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Abstract

Ensemble learning, an approach in Machine Learning, makes decisions based

on the collective decision of a committee of learners to solve complex tasks with

minimal human intervention. Advances in computing technology have enabled

researchers build datasets with the number of features in the order of thousands

and enabled building more accurate predictive models. Unfortunately, high

dimensional datasets are especially challenging for machine learning due to

the phenomenon dubbed as the “curse of dimensionality”. One approach to

overcoming this challenge is ensemble learning using Random Subspace (RS)

method, which has been shown to perform very well empirically however with

few theoretical explanations to said effectiveness for classification tasks.

In this thesis, we aim to provide theoretical insights into RS ensemble

classifiers to give a more in-depth understanding of the theoretical foundations of

other ensemble classifiers. We investigate the conditions for norm-preservations

in RS projections. Insights into this provide us with the theoretical basis for

RS in algorithms that are based on the geometry of the data (i.e. clustering,

nearest-neighbour). We then investigate the guarantees for the dot products of

two random vectors after RS projection. This guarantee is useful to capture

the geometric structure of a classification problem. We will then investigate the

accuracy of a majority vote ensemble using a generalized Polya-Urn model, and

how the parameters of the model are derived from diversity measures. We will

discuss the practical implications of the model, explore the noise tolerance of

ensembles, and give a plausible explanation for the effectiveness of ensembles.

We will provide empirical corroboration for our main results with both

synthetic and real-world high-dimensional data. We will also discuss the impli-

cations of our theory on other applications (i.e. compressive sensing). Based on

vii



our results, we will propose a method of building ensembles for Deep Neural

Network image classifications using RS projections without needing to retrain

the neural network, which showed improved accuracy and very good robustness

to adversarial examples. Ultimately, we hope that the insights gained in this

thesis would make in-roads towards the answer to a key open question for

ensemble classifiers, “When will an ensemble of weak learners outperform a

single carefully tuned learner?”

Keywords: Ensemble Learning, High Dimensional Datasets, Classification,
Random Subspace Method
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1
Introduction

1.1 What is machine learning?

Machine Learning is the study of computer algorithms that learn a function

from a series of examples without the function being explicitly programmed

(Michie et al.Michie et al., 19941994). Rather than engineering an algorithm that solves a com-

plex task, the goal of machine learning is to “learn” the solution from provided

examples and ultimately develop learning algorithms that solve complex tasks

with minimal human intervention or assistance (Bengio et al.Bengio et al., 20092009).

The learning process requires information or data such that the algorithm

may find patterns in the data to infer the decisions for the task based on the

similarity to previous examples. This process may be based on a single sample,

from which the computer returns an appropriate model decision function, or it

may evolve as new data becomes available to the learning algorithm. Here we

focus on the former setting, which is sometimes also called “statistical learning”

(VapnikVapnik, 19991999). Machine learning tasks are usually categorized as follows based

on the information available to the algorithms:

• Supervised: Target function outputs are available to the algorithm. Exam-

ples of supervised learning tasks include classification (labels are discrete

values representing a category or class) and regression (labels are con-

tinuous values). Typical approaches include support vector machines,

neural-networks, and least-squares regression (JoachimsJoachims, 19981998; MacKayMacKay,

20032003).
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• Unsupervised: Target labels are unavailable to the algorithm. Examples

of unsupervised learning tasks include clustering, density estimation and

outlier detection. Typical approaches include k-means, Gaussian mixture

models, t-distributed stochastic neighbour embedding, and principal

component analysis. (GhahramaniGhahramani, 20032003; BarberBarber, 20122012)

• Semi-supervised: Target labels are available for some data points with

other data points, usually the majority, unlabelled. An example of a

semi-supervised learning task is learning generative models to classify

unlabelled data points (ZhuZhu, 20052005). Typical approaches are genera-

tive adversarial networks, co-training, and k-nearest neighbour graph

(Goodfellow et al.Goodfellow et al., 2014a2014a; ZhouZhou, 20172017; Wang and ZhouWang and Zhou, 20172017).

• Reinforcement: Reinforcement learning aims to maximise the total reward

through a series of decisions (called a policy). Examples of reinforcement

learning include artificial intelligence system to play chess or to navigate

a maze. Typical approaches are Q-learning, deep neural networks, one

and multi-armed bandits (Sutton et al.Sutton et al., 19981998; SuttonSutton, 19961996; Wang et al.Wang et al.,

20152015).

1.1.1 Ensemble Learning

One popular “meta-learning” approach to machine learning is a technique

known as “ensemble learning”. In ensemble learning, rather than having the

decision made by a single learner e.g. one classifier, we train multiple learners

and then combine the collective decisions into a single decision, for example

by voting or averaging. The similarity of ensemble learning to the political

systems in our world is not a coincidence. Ensemble learning takes inspiration

from social and political science that the “wisdom of crowds” (a term borrowed

from the Ancient Greeks) is often superior to the wisdom of “individuals”.

This confidence in the “wisdom of crowds” is not without merit. One

commonly cited example supporting the “wisdom of crowds” is that at a 1906

country fair in Plymouth, when a crowd of 800 was asked to guess the weight
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of a slaughtered cow, the median guess of 1207 pounds was within 1% of the

actual weight of the cow (1198 pounds) (GaltonGalton, 19071907).

It is believed that the strength from the “wisdom of crowds” come from

the diversity of opinions and the (approximate) independence of the individual

members (Oinas-KukkonenOinas-Kukkonen, 20082008). In a diverse, independent group, each

decision maker adds new information to the group decision and the group as a

whole therefore avoids being biased towards a particular (incorrect) decision.

Such approaches are relatively straightforward to translate to the machine

learning domain. Numerous studies have demonstrated the improved accuracy

of ensembles over single learner systems (BrownBrown, 20102010). Moreover, these

same studies also show that the accuracy of the ensemble improves as the

diversity of the ensemble improves (Kuncheva and WhitakerKuncheva and Whitaker, 20032003). However,

as we observe later, formal mathematical guarantees for ensembles of learners,

in particular ensembles of classifiers are scarce. Specifically, it is not well-

understood when an ensemble will outperform the best single classifier.

1.1.2 Learning of High Dimension Datasets

Advances in computing technology enabled researchers to build datasets

with the number of features (dimensionality) in the order of thousands. This

increase in the dimensionality of the datasets has enabled researchers to explore

interactions between features and hence, at least in principle, to build more

accurate predictive models than previously was possible (Manyika et al.Manyika et al., 20112011).

Unfortunately, high dimensional datasets are especially challenging for

machine learning (DurrantDurrant, 20142014; SpruytSpruyt, 20142014) due to the phenomenon dubbed

as the “curse of dimensionality” (BellmanBellman, 19701970). Two extreme but typical

cases are where firstly we have high-dimensional data with significantly more

observations than the dimensionality of the data, in which case we run into

time and space complexity issues. While on the other extreme, we have

dimensionality of the data more than the number of observations, in which
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case we have problems making inferences and have bogus interactions between

the features (DurrantDurrant, 20142014).

One approach towards overcoming this challenge is by reducing the dimen-

sionality of the dataset while retaining as much of the information from the

dataset as possible. Dimensionality reduction can be achieved using determin-

istic dimensionality reduction methods such as Principal Components Analysis

(PCA) or random dimensionality reduction approaches such as Random Pro-

jections (RP).

Using random dimensionality reduction approaches with ensemble learning

approaches makes intuitive sense. Reducing the dimensionality helps to improve

the computational efficiency and avoid the aforementioned mentioned time

and space complexity issues at the cost of some accuracy loss. However, the

accuracy loss can be recovered (and improved upon) through the ensemble

approach on the many randomized low-dimensional projections of the data.

RP Ensembles has been shown to be successful examples of this. RP

are computationally efficient, yet sufficiently accurate. Moreover, somewhat

surprisingly it frequently works better than PCA despite the variability of single

random projections (Bingham and MannilaBingham and Mannila, 20012001). Durrant and KabánDurrant and Kabán (20142014)

showed that, for classification, combining several random projections could

improve both classification performance and model stability, with theoretical

guarantees on the ensemble classifier performance even when the number of

training examples is far lower than the number of data dimensions.

An alternative random dimensionality reduction method is the Random

Subspace method (RS) introduced by HoHo (19981998). RS is computationally more

efficient than RP because RS merely involves selecting a subset of data feature

indices randomly without replacement whereas RP requires a matrix-matrix

multiplication. Additionally, RS projected datasets are more interpretable than

RP projected datasets because RS retains a subset of the original features. How-

ever, despite the success of RS in many problem domains (Serpen and PathicalSerpen and Pathical,
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20092009; Kuncheva et al.Kuncheva et al., 20102010; HoHo, 19951995; BreimanBreiman, 20012001), there is very little

theory to explain the effectiveness of RS.

1.2 Motivation and Research Questions

Ensemble classification with RS as a diversity generator scheme is an

appealing research direction. RS has been shown to empirically perform very

well and is used in many high-dimensional classification tasks (Kuncheva et al.Kuncheva et al.,

20102010; HoHo, 19981998). Additionally, RS is easy to implement and significantly

computationally cheaper than other dimensionality reduction techniques such

as PCA and RP. However, despite the empirical results and extensive use of RS

in ensemble learning, there are few theoretical explanations to said effectiveness,

especially for classification tasks.

Theoretical insights into RS ensemble classifiers would also provide a more in-

depth understanding of the theoretical foundations of other ensemble classifiers.

While we have a sound theoretical basis for ensemble regression in terms of the

bias-variance-covariance decomposition of their error (Ueda and NakanoUeda and Nakano, 19961996),

apart from specific cases such as Random Projection-Fishers Linear Discriminant

(DurrantDurrant, 20132013) and Negative Correlation Learning (BrownBrown, 20102010), we have

little theory to explain the error decompositions in ensemble classifiers.

Additionally, insights grounded in the high-dimensional settings also help

us understand the counter-intuitive nature of high-dimensional learning and

possibly help in developing computationally efficient methods that would be

helpful to learn tasks involving the increasingly high-dimensional data.

Ultimately, we hope that the insights gained would help us answer the key

open question for ensemble classifiers, “When will an ensemble of weak learners

outperform a single carefully-tuned learner?” (DurrantDurrant, 20132013; Brown et al.Brown et al.,

20052005). With this motivation, some questions we are interested as follows. Note

that when we talk of an ensemble, we refer to a classifier ensemble.
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• What are the factors affecting the error in each ensemble method? i.e.

How does the following affect the error and other performance metrics of

the ensemble of classifiers in high-dimensional datasets (HDDS)?

– Number of attributes in each classifier for Random Subspace method.

– Selecting attributes for random subspace with non-uniform proba-

bility.

– Number of members in an ensemble of classifiers.

– Choice of the weight assignments for the combination schemes.

– The use of different combiners methods, for instance, majority voting,

weighted sum

• How does noise affect overall accuracy of the ensemble? What affects an

ensemble’s tolerance to noise (SchapireSchapire, 20132013)?

• How does having negatively correlated errors affect the performance of

the ensemble? What is the gain of having many weak or uncorrelated clas-

sifiers against having relatively fewer negatively correlated weak classifiers

(Kuncheva et al.Kuncheva et al., 20002000; Brown et al.Brown et al., 20052005)?

• Are there any “lucky” structures in the data — for example sparsity or

regularity — that would help with classification? Is the performance of

the classifier dependent on the representation of the data?

• What is a good measure of diversity in the ensemble and how does

diversity affect the performance of the ensemble (Didaci et al.Didaci et al., 20132013;

Kuncheva et al.Kuncheva et al., 20002000)?

• For a given problem, is there a “best” measure of diversity (Didaci et al.Didaci et al.,

20132013)?
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1.3 Organization of the Thesis

This thesis contains seven chapters including this chapter as well as sup-

plementary materials containing supplementary proofs and figures not directly

referenced in the thesis. The MATLAB and PYTHON source-codes used to

produce the empirical results presented in this thesis are available at GitHub

(http://www.github.com/martianunlimited/phd-research/http://www.github.com/martianunlimited/phd-research/), with a soft-

copy of the source-codes attached to this thesis.

• Chapter 1 introduces the problem and states some the research questions

we would like to answer in this thesis.

• Chapter 2 discusses the state of art and the gaps in our understanding.

• Chapter 3 introduces the mathematical tools needed to derive the

theorems and results presented in the later chapters.

• Chapter 4 presents our investigation into the conditions for Johnson-

Lindenstrauss Lemma-like norm-preservation-guarantees on random sub-

space projected data. Our main motivation behind this investigation

is to provide the theoretical foundation for geometry-preservation for

randomized dimensionality reduction (namely random subspace) that is

independent of the concept class (Arriaga and VempalaArriaga and Vempala, 19991999). The impli-

cations of our investigation are far-reaching and goes beyond margin-based

classifications, with implications also affecting non-machine learning ap-

plications such as sparse signal recovery using compressive sensing which

would also be discussed in this chapter.

• Chapter 5 presents our investigation on “flipping probability” defined

as the probability that two vectors in d-dimensions with an angular

separation of less than π/2 having an angular separation more than π/2

after projecting to a lower dimensional space (Durrant and KabánDurrant and Kabán, 20132013).

As noted by Durrant and KabánDurrant and Kabán (20132013), results from this investigation
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provides an upper bound on the generalization error of any linear classifier

in a randomly projected space in the absence of a margin.

• Chapter 6 investigates the performance of the ensemble when the clas-

sifiers are correlated. By establishing RS as a randomized dimensionality

reduction, we can look at the RS process as an independent randomized

diversity generation scheme for classifiers ensembles. Inspired by results

from the social sciences and economics, we will investigate modelling the

accuracy of a majority vote ensemble using a Polya-Eggenberger distribu-

tion and discuss the implications of the model. We will provide extensive

empirical corroboration, and discuss other considerations affecting the

accuracies of an ensemble classifier (e.g. feature/label noise, combination

weights, training size).

• Chapter 7, we apply our findings to deep neural network image classifi-

cation tasks. Taking inspiration from nature we propose “PseudoSaccade”

and show how an ensemble of deep neural network classifiers with “Pseu-

doSaccade” can give better image classification accuracy compared to a

single view classification. Our approach is also highly robust to adversarial

examples, unlike the original neural networks.

• Chapter 8, we summarise our findings and discuss future directions for

this research.
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2
Background

Summary We begin our review by stating the classical intuitions behind

ensemble learning and a review of the literature regarding ensembles of classi-

fiers. We will then review high-dimensional learning and some dimensionality

reduction techniques and show how dimensionality reduction strategies in high-

dimensional learning can work well with ensemble learning. We will then intro-

duce the work done for random projections ensemble classifiers in various litera-

ture (i.e. DurrantDurrant (20132013); Durrant and KabánDurrant and Kabán (20132013); Cannings and SamworthCannings and Samworth

(20172017); Arriaga and VempalaArriaga and Vempala (19991999)) to chart a framework for our analysis on

random subspace ensembles. Finally, we will identify gaps in our current un-

derstanding and the challenges that make these gaps challenging to surmount.

2.1 State of the Art

2.1.1 Ensemble Classifiers

Ensemble classifiers are a “meta-learning” approach to machine learning,

where rather than having a single classifier make the decision, the decision

is made by training multiple “base” classifiers and combining their outputs

such that the decision is the collective decision of the “committee”. There are

many different approaches for combining the ensemble member’s outputs — we

discuss several in section 2.1.22.1.2. Ensemble classifiers can be roughly categorised

based on two features of the ensemble learner namely the method by which
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Figure 2.1: Model of an Ensemble Learner

diversity is induced between the base learners and the combination scheme for

the base learners’ outputs (Valentini and MasulliValentini and Masulli, 20022002).

Figure 2.12.1 illustrates a general model of an ensemble classifier. In this figure,

the components of ensemble classifier in this model are as follows:

• Training Set :- data set for training the base classifiers.

• Diversity Generator :- component generating the diversity in the base

classifier outputs. Typically, this is achieved by manipulating the training

data.

• Base Learner :- learners generated by one or more learning algorithms.

• Combination Scheme :- component responsible for combining the results

from the ensemble members into a single decision rule.

In classification tasks, we can define H to be the hypothesis space rep-

resenting the possible classifiers from a family of classifiers. That is H is a

space in which points are functions, each of which is a possible outcome of

the training data and learning algorithm. We learn ĥ ∈ H that minimizes the

expected loss function L(xq), typically the misclassification rate (also known

as the 0-1 loss) or the sum squared error between the output of the classifier

and the actual output, given an observation xq ∼ Dx|y, where Dx|y is the data

generating distribution. Typically, Dx|y is unknown and has to be estimated

from the ‘training set’ (a collection of examples) T i.i.d∼ Dx|y drawn identically

and independently from the data generating distribution.
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Figure 2.2: Three fundamental reasons why an ensemble may work better than a

single learner (adapted from (DietterichDietterich, 2000a2000a)). H represents the hypothesis space

of all possible learners, h1, h2, h3 the individual base learners, and f the decision

rule output from the combination scheme.

The ensemble learning approach to classification tasks comprises learning

from the training data multiple ĥi, with i ∈ {1, . . . , N}, and N is the size of the

ensemble. The ensemble learner then combines these individual classifiers using

a combination scheme into a single decision rule that we hope will minimize

the expected error for a given error function.

Empirical results have shown that ensemble classifiers are typically superior

in terms of accuracy and robustness versus individual learners (KunchevaKuncheva,

20022002). Figure 2.22.2 illustrates three intuitions as described by DietterichDietterich (2000a2000a)

as to why an ensemble can be superior to an individual learner. The first

comes from a statistical intuition whereby the average of the individual learners

reduces the impact of learning a “bad” hypothesis that does not generalize

well to data outside the training set (i.e. the “wisdom of crowds” discussed

in the introduction (Chapter 11). Second is a computational intuition in that

individual learners may converge to a local minimum of the loss, but an ensemble

constructed from many starting points may provide a better approximation

to the optimal learner with overall minimum loss. Last, is a representational

intuition, where the hypothesis space (the space of all possible learners that the

11



learning algorithm can generate) may not encompass the optimal learner, but

the sum of the individual learners may expand the representable functions in

the hypothesis space to give an aggregated learner that is closer to the optimal

learner. For example, if the best decision boundary is quadratic, but H only

contains linear classifiers, a piecewise linear classifier can better approximate

the decision boundary than a single linear classifier. While these intuitions

have not been established with formal theoretical foundations, these intuitions

are widely accepted among researchers (Valentini and MasulliValentini and Masulli, 20022002).

2.1.2 Combination Schemes in Ensemble Classifiers

As one might readily expect, the choice of the combination method in

the combination scheme can significantly affect the overall accuracy of the

ensemble learner (Leung and ParkerLeung and Parker, 20032003). While in regression ensembles, we

might typically combine the predictions using either a weighted average or

median, there are many more methods in ensemble classifiers to combine the

predictions of the outputs. Many of these methods are inspired by the electoral

systems studied in political science and thus share the same shortcomings.

Unsurprisingly, there is very little consensus as to which is the superior electoral

system. Indeed, if there are more than two choices, it is impossible to satisfy

a common set of reasonable conditions for any voting scheme simultaneously

unless the decision is made by a dictator (ArrowArrow, 19501950).

An overview by Van Erp et al.Van Erp et al. (20022002) categorised the combinations schemes

into three categories depending on the output of the member classifiers. The

first category of ensemble combination scheme is the vote-based schemes, where

the base classifiers only provide a single class label as the decision from the

classifier. The second category is described as rank-based schemes where the

base classifiers provide a list of class labels in the order the classifier finds to

be the most likely decision. Finally, the last category is score-based schemes

where the classifier provides a list of class labels as well as a score representing
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the “confidence” the classifier has that the corresponding class label is correct

or its estimate of the relative probabilities of the class labels.

To help elaborate on the different combination schemes, we will also borrow

some terminology from the electoral systems. The “candidates” is the set of all

possible class labels output from the classifiers and a “candidate” is a member

element of the “candidates”. A vote is the “candidate” chosen as the top choice

of the classifier, and the score is a numerical value representing the “confidence”

of the classifier in that choice. A ranked list is an ordered list of candidates

sorted according to the preference or the confidence that the “candidate” is

the correct choice.

• Vote-based Schemes

– Plurality: each classifier gives a vote for the class label, and the class

label with the highest vote is the output of the ensemble. In political

science, this is sometimes also known as “first past the post”. While

this voting system makes intuitive sense, this system may result in

a less preferred choice winning the vote due to something called the

“spoiler effect” where the would-be winner shares the votes with a

spoiler candidate, resulting in a less preferred candidate winning.

– Majority: similar to plurality vote, except that if the top choice fails

to obtain at least 50% of the votes, the ensemble does not produce

an output. Note that most literature does not distinguish between

plurality vote and majority vote and uses the definition given in

plurality voting.

– Amendment: Amendment voting compares two candidates and

eliminates the candidate with the least vote. The winner is then

pitted against the next available candidate and so on until the last

remaining candidate is declared the winner. Note that amendment

voting favours the candidate that is last to be added into the voting

system, because if there are more than two classes, the preference

may be non-transitive (e.g. like in a game of rock, papers, scissors).
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– Runoff: Runoff voting comprises of two rounds. The first round

chooses two winners using the plurality vote rules from the choice

of all the candidates. The second round chooses a final winner from

the two winners of the first round.

– Condorcet count: All candidates are compared in pairs with the win-

ner in each pair awarded a point. The final winner is the candidate

that was awarded the most points from each of the pairwise compar-

isons. This is sometimes known as round-robin in some literature

(FürnkranzFürnkranz, 20022002).

• Rank-based Schemes

– Borda count: This method was developed by BordaBorda (17811781) and uses

the ranking from all voters and assigned a score based on the relative

rank (typically 1/m, where m is the position of the candidate in the

ranking list). We then compute the mean score of each candidate

over all the voters. The classes are re-ranked by their mean score,

and the top-ranked candidate is picked as the correct output. The

Borda count can be seen as the analogue to Sum rule when the

classifier confidence scores are unavailable.

– Single transferable vote: This system is sometimes known in politi-

cal science as “alternative voting”. Under this system, the system

attempts to find a winner through majority voting, if none of the

candidates acquires the requisite 50% of the vote, the candidate

with the lowest number of votes is eliminated and the candidate’s

vote given to the voter’s next choice. The elimination of the can-

didate with the lowest number of votes is repeated until one of

the candidates receives the requisite 50% of the votes. In machine

language literature, this system is sometimes known as “Plurality

with Elimination” (Leung and ParkerLeung and Parker, 20032003; Leon et al.Leon et al., 20172017) and

a variant of this combination scheme exists known as “Anti-plurality”

where rather than the classifiers voting for the most likely candidate,
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the classifiers votes against the candidate the classifier finds to be

least likely to be correct.

• Score-based Schemes

– Pandemonium: In pandemonium voting, the classifier provides a

value representing the classifier’s confidence in the prediction. The

candidate class that receives the highest confidence among all the

prediction is chosen as the output class (SelfridgeSelfridge, 19581958). This

combination rule is known as “max rule” in some literature (e.g.

Kuncheva and WhitakerKuncheva and Whitaker (20032003)).

– Sum rule: The ensemble sums the confidence of each of the candi-

dates and chooses the candidate with the highest total. This method

is functionally equivalent to the average vote rule used in some

literature.

– Product rule: This is similar to the sum rule, with the key difference

where rather than summing the confidence score, the confidence

scores are multiplied together. This combination rule severely pe-

nalises classes with a low confidence score. The product rule combi-

nation scheme is sometimes known as the geometric mean rule in

some literature.

Ensemble classifiers commonly combine the decision using plurality vote

(sometimes also known as hard-vote in software implementations) and sum rule

(also known as soft-vote). While the other combination schemes (e.g. Borda

count) are less commonly used, empirical results have shown that these combina-

tion schemes can give superior accuracy compared to majority-vote for specific

applications (Riesen and BunkeRiesen and Bunke, 20072007; Ho et al.Ho et al., 19941994; Domeniconi and YanDomeniconi and Yan,

20042004; Leon et al.Leon et al., 20172017).

Figure 2.32.3 taken from Van Erp et al.Van Erp et al. (20022002) shows that the accuracy of

a bagged ensemble classifier varies depending on the ensemble combination

schemes. The results in Van Erp et al.Van Erp et al. (20022002) are consistent with the simulation

by KunchevaKuncheva (20022002). However, it is important to note that the authors noted
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that their results rely on several assumptions that may not be tenable in real-

world situations (i.e. independence in classification error, identical accuracy).

Figure 2.3: Classification accuracy for handwriting of digits for different combi-

nation schemes taken from Van Erp et al.Van Erp et al. (20022002)

2.1.3 Measuring Diversity in Ensemble Classifiers

It is generally accepted ensemble learning takes inspiration from political

science, where the ancient Greeks believe that the joint decision of the society is

superior to that of an individual. This intuition was first explored in Condorcet’s

Jury Theorem (CJT) (CondorcetCondorcet, 17851785) which states that a group of voters

which takes a majority vote between two alternatives of which exactly one is

“correct”, makes the correct decision with absolute certainty (with probability

one) as the group size increases. CJT assumes that, the voters are sufficiently

competent (correct at least more than half the time), and are independent,

which however, have been shown to be simultaneously untenable (DietrichDietrich,

20082008). It is generally accepted however that, while we cannot guarantee that

the decision would be “correct” with absolute certainty, the decision of the

group would tend to be superior to that of a similar individual classifier. Many

empirical results, including results from various authors (Kuncheva et al.Kuncheva et al., 20002000;
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Tumer and GhoshTumer and Ghosh, 19961996; Kuncheva and WhitakerKuncheva and Whitaker, 20032003) provided credence to

this intuition, and it is generally accepted that for a given base classifier

accuracy, the accuracy of the ensemble improves as the diversity of the base

classifiers in it increases.
This emphasis on the diversity of the ensembles leads us to an open problem,

how do we quantify diversity? To quote ZhouZhou (20122012),

Though diversity is crucial, we still do not have a clear understand-
ing of diversity; for example, currently, there is no well-accepted
formal definition of diversity. There is no doubt that understanding
diversity is the holy grail in the field of ensemble learning. (ZhouZhou
(20122012) p. 100)

The comparison between algorithms and error analysis is made difficult

because we do not have a common agreement on the various forms of diversity

measures. At the moment, there is no unifying theory for all diverse ensembles

or even all ensembles from a particular family. While there have been many

empirical works on ensemble learning, it is difficult to definitively compare

between the approaches as these results are generated with different datasets,

different pre-processing, different classifiers, and different combination schemes.

A theory is needed to understand the inner workings of what is going on to

help researchers interpret and understand the results, to provide performance

guarantees for different approaches, and (hopefully) to suggest new algorithms

for particular problem settings.

Table 2.12.1 taken from Kuncheva and WhitakerKuncheva and Whitaker (20032003) summarises some of

the different ways diversity is quantified. The definitions for some of the diversity

measures are given in equations 2.12.1-2.52.5 with the definitions of N00, N01, N10,

and N11 given in table 2.22.2

Qij = N11N00 −N01N10

N11N00 +N01N10
(2.1)

ρij = N11N00 −N01N10√
(N11 +N10)(N01 +N00)(N11 +N01)(N10 +N00)

(2.2)
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Name Symbol ↗ Reference
Q-Statistics Qi,j - YuleYule (19001900) (Eqn: 2.12.1)
Correlation coefficient ρi,j - Sneath and SokalSneath and Sokal (19631963) (Eqn: 2.22.2)
Disagreement Measure Di,j + HoHo (19981998) (Eqn: 2.32.3)
Double-fault measure DFi,j - Giacinto and RoliGiacinto and Roli (20012001) (Eqn: 2.42.4)
Kohavi-Wolpert variance kw + Kohavi and WolpertKohavi and Wolpert (19961996)
Interrater agreement κi,j - DietterichDietterich (2000b2000b) (Eqn: 2.52.5)
Entropy measure Ent + Cunningham and CarneyCunningham and Carney (20002000)
Measure of difficulty θ - Hansen and SalamonHansen and Salamon (19901990)
Generalized diversity GD + Partridge and KrzanowskiPartridge and Krzanowski (19971997)
Coincident failure diversity CFD + Partridge and KrzanowskiPartridge and Krzanowski (19971997)

Table 2.1: Table of diversity measures taken from Kuncheva and WhitakerKuncheva and Whitaker (20032003).

+ indicates diversity increases with higher measure, and - indicates that the diversity

increases with lower measure.

Dij = N01 +N10

N11 +N10 +N01 +N00
(2.3)

DFij = N00

N11 +N10 +N01 +N00
(2.4)

κ = 2(N11N00 −N01N10)
(N11 +N10)(N01 +N00) + (N11 +N01)(N10 +N00)

(2.5)

Dj Correct Dj Wrong
Di Correct N11 N10

Di Wrong N01 N00

Table 2.2: 2×2 table of the relationship between the classifiers Di and Dj , where

Nxy are counts of instances according to the relationship above.

2.1.4 Results from social studies and economics

Despite the empirical evidence showing that diversity is important, many

literatures on ensemble classifiers uses a binomial distribution which does not

take in consideration the classifier diversity to model the accuracy of a majority
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vote ensemble classifier (e.g. Lam and SuenLam and Suen (19971997); Whitaker and KunchevaWhitaker and Kuncheva

(20032003); Kuncheva et al.Kuncheva et al. (20032003)).

Fortunately, because of the significant overlap between ensemble classifiers

and voting theory and the enduring interest in the Social Sciences and Eco-

nomics literature in CJT, we can exploit theoretical results from these areas.

In the recent years, there has been significant number of results regarding

CJT (e.g. DietrichDietrich (20082008); ParoushParoush (19971997); Dietrich and SpiekermannDietrich and Spiekermann (20132013);

Karotkin and ParoushKarotkin and Paroush (20032003)) and the implications on the competency of the

collective decision of a group of decision maker when the assumptions of CJT

are not satisfied. The results that are of most interest to us are by LadhaLadha

(19931993), who showed that by using de Finetti’s theorem, the assumption of

independence for the voters could be relaxed to hold for weakly correlated

voters. Moreover, LadhaLadha (19951995) later extended his result to show that, if we

assume that each voter has identical competency, the number voters choosing

the “correct” decision follows a Polya-Eggenberger Distribution (a generalized

Beta-Binomial distribution that allows for negative valued shape parameters

(Sen and MishraSen and Mishra, 19961996)). This result was independently corroborated by BergBerg

(19931993) using a numerically equivalent variant of the distribution.

To the best of our knowledge, the results of these finding have not been

explored before for machine learning applications. Although we were able to find

a single paper implementing algorithm for an ensemble classifier based on the

beta-binomial model by Ahn et al.Ahn et al. (20072007) and the application of that approach

for a genomics problem by Ahn’s student (FazzariFazzari, 20072007), the theoretical

implications of the results from the social sciences remains largely unexplored

for machine learning.

2.1.5 Error Decomposition of Ensemble Classifiers

While we have a good theoretical foundation for the error decomposition in

ensemble regression in the bias-variance-covariance error decomposition, the

theoretical foundations founded in ensemble classifiers cannot be transferred
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directly to ensemble classifiers. To see why this is so, we consider the error

decomposition of an ensemble regression with a squared error loss. We let fi

be the output of the base learner ĥi and fens be the output of the ensemble.

We also let N be the size of the ensemble, and y be the true label. The mean

squared error of the uniform weighted ensemble regression can then be written

as,

E
[
(fens − y)2

]
=
(

1
N

N∑
i

E [fi − y]
)2

+
(

1
N2

N∑
i

E[(fi − y)2]
)

+ (1− 1
N

)
N∑
i

 1
N(N − 1)

∑
j 6=i

E[(fi − E[fi])(fj − E[fj])]


The first term is said to be the average bias of the member regression, the
second term the average variance of the ensemble learners and the third
term the average covariance of the ensemble member. The error is therefore
minimized when the bias and variance terms are minimal and the covariance
terms maximally negatively correlated. However, in classification problems,
both fi and y are non-ordinal values, and therefore the concept of variance and
covariance is difficult to define. Moreover, the loss functions (e.g. zero-one loss,
ReLU, logistics) used in classification algorithms usually cannot be decomposed
into functions involving the bias and variance. To quote Brown et al.Brown et al. (20052005),

The harder question can therefore be phrased as, “How can we
quantify diversity when our predictors output non-ordinal values
and are combined by a majority vote?” Taking all these into account,
there is simply no clear analogue of the bias-variance-covariance
decomposition when we have a zero-one loss function. We instead
have a number of highly restricted theoretical results, each with
their own assumptions that are probably too strong to hold in
practice. (Brown et al.Brown et al. (20052005) p. 7)

Krogh and VedelsbyKrogh and Vedelsby (19951995) provided a proposed framework for error de-

composition of ensemble classifier using what was described as ambiguity

decomposition. In ambiguity decomposition, the error is decomposed into the

(weighted) average error and the deviation of the individual classifier to the

ensemble output (ambiguity). The equation below shows the squared error at

20



a single data point.

E
[
(fens − y)2

]
=
(

1
N

N∑
i

(fi − y)2
)

+ 1
N

N∑
i

(fi − fens)2

︸ ︷︷ ︸
Ambiguity Term

Brown and WyattBrown and Wyatt (20032003) showed the relationship between ambiguity de-

composition and the bias-variance decomposition. Moreover, BrownBrown (20042004)

also demonstrated how this framework could explicitly be used to control the

accuracy-diversity trade-off in negative correlation learning. However, it was

noted by ZhouZhou (20122012) that the variance term exists in both the error term and

the ambiguity term, indicating that it is difficult to maximise the ambiguity of

the classifiers without also affecting the bias term.

Another possible framework for the error decomposition is by Brown and KunchevaBrown and Kuncheva

(20102010), in which the authors further decomposed the “ambiguity” term into

what is called “good” diversity and “bad” diversity, defined as the disagree-

ment between the ensemble decision and the individual classifier decision. The

equation below shows the “good” and “bad” diversity decomposition, with x+

the data points where the ensemble classified correctly, and x− the data point

where the ensemble classified incorrectly.

E [L(fens − y)] =
∫
x
L(fi − y) +

∫
x−

1
N

N∑
i

L(fi − fens)︸ ︷︷ ︸
“Bad” Diversity

−
∫
x+

1
N

N∑
i

L(fi − fens)︸ ︷︷ ︸
“Good” Diversity

2.1.6 Diversity Generation in Ensembles

Despite the lack of agreement in the definition of diversity, researchers are

not discouraged from developing algorithms to increase the diversity in the

ensemble. BrownBrown (20102010) categorised diversity generation into two categories,

“implicit” diversity and “explicit” diversity. “Explicit” diversity generation are

said to be methods where the diversity is measured and actively “encouraged”,

whereas “implicit” diversity generation “assumes” that the random process

would create diversity in the ensemble.

In the survey on ensemble learning by SewellSewell (20112011), one of the standard

approaches for ensemble learning is “Bagging” (bootstrap aggregation learning).
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Bagging as introduced by BreimanBreiman (19961996) generates multiple predictors that

exploit the diversity generated by taking multiple bootstrap replicates of

the training data, where the bootstrap replicate is a random sample with

replacement of the original dataset. These predictors are then combined using

some aggregation method (e.g. plurality voting). Observe that Bagging is an

example of a method that exploits “implicit” diversity generation according to

the definition given above.

n← size of the training set,

N ← size of the ensemble

T := {(x1|y1), . . . , (xn|yn)} be the representing the training set with observa-

tions xi and label yi.

for i← 1 to N do

- Create training set Ti by sampling from T , m ≤ n items uniformly at

random with replacement.

- Learn hi using this training set Ti, and add it into the ensemble.

end for

Combine the output of hi(x) using some combination scheme, (e.g. sum rule)

hens(x) = 1
N

∑
hi(x)

Algorithm 2.1: Algorithm for Bagging taken from BrownBrown (20102010)

An alternative to Bagging is what is called “Boosting” introduced by

SchapireSchapire (19901990). In Boosting, the training set is resampled non-uniformly

rather than uniformly. While there is a large family of Boosting algorithms,

one of the more investigated and successful variant is AdaBoost (Adaptive

Boosting). In AdaBoost, the training set is weighted such that the examples

that are misclassified by previous ensemble members are sampled with higher

probability as the training procedure advances. AdaBoost can be considered as

an example of an ensemble method that exploits “explicit” diversity generation
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in that the approach of AdaBoost (also known as residue importance sampling)

adaptively reduces the correlation between the errors of subsequent classifiers

and earlier ones, thereby improve the accuracy of the ensemble.

n← size of the training set,

N ← size of the ensemble

T := {(x1|y1), . . . , (xn|yn)} be the representing the training set with observa-

tions xi and label yi.

Define an initial probability distribution D1(m) representing the sampling

probability of training example m from T . e.g. D1(n) = 1
n ,∀m ∈ [1, n]

for i← 1, N do

- Create new training set Ti by sampling with replacement from T ,

m ≤ n items according to probability distribution Di.

- Learn hi using this training set Ti, and add it into the ensemble.

- Calculate wi according to accuracy acci of hi, e.g. (wi = logit(acci))

- Update Di+1 such that Di+1(j) is increased if instance j is misclassified

and decreased otherwise.

- Normalize Di+1 so that Di+1 is a distribution

end for

Combine the output of hi(x) using some combination scheme, (e.g. weighted

majority vote)

hens(x) = 1∑
wi

∑
wihi(x)

Algorithm 2.2: Algorithm for “AdaBoost” taken from BrownBrown (20102010)

While Bagging and Boosting are popular diversity generation methods for

ensembles, empirical results have shown that these ensemble methods may not

be suitable for high-dimensional learning (Piao et al.Piao et al., 20152015). These findings are

not surprising considering that subsampling the training set usually exacerbates

the “curse of dimensionality” especially in data with small number of samples.

Additionally, Boosting can be very sensitive to mislabelled examples (ZhouZhou,
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20122012). However, there are Boosting algorithms specifically designed to be

robust against label noise such as rBoost (Bootkrajang and KabánBootkrajang and Kabán, 20132013).

2.1.7 High-Dimensional Learning

While high-dimensional datasets introduce a significant challenge to learning

algorithms, namely the “Curse of Dimensionality” referenced in section 1.1.21.1.2,

high-dimensional settings also come with some useful result that can be lever-

aged to help learning tasks. Donoho et al.Donoho et al. (20002000) coined the term “Blessings of

Dimensionality” in his talk referring to results in concentration measures that

provide high probability guarantees in the high-dimensional settings. Since

2014, the term “Blessing of Dimensionality” has increasingly appeared in

literature, sometimes referring to concentration of measures (Gorban et al.Gorban et al.,

20162016; KucheryavskiyKucheryavskiy, 20182018; Anderson et al.Anderson et al., 20142014), but also referring to the

improved discriminative ability in high-dimensional representation (Liu et al.Liu et al.,

20172017; Lin et al.Lin et al., 20182018; Pereda et al.Pereda et al., 20182018). While the results from the con-

centration of measures have been extensively applied for Random Projections

(Durrant and KabánDurrant and Kabán, 20132013; MatoušekMatoušek, 20082008), to the best of our knowledge

there is no literature using results from the concentration of measure to provide

probabilistic guarantees for Random Subspace (RS) projections.

One approach towards overcoming the curse of dimensionality is dimension-

ality reduction, which is to find a projection that projects a data point x ∈ Rd

onto a k-dimensional subspace while retaining as much information from the

data as possible. Borrowing from the taxonomy introduced by BrownBrown (20102010)

referenced in section 2.1.62.1.6, we can categorize dimensionality reduction methods

into “explicit” and “implicit” methods. Here we define explicit dimensionality

reduction as methods that actively measure the distortion resulting from the

projection and choose the projection that minimizes said distortion, while

implicit dimensionality reduction is probabilistic methods that project the

data down into the lower dimensional subspace without actively measuring

the distortion caused by the projections. Examples of explicit dimensionality
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reduction methods include Principal Component Analysis, Independent Compo-

nent Analysis, and Isomap (Sorzano et al.Sorzano et al., 20142014). Another interesting example

of explicit dimensionality reduction is feature selection, where the algorithm

chooses k features that are “most informative” in the data without transforming

the features. This approach can be thought of as the “explicit” analogue to

the RS method. Feature selection has been shown to be an effective approach

for dimension reduction in some high-dimensional data (Nogueira and BrownNogueira and Brown,

20152015).

