level. Here we analyse power-law distributions for rat LFP recordings for both negative

and positive thresholds.

The threshold determines the number of events: signal extremes that exceed threshold

define the events. As threshold level increases, events with lower amplitude are ignored.

Figure 5.14 shows the change of peak detection with the threshold level. Lower thresholds

reveal more peaks (Figure 5.14(a)). The time-gap between events is very low, and possibly

it contains unwanted events not related to actual neuronal activity. At high threshold

(Figure 5.14(b)) few events are spotted and they are well apart.

Unsurprisingly, the power-law distribution of avalanche sizes also depends on detection

threshold. Low thresholds allow detection of more low-amplitude events: this tends to

increase the size of the avalanches while decreasing the slope of the power-law. On the

other hand, a high detection threshold detects events with higher amplitude and long

time-gap reducing the number of larger events leading to a steeper slope. This can be
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seen in Figures 5.12 and 5.13. These figures compare the size distribution for different

negative thresholds and positive thresholds respectively. Both show an increase of α with

higher thresholds. Interestingly the positive thresholds are associated with larger power-

law slopes than those for negative thresholds (α+ ' 1.65± 0.03 versus α− ' 1.50± 0.02),

and this is probably related to the apparent asymmetry between the positive and negative

portions of the LFP waveform (e.g., see Fig. 5.14). Previous studies have focused more

on the negative LFP peaks [7, 68], as they are thought to be more related to neuronal

activity. Therefore negative LFP peaks are used for subsequent analysis here.

Inter-event Interval (IEI)

A further explanation for the variation of α with threshold would be changing of inter-

event interval (IEI). Figure 5.15 shows the variation of IEI with z -score threshold. When

the absolute level rises, IEI grows, albeit asymmetrically, with stronger growth for positive

thresholds. Raised thresholds will detect fewer events, and event pairs will have longer

time gaps between them, which corresponds to higher IEI.

In Section 5.2.4, it was explained how time-bin width effects α, with the suggestion

that IEI would be the optimal time-bin width. For shorter IEI the events are closer.

Therefore it creates larger size avalanches as more events are binned together. If IEI is
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Figure 5.15: Inter-event interval (IEI) variation with detection threshold. Threshold was
varied from −3 to 3. Here we used rat LFP data for 1 MAC (at 01.02.2006). Note the strong
asymmetry between right (positive) and left (negative) halves of the IEI graph



5.2 Properties of avalanches and their statistics 125

longer, then events are more isolated, resulting in more smaller size avalanches. Therefore

changes to IEI change the probability distribution of avalanche sizes, and α changes with

it. This suggests that in order to retain a fixed value of α, we need to tune ∆t for the

different thresholds.

Applying a polynomial curve fit to the left and right portions of Fig. 5.15 we find that

the IEIavg versus threshold θ relationship maps to a pair of cubic equations for negative

and positive thresholds:

IEIavg =

 0.0034|θ|3 − 0.0079|θ|2 + 0.0077|θ|+ 0.0024, θ < 0

0.0196|θ|3 − 0.0386|θ|2 + 0.0246|θ|+ 0.0012, θ > 0
(5.5)

5.2.6 Power-law exponent for the critical state

The behaviour of a system can often be characterised into qualitatively different phases

with transitions between phases achieved by varying a control parameter. A critical state

marks the edge of these phase transitions and the behaviour of the system at this point

is described as being critical.

In previous studies it has been argued that α = 1.5 should be the characteristic power-

law exponent for avalanche size distribution of neural activity at a critical state [7]. This

was verified by some experimental analysis [6, 7, 68, 83, 84], but this exponent value was

only shown for a specific time-bin set to be equal to the averaged inter-event interval

(IEI). For example, Beggs and Plenz [7] show α = 1.5 at ∆t = 4 ms, but these results

exhibit clear dependence on ∆t, with α ranging from 2 to 1 as ∆t ranges from 1 to

16 ms. In our analysis at MAC 1.0, α varies from 1.4 to 1.7 for bin sizes ranging from

4 to 30 ms at z -score threshold setting of −1.5. For this threshold, IEIavg = 17 ms,

giving αpk = 1.43± 0.02 for first two size definitions (number of peaks and summation of

amplitudes) and αelec = 1.50±0.02 for the third definition (number of unique electrodes).

Obtaining a power-law value of 1.5 required “tuning” of ∆t between 10 to 15 ms for the

three different size definitions.

Although the concept of using IEI as the optimum bin size appears in several previous

studies [6, 7, 68], there is no theoretical explanation to choose this over other bin sizes.

Therefore there is no specific rule to choose an appropriate value of ∆t to justify the

α = 1.5 power-law exponent hypothesis quoted in the literature [71].
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In fact, it has been shown that in general, the power-law exponent is not necessarily

equal to 1.5 in different neural systems. As examples, α = 1.8 for spike avalanches in

anaesthetised cats [32], and α = 1.9 for EEG of human brain [2]. There are different

arguments for the reasons behind this discrepancy, one is being finite-size effects, using a

limited number of electrodes compared to original works by Beggs and Plenz [2]. More-

over, has been suggested that using different systems might result in different power-law

behaviour [32].

From these earlier works and from our own work reported here, we conclude that

the power-law for neuronal avalanches depends fundamentally on the choice of time-bin

size and that unfortunately there is no specific method to choose the optimum time-bin.

Consistent with this conclusion, Priesemann [71] and Benayoun [8] argue that there is no

specific or unique value of α for critical avalanche activities. Benayoun also states that

avalanche distributions from any good neuronal network model must produce variation

with respect to temporal bin width [8].

Alternative to estimating the critical exponents, Friedman [27] and Sethna [80] suggest

a universal scaling function which determines the shape of the mean temporal profile of

avalanches via data collapse. This method is independent of the exact value of the critical

exponent. Note that we did not attempt data collapse on our avalanche measurements.