2.1.8 Random Projection (RP)

Random projection (RP) is a randomised dimensionality reduction method

that projects a data point x ∈ Rd onto a k-dimensional subspace with the

subspace typically either chosen uniformly at random from all possible such

subspaces of dimension k in Rd or is the span of k vertices of a centred hypercube

chosen uniformly at random with replacement from all 2d such vertices. In the

implementation for a single RP, we generate a k × d matrix of values sampled

from such a zero-mean symmetric sub-Gaussian distribution, and then left

multiplies the data point with this RP matrix, with the same RP matrix being

used for each data point in a training set of observations.

The RP method has its roots in geometric functional analysis and en-

tered the Machine Learning and KDD communities via Theoretical Com-

puter Science, in particular, seminal papers by Indyk and MotwaniIndyk and Motwani (19981998)

and Arriaga and VempalaArriaga and Vempala (19991999). RP has found many successful applications

(Bingham and MannilaBingham and Mannila, 20012001; Venkatasubramanian and WangVenkatasubramanian and Wang, 20112011) and the

theoretical foundations of RP are by now quite well understood (Dasgupta and GuptaDasgupta and Gupta,

20032003; MatoušekMatoušek, 20082008; IndykIndyk, 20012001).

A key theoretical result regarding RP, widely used in theoretical analyses

and as heuristic justification for the application of RP, is the following Johnson-

Lindenstrauss Lemma (JLL):
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Proposition 2.1 (Johnson and Lindenstrauss, 1984). Let ε ∈ (0, 1). Let

N, k ∈ N such that k ≥ Cε−2 logN , for a large enough absolute constant C. Let

V ⊆ Rd be a set of N points. Then there exists a linear mapping R : Rd → Rk,

such that for all u, v ∈ V :

(1− ε)‖u− v‖2
2 ≤ ‖Ru−Rv‖2

2 ≤ (1 + ε)‖u− v‖2
2

JLL has been extensively studied and surveyed (MatoušekMatoušek, 20082008). Unfortu-

nately, RP is in general computationally much more expensive than RS, and of

course, it does not preserve the original features. The time complexity to gener-

ate the projection matrix is O(kd), and to extract the projected data from the

full data requires a matrix-matrix multiplication, which is O(kdN) in general.

Although there are several approaches that consider increasing the sparsity of

the projection (AchlioptasAchlioptas, 20012001; Ailon and ChazelleAilon and Chazelle, 20092009; Kane and NelsonKane and Nelson,

20142014) to improve the hidden constants in the matrix multiplication, in practice,

this is still costly for large or very high-dimensional datasets. For RP matri-

ces with ±1 entries, Ailon and LibertyAilon and Liberty (20092009) give an O(Nd log k) algorithm

provided k <
√
d. For these and similar matrices such as those in (AchlioptasAchlioptas,

20012001), one can also use Mailman’s Algorithm (Liberty and ZuckerLiberty and Zucker, 20092009) which,

for a one-off pre-processing cost of O(kd), speeds up the matrix-matrix multi-

plication by a factor of O(log d). However, our experience is that this approach

is not as fast in practice as RS and, in particular, it is very memory hungry,

and the data projection is slower in practice in typical use-cases. Finally,

Ailon and ChazelleAilon and Chazelle (20092009) gave an O(d log d + N(d log k + k2)) algorithm us-

ing a randomized Hadamard transformation to precondition the data so that,

with high probability, it is regular. One of the key results for JLL is the

result by Arriaga and VempalaArriaga and Vempala (19991999) which used the results JLL guarantees

to upper-bound the generalisation error for margin-based classifiers.

Durrant and KabánDurrant and Kabán (20102010) introduced the “flipping probability” of a pair of

randomly projected vectors as the probability that two vectors in d−dimensional

Euclidean space m,n ∈ Rd which are separated in Rd by an angle θ ∈ [0, π/2]
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have angular separation θR > π/2 following a random projection. Later work by

Kabán and DurrantKabán and Durrant (20172017) shows that the “flipping probability” is a useful tool

to capture the geometric structure that makes a classification problem “easy”

in that it requires a relatively low amount of sample size to guarantee good

generalisation and does not require a margin. However, DurrantDurrant (20132013) noted

that methods used to derive the “flipping probability” rely on the rotational

invariance and therefore cannot be used on projections that are not rotationally

invariant (e.g. RS).

2.1.9 Random Subspace Projection (RS)

Random Subspace method (RS) was first introduced by HoHo (19981998), where an

ensemble of decision trees employing several sets of RS projected data was used

for a classification problem. RS as an ensemble method has shown good results

with many learning algorithms such as support vector machines, Tao et al.Tao et al.

(20062006), linear classifiers Skurichina and DuinSkurichina and Duin (20022002), k-nearest neighbour HoHo

(19951995) and also on a variety of data sets from different problem domains (e.g.

Kuncheva et al.Kuncheva et al. (20102010); Li and ZhaoLi and Zhao (20092009); Lai et al.Lai et al. (20062006)). Additionally,

RS has several practical advantages over RP. In particular, unlike RP, it retains

the original data features. Also, unlike RP, it can be used even if the data

dimension d is not fixed or is not known a priori, e.g. by using reservoir

sampling (VitterVitter, 19851985) on the feature indices. It has very low time complexity

compared to RP, namely O(d) (or O(d log d) using reservoir sampling) typically

to generate a subset of indices to be sampled, and O(N) to construct the

projected dataset. Finally, we note also that scalable parallel approaches for

sampling from very large and streaming datasets have recently been devised

(MengMeng, 20132013).

Formally, RS is a randomised dimensionality reduction method that projects

a data point x ∈ Rd onto the subspace spanned by k canonical basis vectors

ej = (e(j1), e(j2), . . . , e(jd))T , j = {1, 2, . . . , k}, where e(ji) = 1 if i = j and zero

otherwise. The RS basis is chosen uniformly at random from all
(
d
k

)
possible
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such subspaces of dimension k. In the implementation for a single RS one

simply selects a subset of k feature indices without replacement, uniformly at

random from all such subsets of size k, and then discards the values of the

remaining d− k features with the same k feature indices being used for each

data point in a set of observations.

LoupesLoupes (20142014) provided theory for a variant of RS known as Random Forest

(BreimanBreiman, 20012001), in which the author stated that building an ensemble reduces

the variance of the class probability estimate. However, it may be important to

note that the author’s results assume squared error loss and an error estimate

modelled using standard normal distribution.

2.2 Gaps in Current Understanding and Our Contribu-

tions

One of the key shortcomings we identified and liked to address in our thesis

is the lack of theory for RS projections for ensemble learning. While there are

numerous empirical results demonstrating the effectiveness of RS and RS-like

ensemble learning, there is very little theory to explain the effectiveness of

RS projections for learning. Many of the results in literature usually show

improvements empirically for a specific problem domain with little evidence

that the approach can be used in other problem domains. In chapter 44, we

investigate the conditions for “norm-preservations” in RS projections. As far

as we know, there are no known non-trivial guarantees for norm preservations

in RS projections. Insights into this provides us with the theoretical basis

for RS in algorithms that are based on geometry of the data (e.g. clustering,

nearest-neighbour) and margin-based classifications.

Work by Kabán and DurrantKabán and Durrant (20172017) shows that the “flipping probability”

can be used to give an upper-bound to the generalization error in the absence

of a margin. However, as noted by DurrantDurrant (20132013), the proofs involving for the

“flipping probability” on RP takes advantage of the rotational invariance nature
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of the RP projection and therefore cannot be transferred directly to projections

that are not rotational invariant (e.g. RS). In chapter 55, we tackle this problem

and provide an upper-bound to the flipping probability for RS projections which

does not depend on rotational invariance. We then discuss the implications of

the “flipping probability” in a RS ensemble taking into consideration that RS

is an independent randomized diversity generation scheme.

In spite of the empirical evidence showing that diversity is important to the

ensemble accuracy, accuracy models for majority vote are typically based on the

binomial model which assume independence of votes and does not take in ac-

count diversity of the classifiers (Lam and SuenLam and Suen, 19971997; Whitaker and KunchevaWhitaker and Kuncheva,

20032003; Kuncheva et al.Kuncheva et al., 20032003). Leveraging on the work from the social sciences,

we investigate the majority vote accuracy of an ensemble of classifiers of

correlated classifiers. We evaluate the accuracy-diversity trade-offs using a

Polya-Eggenberger model (LadhaLadha, 19951995; BergBerg, 19931993) and compare the model

to extensive empirical results. We then discuss the implications of the model

and provide extensive empirical corroboration for the model.

We provide empirical corroboration for our main results with synthetic

and real-world high-dimensional data. Based on our results and our theory,

we propose a method of building ensembles for Deep Neural Network (DNN)

image classifications tasks using multiple RS projections and a single DNN to

improve on the classification accuracy — without needing to retrain the neural

network. Our approach shows improved accuracy versus existing non-ensemble

approaches, and is highly robust to adversarial examples, unlike the original

neural networks.
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3
Mathematical Tools

3.1 Linear Algebra

In this section, we will introduce some key results related to real-valued

vector spaces and matrices. ‘

Definition 3.1 (Matrices). Let F be a field and m,n ∈ N. An m×n matrix A

over F is defined as an array with m rows and n columns of numbers in F. If

m = n (that is to say there the number of rows and columns are the same) the

matrix is said to be a square matrix. We denote the entry in row i and column

j as Ai,j. We use Ai,: to denote every entry in the i-th row, and similarly, we

use A:,j to denote every entry in the j-th column.

These results hold for all fields, however in the following chapters, we will

consider primarily on the real value fields, F = R, real-valued vectors V = Rd

and real-valued matrices M = Rm×n

Definition 3.2 (Vectors). Let F be a field and d ∈ N. A vector is an ordered

array over a field Fd. Vectors are typically denoted with boldface lower-case

letters, such as x. A vector can also be thought of as a matrix with one column.

The elements of the vector are identified using by the name of the vector followed

by a subscript. For example, x1 is the first element of the vector x, and y3 is

the third element of the vector y.

To access multiple elements in the vector, we can define a set and subscript

the vector with the set. For example, to access elements {1, 4, 7}, we define

s = {1, 4, 7} and denote xs. We use the − symbol to complement the index,
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for example x−s accesses all elements of x except elements {1, 4, 7}. We can

compactly define a vector by defining the either explicitly defining the elements

in the vectors, or to implicitly defining the vector. For example, the following

are two ways of defining the same vector.

• x0 = 1, xi = 0,∀i ∈ [2, d]

• x = [1, 0, . . . , 0]

Definition 3.3 (Matrix Transpose). Let A be an m×n matrix. The transpose

of matrix AT is an n ×m matrix with the row and column entries swapped,

that is to say (AT )i,j = Aj,i.

A =
 A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

 AT =


A1,1 A2,1

A1,2 A2,2

A1,3 A2,3


Definition 3.4 (Matrix Addition and Multiplications). The matrix addition

A+B an element-wise operator on the matrix and exist if and only if A and

B has the same number of rows and columns. Formally, let A and B be a

m× n matrix, the sum C = A+B will be an m× n matrix with entries of

Ci,j = Ai,j +Bi,j.

The matrix product AB exist only if the number of columns in matrix A

equals the number of rows in matrix B. Formally let A be an m× n matrix,

and B be an n × o matrix, the product C = AB will be an m × o matrix

with entries of Ci,j = ∑n
k=1Ai,kBk,j. Observe that assuming that the matrix

operation is valid, the matrix operations satisfy the following axioms:

• A+B = B +A (Commutative Addition)

• (A+B) +C = A+ (B +C) (Associative)

• (AB)C = A(BC) (Associative)

• A(B +C) = AB +AC (Distributive)

• (A+B)C = AC +BC (Distributive)

32



In general, matrix products are not commutative (i.e. AB 6= BA), and

the matrix product AB commutes if and only if A and B are simultaneously

diagonalizable.

Definition 3.5 (Vector Addition). The vector addition between vectors u,v ∈

Rd is the element-wise sum of the elements in u and v. Formally, if w = u+v,

then wi = ui + vi,∀i ∈ [1, d]. Geometrically, we can interpret u as a directed

vector in a d-dimensional space, and the vector addition u+v can be interpreted

as placing the tail of vector v to the head of vector u as denoted in the illustration

in Figure 3.13.1.

a

a

b

b

a+b

Figure 3.1: A visual representation of a vector addition

Additionally, for all vectors u,v,w ∈ V and scalars a, b in F, the operation

satisfies the following axioms:

• Commutativity: u+ v = v + u

• Associativity: (u+ v) +w = u+ (v +w)

• Additive Identity: u+ 0 = u and u+ (−u) = 0

• Distributivity: a(u+ v) = au+ av

Definition 3.6 (Inner products). The dot product, also known as the inner

product, is a product between two vectors and results in a scalar quantity.

Formally, the scalar product c = u · v where u ∈ Rd and v ∈ Rd is given by

c = ∑d
i=1 uivi.

Note that a · b is sometimes written using the matrix notation aTb or the

inner product notation 〈a, b〉. To keep the notation compact, we use the matrix
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notation in our proofs; however, we would occasionally use the inner product

notation in our text to improve the readability of the statements.

Observe that a dot product has the following properties, namely that for

all u,v,w ∈ Rd:

• Positivity: 〈u,u〉 ≥ 0

• Definiteness: 〈u,u〉 = 0 ⇐⇒ u = 0

• Additivity: 〈u+ v,w〉 = 〈u,w〉+ 〈v,w〉

• Homogeneity: 〈au,v〉 = a 〈u,v〉

• Conjugate Symmetry: 〈u,v〉 = 〈v,u〉

Note: For real value fields, conjugate symmetry implies commutativity. Geo-

metrically, the dot product between u · v can be interpreted as the product of

the projection of vector u on vector v with the vector v. Figure 3.23.2 illustrate

this geometrical interpretation.

u

v

u·vθ

Figure 3.2: Geometric representation of vector dot products

Definition 3.7 (Orthogonal vector). Vectors u,v is said to be orthogonal to

each other if 〈u,v〉 = 0. Geometrically, if vectors u and v are both not 0, we

can interpret the two vectors as perpendicular to each other.

Definition 3.8 (Hadamard Product). The Hadamard dot product(�), is an

element-wise product of the vectors. Formally, the Hadamard dot product

w = u� v,u,v ∈ Rd
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where wi = uivi.

Observe that the Hadamard product has the following properties namely

that for all u,v,w ∈ Rd:

• Commutative: u� v = v � u

• Associative: (u� v)�w = u� (v �w)

• Distributive: u� (v +w) = u� v + u�w

We would define u2 as u � u and more generally un with n ∈ N as

u�u · · ·�u n-times. The Hadamard dot product is related to the dot product

by 〈u,v〉 = ∑d
i=1(u� v)i. However, to the best of our knowledge, there is no

intuitive geometric interpretation for the Hadamard dot product.

3.1.1 Matrix Operations

Definition 3.9 (Matrix Trace). The trace of a square matrix A is the sum of

the diagonal elements. Formally, the trace of an n× n matrix A

Tr(A) =
n∑
i=1

Ai,i

.

Definition 3.10 (Matrix singular value decomposition). A m× n real-valued

matrix A can be written as the product of matrices U , D, V T , where U is a

m×m orthogonal matrix, V is a n× n orthogonal matrix and D is a m× n

matrix with values only along the main diagonal (i.e. Di,j = 0 where i 6= j).

Formally,

A = UDV T

such that UUT = Im and V V T = In. The values along the diagonal of D are

the singular values of matrix A.

The rank of the matrix equals the number of non-zero diagonal elements of

D. A m× n matrix A is said to be full rank if Rank(A)=min(m,n).

Definition 3.11 (Matrix Inverse). The inverse of a m×m square matrix A

is the matrix A−1 such that

AA−1 = A−1A = I
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where I is the identity matrix. Note that only full-rank matrices (i.e. Rank(A) =

m) has an inverse.

Definition 3.12 (Moore-Penrose Inverse). The Moore-Penrose inverse A+

(sometimes known as the pseudo-inverse) of a matrix A is the generalization of

the inverse matrix A−1. For an m× n matrix A, if m ≤ n and rank(A) = m,

the Moore-Penrose inverse can be defined as

A+ = (ATA)−1AT

and if n ≤ m and rank(A) = n, the Moore-Penrose inverse can be defined as

A+ = AT (AAT )−1

.

The following are a list of property of some of the matrix operations.

• (AB)−1 = B−1A−1

• (AT )−1 = (A−1)T

• (AB)T = BTAT

• Tr(A) = ∑
iAi,i

• Tr(A) = ∑
i eig(A)

• Tr(AB) =Tr(BA)

• aaT =Tr(aTa)

3.1.2 Normed Spaces

Definition 3.13 (Normed Vector Space). A normed vector space is a vector

space that has a norm function that maps the vector to a real, non-negative

value. The norm of vector v is typically denoted as ‖v‖ and satisfies the

following axioms for all vector u,v ∈ V:

• Positivity: ‖u‖ ≥ 0

• Definiteness: ‖u‖ = 0 =⇒ u = 0
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• Sub-additivity (Triangle Inequality): ‖u+ v‖ ≤ ‖u‖+ ‖v‖

• Positive Homogeneity: ‖au‖ = |a|‖u‖

Definition 3.14 (`p norm). A commonly and extensively used norm in this

thesis is the `p norm for p ∈ [1,∞). Formally, the `p norm of u ∈ Rd is given as

‖u‖p =
(∑d

i=1 |ui|
)1/p

. We also use the `∞ norm, also known as the supremum

norm, defined as ‖u‖∞ = maxi |ui|.

Observe that the `p norms of u ∈ Rd satisfies these following inequalities:

• ‖u‖∞ ≤ ‖u‖2 ≤ ‖u‖1

• ‖u‖1 ≤
√
d‖u‖2 ≤ d‖u‖∞

• In general, for all 1 ≤ p < r : ‖u‖r ≤ ‖u‖p ≤ d1/p−1/r‖u‖r

Note that these results hold in general in all normed vector spaces. The

`2 norm, also known as the Euclidean norm, would be used extensively in our

analysis and the proofs of our theorem. We want to note here that `2 norms

are rotational-invariant and that `2 norms are related to the inner product such

that 〈u,u〉 = ‖u‖2
2. As per described by the geometric interpretation of inner

product 〈u,v〉 is equivalent to ‖u‖2‖v‖2 cos θ.

As in the case of vector spaces, a norm function of a matrix is a function

that maps the matrix to a real, non-negative value. The norm of matrix A is

typically denoted as ‖A‖ and satisfies the following axioms. For all matrices

A,B ∈Mm×n:

• Positivity: ‖A‖ ≥ 0

• Definiteness: ‖A‖ = 0 =⇒ A = 0m×n

• Sub-additivity (Triangle Inequality): ‖A+B‖ ≤ ‖A‖+ ‖B‖

• Positive Homogeneity: ‖aA‖ = |a|‖A‖

Additionally, a matrix norm is called an induced norm if the matrix norm

is induced by a vector norm by the following
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‖A‖ = sup{‖Ax‖ : x ∈ Rn with ‖x‖ = 1}. In addition to the axioms of

matrix norms, induced norms are also sub-multiplicative

• ‖AB‖ < ‖A‖‖B‖

• ‖Ax‖ ≤ ‖A‖‖x‖

Definition 3.15 (sub-Gaussian norm (VershyninVershynin, 20182018)). The sub-Gaussian

norm ‖X‖ψ2 of a random variable X is the smallest value of K4 such that

E[exp(X2/K2
4 )] ≤ 2. VershyninVershynin (20182018) also noted that the following parameters

Ki > 0 in the property below differs from each other by at most a constant

factor.

1. The tails of X satisfy

Pr {|X| > t} ≤ 2 exp(−t2/K2
1) for all t ≥ 0

2. The moments of X satisfies

‖X‖P = (E[|X|P ])1/P ≤ K2
√
P for all P ≥ 0

3. The Moments Generating Function of X2 satisfies,

E[exp(λ2X2)] ≤ exp(K2
3λ

2)

4. The Moments Generating Function of X2 is bounded at some point,

namely E[exp(X2/K2
4)] ≤ 2

Moreover, any random variable satisfying any of the properties 1–4 is sub-

Gaussian.

3.2 Useful inequalities

The following are some inequalities that are useful to derive the results of

our theorems.
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3.2.1 Means

Define the p-th power mean of a finite set of positive numbers S to be

PM(S, p) = p

√√√√∑
s∈S

sp

|S|

• The arithmetic mean AM(S) = PM(S, 1)

• The harmonic mean HM(S) = PM(S,−1)

• The geometric mean GM(S) = limp→0 PM(S, p) = |S|
√∏

s∈S s

• The maximum max(S) = limp→∞ PM(S, p)

• The minimum min(S) = limp→−∞ PM(S, p)

• PM(S, p0) ≤ PM(S, p1) for p0 ≤ p1

• HM(S) ≤ GM(S) ≤ AM(S)

3.2.2 Expectations and Variances

Let X and Y be random variables. If an inequality includes a function f of

a random variable X, assume that the expectation E[f(X)] exists.

• If g(X) ≤ h(X), then E[g(X)] ≤ E[h(X)]

• (Holder) If p, q satisfy 1
p

+ 1
q

= 1, then E[XY ] ≤ (E[Xp])
1
p (E[Xq])

1
q

• (Holder) For p > 1, E[X] ≤ p

√
E[X]p

• (Jensen) For a convex function g, If X ≥ Y , then E[g(X)] ≥ g(E[X])

• (Cauchy-Schwartz) E[|XY |] ≤
√
E[X2]E[Y 2]

• (Liapounov) For s ≥ r ≥ 1, r

√
E[Xr] ≤ s

√
E[Xs]

• (Minkowski) For p ≥ 1, p

√
(E[X] + E[Y ])p ≤ p

√
E[Xp] + p

√
E[Y p]

• ex ≥ (1 + x
n
)n ≥ 1 + x, for n > 1, |x| ≤ n

• x
1+x ≤ ln(1 + x)
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• 1− x ≤ 1
1+x ≤ 1− x+ x2 for 0 ≤ x < 1

• ln x ≤
√
x

3.3 Concentration of Measures

The concentration of measure, sometimes referred to as tail inequalities

and concentration inequalities, gives a probability bound for the deviation of a

random variable to a fixed value, typically to the expected value of the random

variable. Concentration of measures has been a topic of interest in probabilistic

analysis. Moreover, high dimensional datasets are found to have structures

benefiting from results from concentration of measures (sometimes referred

to as “Blessing of Dimensionality”). In this section, we will introduce known

results from concentration measures. These results are taken from various

textbooks, including Concentration Inequalities (Boucheron et al.Boucheron et al., 20132013) and

High Dimensional Probabilities (VershyninVershynin, 20182018)

Lemma 3.1 (Markov’s inequality). Let X be a non-negative random variable

with E [X] <∞, then Pr {X > t} ≤ E[X]
t
.

The proof of this lemma is folk lore

Proof. Let t > 0, define

Y :=


0, if X ≤ t;

t, if X > t;

Observe that Y ≤ X, therefore

E [Y ] ≤ E [X]

E [Y ] = tPr {X > t} ≤ E [X]

Pr {X > t} ≤ E [X]
t

Markov’s inequality holds for any non-decreasing, integrable functions of X.

One convenient trick to obtain tighter bounds is to transform Y := |X−E [X] |
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and apply Markov’s inequality on Y 2 giving us what is commonly known as

Chebychev’s inequality.

Lemma 3.2 (Chebychev’s inequality). Let x be a random variable with E [x2] <

∞, then Pr {|x− E [x]| > t} ≤ Var[x]
t2

.

Proof. We let y = |x− E [x] |2 and observe that E [y] = Var[x]. We then apply

Markov’s Inequality on y and obtain

Pr {|x− E [x]| > t} = Pr
{
|x− E [x] |2 > t2

}
= Pr

{
y > t2

}
≤ Var[x]

t2

.

Chebychev’s inequality is historically one of the more prominent result

in concentration inequalities. This is primarily due to the second moments

(variance) being easy to handle, is intuitive explainable, and well-studied

for many of the random distributions. One useful extension of Chebychev’s

inequality is the “one-Sided Chebychev’s inequality” also known as Cantelli’s

inequality. This inequality was obtained by Cantelli, by showing that the

probability bounds hold for an arbitrary choice of λ, and then choosing a value

of λ that minimises the inequality. This technique is a commonly used trick to

obtain tighter bounds on the concentration inequalities.

Lemma 3.3 (Cantelli’s inequality). Let x be a random variable with E [x2] <∞,

then for t > 0 Pr {x− E [x] > t} ≤ Var[x]
Var[x]+t2 .

Proof. We let y = x− E [x] and observe that E [y] = 0 and E [y2] = Var[x]

Pr {x− E [x] > t} = Pr {y > t} = Pr {y + λ > t+ λ} < V ar(x) + λ2

(t+ λ)2

Differentiating the last inequality shows that the λ∗ that minimizes the inequal-

ity is λ∗ = Var[x]
t

. Substituting λ∗ into the inequality gives us

Pr {x− E [x] > t} ≤ Var[x]
Var[x] + t2
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The techniques used to derive Chebychev’s inequalities can be extended to

the higher moments. One such method is to apply Markov’s inequality to the

Moment Generating Function (Laplace Transform of the Random Variable).

This is what is known as the Cramer-Chernoff’s method and often give a much

tighter probability bound. This improvement in probability bounds comes

from the Chernoff’s bound giving an exponential decay while the Chebychev’s

inequality implying a s an inverse polynomial decay.

Lemma 3.4 (Chernoff’s Bound). Let x be a random variable with E [x] <∞,

then Pr {x− E [x] > λt} ≤ E [expλx]
expλt .

One useful application of Chernoff’s Bound is Hoeffding’s Bound which

gives an exponentially decaying bound on the sum of random variables.

Lemma 3.5 (Hoeffding, 1963 (HoeffdingHoeffding, 19631963)). Let X1, X2, . . . , Xk be inde-

pendent random variables such that, ∀i ∈ 1, 2, . . . , k we have Xi−E[Xi] ∈ [ai, bi]

with probability 1. Denote by Sk := ∑k
i=1(Xi − E[Xi]) and fix t > 0. Then:

Pr {|Sk| ≥ t} ≤ 2 exp
(
− 2t2∑k

i=1(bi − ai)2

)

Proof. Without loss of generality let E[Xi] = 0, or else we let Xi = Xi − E[Xi].

Observe that Sk := ∑k
i=1Xi. Observe that, by independence, E[exp (λSk)] =∏k

i=1 E[exp (λXi)]. Note that exponentials are a convex function and for a ≤

Xi ≤ b, and λ > 0,

exp (λXi) ≤
b−Xi

b− a
esa + Xi − a

b− a
esb

Applying expectation to both side of the inequality gives us

E[exp (λXi)] ≤
b− E[Xi]
b− a

esa + E[Xi]− a
b− a

esb

= b

b− a
eλa − a

b− a
eλb

Let θ = − a
b−a > 0.

E[exp (λXi)] ≤ (1− θ)eλb + θeλa = eλa
(
1− θ + θeλ(b−a)

)
= e−λθ(b−a)

(
1− θ + θeλ(b−a)

)
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Let ψ(u) := −θu+ log (1− θ + θeu) where u = λ(b− a).

Taylor’s theorem states that for every u there exists a v between 0 and u

such that ψ(u) = ψ(0) + uψ′(0) + 1
2u

2ψ′′(v).

Note that ψ(0) = 0 and ψ′(0) = θ + θeu

1−θ+θeu |u=0 = 0

ψ′′(v) = θev (1− θ + θev)− θ2e2v

(1− θ + θev)2 = θev

1− θ + θev

(
1− θev

1− θ + θev

)

. Observe that θev

1− θ + θev
is bounded between 0 ≤ θev

1− θ + θev
≤ 1 and

therefore 0 ≤ ψ′′(v) ≤ 1/4.

Therefore, ψ(u) ≤ 1
2u

2(1
4) = 1

8λ
2 (b− a)2. Replacing this equation into the

Chernoff bound and applying gives us Hoeffding’s inequality.

Pr {Sk − E[Sk] ≥ t} ≤ exp
(
− 2t2∑k

i=1(bi − ai)2

)

and applying symmetry gives us the two sided bound

Pr {|Sk − E[Sk]| ≥ t} ≤ 2 exp
(
− 2t2∑k

i=1(bi − ai)2

)

Hoeffding inequality implies a sub-Gaussian tail inequality for the sum Sk

based on the range of Xi. However, in the cases where the variance of the sum

Sk is much smaller than ∑k
i=1(bi − ai)2 we can obtain a significantly tighter

tail-bound of the sum Sk using Bernstein-Bennett’s Inequality.

Lemma 3.6 (General Hoeffding’s inequality, (Theorem 2.6.3 VershyninVershynin (20182018))).

Let X1, . . . , Xn be independent mean zero, sub-Gaussian random variables, and

a = (a1, . . . an) ∈ Rn. Then for every t ≥ 0, we have

Pr
{∣∣∣∣∣

N∑
i=1

aiXi

∣∣∣∣∣ > t

}
≤ 2 exp(− ct2

K2‖a‖2
2
) where K = max

i
‖Xi‖ψ2

Lemma 3.7 (Bennett Bound, 1962). (BennettBennett, 19621962)] Let X1, X2, . . . , Xk be

independent random variables with finite variance. Also, assume ∑i=1 |Xi| ≤ a.

Denote by Sk := ∑k
i=1Xi − E[Xi] and Vk := E

[∑k
i=1(Xi − E[Xi])2

]
and fix

t > 0. Then:

Pr {|Sk| ≥ t} ≤ 2 exp
(
−Vkφ

(
t

aVk

))
where φ(x) = (1 + x) log(1 + x)− x.
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Corollary 3.8 (Bernstein-Bennett Bound). Using the same conditions as stated

in Lemma 3.73.7,

Pr {|Sk| ≥ t} ≤ 2 exp
(
−t2

Vk + 1
3at

)

Proof. Without loss of generality let E[Xi] = 0, or else we let Xi = Xi − E[Xi].

Observe that Sk := ∑k
i=1Xi. Observe that, E [exp (λSk)] = E

[
exp

(
λ
∑k
i=1Xi

)]
.

Expanding the Taylor series for exp gives us

E
[
exp

(
λ

d∑
i=1

Xi

)]
= E

 ∞∑
n=0

λn
n!

(
d∑
i=1

Xi

)n
Expanding the first 3 terms of n gives us

E
[
exp

(
λ

d∑
i=1

Xi

)]
= E

1 + λ
k∑
i=1

xi + λ2

2!

(
k∑
i=1

xi

)2

+
∞∑
n=3

λn

n!

(
k∑
i=1

Xi

)2( k∑
i=1

Xi

)n−2
Note that since E[xi] = 0 and Xi is independent, this implies that E

[
(
∑k
i=1Xi)2

]
=

E
[∑k

i=1X
2
i

]
= Vk, also observe that

(∑k
i=1Xi

)n−2
≤ an−2.

Applying linearity of expectations, we have

=1 + λE
[
k∑
i=1

xi

]
+ λ2

2 E
[
k∑
i=1

X2
i

]
+
∞∑
n=3

λn

n! E

( k∑
i=1

Xi

)2( k∑
i=1

Xi

)n−2
=1 + 0 + λ2

2 Vk +
∞∑
n=3

λn

n! E

( k∑
i=1

Xi

)2( k∑
i=1

Xi

)n−2
≤1 + λ2

2 Vk +
∞∑
n=3

λn

n! Vka
n−2

Note that the last inequality can also be written as 1 + Vk((exp(λa)− 1− λa) and

noting that 1 + x ≤ expx. We have

E [exp (λSk)] ≤ exp (Vk (expλa− 1− λa))

Applying Chernoff’s Bound, we have

Pr {Sk > t} ≤ exp (Vk (expλa− 1− λa))
expλt

Rearranging, we have

Pr {Sk > t} ≤ exp (−λt+ Vk (expλa− 1− λa))

Optimizing w.r.t. λ and choosing λ = 1
a log

(
1 + t

aVk

)
gives us

Pr {Sk > t} ≤ exp
(
−
(
t

a
+ Vk

)
log(1 + t

aVk
)− t

a

)
44



exp−Vk
(

1 + t

aVk

)
log

(
1 + t

aVk

)
− t

aVk

To obtain the two sided bound, let Xi = −Xi and use symmetry to obtain the

lower bound and to obtain Corollary 3.83.8, observe that (1 + x) log(1 + x)− x ≥ x2

2+ 2
3x

and apply the substitution.

Lemma 3.9 (HoeffdingHoeffding (19631963), Theorem 4). Let χ = (x1, x2, . . . , xd) be a

finite population of d > 1 points, X1, . . . Xk denote a random sample without

replacement from χ and Y1, . . . Yk denote a random sample with replacement from

χ. If f : R 7→ R is continuous and convex, then E[f ∑k
i=1Xi] ≤ E[f ∑k

i=1 Yi]

As noted by Bardenet and MaillardBardenet and Maillard (20152015), Lemma 3.93.9 implies that the

concentration results above can be transferred to the setting of sampling without

replacement. Moreover, a direct consequence of the lemma is that the tail

inequalities for a random sample without replacement would be tighter than

what is given by Lemma 3.53.5 and 3.73.7.

Theorem 3.10 (Hoeffding-Serfling Inequality (Bardenet and MaillardBardenet and Maillard, 20152015)).

Let χ = (x1, x2, . . . , xd) be a finite population of d > 1 points and a = min(χ)

and b = max(χ). Let (Xi, . . . , Xk) be a list of size k < d sampled without

replacement from χ. Let Sn = ∑k
i=1Xi. Then, for all ε > 0 the following

concentration bound holds:

Pr {|Sk − E[Sk]| ≥ t} ≤ 2 exp
(
− 2t2

(1− k/d)((k + 1)/k)(b− a)2

)

Theorem 3.11 (Bernstein-Serfling Inequality (Bardenet and MaillardBardenet and Maillard, 20152015)).

Let χ = (x1, x2, . . . , xd be a finite population of d > 1 points and a = min(χ) and

b = max(χ). Let µ = 1
d

∑d
i=1(xi) and σ2 = 1

d

∑d
i=1(xi − µ)2. Let (Xi, . . . , Xk)

be a list of size k < d sampled without replacement from χ. Let Sn = ∑k
i=1Xi,

and γ2 = (1− k−1
d

)σ2 + k−1
d

(b− a)σ
√

2 log(1/δ)
n

. Then, for all ε > 0 the following

concentration bound holds:

Pr {|Sk − E[Sk]| ≥ nt} ≤ 2 exp
(
− nt2/2
γ2 + (2/3)(b− a)t

)
+ δ
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3.4 Statistical Learning Theory

In this section we will introduce some definitions and theorems for statistical

learning, in particular Probably Approximately Correct (PAC) learning. These

definitions and proofs are taken from Shalev-Shwartz and Ben-DavidShalev-Shwartz and Ben-David (20142014).

Definition 3.16 (PAC Learnability (Shalev-Shwartz and Ben-DavidShalev-Shwartz and Ben-David, 20142014)).

A hypothesis class H is PAC learnable if there exist a functionMH : (0, 1)2 7→ N

with the following property.

For every ε, δ ∈ (0, 1), and every distribution D over X and for every

labelling function f : X 7→ {0, 1}, if the realizable assumption holds with respect

to H,D and f , then when running the learning algorithm on n ≥MH(ε, δ) i.i.d.

examples generated by D and labelled by f the algorithm returns a hypothesis h

such that with probability at least 1− δ over the choice of examples LD,f (h) ≤ ε.

MH is known as the sample complexity, and LD,f (h) is known as the true

error or risk of the prediction rule h. The above definition also implies the

following corollary.

Corollary 3.12. Every finite hypothesis class is PAC learnable with sample

complexity

MH(ε, δ) ≤
⌈

log(|H|/δ)
ε

⌉

Now, definition 3.163.16 assumes that a labelling function f exists such that

the function f can fully determine the label from the features in the data. In

practical problems, this assumption may not hold (for instance, there may be

two observations in the data that may have different labels even though the

feature-values are identical). The following relaxes this realizability assumption

and defines what is called Agnostic PAC learnability.

Definition 3.17 (Agnostic PAC Learnability (Shalev-Shwartz and Ben-DavidShalev-Shwartz and Ben-David,

20142014)). A hypothesis class H is agnostic PAC learnable if there exist a function

MH : (0, 1)2 7→ N and a learning algorithm with the following property:

For every ε, δ ∈ (0, 1), and every distribution D over X ×Y , when running

the learning algorithm on n ≥ MH(ε, δ) i.i.d. examples generated by D, the
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algorithm returns a hypothesis h such that with probability at least 1− δ over

the choice of n training examples

LD(h) ≤ min
h′∈H

LD(h′) + ε

Let Z be X × Y where X is the instance set, and Y is the corresponding

label. The risk function LD defined as the expected loss of a classifier h ∈ H,

with respect to probability distribution D over Z. Mathematically,

LD(h) := Ez∼D[l(h, z)]

The empirical risk LS defined as the expected loss of a classifier h ∈ H over

a given sample S = (z1, z2, ..., zn),

LS := 1
n

n∑
i=1

l(h, zi)]

As remarked in chapter 22, in classification tasks, we typically use 0-1 loss

for classification.

l(h, (x, y)) :=


0 if h(x) = y

1 if h(x) 6= y

Definition 3.18 (ε-representative sample (Shalev-Shwartz and Ben-DavidShalev-Shwartz and Ben-David,

20142014)). A training set S is called ε-representative with respect to domain Z,

hypothesis class H, loss function l and distribution D if

∀h ∈ H, |LS(h)− LD(h)| ≤ ε

Lemma 3.13 (Uniform convergence (Shalev-Shwartz and Ben-DavidShalev-Shwartz and Ben-David, 20142014)).

Let H be a finite hypothesis class, and let Z be the domain of training samples,

and let l : H × Z 7→ [0, 1] be a loss function. Then H has the uniform

convergence property with sample complexity

MV C
H (ε, δ) ≤

⌈
log(2|H|/δ)

2ε2

⌉

Proof. Let θi = 1
n

∑n
i=1 l(h, zi). Since h is fixed and z1, . . . , zn is sampled i.i.d,

it follows that θ1, ..., θn is a sequence of i.i.d random variable. Observe that
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E[θi] = LD(h), let E[θi] = µ. Also observe that 0 ≤ θi ≤ 1. Then by Hoeffding’s

inequality (4.14.1) we have

Pr| 1
n

n∑
i=1

θi − µ| > ε ≤ 2 exp[−2nε2]

. Applying union bound on h ∈ H classifiers give us

Pr
{

sup
h∈H
|LS(h)− LD(h)| > ε

}
≤ 2|H| exp[−2nε2]

Definition 3.19 (Restriction ofH to C (Shalev-Shwartz and Ben-DavidShalev-Shwartz and Ben-David, 20142014)).

Let H be a class of functions from X to {0, 1} and let C = {c1, c2, ..., cn} ⊂X.

The restriction of H to C is the set of functions from C to {0, 1} that can be

derived from H.

HC = (h(c1), . . . , h(cn)) : h ∈ H

Definition 3.20 (Shattering (Shalev-Shwartz and Ben-DavidShalev-Shwartz and Ben-David, 20142014)). A hy-

pothesis class H is said to shatter a finite set C ⊂X if the restriction of H to

C is the set of all functions from C to {0, 1}. that is |HC | = 2|C|.

Definition 3.21 (VC Dimension (Shalev-Shwartz and Ben-DavidShalev-Shwartz and Ben-David, 20142014)). The

VC-dimension of a hypothesis class H, denoted as V Cdim(H) is the maximal

size of a set C ⊂ X that can be shattered by H. if H can shatter sets of

arbitrarily large size we say that H has infinite VC-dimension

In other words, there exists sets of V Cdim(H) points that can be shattered

by H but no sets of V Cdim(H) + 1 points can be shattered by H.