5.3 Impact of anaesthetic on avalanche size
distributions for rat LFP

We analysed the LFP data of rats for anaesthetic concentrations in Chapter 4. Here

we extend our analysis to see whether avalanche statistics are sensitive to anaesthetic

concentration. As the animal transits from awake to anaesthetised, voltage waveforms

change to high amplitude, low-frequency patterns. We will show that the size distribution

of neuronal avalanches is indeed sensitive to the transition to deep anaesthesia, showing a

pronounced deviation from the expected power-law behaviour. Here we use the number of

peaks (npk) size definition as this gives better alignment with a power-law distribution than

the other two definitions; also this is the most common definition used in the literature

[7, 68,70].

The electrophysiological data consist of multichannel LFP recordings from different

rats under different anaesthetic concentrations (full details given in Chapter 4). Figure
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Figure 5.16: Probability distribution of avalanches with different anaesthetic concentrations:
0.5 MAC, 1 MAC, 1.5 MAC, 2 MAC. At lower concentrations (0.5 MAC and 1 MAC) probability
distribution follows the expected α = 1.5 power-law (blue and red lines). At higher anaesthetic
concentrations (1.5 MAC and 2 MAC) the distribution deviates away from the power-law (green
and yellow lines) as burst-suppression patterns emerge, with bursting activity tending to boost
the number of large amplitude events. Time-bin width = 0.01 s and z -score threshold = −1.5.
(b) Cumulative probability distribution illustrates clear visualisation of divergence from power-
law distribution at higher anaesthetic concentrations

5.16(a) presents the size distribution from a selected rat for four anaesthetic concentra-

tions: 0.5 MAC, 1 MAC, 1.5 MAC, 2 MAC. Dark colours, red and blue, represent the

lower anaesthetic concentrations; these show alignment with the α = 1.5 power-law. At

higher concentrations (green and yellow), LFP events are not well described as scale-free

power-law behaviour. This is clearly illustrated in the cumulative distributions, Figure

5.16(b). For low anaesthetic concentrations, the cumulative distributions align to a linear-

fit line of slope of α − 1 = 0.50. However, the size distribution at higher concentrations

deviates from the power-law, showing a roughly bimodal shape. A higher number of small

avalanches leads to higher slope at lower avalanche sizes. P (x) generally decreases with

an increase in avalanche size, interrupted by a sudden increase of P (x) corresponding to

higher avalanche sizes.

Increased anaesthetic concentration leads to characteristic burst-suppression patterns
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Figure 5.17: LFP recording at concentration of 2 MAC. Burst suppression patterns are visu-
alised as intermittent large amplitude events interspersed with long quiet periods

in LFP recordings at high concentrations. Burst suppression manifests as high ampli-

tude events with longer quiet periods (Figure 5.17). Therefore events are well-apart, so

avalanches contain fewer events. Anaesthesia disrupts the dynamics of the cortex, trans-

forming the brain from a critical conscious state to a non-critical unconscious state. This

explains why the size distribution of avalanches diverges from power-law behaviour at

deep anaesthesia. At lower anaesthetic concentrations, 0.5 MAC and 1 MAC, the system

exhibits critical behaviour with avalanche size distributions that align with a power-law.

Figure 5.16 showed the avalanche distribution for rat LFP data recorded on day

01.02.2006 (“Rat 4”). In Figure 5.18 we show the corresponding distribution for the data

recorded on days 10.01.2006 (“Rat 1”) and 23.01.2006 (“Rat 3”) using the same values

for bin-width (∆t = 0.01 s) and z -score threshold (−1.5). All three rats shows consis-

tent behaviour: at deep anaesthesia, the cumulative distributions diverge from power-law

behaviour.

5.3.1 Summary of rat LFP avalanche statistics

Our avalanche analysis of LFP recordings of anaesthetised rats, reported by Sleigh, Hudetz

and colleagues (2006), revealed the following general characteristics:
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Figure 5.18: Cumulative probability distribution for different anaesthetic concentrations of
two different rats recorded on days 10.01.2006 (“Rat 1”) and 23.01.2006 (“Rat 3”). Four colours
represents four different anaesthetic concentrations. Here dashed lines shows the slope of α− 1

• Avalanche size can have three distinct definitions: number of peaks (npk), sum of

amplitudes (namp), number of unique active electrodes (nelec)

• The power-law exponent for avalanche size distribution across all three definitions

was found to fall within ±0.04 of a characteristic value of α = 1.50

• The value of α is not unique: it varies with the choice of time-bin width ranging

from 1.3 to 1.65 for the selected z -score threshold of −1.5

• The power-law exponent also depends on the z -score threshold chosen to detect

peaks. For positive thresholds α lies in a higher range (1.5 – 2) and for negative

thresholds varies within a lower range (1.4 – 1.7).

Our main focus was to identify the characteristic changes that emerge with deepening

anaesthetic concentrations. Following are our two main findings:

• At lower anaesthetic concentration the avalanche probability distribution follows a

power-law with α = 1.50± 0.02

• For higher anaesthetic concentrations (≥ 1.5 MAC), avalanche size distribution fails

to show a power-law characteristic, indicating that the fluctuations are no longer

scale-free.

In concluding sections of this chapter, we will apply avalanche analysis to pseudoLFP

waveforms generated by the Waikato mean-field model.
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5.4 Avalanche analysis of Waikato mean-field model

In previous sections, we analysed the electrophysiological data from rats and examined

the avalanche statistics in the vicinity of the anaesthetic induced phase transition. In this

section, we will analyse avalanches extracted from numerical simulations of the Waikato

mean-field model as it traverses the point of anaesthesia induction. (The model equations

were detailed in Chapter 3.) The point of phase transition in the model is determined

by the two control parameters anaesthetic inhibition λ (anaesthetic drug effect) and sub-

cortical excitation ∆V rest
e . For particular combinations of λ and ∆V rest

e , the cortex can

exist in one of three alternative states: either high-firing, or low-firing, or an interme-

diate unstable state. The upper (high-firing) state is identified with consciousness, and

the low-firing state is considered to be the anaesthetised unconscious state of the brain.

The main aim of the present analysis to investigate cortical avalanche behaviour close to

various phase transitions.

In this section, we investigate avalanche behaviour close to several transition points

corresponding to either induction of, or emergence from, anaesthesia. A numerical simu-

lation is run for each situation, and the resulting pseudo-LFP recordings are analysed for

power-law distribution of avalanches. Here we simulate on a 60 × 60 grid with periodic

boundaries for 10 s with time-step = 0.0004 s. Each grid point is continuously stimulated

with low-intensity spatiotemporal white noise.

5.4.1 Avalanche distribution at different states: high-firing,

low-firing and at critical point

In our first experiment, five different points were selected on the steady-state trajec-

tory ABCDE (black curve in Figure 5.19) that passes through the critical point C with

∆V rest
e = 2.54 mV. C marks the critical or “opalescent” point, at which high-firing and

low-firing states are indistinguishable. The selected points are circled in Figure 5.19: two

points on the high-firing branch (A, B), one at the opalescent point (C), and two points

on the low-firing branch (D, E). Representative simulation time-series are shown in Fig.

5.20, and the corresponding avalanche distributions are illustrated in Figure 5.21. The

z -score threshold was set at −3, with ∆t = 0.0045 s. Each of the 3600 grid points was

treated as an LFP electrode.
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A power-law distribution is evident only at the opalescent point (red line, C: λi =

1.1032). At the high-firing states (A, B), only a few smaller avalanches occurred, and

the probability distribution fails to manifest a power-law distribution. Meanwhile, at the

low-firing states (D, E), a higher number of smaller avalanches were detected, breaking

the power-law at the very beginning. These power-law failures can be clearly visualised

in the cumulative distribution figure (Figure 5.21(b)).

The power-law nature of the probability distribution at the opalescent point supports

the notion of criticality, while equilibrium states far from the critical point fail to show

critical behaviour as their avalanche distributions do not align to a power-law. For the

high-firing states, the pseudo-LFP has high-frequency voltage patterns, so events have a

short quiet time, resulting in more large avalanches and fewer smaller avalanches. On the

other hand, at the low-firing states, voltage patterns show slower patterns which produce

smaller avalanches resulting in rapid breakdown of the distribution.
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Figure 5.19: Equilibrium states for mean-field model. Points A, B, C, D and E are selected for
avalanche analysis. C marks the critical (“opalescent”) point. Sample time-series are displayed
in Fig. 5.20, and avalanche results are shown in Figure 5.21
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Figure 5.20: Time-series of a selected grid point for five steady-state coordinates A. . .E labelled
in Fig. 5.19. Left panels show the raw LFP patterns and right panels show the computed z -
score with the chosen threshold (red dashed line). High-firing states A and B present high
frequency, low amplitude voltage patterns, while low-firing states D and E show low frequency,
higher amplitude voltage patterns. Critical point C exhibits the slowest and largest voltage
fluctuations
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Figure 5.21: Avalanche size distribution for the five different λ values in the trajectory through
the opalescent point (∆V rest

e = 2.5398). (a) Probability distribution of avalanche sizes npk. Only
the distribution at the opalescent point (λi = 1.1032) exhibits a power-law: α = 1.84±0.06. The
low-firing state (λi > 1.1032) shows a higher number of smaller avalanches, while the high-firing
state (λi < 1.1032) shows a higher number of larger avalanches

5.4.2 Avalanche size distributions at secondary phase-transition

points

A limited range power-law for avalanche size distribution at the opalescent point was

evident in the previous analysis. It is of interest to know whether or not other saddle-

node turning points also exhibit scale-free fluctuation statistics. Therefore in this section,

power-law behaviour of avalanches at the secondary turning points: H1, H2, H3 (induc-

tion) and L1, L2, L3 (recovery) will be investigated. These points are marked in Figure

5.23. CP shows the opalescent point.

Numerical simulations ran for 20 s for each turning point. The cortex was stimu-

lated by low-intensity subcortical spatiotemporal white noise. Since these points are only

marginally stable, if the noise intensity is set too high the system will promptly jump to

its preferred state (H1, H2, H3 → unconscious; L1, L2, L3 → conscious). Therefore the
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Figure 5.22: Raw voltage patterns at CP for 20 s. For the first 6 s the baseline voltage is
increasing and after 8 s it stabilizes

noise scaling was reduced to extend the dwell time at the selected turning point (noise-

scale factor = 0.1). Each time-series was inspected, and if the cortex showed a jump

transition, that pseudoLFP record was rejected and the simulation was run again. For

the H and L secondary phase transition points, only the first 10 s of the simulation was

used for the analysis. At the CP critical point, the final 10 s of simulation was used, as

it takes a few seconds for the cortex to evolve to its equilibrium baseline. This slow drift

may be an artefact of the periodic boundaries. The baseline drift at the opalescent point

is illustrated in Figure 5.22.
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Figure 5.23: The equilibrium states of mean-field model and phase transition points for selected
∆V rest

e . H1, H2, H3 mark the transition point for induction of anaesthesia and L1, L2, L3 mark
the transition for emergence from anaesthesia. CP marks the opalescent point
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Figure 5.24: Time-series at loss of consciousness (LOC) phase-transition points, H1, H2, H3
(first three rows). Raw LFP patterns are at left-side panels and z -score at right-side panels.
Last row exhibits the LFP and z -score patterns at CP
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Figure 5.25: Avalanche size distribution for LOC (loss of consciousness) phase transition points
(H1, H2, H3). (a) Probability distribution of avalanche size. Power-law exponents vary within
the range of 1.84 to 1.90. The black dashed line shows the slope with α = 1.84 ± 0.06 (at
opalescent point). (b) Cumulative distributions for LOC turning points