Definition 3.22 (Growth function (Shalev-Shwartz and Ben-DavidShalev-Shwartz and Ben-David, 20142014)).

Let H be a hypothesis class. Then the growth function of H denoted as τH :

N 7→ N is defined as

τH(n) := max
C⊂X:|C|=n

|HC |

In other words, the growth function τH(n) is the number of different functions

from a set C of size n to {0, 1} that can be obtained by restricting H to C
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Lemma 3.14 (Sauer-Selah Lemma (Shalev-Shwartz and Ben-DavidShalev-Shwartz and Ben-David, 20142014)).

Let H be a hypothesis class with a VCdim(H) ≤ d < ∞. for all n, τH(n) ≤∑d
i=0

(
n
i

)
. In particular is n > d+ 1 then τH(n) ≤ (en/d)d.

In cases where d ≥ 3 this can be more compactly written as τH(n) ≤ nd.

Theorem 3.15 (The Fundamental Theorem of Statistical Learning

(Shalev-Shwartz and Ben-DavidShalev-Shwartz and Ben-David, 20142014)). Let H be a hypothesis class of func-

tions from a domain X to {0, 1}, and let the loss function be the 0-1 loss. Then

the following are equivalent:

• H has the uniform convergence property.

• Any ERM rule is a successful agnostic PAC learner for H

• H is agnostic PAC learnable

• H is PAC learnable

• Any ERM rule is a successful PAC learner for H

• H has a finite VC-dimension

Theorem 3.16 (The Fundamental Theorem of Statistical Learning — Quanti-

tative version (Shalev-Shwartz and Ben-DavidShalev-Shwartz and Ben-David, 20142014)). Let H be a hypothesis

class of functions from a domain X to {0, 1}, and let the loss function be the

0-1 loss. Assume VCdim(H) = d < ∞. Then there are absolute constants

C1, C2 such that

• H has the uniform convergence property with sample complexity

C1
d+ log(1/δ)

ε2
≤MV C

H (ε, δ) ≤ C2
d+ log(1/δ)

ε2

• H is agnostic PAC learnable with sample complexity

C1
d+ log(1/δ)

ε2
≤MH(ε, δ) ≤ C2

d+ log(1/δ)
ε2

• H is PAC learnable with sample complexity

C1
d+ log(1/δ)

ε
≤MH(ε, δ) ≤ C2

d+ log(1/δ)
ε
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3.5 Notations

The notations used in this thesis are consistent with the notations estab-

lished in "Deep Learning" by Goodfellow et al.Goodfellow et al. (20162016). The following tables

summarises the notations

Number, Arrays and Sets
a A scalar (integer or real)

a A vector

A A matrix

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied by context

e(i) Standard basis vector [0, . . . , 0, 1, 0, . . . , 0] with a 1 at position i

diag(a) A square, diagonal matrix with diagonal entries given by a

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

ai Element i of vector a, with indexing starting at 1

a−i All elements of vector a except for element i

Ai,j Element i, j of matrix A

Ai,: Row i of matrix A

A:,i Column i of matrix A

A> Transpose of matrix A

A+ Moore-Penrose pseudoinverse of A

A�B Element-wise (Hadamard) product of A and B

det(A) Determinant of A

||x||p Lp norm of x

||x|| L2 norm of x
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Information Theory and Functions
P (a) A probability distribution over a variable
a ∼ P Random variable a has distribution P

Ex∼P [f(x)] or E[f(x)] Expectation of f(x) with respect to P (x)
Var(f(x)) Variance of f(x) under P (x)

Cov(f(x), g(x)) Covariance of f(x) and g(x) under P (x)
N (x;µ,Σ) Gaussian distribution over x with mean µ and

covariance Σ

f : A→ B The function f with domain A and range B
f ◦ g Composition of the functions f and g
f(x;θ) A function of x parametrized by θ.
log x Natural logarithm of x
x+ Positive part of x, i.e., max(0, x)

1condition is 1 if the condition is true, 0 otherwise
pdata The data generating distribution
p̂data The empirical distribution defined by the train-

ing set
X A set of training examples
x(i) The i-th example (input) from a dataset

y(i) or y(i) The target associated with x(i)

X The m× n matrix with input example x(i) in

row Xi,:

As far as possible, we use the following notation as a shorthand for the

following
Notations

d Dimensionality of the dataset
k Projected dimension, typically k << d

n Number of data samples
N Number of classifiers in the ensemble
m Number of classes in the m-class classification task
P Random subspace projection matrix, size is implied by context
R Random Projection matrix, size of the matrix is always k × d
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4
Norm and Dot Product Preservation

Guarantees on Random Subspace

Projections

Summary Random subspace (RS) is a popular dimensionality reduction

approach, widely used for generating diverse classifier ensembles. In this chapter,

we show that under suitable data-dependent conditions, RS approximately

preserves important structure present in the high dimensional data but in a

form of a much lower-dimensional representation. Specifically, we show the

data-dependent conditions for a Johnson-Lindenstrauss-type (JLL) guarantee

for norm and dot-product preservation for random subspace projections. We

also show in section 4.24.2 how these JLL guarantees for random subspace are

related to a notion of “regularity” in the original data.

In section 4.34.3, we corroborate our findings with empirical results on norm

preservation using synthetic and real-world datasets, namely natural image

data (WeberWeber, 20062006), sparse high-dimensional dataset (Guyon et al.Guyon et al., 20042004), and

audio data (Fonseca et al.Fonseca et al., 20172017).

In section 4.54.5, we discuss the implications of our theory as developed in

section 4.24.2 and empirically demonstrate how a non-uniform feature sampling

scheme can (somewhat) improve the norm preserving properties of a random

subspace projection.
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In section 4.64.6, we will apply our results to applications in compressive

sensing, in particular, the recovery of sparse signal and propose a method on

recovering natural images using RS projections.

4.1 Background and Motivation

Randomized dimensionality reduction techniques, such as Random Projec-

tion (RP) (Dasgupta and GuptaDasgupta and Gupta, 20032003; Indyk and MotwaniIndyk and Motwani, 19981998) and Ho’s

Random Subspace method (RS) (HoHo, 19981998) are popular approaches for data

compression as part of an analysis workflow. There have been many empirical

studies show the utility of both dimensionality reduction techniques for ma-

chine learning and data mining tasks in practice (Skurichina and DuinSkurichina and Duin, 20022002;

HoHo, 19951995; Li and ZhaoLi and Zhao, 20092009; Lai et al.Lai et al., 20062006; Kuncheva et al.Kuncheva et al., 20102010; Tao et al.Tao et al.,

20062006).

A key theoretical motivation for RP behind their use is the Johnson-

Lindenstrauss lemma (JLL), with the usual constructive proof of also implying

the existence of an algorithm with high-probability geometry preservation

guarantees on projected data.

Intuitively, we see that RP distorts the Euclidean geometry of the original

data somewhat, but with high probability (overdraws of the random matrix R)

not too much because of JLL. At the same time, RP allows one to work with a

much-compressed representation of the original data. Thus, RP can yield, with

the same probability, approximate solutions with performance guarantees for

any algorithm whose output depends only on the Euclidean geometry of a set

of observations. For example, linear classification and regression algorithms,

clustering algorithms such as k-means, and even non-linear classifiers such as

k-Nearest Neighbours all fit this bill.

We also note that in the field of compressive sensing the sensing matrix

must afford a JLL-type guarantee, also called the Restricted Isometry Property

(RIP). A sensing matrix satisfying the RIP when applied to a signal that admits
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a known sparse representation is the key to successfully reconstructing such a

signal from its compressed representation (Baraniuk et al.Baraniuk et al., 20082008).11 However,

RP is costly to apply to large or high-dimensional datasets since it requires

a matrix-matrix multiplication to implement the projection, and furthermore,

the projected features may be hard to interpret, eroding the benefits of working

with compressed data. Moreover, as far as we are aware, the only known

constructions for R satisfying the JLL comprise sampling the entries from

symmetric zero-mean sub-Gaussian distributions.

On the other hand, RS is a particularly appealing approach for dimension-

ality reduction because it merely involves selecting a subset of data feature

indices randomly without replacement, and so does not require a matrix-matrix

multiplication to implement the projection and it retains (a subset of) the origi-

nal features. RS is therefore computationally far more efficient in practice, and

more interpretable than RP, but there is little theory to explain its effectiveness

and, in particular, there is no known JLL guarantee for RS. Our aim here is to

obtain JLL-type guarantees for RS, thus improving our understanding of this

approach and at the same time providing a further route to simple, efficient,

approximation algorithms with performance guarantees for a broader range of

applications.

In all of the following, we assume, without loss of generality, that we possess

a (fixed) set of n, d-dimensional real-valued vector observations to be projected,

TN := {Xi ∈ Rd}ni=1 and we may choose an integer, k, where k ∈ {1, 2, . . . , d}

as the projection dimension.

4.2 Random Subspace as a JLL-like projection

In this section, we present the following four theorems, showing that an RS

projection implies a data-dependent JLL-type guarantee. The strength of the

1Note that the captured signal need not be sparse, and it generally will not be. However,

in order to reconstruct it from its RP form, some basis in which the signal has sparse

representation must be known.
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provided guarantees depends on how regular the representation in which we are

working in, where regularity is measured by (an upper bound on) the squared

population coefficient of variation if we consider the elements of a vector as a

finite population of size d. Our first two theorems are simple Chernoff-Hoeffding

type bounds, while the latter two are typically tighter Bernstein type bounds.

The second and fourth bounds become much tighter than the first and third as

k ↗ d, but they give a similar guarantee to the others when k � d. Meanwhile,

our third and fourth bounds are considerably tighter than the first two when

the distribution of feature values is heavy-tailed, e.g. for sparse datasets.

We provide some intuition about the relative performances of our bounds

in figure 4.24.2. Although, as far as we know, these results are novel. As the

proofs for our bounds are elementary and use standard tools, we defer them

to the Appendix AA. For notational and analytical convenience we will write

a particular RS projection in the form of a matrix P , where P is a d × d

diagonal matrix with all entries zero except for k diagonal entries set to 1

with their indices chosen by simple random sampling without replacement

from {1, 2, . . . , d}. Note that left-multiplying a d × n data matrix with P

is mathematically equivalent to RS – viewed as a projection of the original

data to a subspace of dimension k embedded in Rd – although in practice

this is not how RS is usually implemented. For convenience we also define

x2
i := (X2

i1, X
2
i2, . . . , X

2
id)T the vector with its entries the squared components

of X(i).

Theorem 4.1 (Basic Chernoff Bound). Let TN := {Xi ∈ Rd}ni=1 be a set of n

points in Rd satisfying, ∀i ∈ {1, 2, . . . , n}, ‖X2
i ‖∞ ≤ c

d
‖Xi‖2

2 where c ∈ R+ is a

constant 1 ≤ c ≤ d. Let ε, δ ∈ (0, 1], and let k ≥ c2

2ε2 ln n2

δ
be an integer. Let P

be a random subspace projection from Rd 7→ Rk. Then with probability at least

1− δ over the random draws of P we have, for every i, j ∈ {1, 2, . . . , n}:

(1− ε)‖Xi −Xj‖2
2 ≤

d

k
‖PXi − PXj‖2

2 ≤ (1 + ε)‖Xi −Xj‖2
2
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Theorem 4.2 (Chernoff-Serfling Bound). Let TN := {Xi ∈ Rd}ni=1 be a set of

N points in Rd satisfying, ∀i ∈ {1, 2, . . . , n}, ‖X2
i ‖∞ ≤ c

d
‖Xi‖2

2 where c ∈ R+

is a constant 1 ≤ c ≤ d. Let ε, δ, fk ∈ (0, 1], where fk := (k − 1)/d and let k

such that k/(1 − fk) ≥ c2

2ε2 ln n2

δ
be an integer. Let P be a random subspace

projection from Rd 7→ Rk. Then with probability at least 1− δ over the random

draws of P we have, for every i, j ∈ {1, 2, . . . , n}:

(1− ε)‖Xi −Xj‖2
2 ≤

d

k
‖P (Xi −Xj)‖2

2 ≤ (1 + ε)‖Xi −Xj‖2
2

Theorem 4.3 (Bernstein-type Bound). Let TN := {Xi ∈ Rd}ni=1 be a set of n

points in Rd satisfying, ∀i ∈ {1, 2, . . . , n}, ‖Xi‖2
4 ≤

√
c′2

8d ‖Xi‖2
2 where c′ ∈ R+

is a constant 1 ≤ c′ ≤ d. Let ε, δ ∈ (0, 1], and let k ≥ c′2

2ε2 ln N2

δ
be an integer.

Let P be a random subspace projection from Rd 7→ Rk. Then with probability at

least 1− δ over the random draws of P we have, for every i, j ∈ {1, 2, . . . , n}:

(1− ε)‖Xi −Xj‖2
2 ≤

d

k
‖PXi − PXj‖2

2 ≤ (1 + ε)‖Xi −Xj‖2
2

Theorem 4.4 (Bernstein-Serfling Bound). Let TN := {Xi ∈ Rd}ni=1 be a set of

N points in Rd satisfying, ∀i ∈ {1, 2, . . . , n}, ‖Xi‖2
4 ≤

√
c′2

8d ‖Xi‖2
2 where c′ ∈ R+

is a constant 1 ≤ c′ ≤ d. Let ε, δ, fk ∈ (0, 1], where fk := (k − 1)/d and let

k such that k/(1− fk) ≥ c′2

2ε2 ln n2

δ
be an integer. Let P be a random subspace

projection from Rd 7→ Rk. Then with probability at least 1− δ over the random

draws of P we have, for every i, j ∈ {1, 2, . . . , n}:

(1− ε)‖Xi −Xj‖2
2 ≤

d

k
‖P (Xi −Xj)‖2

2 ≤ (1 + ε)‖Xi −Xj‖2
2

Comment on Theorem 4.34.3 The proof of theorem 4.34.3 shows how c′ can be

calculated easily for certain data representations, (i.e. sparse binary data),

moreover, we will also show that c′ is significantly smaller than c in sparse data

representations.

Furthermore, we also have:

Corollary 4.5 (to any of the bounds). Under the conditions of Theorem 4.14.1,

4.24.2, 4.34.3 or 4.44.4 respectively, for any ε, δ ∈ (0, 1], with probability at least 1− 2δ
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over the random draws of P we have:

(
XT
i Xj − ε‖Xi‖‖Xj‖

)
≤ d

k
(PXi)T (PXj) ≤

(
XT
i Xj + ε‖Xi‖‖Xj‖

)
A comment on Corollary 4.54.5. For RP matrices with zero-mean sub-Gaussian

entries, a 1− δ guarantee for projected dot products is proved in KabánKabán (20152015).

The proof technique used there is not directly transferable to RS although

we speculate that, for small enough constants c or c′ respectively, it could be

adapted to RS using some results of MatoušekMatoušek (20082008). We do not pursue this

further here.

4.2.1 Discussion on the Bounds

Our theorems and their corollaries showed that we have high probability

guarantees on Euclidean geometry preservation for sufficiently regular datasets

when applying RS, provided that the dimension of the projected subspace,

k, chosen is large enough. We note that up to constant terms, they provide

the same guarantees as we have for the existing JLL for RP; therefore, the

bounds are of optimal order for any linear dimensionality reduction scheme

(Larsen and NelsonLarsen and Nelson, 20142014) and, for a fixed k the RS projection is typically

orders of magnitude faster than RP. However, there is a trade-off involved

since if c or c′ is large (c′ > 4) the projection dimension required will generally

be greater than for RP; indeed for RP, our constants can be replaced by a

single-digit constant (either 2 or 8) which only depends on the choice of a

Gaussian or sub-Gaussian RP matrix R and not on the data. We note however,

that c or c′ need not be larger in practice. For instance, when the features are

approximately normally distributed, (i.e. X ∼ N(0, 1√
d
Id), c′ is approximately

3, giving us similar JLL guarantees as RP projections.

Appendix BB summarizes the estimated c and c′ values on other distributions

and a strategy to construct synthetic data with for a given value of c. Table

4.14.1 shows some observed values of these constants from image data confirming

that the values of c are typically smaller than 8 on dense datasets. On the

other hand, Table 4.24.2 gives some observed values for very sparse binary data
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from a drug discovery problem are much larger than 8.

Our bounds hold for an RS projection of any set of data vectors meeting

the given conditions this may seem somewhat surprising. For example, if

we consider a binary vector x with only one non-zero component then it is

straightforward to check that under RS with probability 1 − (d − k)/d the

projected vector is the zero vector, which otherwise would have a norm of

1. In neither case is the squared norm of Px close to its expected value
k
d
‖X‖2

2 in general. Furthermore, it is easy to verify for any vector with s < d

non-zeros that the number of non-zero components sampled by RS has a

Hypergeometric(s, d, k) distribution and so if s � d this problem remains,

and the norms of most projections will be very far from their expected value.

However, we note that in such cases the regularity constants c′, c ∈ [1, d] will

also be close to d and thus there will only be a non-zero probability guarantee

of norm preservation for k = d when, of course, the guarantee holds trivially.

Thus for RS, it is not possible to avoid some regularity conditions on the data

and to also have non-trivial JLL-type norm-preservation guarantees, and for

fixed ε the projection dimension k must sometimes be larger than it would be

for RP but this is the price to pay for using RS projection, with its various

other benefits over RP. On the other hand, with our view of norm preservation

as a special case of estimating a population mean (i.e. that of a population

of features), classical results from statistical sampling theory suggest that one

could reduce k by using a non-uniform sampling scheme, in particular by using

stratified – rather than uniform – sampling of the data feature indices. We

discuss our findings using stratified sampling in Section 4.54.5. Finally, we see

from our theorem that it is not sparsity of the data per se that causes a problem;

rather it is sparsity in the data representation. Of course, for many important

domains, such as images, even though a very sparse representation of the data

is possible, the data are typically captured in a basis in which they have a

dense representation.
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4.2.2 Implications for Classification

In this section, we apply the results of our theorems to linear classification

and extend the approach of Arriaga and VempalaArriaga and Vempala (19991999) on l-robust half-spaces

to classification of RS-projected data in the presence of a margin. A half-space

is said to be l-robust, if there is a probability of zero that any point is within

an Euclidean distance of l of the boundary of a linear threshold function

separating the class supports. Figure 4.14.1 illustrate an example of a l-robust

half-space. A key implication of this result is the (ε, δ)-learnability of a RS-

projected robust half-space, that is, with probability 1− δ, a hypothesis that is

consistent with at least 1− ε of the data distribution is produced by a learning

algorithm. We derive the following Theorem 4.64.6 using a similar proof technique

to Arriaga and VempalaArriaga and Vempala (19991999).

l

l

Figure 4.1: Example of an l-robust half-space with margins at least l.

Theorem 4.6. An l-robust half-space in Rd can be (ε, δ)-learned by projecting

a set of n examples using RS projection to Rk where

k = 32c′2
l2

ln 8c′
εlδ

, and n = 8k
ε

ln 48
ε

+ 4
ε

ln 4
ε

Proof. For each x ∈ Rd, let x′ = Pkx be the RS projection of x on to Rk by

selecting k feature values selected uniformly at random without replacement.

Define h as a dense normal vector with regularity constant at most c′ to
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the target half-space and h′ = Pkh be the projection of h. Without loss of

generality, we may take ‖x‖ = 1,∀x and ‖h‖ = 1 otherwise we can replace x

by x
‖x‖ everywhere. To prove Theorem 4.64.6, we will require the following events

to occur:

• For every x, ‖Px‖ ≤ 1 + l
2

• ‖Ph‖ ≤ 1 + l
2

• For every x, if hTx ≥ l, then (Ph)T (Px) ≥ l
2 ; else if hTx ≤ −l, then

(Ph)T (Px) ≤ − l
2

and we will upper bound the “failure probability” of the complementary events

for a randomly selected P to prove the theorem. Applying Theorem 4.34.3 for a

single example x, and setting ε = l
2 , the probability that ‖Px‖ > 1 + l

2 is at

most

2 exp
(
− kl2

16c′2

)
= 2 exp

(
−4 ln 8c′

εlδ

)

= 2
(
εlδ

8c′

)4

<
δεl2

4
(
64c′2

√
16c′
εlδ

√
48
ε

+
√

4
ε

+ 1
)

<
δεl2

4(64c′2 ln 16c′
εlδ

ln 48
ε

+ ln 4
ε

+ 1)

= δ

4(n+ 1)

Since h has regularity constant less than c′, the failure probability for second

event is also at most δ
4(n+1) . Now, union bounding the failure probability for

the n examples, and the normal vector h, gives us the failure probability of at

most δ
4 for the first two events.

By Corollary 4.54.5, the failure probability for the third event is at most
δ

4(n+1) <
δ

4n . Union bounding the failure probability for the n examples gives

us a failure probability of at most δ
4 .
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Finally, applying union bound to the two results above, shows that with

probability at least 1− δ/2, all three events hold simultaneously. Observe that

the margins in the projected space is at least l/2
1+l/2 >

l
3 with probability at

least 1− δ/2. Now, we can apply any standard PAC(ε, δ/2) learning bound for

data with margin of at least l/3 (e.g. Freund and SchapireFreund and Schapire (19991999))

As Arriaga and VempalaArriaga and Vempala (19991999) noted, the implications of this result show

that the half-space in Rk defined by Ph would correctly classify all n examples

after a random subspace projection from Rd 7→ Rk, with probability at least

1− δ/2 and the generalization error of this classifier would be bounded above

by ε with probability 1− δ. Moreover, the margins remain at least l/3 after

an RS projection. For example, by the results of Minsky and PapertMinsky and Papert (19691969), a

perceptron classifier with this generalization error can be learned in at most

9/l2 passes over the data.

4.3 Empirical Corroboration of Theory

In this section, we present our experimental results, which corroborate our

theory developed in Section 4.24.2.

4.3.1 Synthetic Data

We generated synthetic data (random binary strings) using various values of

c to control the sparsity, i.e. setting c ∝ d/s where s is the number of non-zero

entries. We fixed the embedding dimension at d = 100, 000 and generated

n = 10, 000 instances of data for each value of c and ε = {0.05, 0.1, 0.2, 0.5, 1}.

We calculated the proportion of projected data points whose norm was distorted

by more than ε and then compare the upper bounds obtained by Theorems

4.14.1, and 4.34.3 against the sample proportion of
∣∣∣∣ dk∥∥∥Px∥∥∥2

2
−
∥∥∥x∥∥∥2

2

∣∣∣∣ > ε
∥∥∥x∥∥∥2

2
. The

results are plotted as in Figure 4.24.2, where the horizontal axis is k, the projected

dimension, given in log-scale and the vertical axis is δ or the proportion of

norms violating this inequality.
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Figure 4.2: Probability bounds of Theorems 4.14.1 and Theorem 4.34.3 vs

Pr
{∣∣∣ dk∥∥PX∥∥2

2 −
∥∥X∥∥2

2

∣∣∣ > ε
∥∥X∥∥2

2

}
estimated from 10,000 instances. We controlled c

by increasing the sparsity of the data and δ by increasing the projection dimension

k for five fixed values of ε. Note that the x-axis is in log scale. Observe that the

empirical estimates of δ is bounded by our theorems.
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We see that our bounds are always upper bounds on the empirical estimates.

For low values of c or c′ (c′ < 4), Theorem 4.14.1 is generally tighter than Theorem

4.34.3, while for larger values of c or c′ this situation is reversed. Similar outcomes

with the same general behaviour were obtained for the tighter bounds of

Theorems 4.24.2 and 4.44.4 – we omit them here. We would like to note that the

results hold regardless of the data generator and does not require the features

in the data or the sampling scheme to be independent. For a fixed k and ε,

the proportions δ norms violating the ε-approximate isometry of the projected

vector norms depends only on the regularity constant.

4.3.2 Real-world Data

Next, when we compare RS projection with two RP variants as well as to

principal components analysis (PCA), we see that in practice – given a suitable

choice of k – RS works as well as the RP alternatives and is competitive with

PCA.

We used three non-synthetic datasets, the first being a collection of natural

images (WeberWeber, 20062006) similar to those used in the experimental study of

Bingham and MannilaBingham and Mannila (20012001) and the second is the DOROTHEA dataset from

the 2003 NIPS feature selection challenge (Guyon et al.Guyon et al., 20042004). The latter is a

very sparse and very high-dimensional binary drug-discovery dataset that was

split into three for purposes of the NIPS competition. The third dataset is three

audio files obtained from freesound.org (Fonseca et al.Fonseca et al., 20172017) and released under

creative commons license. These audio files represent the range of everyday

sounds namely, a piece of classical music, animal sounds in a forest, and human

speech; all sampled at 44100 Hz. The characteristics of these datasets are

summarized in Tables 4.14.1, 4.24.2 and 4.34.3 respectively.

For the image data, we used all twenty-three publicly available natural

grayscale images from the USC-SIPI natural image dataset, and we omitted

the synthetic images. A short description and the sizes of the images are given

in Table 4.14.1. We follow the same protocol as Bingham and MannilaBingham and Mannila (20012001);
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Name Description Image Size c c′

5.1.09 Moon Surface 256x256 3.63 3.03
5.1.10 Aerial 256x256 2.82 3.34
5.1.11 Airplane 256x256 1.40 2.94
5.1.12 Clock 256x256 1.59 3.11
5.1.14 Chemical plant 256x256 5.11 3.60
5.2.08 Couple 512x512 3.88 3.30
5.2.09 Aerial 512x512 1.90 3.00
5.2.10 Stream and bridge 512x512 4.08 3.79
5.3.01 Man 1024x1024 5.77 3.91
5.3.02 Airport 1024x1024 7.07 3.88
boat.512 Fishing Boat 512x512 3.42 3.23
7.1.01 Truck 512x512 5.12 3.07
7.1.02 Airplane 512x512 2.00 2.88
7.1.03 Tank 512x512 2.72 2.99
7.1.04 Car and APCs 512x512 3.92 3.10
7.1.05 Truck and APCs 512x512 4.94 3.27
7.1.06 Truck and APCs 512x512 6.93 3.36
7.1.07 Tank 512x512 4.49 3.03
7.1.08 APC 512x512 2.76 2.94
7.1.09 Tank 512x512 3.63 3.16
7.1.10 Car and APCs 512x512 3.00 3.03
7.2.01 Airplane (U-2) 1024x1024 21.50 6.77
elaine.512 Girl (Elaine) 512x512 2.85 3.34

Table 4.1: Properties of Natural Image Dataset. c is the regularity constant in the

bounds, which here was calculated from each complete image. c′ is the corresponding

constant using the Bernstein-type bounds.
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Name
Number
of
observations

Features
with non-
zero
variance(d)

c c′

.test 800 91362 139.91 33.46
.train 800 88119 134.12 32.76
.valid 350 72113 110.10 29.68

Table 4.2: Properties of DOROTHEA Dataset. c is the regularity constant in the

bounds, which here was calculated from each dataset split. c′ is the corresponding

constant using the Bernstein-type bounds.

Name Description Duration (s) c c’
classical
music

Violin Solo from Tchaikovsky’s
“Danse Arabe”.

71.83 7.0320 6.866

nature
sound

Recording of frog sounds recorded
at Luerwald, Amsberg, Germany

71.18 11.7785 9.842

human
speech

Recording of Pilot announcement
on flight to Amsterdam

69.01 19.473 15.659

Table 4.3: Properties of Audio Dataset. c is the regularity constant in the bounds,

which here was calculated from each dataset split. c′ is the corresponding constant

using the Bernstein-type bounds.
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For each of the images, we select the top-left corner of a 50x50 pixel window in

each image uniformly at random and reshape to a vector with 2500 dimensions,

repeating this one thousand times for each of the images. We then project the

vectors using RS, orthonormalized Gaussian random projection (RP), Achliop-

tas sparse random projections (SRP) (with Pi,j = ±1 with probability 1
6 , and

0 with probability 2
3), and also the first k eigenvectors from applying PCA to

the full sample of the one thousand vectors. The projected vectors were all

scaled according to the values in Table 4.44.4. Note that a scaling correction for

PCA was not employed in Bingham and MannilaBingham and Mannila (20012001) where it was claimed

that a straightforward rule is difficult to give. However, one can verify the

average scaling for PCA projected vectors (over the dataset) in the squared

Euclidean norm should be Trace(Σ)
Trace(Σ(1:k)) – that is the ratio of the trace of the

covariance matrix of the data to the fraction of the trace retained under the

PCA projection. We use the square root of this to approximately recover the

correct scaling.

For the image data, this procedure was repeated for all twenty-three image files

for each projection approach with a projection dimension k range from 5 to

600 in increments of 5.

Method Norm Scaling Factor
Gaussian Random Projection

√
d
k

Sparse Random Projection
√

1
k

Random Subspace
√

d
k

Principal Component Analysis
√

Trace(Σ)
Trace(Σ(1:k))

Table 4.4: Theoretical norm-scaling quantities for the various projection schemes.

For the DOROTHEA dataset for each of the three dataset splits, we first

removed features with zero variance but, to avoid possible confounds, we

carried out no other filtering. We then projected the data using RP, SRP,

and RS as before with the projection dimension k ∈ {5, . . . , 70, 000} for RS,
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k ∈ {5, . . . , 2, 750} for RP and SRP. For these data, the computational cost of

PCA is prohibitive, and so we did not evaluate the effect of PCA projection on

the DOROTHEA dataset. For the audio data, we took the left channel audio

data, and then randomly took 1000 snippets of 44100 samples (1 second) with

a random start time. We then projected the data using RP, SRP and RS as

before with the projection dimensions k ∈ {5, . . . , 2000} for RS, RP, and SRP.

We did not evaluate the effect of PCA projection on the audio dataset due to

the computational cost of PCA.

For the three types of data, we randomly selected one hundred observations,

and for each possible pair of these, we calculated the `2 norm of the difference

between the (scaled) projected observations ‖P (u− v)‖ and the original points

‖u− v‖. We then calculated the ratio between the (scaled) projected norm and

the true norm ‖P (u−v)‖
‖u−v‖ for each observation where the scaling constants used

were those in Table 4.44.4.

For the image data, we plot in Figure 4.34.3 for each choice of k, the average of

this ratio over all images as well as the 5-th and 95-th percentiles for the ratios.

We also plot the runtime for the image data on the left in Figure 4.94.9 for each

projection method versus k.

For DOROTHEA we repeated our experiments five times on each dataset

split, to obtain an average over fifteen runs. As in the images, we report the

mean ratio of the norms ‖P (u−v)‖
‖u−v‖ as well as the 5th and 95th percentiles of

this ratio in Figure 4.64.6. The average runtime for each different approach on

Dorothea can be seen on the right in Figure 4.94.9. For the audio data, we plot

in Figure 4.34.3 for each choice of k, the average of this ratio as well as the 5-th

and 95-th percentiles for the ratios for each of the audio type. We also plot the

runtime for the image data on the left in Figure 4.94.9 for each projection method

versus k.
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Figure 4.3: Mean and 5th and 95th percentiles of the ratio ‖P (Xi−Xj)‖
‖Xi−Xj‖ for image

data vs. projection dimension k. We see that for k & 80 Gaussian RP and RS are

indistinguishable on these data. Note also the 5th percentile for SRP cf. Figure 4.44.4:

Sparse RP frequently seems to underestimate norms on these data.

4.4 Experimental Results and Discussion

Our experimental results corroborate our theory. We observe for natural

image data that RS indeed gives a similar performance in terms of norm

preservation to RP and, surprisingly, better performance than SRP on these

data (as does RP) – (see Figures 4.44.4 and 4.34.3). Given the small values of

c estimated for these data (See Table 4.14.1) the similar performance to RP is

broadly in line with what we would predict from theory; indeed Figure 4.34.3 shows

that RS is nearly indistinguishable from the computationally more expensive

RP on these data. On the other hand, one remarkable finding is that the

distribution of norms for SRP is left-skewed here, and there is ample evidence

that SRP consistently tends to underestimate distances between points when

the correct theoretical scaling is applied, at least on these data. In this respect,

SRP does worst on images such as the high contrast one above the centre

column of Table 4.44.4, where we might instead reasonably expect RS to suffer

from such a problem. Indeed, the normal distribution fit for RS applied to this

image does show heavier tails for RS than for RP, but unlike SRP the error

distribution is symmetric, and the centre of mass is in the right place at 1. We
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Figure 4.4: Histograms of the ratio ‖P (Xi−Xj)‖
‖Xi−Xj‖ for a fixed k = 50 dimensions on

three representative images from the image dataset (i.e. data with small values of

c or c’) with overlaid normal density plots, n = 4950. Observe that RS has similar

norms preservation performance as Gaussian RP on image data.
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Figure 4.5: Histograms of the ratio ‖P (Xi−Xj)‖
‖Xi−Xj‖ for DOROTHEA dataset (i.e. data

with large values of c or c’) with RP with projection dimension krp := k = 50 for RP

and SRP (middle and right plots) and comparison with RS with projection dimension

krs = 1750 > c′ × krp dimensions with overlaid normal density plots, n = 4, 950. We

see that errors behave nearly identically for RP and RS as predicted by theory.
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Figure 4.6: Mean and 5th and 95th percentiles of the ratio ‖P (Xi−Xj)‖
‖Xi−Xj‖ for Dorothea

vs. projection dimension k. We see that for RS a much higher k is required than for

RP, though RS eventually catches up.
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Figure 4.7: Histograms of the ratio ‖P (Xi−Xj)‖
‖Xi−Xj‖ for a fixed projection dimension

k = 50 on the three audio files. density plots, n = 4950. Observe that RS has

similar norm preservation performance as RP on classical music, and worse norm

preservation performance than RP on human speech, as predicted by our theory.

do not have a reasonable explanation for why SRP should be worse than RS

on these images, but as we see clearly in Figure 4.34.3, this problem persists even

as k grows. A further interesting finding is that, unlike the results reported

in Bingham and MannilaBingham and Mannila (20012001), the performance of PCA scaled according to

the scheme outlined in Table 4.44.4 is – for a large enough choice of k – superior
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Figure 4.8: Mean and 5th and 95th percentiles of the ratio ‖P (Xi−Xj)‖
‖Xi−Xj‖ for audio

data vs. projection dimension k. See that the performance of RS vs RP is almost

indistinguishable for the classical music data, and RP performs significantly better

than RS for human speech.
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Figure 4.9: (Left) Comparison of the runtime on dense image datasets with

dimensionality d = 2500 vs projection dimension k. (Right) Comparison of the

runtime on DOROTHEA with d ' 100, 000 and proportion of non-zeros ' 0.1.

Gaussian RP was faster than SRP here because generating the SRP matrix in

MATLAB was slower for such large values of d than generating the Gaussian matrix.

to all three random alternatives we have considered. The superior performance

of PCA is to be expected since PCA maximises the retained within-feature

variance on the projected sample and the scaling we proposed is adaptive in

a non-linear way to this quantity, unlike the other alternatives which do not

consider local properties of the data cloud and use a scaling that is linear in

k. How far similar outcomes would hold for other types of data remains for

future research. However, we note that it must depend on both the choice of k

and also on the rate at which the spectrum of the sample covariance matrix

– the eigendecomposition of which gives the principal components – decays,

since the scaling correction we apply to PCA is piecewise constant in k with a

non-uniform step size. We also note that, unlike for RP, SRP and RS, for PCA

there is no theory to guide the user’s choice of k a priori even if one has access

to the constant c we require in our RS bounds.

Finally, we look at the computational cost of the different approaches

considered: These are compared in Figure 4.94.9. For a fixed k there is, of course,

a significant runtime improvement in using RS compared to RP and SRP. On

these data, it seems that choosing k as the same for RS, RP, and SRP works

equally well and so, everything else being equal, one would likely prefer RS to

RP or SRP here. Note that in general, however, for fixed error, if c� 8 then
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the projection dimension k for RS will be around c2 times greater than for RP

or SRP, so there is a trade-off. Whether one would prefer to use RS with a

larger k than for RP (for the same high-probability error guarantee) will depend

on problem specifics such as the time complexity of the algorithm receiving the

projected data with respect to the dimension, or whether it is more important

to classify or to train quickly. Finally, PCA is, of course, computationally

much more expensive when compared to the other three approaches, but we

see that with the proper scaling term on these data it outperforms them in

terms of geometry preservation. Thus, for PCA, there is essentially the same

accuracy-vs-complexity trade-off as for RS.

The DOROTHEA data is very high-dimensional with only around 10% of

entries non-zero, and for these data, the theory predicts that we will have poor

norm preservation from RS compared to RP except when k is very large. Our

experimental results – see Figures 4.64.6 and 4.54.5 – show that indeed is the case.

While RS does catch up with RP and SRP in terms of error eventually, both

RP and SRP attain smaller error much more quickly than RS. On the other

hand, we see in Figure 4.54.5 that after scaling the projected dimension required

for RP by c2 that RS indeed has comparable (and sometimes better) error

performance than RP or SRP. We also see in Figure 4.64.6, that interestingly,

unlike for the image data the scaled SRP does not tend to underestimate norms

consistently, and all approaches (eventually) have their centre of mass at 1.

Finally, despite the increased projection dimension, for a fixed error guarantee

either variant of RS still gives us significantly improved runtime compared to

RP and SRP (See Figure 4.94.9).

In the case of the audio data, we have three audio files with different

regularity constants. The results for the audio data show that the norm

preservation for RS lies somewhere in between the results for the image data

and the DOROTHEA datasets. This result is in line with the predictions of

our theory. Indeed, we also see that the spread in the norms is proportional

with the estimated regularity constants, with tighter norm preservation on the
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classical music data, and looser norm preservation on the human speech data. –

see Figures 4.84.8 and 4.74.7. As in the case with DOROTHEA, RS does eventually

catch up with RP and SRP in terms of error with the classical music catching

up at a faster rate and the human speech the slowest to catch up.

4.5 Feature Stratification

Theorem 4.34.3 suggests that an upper bound on Pr
{∣∣∣∣ dk∥∥∥PX∥∥∥2

2
−
∥∥∥X∥∥∥2

2

∣∣∣∣ > ε
}

is similar to a Bernstein-Bennett-type bound. Interpreting the norm ratios in

the argument of the exp(·) in this bound as a variance in the squared vector

components suggests that any sampling scheme that reduces this variance

would imply a smaller failure probability δ: For example by stratifying the

features based on the similarity of their entries, we may obtain a tighter bound

(or smaller k). This intuition comes from observing that ‖X‖
4
4

‖X‖4
2
is analogous to a

second central moment in X2. In order to explore this idea, we used k−means

clustering with m clusters to group the features of X into strata with similar

average values. We then sampled from these strata using ‘Neyman allocation’,

i.e. using simple random sampling of the individual strata, we sampled from

each stratum a number of features proportional to the contribution to the

total variation in squared norm from that stratum, for a total of k features.

Our experimental results show that this approach typically does improve norm

preservation under RS projection, given an appropriate choice of the number

of strata. Although choosing the optimal number of strata m is not completely

straightforward since too small a value would not reduce variance appreciably,

while too large a value could introduce additional noise and new sources of

variation in the summand, we found that m ≈
√
k seemed to work quite well

generally. On the other hand, we note that the number of stratam (and whether

to expect improvement from stratifying at all) must be data-dependent, and by

looking at the distribution over values across the features, e.g. by viewing the

image histogram, we can still estimate the value that m should take, at least
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approximately. For example, we observed on the natural image dataset that

multi-modal or high contrast images benefitted more from having several strata;

while, as one would expect unimodal or low contrast images did not benefit

as much from a stratification approach. See Figures 4.44.4 and 4.104.10 for a visual

comparison between the different approaches, while the table 4.54.5 shows the

improvements in the 95%−5% range and the standard deviation of ‖PX‖/‖X‖

in the samples from stratified RS projection over the vanilla RS projection.

Note that for image 7.1.02, stratification slightly increased the variability in

‖PX‖/‖X‖.
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Figure 4.10: Mean and 5th and 95th percentiles of the ratio ‖P (Xi−Xj)‖
‖Xi−Xj‖ for image

data vs. projection dimension k for different number of clusters. We see that a

stratified sampling reduces the spread of the interval compared to figure 4.34.3.