Avalanche behaviour at phase-transition point for loss of consciousness (LOC)

As per our previous studies (Chapter 3), the model cortex shows critical slowing down

characteristics, with high-amplitude and slower fluctuations and higher susceptibility to

small perturbations when approaching the opalescent point. Similar critical slowing has

also been manifest in Chapter 3 when approaching the secondary saddle-node turning

points for induction of, and recovery from, anaesthesia. Therefore we expect to find

evidence of power-law avalanche behaviour at the LOC and ROC transition points.

We selected three ∆V rest
e values and found the values of λi where the top branch steady

states were marginally stable (i.e., the real part of the dominant eigenvalue approaches

zero from below at zero wavenumber). The simulation was held at the selected turning

point by ensuring the noise was sufficiently small. The pseudoLFP data from 3600 grid

points were analysed to obtain the probability distribution of avalanche sizes; the results

are presented in Figure 5.25. Averaged IEI was calculated at each equilibrium point, and

then used as the time-bin width. As expected, the distributions of avalanche sizes
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Figure 5.26: LFP and z -score at recovery of consciousness (ROC) turning points. These
time-series show a low-frequency patterns compared to LOC turning points
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Figure 5.27: (a) Probability distribution of avalanche sizes at ROC transition points (L1, L2,
L3). Slopes vary from 1.6 to 1.85. Power-law behaviour is manifested by each turning point
(black dashed line is for the CP power-law, where slope is fitted within one order of magnitude.
(b) Cumulative distributions for ROC turning points

align with a power-law with α ranging from 1.8 to 1.9 for the three LOC phase-transition

points, very close to the critical-point exponent value of α = 1.84.

Avalanche behaviour at phase-transition point for recovery of consciousness (ROC)

We now examine ROC phase-transition points for the same selection of ∆V rest
e trajectories.

We observe similar behaviour, albeit less tightly clustered, as for the LOC turning points,

but at lower anaesthetic inhibition. The probability distributions of avalanche sizes obeys

a power-law with α ranging from 1.6 to 1.85.

5.4.3 Summary of Waikato mean-field model avalanche behaviour

We analysed simulation data generated by the Waikato mean-field cortical model for

probability distributions of avalanche sizes across a range of anaesthetic induced phase-

transitions. We now summarise the important findings from these analyses:
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• The probability distribution of extracted avalanches shows unambiguous power-law

behaviour at the critical opalescent point : α = 1.8± 0.2

• The secondary turning points, loss of consciousness (LOC) and recovery of con-

sciousness (ROC), also exhibited power-law behaviour, with α lying in the same

range

• If the model is not at a phase transition point (high-firing state or low-firing state

that is not close to a turning point), then the probability distribution of avalanche

sizes does not follow a power-law.

The value of the power-law exponent for the Waikato mean-field model was close to

−1.8, quite different from the “expected” value of −1.5 reported in a previous study [7].

In our Waikato mean-field analyses we found that we needed to use a rather high z -

score threshold of −3; lower threshold settings detected a larger number of events which

destroyed the power-law.

For all the above analyses we used the membrane voltage (Ve) extracted from the

simulations (which we assume to be equivalent to LFP in experimental recordings). As a

cross-check we repeated the analysis using firing rates (Qe) instead of membrane voltage.

The avalanche size distribution for Qe also exhibited the same behaviour as Ve and showed

nearly the same power-law exponent, α.

5.5 Chapter summary

Most experimental and numerical studies have supported the idea that the brain operates

near a critical point, implying that the sizes of neuronal avalanches should follow a scale-

free power-law distribution [6, 7, 69, 81]. Neuronal avalanches are a burst of activities

spread through the network, and they are considered to be in the same avalanches if the

activity bursts have occurred in temporal proximity. Initially, Beggs and Plenz in 2003 [7]

proposed the notion of a characteristic power-law exponent of −1.5 for cortical networks

at critical state using experimental data from acute slice of a rat.

In this chapter, we have presented avalanche analyses of both experimental and nu-

merical data. For experimental data, we used LFP recordings of anaesthetised rats for

different anaesthetic concentrations. The numerical simulation data were generated by

the Waikato mean-field model placed close to various phase-transition points.
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The rat LFP data were used to determine the properties of neuronal avalanches with

avalanche size being defined in three distinct ways: number of peaks (npk), summation

of amplitudes (namp) and number of unique active electrodes (nelec). Our findings are as

follows:

• α The power-law exponent is close to α = 1.5 for all three definitions

• The value of α depends on the time-bin width (∆t) chosen to separate the events

into avalanches: α decreases slightly with increases in ∆t

• The z -score threshold used to detect peaks affects the avalanche distribution: higher

thresholds lead to larger values of α, and vice versa.

The main focus of the rat study is to identify the change of power-law behaviour of neu-

ronal avalanches when the cortex closely approaches the transition points of anaesthetised

to bursting. For lower anaesthetic concentrations, power-law behaviour is manifest with

α = −1.5. However, at higher anaesthetic concentrations avalanche size distribution fails

to align with a power-law nature. This failure coincides with the emergence of strongly

negatively skewed burst suppression LFP patterns characteristic of deep anaesthesia.