4.6 Application to Compressive Sensing

RS has been a widely used approach in the literature for large-scale clas-

sification and regression problems, with many empirical studies confirming

its effectiveness in these domains. Motivated by our theoretical findings, we

decided to examine a possible new application of RS for compressive sensing

since a JLL-type property in the sensing matrix22 is key to sparse signal re-

construction using compressive measurements. In particular, we ask whether

2The ‘restricted isometry property’ or ‘RIP’.
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File Name
95%-5% range Standard Deviation Improvement over RS
m=1 m=7 m=1 m=7 range SD

5.1.09 0.3644 0.3062 0.1133 0.0933 15.97% 17.65%
5.1.10 0.2919 0.2481 0.0885 0.0766 15.01% 13.45%
5.1.11 0.6258 0.5922 0.189 0.1737 5.37% 8.10%
5.1.12 0.4146 0.2913 0.1237 0.1162 29.74% 6.06%
5.1.14 0.2957 0.2842 0.0894 0.0863 3.89% 3.47%
5.2.08 0.2854 0.2617 0.0907 0.0802 8.30% 11.58%
5.2.09* 0.3975 0.3666 0.1233 0.1106 7.77% 10.30%
5.2.10 0.2975 0.2351 0.0911 0.0721 20.97% 20.86%
5.3.01* 0.2465 0.2386 0.076 0.0715 3.20% 5.92%
5.3.02* 0.4059 0.3328 0.1217 0.1106 18.01% 9.12%
7.1.01* 0.3116 0.2916 0.1 0.089 6.42% 11.00%
7.1.02* 0.5725 0.519 0.1671 0.1673 9.34% -0.12%
7.1.03 0.2879 0.2314 0.0864 0.0725 19.62% 16.09%
7.1.04 0.2929 0.2655 0.0893 0.0809 9.35% 9.41%
7.1.05* 0.2366 0.2228 0.0717 0.0675 5.83% 5.86%
7.1.06 0.2948 0.2177 0.0898 0.0661 26.15% 26.39%
7.1.07* 0.3002 0.2875 0.0904 0.0884 4.23% 2.21%
7.1.08* 0.4339 0.3624 0.1368 0.1186 16.48% 13.30%
7.1.09 0.2753 0.2255 0.0839 0.0699 18.09% 16.69%
7.1.10 0.3326 0.2745 0.1006 0.0829 17.47% 17.59%
7.2.01* 0.341 0.3151 0.1033 0.0987 7.60% 4.45%
boat 0.2996 0.2556 0.0893 0.077 14.69% 13.77%
elaine 0.2608 0.1995 0.0796 0.0593 23.50% 25.50%
Average Improvement 13.35% 11.68%

Table 4.5: Comparison between stratified RS and vanilla RS. The table shows

95%-5% range and the standard deviation of the ratio
∥∥PX∥∥/∥∥X∥∥ with k fixed at

50, and either m = 7 strata or if the filename is marked with an asterisk (*) m = 6

strata.
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we can replace the dense matrix-matrix multiplication implied by a Gaussian

sensing matrix for compressive sensing, with a far cheaper RS projection.

Results from Candes et al.Candes et al. (20042004); CandesCandes (20082008), show that a sparse vector

x ∈ RD can be recovered from a small number of linear measurements by

solving a convex programme. We used `1-magic (Candes and RombergCandes and Romberg, 20052005),

a MATLAB toolkit for compressive sensing for sparse reconstruction.

4.6.1 Theory

It is well known that images are highly compressible and can be represented

by a “relatively” small number of coefficients without perceptible degradation

in image quality. We intend to show that RS projection works as well as RP as

a compressive sensing matrix for signal reconstruction if the regularity constant

c as defined in section 4.24.2 is small (i.e. c < 4).

According to CandesCandes (20082008) recovering x by minimizing min ‖x‖1 subject

to Ax = b given that x is s−sparse

Definition 4.1 (Restricted Isometry Property (CandesCandes, 20082008)). For each inte-

ger s = 1, 2, . . . , define the isometry constant δs of a matrix A as the smallest

number such that

(1− δs)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs)‖x‖2
2

holds for all s-sparse vectors x. A vector is said to be s-sparse if it has at most

s non-zero entries.

Theorem 4.7 (Noiseless Recovery (CandesCandes, 20082008)). Assume that δ2s <
√

2−1,

Then the solution to x∗ to Ax = b obeys

‖x∗ − x‖1 ≤ C0‖x− xs‖1

and

‖x∗ − x‖1 ≤ s−1/2C0‖x− xs‖1

for some constant C0. In particular if x is s-sparse, the recovery is exact.

The implications of Theorem 4.74.7 above shows that recovery of sparse

signals using RS projection matrices as a compressive sensing matrix is possible
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Figure 4.11: Sparse reconstruction of ±1 signals using RS and RP. Note that RS

requires a larger number of samples (k = 112 > 25c′, with c′ =
√

20) to perfectly

reconstruct the signal as implied by Theorem 4.44.4.

provided the errors in the norms are not large. However, Theorem 4.44.4 show

that the number of subspaces required for an error grows proportionally with

the regularity constant which increases with the sparsity of the data. Having

these two competing requirements seem to imply that RS is unsuitable as a

RIP projection. In Figure 4.114.11, we see that for a given sparse signal recovery

problem, using RS as a sensing matrix requires significantly more compressive

samples to recover the signal. However, as what we have noted in our discussion

in section 4.2.14.2.1 it is the “denseness” of the representation of the data that gives

Johnson-Lindenstrauss-like (and in this context Restricted Isometry Property)

norm preserving guarantees in RS projections.

Using this theory as our foundation and inspired by the results of Candes et al.Candes et al.

(20042004) on signal reconstruction using Fourier transforms, we constructed an

experimental setup that shows the applicability of using RS for compressive

sensing.

A Discrete Cosine Transform (DCT) transformation on a vector x with

length d can be represented by the product of a d × d orthogonal matrix D

to the vector x. A typical natural image can be represented by relatively few
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DCT coefficients with most of the significant entries in the first few indices of

the resulting vector. However, if we randomly shuffle x before applying the

DCT transformation, the energy in coefficients of the DCT transformation

would be spread out to the higher order coefficients giving a more “regular”

representation that gives RP norm preserving guarantees.

Let x be the sparse vector containing the DCT coefficients of X, let D be

the matrix representing the DCT transform, let S be the permutation matrix

representing shuffling of the pixels in X and P be the matrix representing the

random subspace projection. Note that P ,D and S are orthogonal, and the

inverses are simply the transpose of the respective matrices. The sequence of

operations can therefore be written as P (DSDT )x however since DTx = X

this can be simplified further to P (DSX). While it appears that we have

costly matrix-matrix operations and there is no benefit to using RS over RP,

the sequence of matrix multiplication with P and S can be implemented simply

by addressing the different indices. Therefore, the matrix multiplications can

be implemented in O(1) if the image array fits in the memory and O(d) if

the array does not fit in memory. Moreover, the DCT transformations are

often handled by specially optimised Digital Signal Processing routines and

algorithms. Note that this is consistent with the theorems for sparse signal

recovery in that the vector x that is recovered through the programme is sparse,

however the representation (DSDTx) we apply random subspace on is dense.

A visual representation of this intuition is illustrated in Figure 4.124.12. 33

4.6.2 Experimental Setup and Results

In our experiments, we compare RP and RS projected natural image data.

Using the same images listed in table 4.14.1 and selecting the central 256x256-

pixel crop of each image. We apply DCT on these central images. This gives

3In practice, we are applying a 2D-DCT transform on a d× d image X before reshaping

the d×d transformation to a d2 vector. Analytically this is different from the series of matrix

operations above; however, conceptually we can use the description above to describe the

behaviour of our programme.
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us a 65536-dimensional representation of the image with a very right-skewed

coefficient distribution (i.e. in our context with a large value for c or c′). We

also apply an alternate DCT on the image after randomly shuffling the pixels,

and this pixel-shuffled DCT representation gives us a representation that has

components with a much ‘denser’ representation. (i.e. c or c′ is reduced by this

representation). Table 4.74.7 summarizes the values of c′ for each of the images.

Note that the value for c′ in the dense representation is u 4.9 for all the images.

.

Figure 4.134.13 shows examples of the output from DCT with or without

shuffling, with the larger DCT coefficients appearing lighter. These high-

dimensional representations of the image were projected using Gaussian RP

and RS with subspace dimensions k = {25, 100, 500, 2500}. We then use `1-

magic with quadratic (`2 norm) constraints to recover the DCT coefficients and

finally recover the images by inverting the pre-processing. Figure 4.124.12 shows a

pictorial representation of the experimental setup.

We measure both the mean squared error between the recovered DCT

coefficients and the original coefficients, and between the original and the

recovered image. Figures 4.144.14 and 4.154.15 gives a visual summary of images

reconstructed from RP and RS with varying levels of compression.

From our experiments, we found that RS projections give similar perfor-

mance to RP projections in terms of residual squared error when applied on a

dense DCT representation. As suggested by our theory, RS does not perform

as well when it is applied to a sparse DCT representation. One significant

advantage of RS over RP is that RS remains significantly faster than RP as

shown in Figure 4.164.16 even with a higher projection dimension, k, whereas RP

takes significantly longer. We also experienced memory issues with RP when

applied with a large projection dimension.

Overall, based on these outcomes RS for compressive sensing seems to show

some promise, at least for image data. We also tried the same experimental
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Figure 4.12: Pictorial representation of the signal recovery experimental setup. x

is the sparse signal to be recovered, and DSD′x is the dense representation, and RS

as the sampling matrix to successfully recover x.
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setup with audio data with mixed results. While `1-magic was able to recover

the audio waveform with some degree of fidelity, we observed that there were

noticeable white noise and audible distortion in the recovered audio. Our results

appear to be consistent with the demonstration by Balzano et al.Balzano et al. (20102010).

Additional note: We also observed that using RS with our experimental

setup works with the TV-EQ (`1-norm equality) algorithm in the `1-magic

toolbox, whereas RP tends to run into convergence issues on the TV-EQ

algorithm. It is straight-forward to modify the proof for Theorem 4.44.4 for

`1-norm preservation guarantees.
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Figure 4.13: Visual representation of the DCT of an unshuffled image (left) and

shuffled image (right). Observe that DCT coefficients of the unshuffled image is

“sparse”, and the DCT coefficients of the shuffled image is “dense”.
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Figure 4.14: Individual mean squared errors in reconstructed images, for compres-

sive sensing of image data from Gaussian RP (Top) and Random Subspace projections

plus shuffled DCT (Middle) and unshuffled DCT (Bottom) versus the number of

compressive samples (projection dimension). Note that the horizontal axis is in log

scale. Each coloured line is a separate image and the bold line is the average from

table 4.64.6 over all the images.
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% Mean Square Error
Subspaces Gaussian RP Dense RS Sparse RS
10 96.82% 99.53% 99.93%
25 90.15% 96.76% 99.94%
50 84.40% 91.29% 99.95%
100 76.85% 83.13% 99.68%
250 67.45% 71.40% 99.08%
500 60.07% 62.90% 98.68%
1000 52.69% 54.70% 96.77%
2500 42.49% 43.63% 93.73%
5000 35.67% 89.40%
10000 27.85% 83.53%
25000 17.45% 59.22%
50000 8.13% 33.30%

Table 4.6: Average mean squared error over all the reconstructed images for

Random Subspace projection versus the projection dimension k.

c’
5.1.09.tiff 170.23
5.1.10.tiff 34.95
5.1.11.tiff 114.58
5.1.12.tiff 165.36
5.1.14.tiff 98.32
5.2.08.tiff 97.94
5.2.09.tiff 40.43
5.2.10.tiff 181.37
5.3.01.tiff 215.66
5.3.02.tiff 90.79
boat.512.tiff 118.79
elaine.512.tiff 144.08

c’
7.1.01.tiff 107.46
7.1.02.tiff 120.16
7.1.03.tiff 134.65
7.1.04.tiff 73.66
7.1.05.tiff 130.83
7.1.06.tiff 98.88
7.1.07.tiff 133.90
7.1.08.tiff 247.96
7.1.09.tiff 131.18
7.1.10.tiff 128.49
7.2.01.tiff 189.68
Average 138.25

Table 4.7: Estimated c′ for unshuffled DCT representation. Note that c′. For the

dense DCT representation c′ u 4.9 for all of the images.
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Figure 4.15: Visual comparison between images reconstructed using compressive

sensing with RP and RS as the sensing approach for image 5.1.09. The top row shows

recovered images for DCT plus RP, the second row for DCT with pixel-shuffling plus

RS, the bottom row for DCT without pixel-shuffling plus RS. The original image is

in the top right-hand corner. Results for other images were similar.
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Figure 4.16: End to end runtime of `1-Magic for RP and RS applied to shuffled

and unshuffled DCT representation vs number of compressive samples. Observe that

the runtime for RP grows linearly with the number of compressive samples at a much

faster rate than RS
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Figure 4.17: Visual comparison between audio reconstructed using compressive

sensing with RS as the sensing approach for audio file “Danse Arabe”. Observe that

there the reconstructed audio has significant amount of white noise at low number

of compressive samples, which gradually improve with higher number of compressive

samples. Subjectively, the audio snippet was recognizable at 10240 compressive

samples.

4.7 Conclusion and Summary

In this chapter, we have shown that the guarantees for norm-preservation in

random subspace projection are dependent on the regularity of the features in

the data. We have defined a regularity measure that can be used to determine

the number of subspaces needed for a given error in the norm.

We corroborated our theories empirically and showed that for regular data

such as natural images, random subspace could achieve geometry preservation

performance comparable to random projection but with significant runtime

improvement. We also demonstrated that sampling schemes that reduce vari-

ance such as stratification could improve on the norm preserving properties of

random subspace. While some additional computation cost may be incurred

from clustering the data, if the strata are not known a priori, we can reduce the

average error in the squared Euclidean norms through stratification. Using the

results of Arriaga and VempalaArriaga and Vempala (19991999), we showed that with high probability
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a robust half-space classifier concept can be learned as a direct consequence of

the JLL-like guarantees.

Finally, we noted that for compressive sensing, a sensing matrix with

the so-called Restricted Isometry Property furnished guarantees for perfect

reconstruction of a signal from a compressed sample of it and showed how RS

could be used practically for compressive sensing.

In the next chapter, in light of the dot-product preservation properties of

RS, we will derive the flipping probability of RS projections and the theoretical

performance guarantees of RS projected classifiers in the absence of a margin.

Additionally, in chapter 66, we will investigate the performance of RS ensembles

in the light of our theories developed in this chapter with emphasis on the

regularity constant c′ on the number of projection dimensions needed to build

a reliable RS ensemble.
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5
Flip Probabilities of Random Subspace

Projected Vectors

Summary In chapter 44, we noted that the norm preservations guaran-

tee provides a margin-dependent generalization bounds for RS projections

(Arriaga and VempalaArriaga and Vempala, 19991999). Following from the work of Durrant and KabánDurrant and Kabán

(20132013), we will provide generalization bounds for RS classification in the absence

of margin using “Flipping probabilities”. Flipping probability is defined as

the probability that two vectors in d-dimensions with an angular separation

of less than π/2 have an angular separation more than π/2 after projecting

to a lower dimensional space. Our approach is to derive the sub-Gaussian

norms of RS projected vectors then use the upper bound from both to bound

the generalization error. We will also demonstrate that for RS, unlike RP,

the probabilistic guarantees for “flipping probability” are data-dependent and

depends on the `4 and `∞ norms of the data vectors and the classifier.

Leveraging this dependence on the data representation, we propose a com-

putationally efficient transformation that can significantly improve the upper

bound on the flipping probability for very sparse vectors in subsection 5.2.35.2.3.

In section 5.35.3, we corroborate our theoretical findings empirically on syn-

thetic data and discuss the limitations of these probabilistic bounds on the

flipping probability. Moreover, in section 5.45.4, we discuss the practical implica-

tions of our results for classification ensembles.
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5.1 Background

Durrant and KabánDurrant and Kabán (20102010) defined the “flipping probability” of a pair of

randomly projected vectors as the probability that two vectors in d−dimensional

Euclidean space m,n ∈ Rd which are separated in Rd by an angle θm,n ∈

[0, π/2] to have angular separation θR,m,n > π/2 following a random projection.

Later work by Durrant and KabánDurrant and Kabán (20132013) shows that the flipping probability

is a useful tool to capture the geometric structure that makes a classification

problem “easy” in the sense that it requires a relatively small sample size to

guarantee good generalisation.

Durrant and KabánDurrant and Kabán (20132013) showed that the generalization error w.r.t the

(0,1)-loss of any linear classifier can be bounded by a function of the flipping

probability in the following theorem

Theorem 5.1 (ERM Generalization Error of RP projected data sets (The-

orem 3.1 Durrant and KabánDurrant and Kabán (20132013))). Let T n = {(x(i), y(i))|x(i) ∈ Rd, y(i) ∈

{0, 1}}ni=1 be a set of d-dimensional labelled training examples of size n and let

ĥ be the linear ERM classifier estimated from T n. Let R ∈ Mk×d, k < d

be a random projection matrix with entries Ri,j
i.i.d∼ N(0, σ). Denote by

T nR = {(Rx(i), y(i))}ni=1 the RP projection of the training data T n, and let

ĥR be the linear classifier estimated from T nR . Let fk(θi) be the flipping proba-

bility following a random projection. Then, for all δ ∈ (0, 1], with probability at

least 1− 2δ, w.r.t the random choice of T n and R, the generalization error of

ĥR w.r.t. the (0, 1)-loss is bounded above by:

Pr
{
ĥR(Rx(q)) 6= y(q)

}
≤ Ê(T n, ĥ) + 1

n

n∑
i=1

fk(θi)

+ min


√

3 log 1
δ

√√√√ 1
n

n∑
i=1

fk(θi),
1− δ
δ

1
n

n∑
i=1

fk(θi)


+ 2

√
k + 1 log 2εn

k+1 + log 1
δ

n

(5.1)

Where on the right hand side, the first term is the empirical risk of the

classifier ĥ ∈ Rd, the second is the empirical flipping probability measured on
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the data and the last two terms bound the deviation of the empirical estimates

from their expectation with high probability.

For a random projection matrix R with zero mean, sub-Gaussian entries,

Kabán and DurrantKabán and Durrant (20172017) showed that the flipping probability can be bounded

above by the following lemma

Lemma 5.2 (Flipping probability upper bound, sub-Gaussian case (Lemma

1.3 Kabán and DurrantKabán and Durrant (20172017)). Let R be a RP matrix with entries Ri,j drawn

i.i.d from a zero mean sub-Gaussian distribution, let h,x ∈ Rd and let θ = θhx

be the angle between them. Let Rh,Rx ∈ Rk be the images of h,x under R.

Then, if hTx 6= 0, we have:

Pr
{

(Rh)TRx
hTx

≤ 0
}
≤ exp

(
−k cos2 θ/8

)

Moreover, when R is a Gaussian random projection (i.e. Ri,j
i.i.d∼ N(0, σ2)),

Durrant and KabánDurrant and Kabán (20102010) used the fact that the Gaussian random projection is

rotational invariant to show that the density function of the flipping probability

for Gaussian RP projected vectors has the following form

Pr {θR,n,m > π/2|θn,m < π/2} =
∫ θn,m
0 sink−1(φ)dφ∫ π

0 sink−1(φ)dφ

where θR,n,m is the angle between vectors m and n after a random projection

and θn,m is the original angle between vectors m and n.

While the “flipping probability” is exactly known for RP, the flipping

probability of Random Subspace (RS) projected vectors is not known. The

proofs for the flipping probabilities of RP vectors exploit the rotation-invariant

nature of the projection. However, RS projections are not rotationally invariant,

and no guarantees for the flipping probability for RS currently exist.

5.2 Flipping Probability Bounds for RS projected vec-

tors

In this section, we present our main theoretical results. First, we will

upper-bound the sub-Gaussian norms of RS projected vectors to show that the
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empirical distribution of a random subspace projected vector is sub-Gaussian.

Then we use the upper bound of Kabán and DurrantKabán and Durrant (20172017) for the flipping

probability of a sub-Gaussian distribution.

Now, recall from Section 3.33.3, general Hoeffding’s inequality (Lemma 3.63.6),

Lemma 5.3 (General Hoeffding’s inequality, (Theorem 2.6.3 VershyninVershynin (20182018))).

Let X1, . . . , Xn be independent mean zero, sub-Gaussian random variables, and

a = (a1, . . . an)T ∈ Rn. Then for every t ≥ 0, we have

Pr
{∣∣∣∣∣

N∑
i=1

aiXi

∣∣∣∣∣ > t

}
≤ 2 exp(− ct2

K2‖a‖2
2
) where K = max

i
‖Xi‖ψ2

We will now show that the empirical distribution of RS projected vectors

is sub-Gaussian, and therefore the flipping probability has a similar form as

Lemma 5.25.2.

Lemma 5.4. Let u and v be two unit vectors in Rd and let P be a random

subspace projection chosen without replacement from Rd 7→ Rk, with k, d ∈ N

and 0 < k < d/2, then the empirical distribution of (Pu)TPv is also sub-

Gaussian.

Proof. We want to show that

Pr
{∣∣∣∣∣dk (Pu)TPv)− uTv

∣∣∣∣∣ > t

}
≤ 2 exp

(
−t2

K2
1

)

for some constant K1 and thus showing that the empirical distribution of
d
k
(Pu)TPv − uTv is sub-Gaussian by Definition 3.153.15(1).

First observe that

Pr
{∣∣∣∣∣dk (Pu)TPv − uTv

∣∣∣∣∣ > t

}
= Pr

{∣∣∣∣∣dk (Pu)TPv − d

k
E[(Pu)TPv]

∣∣∣∣∣ > t

}

= Pr
{∣∣∣(Pu)TPv − E[(Pu)TPv]

∣∣∣ > k

d
t

}

(5.2)

Using union bound, we can upper bound equation 5.25.2 by

Pr
{

(Pu)TPv − E[(Pu)TPv] > k

d
t

}
+Pr

{
E[(Pu)TPv]− (Pu)TPv < −k

d
t

}
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As we did in the proof for Theorem 4.14.1 in section A.1A.1, we will let I be the

index set such that i ∈ I =⇒ Pii = 1. Observe that,

Pr
{

(Pu)TPv − E[(Pu)TPv] > k

d
t

}
= Pr

{∑
i∈I

uivi >
k

d
(t+

d∑
i=1

uivi)
}

Where the sample total ∑i∈I uivi is estimated from a sample size of k without

replacement. Let x = u � v, where � is the Hadamard product operator.

Observe that xi = uivi,∀i ∈ [1, d]. Also observe that ‖x‖∞ = ‖u � v‖∞ ≤

‖u‖∞‖v‖∞ ≤ 1. We apply Hoeffding’s inequality, giving us the following

results:

Pr
{∑
i∈I

uivi >
k

d
(t+

d∑
i=1

uivi)
}

= Pr
{∑
i∈I
xi >

k

d
(t+

d∑
i=1
xi)

}

≤ exp
(
−2(kt

d
)2∑

i∈I ‖x‖2
∞

)

= exp
(
−2k( t

d
)2

‖x‖2
∞

) (5.3)

Similarly, we can find an upper bound to

Pr
{
E[(Pu)TPv]− (Pu)TPv < −k

d
t

}
≤ exp

(
−2k( t

d
)2

‖x‖2
∞

)
(5.4)

Applying union bound, an upper bound to equation 5.25.2 is

Pr
{∣∣∣∣∣dk (Pu)TPv − uTv

∣∣∣∣∣ > t

}
≤ 2 exp

(
−2k( t

d
)2

‖x‖2
∞

)

Therefore by Definition 3.153.15(1), The empirical distribution d
k
(Pu)TPv − uTv

is sub-Gaussian with K2
1 = d2 maxi ‖x(i)‖2

∞
2k ≤ d2

2k

Lemma 5.5 (Flipping probability upper bound, Random Subspace). Let P

be a RS projection chosen without replacement from Rd 7→ Rk, with k, d ∈ N

and 0 < k < d/2, let h,x ∈ Rd be two vectors with unit length, and let θ = θhx

be the angle between them. Let Ph,Px ∈ Rk be the images of h,x under P .

Then, if hTx 6= 0, we have:

Pr
{

(Ph)TPx
hTx

≤ 0
}
≤ 2 exp

(
−2k cos2 θ/d2

)
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Proof. Observe that

Pr
{

(Ph)TPx
hTx

≤ 0
}

= Pr
{

(Ph)TPx
hTx

− k

d
≤ −k

d

}

= Pr
{
d

k
(Ph)TPx− hTx ≤ −hTx

}

≤ Pr
{∣∣∣∣∣dk (Ph)TPx− hTx

∣∣∣∣∣ ≥ hTx
} (5.5)

Substituting t = hTx = cos θ into equation 5.35.3 gives

Pr
{

(Ph)TPx
hTx

≤ 0
}
≤ 2 exp

(
−2k cos2 θ

d2

)

A direct implication of our result is that by Theorem 5.15.1 the generalization

error of a classifier trained by ERM on a RS projected data set can be upper

bounded by

Pr
{
ĥR(Rx(q) 6= y(q))

}
≤ Ê(T n, ĥ) + 2 exp

(
−k cos2 θ

d2

)

+ min


√

3 log 1
δ

√√√√2 exp
(
−2k cos2 θ

d2

)
,
1− δ
δ

2 exp
(
−2k cos2 θ

d2

) 
+ 2

√
k + 1 log 2εn

k+1 + log 1
δ

n

(5.6)

One key observation here is that the generalization error bounds grows with

the dimensionality of the original data unlike in the case for RP. We also would

like to note however, that we used an overestimate of the sub-Gaussian norms,

and in practice, the required projection dimensions would be lower than the

data agnostic guarantees.

5.2.1 Data Dependent Flipping Probability

We have not imposed any regularity conditions on the projected vectors

in the error bounds and generalization bound above. However, as the results

of Chapter 44 shows, the norm and dot-product preservation guarantees (and

by extension, geometry-preservation guarantees) of a random subspace pro-

jected vector depends on the ‘regularity’ of the representation of the vectors.

By imposing some regularity conditions on the vectors, we can tighten the
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flipping probability bounds given by lemma 5.45.4 significantly. Here, we will use

Bernstein’s inequality to upper-bound the flipping probability

Theorem 5.6 (Flip probability of random subspace projected vectors). Let u

and v be two unit-vectors in Rd with an angular separation of 0 ≤ θu,v ≤ π and

θu,v 6= π/2. Let P be a random subspace projection chosen without replacement

from Rd 7→ Rk, with k ∈ [1, d), The “flipping probability” is upper-bounded by

Pr
{

(Pu)TPv
uTv

≤ 0
}
≤ exp

(
−ck cos2 θ

2d‖u� v‖2
2

)

where c is a constant

Proof. We first note that the flipping probability can also be expressed as below

Pr
{

(Pu)TPv
uTv

< 0
}

= Pr
{
−(Pu)TPv

uTv
> 0

}

= Pr
{
−(Pu)TPv

uTv
+ k

d
>
k

d

} (5.7)

Now, observe that for the case 0 ≤ θu,v < π/2 we have uTv > 0 and

Pr
{

(Pu)TPv
uTv

< 0
}

= Pr
{
k

d
uTv − (Pu)TPv > k

d
uTv

}

= Pr
{
E[(Pu)TPv]− (Pu)TPv > k

d
cos θu,v

} (5.8)

Conversely when π/2 < θu,v ≤ π, we have uTv < 0 and we have

Pr
{

(Pu)TPv
uTv

< 0
}

= Pr
{

(Pu)TPv − k

d
uTv > −k

d
uTv

}

= Pr
{

(Pu)TPv − E[(Pu)TPv] > −k
d

cos θu,v
} (5.9)

In the following steps, we will upper bound equations 5.85.8 and 5.95.9.

As in Lemma 5.45.4, we let x = u � v. We now set q to be a proxy for

E[P ]−P . Let qi for all i ∈ [1, d] be i.i.d Bernoulli random variables such that

qi :=


−1 + k

d
w.p. k

d

k
d

w.p. d−k
d
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Observe that qi is an independent zero mean random variable. Observe also

Var(∑d
i=1 qixi) = Var(qTx) = d−k

d
k
d
‖x‖2

2 ≤ k
d
‖x‖2

2

By Lemma 3.93.9, we can transfer the probability for sampling with replacement

into the setting of sampling without replacement. Observe that an upper bound

for equation 5.85.8 is

Pr
{
E[(Pu)TPv]− (Pu)TPv > k

d
cos θu,v

}
≤ Pr

{
d∑
i=1

qixi >
k

d
cos θu,v

}
(5.10)

Applying Bernstein’s inequality we have,

Pr
{

d∑
i=1

qixi ≥ t

}
≤ exp

−1
2t

2

k
d
‖x‖2

2 + 1
3‖x‖∞t

We choose t = k
d

cos θu,v and observing that exp
(

− 1
2 t

2

k
d
‖x‖2

2+ 1
3‖x‖∞t

)
≤ exp

(
− 1

2
k
d

cos2 θu,v
2(‖x‖2

2)

)
,

with the last inequality from observing that ‖x‖∞ ≤ ‖x‖2.

Now for equation 5.95.9, we let x = u� v. We now set q to be a proxy for

P −E[P ]. Let qi for all i ∈ [1, d] be i.i.d Bernoulli random variables such that

qi :=


1− k

d
w.p. k

d

−k
d

w.p. d−k
d

Observe that as in the previous case, qi is an independent zero mean random

variable. Observe also

Var(∑d
i=1 qixi) = Var(qTx) = d−k

d
k
d
‖x‖2

2 ≤ k
d
‖x‖2

2

Again, by Lemma 3.93.9, we can transfer the probability for sampling with

replacement into the setting of sampling without replacement and observing

that an upper bound for equation 5.95.9 is

Pr
{
E[(Pu)TPv]− (Pu)TPv > k

d
cos θu,v

}
≤ Pr

{
d∑
i=1

qixi >
k

d
cos θu,v

}
(5.11)

Applying Bernstein’s inequality we have,

Pr
{

d∑
i=1

qixi ≥ t

}
≤ exp

−1
2t

2

k
d
‖x‖2

2 + 1
3‖x‖∞t

We choose t = −k
d

cos θu,v > 0 and observing that exp
(

− 1
2 t

2

k
d
‖x‖2

2+ 1
3‖x‖∞t

)
≤

exp
(
− 1

2
k
d

cos2 θu,v
2(‖x‖2

2)

)
.
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Observe that the upper bounds are the same for both cases where uTv > 0

and uTv < 0. Therefore we have,

Pr
{

(Pu)TPv
uTv

< 0
}
≤ exp

(
−1

2
k
d

cos2 θu,v
2(‖x‖2

2)

)

We now consider the properties of ‖u� v‖2
2. We let u⊥ be the orthogonal

component of v such that v = u cos θu,v + u⊥ sin θu,v. Now, observe that we

can rewrite ‖u� v‖2
2 as

‖u� v‖2
2 =

d∑
i=1

u2
i (vi)2

=
d∑
i=1

u2
i (ui cos θu,v + u⊥i sin θu,v)2

=
d∑
i=1

u4
i cos2 θu,v + 2u3

iu
⊥
i sin θu,v cos θu,v + u2

i (u⊥i )2 sin2 θu,v

= ‖u‖4
4 cos2 θu,v + ‖u� u⊥‖2

2 sin2 θu,v + 2‖u3 � u⊥‖ sin θu,v cos θu,v

(5.1)

Now if we replace equation 5.15.1 into Theorem 5.65.6, the flipping probability of

vectors u and v under a RS projection can be written as

Pr
{

(Pu)TPv
uTv

≤ 0
}
≤ exp

(
−ck

2d‖u‖44 + ‖u� u⊥‖22 tan2 θu,v + 2‖u3 � u⊥‖ tan θu,v

)

This implies that the distribution of flipping probability has a minimum, independent

of the angle of the vectors that is determined by the `4 norm of one of the vector.

We will like to note that under most circumstance, ‖u3 �u⊥‖ is typically very small

unless u is heavily skewed, e.g. few large positive entries with many small negative

entries or vice versa. In cases where ‖u3 � u⊥‖ is significant, the distribution of the

flipping probability according to Theorem 5.65.6 will also be skewed.

Corollary 5.7. Let u and v be two unit vectors in Rd with an angular separation

of θu,v. Let P be a random subspace projection chosen without replacement from

Rd 7→ Rk, with 0 < k < d/10, Let u⊥ be the orthogonal component of v such that

v = u cos θu,v + u⊥ sin θu,v. The upper bound of the flipping probability is given by

Pr
{
uTPv < 0|uTv > 0

}
< exp

(
−ck

d(‖u‖44 + ‖u‖2∞ tan2 θu,v + 2‖u‖36 tan θu,v)

)

where c is a constant
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Proof. Applying Holder’s inequality to ‖u� u⊥‖22, we have

‖u� u⊥‖22 =
d∑
i=1

u2
i (u⊥i )2 ≤

(
d∑
i=1

u2p
i

)1/p( d∑
i=1

(u⊥i )2q
)1/q

with 1/p+ 1/q = 1

Choosing q = 1 and p = ∞, and observing that
∑d
i=1(u⊥i )2 = ‖u⊥‖22 = 1 gives us

‖u� u⊥‖22 ≤ ‖u‖2∞.

Finally, applying Holder’s inequality to ‖u3 � u⊥‖1 we have,

‖u3 � u⊥‖1 =
d∑
i=1

u3
i (u⊥i ) ≤

(
d∑
i=1
|u3p
i |
)1/p( d∑

i=1
|(u⊥i )q|

)1/q

with 1/p+ 1/q = 1

. Choosing p = 2 and q = 2 we have ‖u3�u⊥‖ ≤ ‖u‖36 and completing the proof.

5.2.2 Discussion of the Bounds

Theorem 5.65.6 and Corollary 5.75.7 implies that the flipping probability of the angle

between two vectors can be upper-bounded by the `4 and `6 and the `2∞ norms of any

one of vectors. When this is applied to linear classifiers, the flipping probability is

the upper bound that an observation is misclassified after a RS projection is applied.

Our theorems suggest that this probability can be upper-bounded by the norms of

the normal vector of the discriminating hyperplane.

To gain some intuition of the data dependency, if we consider a Fisher’s Linear

Discriminant classifier for a binary classification problem with balanced class i.e.

(n0 = n1) centered on the origin (i.e. µ0 +µ1 = 0). We let µ0 and µ1 be the centres of

observations belonging to class 0 and 1 respectively and Σ =
∑1
j=0(Xj−µj)(Xj−µj)T

be the covariance matrix of the training data and let λi be the i-th eigenvalue of

Σ corresponding to the i-th coordinate. The normal vector of the discriminating

hyperplane would then be h = Σ−1/2(µ0 − µ1).

Letting u = h/‖h‖2, we see that d‖u‖44 =
d
∑d
i=1

(µ0−µ1)4
i

λ2
i

(
∑d
i=1

(µ0−µ1)2
i

λi
)2
, d‖u‖2∞ =

dmaxi
(µ0−µ1)2

i
λi

(
∑d
i=1

(µ0−µ1)2
i

λi
)2
.

We see that ‖u‖44 decreases as the vector u becomes more “regular” (i.e. the squared

entries of u are close to each other). Observe that this is analogous to the regularity

constant c′ derived in the previous chapter. Also, the flipping probability for “hard”

classification problems (that is to say θu,h ∼ π/2) increases the classification largely

depends on only a few features. i.e. the weights for the discriminating hyperplane

have few entries that are much larger than the average entries. Observe that this

condition is analogous to the regularity constant c defined in chapter 44.
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5.2.3 Vector Densification using Householder transforms

Corollary 5.75.7 implies that for a pair of unit vectors u,v ∈ Rd, we only need to

minimize the fourth norm (`4), and the squared infinity-th norm (`2∞) of either one

of the vector in order to improve the upper bound of the flipping probability. It is

not difficult to see that the unit vector u′ =
(
±1/
√
d, . . . ,±1/

√
d
)
indeed has the

smallest `4 and `2∞ norm (the values are ‖u‖44 = 1
d and ‖u‖2∞ = 1

d . Hence, if we can

find a transformation that “regularize” u (i.e. to u′) we can significantly improve on

the upper bound flipping probability for vectors that has large ‖u‖44 and ‖u� u⊥‖22.

One such transformation that achieves this is the Householder transformation.

A Householder transform H is given by H := I − 2nnT where I is the identity

matrix and ‖n‖2 = 1. One can easily check that n is an eigenvector of H with one

of the eigenvalues −1, and all other eigenvalues are 1, and that H = HT = H−1.

Geometrically, H is therefore a reflection about a hyperplane through the origin with

normal vector n and, in particular, `2 norms are preserved by H: ‖Hu‖2 = ‖u‖2

for any u. Moreover Hu = u − 2n(nTu), so one need not evaluate the matrix

multiplication explicitly.

We can determine the normal vector n to do a reflection of u to u′ (or to

arbitrary unit vector for that matter) in O(d). One such algorithm to do this is given

in appendix CC and provides us with a very efficient method in which to ‘densify’ the

vectors.

Lemma 5.8 (Angular Preservation of Householder Transform). Intuitively, because

a Householder transformation is a reflection, the angular separation is also preserved.

However, it is not difficult to directly show that the Householder Transform preserves

angular separation. Formally, (Hu)T (Hv)
‖Hu‖‖Hv‖

= uTv

‖u‖‖v‖
.

Proof. Let x and y be two arbitrary vectors. Observe that

(Hu)T = (u− 2nnTu)T = uT − 2uTnnT

(Hv) = v − 2nnTv

(Hu)T (Hy) = (uT − 2uTnnT )(v − 2nnTv)

= uTv − uT (2nnTv)− 2uTnnT (v) + 4(uTnnTnnTv)

= uTv − 2uTnnTv − 2uTnnTv + 4uTn(1)nTv
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= uTv

Observing that ‖Hu‖2 = (Hu)THu = uTHTHu = uTu = ‖u‖22 and ‖Hv‖2 =

(Hv)THv = vTHTHv = vTv = ‖v‖22 completes the proof.

Note: ‖u� u⊥‖22 can in some cases be less than 1, and applying a Householder

Transform would in those cases result in a larger upper bound on the flipping

probability for cases where the angular separation is close to π/2. However, in most

cases, applying this Householder Transform can significantly improve the flipping

probability.

5.3 Empirical Corroboration of Theorems

Here, in this section, we present experimental results which corroborate our

theory developed in Section 5.25.2.

5.3.1 Empirical Validation

We set two orthogonal vectors u and u⊥ ∈ Rd, with the vectors specially

constructed to have the desired d‖u‖44 and d‖u � u⊥‖22 values. We do this by

changing the proportion of non-zero elements in the vector (s) and choosing specific

distributions to generate the vector (see appendix BB). Table 5.15.1 shows the definitions

we used to define u and t as well as a summary of the values of d‖u‖44 and d‖u�u⊥‖22

for the various distributions used to define u and u⊥.

We then set v = u cos(θ) +u⊥ sin(θ). Note, by construction u and v is separated

with an angular separation of θ. We then apply Np = 10000 random subspace

projection of k−subspaces on u and v and empirically measure the proportion of

label flipping fp = |(Pu)T (Pv)/uT v<=0|
Np

, where |A| is the count of the number of

elements in A. We repeat this for a range of θ ∈ [0, π] with a step size of π/100 and

plot fp vs θ for k ∈ [1, 5, 10, 20, 50, 100].

Using algorithm C.1C.1, we applied a Householder transform H to reflect u such

that every entry of Hui = ±1/
√
d (with probability 1/2). We then plotted the

flipping probability of (Hu)TP (Hv) to give a visual comparison of the improvement

to the flipping probability after applying the Householder transformation.
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u u⊥ d‖u‖4
4 d‖u� u⊥‖2

2

ui :=


N(0, 1) i ≤ s

0 s < i ≤ d

u⊥:= v− < v,u > u

with v := N(0, I)
3d/s 1

ui :=



−1/
√
s w.p. 1/2, i ≤ s

1/
√
s w.p. 1/2, i ≤ s

0 s < i ≤ d

u⊥:= v− < v,u > u

with v := N(0, I)
d/s 1

ui :=



−1/
√
s w.p. 1/2, i ≤ s

1/
√
s w.p. 1/2, i ≤ s

0 s < i ≤ d

u⊥i :=



−ui i ≤ s/2

ui s/2 < i ≤ s

0 s < i ≤ d

d/s d/s

ui :=



−1/
√
s w.p. 1/2, i ≤ s

1/
√
s w.p. 1/2, i ≤ s

0 s < i ≤ d

u⊥i :=



−qui i ≤ s/2

qui s/2 < i ≤ s√
1−q2

d−s s < i ≤ d

d/s dq2/s

ui :=



−1/
√
s w.p. 1/2, i ≤ s

1/
√
s w.p. 1/2, i ≤ s

0 s < i ≤ d

u⊥i :=


0 i ≤ s

1√
d−s s < i ≤ d

d/s 0

Table 5.1: Summary of the definition of the vectors u and u⊥ and the corresponding

values of d‖u‖44 and d‖u� u⊥‖22
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These results are plotted in Figures 5.15.1 through 5.85.8, with the horizontal axes the

angular separation in π radians and the vertical axes, is the proportion of label flipping

(flipping probability). We include the additional figures in the appendix, namely

Figures D.1D.1 through D.15D.15. The solid purple lines in the figures are the theoretical

upper-bound of flip probability as stated by Theorem 5.65.6. The blue, red and yellow

plots are the empirical flipping probability for Gaussian RP projected vectors, RS

projected vectors and RS projected vectors with Householder ‘densification’ applied

respectively.

5.3.2 Discussion of the Empirical Results

We can see in the Figures 5.15.1 through 5.85.8 that our theoretical bound captures the

shape of the empirical flip probability accurately, albeit with an offset especially for

small values of k (k < 4d‖u‖44) (see Figures 5.35.3, 5.65.6, 5.85.8 ). This offset is dependent

on d‖u‖44 and captures probability that the random subspace projection picks a

feature values that is very small in comparison to the rest of the entries.

To see why this is so, we consider this extreme but straight forward example

with these three vectors, u = [
√

1− (d− 1)ε2, ε, . . . , ε];

u′ = [
√

1− (d− 1)ε2,−ε, . . . ,−ε]; and v = [cos θ,
√

1
d−1 sin θ, ...,

√
1
d−1 sin θ] each

with an arbitrary small ε. Observe that both u,v and u′,v has an angular separation θ.

We can also see that both d‖u‖44 = d‖u′‖44 = d. However, if we were to combinatorially

calculate the flipping probabilities of uTPv and u′TPv for θ ∈ [0, π/2), we have

Pr
{
uTPv < 0

}
= 0 (since every entry of uivi > 0) and Pr

{
u′TPv < 0

}
= 1−k/d <

e−k/d (since only the first entry of uivi > 0 and every other entry < 0).

We also note that our theorem gives an upper bound on a flipping probability of 1

when the angular separation approaches π/2. Again, this is not unexpected. Consider

these two pairs of vector u = [1, ε, ..., ε],v = [ε, ..., ε, 1] and u′ = [1,−ε, ...,−ε],v′ =

[3ε, ε, ..., ε, 1]. Both uv and u′v′ have an angular separation of cos−1 2ε but has

entries that have signs flipped almost everywhere except for the first entry. As in

the previous example, we can see that the flipping probability for the second pair is

1− k/d using combinatorial techniques.

We would like to note that in Figure 5.35.3, there is a slight skewness the flipping

probability of the random subspace projected vectors. This comes from ‖u3 � u⊥‖1
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Figure 5.1: Flipping probability vs angular separation for Gaussian vectors,

(first row in Table 5.15.1), with sparsity s = 1 for projection dimension k ∈

{1, 5, 10, 20, 50, 100} and dimensionality d = 1000. Observe that our theory up-

per bounds the flipping probability.
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Figure 5.2: Flipping probability vs angular separation for Gaussian vectors, (first

row in Table 5.15.1) with sparsity s = 2 for projection dimension k ∈ {1, 5, 10, 20, 50, 100}

and dimensionality d = 1000.
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Figure 5.3: Flipping probability vs angular separation for Gaussian vectors, (first

row in Table 5.15.1) with sparsity s = 5 for projection dimension k ∈ {1, 5, 10, 20, 50, 100}

and dimensionality d = 1000. Observe that the non-symmetric behaviour of the

empirical flipping probability is predicted by our theorem.
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Figure 5.4: Flipping probability vs angular separation for two binary vector that

coincides in every coordinate, (row three in Table 5.15.1) with sparsity s = 1 for

projection dimension k ∈ {1, 5, 10, 20, 50, 100} and dimensionality d = 1000.
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Figure 5.5: Flipping probability vs angular separation for two binary vector that

coincides in every coordinate, (row three in Table 5.15.1) with sparsity s = 2 for

projection dimension k ∈ {1, 5, 10, 20, 50, 100} and dimensionality d = 1000.
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Figure 5.6: Flipping probability vs angular separation for two binary vector that

coincides in every coordinate, (row three in Table 5.15.1) with sparsity s = 5 for

projection dimension k ∈ {1, 5, 10, 20, 50, 100} and dimensionality d = 1000.
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Figure 5.7: Flipping Probability vs Angular Separation of two binary vectors such

that the two vectors do not coincide, (row five in Table 5.15.1) with sparsity s = 2 for

projection dimension k ∈ {1, 5, 10, 20, 50, 100} and dimensionality d = 1000. Observe

that applying Householder transform increases the flipping probability.
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Figure 5.8: Flipping Probability vs Angular Separation of two binary vectors such

that the two vectors do not coincide, (row five in Table 5.15.1) with sparsity s = 5 for

projection dimension k ∈ {1, 5, 10, 20, 50, 100} and dimensionality d = 1000. Observe

that applying Householder transform increases the flipping probability.
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being large enough to be significant and the non-symmetric nature of the flipping

probability was also captured by our theorem.

We also see from our figures, that the Householder transformation can be used

to improve the flipping probabilities except for the cases when d‖u‖4 = 1 , in which

case u is already dense, and there would not be any improvement gained by using

the Householder transformation) or in cases when d‖u� u⊥‖2 < 1 (see Figures 5.75.7

and 5.85.8). u � v is already fairly regular and by applying Householder Transform

makes the vectors less regular, and increases the flipping probability but not much

more than using Gaussian RP projection. In most cases, applying the Householder

Transform would improve the flipping probability especially for a pair of sparse

vectors.

5.4 Implication for Classification Ensembles

Our results above suggest that an ensemble of randomly projected classifiers

(in this case random subspace projection), can be used as an ensemble to recover

the Bayes’ classifier. To see why this is so, consider a linear classifier with decision

boundary described by h. Let hi := hPi be a random projection of h. Observe that

the errors of projected classifier can be decomposed and an upper bound of the error

is

E[1(hTi x) 6= y] = E[1(hTx 6= y)] + E[1(hTi x 6= hTx ∩ hTx = y)]

− E[1(hTi x 6= hTx ∩ hTx 6= y)]

≤ E[1(hTx 6= y)] + E[1((hTi x 6= hTx) ∩ (hTx = y))]

+ E[1((hTi x 6= hTx) ∩ (hTx 6= y))]

= E[1(hTx 6= y)] + E[1(hTi x 6= hTx)]

Moreover, observe that E[1(hTi x 6= hTx)] is the flipping probability and that the

flipping probability is independent of the other instances of the random subspace

projections (i.e. E[1(hTi x 6= hTx)] is independent of E[1(hTj x 6= hTx)] for all i 6= j).

Therefore, by Condorcet’s Jury Theorem, this implies that as the ensemble size

N tends to infinity, the majority vote accuracy of the classification ensemble will

tend to the accuracy of the Bayes’ classifier, assuming of course, that the average
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Figure 5.9: Majority vote accuracy for classification ensemble of Random Subspace

projection of the Bayes’ classifier with dimensionality d = 1000 and sparsity d/s = 2.

Dashed lines are the majority vote accuracy as predicted by a binomial model with

the average flipping as the parameter of the binomial model, the flipping probability f

was determined through empirical simulation. Observe here that the ensemble failed

to give a consistent model for k = 2. While the flipping probability in the legends is

less than 0.5, the flipping probability values in the legend excluded projection angles

that are exactly π/2. Empirical flipping probability for k = 2 is 0.55.

flipping probability is less than 0.5.

lim
N→∞

E[
N∑
i=1

1(hTi x 6= y)] = E[1(hTx 6= y)]

Figure 5.95.9 shows the majority vote accuracy of an ensemble classifiers where

the member classifier is generated by applying random subspace projection on h

(i.e. hi := hPi). The dashed lines are the majority vote accuracy as predicted by a

binomial model with the average flipping as the parameter of the binomial model.

Observe that the accuracy of the ensemble follows a binomial distribution with the

parameter of the binomial distribution determined by the flipping probability.

However, because learning algorithms generate a hypothesis based on a finite

set of training examples, and reasonable learning algorithms learn hypotheses that

maximizes the margins, the errors of the hypothesis hi generated by the learning

algorithm from randomly projecting training data with Pi is not independent. In the

next chapter, we will look at modelling the majority vote classification ensemble when
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the errors of the member classifiers are not independent by leveraging on results from

the social sciences and economics and using the Polya-Eggenberger distribution.

5.5 Conclusion and Summary

In this chapter, we have derived the sub-Gaussian norm of a vector representing the

random subspace projected data. We applied the sub-Gaussian norms to the theorems

in Kabán and DurrantKabán and Durrant (20172017) giving us the flipping probability and generalization

errors of random subspace projected classifiers.

We derived the data-dependent flipping probability and empirically showed how

our bounds capture the empirical flipping probabilities of random subspace projected

vectors. We provided an analogue to the regularity constant and discussed the factors

affecting the flipping probabilities.

We also demonstrated how using Householder transformations could be used to

improve the flipping probability of the vectors.

One idea to improve the flipping probability for a general random subspace

projected classifier is to use a Householder Transforms to reflect the normal vector of

hyperplane representing the Bayes optimal classifier such that it is dense.

We also discussed the implications of the flipping probability for classification

ensembles and show the intuition of how our theory on flipping probability shows

how we can recover the Bayes’ classifier by considering the independence in the

errors of the randomly projected classifiers. We also discussed the limitations of

that intuition and why in practice, the errors of classifiers generated by randomly

subspace projected data is not independent.

In the next chapter, we will look at results from the social sciences and show how

we can model the majority vote accuracy of the ensemble when the classifiers are corre-

lated using a Polya-Eggenberger distribution. We will show how the Sneath and SokalSneath and Sokal

(19631963) diversity measure estimates the parameters of the distribution and discuss

the implications of the model.
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6
Ensembles of Random Subspace

Classifiers

Summary In the previous chapter, we discussed the intuition of how an ensemble of

randomly subspace projected classifier can recover the Bayes’ classifier by observing

that the flipping probability of a random subspace projected classifier is independent

of the other randomly projected classifiers. However, because the learning algorithm

learns the classifier on a finite set training set, the flipping errors in the individual

classifiers are not independent.

In this chapter, we investigate the accuracy of a majority vote classification en-

semble by modelling the accuracy with a Polya-Eggenberger distribution as described

by LadhaLadha (19951995) and BergBerg (19931993). We will show we can use the Sneath and SokalSneath and Sokal

(19631963) ρ diversity measure to estimate the dispersion parameter ψ of the Polya-

Eggenberger distribution. We discuss the suitability of this model and we decompose

the model using “good” and “bad” diversity error decomposition as defined by

Brown and KunchevaBrown and Kuncheva (20102010). We also evaluate other proposed methods of estimat-

ing diversity including the methods proposed by LadhaLadha (19951995) and BergBerg (19931993).

We also discuss various combination schemes such as sum rule, and in our empirical

exploration we will try to reconcile the contradictory findings of Kuncheva and RodríguezKuncheva and Rodríguez

(20142014) to SchapireSchapire (19901990); BlumBlum (19971997) and we explore the intuition on why RS en-

sembles can be considered as a regularization of the original high-dimension problem.

We empirically compare the ensemble accuracy on different ensemble combination

schemes. We also compare the Polya-Eggenberger model to our empirical results
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and show that our choice of diversity measure is a reasonable estimate for the model

dispersion parameter. Finally, we compare our theoretical to empirical experience

using findings on high-dimensional data from the NIPS 2003 Feature Selection

Challenge (GuyonGuyon, 20032003).

6.1 Background

Empirical results have shown that ensemble classifiers are typically superior in

terms of accuracy and robustness versus individual learners. It is generally accepted

that the accuracy of an ensemble classifier tends to increase with increasing ensemble

size,and with the accuracy of the individual classifiers and diversity between the

ensemble members. However, the actual relationship between these aspects is mostly

unknown.

6.2 Majority Voting

As we may recall from section 2.1.22.1.2, the choice of the combination method in

the combination scheme for an ensemble can significantly affect the overall accuracy

of the ensemble learner. Of the many combination methods, the most studied and

commonly used combination scheme is the majority vote. In a majority vote ensemble,

each classifier chooses a class label, and the class label chosen by the greatest number

of classifiers is selected as the output of the ensemble. Some literature distinguishes

between plurality vote and majority vote in this context; however, for a two-class

classification, these two combination schemes are mathematically identical.

In the early literature on majority vote ensemble classifiers, the accuracy models

for majority vote are based on the binomial model which assume independence of

votes and does not take into account the diversity of the classifiers in the ensemble

(Lam and SuenLam and Suen, 19971997; Whitaker and KunchevaWhitaker and Kuncheva, 20032003; Kuncheva et al.Kuncheva et al., 20032003). This

is in spite of the empirical evidence showing that diversity is important to the ensemble

accuracy and this makes it challenging to optimize the accuracy-diversity trade-off for

the ensemble using the binomial model since the assumption of independent errors

is typically false. To put this another way, such theory is weak in the sense that it

ignores aspects of the problem that are known empirically to be important.
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Meanwhile, results from the field of Social Sciences namely those by LadhaLadha (19951995)

and BergBerg (19931993), propose that the accuracy of a majority vote voting system can be

modelled using a Polya-Eggenberger distribution (which is a generalization of the well-

known Beta-Binomial model, but allows for a limited range of negative valued shape

parameters). While this model is still fairly restrictive — in particular the model

assumes identical competencies in the voters (i.e. identical probabilities that the

votes are correct) — our empirical results in section 6.5.16.5.1 show that the assumption

of identical classifier competencies is not too unrealistic and the accuracy of a

majority vote classification can be modelled quite accurately by a Polya-Eggenberger

distribution even though the assumption of identical classifier competencies is not

often met in practice.

6.2.1 Polya-Eggenberger Distribution

The Polya-Eggenberger model is a distribution describing the expected number

of successes in N trials drawing from the Polya urn model. In the basic Polya urn

model, we have a black balls (successes) and b white balls (failure) in an urn. One

ball is drawn randomly from the urn and the colour of the ball is observed. The

ball is returned to the urn, and s balls of the same colour are also added. This

makes it more likely that an observation that happened previously will be repeated

when s is positive, analogous to two correlated classifiers being more likely to vote

similarly, and less likely when s is negative. The Polya-Eggenberger model generalizes

the distribution to allow non-integer a and b, and negative-valued s (FellerFeller, 20082008;

Sen and MishraSen and Mishra, 19961996).

Definition 6.1 (Polya-Eggenberger Distribution (Sen and MishraSen and Mishra, 19961996)). Let N

be the number of trials in a Polya urn model, let the initial number of black balls be

a and the initial number of white balls be b. Let the number of additional balls to be

added following an observation (of black or white) be s. Define SN to be the number

of black balls drawn after N trials. Define p := a
a+b and ψ := s

a+b .

Then SN follows a Polya-Eggenberger distribution with the following definition

Case 1: ψ ≥ − 1
N , ψ 6= 0

Pr {SN = k} =
(− p

ψ

k

)(− 1−p
ψ

n−k
)

(− 1
ψ
n

)
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Case 2: ψ = 0

Pr {SN = k} =
(
n

k

)
pk(1− p)n−k

With
(x
y

)
defined for any real x and integer y as(

x

y

)
:= (x)(x− 1) . . . (x− y + 1)

y!

Note that
(x
y

)
can also be written as Γ(x+1)

Γ(x−y+1)Γ(y+1) when x ≥ y.
(x
y

)
= (−1)y

(−x+y−1
y

)
=

(−1y) Γ(y−x)
Γ(−x)Γ(y+1) when x < y where Γ(x) is the Gamma function.

The parameter that ψ can be interpreted as the increased likelihood that an

observation would be the same colour as the previous observation. In other words, if

pi is the probability that the i-th observation is a success, then pi+1 = pi+ψ
1+ψ if pi was

a success and pi+1 = pi
1+ψ otherwise.

Also note that for ψ > 0 this distribution can also be written as a beta-binomial

distribution with α = p
ψ and β = 1−p

ψ However, when ψ ≤ 0, the values for α and β

are invalid for such a model and the beta-binomial distribution is undefined. Also,

note that ψ has to be greater or equal than − 1
N otherwise it implies that a negative

number of balls is drawn from the Polya-Urn, violating the physical property of the

model — in fact, when ψ = − 1
N exactly the model is equivalent to a hyper-geometric

distribution (sampling without replacement), and when ψ = 0 it is equivalent to a

binomial distribution.

In our approach the Polya-Eggenberger model says that the number of classifiers

correctly classifying a given example follows a Polya Urn model and therefore the in

a majority voting system of N classifiers, the number of ensemble members giving

the correct vote can then be given as estimated by :

Case 1: For odd N,
∑N
i=(N+1)/2

∑
P (SN = i)

Case 2: For even N,
∑N
i=(N/2)+1

∑
P (SN = i) + 1

2P (SN = N/2)

This distribution has been studied in Sen and MishraSen and Mishra (19961996); FellerFeller (20082008);

Johnson and KotzJohnson and Kotz (19771977) and its moments are as follows:

• E[SN ] = N a
a+b = Np

• Var[SN ] = N a
a+b + (N2−N)a(a+s)

(a+b)(a+b+s) = Np(1−p)(Nψ+1)
1+ψ

• MGF [SN ] =2F1(−N, a/s; (a+ b)/s; 1− et) =2F1(−N, pψ ; 1
ψ ; 1− et)
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where MGF [SN ] is the moment generating function for SN , and 2F1(a; b; c) is the

ordinary hypergeometric function.

The cumulative distribution function for SN is:

Pr {SN ≤ k} =



0, for k < 0
(n
k

)Γ(k+ p
ψ

)Γ(n−k+ 1−p
ψ

)Γ( 1
ψ

)
Γ(n+ 1

ψ
)Γ( p

ψ
)Γ( 1−p

ψ
) 3

F2(a; b; 1), for 0 ≤ k < N

1, for k ≥ N

with a = (1,−k,N − k + 1−p
ψ ) and b = (N − k− 1, 1− k− p

ψ ) and 3F2(a; b; c) is the

generalized hypergeometric function (WeissteinWeisstein, 20022002).

For convenience, we will refer to the distribution defined in Theorem 6.16.1 as

PE(N, p, ψ) where N is the number of trials (or ensemble size), p = a
a+b with a and b

the black and white balls in the Polya urn (classifier voting correctly or incorrectly),

and ψ = s
a+b with s the number of additional balls added or removed after every trial

which would be estimated with the ρ diversity measure of Sneath and SokalSneath and Sokal (19631963).

6.2.2 Correlation and Diversity Measures

Here, we focus on a particular diversity measure, namely the average diversity

measure ρ of Sneath and SokalSneath and Sokal (19631963). We first show that this diversity measure

corresponds to the parameter ψ in the definition of the Polya-Eggenberger distribution

when the classifiers each have the same accuracy.

We begin by defining P̂ij as the observed proportion of training observations both

classifier i and j classified correctly, and P̂i and P̂j as the observed proportion of

training observations that classifier i and classifier j classified correctly, respectively.

We can then rewrite the 2× 2 contingency table for the pair of classifiers Di and

Dj (Table 6.16.1) in terms of the P̂i, P̂j and P̂ij .

Dj Correct Dj Wrong
Di Correct P̂ij P̂i − P̂ij
Di Wrong P̂j − P̂ij 1− P̂i − P̂j + P̂ij

Table 6.1: 2× 2 contingency table for the classifiers Di and Dj

Recall from Section 2.1.32.1.3 ρi,j is defined as

ρ̂ij := N11N00 −N01N10√
(N11 +N10)(N01 +N00)(N11 +N01)(N10 +N00)
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Suppose that ∀k ∈ [1, N ], P̂k 6= 0,

ρ̂ij = P̂ij(1− P̂i − P̂j + P̂ij)− (P̂i − P̂ij)(P̂j − P̂ij√
P̂iP̂j(1− P̂i)(1− P̂j)

= P̂ij − P̂iP̂j√
P̂iP̂j(1− P̂i)(1− P̂j)

Note that E[ρ̂ij ] is of the form E[XY ]−E[X]E[Y ]]√
Var[X]Var[Y ]

, which is the functional definition of

the correlation between X and Y. Therefore, ρ̂ij is a sample estimate of the correlation

between the outcomes of classifier i and j.

Now, let r̂ be the average of the ρ̂ij over all pairs i 6= j in the ensemble,

r̂ := 1
N

1
N − 1

N∑
i=1

N∑
j 6=i

P̂ij − P̂iP̂j√
P̂iP̂j(1− P̂i)(1− P̂j)

= 1
N

1
N − 1

 N∑
i=1

N∑
j 6=i

P̂ij√
P̂iP̂j(1− P̂i)(1− P̂j)

−
N∑
i=1

N∑
j 6=i

P̂iP̂j√
P̂iP̂j(1− P̂i)(1− P̂j)



(6.1)

If we assume that P̂i = P̂j = p then this simplifies to:

r̂ = 1
N2 −N

1
p(1− p)

N∑
i=1

N∑
j 6=i

(
P̂ij − p2

)
= P11/p

1− p −
p

1− p

where P11 = 1
N2−N

∑N
i=1

∑N
j 6=i P̂ij . Writing P11 in terms of r̂ and p̄, we have:

P11 = p̄(r(1− p̄) + p̄)

= p̄(r̂ − p̄r + p̄)

= p̄((1− r)p̄+ r̂)

= p̄
p̄+ r̂

1−r̂
1

1−r̂

= p̄
p̄+ r̂

1−r̂
1 + r̂

1−r̂

Letting ψ = r̂
1−r̂ completes the definition of P11, the probability that a subsequent

observation will match the preceding observation, for the Polya-Eggenberger model

as defined by FellerFeller (20082008).
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On the other hand, if ∀i, j ∈ [1, N ] P̂i ' P̂j , then we can approximate equation

6.16.1 using the geometric mean of the p̂.

r̂ =


∏N
i=1

∏N
j 6=i

(
P̂ij√
P̂iP̂j

) 1
N2−N

∏N
i=1

∏N
j 6=i

√
(1− P̂i)(1− P̂j)

1
N2−N

−
∏N
i=1

∏N
j 6=i

√
(P̂iP̂j)

1
N2−N

∏N
i=1

∏N
j 6=i

√
(1− P̂i)(1− P̂j)

1
N2−N


This approximation will tend to discount extreme values where P̂i is far from the

arithmetic mean. Therefore, it is arguably a reasonable approximation to use since if

P̂i is much poorer than the other classifiers in practice we would prune classifier i

from the ensemble and on the other hand having P̂i much greater than the accuracy

of a typical ensemble member is unrealistic in practice. We can then bound r̂ below

by

r̂ ≥


∏N
i=1

∏N
j 6=i

(
P̂ij√
P̂iP̂j

) 1
N2−N

∏N
i=1

∏N
j 6=i

√
(1− P̂i)(1− P̂j)

1
N2−N

−
∏N
i=1

∏N
j 6=i E[

√
(P̂iP̂j)]

1
N2−N

∏N
i=1

∏N
j 6=i

√
(1− P̂i)(1− P̂j)

1
N2−N



≥


∏N
i=1

∏N
j 6=i

(
P̂ij√
P̂iP̂j

) 1
N2−N

∏N
i=1

∏N
j 6=i

√
(1− P̂i)(1− P̂j)

1
N2−N

−
∏N
i=1

∏N
j 6=i E[ P̂i+P̂j2 ]

1
N2−N

∏N
i=1

∏N
j 6=i

√
(1− P̂i)(1− P̂j)

1
N2−N


and above by

r̂ ≤


∏N
i=1

∏N
j 6=i

(
E[ P̂ij√

P̂iP̂j
]
) 1
N2−N

∏N
i=1

∏N
j 6=i

√
(1− P̂i)(1− P̂j)

1
N2−N

−
∏N
i=1

∏N
j 6=i

√
(P̂iP̂j)

1
N2−N

∏N
i=1

∏N
j 6=i

√
(1− P̂i)(1− P̂j)

1
N2−N



6.3 Discussion on the diversity measure

The previous section shows that we can reasonably use the Polya-Eggenberger

distribution to model the accuracy of a majority vote ensemble classifier when the

classifiers have similar accuracy performance. Moreover, our results also show that

the model is related to Sneath and Sokal’s correlation measure ρ.

One of the weakness of using the Polya-Eggenberger distribution to model the

majority vote ensemble classifier is in the assumption that the individual classifiers

in the ensemble have identical accuracies. However, as our empirical results will

indicate, this assumption is not crucial to good performance of the model, and that

the Polya-Eggenberger model gives a very good estimate of the average accuracy of

the majority vote ensemble across a very wide range of ensemble member sizes.
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We define Di(x1,x2, . . . ,xn) 7→ Rn as the indicator function for classifier i, with

the vector xm ∈ Rd, m ∈ [1, n] representing the data for the m-th test data. We

let Di(xm) = 1− pi when the classifier classifies sample point m correctly and −pi

otherwise with pi the expected accuracy of classifier i. Observe that ρi,j can also be

written as

ρi,j = Pij − pipj√
pi(1− pi)pj(1− pj)

= Di(x1,x2, . . . ,xn) ·Dj(x1,x2, . . . ,xn)
‖Di(x1,x2, . . . ,xn)‖2‖Dj(x1,x2, . . . ,xn)‖2

= cos θi,j

where θi,j is the angle between Di(x1,x2, . . . ,xn)Dj(x1,x2, . . . ,xn) Geometrically,

this can be interpreted as the dot product between indicator functions of classifiers

i and j. See Figure 6.16.1 for a visual representation of this intuition. Note that

this is different from the correlation measured used in LadhaLadha (19951995), in that ρ is

not the correlation of classifiers outputs, but the correlation of the accuracy of the

classifiers. When the accuracy of the classifier is not independent of the class labels,

the correlation measure used in LadhaLadha (19951995) would give us a different value from

the Sneath and SokalSneath and Sokal (19631963) correlation measure. We will see later that Ladha’s

measure does not seem to capture the diversity as well as Sneath and Sokal.

Intuitively, in order to minimize ρi,j (i.e. to increase the diversity), we should

increase the number of points the classifiers disagree on — while still maintaining the

overall accuracy of the classifiers. This intuition gives a plausible explanation as to

the efficacy of Random Forests (BreimanBreiman, 20012001). Random Forest can be seen as the

combination of the Random Subspace Method with bootstrap sampling. By training

the classifiers on a subset of the data, the individual classifiers of the Random Forest

method would be accurate on that region of the data, and therefore would be weakly

or uncorrelated to the other classifiers in the ensemble thereby giving a smaller

average value for ρ.

It is generally accepted that the majority vote ensemble accuracy increases

with increasing individual classifier accuracy, increasing ensemble member size, and

decreasing correlation. One useful implications of our model is that it gives us a way to

compare two classification ensembles with identical individual classifier performance

but with different correlation measure and ensemble member size. Consider two
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θ

RN

Di(x1,x2,...,xN)

Dj(x1,x2,...,xN)

Figure 6.1: Geometric interpretation of ρi,j. Note that ρi,j can be interpreted

as the cosine of the angular separation of the indicator function D(x1, . . . ,xn) that

classifier i classifies training example xm correctly.

classification ensembles with identical individual classifier performance p > 0.5, the

first with classifier correlation r and ensemble member size N , and the second with

classifier correlation r′ and ensemble member size N ′.

Using simple algebra, one can show that the variance of SNN and S′N
N ′ is as given in

equation 6.26.2 below. Now, the ensemble will typically have the better majority vote

accuracy if the variance of the errors is smaller than some competing ensemble

Var(SN
N

) = p(1− p)r + (1− r
N

)

Var(SN
′

N ′
) = p(1− p)r′ + (1− r′

N ′
)

(6.2)

One practical question of interest to ask is, if it is better to have fewer negatively

correlated classifiers (generated via careful selection), or (infinitely) many correlated

classifiers. Here, simple algebra shows that if we can generate N > 1−r
r′−r , then fewer

negatively correlated classifiers are better than the ensemble with N ′ =∞ classifiers.

This model can therefore be applied to help with ensemble pruning decisions such as

would the accuracy of the ensemble be improved overall if we add a classifier that

would lower the average accuracy but improves the diversity of the ensemble?
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In the following sections, we will explore this further by using the properties

and some results from concentration of measures applied to the Polya-Eggenberger

distribution.

6.3.1 Majority Vote Accuracy as Ensemble member size N →∞

Under the assumption of our model, the Polya-Eggenberger model recovers

Condorcet’s Jury Theorem when average correlation of the classifiers r is 0 and

the average accuracy p is greater than 0.5. To see why this is so, observe that the

Polya-Eggenberger distribution has the same form as a binomial distribution when

r = 0, and therefore the accuracy of the majority vote ensemble classifier will tend

to certainty as the size of the ensemble N tends to infinity.

The model also implies that for all i, j if r < 0 and p > 0.5, an ensemble of

size N = 1
r − 1 will produce an ensemble classifier that has majority vote accuracy

almost surely. This of course assumes that it is possible to produce N = 1
r − 1

classifiers that are have an average correlation r < 0 which may not be the case in

practice. The implications of the model for r ≤ 0 are consistent with the findings of

Kuncheva et al.Kuncheva et al. (20002000) who showed that an ensemble classifier with independent or

negatively correlated classifiers will have an ensemble accuracy tending to 1 as the

size of the ensemble increase.

Finally, if r > 0, observe that the distribution of the number of classifiers

classifying correctly SN in the ensemble follows a beta-binomial distribution with

α = p1−r
r and β = (1−p)1−r

r and the ensemble size N . Also observe that the limiting

distribution for limN→∞
SN
N is the beta distribution with the shape parameters α

and β respectively. Here, we can use the CDF for the beta distribution given in

equation 6.36.3 to find the asymptotic behaviour of the ensemble as the number of

ensemble members N goes to infinity. Figures 6.26.2 and 6.36.3 illustrates the CDF for

various values of α and β.

We note that when p is close to 0.5, the size of the ensemble N required to

approach the asymptotic behaviour can be very large. The general rule of thumb is

that the size of the ensemble N should be at least O( 1
(p−0.5)2 ) before the majority

vote ensemble classifier accuracy tends to the estimated asymptotic accuracy given in

equation 6.36.3 This guideline also gives us practical considerations for capacity limited
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Figure 6.2: Surface plot for the asymptotic accuracy of a majority vote ensemble

with N →∞

ensemble classification implementations that may have limitations in the number of

classifiers.

lim
n→∞

Pr
{
SN
N

> 0.5
}

= (1−
β0.5

(
p1−r

r , (1− p)1−r
r

)
β
(
p1−r

r , (1− p)1−r
r

) (6.3)

Of course, an ensemble classifier with infinitely many classifiers is not practically

realizable. Therefore, it is also important to consider the ensemble for small values

of N . Unfortunately, to the best of our knowledge, there is no closed form for

the generalized hyper-geometric function used in the CDF of a Beta-Binomial or

Polya-Eggenberger distribution, making the optimization trade-off difficult to be

determined analytically. However, using results from concentration of measure, we

can approximate the CDF of the Polya-Eggenberger distribution.

6.3.2 Analysis of the Ensemble Errors

Proposition 6.1. Let Pi,l be an indicator for classifier i classify training example

l correctly, that is to say, Pi,l = 1 if hi(X(l)) = y(l) and 0 otherwise, and let

p̂ = 1
Nn

∑N
i=1

∑n
l=1 Pi,l be the average empirical training accuracy. Let p = EH[p̂], then

with probability 1− δ, |p− p̂| <
√

NτH(n)+log 2/δ
n where τH(n) := maxC⊂X:|C|=n |HC |

is the growth function of hypothesis class H by restricting H to C.
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Figure 6.3: Contour plot for the asymptotic accuracy of a majority vote ensemble

with N →∞

Proof. Let Pi,l be an indicator for classifier i classify training example l correctly,

that is to say, Pi,l = 1 if hi(X(l)) = y(l) and 0 otherwise.

Let p̂i = 1
n

∑n
l=1 Pi,l be the empirical training accuracy of classifier i.

Let p̂ = 1
Nn

∑N
i=1

∑n
l=1 Pi,l = 1

Nn

∑n
l=1
∑N
i=1 Pi,l be the average empirical training

accuracy.

Applying Hoeffding’s inequality and observing that b = max[
∑N
i=1 Pi,l] = N and

a = min[
∑N
i=1 Pi,l] = 0, we have

Pr
{∣∣∣∣∣p− 1

Nn

n∑
l=1

N∑
i=1

Pi,l

∣∣∣∣∣ > ε

}
≤ δ(N) = 2 exp

(
−2n2N2ε2∑n
l=1(b− a)2

)

= exp
(
−2nε2

)
Union bounding the inequality to τH(n)N classifiers in the hypothesis class H gives

us

Pr
{
|p− 1

Nn

N∑
i=1

n∑
l=1

Pi,l| > ε

}
≤ 2τH(n)N exp

(
−2nε2

)

Solving for ε gives us ε =
√

NτH(n)+log 2/δ
n ,

Implying that with probability 1− δ, p ≥ p̂−
√

NτH(n)+log 2/δ
n
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Assuming that n > k + 1, then Shaur-Shelah’s lemma upper bounds the size of

the hypothesis class for random subspace classifiers, τH(n) ≤ (k + 1) log(n).

This implies that ε ≤
√

N(k+1) log(n)+log 2/δ
n =

√
(k+1) log(n)

n + log 2/δ
n and with

probability 1− δ, p ≥ p̂−
√
N (k+1) log(n)

n + log 2/δ
n .

Next, we use Cantelli’s Inequality to lower-bound the accuracy of the majority

vote ensemble.

Proposition 6.2. Suppose that pi = pj = p > 0.5,∀i, j ∈ [1, N ], and the number of

classifiers SN classifying an arbitrary data point correctly follows a Polya-Eggenberger

distribution PE(N, p, r
1−r ). The probability that a majority vote ensemble classifies

the point correctly is at least Pr
{
SN ≥ 1

2N + cN
}
≥ 1− p(1−p)(r+ 1−r

N
)

(p−(0.5+c))2 , where c = 1
N

when N is even, and c = 1
2N when N is odd.

Proof. Observe that

Pr
{
SN <

1
2N + cN

}
= Pr

{−SN
N

> −0.5− c
}

= Pr
{−SN − E[−SN ]

N
> −E[−SN ]

N
− 0.5− c

}
= Pr

{E[SN ]− SN
N

>
E[SN ]
N

− 0.5− c
}

Note that E[SN ]
N = p and also that

Var[SN
N

] =
p(1− p)(1

r − 1)2(1
r − 1 +N)

N(1
r − 1)2((1

r − 1 + 1))
= p(1−p) r

N
(1
r
−1+N) = p(1−p)(r+1− r

N
)

Then using Cantelli’s inequality (Lemma 3.33.3), we can upper bound the misclassifi-

cation rate by

Pr
{
SN <

1
2N + cN

}
= Pr

{E[SN ]− SN
N

>
E[SN ]
N

− 0.5− c
}

≤
Var[SNN ]

Var[SNN ] + (E[SN ]
N − 0.5− c)2

=
p(1− p)(r + 1−r

N )
p(1− p)(r + 1−r

N ) + (p− (0.5 + c))2

Pr
{
SN ≥

1
2N + cN

}
≥ 1−

p(1− p)(r + 1−r
N )

p(1− p)(r + 1−r
N ) + (p− (0.5 + c))2

= (p− (0.5 + c))2

p(1− p)(r + 1−r
N ) + (p− (0.5 + c))2

≥ 1−
p(1− p)(r + 1−r

N )
(p− (0.5 + c))2
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With the last inequality coming from upper bounding the inequality using the

first two terms of the geometric series expansion. Combining proposition 6.16.1 and 6.26.2,

gives us an estimate of the ensemble accuracy based on the empirical estimation of

the classifiers by substituting p with ¯̂p−
√

NτH(n)
n + log(2/δ)

n .

6.3.3 ‘Good’ and ‘Bad’ diversity error decomposition

The results of proposition 6.26.2 can be extended to the derive the ‘Good’ and ‘Bad’

diversity error decomposition from Brown and KunchevaBrown and Kuncheva (20102010). Recall from section

2.1.52.1.5, that classifier error can be decomposed into

E [L(fens − y)] =
∫
x
L(fi − y) +

∫
x−

1
N

N∑
i

L(fi − fens)︸ ︷︷ ︸
“Bad Diversity”

−
∫
x+

1
N

N∑
i

L(fi − fens)︸ ︷︷ ︸
“Good Diversity”

(6.4)

Now we can rewrite equation 6.46.4 in terms of pi as

E [L(fens − y)] =
N∑
i=1

(1− pi) + 1
N

N∑
i=1

Pr
{
SN
N

< 0.5 + c|P1 = 1
}
pi︸ ︷︷ ︸

“Bad Diversity”

− 1
N

N∑
i

Pr
{
SN
N

> 0.5 + c|P1 = 0
}

(1− pi)︸ ︷︷ ︸
“Good Diversity”

(6.5)

where c = 1
N when N is even, and c = 1

2N when N is odd. Under our Polya-

Eggenberger model, we have

[
SN
N
|P1 = 1

]
∼

PE(N − 1, p+ (1− r)p, r
1−r ) + 1

N

and, [
SN
N
|P1 = 0

]
∼

PE(N − 1, p− rp, r
1−r )

N

Therefore,

V ar

[
SN
N
|Pi = 1

]
= (p+ r(1− p))(1− p− r(1− p))(r + 1− r

N − 1) ≤ 1
4(r + 1− r

N − 1)

and similarly,

V ar

[
SN
N
|Pi = 0

]
= (p− rp))(1− p+ rp))(r + 1− r

N − 1) ≤ 1
4(r + 1− r

N − 1)
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Using Cantelli’s inequality, an upper bound for the “bad diversity” is

1
N

N∑
i=1

Pr
{
SN <

1
2N + cN |Pi = 1

}
pi

= 1
N

N∑
i=1

Pr
{E[SN ]− SN

N
>

E[SN ]
N

− 0.5− c
}
pi

≤ 1
N

N∑
i=1

piVar[SNN |Pi = 1]
Var[SNN |Pi = 1] + (p+ r(1− p) + 1

N − 0.5− c)2

≤ 1
N

N∑
i=1

pi(r + 1−r
N−1)

(r + 1−r
N−1) + 4(p+ r(1− p) + 1

N − 0.5− c)2

≤ 1
N

N∑
i=1

pi(r + 1−r
N−1)

4(p+ r(1− p) + 1
N − 0.5− c)2

=
p(r + 1−r

N−1)
4(p+ r(1− p) + 1

N − 0.5− c)2

(6.6)

Similarly, a lower bound for the “good” diversity is

1
N

N∑
i=1

Pr
{
SN >

1
2N + cN |Pi = 0

}
(1− pi)

= (1− p)(1− Pr
{E[SN ]− SN

N
>

E[SN ]
N

− 0.5− c
}

≥ (1− p)
(

1−
Var[SNN |Pi = 1]

Var[SNN |Pi = 1] + (p− rp− 0.5− c)2

)

≥ (1− p)
(

1−
r + 1−r

N−1
(r + 1−r

N−1) + 4((p− rp)− 0.5− c)2

)

= (1− p)
(

4((p− rp)− 0.5− c)2

(r + 1−r
N−1) + 4((p− rp)− 0.5− c)2

)

(6.7)

Taking the first 2 terms of the geometric series expansion gives us

4(1− p)(p− rp− 0.5− c)2

r + 1−r
N−1

(
1−

(r + 1−r
N−1)

4(p− rp− 0.5− c)2

)

Replacing equation 6.66.6 and equation 6.76.7 into equation 6.56.5 gives us

E [L(fens − y)] ≤1− p+
p(r + 1−r

N−1)
4(p+ r(1− p) + 1

N − 0.5− c)2︸ ︷︷ ︸
“Bad” Diversity

− 4(1− p)(p− rp− 0.5− c)2

r + 1−r
N−1

(
1−

(r + 1−r
N−1)

4(p− rp− 0.5− c)2

)
︸ ︷︷ ︸

“Good” Diversity

(6.8)

The implication of this decomposition is consistent with our intuitions and the

generally accepted results stated in the previous sections. The ensemble error is

minimized as the classifier correlation r decreases, ensemble member size N increases

and average individual classifier accuracy p approaches 1. We note however that the
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Figure 6.4: Surface plot of the ensemble 0-1 loss versus average member classifier

accuracy and classifier correlation according to the CDF, “Good/Bad” diversity error

decomposition (equation 6.86.8) and Cantelli’s Inequality. Observe that the CDF is

bounded above by the Cantelli’s Inequality and Error Decomposition. Note that the

non-monotonic behaviour of the “Good/Bad” error decomposition comes from using

Cantelli’s Inequality to approximate the CDF.

convex combination of the decomposition implied that the error function increases

for certain values of r. This is however an artefact of using Cantelli’s inequality, and

the behaviour of the error function is monotonic to both r and p. This misleading

behaviour goes away when the CDF of Polya-Eggenberger distribution is used instead

of approximating using Cantelli’s inequality. However, because we were unable to

make headway into giving a closed form to the generalized hyper-geometric function,

this remains for future research.