Then we analysed the anaesthetic-induced phase-transition of Waikato mean-field

model. The avalanche analysis of the simulation data shows the following characteris-

tics:

• Power-law behaviour is evident at the CP critical point, and also at the secondary

phase-transition points: loss of consciousness (LOC) and recovery of consciousness

(ROC)

• Equilibrium points far from CP, LOC, or ROC transition points states fail to support

a power-law.

The mean-field model produced higher α around 1.8 compared to rat LFP data, where

α = 1.5. For the mean field model, we had to use a larger threshold as too many peaks

were detected when the threshold was set as low as −1.5. Moreover, mean-field IEIavg '

0.004 s was quite small compared to IEIavg found in rat LFP recordings (IEIavg ' 0.01 s).

This is because the mean-field data is obtained for a vastly larger number of parallel

channels (3600), therefore registering many more events compared to LFP recordings

(which typically have only 22 active channels).

Neuronal avalanches are defined using a temporal binning that separates avalanches

by pauses of a few ms. Priesemann in 2014 [71] has stated that if events are recorded
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from a large number of parallel channels, then all pauses would vanish. Therefore it is

necessary to enforce pauses by raising thresholds. Another approach is to apply spatial

subsampling to reduce the number of parallel channels, thereby reducing the number of

detected events.

The power-law curves exhibited a cut-off point which is related to the number of

electrodes available. However, the cut-off points for CDF and PDF are different. This

is because we are computing the complementary CDF, which accumulates from the tail,

leading to misalignment with the power-law trend. We calculated the power-law for PDF

distribution for only one order of magnitude of size range, and this avoids the uncertainty

associated with cut-off variabilities.





Chapter 6

Summary and future work

6.1 Summary

In this thesis, we have examined critical dynamics associated with neuronal phase tran-

sitions between distinct neural states using computer-based mathematical modelling and

electrophysiological data analysis. We selected four topics for close analysis: transi-

tion to spiking in a FitzHugh-Nagumo (FHN) point neuron; induction of, and recovery

from, anaesthesia in the Waikato mean-field (WMF) cortical model; anaesthetic-induced

changes in rat local-field potential (LFP) signals; and avalanche statistics under anaes-

thesia for the WMF and rat models.

Transition to spiking in a point neuron

The nonlinear dynamics and subthreshold stochastics of FHN single spiking neuron model

were investigated for these different implementations: Wilson, Keener & Sneyd, and op-

amp equivalent circuit. The nonlinear oscillations were compared for all three models

and we observed closely similar behaviours. Linear stability analysis of the steady states

revealed type-II resonant behaviour, with an Andronov–Hopf bifurcation at the critical

points marking onset and offset of spiking. At spiking threshold, the real part of the

eigenvalue becomes zero, while the imaginary part (frequency) is non-zero.

Low-intensity noise-induced voltage fluctuations of the three FHN models were in-

vestigated for close approach to onset and death of spiking. Critical slowing down was

manifest as a divergent growth of variance of voltage fluctuations simultaneous with a

prolongation of autocorrelation settling time when approaching the transition point. The

variance trends unveiled a scaling-law with exponent of −1: var{v} ∼ 1/ε.
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Anaesthetic-induced phase transitions in the Waikato cortical model

Anaesthetic induced phase-transitions in the two-dimensional Waikato mean-field cortical

model were investigated, focusing on loss of consciousness (LOC), recovery of conscious-

ness (ROC), and approach to critical point (CP) transitions. Linear stability analysis

of all three transition points revealed saddle–node bifurcations: a purely real dominant

eigenvalue which goes to zero at the turning point.

Critical slowing down near these turning points were demonstrated by comparing

subthreshold stochastic analysis of grid simulations against Ornstein–Uhlenbeck (OU)

theoretical predictions. The fluctuation variance and power spectra exhibited divergent

growth at ever lower spatial and temporal frequencies on close approach to transition

(LOC, ROC or CP).

The LOC and ROC critical fluctuations obeyed a common scaling law var{Qe}LOC ∼

var{Qe}ROC ∼ 1/ε0.0075, while that for CP fluctuations exhibited a power-law exponent

that was about twice as large, var{Qe}CP ∼ 1/ε0.02, consistent with the observation that

the opalescent point is a double-sided saddle–node bifurcation.

Anaesthetic-induced changes in electrophysiological data in rats

We examined local field potentials (LFP) recorded from anaesthetised rats under different

anaesthetic concentrations looking for evidence of critical fluctuations. Different charac-

teristic patterns were identified at each discrete level of anaesthetic concentration. LFP

amplitude histograms showed that at lower concentrations, LFP fluctuations are symmet-

ric and approximately normally distributed. The appearance of burst-suppression pat-

terns at higher anaesthetic concentrations resulted in a negatively skewed, heavy-tailed

distribution. Correlation time increased with anaesthetic concentration, and resonance

patterns found at lower concentrations were suppressed at higher concentrations.

The scaling laws of LFP fluctuations were established for different concentrations by

detrended fluctuation analysis (DFA) and power spectral density (PSD) analysis. The

DFA power-law exponent was found to be α ∼ 1, indicating the existence of long-range

temporal correlations in the anaesthetised LFP data. The exponent tended to increase

with anaesthetic concentration, suggesting the onset of unbounded nonstationary fluc-

tuations. The DFA α-exponents were consistent with β-exponents obtained using PSD

analysis, confirming the α = (β + 1)/2 relationship between PSD and DFA statistics.
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Avalanche analysis

Criticality hypothesis of the anaesthetic induced phase transition was further investigated

for both experimental and numerical data using avalanche analysis. We used LFP record-

ings of anaesthetised rats for different concentrations, and numerical simulation data

generated by the Waikato mean-field cortical model for LOC, ROC, CP tipping points.