6.4 Soft-voting / Sum rule

An alternative approach to majority voting is soft-voting, or sometimes called

sum or average rule. Under soft voting, rather than each classifier voting for one

class over another, the classifier outputs a score reflecting the“confidence” that an

observation belongs to a given class. The additional information gained by knowing

how confident the classifier is on the class label can sometimes lead to improved

accuracy. Let ĥi be the normal vector to the hyperplane representing linear classifier
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ensemble member i and let h be the Bayes’ classifier in the hypothesis class H. Since

ĥi is learnt using a random subspace projection that is independent of the need for

ĥj , it follows that ĥi is independent of ĥj as well, moreover, E[ĥi] = E[ĥj ], ∀i, j. The

decision rule of the ensemble classifier using soft vote would then be

1
(

n∑
i=1

ĥTi x > 0
)

= 1
(

(
n∑
i=1

ĥi)Tx > 0
)

The probability of misclassification can then be written as

Pr
{∑N

i=1 ĥ
T
i x

hTx
≤ 0

}
= Pr

{∣∣∣∣∣ 1n
N∑
i=1

ĥTi x− E[ĥT1 ]x
∣∣∣∣∣ > hTx]

}

If we assume lim
N→∞

P [| 1
N

∑N
i=1 h

T
i x − hTx]| > ε] = 0, (i.e. the classifiers weakly

converge to the Bayes classifier, for example ĥi = Pih where Pi is the i-th RS

projection then this is clearly true) then by Hoeffding’s inequality we have

Pr
{
| 1
N

N∑
i=1

(ĥTi x− E[hi]Tx)| > hTx

}
≤ 2 exp

(
−N2(hTx)2∑N

i=1 c
2
i

)

where ci = |hTi x − hTx| ≤ C. Without loss of generality, if we also assume that

‖hi‖ = 1, and ‖x‖ = 1, otherwise we normalize by dividing hi by ‖hi‖ and x by ‖x‖,

then C ≤ 2 by Cauchy-Schwatz inequality and we have

Pr
{∣∣∣∣∣ 1
N

N∑
i=1

(ĥTi x− E[hi]Tx)
∣∣∣∣∣ > hTx

}
≤ 2 exp

(
−N(hTx)2

4

)

Finally, the error of the sum-rule classifier can be written as

E[1{ 1
N

N∑
i=1

(ĥTi x)} 6= y] ≤ 2 exp
(
−N(hTx)2

4

)
+ E[1{hTx} 6= y]

This shows the accuracy of a sum-rule classifier improves as the size of the

ensemble increases. Moreover, our results implies also that as the ensemble size N

tends to ∞, we recover the Bayes’ classifier as suggested by our result from section

5.45.4.

6.4.1 Other estimates of the diversity measures in the Polya Distribu-

tion

In much of the ensemble classification literature (e.g. Malmasi and DrasMalmasi and Dras (20152015);

Whalen and PandeyWhalen and Pandey (20132013); YangYang (20112011)), the Yule’s Q-statistic (YuleYule, 19001900) is used

to measure the diversity of the classifiers in the ensemble. It is not surprising why

many researchers favour using the Q-statistics, as the measure has an intuitive
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interpretation as the odds-ratio and is specifically designed for discrete counts

(Kuncheva et al.Kuncheva et al., 20002000). We found however, that this diversity measure tends to

overestimate the correlation and can be widely off the mark when used with our

Polya-Eggenberger model.

One shortcoming of both the Sneath and SokalSneath and Sokal (19631963) diversity measure and

YuleYule (19001900) Q-statistics is that we need to know beforehand the classifier accuracy

performance before we can determine the diversity. It may be helpful to be able

to estimate the diversity of the classifiers independently of classifier accuracy, such

as when evaluating diversity generation schemes. In both LadhaLadha (19951995) and BergBerg

(19931993), the authors used r = corr(yi,yj) to estimate the diversity measure, where yi

and yj are the vectors representing the output labels of classifier i and j respectively.

While we agree that voting agreement is natural and intuitive to derive the increased

likelihood that two voters would vote similarly, we found that this measure also tends

to be overly conservative (even more so than the Q-statistic) and overestimates the

correlation of the classifiers which we suspect is due to the accuracies of the classifiers

not being independent of the class labels.

We also find that it may be useful to be able to estimate the correlation ρ

before generating the individual classifiers though the learning algorithm. As noted

by Sun and ZhouSun and Zhou (20182018), a “structural” diversity measure should be considered

in addition to a “behavioral” diversity for ensemble methods since “behavioral”

diversity may just be another appearance of accuracy and it is difficult to encourage

“behavioral” diversity explicitly. Inspired by the feature stability measures used for

feature selection (Nogueira and BrownNogueira and Brown, 20152015), we also evaluate the Jaccard similarity

index as an estimate for ρ. Conceptually the Jaccard similarity index can be viewed

as the proportion of shared features over the number features in the classifiers. This

intuition has some basis according to the intuition behind the “wisdom” of crowds, in

that, the additional decision makers should add to the collective information of the

group, and the Jaccard similarity captures the “similarity” in the structure of the

information contributed by each classifier. For random subspace that the expected

Jaccard similarity index is

E[Ji,j ] =
k2

d2

2kd −
k2

d2

= k

2d− k
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From our observation, we found that the Jaccard similarity index gives a good

estimate for our synthetic cases but gives an incorrect estimate on the real-world

test cases.

6.5 Empirical Corroboration

6.5.1 Synthetic Data

We set d = 1000 to be the dimensionality of our data, u = (1, 0, . . . , 0) and draw

ti ∼ (0, N(0, Id−1)/‖ti‖. Note that u is orthogonal to ti We then generate R as an

orthonormalized rotation matrix with entries

Ri,j ∼
1√
d
N(0, Id)

Observe that R is analogous to a random rotation matrix that rotates u and ti

along d coordinates (see Figure 6.56.5 for a visualization of the transformation). Also

observe that ‖uR‖44 ≈ 3 and ‖uR � tiR‖22 ≈ 1. For each θ = {80◦, 85◦, 87.5◦}, we

then let h = uR, and xi = (u cos θ + ti sin θ)R. By construction, h and xi has

an angular separation exactly θ. Observe that h also describes the Bayes’ optimal

classifier which separates the two classes perfectly.
u = [1 0 0 ...  ]

ti =[0 N(0,(1/�(d-1)) ... ]

θ

-θ

X1

X-1

R is analogous to a rotation of a 

s-dimension hypersphere in d-space

 uR

ti R

θ

-θ

X
1

X
-1

h

Figure 6.5: Visual representation of the data after a random rotation in d-

dimensions

As noted in chapter 55, θ can be interpreted as the difficulty of the classification

problem with a value of θ that is closer to π/2 representing a more difficult problem

with a “smaller margin” separating the two classes.

We repeat ntrain ∈ {150, 500, 2000} draws of the training examples of ti and

set Tn := {x(i) ∈ Rd}ni=1 be the set of ntrain with exactly ntrain/2 examples with

angular separation θ and ntrain/2 examples with angular separation −θ. We label
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y(i) = 1 if the corresponding x(i) has an angular separation θ and y(i) = −1 if the

angular separation is −θ. Using the same data generation scheme, we also generate

an additional nval = 1000 and ntest = 1000 hold out and test examples, with an

angular separation of θ and −θ and the corresponding class labels {1,−1}, divided

evenly within the two datasets. We let Xtrain,Xval and Xtest be the data matrix

representing the training, holdout, and test data respectively.

We then learn N = 250 random subspace projected classifiers on the Xtrain.

We first project {x}ntrain with Pj , where Pj is a random subspace projection from

Rd 7→ Rk and learn the classifiers ĥj using linear discriminant analysis routine

provided by Matlab Central (DwinnellDwinnell, 20102010).

We also measured the empirical accuracy for the weighted majority vote and

weighted sum rule versus the unweighted majority vote and sum rules. While using

weighted majority schemes have shown good performance in some problem domains

(SchapireSchapire, 19901990; BlumBlum, 19971997), Kuncheva and RodríguezKuncheva and Rodríguez (20142014) showed there was no

statistical difference between using a weighted versus non-weighted majority voting

scheme. We therefore try to reconcile these two contradictory findings, and as an

aside, evaluate the difference between the four schemes.

We set the weights wj = log(Pval/(1− Pval)) with Pval the accuracy of ĥj on the

hold-out validation set.

We measure the following empirical accuracies, where N(A) is count returning

the cardinality of A.

• PmajV ote :=
N((
∑m

j=1(1(ĥj
T
PjXtest)))/hTXtest>0)
N(Xtest)

• PsoftV ote :=
N((1(

∑m

j=1(ĥj
T
PjX))/hTXtest>0)

N(Xtest)

• PweightedMajV ote :=
N((
∑m

j=1(wj1(ĥj
T
PjXtest)))/hTXtest>0)

N(Xtest)

• PweightedSoftV ote :=
N((1(

∑m

j=1(wj ĥj
T
PjXtest))/hTXtest>0)

N(Xtest)

We repeat the experiments thirty times to ensure that the results we obtain is

consistent and we plot the empirical accuracies, as shown in figures 6.66.6 – 6.96.9. As

reference, we also plotted the classifier learnt by the learning algorithm using the

training data without RS projection (hereby denoted as the “base classifier”).
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6.5.2 RS Ensembles for noisy data

We would also like to observe is the performance of RS Ensembles in the presence

of noise, in particular, feature noise (irrelevant features with no explanatory power)

and label noise (mislabelled training examples).

We follow the experimental setup in subsection 6.5.16.5.1, however we now let 1/s be

the proportion of relevant features in the data to the number of features in the data

d, with s = {1, 4, 10}. We then redefine the rotation matrix R as below

R :=

 1√
d/s
N(0, Id/s) 0

0 Id(1− 1
s

)


Geometrically, we can interpret d/s as the number of “relevant features” with

explanatory power, and a higher value for s giving us a “noisy” dataset with d− d/s

irrelevant features. Observe also here that ‖uR‖44 ≈ 3s and ‖uR� tiR‖22 ≈ 1.

We then evaluate the RS ensemble’s robustness to label noise. We set q =

{0, 0.05, 0.25} to be the proportion of mislabelled data in the training set. We added

label noise using the settings below:

• Both classes mislabelled at random with probability q on both the training

data and the holdout data

• Both classes mislabelled at random with probability q on the training data,

holdout data is not mislabelled

• Class 1 is mislabelled at random with probability 2q on the training data and

the holdout data. Class −1 is labelled perfectly.

As before in section 6.5.16.5.1, we generated ntrain ∈ {150, 500, 2000} training examples

nval = {1000} and ntest = 1000 hold out and test data and measured the empirical

accuracies of

• PmajV ote(m) :=
N((
∑m

j=1(1(ĥj
T
PjXtest)))/hTXtest>0)
N(Xtest)

• PsoftV ote(m) :=
N((1(

∑m

j=1(ĥj
T
PjX))/hTXtest>0)

N(Xtest)

• PweightedMajV ote(m) :=
N((
∑m

j=1(wj1(ĥj
T
PjXtest)))/hTXtest>0)

N(Xtest)

• PweightedSoftV ote(m) :=
N((1(

∑m

j=1(wj ĥj
T
PjXtest))/hTXtest>0)

N(Xtest)
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6.5.3 Empirical corroboration for the Polya-Eggenberger model

We extracted the Sneath and SokalSneath and Sokal (19631963) diversity measure ρ and the average

individual classifier accuracy p for the Polya-Eggenberger model using the empirical

results from the experiments in section 6.5.16.5.1 and 6.5.26.5.2. Tables 6.26.2 through 6.56.5

summarizes the parameters obtained from the simulation. As reference, we also

extracted the Q-statistics, the vote correlation score, and the Jaccard similarity index

to compare against the ρ diversity measure.

We then calculated the CDF of the Polya-Eggenberger model and using the

different estimates of the correlation, we plot the predicted ensemble accuracy

modelled by the Polya-Eggenberger distribution. Next, we overlaid the empirical

majority vote ensemble accuracy averaged over 30 runs obtained from the previous

section to be compared against our model. For comparison, we also plotted the

estimated accuracy of the ensemble as predicted by a binomial model, and the

estimated asymptotic accuracy of the ensemble as N →∞ determined by our theory.

Figures 6.176.17 through 6.206.20 shows the predicted ensemble accuracy modelled by

the Polya-Eggenberger Distribution with the different determination of ψ against

the empirical majority voting ensemble accuracy averaged over 30 runs.

Tables 6.66.6 shows the comparison between the average majority vote ensemble

classifier accuracy for ensemble size N = 50, N = 100 and N = 250 against the

values predicted by the Polya-Eggenberger Model using the Sneath and SokalSneath and Sokal (19631963)

diversity measure as the estimate for ψ.

6.5.4 Discussion

In general, we observed that the accuracy of the classification ensembles increases

with increasing ensemble size N and subspaces k. We also observe that the accuracy

decreases with increasing angles between the data and the vector h, and the accuracy

improves with when the number of training examples ntrain increases (see figures 6.106.10.

For large values of θ, (i.e. “difficult” problems), number of training examples needed

to generalize the problem increases as predicted by Kabán and DurrantKabán and Durrant (20172017). This

behaviour is most clearly seen in figure 6.116.11.

For small values of the subspaces k, the ensemble appears to be affected by the

feature noise s with increasing s, reducing the overall accuracy of the ensemble.
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This trend goes away with a larger number of subspaces, and is consistent with our

results in chapter 55, which shows that for the ‘base’ flip probability for very ‘sparse’

vectors, reduces when k is large. This is consistent with our results from chapter 44,

since datasets with large feature noise s would also have large regularity constants c′

(c′ ∝ s). As such, the classifiers would require larger number of subspaces in order

to give an accurate ensemble. When we contrast figure 6.126.12, and 6.136.13 we observed

that the accuracy of an ensemble of small subspace classifiers is much lower when

the “sparsity” (i.e. many irrelevant features) is large, while the ensemble is able to

achieve very good accuracy when the “sparsity” is low. This behaviour is not seen in

ensembles with larger number of subspaces.

Figures 6.66.6–6.96.9 shows the accuracy of a weighted and unweighted ensembles

under a majority vote and soft vote, where we see that the weighted majority vote

and weighted sum vote ensembles classifiers appears to be significantly more accurate

in comparison to the unweighted ensemble classifiers when the feature noise s is large.

The advantage of using a weighted scheme disappears when the feature noise is small.

This can plausibly explain the contradictory findings between Kuncheva et al.Kuncheva et al. (20002000)

and (SchapireSchapire, 19901990; BlumBlum, 19971997). Interestingly, this gain from using a weighted

scheme is larger than the accuracy loss from having many irrelevant features, even

when the number of subspaces is small.

In general, we also observed that the accuracy of the sum rule classifier improves

significantly when the number of training examples increases. This behaviour is

consistent with our theory in section 6.46.4. This trend is most clearly seen in figure

6.146.14, where we can see that the sum rule classifier improving much more than the

other combination schemes as the number of training examples increases.

In general, we also observed that the accuracy of the base classifier (i.e. the

classifier learnt with all the features) performed extremely poorly when the number of

training examples are smaller than the dimensionality of the data. This is unsurprising

is known as the curse of dimensionality. However, in figures 6.66.6, 6.76.7 we see that

in spite of the small training examples, the LDA algorithm was able to generate

consistent member classifiers that when ensembled, generalized well to the problem.

This is similar to the findings by Durrant and KabánDurrant and Kabán (20142014) on RP where it was
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shown that RP ensembles can be used as regularization in linear classifiers. Intuitively,

we can see why this would also be the case for RS ensembles. The RS projection of

X is simply the sub-matrix of X with k columns retained. As long as each of the k

columns of X is linearly independent from the other k − 1 columns, the sub-matrix

will be full rank, and the findings of Durrant and KabánDurrant and Kabán (20142014). Unfortunately, to

the best of our knowledge, there is no way to guarantee that each of the k columns

cannot be written as a linear combination of k − 1 other columns other than to

exhaustively check the matrix.

However, TroppTropp (20092009) provides a randomized algorithm that produces an invert-

ible matrix from a sub-sample of k columns from d columns of X with probability

at least 3/4 provided that the stable rank sr(X) = ‖X‖2
Fro

‖X‖2 is larger than ck, and a

condition number κ(XTX) ≤
√

3. This implies that the stable rank can be used as

a measure to determine if the random subspace projected matrix will be full ranked.

We observed very little difference on the majority vote ensemble classifier perfor-

mance on the different noise settings setting. Furthermore, our empirical result also

show that RS ensembles are robust to label noise. This can be seen in figure 6.156.15,

where we see that the classifiers performed similarly in the presence of label noise.

We note however that the robustness to label noise appears to be dependent on the

number of training examples, and that the classifiers have better robustness when a

larger number of training examples is provided, (see figure 6.166.16). This result lends

further credence that RS ensembles can be used as a regularizer. We will leverage

on these two facts later in section 7.47.4 where we consider adversarial examples and

evaluate the ensemble’s robustness against adversarial examples.

We observed that the Polya-Eggenberger model using the Sneath and SokalSneath and Sokal (19631963)

diversity measure is a very good estimate for the average majority vote ensemble

classifier accuracy. The difference between the majority vote accuracy is almost

imperceptible as seen in figures 6.176.17–6.206.20, with the accuracy of model increasing as

the number of subspaces in the classifiers increases. The largest difference happens

when the ensemble member size is approximately N/2 = 125 and the feature noise

S is large (i.e. S = 10), for small classifier subspace sizes k = 2, in which case the

absolute empirical majority vote accuracy differs by less than 2% compared to the
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Polya-Eggenberger model. This is in spite, not having the conditions of the models

(i.e. identical classifier accuracies) satisfied. Indicating to us that the assumption

of identical member classifier accuracy may be relaxed. The difference between the

Polya-Eggenberger model and the empirical results are not statistically significant.

Tables 6.76.7 and 6.66.6 shows the numerical comparison between the model and empirical

accuracies for k = 2.

We observed that none of the other estimator provides a consistent estimator for

the correlation measure to the distributions. In general, the other estimator tends

to overestimate the correlation, however it is unclear when or the conditions when

estimator overestimates the correlation. Finding a diversity measure estimate that

does not require knowing the individual classifier accuracy performance remains an

open problem.

k=2 k=10 k=50
angle n p std(p) r p std(p) r p std(p) r

80
150 57.84 0.33 0.0005 68.31 0.26 0.0012 82.63 0.29 0.0030
500 58.35 0.37 0.0004 69.92 0.26 0.0006 87.72 0.19 0.0015
2000 58.54 0.32 0.0003 70.34 0.28 0.0004 89.27 0.13 0.0008

85
150 53.21 0.16 0.0008 57.57 0.18 0.0028 64.86 0.31 0.0098
500 53.88 0.17 0.0006 59.43 0.21 0.0014 70.35 0.23 0.0055
2000 54.16 0.18 0.0003 60.29 0.14 0.0005 72.74 0.18 0.0017

87.5
150 51.04 0.12 0.0010 52.48 0.16 0.0045 55.04 0.18 0.0167
500 51.52 0.12 0.0008 53.72 0.13 0.0032 58.35 0.13 0.0142
2000 51.90 0.13 0.0005 54.76 0.13 0.0013 60.96 0.16 0.0060

Table 6.2: Parameter for Polya-Eggenberger model estimated from empirical

simulation on a noiseless setting (mislabelling proportion q = 0 and feature noise

s = 1). Values of p is given in percentage.

6.6 Application on UCI Datasets

We use five non-synthetic datasets, taken from the 2003 NIPS feature selection

challenge, namely GISETTE, ARCENE, DEXTER, DOROTHEA, and MADELON

(Guyon et al.Guyon et al., 20042004). Table 6.86.8 summarizes the characteristics of the dataset.

We removed the features that have zero variance in the training set. As in the

synthetic datasets, we applied RS projection with a fixed number of subspaces (k)
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Figure 6.6: Ensemble classification accuracy vs ensemble member size for a

noiseless setting (feature noise proportion s = 1, mislabel proportion q = 0), with low

number of training examples n = 150 and dimensionality d = 1000
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Figure 6.7: Ensemble classification accuracy vs ensemble member size for a noisy

setting (feature noise proportion s = 10, mislabel proportion q = 0.25), with low

number of training examples n = 150 and dimensionality d = 1000
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Figure 6.8: Ensemble classification accuracy vs ensemble member size for a

noiseless setting (feature noise proportion s = 1, mislabel proportion q = 0), with

large number of training examples n = 2000 and dimensionality d = 1000
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Figure 6.9: Ensemble classification accuracy vs ensemble member size for a noisy

setting (feature noise proportion s = 10, mislabel proportion q = 0.25), with large

number of training examples n = 2000 and dimensionality d = 1000
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Figure 6.10: Ensemble classification accuracy vs ensemble member size for a

noiseless setting (feature noise proportion s = 1, mislabel proportion q = 0), on a

“difficult” problem θ = 87.5◦. Observe here that the accuracy of the classification

increases as the number of training examples provided increases.
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Figure 6.11: Ensemble classification accuracy vs ensemble member size for a

noiseless setting (feature noise proportion s = 1, mislabel proportion q = 0), with

projection dimensions k = 50. Observe here that the number of training examples

needed to generalize the problem increases as the angle θ (“difficulty”) increases.
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Figure 6.12: Ensemble classification accuracy vs ensemble member size for a noisy

setting (feature noise proportion s = 10, mislabel proportion q = 0), on an “easy

problem” θ = 80◦, d = 1000. Observe that, the ensemble has poor accuracy when the

number of projection dimensions is small (k = 2). This is contrasted against figure

6.136.13.
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Feature Noise=1, =80

Figure 6.13: Ensemble classification accuracy vs ensemble member size for a

noiseless setting (feature noise proportion s = 1, mislabel proportion q = 0), on an

“easy problem” θ = 80◦, d = 1000 Observe that, the ensemble has good accuracy even

with a small number of projection dimensions (k = 2). This is contrasted against

figure 6.126.12.
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Figure 6.14: Ensemble classification accuracy vs ensemble member size for a noisy

setting (feature noise proportion s = 10, mislabel proportion q = 0), on a “difficult”

problem, d = 1000. Observe here, that the sum rule classifier improves more than

the other combination schemes as the number of training examples increases.
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Figure 6.15: Ensemble classification accuracy vs ensemble member size, with large

number of training examples n = 2000. Here, we want to show that the classifier

ensemble performance is not adversely affected by mislabelling, and that the ensemble

is robust to label noise.
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Figure 6.16: Ensemble classification accuracy vs ensemble member size. Here we

want to show that the robustness of the classifier ensemble to noise improves as the

number of training examples increases.
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Figure 6.17: Majority vote ensemble accuracy as modelled by a Polya-Eggenberger

distribution vs ensemble member size for a noiseless setting (s = 1) and low number

of training examples n = 150 and dimensionality d = 1000. Overlaid is the majority

vote accuracy measured empirically. Dashed line are the accuracies as modelled by a

Polya distribution model using different diversity measures. Observe that the model

using the Sneath diversity measure accurately estimates the empirical majority vote

accuracy.
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Figure 6.18: Majority vote ensemble accuracy as modelled by a Polya-Eggenberger

distribution vs ensemble member size for a noisy setting (s = 10) and low number of

training examples n = 150 and dimensionality d = 1000. Overlaid is the majority

vote accuracy measured empirically. Dashed line are the accuracies as modelled by a

Polya distribution model using different diversity measures. Observe that the model

using the Sneath diversity measure accurately estimates the empirical majority vote

accuracy.
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Figure 6.19: Majority vote ensemble accuracy as modelled by a Polya-Eggenberger

distribution vs ensemble member size for a noiseless setting (s = 1) and large number

of training examples n = 2000 and dimensionality d = 1000. Overlaid is the majority

vote accuracy measured empirically. Dashed line are the accuracies as modelled by a

Polya distribution model using different diversity measures. Observe that the model

using the Sneath diversity measure accurately estimates the empirical majority vote

accuracy.
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Figure 6.20: Majority vote ensemble accuracy as modelled by a Polya-Eggenberger

distribution vs ensemble member size for a noisy setting (s = 10) and large number

of training examples n = 2000 and dimensionality d = 1000. Overlaid is the majority

vote accuracy measured empirically. Dashed line are the accuracies as modelled by a

Polya distribution model using different diversity measures. Observe that the model

using the Sneath diversity measure accurately estimates the empirical majority vote

accuracy.
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k=2 k=10 k=50
angle n p std(p) r p std(p) r p std(p) r

80
150 57.44 0.34 0.0005 66.85 0.32 0.0019 0.760 0.37 0.0100
500 58.27 0.26 0.0005 69.37 0.29 0.0009 0.851 0.19 0.0053
2000 58.55 0.32 0.0004 70.29 0.23 0.0004 0.884 0.17 0.0019

85
150 52.81 0.21 0.0009 56.48 0.22 0.0036 0.618 0.27 0.0139
500 53.65 0.16 0.0005 58.80 0.22 0.0019 0.683 0.18 0.0097
2000 54.11 0.21 0.0005 60.09 0.15 0.0008 0.720 0.20 0.0036

87.5
150 50.84 0.14 0.0012 52.00 0.17 0.0050 0.539 0.22 0.0188
500 51.30 0.11 0.0010 53.17 0.20 0.0038 0.570 0.20 0.0186
2000 51.80 0.10 0.0006 54.43 0.14 0.0020 0.602 0.20 0.0094

Table 6.3: Parameter for Polya-Eggenberger model estimated from empirical

simulation on a setting with high mislabelling and low feature noise (mislabelling

proportion q = 0.25 and feature noise s = 1). Values of p is given in percentage.

k=2 k=10 k=50
angle n p std(p) r p std(p) r p std(p) r

80
150 53.15 0.54 0.0012 61.74 1.02 0.0036 78.90 0.84 0.0058
500 53.25 0.43 0.0012 62.32 0.87 0.0036 83.65 0.84 0.0059
2000 53.15 0.54 0.0013 63.10 0.62 0.0034 85.02 1.00 0.0061

85
150 51.69 0.34 0.0012 55.62 0.46 0.0041 63.69 0.49 0.0108
500 51.73 0.29 0.0013 56.39 0.53 0.0036 68.62 0.66 0.0084
2000 51.63 0.30 0.0012 56.98 0.54 0.0032 70.46 0.81 0.0057

87.5
150 50.70 0.19 0.0013 52.14 0.25 0.0050 54.77 0.32 0.0168
500 50.80 0.17 0.0012 52.77 0.28 0.0044 57.80 0.23 0.0157
2000 50.77 0.19 0.0012 53.26 0.22 0.0037 59.93 0.46 0.0094

Table 6.4: Parameter for Polya-Eggenberger model estimated from empirical

simulation on a setting with high number of irrelevant features (mislabelling proportion

q = 0 and feature noise s = 10). Values of p is given in percentage. Observe that the

variation in p is larger than when the feature noise is small.
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k=2 k=10 k=50
angle n p std(p) r p std(p) r p std(p) r

80
150 53.24 0.50 0.0012 61.01 0.91 0.0038 72.86 0.79 0.0110
500 53.31 0.57 0.0012 62.37 1.19 0.0036 81.21 0.92 0.0083
2000 53.05 0.55 0.0012 62.90 0.91 0.0033 84.42 0.84 0.0065

85
150 51.52 0.31 0.0012 55.06 0.50 0.0044 61.02 0.49 0.0146
500 51.62 0.24 0.0012 56.09 0.56 0.0040 66.60 0.39 0.0123
2000 51.63 0.29 0.0012 56.70 0.64 0.0034 70.00 0.56 0.0070

87.5
150 50.60 0.15 0.0012 51.73 0.19 0.0052 53.70 0.26 0.0190
500 50.78 0.17 0.0012 52.58 0.35 0.0046 56.52 0.40 0.0194
2000 50.82 0.15 0.0012 53.22 0.29 0.0039 59.44 0.30 0.0120

Table 6.5: Parameter for Polya-Eggenberger model estimated from empirical

simulation on a noisy setting (mislabelling proportion q = 0.25 and feature noise

s = 1. Values of p is given in percentage. Observe that the variation in p is larger

than when the feature noise is small.

k=2
theta n N=50 N=100 N=150 N=250

80

150 66.0 / 66.6 71.4 / 72.3 75.0 / 76.0 80.7 / 80.7
500 66.7 / 66.9 73.4 / 72.7 76.7 / 76.4 81.4 / 81.1
2000 67.1 / 66.9 73.6 / 72.6 76.5 / 76.4 81.1 / 81.1

85

150 58.6 / 58.6 61.6 / 61.8 64.3 / 64.0 66.9 / 67.0
500 59.1 / 59.3 61.8 / 62.7 64.2 / 65.0 68.4 / 68.3
2000 60.0 / 59.9 63.5 / 63.5 65.8 / 66.0 69.4 / 69.5

87.5

150 53.6 / 53.6 55.0 / 55.0 56.3 / 55.9 57.2 / 57.2
500 53.9 / 54.0 55.6 / 55.5 56.9 / 56.6 58.3 / 58.1
2000 54.3 / 54.4 56.2 / 56.1 57.4 / 57.3 58.8 / 58.9

Table 6.6: Comparison between the empirical majority vote ensemble accuracy

(left) and our model (right) for data with many irrelevant features. Observe that the

values are within 1% of the model.
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k=2
theta n N=50 N=100 N=150 N=250

80

150 85.0 / 86.0 93.7 / 93.5 96.9 / 96.7 99.0 / 99.0
500 88.3 / 88.2 95.1 / 95.2 97.7 / 97.8 99.5 / 99.5
2000 88.7 / 88.9 96.0 / 95.7 98.3 / 98.2 99.6 / 99.6

85

150 67.6 / 66.8 72.8 / 72.7 77.0 / 76.6 81.7 / 81.7
500 69.9 / 70.3 76.9 / 77.2 81.6 / 81.7 87.2 / 87.2
2000 72.3 / 72.5 80.4 / 79.9 85.0 / 84.6 90.3 / 90.2

87.5

150 55.4 / 55.5 57.6 / 57.6 59.1 / 59.1 61.1 / 61.2
500 58.5 / 58.3 61.2 / 61.5 63.5 / 63.8 66.9 / 67.0
2000 60.5 / 60.6 64.1 / 64.7 67.2 / 67.6 71.8 / 71.8

Table 6.7: Comparison between the empirical majority vote ensemble accuracy

(left) and our model (right) for data with no uninformative features. Observe that

the values are within 1% of the model.

on the dataset before classifying the datasets using LDA. We then used a majority

vote ensemble and measured the ensemble accuracy versus ensemble member size

a various number of subspaces. As a reference, we plotted the base classifier (LDA

with all the features) when possible, as well as the various ensemble combination

schemes, namely, weighted majority vote, soft vote and weighted soft vote.

6.6.1 Discussion

The NIPS feature challenge datasets comprise of six datasets that are distinct,

and here we can see how these distinctiveness results in the different RS ensemble

accuracy performance,

The ARCENE data is dense, and therefore, we expect RS ensembles to work well

on this data in accordance to our results and theory from chapter 44 and 55. Here we

observed in figure 6.216.21 that weighing the majority vote and sum rule ensemble gives

very little improvement on the accuracy of the ensemble. This also indicates to us

that most of the features in this dataset is informative and there is very little feature

noise. This observation is consistent with our synthetic results in which we have

very similar accuracies for both majority vote and sum rule combination schemes.

We expect some generalization error due to the small sample size in comparison to

the dimensionality of the data. We also observed that the accuracies plateau very
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quickly indicating to us that many of the features might be correlated to each other.

In figure 6.226.22, interestingly we see that the vote correlation appears to approximate

the diversity measure r quite well for some of subspace counts (k = 50 and k = 75).

However, this may just be a coincidence. Finally, we also observe that the ensembles

with extremely low subspace counts (k ≤ 2) gives us an ensemble with very poor

ensemble accuracy performance, exhibiting the same non-monotonic majority vote

accuracy behaviour as our simulation in section 5.45.4 (see figure 5.95.9), leading credence

that the number of subspaces are too small for the problem resulting in inconsistent

classifier behaviour, in line with our results from chapters 44 and 55.

DEXTER is sparser compared to ARCENE with a large number of irrelevant

features. We see in figure 6.236.23 the results are consistent with our theory and

observations with synthetic data. First, using a weighted combination scheme results

in a substantial accuracy gain over an unweighted combination scheme. Second,

also consistent with our theory, the number of subspaces in the classifiers required

for DEXTER to give consistent ensemble performance is higher than in the case of

ARCENE, (namely k ≥ 100). We also see in figure 6.246.24, that when the number of

projection dimensions is small (k < 100), we have very poor majority vote accuracy

and inconsistent ensemble behaviour. This is similar to what we observed in ARCENE

when k ≤ 2 and is consistent with our expectation DEXTER will require a larger

number of subspaces in comparison to ARCENE. This again is consistent with our

result in chapter 44, where DEXTER having a substantially larger regularity constant

c′ would also require substantially larger number of subspaces than ARCENE in

order to give consistent classifier performance. Interestingly, we also observed that

for the classifier subspace count k = 200, the soft-voting ensemble had lower accuracy

than that of a majority vote, indicating to us that the classes in DEXTER may not

be linearly separable.

DOROTHEA is extremely sparse, and according to our theory, the data is

challenging for RS ensembles as clearly seen in figure 6.256.25. As such, we expect very

poor accuracies for the RS ensembles. We do note that increasing the subspaces

does improve the accuracy; however, the overall accuracy is poor compared to the

other datasets and an RS ensemble may not be suitable classifier for DOROTHEA.
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We observed that no choice of the size of subspace result in a consistent ensemble

for DOROTHEA. As noted in chapter 44, DOROTHEA having a large regularity

constant c′, would be a challenging classification problem for RS ensemble classifiers.

GISETTE is very similar to ARCENE, in that the data is also dense and has

the smallest regularity constant c′ among the datasets. As such, according to our

theory, we would expect that an RS ensemble to work well. This is reflected in our

results as shown in figure 6.266.26. Similar to ARCENE, we observed that weighting

the majority vote/sum rule ensemble gives little improvement on the accuracy of

the ensemble. This also indicates to us that most of the features in this dataset is

informative and there is very little feature noise in the data. Like ARCENE, we have

very similar accuracies for both the majority vote and sum rule ensembles. In Figure

6.276.27, we see consistent classifier behaviour even for small number of subspaces. This

is consistent with our expectation for dense datasets with large number of training

samples. Overall, the RS ensembles outperformed the ‘strong’ base classifier, which

uses all the features in the data, and our model accurately predict the majority vote

classifier ensemble accuracies.

MADELON is synthetic data with the class labels determined using an XOR

decision boundary over a few features (GuyonGuyon, 20032003), and many non-informative

features added into the data. As such, we can see in figure 6.286.28, the linear classifiers

have difficulty classifying MADELON with a good level of accuracy. Unlike the

other datasets, MADELON is the only dataset that gives better accuracies when the

subspace counts are low, with the highest accuracies when the number of projection

dimension, k = 1 where the classification task on MADELON gives the best accuracies

on weighted majority vote ensembles with a small projection dimensions. Consistent

with our theory, we also see that the weighted majority outperforms both the weighted

and unweighted sum rule ensembles. This is because the sum rule ensembles will

only approximate a linear classifier when combined as an ensemble. The majority

vote ensemble on the other hand, adds non-linearity to the ensemble allowing the

ensemble to better approximate the decision boundaries. Due to the contradicting

expectations, an ensemble approach using RS would not be suitable for MADELON.
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File Type
Training
Set

Validation
Set

Number
features

Regularity
Constant (c’)

ARCENE Non sparse 100 100 10000 11.44
DEXTER Sparse integer 300 300 20000 132.10
DOROTHEA Sparse binary 800 350 100000 32.51
GISETTE Non sparse 6000 1000 5000 10.76
MADELON Non sparse 2000 600 500 21.45

Table 6.8: Summary of the characteristics of the UCI datasets.
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Figure 6.21: Classification accuracy vs ensemble member size for ARCENE.

Observe that the ensemble fails to produce a consistent majority vote ensemble when

the number of projection dimensions is small, similar the simulation in chapter 55.
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6.7 Conclusion and Summary

In this chapter, we showed that the accuracy of a majority vote ensemble could

be effectively modelled using a Polya-Eggenberger model. We also showed that

the parameters of this model can be estimated from the Sneath and SokalSneath and Sokal (19631963)

correlation measure (ρ). We discussed the implications of the model and showed how

we can estimate the majority vote ensemble accuracy. We evaluated other methods of

estimating the diversity measure and the limitations and shortcomings of using those

approaches. We also showed that the accuracy of a soft-vote (sum-rule) ensemble

improves asymptotically with the ensemble size under some mild conditions.

We corroborated our theories through extensive empirical simulations, using both

synthetic data and real-world data from the NIPS feature challenge and showed how

our theory accurately predicted the performance of RS ensembles on these data.

We also reconciled the findings of SchapireSchapire (19901990) and BlumBlum (19971997) against

Kuncheva and RodríguezKuncheva and Rodríguez (20142014) and showed that a weighted scheme improves the

accuracy of the classification ensemble more . We demonstrated that a weighted

scheme on a dataset with high feature noise could give improved ensemble performance.

Similar to the results by Durrant and KabánDurrant and Kabán (20142014), we showed that RS can work as

regularization in linear classifiers ensembles but with weaker performance compared

to RP ensembles.

In the next chapter, we will apply the intuitions from our theory on an image

classification task and show how we can improve the image classification performance

of pretrained Deep Neural Networks without retraining the network using a simple

ensemble approach with random subspaces.
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Figure 6.22: Majority vote ensemble accuracy as modelled by a Polya-Eggenberger

distribution vs ensemble member size for ARCENE. Observe that the ensemble fails to

produce a consistent majority vote ensemble when the number of projection dimensions

is small, similar the simulation in chapter 55. Observe also that for a projection

dimension k at least 2, our model accurately estimates the majority vote accuracy of

the ensemble.
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Figure 6.23: Classification accuracy vs ensemble member size for DEXTER.

Observe that the ensemble classifier has difficulty on DEXTER when the number of

projection dimensions is less than 100.
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Figure 6.24: Majority vote ensemble accuracy as modelled by a Polya-Eggenberger

distribution vs ensemble member size for DEXTER. Observe that the ensemble requires

at least a projection dimension of at least 100 to produce a consistent majority vote

ensemble. Observe also that for a projection dimension at least 100, our model

accurately estimates the majority vote accuracy of the ensemble.
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Figure 6.25: Balanced classification accuracy vs ensemble member size for

DOROTHEA. Observe that the ensemble classifier has difficulty on DOROTHEA,

regardless of the number of projection dimensions in the classifiers.
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Figure 6.26: Classification accuracy vs ensemble member size for GISETTE.

Observe that the RS classification ensemble does well on GISETTE.
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Figure 6.27: Majority vote ensemble accuracy as modelled by a Polya-Eggenberger

distribution vs ensemble member size for GISETTE. Observe that our model accurately

estimates the majority vote accuracy of the ensemble.
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Figure 6.28: Classification accuracy vs ensemble member size for MADELON.

Observe that the weighted majority vote on a low number of projection dimension

produces the most accurate ensemble classifier among the other choices of classifiers.
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7
Random Subspace as Diversity

Generator for Image Classification

Summary In this chapter, we apply our theory on Random Subspace Ensembles to

image classification tasks, specifically on the Imagenet Large Scale Visual Recognition

Challenge dataset.

Taking inspiration from nature, we propose “PseudoSaccades” and show how

an ensemble of deep neural network classifiers with PseudoSaccades can give better

image classification accuracy compared to a single view classification.

We will also demonstrate how PseudoSaccades can be used to address adversarial

examples in deep neural networks, where small imperceivable perturbations can result

in incorrect high confidence labels on the classification of the image.

7.1 Introduction

Deep Neural Networks (DNN) are state-of-the-art tools for various machine

learning tasks (LeCun et al.LeCun et al., 20152015) and have proved especially useful for image clas-

sification tasks. For example, the most recent winners of the Imagenet challenge

have all been DNNs.

Although it is not at all well understood — at least in terms of formal learning-

theoretic guarantees — how and why DNNs perform so well 11, empirical understanding

1For example, while it is known that the VC dimension of a DNN is upper-bounded by

the number of nodes in the network (Anthony and BartlettAnthony and Bartlett, 20092009), it is not generally known
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of how to construct a DNN is substantial and growing, and there are many plausible

hypotheses regarding their performance. One striking example of the latter is that

not only do DNNs have clear parallels with aspects of human visual processing, but in

controlled psychological experiments they also match human performance on visual

recognition tasks very closely (Serre et al.Serre et al., 20062006).

Taking inspiration from nature, in this chapter we show that an approximate

analogue for saccades in human visual processing can improve the performance of a

carefully-tuned DNN on an image classification task that it was explicitly designed to

solve. More precisely, we use a very simple ensemble approach that employs voting

but, unlike typical ensemble approaches, rather than learning several similar DNNs

and obtaining a weighted combination of votes from that ensemble, instead we use

just a single DNN but feed it as input multiple random low-dimensional sketches of

an image and take the DNN’s vote with itself on these sketches to reach a majority

verdict.

Our approach is inspired by considering saccades in human visual processing,

that is eye movements that focus attention on elements in a visual scene. The human

eye has only a few degrees of visual arc of high-resolution imaging capability, and

saccades are a mechanism by which a scene can be estimated from high-resolution

subsampling of parts of it. In human visual processing this subsampling is not

uniformly at random – we attend to certain features proportionately more often

than others – but we hypothesised that an evolutionary precursor to saccades could

have been something closer to a uniform random sampling of features in a scene and

that (if indeed there was such a precursor) this must have conferred some selective

advantage in order to propagate.

Our results in chapter 44 show that randomly subsampling rows and columns from

an image without replacement results in — with high probability — an approximately

affine transformation of the original image. Putting these ideas together, since image

labels should remain invariant under affine transformations, we speculated that such

subsampling could potentially lead to improved classification performance, perhaps

even for an already highly-accurate classifier, by providing the classifier with multiple

why DNNs dramatically outperform ‘wide’ neural networks with the same number of nodes

but fewer hidden layers.
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low-dimensional sketches of the same image in a similar way that saccadic sampling

of a scene does. We call this subsampling of rows and columns ‘PseudoSaccades’.

Image classification inputs can be of varying sizes, while most classification

algorithms accept only a fixed size input, a common pre-processing is to convert

them to a (usually smaller) standard-sized input prior to classification. However as

far as we are aware it has not been much exploited before that such pre-processing

offers an opportunity for generating multiple instances of a particular image. By

extracting PseudoSaccades sketches of an image before applying the standardizing

pre-processing, allows the generation – for typical image sizes – of thousands of

such instances per image. Moreover, unlike cropping and reflection the resulting

PseudoSaccades images resemble photographs captured following a change of camera

angle and position, while still keeping the subject central in scene – see Figure 7.17.1-7.47.4.
Original: indri, indris, Indri indri, Indri brevicaudatus (385),

 score 0.563 True Solution Rank: 2
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Saccade: Madagascar cat, ring-tailed lemur, Lemur catta (384),
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Original: Christmas stocking (497),

 score 0.305 True Solution Rank: 2
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Figure 7.1: Two images incorrectly classified by AlexNet in their original form (left-

hand column), but correctly classified in PseudoSaccades form (right-hand column).

Observe in Figures 7.17.1 through 7.37.3 that the PseudoSaccade view is similar to an

image taken from a slightly different camera angle or position.

Using our simple approach, we obtain statistically significant improvements in

classification performance on AlexNet, GoogLeNet, ResNet-50, and ResNet-152

baselines on Imagenet data – e.g. of the order of 0.3% to 0.6% in Top-1 accuracy –

essentially nearly for free. We carry out a comprehensive empirical exploration of

our approach, reporting results using different levels of subsampling and different
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ensemble sizes, as well as an initial exploration of whether the improvements have

any identifiable systematic component (such as occurring disproportionately in the

same class).
Original: European fire salamander, Salamandra salamandra (26),

 score 0.832
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Saccade: European fire salamander, Salamandra salamandra (26),
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Original: flagpole, flagstaff (558),

 score 0.991
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Figure 7.2: Two images correctly classified by AlexNet, both in their original form

(left-hand column), and in PseudoSaccades form (right-hand column).

Original: tusker (102),

 score 0.890 True Solution Rank: 2
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Saccade: tusker (102),

 score 0.840 True Solution Rank: 2,

 True Solution: Indian elephant, Elephas maximus(386)
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Original: organ, pipe organ (688),

 score 0.830 True Solution Rank: 13
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Saccade: marimba, xylophone (643),

 score 0.411 True Solution Rank: 23,

 True Solution: bannister, banister, balustrade, balusters, handrail(422)
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Figure 7.3: Two images incorrectly classified by AlexNet, both in their original

form (left-hand column), and in PseudoSaccades form (right-hand column).
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Original: tiger cat (283),

 score 0.213
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Original: solar dish, solar collector, solar furnace (808),

 score 0.287
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Saccade: megalith, megalithic structure (650),

 score 0.219 True Solution Rank: 19
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Figure 7.4: Two images correctly classified by AlexNet in their original form

(left-hand column), but incorrectly classified in PseudoSaccades form (right-hand

column).

7.2 Experiments and Results

In this section, we present details of our experimental protocol and the results of

our experiments. We show that the classification accuracy on a single PseudoSaccades

version of an image is similar to the accuracy on the original images, given a suitably

high projection dimension. Moreover, using PseudoSaccades as a diversity generator,

an ensemble classifier employing several PseudoSaccades versions of each image

can consistently outperform the classification accuracy of the same classifier on the

original images.

7.2.1 Dataset and Classifiers

We used the validation dataset from the Imagenet Large Scale Visual Recognition

(ILSVR) Challenge 2012 as described in Berg et al.Berg et al. (20102010) for our experiments. This

dataset comprises of 50000 images, ranging in size from 56x54 pixels to 5005x3646

pixels, where each image is an example from one of 1000 distinct classes. The

subject of an image (i.e. the class label) is the dominant and usually central object

in that image, and therefore elements of attentive viewing are already present in

these images due to the location of the subject. The classes in this dataset range

from broad categories to fine-grained labels – for example, one subset of the labels
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is a classification of 120 different breeds of dogs. Table 7.17.1 summarizes the main

characteristics of this dataset.

We used the winners of ILSVR Challenge from 2012, 2014 and 2015 namely

AlexNet (Krizhevsky et al.Krizhevsky et al., 20122012), GoogLeNet (Szegedy et al.Szegedy et al., 20152015), and ResNet-50

and ResNet-152 (He et al.He et al., 20162016) to represent the state of art in deep neural network

classifiers. These classifiers include many of the latest developments in the evolution

of neural networks and each introduced new architectures and other innovations such

as ReLU activation functions and skip connections, resulting in the highest accuracies

on the Imagenet Large Scale Visual Recognition Challenge for the years 2012, 2014

and 2015 respectively. We used the MATLAB versions of these DNNs implemented

in MatConvNet (Vedaldi and LencVedaldi and Lenc, 20152015) and we used the pretrained weights, which

are tailored for the ILSVR task to provide a consistent baseline. We note that the

pretrained weights for GoogLeNet use weights from Princeton instead of Google,

which may affect the accuracy for this DNN compared to the challenge-winning DNN.

Also published accuracies in Krizhevsky et al.Krizhevsky et al. (20122012); Szegedy et al.Szegedy et al. (20152015); He et al.He et al.

(20162016) for the ILSVR challenges are on the challenge test dataset, while we used

the validation dataset because it has the labels available. Thus, our central image

accuracies for these DNNs show some discrepancies with those published results.

Table 7.27.2 is based on a similar table from Alom et al.Alom et al. (20182018) and summarizes the

characteristics of these DNNs as well as the baseline accuracies we obtained on the

ILSVR challenge validation dataset using them.

7.2.2 Experimental Procedure

We classified each image in the ILSVR validation set with no pre-processing, other

than that the pre-processing inherent in the DNN itself to standardize the image

sizes to obtain baseline accuracies for each of the four DNNs. The pre-processing

carried out by the DNNs is noted in table 7.27.2. We measured the top-1, top-3 and

top-5 accuracy for each classifier on the full validation set of 50000 images. These

accuracies are also presented in table 7.27.2 and we will refer to these results obtained

on the original images (without subsampling) as the ‘baseline classifier’ results.

For our PseudoSaccades approach we first fix the ‘projection dimension’ to be

an integer k ∈ {450, 430, 410, 390, 370, 350, 330, 310, 290, 270, 250, 200, 150} and then
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randomly sample min(k,width) columns and min(k, height) rows from the images

without replacement. As in the baseline experiments, we apply no further pre-

processing, other than that implemented by the DNN to standardize input size, and

we measure the top-1, top-3 and top-5 accuracy for each DNN on all 50000 images

in the ILSVR validation dataset. We refer to these results as the ‘saccade classifier’

results. We also store the scores, and the top-5 predicted labels for each combination

of sampled projection dimension k, image, and DNN. Since the obtained accuracies,

scores, and labels are realizations of random variables we repeated these experiments

for each combination of k, image, and DNN a total of twenty-four times, and we

calculated the means and standard deviations for the top-m (top-1, top-3 and top-5)

accuracies.

Keeping k fixed we construct an ensemble of size N ∈ {1, 2, . . . , 15} using the

scores of between one and fifteen saccade classifiers by sampling without replacement

N sets of top-5 scores from the 24 sets of stored saccade classifier scores. We combine

these to obtain the ensemble decision by simply summing scores for each label. For

each k,N,m triple and each classifier we repeated this process fifty times, and we

calculated the corresponding means and standard deviations for the top-1, top-3,

and top-5 accuracy.

Min Mean Max
Image Count 50000
Label Count 1000
Fine-Grained Labels 120
Height 56 430.25 5005
Width 54 490.37 4288
Size 3456 231320 18248230

Table 7.1: Summary of the properties of the Imagenet validation dataset.

7.2.3 Results

Table 7.27.2 gives us the baseline results for the four DNNs. The results for our

PseudoSaccades classification ensembles are given in tables 7.37.3 and 7.47.4 for ensembles

of size 5 and 10 respectively and as well they are plotted in figure 7.57.5 for all values

of k,N and m. In figure 7.57.5 the orange plane shows the baseline accuracy for each
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AlexNet GoogLeNet ResNet-50 ResNet-152
Architecture CNN LeNet Residual Neural Network
# Convolution
Layers

5 57 50 152

# Fully Connected
Layers

3 7 1 1

# Parameters 61 M 7M 25.6M 60.3M
# Multiply
and Accumulates

724M 1.43G 3.9G 11.3G

Regularization
Batch

Normalization
Local Response
Normalization

Batch Normalization

Image Resizing
bicubic scaling

(227x227)
bilinear scaling (224x224)

Top-1 accuracy 54.70% 65.46% 70.39% 72.45%
Top-3 accuracy 71.68% 82.22% 85.55% 87.05%
Top-5 accuracy 77.56% 86.93% 89.66% 90.66%

Table 7.2: Summary of the DNN classifiers.

classifier and top-m combination within a sub-figure. The surface plots show the

average classification error for a given k,N,m triple using PseudoSaccades. From

tables 7.37.3 and 7.47.4 we see that these average outcomes are very stable indeed, and

if the projection dimension k is sufficiently high then even a small ensemble can

outperform the DNNs working with the original images at the 5% level of significance

(or better) on Top-1, Top-3 and Top-5 classification accuracy. On the other hand, we

see that by using a single PseudoSaccades representation of each of the images, we

can match or nearly match the baseline accuracy with a projection dimension as high

as k = 350 (see Figure 7.57.5). However, with a lower projection dimension, we obtain

far worse accuracy than the baseline. The curve comprising the left-hand boundary

of each surface plot shows the average accuracy for a single PseudoSaccades plotted

against the projection dimension k. Finally, we see that the accuracy of the ensemble

exceeds that of the baseline classifiers, even for a small ensemble of classifiers and

small projection dimension, and this behaviour is consistent across all of the classifier

architectures.
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Figure 7.5: Accuracy vs ensemble size and projection dimension. Reference plane

shows the accuracy for the baseline classifier. Observe that the accuracy decreases

very quickly beyond when k < kmin, where kmin is dependent on the base DNN.
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AlexNet (%) GoogLeNet (%) ResNet-50 (%) ResNet-152 (%)
Projection
Dimensions

Mean SD Mean SD Mean SD Mean SD

450

Top-1 55.255 0.044 * 65.918 0.051 * 70.726 0.048 * 72.826 0.043 *
Top-3 72.235 0.033 * 82.526 0.040 * 85.743 0.037 * 87.289 0.050 *
Top-5 77.996 0.038 * 87.207 0.038 * 89.830 0.049 * 90.901 0.032 *

410

Top-1 55.416 0.044 * 65.910 0.047 * 70.629 0.075 * 72.759 0.065 *
Top-3 72.342 0.041 * 82.490 0.040 * 85.730 0.051 * 87.264 0.043 *
Top-5 78.092 0.038 * 87.194 0.036 * 89.771 0.057 90.860 0.038 *

350

Top-1 55.520 0.051 * 65.512 0.060 69.901 0.074 72.308 0.047
Top-3 72.294 0.056 * 82.153 0.050 85.250 0.069 86.955 0.043
Top-5 78.061 0.045 * 86.918 0.055 89.307 0.067 90.613 0.044

310

Top-1 55.038 0.074 * 64.596 0.068 68.793 0.103 71.269 0.064
Top-3 71.989 0.052 * 81.429 0.047 84.286 0.080 86.253 0.047
Top-5 77.738 0.057 * 86.261 0.051 88.512 0.069 90.072 0.037

250

Top-1 53.299 0.076 61.188 0.071 65.511 0.158 68.588 0.171
Top-3 70.487 0.046 78.555 0.063 81.596 0.102 84.113 0.112
Top-5 76.398 0.066 83.878 0.057 86.247 0.068 88.283 0.076

Table 7.3: Ensemble classifier accuracy for ensemble size N = 5 and projection

dimensions k ∈ {450, 410, 350, 310, 250}, with the standard deviation from a sample of

50 ensembles. Values with ‘*’ exceeded the top-k accuracies of the baseline classifiers

by at least 2 standard deviations. The baseline accuracy for each of the DNNs are as

noted in Table 7.27.2.
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AlexNet (%) GoogLeNet (%) ResNet-50 (%) ResNet-152 (%)
Projection
Dimensions

Mean SD Mean SD Mean SD Mean SD

450
Top-1 55.348 0.035 * 65.987 0.038 * 70.828 0.032 * 72.894 0.026 *
Top-3 72.307 0.032 * 82.582 0.036 * 85.802 0.028 * 87.365 0.029 *
Top-5 78.081 0.030 * 87.266 0.031 * 89.903 0.035 * 90.953 0.024 *

410
Top-1 55.568 0.048 * 66.003 0.041 * 70.734 0.055 * 72.863 0.043 *
Top-3 72.435 0.031 * 82.568 0.034 * 85.828 0.026 * 87.361 0.028 *
Top-5 78.195 0.035 * 87.278 0.033 * 89.871 0.039 * 90.938 0.025 *

350
Top-1 55.716 0.048 * 65.672 0.041 * 70.065 0.047 72.500 0.040
Top-3 72.444 0.035 * 82.310 0.036 85.385 0.048 87.118 0.025
Top-5 78.233 0.036 * 87.069 0.033 * 89.460 0.046 90.747 0.025 *

310
Top-1 55.300 0.068 * 64.866 0.043 69.038 0.054 71.497 0.043
Top-3 72.203 0.055 * 81.660 0.045 84.524 0.073 86.457 0.036
Top-5 77.966 0.045 * 86.494 0.044 88.733 0.054 90.304 0.025

250
Top-1 53.643 0.050 61.604 0.055 65.864 0.121 68.956 0.093
Top-3 70.803 0.046 78.955 0.056 81.955 0.073 84.484 0.082
Top-5 76.728 0.046 84.268 0.048 86.639 0.071 88.624 0.066

Table 7.4: The mean ensemble classifier accuracy for ensemble size N = 10 for

projection dimensions k ∈ {450, 410, 350, 310, 250}, with the standard deviation from

a sample of 50 ensembles. Values with ‘*’ exceeded the top-m accuracies of the

baseline classifiers by at least 2 standard deviations. The baseline accuracy for each

of the DNNs are as noted in Table 7.27.2.
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7.2.4 Further experiments

A natural question, given the improvements from PseudoSaccades, is whether an

‘ensemble of ensembles’ would improve performance further? We started by looking

further into the diversity of the saccade classifiers. In line with our results in chapter

66, we used the Sneath and SokalSneath and Sokal (19631963) diversity measure to calculate the correlation

between the saccade classifier errors and the baseline classifier errors using

ρi,j = N11N00 −N01N10√
(N11 +N10)(N01 +N00)(N11 +N01)(N10 +N00)

, where i is the base classifier, and j is the saccade classifier. In table 7.57.5, we see that

– based on this summary statistic – the accuracy of the saccade classifiers is highly

correlated with that of the corresponding baseline classifier, indicating to us that

the classifier performance is not substantially reduced by PseudoSaccades projection.

Table 7.67.6 meanwhile shows that although the saccade classifier errors are correlated

with one another, this is to a lesser degree than to the baseline classifiers. These

facts suggest that there might be little to gain from combining the PseudoSaccades

ensembles from different DNNs into a larger ensemble. However, since all of the

accuracies are already high it seemed worthwhile to examine where the improvements

were coming from - were these for similar class labels for every classifier for example?

Digging deeper we observed that the classification accuracy of the individual

classes is not uniformly affected by PseudoSaccades. Moreover, at this lower level

of granularity, we see that the different architectures do tend to be affected by the

PseudoSaccades differently.

Tables 7.107.10,7.117.11 and 7.97.9 show lists of predicted class labels for a given class label

for ResNet-152, with projection dimension 390 and ensemble size 5. Note that there

are 50 instances in each of the true class labels, and we omitted predicted labels

where there was only a single prediction or two predictions for reasons of space and

readability.

In table 7.107.10, we present a list of labels for which the ResNet-152 classifier obtained

less than 20% recall. We obtained similar tables for the other three classifiers which

we deferred to the appendix (Tables. D.8D.8 - D.16D.16). We observed that the ensemble

of PseudoSaccades classifiers performs similarly to the baseline classifier on labels

that are also difficult for the baseline classifier to predict accurately, but we also saw
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that the different classifier architecture has their own sets of ‘difficult labels’ that are

different.

Finally, tables 7.97.9 and 7.117.11 give examples of class labels where the ensemble

classifier respectively gives either a large improvement or is much worse (±10%) on

classification accuracy for these classes. We found that the saccade classifiers were

affected differently on different classifier architecture.

Thus, although high-level summary statistics seemed to indicate little diversity

between the different ensemble classifiers, a more principled investigation reveals

that the errors for both the original DNNs and the corresponding PseudoSaccades

ensembles arise from different classes and different instances in the dataset.

We, therefore, constructed two ensemble classifiers - one using the four baseline

DNNs and one that combined four PseudoSaccades ensembles seeing if further

improvements were possible. We used five-fold cross-validation on the validation

set data to train a shallow neural network with a single hidden layer with ReLU

activations on the baseline scores for 40000 images from the validation dataset to

learn a weighting function for the ensemble of baseline classifiers. We used the

average and maximum scores from PseudoSaccades versions of the four DNNs for the

same 40000 images to train a similar network to weight the ‘ensemble of ensembles’.

We evaluated both ensembles using the 10000 remaining held-out images from the

validation dataset and estimated the top-1,top-3 and top-5 accuracies for both

ensembles with the cross-validation error. We carried out one round of five-fold

cross-validation for the baseline classifiers and 50 rounds for the PseudoSaccades

classifiers, for different k,N,m triples and calculated the mean accuracies and their

standard deviations. For both sets of ensembles, we saw substantial improvements

over the original baseline accuracies and, consistent with our earlier experiments,

the PseudoSaccades ensembles were yet again able to outperform the ensemble of

baseline DNN classifiers. Figure 7.57.5 shows the accuracy of the DNN ensemble versus

the PseudoSaccades ensembles for different k,N,m triples. The horizontal orange

plane indicates the (average) accuracy of the DNN ensemble. The PseudoSaccades

ensembles outperform the increased Top-1 accuracy baseline of 75.78% by 0.3%, and

the accuracy of the best performing classifier ResNet-152 by 3.7%. We conjecture
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that further, possibly minor, improvements in accuracy may be possible using a more

careful approach to learn the weighting function.

Saccade
Dimensions

AlexNet GoogLeNet
ResNet

50
ResNet
152

450 0.8959 0.8952 0.8916 0.8949
430 0.8851 0.882 0.877 0.8811
410 0.8753 0.8694 0.8615 0.8681
390 0.865 0.8552 0.8479 0.8552
370 0.8524 0.8368 0.8301 0.8377
350 0.8375 0.8164 0.8078 0.8164
330 0.8221 0.7937 0.7853 0.7943
310 0.8039 0.7683 0.7601 0.7715
290 0.785 0.7418 0.7335 0.7449
270 0.764 0.7119 0.7068 0.7174
250 0.742 0.678 0.676 0.6889
200 0.6727 0.5729 0.5806 0.5977
150 0.5626 0.437 0.4563 0.4666

Table 7.5: Average classifier correlation ρbase,saccade between baseline classifier

and saccade classifiers.

7.3 Comparison to existing methods

While PseudoSaccades performs marginally worse than the 10-crop method used

in ResNet-50 (He et al.He et al., 20162016) on average, PseudoSaccades outperforms the multi-

crop approach used in GoogLeNet (Szegedy et al.Szegedy et al., 20152015). Table 7.87.8 summarises the

accuracy of the PseudoSaccades ensemble versus a 10-crop ensemble. If a single

image rather than the 10 cropped view were not used for classification for GoogLeNet

or ResNet, the performance drops sharply. We conjectured that PseudoSaccades

could be more robust than the 10-crop approach and in section 7.47.4 we explore this

intuition for adversarial examples.

We conjectured that the difference in the performance gains come from the

ensemble diversity. Table 7.77.7 summarises the ensemble diversity for GoogLeNet and

ResNet-50 using the correlation measure ρ described in section 7.2.47.2.4. A saccade
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Saccade
Dimensions

AlexNet GoogLeNet
ResNet

50
ResNet
152

450 0.8847 0.8830 0.8809 0.8876
430 0.8744 0.8702 0.8682 0.8754
410 0.8657 0.8597 0.8562 0.8648
390 0.8564 0.8484 0.8456 0.8543
370 0.8448 0.8344 0.8337 0.8419
350 0.8320 0.8202 0.8196 0.8266
330 0.8196 0.8060 0.8059 0.8121
310 0.8077 0.7917 0.7938 0.7991
290 0.7956 0.7771 0.7792 0.7849
270 0.7835 0.7621 0.7667 0.7700
250 0.7717 0.7466 0.7528 0.7572
200 0.7369 0.7027 0.7138 0.7211
150 0.6942 0.6473 0.6666 0.6750

Table 7.6: Average classifier correlation ρsaccade1,saccade2 between all pairs of

saccade classifiers.

average(ρi, ρj)
ResNet 50 0.7635
GoogLeNet 0.6920
PseudoSaccades
(450 Saccade Dimensions)

0.8840

Table 7.7: Average Classifier Correlation of 450 Saccade Dimension PseudoSac-

cades versus 10-crop view. Observe that the diversity measure ρ for PseudoSaccades

is larger than the diversity measure for the 10-crop DNNs.
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Top-1 Top-3 Top-5
10 Crop GoogLeNet 67.81 84.11 88.58
10 Crop ResNet-50 76.68 89.95 93.17
10 Ensembles of
PseudoSaccades
450 Saccade Dimensions

76.16 88.13 90.86

Table 7.8: Ensemble accuracy of PseudoSaccades versus 10-crop view image

classification. Observe that PseudoSaccades outperforms 10 crop GoogLeNet, while

performing marginally worse than 10-crop ResNet-50

dimension of 270, would have given approximately the same diversity measure as the

10-crop view. However, lowering the saccade dimension to 270 incurs too large of an

accuracy loss (> 10%) for the ensemble to recover. We also observe that the DNNs

were trained using the 10-crop view, while we were using the pretrained network as

it is without retraining. We conjecture that if the DNN were to be retrained with

PseudoSaccades views of the training examples, this could provide for a low-cost

approach for data augmentation that would be reflected in this gap closing. However,

this remain for future work.

7.4 Adversarial Examples

A particularly interesting weakness of deep neural networks is their susceptibility

to adversarial examples (Szegedy et al.Szegedy et al., 20132013). Adversarial examples are non-random

perturbations added to input specifically in order to maximize the prediction error.

In the context of image recognition tasks, an adversarial example could result

in the classifiers giving very high confidence prediction of an incorrect label to an

image that is usually imperceptibly different from the “clean” image.

Recent literatures shows that there has been significant interest in adversarial

examples especially for important common tasks such as speech-to-text and im-

age recognition tasks (i.e. Carlini and WagnerCarlini and Wagner (20172017, 20182018); Gu and RigazioGu and Rigazio (20142014);

Athalye et al.Athalye et al. (20172017); Goodfellow et al.Goodfellow et al. (2014b2014b); Kurakin et al.Kurakin et al. (20162016) ) This inter-

est in adversarial examples may be due to the inherent dangers of high confidence

misclassification, for instance, misidentifying civilian-targets as military-targets or a
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true label base label saccade label ensemble label

rock crab
rock crab (28)
dungeness crab (4)
hermit crab (4)

rock crab (30)
crayfish (3)
hermit crab (3)

rock crab (33)
dungeness crab (3)
hermit crab (4)

bedlington
terrier

bedlington
terrier (28)

bedlington
terrier (42)

bedlington
terrier (43)

labrador
retriever

labrador
retriever (34)
bloodhound (3)
saluki (3)
golden retriever (3)

labrador
retriever (36)
saluki (3)

labrador
retriever (39)

bell cote

bell cote (26)
chime (3)
church (11)
monastry (4)

bell cote (31)
church (8)
monastry (4)

bell cote (31)
church (9)
monastry (4)

bow bow (30) bow (32) bow (35)

necklace
necklace (40)
chain (3)

necklace (46) necklace (46)

pitcher
pitcher (19)
vase (4)
water jug (6)

pitcher (25)
vase(4)
water jug (5)

pitcher (24)
vase (3)
water jug (8)

plastic bag plastic bag (24) plastic bag (26) plastic bag (29)

hen of the
wood

hen of the
wood (35)
coral fungus (3)

hen of the
wood (36)
coral fungus (4)

hen of the
wood (40)

Table 7.9: Labels where ensemble method performed significantly better (≥ 10%)

than the baseline ResNet-152 Imagenet classifier. Number of instances for which the

given label was returned by classifier in brackets. Note that there are 50 instances

for each of the classes. We omitted all predictions that occurred two or less times

therefore the sum of the instances does not total to 50.
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true label base label saccade label ensemble label

cassette player

cassette
player (10)
cd player (4)
radio (3)
tape player (22)

cassette
player (9)
cd player (4)
tape player (23)

cassette
player (9)
cd player (4)
radio (3)
tape player (21)

crt screen

crt screen (8)
desk (6)
desktop
computer (8)
monitor (4)
television (8)

crt screen (9)
desk (6)
desktop
computer (8)
monitor (5)
television (9)

crt screen (9)
desk (5)
desktop
computer (8)
laptop computer (3)
monitor (6)
television (9)

sunglass
sunglass (11)
sunglasses (19)

sunglass (10)
sunglasses (19)

sunglass (11)
sunglasses (16)

Table 7.10: Labels where ResNet-152 Imagenet classifier achieved ≤ 20% recall.

Number of instances for which the given label was returned by classifier in brackets.

Note that there are 50 instances for each of the classes. We omitted all predictions

that occurred two or less times therefore the sum of the instances does not total to 50.

true label base label saccade label ensemble label

mantis
mantis (37)
walking stick (3)

mantis (31)
walking stick (5)

mantis (32)
walking stick (5)

abaya abaya (41)
abaya (37)
cloak (3)

abaya (36)
cloak (3)

perfume perfume (40) perfume (35) perfume (34)

wok
wok (28)
hot pot (10)

wok (22)
dutch oven (4)
frying pan (3)
hot pot (9)

wok (23)
frying pan (4)
hot pot (11)

Table 7.11: Labels where ensemble method performed significantly worse (≥ 10%)

than the baseline ResNet-152 Imagenet classifier. Number of instances for which the

given label was returned by classifier in brackets. Note that there are 50 instances

for each of the classes. We omitted all predictions that occurred two or less times

therefore the sum of the instances does not total to 50.
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failure to correctly identify traffic signs in self-driving automobiles (Sitawarin et al.Sitawarin et al.,

20182018). The fact that it is not difficult for bad-actors (or bad luck) to cause failure in

DNNs to classify correctly may also be reasons for interest in research in adversarial

examples.

Inspired by our results in chapter 66, in particular the empirical results demon-

strating that RS ensembles improve tolerance to mislabelled examples, we explore

the robustness of PseudoSaccades to adversarial examples using ResNet-50. Our

empirical findings show that PseudoSaccades improve robustness to adversarial ex-

amples. Moreover, this improvement in robustness does not require retraining of the

neural network and can be used with existing pretrained DNN weights. Finally, this

robustness persists under a wide range of adversarial attacks.

7.4.1 Experimental setup and result

We used Foolbox (Rauber et al.Rauber et al., 20172017), a Python-based toolkit to generate

adversarial examples for DNNs. We set the Foolbox model to use ResNet-50 as

the base DNN, and used three images, namely of a giant panda, a hen and a jay.

ResNet-50 was chosen as it is sufficiently accurate as a baseline. It is far quicker to

generate adversarial examples for ResNet-50 than for ResNet-152, and we expect the

outcomes to be similar. 22

We categorized Foolbox attacks to three categories of attacks based on the

perceptible changes caused by the attack. The first category of the attacks are we

dubbed “gradient-based attacks”. The attacks in this category use the gradients of

the pretrained neural network to add perturbations that maximize the loss with

respect to the image. Gradient-based attacks are usually difficult to perceive visually,

and some gradient-based attacks allow for a targeted attack where the attacker can

choose the target class for the adversarial example. The second category of attacks

is what we call “pixel-based attacks“. Pixel-based attacks add high contrast pixels to

the image until the classifier fails to classify the image correctly. An example of this

attack is “Salt-and-Pepper” attack, where black or white pixels are added at random

until the image is misclassified.

2Generating the full adversarial examples for ResNet-50 took approximately 45 hours
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The last category of attacks is what we call “contrast-based” attacks. In this

category of attacks, the image is visually degraded — for example by adding Gaussian

noise, decreasing the contrast, or blurring the image — until the classifier misclassified

the image. Note that we used a different definition for the categories of attacks

than the documentation for Foolbox — the Foolbox documentation grouped both

“pixel-based-attacks” and “contrast-based” attacks as “Decision-based attacks”. Table

7.127.12 summarizes the types of attacks used as well as the settings used for the attack.

The first twenty attacks are “gradient-based attacks”, the next two are “pixel-based

attacks” and the last five are “contrast-based” attacks.

We then generated saccade views of 200 × 200 pixels and classify the saccade

views of the adversarial examples using ResNet-50. We then repeat this process

30 times to ensure our results are consistent. We also classified the adversarial

examples without applying PseudoSaccade using ResNet-50 as a baseline. Table

7.137.13 shows the average true label scores of the saccade views. Figures 7.67.6, 7.87.8 and

7.97.9 shows the results comparison of the classification between the baseline, and the

saccade view, with the middle image illustrating the additional noise added to the

image to generate the adversarial example. For these images, we scaled up the pixel

value in the difference image for visual clarity purposes. Additional figures (Figures

D.36D.36-D.41D.41) are available in the appendix for visual comparison.

7.4.2 Results and Discussion

PseudoSaccades appears to be very robust against gradient-based adversarial

examples. Figures 7.67.6 show some of the adversarial examples and the labels pre-

dicted by ResNet-50 and the labels of the saccade view of the adversarial example.

Surprisingly, for the test example “giant panda” using “Gradient” attack, we see

that the classification of the saccade view gives the correct label with a lower than

expected score. We have no reasonable explanation as to why this is so, although

we observed that the adversarial example is visually degraded in comparison to the

“clean” image, and we suspect that it may be due to how the adversarial example

was generated instead. We note however, that the saccade view was able to recover

the correct label, while the baseline classification still gave an incorrect label. See

figure 7.77.7 for a visual comparison of the classification.
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PseudoSaccades also appear to be resistant to pixel-based attacks as shown in

Figures 7.87.8. Classifications using the saccade view are able to recover the correct

labels, with reasonably high confidence, though not as high as in the case of saccade

views of gradient-based attacks

However, PseudoSaccades are not as robust against contrast-based attacks as

shown in Figures 7.97.9. While PseudoSaccades can sometimes recover the correct label

more often than the baseline classification, classification using the saccade views on

the adversarial example usually result in either low confidence predictions of the

correct label or low confidence predictions with an incorrect label. .

Our results are broadly consistent with the findings of Gurbaxani and MishraGurbaxani and Mishra

(20182018) which shows using small perturbations of the image to be classified can defeat

adversarial examples. However, they do not consider RS as a remedy, and their

analysis does not describe the effect of different potential remedies on the classifier

scores or examine their robustness. For example, if one is unsure if an example is

adversarial, it is not clear how or if one should use their approaches.

Our findings here also lend support to the conjecture of Elsayed et al.Elsayed et al. (20182018) that

saccades in human vision are one reason why humans are not as susceptible to the

same type of adversarial examples in deep neural networks. If would be extremely

gratifying if further study of PseudoSaccades revealed some additional interesting

insights into how our human visual cortex processes information and help to build

neural network systems that mimic human vision more faithfully, though such an

undertaking is beyond the capabilities of the author.

7.5 Conclusions and future work

We demonstrated that using a very simple, and computationally cheap, ‘Pseu-

doSaccades’ ensemble learning approach could improve the image classification

performance of DNNs. This improvement is small but statistically significant at

the 5% level and requires no retraining of the neural network. Following a careful

analysis of the sources of error in our classification problem, we showed that these

improvements also propagate to a weighted ensemble of PseudoSaccades versions of

(off-the-shelf) DNNs.
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Attack Type Criterion
Gradient Top-K (k ≥ 2)
GradientSign Top-K (k ≥ 2)
IterativeGradient Top-K (k ≥ 2)
IterativeGradientSign Top-K (k ≥ 2)
LBFGS Targeted (p ≥ 0.8)
DeepFool Top-K (k ≥ 2)
DeepFoolL2 Top-K (k ≥ 2)
DeepFoolLinfinity Top-K (k ≥ 2)
SaliencyMap Targeted (p ≥ 0.8)
CarliniWagnerL2 Targeted (p ≥ 0.8)
LinfinityBasicIterative Targeted (p ≥ 0.8)
BasicIterativeMethod Targeted (p ≥ 0.8)
L1BasicIterative Targeted (p ≥ 0.8)
L2BasicIterative Targeted (p ≥ 0.8)
ProjectedGradientDescentAttack Targeted (p ≥ 0.8)
ProjectedGradientDescent Targeted (p ≥ 0.8)
RandomStartProjectedGradientDescent Targeted (p ≥ 0.8)
RandomProjectedGradientDescent Targeted (p ≥ 0.8)
MomentumIterative Targeted (p ≥ 0.8)
MomentumIterativeMethod Targeted (p ≥ 0.8)
SaltAndPepperNoise Top-K (k ≥ 2)
Pointwise Top-K (k ≥ 2)
GaussianBlur Top-K (k ≥ 2)
ContrastReduction Top-K (k ≥ 2)
AdditiveUniformNoise Top-K (k ≥ 2)
AdditiveGaussianNoise Top-K (k ≥ 2)
BlendedUniformNoise Top-K (k ≥ 2)

Table 7.12: List of attack types and criterion used to generate the adversarial

examples. The first 20 attacks are “gradient-based” attacks, the next two are “pixel-

based” attacks and the last five are “contrast-based” attacks.
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Hen
Giant
Panda

Jay

GradientAttack 0.6211 0.182 0.5818
GradientSignAttack 0.7094 0.3157 0.7015
IterativeGradientAttack 0.6785 0.6691 0.6398
IterativeGradientSignAttack 0.734 0.9124 0.6742
LBFGSAttack 0.8964 0.9954 0.9051
DeepFoolAttack 0.7966 0.8972 0.8795
DeepFoolL2Attack 0.8055 0.8652 0.8808
DeepFoolLinfinityAttack 0.814 0.8972 0.9219
SaliencyMapAttack 0.7562 0.7869 0.3547
CarliniWagnerL2Attack 0.8501 0.9262 0.659
LinfinityBasicIterativeAttack 0.8482 0.9582 0.8462
BasicIterativeMethod 0.8612 0.948 0.8415
L1BasicIterativeAttack 0.8388 0.89 0.7829
L2BasicIterativeAttack 0.8517 0.8703 0.7289
ProjectedGradientDescentAttack 0.8525 0.9645 0.8406
ProjectedGradientDescent 0.8401 0.9628 0.8463
RandomStartProjectedGradientDescentAttack 0.8406 0.972 0.8934
RandomProjectedGradientDescent 0.8203 0.9725 0.8448
MomentumIterativeAttack 0.7907 0.9132 0.7894
MomentumIterativeMethod 0.7852 0.9118 0.8239
SaltAndPepperNoiseAttack 0.5201 0.1078 0.5843
PointwiseAttack 0.7539 0.8414 0.6981
GaussianBlurAttack 0.1339 0.1111 0.0307
ContrastReductionAttack 0.3267 0.2763 0.1452
AdditiveUniformNoiseAttack 0.0959 0.0597 0.1764
AdditiveGaussianNoiseAttack 0.1044 0.2131 0.1039
BlendedUniformNoiseAttack 0.0128 0.0094 0.0087

Table 7.13: Summary of the true label scores of the saccade views averaged over 30

runs. Note that the classifier returned high confidence scores on the true label scores

on for “gradient-based” adversarial example attacks on the PseudoSaccade views, and

low scores for the “contrast-based’ adversarial example attacks.
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Figure 7.6: ResNet-50 classification of “gradient-based” adversarial attacks on the

original form (left), and PseudoSaccade form (right). Image in the centre column is

a visual representation of the adversarial attack. Observe that classification is very

robust on the PseudoSaccades forms, returning a high confidence prediction on the

true label.
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Figure 7.7: ResNet-50 classification of “giant panda” with “GradientAttack”

adversarial attack on the original form (left), and PseudoSaccade form (right). Image

in the centre column is a visual representation of the adversarial attack. Observe

that classification on the PseudoSaccades forms gives the correct prediction of the

true label with low confidence scores.
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PointwiseAttack Resnet-50
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Figure 7.8: ResNet-50 classification of “pixel-based” adversarial attacks on the

original form (left), and PseudoSaccade form (right). Image in the centre column is

a visual representation of the adversarial attack. Observe that classification is robust

on the PseudoSaccades forms, returning prediction on the true label with moderate

confidence scores.
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Figure 7.9: ResNet-50 classification of “contrast-based” adversarial attacks on the

original form (left), and PseudoSaccade form (right). Image in the centre column is

a visual representation of the adversarial attack. Observe that classification is not

robust on the PseudoSaccades forms, returning a low confidence prediction on the

true label.
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We also demonstrated how PseudoSaccades could be used to improve the robust-

ness of the DNN against adversarial examples It would be interesting to investigate

the robustness of PseudoSaccades to adversarial examples that are transferable

to human beings (Elsayed et al.Elsayed et al., 20182018). We conjecture that further research into

PseudoSaccades might reveal deeper insight into the mechanism of human vision

and suggest methods how future research into image recognition can leverage on the

advantages of these mechanisms while mitigating the disadvantages.