Analyses of the rat LFP data suggested an avalanche power-law exponent of around

α ' 1.5, presumed to be the critical value. However, it was found that this value depends

on the choice of time-bin width used to separate events, and also on the z -score threshold

used to detect peaks. Moreover, a power-law relationship was only evident at lower

anaesthetic concentrations and disappeared at higher anaesthetic concentration.

The power-law behaviour for avalanches of Waikato mean-field model simulation data

was observed at the CP opalescent point, loss of consciousness (LOC) and recovery of

consciousness (ROC) tipping points. The common exponent value was α ' 1.8. As

expected, equilibrium states far from these transition points failed to show a power-law.

Unifying themes

These analyses unveiled the increase of amplitude and prolongation of noise-driven fluc-

tuations on close approach to the transition point, not only in single-neuron and neural

population models, but also in biological LFP signals. Detection of power-law behaviour

of neuronal avalanches in rat LFP data for low anaesthetic concentrations and at the

transition points of Waikato mean-field model provides further support for the criticality

hypothesis.

The single spiking neuron model with Hopf bifurcation illustrated prolongation of

settling time after a perturbation; a corresponding prolongation of fluctuation and au-

tocorrelation time was seen in the saddle-node transition of the mean-field model. Both

single neurons and neuronal populations exhibited power-law behaviour near the phase

transitions. However, the different transitions revealed distinct critical exponent values.

Table 6.1 summarizes the range of scaling laws encountered or referenced in this thesis.

It is noteworthy that the SN (saddle–node) exponents for WMF (LOC/ROC, CP) are very

different from that for the type-I point neuron. This is probably because the point neuron

has no spatial dependence.
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Table 6.1: Summary of scaling laws

System Bifurcation Criticality measure & scaling law Reference

FHN neuron Hopf variance ∼ 1/ε1.0 Chapter 2
Type-II neuron Hopf variance ∼ 1/ε1.0 [58, 87]

Type-I neuron SN variance ∼ 1/ε0.5 [58, 87]

WMF LOC SN
}

variance ∼ 1/ε0.0075 Chapter 3
ROC SN
CP double-SN variance ∼ 1/ε0.02 Chapter 3

Rat LFP DFA: F (n) ∼ n1.0−1.2 Chapter 4
PSD: S(f) ∼ f1.0−1.7 Chapter 4
Avalanche: p(x) ∼ 1/x1.5

Chapter 5
(but only for < 1.5 MAC)

WMF LOC SN }
Avalanche: p(x) ∼ 1/x1.8 Chapter 5ROC SN

CP double-SN

6.2 Future work

Theoretical analysis of the Waikato mean-field model focused exclusively on anaesthetic-

induced phase transition between equilibrium states, and we suppressed spatial and tem-

poral instabilities. Our criticality investigations could be extended to cortical transitions

to nonequilibrium states: emergence of Hopf instability (coherent temporal oscillations),

Turing instability (stationary spatial patterns), Turing–Hopf instability (spatiotemporal

wave patterns). The rate-constant, γ0
i , which controls the inhibitory impulse response

at the postsynaptic membrane (IPSP) could be smoothly decreased to force a Hopf bi-

furcation. A Turing instability can be provoked by boosting the strength of inhibitory

gap-junction diffusion, D2. Spatiotemporal instabilities can then be generated by simul-

taneously lowering the IPSP rate-constant while raising the inhibitory diffusion strength.

In Chapter 3, when we examined the scaling-laws for variance we observed saturations

(at LOC and ROC) and increasing scatter (at CP) for very close approach to the transition

point. This may be due to numerical limitations in Matlab when dealing with close-to-

singular matrix operations and inversions (e.g., Eqs. (3.17, 3.33)), but should be further

investigated to establish the underlying cause of the misbehaviour.
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The rat LFP data are only available for three to five steps of anaesthetic concentra-

tion. Data should be collected for more finely spaced concentration steps to allow better

identification of the critical signs for anaesthetic phase transition. Specifically, the critical

dynamics of LFP data for lower anaesthetic concentrations should be investigated. Fur-

thermore, the LFP data for “awake” rats should be analysed to obtain a baseline reference

for investigation of anaesthetic changes.

Spatial subsampling is a common problem when analysing spatially extended dynam-

ical systems, as it may cause loss of spatial information. This was certainly the case for

our data with only ∼25% of the rat LFP electrodes being active. Wilting and Priese-

mann [105] introduced a multiple regression estimator that used autocorrelation times

to correct subsampling errors in criticality analysis. Our avalanche analyses could be

cross-validated using this novel estimator.





Appendix A

Fitzhugh-Nagumo model equations and

codes

A.1 Derivation of differential equations for op-amp
equivalent circuit

Voltage v across capacitor C1 is the excitation variable, and current i2 through resistor R4

is the recovery variable (labelled as i in Eq. (2.2)). We are building the equations using

these two-variables. Figure A.1 is obtained from page 228 of [45].

Op-amp 1 is a voltage follower, therefore v1 = v2 and voltage across the R3 is a

function of v: F (v) = v − g(v) where g(v) is the response of op-amp U2. Keener &

Sneyd approximate F (v) as a piecewise-linear function, but in our calculations we use

F (v) = v − Vr tanh

(
v

Vr/2.5

)
(see Fig. 2.4).

Applying Ohm’s law across resistor R4,

v − v1 = i2R4 (A.1)

Ohm’s law across resistor R3 gives,

i3 =
F (v)

R3

(A.2)

Ohm’s law across resistor R5 gives,

i1 =
v1 − Vg
R5

as v2 = v1 (A.3)
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U2

R1
R2

R3

R4

R5

C1

C2

v (excitation)

Vg (control)

A

V1

i2

B
V2

i3

i0

i1
C

g(v)

v

F(v) = v - g(v)

Figure A.1: Keener & Sneyd electronic circuit equivalent to FitzHugh–Nagumo model from
page 228 of [45] (Same circuit is redrawn in Fig. 2.3)

Applying Kirchhoff’s current law to node A,

i0 + i1 + i2 + i3 = 0 (A.4)

where

i0 = C1
dv

dt
(A.5)

is the capacitive current through C1.

Substituting Eqs. (A.5), (A.2), (A.1) and (A.3) respectively into (A.4) gives,

C1
dv

dt
+
v − i2R4

R5

− Vg
R5

+ i2 +
F (v)

R3

= 0

rearranging the equation

C1
dv

dt
+ i2

(
1− R4

R5

)
+
F (v)

R3

+
v − Vg
R5

= 0
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Rearranging the equations,

dv

dt
=

1

C1R5

(
− R5

R3

F (v)− (R5 −R4)i2 − v + Vg

)
=

1

C1R5

(
− f(v)− (R5 −R4)i2 − v + Vg

)
;

which is Eq. (2.2(a)) with f(v) =
R5

R3

F (v).

Applying Kirchhoff’s current law to node B,

C2
d

dt
(v − v1) =

v1 − Vg
R5

from Eq. (A.1) v1 = v − i2R4

C2R4
di2
dt

=
v − iR4 − Vg

R5

So,

di2
dt

=
1

C2R5

(
v

R4

− i2 −
Vg
R4

)

which recovers Eq. (2.2(b)).
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A.2 LTSpice simulation

In this section I list the sources of LTSpice simulations: Netlist and schematic diagram.

Netlist

C1 N001 0 0.01u
C2 N001 N004 0.5u
R5 N004 Vg 10k tol=1 pwr=0.1
R4 N001 N005 1k
R1 N007 0 100k
R2 N006 N007 100k
R3 N006 N001 3.9k
V1 0 N002 9V
V2 N009 0 9V
V3 Vg 0 1V
V4 N008 0 9V
V5 0 N003 9V
XU1 N004 N005 N008 N003 N005 LM741
XU2 N001 N007 N009 N002 N006 LM741
.tran 0 0.02 0 0.005m
.lib BEE215\LM741.lib
.backanno
.end

LTspice Schematic diagram

C2
0.5µ

R5

10k

R4

1k

R1
100k

R2

100k

R3

3.9k

V19V

V29V

V3

1V

V4 9V

V5 9V

U1

LM741

U2

LM741

C1

0.01µ

Vg

.tran 0 0.02 0 0.005m

Figure A.2: Schematic diagram of Keener & Sneyd op-amp equivalent circuit drawn in LTSpice
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A.3 Matlab codes for finding steady states

The code for calculation of steady states for the FHN model.

Steady states

function [V0 R0] = FHNSteadyStates(S, model)
% inputs:
% S: Stimulus
% model:
% W : Wilson FHN model,
% K: Keener & Sneyd model,
% C: op-amp circuit model

Switch model

case ’W’
%% steady state for Wilson FHN model
% R_isocline = 1.25*V + 1.5; % R_isocline, dr/dt = 0
%% V_isocline, dv/dt = 0
% V_isocline = -R_isocline + V - ((Vˆ3)/3) + S;

V = [-1/3 0 -1/4 -1.5+S]; % Coefficients of V_isocline

% finding the steady states(roots of the V_isocline)
V0 = roots(V); % steady state value for v
V0(imag(V0) ˜= 0) = [];
R0 = 1.25*V0 + 1.5; % steady state value for r

case ’K’
%% steady state for Keener and Sneyd FHN model
% R_isocline = 2*V ; % R_isocline, dr/dt = 0
%% V_isocline, dv/dt = 0
% V_isocline = -R_isocline + (V*(1-V)*(V-0.1)) + S;

V = [-1 11/10 -21/10 S]; % Coefficients of V_isocline

% finding the steady states(roots of the V_isocline)
V0 = roots(V); % steady state value for v
V0(imag(V0) ˜= 0) = [];
R0 = 2*V0 ; % steady state value for r

case ’C’
%% steady state for op-amp circuit FHN model
% Vout = (Vr*tanh(V/(Vr/2.5)));
% F = V-Vout;
% R_isocline = V - S;
% V_isocline = -(V - S) - (1/3.9)*F(V);
Vr = 9: % rail voltage = 9V

% V_isocline function
function y = f(V)

y = -(4.9/3.9)*V + S + ((Vr/3.9)*tanh(2.5*V/Vr));
end

fun = @f;
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% steady state value for v (finding roots of v_isocline)
V0 = fzero(fun,0);
R0 = V0 - Vg; % steady state value for r

end
end



Appendix B

Jacobian matrix elements for Waikato

mean-field model

In this appendix, we develop the Jacobian matrix of the Waikato mean-field cortical

model. We begin by splitting the second-order equations in time into pairs of first-order

equations, to obtain a set of eight coupled first-order equations:

F1 =
∂Ve
∂t

=
1

τe

(
V rest
e + ∆V rest

e − Ve + [ρeψeeΦee + ρiψieΦie]

)
(B.1)

F2 =
∂Vi
∂t

=
1

τi

(
V rest
i − Vi + [ρeψeiΦei + ρiψiiΦii]

)
(B.2)

F3 =
∂Φeb

∂t
= Φ̇eb (B.3)

F4 =
∂Φ̇eb

∂t
= −2γeΦ̇eb − γ2

eΦeb + γ2[Nα
ebφ

α
eb +Nβ

ebQe + 〈φsc
eb〉] (B.4)

F5 =
∂Φib

∂t
= Φ̇ib (B.5)

F6 =
∂Φ̇ib

∂t
= −2γiΦ̇ib + γ2

iN
β
ibQi (B.6)

F7 =
∂φeb
∂t

= φ̇eb (B.7)

F8 =
∂φ̇eb
∂t

= −2vΛebφ̇eb − v2(Λ2
eb −∇2)φeb + v2Λ2

ebQe (B.8)

We define the 8-dimensional state vector ~X,

~X =
[
Ve Vi Φeb Φ̇eb Φib Φ̇ib φeb φ̇eb

]
(B.9)



156 Jacobian matrix for Waikato mean-field model

The Jacobian matrix corresponding to the small spatiotemporal disturbance of Eq. (3.12)

replaces the ∇2 Laplacian operator in Eq. (B.8) with a −q2 term.

J(q) =



J11 0 J13 0 J15 0 0 0

0 J22 J23 0 J25 0 0 0

0 0 0 J34 0 0 0 0

J41 0 J43 J44 0 0 J47 0

0 0 0 0 0 J56 0 0

0 J62 0 0 J65 J66 0 0

0 0 0 0 0 0 0 J78

J81 0 0 0 0 0 J87(q2) J88



(B.10)

The non-zero elements of J are,

J11 =
∂F1

∂Ve
=

1

τe
(−1 + term1 + term2 + term3)

term1 = ρe
∂ψee
∂Ve

Φee = ρe
∂ψee
∂Ve

[(Nα
ee +Nβ

ee)Qe + 〈φsc
ee〉]

term2 = ρeψee
∂Φee

∂Ve
≡ 0

term3 = ρi
∂ψie
∂Ve

Φie = ρi
∂ψee
∂Ve

Nβ
ieQi

J13 =
∂F1

∂Φeb

=
1

τe
ρeψee

J15 =
∂F1

∂Φib

=
1

τe
ρiψie

J22 =
∂F2

∂Vi
=

1

τi
(−1 + term4 + term5 + term6)

term4 = ρe
∂ψei
∂Vi

Φei = ρe
∂ψei
∂Vi

[Nαβ
ei Qe]

term5 = ρiψii
∂Φii

∂Vi
≡ 0

term6 = ρi
∂ψii
∂Vi

Φii = ρi
∂ψii
∂Vi

Nβ
iiQi
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J23 =
∂F2

∂Φeb

=
1

τi
ρeψei; J25 =

∂F2

∂Φib

=
1

τi
ρiψii;

J34 =
∂F3

∂Φ̇eb

= 1;

J41 =
∂F4

∂Ve
= γ2

eN
β
eb

∂Qe

∂Ve
; J43 =

∂F4

∂Φeb

= −γ2
e ;

J44 =
∂F4

∂Φ̇eb

= −2γe; J47 =
∂F4

∂φeb
= γ2Nα

ee;

J56 =
∂F5

∂Φ̇eb

= 1;

J62 =
∂F6

∂Vi
= γ2

iN
β
ib

∂Qi

∂Vi
; J65 =

∂F4

∂Φeb

= −γ2
i ; J66 =

∂F4

∂Φ̇eb

= −2γi;

J78 =
∂F7

∂φ̇eb
= 1;

J81 =
∂F8

∂Ve
= (vΛeb)

2∂Qe

∂Ve
; J87 =

∂F8

∂φeb
= −v2q2 − v2Λ2

eb; J88 =
∂F8

∂φ̇eb
= −2vΛeb





Appendix C

Relationship between DFA and PSD

The analytical relationship between detrended fluctuation analysis (DFA) and power spec-

tral density (PSD) was first derived by Heneghan and McDarby [34]. The proof is detailed

in this Appendix.

We write the power spectrum of a zero-mean time-series u(t) as,

Su(ω) =

 0, for ω = 0

Sx(ω), for ω 6= 0
(C.1)

where Sx is the power spectrum of original time-series. For DFA analysis we compute the

running sum of the time-series u(t),

y(k) =
k∑
i=1

u(i) (C.2)

In the z-domain, the transfer function for the cumulative summing sequence, y(k), can

be expressed,

H(z) =
Y (z)

U(z)
=

1

1− z−1
(C.3)

with power spectrum,

Sy(ω) = |H(ejw)|2Su(ω)

=


0, for ω = 0

Su(ω)

2(1− cos(ω))
, for ω 6= 0

(C.4)

where

|H(ejw)|2 =
1

|1− e−jw|2
=

1

2(1− cos(w))
(C.5)
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By Taylor-expansion,

cos(ω) = 1− ω2

2!
+
ω4

4!
− ω6

6!
+ ... ' 1− ω2

2
for small ω

Therefore for small ω,

Sy(ω) =

 0, for ω = 0

Su(ω)

ω2
, for ω 6= 0

(C.6)

Assuming a PSD power-law exponent of β, the spectral power Su(ω) can be written as,

Su(ω) =
C

ωβ
; C = constant. (C.7)

Hence,

Sy(ω) =

 0, for ω = 0
C

ωβ+2
, for ω 6= 0

(C.8)

The detrended fluctuation function, F (n) increases with box size n. The power-law con-

nection between F (n) and n takes the form,

F (n) = nα (C.9)

where α is the DFA exponent.

The squared F (n) is the average of all the variances of detrended signals of each block,

F (n)2 =
1

N

N∑
k=1

[y(k)− ytrend(k)]2 (C.10)

which is equivalent to taking the variance of the detrended signal y(k), therefore

F (n)2 = var{y(k)} (C.11)
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Thus,

var{y(k)} =

∫ ∞
ω=1/k

Sy(ω) dω (C.12)

=

∫ ∞
ω=1/k

C

ωβ+2
dω, for ω 6= 0 (C.13)

=
C

β + 1
ω−(β+1) (C.14)

therefore,

F (n)2 = n2α =
C

β + 1

(
1

ω

)β+1

(C.15)

giving the relationship between DFA power-law exponent α and PSD power-law exponent

β as,

2α = β + 1 (C.16)

-
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