An open problem is whether a (simple or low overhead) non-uniform sampling

scheme for constructing PseudoSaccades data exists that could improve performance

further, possibly mediated by a scene-dependent prior. But it looks like a hard

problem, in particular how to construct such a prior, although human visual processing

suggests that such a scheme should be at least a possibility. We are examining non-

uniform sampling schemes such as stratified sampling, and also techniques such as

seam-carving, with a view to progress in this direction.
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8
Conclusion and Future Direction

We began this research by trying to gain insights into the open question “When will

an ensemble of weak learners outperform a single carefully-tuned learner?” (DurrantDurrant,

20132013; Brown et al.Brown et al., 20052005). We focused on ensemble classifiers in the high-dimensional

settings using random subspaces and made inroads into some of the questions we

raised in Section 1.21.2.

In Chapter 44, we derived the data-dependent conditions for norm-preservation

in random subspace projections. We defined a measure c and c′ based on the `∞

and `4 norms of the data, which describes the ‘lucky structure’ that helps with the

norm-preservations guarantees on RS projections.

We empirically demonstrated that datasets with low c and c′ measures gives

better norm-preservation performance with RS than on datasets with larger measures.

We also empirically corroborated our theories using real-world high-dimensional data

from different settings namely natural images, natural audio and sparse binary

vectors. We demonstrated the degradation in norm preservation when the regularity

conditions are not met and how it affects the norm-preservation performance of

RS projections. Guided from our theory, we also showed that random subspace

with non-uniform sampling which reduces the within-sample variance (i.e. stratified

sampling) could improve norm-preservation performance.

We discussed the implications of our theory for classification by adapting the

proof technique of Arriaga and VempalaArriaga and Vempala (19991999), for classification with a margin.

Finally, we also discussed the implications of our theory on compressive sensing,

namely sparse signal reconstruction, and as an aside, demonstrated how RS can be

used instead of a dense sensing matrix in reconstructing image data.

197



In Chapter 55, we showed that a random subspace projection is equivalent to

using a sub-gaussian projection matrix and the corresponding sub-Gaussian norm

and exploiting a lemma in Kabán and DurrantKabán and Durrant (20172017), we derived the upper bound

on the generalization error of the compressive ERM classification. We also derived

data-dependent upper bounds on the flipping probability, and demonstrated how the

flipping probability is related to the `4, `6 and `∞ norms and how these norms are

an analogue to the regularity constant from chapter 44.

Guided by our theory, we proposed a computationally efficient method to reduce

the flipping probability using a computationally efficient “densification” algorithm

using Householder transformations. We empirically corroborated our results and

discussed why our bound are still pessimistic. We also discussed the implications of

this result on classification ensembles and discuss how our results show that we can

recover the Bayes’ classifier asymptotically using an RS ensemble of ERM classifiers.

In Chapter 66, we demonstrated how we could model a majority vote ensemble when

the errors in the classifiers are not independent using a Polya-Eggenberger distribution.

We showed how the diversity measure ρ as described by Sneath and SokalSneath and Sokal (19631963)

recovers the dispersion parameter of the distribution. We also empirically compared

several diversity measures used in literature and discussed briefly how we may be

able to estimate the diversity measures a priori. We also discussed the implications

of our model and give a plausible explanation for the efficacy of ensemble methods

like Random Forest based on the findings of our theory. We analysed the error based

on our model and presented a ‘good’ and ‘bad diversity’ ambiguity decomposition

similar to that of Brown and KunchevaBrown and Kuncheva (20102010) and discussed its limitations.

We empirically corroborated our findings on both synthetic and real-world data

and discussed the limitations and the assumptions of our models. We demonstrated

how our theory predicted the performance of RS ensembles and potential future

research directions based on our findings.

We also discussed the sum-rule combination scheme and the error decomposition

for the combination scheme. We reconciled the findings of SchapireSchapire (19901990) and BlumBlum

(19971997) to apparently contradictory finding of Kuncheva and RodríguezKuncheva and Rodríguez (20142014) and

showed that a weighted voting scheme improves the accuracy of a classification ensem-
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ble more, in particular that a weighted scheme on a dataset with high feature noise

could give improved ensemble performance over equally weighted members. We also

showed that RS ensembles also work as a form of regularization for linear classifiers,

similar to RP ensembles (Durrant and KabánDurrant and Kabán, 20142014), although our approach differs

considerably from theirs.

We demonstrated in Chapter 77 that using a very simple, and computationally

cheap, ‘PseudoSaccades’ ensemble learning approach based on RS could improve the

image classification performance of DNNs. This improvement is small but statistically

significant at the 5% level and requires no retraining of the neural network. Following

a careful analysis of the sources of error in our classification problem, we showed

that these improvements also propagate to a weighted ensemble of PseudoSaccades

versions of (off-the-shelf) DNNs.

We also demonstrated how PseudoSaccades could be used to improve the robust-

ness of DNNs against adversarial examples. We speculate that further research into

PseudoSaccades could provide new insights into the mechanisms of human visual

processing and may suggest methods for future research into image recognition that

can leverage on the advantages in the mechanism of human vision.

In this thesis, we focused primarily on random dimensionality reduction as a

diversity generator and it could be informative to extend this research to use Bagging

(BreimanBreiman, 19961996) and Boosting (Schapire and FreundSchapire and Freund, 20122012) in conjunction with the

random subspace method. As noted in our discussion in section 6.36.3, our Polya-

Eggenberger model suggests a plausible explanation for the effectiveness of Random

Forests. Our theory also suggests that there may be data-dependent sampling scheme

of the training features that would optimize the diversity-accuracy trade-offs in the

learning the classifiers.

In our analysis, we have focused primarily on 2-class classifications. As the

Polya-Eggenberger distribution also belongs to a Dirichlet-multinomial distribution,

it could be possible to generalize our results to model the accuracies of some of the

combination schemes in a m-class classification (e.g. Plurality vote or Borda Count).

In our analysis, we used Cantelli’s inequality as an approximation for the cumu-

lative distribution function (CDF) of the Polya-Eggenberger distribution. As noted
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in section 6.3.36.3.3, this bound is quite loose and sometimes has misleading implications.

While we have yet to find a closed form for the Generalized Hypergeometric Function

in CDF, replacing the error decomposition with the closed form of the CDF may

reveal further insights on the accuracy of a majority vote ensemble classifier.

It is also known that that the weights used for weighted majority votes assumes

independence in the classifiers (Section 4.3.3 of ZhouZhou (20122012)) and therefore modelling

the dependence may lead to improved performance. Here, the diversity measure ρ of

the weighted ensemble could be described by an expression of the form

1∑N
i=1

∑N
j=1wiwj

N∑
i=1

N∑
j 6=i

wiwjPij − p̄2

p̄(1− p̄)

where p̄ =
∑N

i=1 wipi∑N

i=1 wi
. It may be possible (using quadratic programming or some

optimization algorithm) to find an optimal set of wi such that the loss of the ensemble

given ρ and p is minimized.

One shortcoming of using the Sneath and SokalSneath and Sokal (19631963) diversity measure is that

we need the individual classifier performance in order to estimate the parameters

of the Polya-Eggenberger model. Diversity estimates based on the outputs of the

member classifiers (e.g. vote correlation), or the structure of the member classifiers

(e.g. Jaccard-similarity index) do not appear to give consistent estimate of the

parameter. It may also be possible to use the flipping probability discussed in chapter

55 to provide an estimate of the diversity measure.

Another open problem is whether a (simple or low overhead) non-uniform sampling

scheme for constructing PseudoSaccades data exists that could improve performance

further, possibly mediated by a scene-dependent prior. Human visual processing

suggests that such a scheme should be at least a possibility. We are examining

non-uniform sampling schemes such as stratified sampling, and also techniques such

as seam-carving, with a view to progress in this direction.

It would also be interesting to investigate the robustness of PseudoSaccades to

adversarial examples that are transferable to human beings (Elsayed et al.Elsayed et al., 20182018).

Intuitively we would expect that PseudoSaccades to also have problems with these

transferable adversarial examples however understanding the underlying reason

behind the difficulty may reveal insights into the similarities (and dissimilarities)

between the mechanisms in machine vision and human vision.

200



We have stopped short of using RS data in training neural networks e.g. for data

augmentation in training sets with small number of training examples or as hardening

against adversarial examples (Madry et al.Madry et al., 20172017), although we note an obvious

parallel with drop-out regularization; The promising results from PseudoSaccades

suggests that there may be some gains to be had from using PseudoSaccades as a

form of data-augmentation.
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A
Proof of Theorems

We will use the following two lemmas which are from HoeffdingHoeffding (19631963); SerflingSerfling

(19741974). Recall from Chapter 33

Corollary A.1 (to Lemma 3.53.5, HoeffdingHoeffding (19631963) Section 6.). Let C := c1, c2, . . . , cd

be a finite population of d values where ∀j = 1, 2, . . . , d we have cj ∈ [aj , bj ] with

probability 1. Let Xi and Yi, i = 1, 2, . . . , k be samples without and with replacement

from C respectively and define by Sk(X) and Sk(Y ) the corresponding sample totals.

Fix t > 0. Then it holds that:

Pr {|Sk(X)− E[Sk(X)]| ≥ t} ≤ Pr {|Sk(Y )− E[Sk(Y )]| ≥ t}

Note that E[Sk(X)] = E[Sk(Y )], thus we may bound the probability of a large

deviation in the sample total from its expectation in the case of a (non-independent)

sample without replacement by the corresponding probability for an independent

sample with replacement.

Lemma A.2 (SerflingSerfling (19741974) Corollary 1.1.). Let C := c1, c2, . . . , cd be a finite

population of d values where ∀j = 1, 2, . . . , d we have cj ∈ [aj , bj ] with probability

1. Let Xi, i = 1, 2, . . . , k be a simple random sample without replacement from C.

Denote by Sk :=
∑k
i=1Xi and define the sampling fraction fk := (k− 1)/d. Fix t > 0.

Then:

Pr {|Sk − E[Sk]| ≥ t} ≤ 2 exp
(
− 2t2

(1− fk)
∑k
i=1(bi − ai)2

)
Comment: Since 1 − fk = (d − k + 1)/d < 1 Lemma A.2A.2 gives a strictly

tighter bound than Lemma 3.53.5 for sampling without replacement, but brings in a

dependence on d. We note that bounds for sampling without replacement which

are somewhat tighter than those in SerflingSerfling (19741974) when k ' d were recently proved
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in Bardenet and MaillardBardenet and Maillard (20152015), in particular an empirical variant for when the

population parameters are unknown. In our proof each population is a fixed vector of

known length where the data dimension d is the population size and the projection

dimension k is the sample size; thus in our setting we have access to both the full

population and its parameters.

A.1 Proof of Basic Bound

We prove the basic bound using Lemma 3.53.5 and Corollary A.1A.1 and our without

replacement bound then follows directly. The basic idea is to treat each vector as

a finite population of size d and RS as a simple random sample of size k without

replacement from it in the above lemmas, and then follow the line of argument in

the usual proof of the JLL.

Let X ∈ Rd be an arbitrary, but fixed, real-valued vector and without loss of

generality let ‖X‖22 = 1 (since otherwise we can take X = Z/‖Z‖2). Denote

by X2 := (X2
1 , X

2
2 , . . . , X

2
d)T the vector containing the squared components of X.

Assume without loss of generality that ‖X2‖∞ ≤ c
d‖X‖

2
2.

Now let P ∈ Md×d be a projection onto k standard coordinate vectors, where the

projection basis is chosen by sampling uniformly at random from all
(d
k

)
possible such

bases. As noted already in Subsection 2.1.92.1.9 this is mathematically equivalent to an

RS projection. Then in every random P it holds that k of the Pii = 1 and every other

entry of P is zero so Tr(P ) = k for any P , and therefore Tr(E[P ]) = E[Tr(P )] = k.

Furthermore, since Pr {Pii = p} = Pr {Pjj = p} for all i, j ∈ {1, 2, . . . , d} and p ∈

{0, 1}, it follows that E[Pii] = E[Pjj ] = k/d, ∀i, j by symmetry. Thus E[P ] = k
dI and

E[‖PX‖22] = k
d‖X‖

2
2, where both expectations are taken with respect to the random

draws of P and we used the fact that P TP = PP = P,∀P .

We want to upper bound the following probability:

Pr
{∣∣∣∣dk‖PX‖22 − ‖X‖22

∣∣∣∣ ≥ ε} = Pr
{∣∣∣∣dk‖PX‖22 − d

k
E
[
‖PX‖22

]∣∣∣∣ ≥ ε}

We give details for one side of the inequality using the basic Hoeffding bound, the

other cases proceed along the same lines. Now, for any fixed instance of P denote by
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I the index set such that i ∈ I ⇐⇒ Pii = 1. Then:

Pr
{
‖PX‖22 ≥

k

d
ε+ E

[
‖PX‖22

]}
= Pr

{∑
i∈I

X2
i ≥

k

d

(
ε+

d∑
i=1

X2
i

)}

where the sample total
∑
i∈I X

2
i is estimated from a sample of size k without

replacement. Applying Lemma 3.53.5 and Corollary A.1A.1 we then have:

Pr
{∑

i∈I X
2
i ≥ k

d

(
ε+

∑d
i=1X

2
i

)}
= Pr

{
d
k‖PX‖

2
2 − ‖X‖22 ≥ ε

}
≤ exp

(
− 2k( εd)2

‖X2‖2
∞

)

The lower bound proceeds similarly and yields the same probability guarantee for a

single fixed vector:

Pr
{
‖X‖22 −

d

k
‖PX‖22 ≥ ε

}
≤ exp

(
−

2k
(
ε
d

)2
‖X2‖2∞

)

Thus by union bound, and using the condition on the theorem ‖X2‖∞ ≤ c
d‖X‖

2
2

to kill the unwanted dependence on d, we obtain the following guarantee for an

arbitrary unit-norm vector X:

Pr
{∣∣∣∣‖X‖22 − d

k
‖PX‖22

∣∣∣∣ ≥ ε} ≤ 2 exp
(
− 2kε2

c2‖X‖42

)
(A.1)

To complete the proof we consider a set, TN , of N vectors in Rd and let Xi and Xj

be any two vectors in this set. Instantiating X in A.1A.1 as (Xi −Xj)/‖Xi −Xj‖2 and

then applying union bound again over all
(N

2
)
< N2/2 inter-point distances in TN

we obtain, for all pairs Xi, Xj ∈ TN simultaneously, it holds that:

Pr
{∣∣∣∣‖Xi −Xj‖22 −

d

k
‖PXi − PXj‖22

∣∣∣∣ ≥ ε} ≤ N2 exp
(
−2kε2

c2

)

Where we substituted ‖X‖42 = 1 in RHS. Finally, setting the probability upper bound

on the RHS to δ and solving for k gives the theorem.

For the without replacement bound, one simply follows the same steps as above,

but using the Serfling bound (Lemma A.2A.2) in place of the Hoeffding bound (Lemma

3.53.5), finally setting the RHS to δ and solving for k/1− fk to complete the proof.

A.2 Proof of Bernstein-Bennett Bound

As in the proof of the basic bound, let X ∈ Rd be an arbitrary, but fixed,

real-valued vector and let P be a projection onto k canonical basis vectors chosen
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randomly without replacement. Also let Q be a diagonal random matrix with its

non-zero entries chosen i.i.d as follows:

Qii :=


1− k

d w.p. k
d

−k
d otherwise.

In what follows Q will act as a ‘proxy’ for P : In particular we will show that ‖QX‖22

and ‖PX‖22 − k
d‖X‖

2
2 are related and have the same expectation, but Var‖QX‖22 ≥

Var‖PX‖22, and therefore we can use Q to obtain a bound on a quantity involving P .

First, we note that:

E
[
d∑
i=1

Qiix
2
i

]
=

d∑
i=1

(
1− k

d

)
x2
i

(
k

d

)
+
(
−k
d

)
x2
i

(
1− k

d

)
= 0 (2)

and also:

E
[
‖PX‖22 −

k

d
‖X‖22

]
=

d∑
i=1

x2
i

k

d
− k

d
x2
i = E

[
‖QX‖22

]
Furthermore:

Var
[
d∑
i=1

Qiix
2
i

]
= E

( d∑
i=1

Qiix
2
i

)2− E
[
d∑
i=1

Qiix
2
i

]2

=
d∑
i=1

E[Q2
ii]x4

i +
d∑
i=1

d∑
j 6=i

E[Qiix2
i ]E[Qjjx2

j ] =
d∑
i=1

E[Q2
ii]x4

i

=
d∑
i=1

(
1− k

d

)
k

d
x4
i = dk − k2

d2 ‖X‖44

Var
[
‖PX‖22 −

k

d
‖X‖22

]
=E

[(
‖PX‖22 −

k

d
‖X‖22

)2]
− E

[
‖PX‖22 −

k

d
‖X‖22

]2

=E

( d∑
i=1

(
Pii −

k

d

)
x2
i

)2
=E

[
d∑
i=1

(
P 2
ii −

2k
d
Pii + k2

d2

)
x4
i

+
d∑
i=1

d∑
j 6=i

(
PiiPjj −

k

d
Pii −

k

d
Pjj + k2

d2

)
x2
ix

2
j


=

d∑
i=1

(
dk − k2

d2

)
x4
i +

d∑
i=1

d∑
j 6=i

(
k(k − 1)
d(d− 1) −

k2

d2

)
x2
ix

2
j

=dk − k2

d2 ‖X‖44 −
(
dk − k2

d2(d− 1)

)
d∑
i=1

x2
i

(
‖X‖22 − x2

i

)
≤dk − k

2

d2 ‖X‖44
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Since by ‖X‖22 > x2
i , Var

[∑d
i=1Qiix

2
i

]
≥ Var

[
‖PX‖22 − k

d‖X‖
2
2

]
Pr
{∣∣∣∣dk‖PX‖22 − ‖X‖22

∣∣∣∣ > ε‖X‖22
}

=Pr
{∣∣∣∣‖PX‖22 − k

d
‖X‖22

∣∣∣∣ > k

d
ε‖X‖22

}

≤Pr
{∣∣∣∣∣

d∑
i=1

Qiix
2
i

∣∣∣∣∣ > k

d
ε‖X‖22

}
Now let t > 0, we have:

E
[
exp

[
t
d∑
i=1

Qiix
2
i

]]
= E

 ∞∑
n=0

tn

n!

(
d∑
i=1

Qiix
2
i

)n
=1 +

∞∑
n=2

tn

n!E

( d∑
i=1

Qiix
2
i

)2( d∑
i=1

Qiix
2
i

)n−2 using equation 22

≤1 +
∞∑
n=2

tn

n!E

( d∑
i=1

Qiix
2
i

)2 (
d− k
d
‖X‖22

)n−2


=1 + k‖X‖44
(d− k)‖X‖42

∞∑
n=2

(t(d− k))n

dnn! ‖X‖2n2

=1 + k‖X‖44
(d− k)‖X‖42

(
exp

[
t(d− k)

d
‖X‖22

]
− 1− t(d− k)

d
‖X‖22

)
≤ exp

[
k‖X‖44

(d− k)‖X‖42

(
exp

[
t(d− k)

d
‖X‖22

]
− 1− t(d− k)

d
‖X‖22

)]

Where the first inequality comes from observing that (
∑d
i=1Qiix

2
i ) ≤ d−k

d ‖X‖
2
2 and

the second uses the inequality 1 + x ≤ ex, ∀x ≥ 0 . We therefore have:

Pr
{

d∑
i=1

Qiix
2
i >

k

d
ε‖X‖2

2

}
≤ min

t>0

E
[
exp

[
t
∑d
i=1 Qiix

2
i

]]
exp

[
tkd ε‖X‖

2
2
]

≤ min
t>0

exp
[
− tkε‖X‖

2
2

d
+ k‖X‖4

4
(d− k)‖X‖4

2

(
exp

[
t(d− k)‖X‖2

2
d

]
− 1− t(d− k)‖X‖2

2
d

)]
(3)

Choosing t = d
(d−k)‖X‖2

2
log
(

1 + ε‖X‖4
2

‖X‖4
4

)
and substituting in equation 33, we have:

Pr
{

d∑
i=1

Qiix
2
i >

k

d
ε‖X‖2

2

}
≤ exp

[
− k‖X‖4

4
(d− k)‖X‖4

2

[(
1 + ε‖X‖4

2
‖X‖4

4

)
log
(

1 + ε‖X‖4
2

‖X‖4
4

)
− ε‖X‖4

2
‖X‖4

4

]]
= exp

[
− k‖X‖4

4
(d− k)‖X‖4

2
φ

(
ε‖X‖4

2
‖X‖4

4

)]
(4)

Where φ(x) = (1 + x)log(1 + x)− x

Substituting using φ(x) = (1 + x)log(1 + x)− x > x2

2+ 2
3x

in equation 44, we have:

Pr
{

d∑
i=1

Qiix
2
i >

k

d
ε‖X‖22

}
≤ exp

− k‖X‖44
(d− k)‖X‖42

ε2‖X‖82
‖X‖84

1
2 + 2ε‖X‖4

2
3‖X‖4

4


= exp

− kε2‖X‖42
2(d− k)

(
‖X‖44 + 1

3ε‖X‖
4
2

)


≤ exp
[
− kε2‖X‖42

4dmax(‖X‖44, ε3‖X‖
4
2)

]
=: δ
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Substituting Qii with −Qii gives the lower bound in a similar fashion, with the

same failure probability δ. Choosing c′2 > 8d‖X‖44
‖X‖42

. The proof is complete using the

condition on the theorem and union bounding to give:

Pr
{∣∣∣∣‖X‖22 − d

k
‖PX‖22

∣∣∣∣ ≥ ε‖X‖22} ≤ 2 exp
(
−2kε2

c′2

)
�

207



B
Regularity Constants for Some

Distributions

We first note that ‖X‖44 =
∑d
i=1 x

4
i and ‖X‖22 =

∑d
i=1 x

2
i . With this, we can estimate

the “contributions” to the `4 and `2 norms of each of the xi by calculating the

expected values of E[x4
i ] and E[x2

i ] respectively. Note that E[x4
i ] is the non-central

fourth norm (kurtosis) and E[x2
i ] is the non-central second norm (variance + mean2),

and these values are known for many distributions. Some distributions are unbounded,

giving an unbounded ‖X‖2∞. In these cases, we set ‖xi‖∞ to the mean plus 4 times

the standard deviation x̄i + 4σ(xi). For ease of calculations, we normalized xi to

have E[x2
i ] = 1.

Distribution E[‖x2
i ‖∞] E[x4

i ]
Normal with mean 0, variance 1 16 3
Scaled Bernoulli 1

p
1
p

Scaled Rademacher 1 1
Scaled Chi Squared k=1 49

3 + 8√
3

105
9

Continuous uniform distribution (0,
√

3) 3 9/5
Continuous uniform distribution (−

√
3,
√

3) 3 9/5
Poisson ∼ 3.77 3

2(1 +
√

5)
Triangular Distribution (

√
6, 0,
√

6) 6 12
5

Table B.1: Estimated E[‖x2
i ‖∞] & E[x4

i ] for commonly used distributions
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C
Householder Transforms

C.1 Densification Algorithm

Let v be a ‘dense’ vector (i.e. v = 1√
d
(±1, . . . ,±1)). We will give an algorithm

to find H = Id − 2nnT such that Hx = v.

Let v = Hx. Observe that v = x− 2nnTx = x− 2n cosβ. Observe also that

nTx = cosβ = sin(α/2) as shown in figure C.1C.1. Using the half angle formula for sin,

this implies that nTx =
√

1−cosα
2 =

√
1−xT v

2 . Therefore,

v =x− 2n

√
1− xTv

2

=⇒ n = x− v√
2(1− xTv)

Note that the algorithm can also be used to reflect x to any arbitrary vector v.

β
α/2

α/2

n

x

Hx

Figure C.1: The hyperplane of reflection and the relationship between the angles

between the normal vector to the hyperplane, the ‘reflected’ vector, the ‘original’

vector and the hyperplane
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d← dimensionality of the vector

Normalize x← x
‖x‖

Randomly generate v

vi :=


1√
d

w.p 1
2

− 1√
d

w.p 1
2

Let c←
√

2(1− x′Tv), if c = 0, regenerate v

for i← 1 to d do

- Let ni ←
x′i−vi
c

end for

Normalize n← n
‖n‖

Algorithm C.1: Densification Algorithm using Householder Transform.

C.2 Orthogonal Vector Generation

In the following, we want to generate d− 1 mutually orthogonal vectors to vector

x. This algorithm can be used to generate an orthogonal basis vectors such that x is

one of the orthogonal basis vectors.

Observe that reflection preserve the angular separation in vectors, as shown in

lemma 5.85.8. Therefore, a Householder’s transform of an orthogonal basis (i.e. the

usual basis) results in another orthogonal basis. Choose v = e(1). We then find the

Householder transform, that reflects Hx = v using algorithm C.1C.1. Observe that the

columns of (HI)T = HT is an orthogonal basis, with x the first column.

C.3 Orthogonalization

Householder transforms can also be used for triangularization and orthogonaliza-

tion of matrices. The advantage of using Householder Transforms for orthogonal-

ization over traditional methods of orthogonalization such as Gram-Schmidt is that

using Householder transforms for orthogonalization gives better orthogonality (i.e.

QTQ u I ).
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The following algorithm is taken from StewartStewart (19981998), and the Matlab implemen-

tation of this algorithm is provided by MolerMoler (20162016).

v ← e(1)

for k ← 1 to min(p, q) do

- x←Xk:n,k

- mRk,k ← ‖x‖,

- Normalize x← x
‖x‖ .

- Find n using algorithm C.1C.1 such that Hx = v

- Uk:p,k ← nk:p

- w ← nTk,pXk:p,k+1:q

- Update Xk:p,k+1:q ←Xk:p,k+q:q − nk:pw

- Update Rk,k+1:q ←Xk,k+1:q

end for

Algorithm C.2: Orthogonalization Algorithm using Householder Transform taken

from StewartStewart (19981998)
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D
Additional Figures and Tables

D.1 Appendix to Chapter 55
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Theorem Probability Bounds

Flipping probability for Gaussian Vectors, Sparsity d/s =

10

Figure D.1: Flipping probability vs angular separation for two Gaussian vec-

tors, with sparsity s = 10 for projection dimension k ∈ {1, 5, 10, 20, 50, 100} and

dimensionality d = 1000.
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Flipping probability for Binary And Gaussian Vector,

Sparsity d/s = 1

Figure D.2: Flipping probability vs angular separation for a Binary vector and a

Gaussian vector, with sparsity s = 1 for projection dimension k ∈ {1, 5, 10, 20, 50, 100}

and dimensionality d = 1000.
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Flipping probability for Binary And Gaussian Vector,

Sparsity d/s = 2

Figure D.3: Flipping probability vs angular separation for a Binary vector and a

Gaussian vector, with sparsity s = 2 for projection dimension k ∈ {1, 5, 10, 20, 50, 100}

and dimensionality d = 1000.
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Sparsity d/s = 5

Figure D.4: Flipping probability vs angular separation for a Binary vector and a

Gaussian vector, with sparsity s = 5 for projection dimension k ∈ {1, 5, 10, 20, 50, 100}

and dimensionality d = 1000.

215



0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=1

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=5

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=10

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=20

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=50

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=100

Gaussian Random Projection

Random Subspace

Random Subspace + Householder Transformation

Theorem Probability Bounds

Flipping probability for Binary And Gaussian Vector,

Sparsity d/s = 10

Figure D.5: Flipping probability vs angular separation for a Binary vector

and a Gaussian vector, with sparsity s = 10 for projection dimension k ∈

{1, 5, 10, 20, 50, 100} and dimensionality d = 1000.
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d/s = 10

Figure D.6: Flipping probability vs angular separation for two Binary Vector such

that the two vectors coincide in every coordinate with sparsity s = 10 for projection

dimension k ∈ {1, 5, 10, 20, 50, 100} and dimensionality d = 1000.
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d/s = 1, q = 0.5

Figure D.7: Flipping probability vs angular separation for two Binary Vector such

that the coincidence in every coordinate is 1/2 with sparsity s = 1 for projection

dimension k ∈ {1, 5, 10, 20, 50, 100} and dimensionality d = 1000.

218



0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=1

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=5

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=10

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=20

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=50

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=100

Gaussian Random Projection

Random Subspace

Random Subspace + Householder Transformation

Theorem Probability Bounds

Flipping probability for Scaled Binary Vectors, Sparsity

d/s = 2, q = 0.5

Figure D.8: Flipping probability vs angular separation for two Binary Vector such

that the coincidence in every coordinate is 1/2 with sparsity s = 2 for projection

dimension k ∈ {1, 5, 10, 20, 50, 100} and dimensionality d = 1000.
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Figure D.9: Flipping probability vs angular separation for two Binary Vector such

that the coincidence in every coordinate is 1/2 with sparsity s = 5 for projection

dimension k ∈ {1, 5, 10, 20, 50, 100} and dimensionality d = 1000.
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Figure D.10: Flipping probability vs angular separation for two Binary Vector such

that the coincidence in every coordinate is 1/2 with sparsity s = 10 for projection

dimension k ∈ {1, 5, 10, 20, 50, 100} and dimensionality d = 1000.

221



0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=1

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=5

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=10

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=20

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=50

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=100

Gaussian Random Projection

Random Subspace

Random Subspace + Householder Transformation

Theorem Probability Bounds

Flipping probability for Scaled Binary Vectors, Sparsity

d/s = 1, q = 0.7

Figure D.11: Flipping probability vs angular separation for two Binary Vector

such that the coincidence in every coordinate is 2/3 with sparsity s = 1 for projection

dimension k ∈ {1, 5, 10, 20, 50, 100} and dimensionality d = 1000.
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Figure D.12: Flipping probability vs angular separation for two Binary Vector

such that the coincidence in every coordinate is 2/3 with sparsity s = 2 for projection

dimension k ∈ {1, 5, 10, 20, 50, 100} and dimensionality d = 1000.
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Figure D.13: Flipping probability vs angular separation for two Binary Vector

such that the coincidence in every coordinate is 2/3 with sparsity s = 5 for projection

dimension k ∈ {1, 5, 10, 20, 50, 100} and dimensionality d = 1000.

224



0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=1

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=5

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=10

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=20

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=50

0 0.2 0.4 0.6 0.8 1

/  (rads)

0

0.2

0.4

0.6

0.8

1

F
lip

p
in

g
 P

ro
b

a
b

ili
ty

Subspace=100

Gaussian Random Projection

Random Subspace

Random Subspace + Householder Transformation

Theorem Probability Bounds

Flipping probability for Scaled Binary Vectors, Sparsity

d/s = 10, q = 0.7

Figure D.14: Flipping probability vs angular separation for two Binary Vector such

that the coincidence in every coordinate is 2/3 with sparsity s = 10 for projection

dimension k ∈ {1, 5, 10, 20, 50, 100} and dimensionality d = 1000.
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Figure D.15: Flipping probability vs angular separation for two Binary Vector

such that the two vectors do not coincidence in every coordinate with sparsity s = 10

for projection dimension k ∈ {1, 5, 10, 20, 50, 100} and dimensionality d = 1000.
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D.2 Appendix to Chapter 66
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Figure D.16: Ensemble classification accuracy vs ensemble member size for varying

training size and mislabelling proportion, with feature noise s = 4, difficulty θ = 85

and projection dimensions k = 10 and dimensionality d = 1000
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Figure D.17: Ensemble classification accuracy vs ensemble member size for varying

training size and feature noise, with mislabelling proportion q = 0.05, difficulty θ = 85

and projection dimensions k = 10 and dimensionality d = 1000

k=10
theta n N=50 N=100 N=150 N=250

80

150 99.4/99.5 100.0/100.0 100.0/100.0 100.0/100.0
500 99.8/99.8 100.0/100.0 100.0/100.0 100.0/100.0
2000 99.8/99.9 100.0/100.0 100.0/100.0 100.0/100.0

85

150 84.7/84.6 91.3/91.4 94.4/94.3 96.9/96.9
500 90.6/90.3 96.2/96.2 98.3/98.3 99.5/99.5
2000 92.7/92.7 97.8/97.9 99.3/99.3 99.9/99.9

87.5

150 63.0/62.5 66.4/66.1 68.1/68.1 70.3/70.5
500 68.7/68.8 74.1/74.2 77.3/77.4 81.0/81.0
2000 74.6/74.5 81.8/81.7 85.9/85.9 90.6/90.7

Table D.1: Comparison between the empirical majority vote ensemble accuracy

(left) and our model (right) for data with no irrelevant features s = 1,and k = 10.

Observe that the values are within 1% of the model.
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Figure D.18: Ensemble classification accuracy vs ensemble member size for varying

training size and difficulty, with mislabelling proportion q = 0.05, feature noise s = 4

and projection dimensions k = 10 and dimensionality d = 1000

k=50
theta n N=50 N=100 N=150 N=250

80

150 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0
500 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0
2000 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0

85

150 96.0/96.1 98.5/98.5 99.1/99.1 99.5/99.5
500 99.6/99.6 100.0/100.0 100.0/100.0 100.0/100.0
2000 99.9/99.9 100.0/100.0 100.0/100.0 100.0/100.0

87.5

150 70.0/70.0 72.9/73.1 74.6/74.4 75.5/75.7
500 82.4/82.0 86.1/86.1 87.6/87.9 89.4/89.4
2000 91.1/91.3 95.8/95.8 97.4/97.4 98.5/98.5

Table D.2: Comparison between the empirical majority vote ensemble accuracy

(left) and our model (right) for data with no irrelevant features s = 1, and k = 50.

Observe that the values are within 1% of the model.
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Figure D.19: Ensemble classification accuracy vs ensemble member size for varying

training size and projection dimensions, with mislabelling proportion q = 0.05, feature

noise s = 4 and difficulty θ = 85 and dimensionality d = 1000

k=2
theta n N=50 N=100 N=150 N=250

80

150 74.7/75.0 82.7/82.5 87.0/86.9 91.9/91.7
500 75.1/75.8 83.1/83.4 87.7/87.8 92.5/92.6
2000 75.8/75.5 82.8/83.0 87.5/87.3 92.1/92.1

85

150 61.6/61.9 66.5/66.3 69.4/69.2 73.1/73.2
500 62.6/63.3 67.6/68.2 71.2/71.4 75.8/75.8
2000 63.4/63.5 68.3/68.3 71.4/71.6 76.0/76.0

87.5

150 54.4/54.5 56.3/56.2 57.3/57.4 59.1/59.1
500 55.0/55.5 57.3/57.6 59.0/59.0 60.9/61.1
2000 57.7/57.2 59.9/59.9 61.8/61.8 64.4/64.5

Table D.3: Comparison between the empirical majority vote ensemble accuracy

(left) and our model (right) for data with moderate s = 4 and k = 2. Observe that

the values are within 1% of the model.
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Figure D.20: Ensemble classification accuracy vs ensemble member size for varying

mislabelling proportion and feature noise, with training size n = 500, difficulty θ = 85

and projection dimensions k = 10 and dimensionality d = 1000

k=10
theta n N=50 N=100 N=150 N=250

80

150 98.2/98.4 99.8/99.8 100.0/100.0 100.0/100.0
500 98.8/99.0 99.9/99.9 100.0/100.0 100.0/100.0
2000 99.4/99.3 100.0/100.0 100.0/100.0 100.0/100.0

85

150 81.1/81.3 87.8/88.0 91.4/91.3 94.4/94.4
500 86.0/86.6 93.1/93.2 95.8/96.0 98.1/98.1
2000 88.4/88.8 95.2/95.2 97.6/97.5 99.1/99.1

87.5

150 61.4/61.5 64.8/64.8 66.8/66.7 68.9/68.9
500 66.7/66.4 71.1/71.1 73.9/73.9 77.0/77.1
2000 71.5/71.2 77.7/77.4 80.9/81.0 85.2/85.2

Table D.4: Comparison between the empirical majority vote ensemble accuracy

(left) and our model (right) for data with moderate s = 4 and k = 10. Observe that

the values are within 1% of the model.
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Figure D.21: Ensemble classification accuracy vs ensemble member size for varying

mislabelling proportion and difficulty, with training size n = 500, feature noise s = 4

and projection dimensions k = 10 and dimensionality d = 1000

k=50
theta n N=50 N=100 N=150 N=250

80

150 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0
500 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0
2000 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0

85

150 95.7/95.5 98.2/98.1 98.9/98.8 99.4/99.3
500 99.3/99.4 99.9/99.9 100.0/100.0 100.0/100.0
2000 99.9/99.9 100.0/100.0 100.0/100.0 100.0/100.0

87.5

150 69.3/69.5 72.2/72.5 73.9/73.8 75.1/75.1
500 80.7/80.9 85.0/85.0 86.8/86.7 88.3/88.2
2000 90.4/90.5 95.1/95.0 96.7/96.7 98.0/98.0

Table D.5: Comparison between the empirical majority vote ensemble accuracy

(left) and our model (right) for data with moderate s = 4 and k = 50. Observe that

the values are within 1% of the model.
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Figure D.22: Ensemble classification accuracy vs ensemble member size for varying

mislabelling proportion and projection dimensions, with training size n = 500, feature

noise s = 4 and difficulty θ = 85 and dimensionality d = 1000

k=10
theta n N=50 N=100 N=150 N=250

80

150 94.5/94.2 98.0/98.1 99.1/99.1 99.7/99.7
500 94.9/95.0 98.4/98.5 99.3/99.4 99.8/99.8
2000 95.1/95.4 98.5/98.7 99.6/99.5 99.9/99.9

85

150 77.1/76.5 83.9/82.8 86.5/86.1 89.5/89.5
500 79.0/79.6 87.1/86.2 90.2/89.5 92.7/92.7
2000 81.7/81.5 88.4/88.3 91.6/91.5 94.7/94.6

87.5

150 60.5/60.5 63.5/63.4 65.0/65.1 67.1/67.1
500 64.0/64.2 67.5/68.3 70.3/70.6 73.4/73.4
2000 66.7/66.9 71.5/71.8 74.9/74.6 77.8/77.9

Table D.6: Comparison between the empirical majority vote ensemble accuracy

(left) and our model (right) for data with high s = 10 and k = 10. Observe that the

values are within 1% of the model.
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Figure D.23: Ensemble classification accuracy vs ensemble member size for varying

feature noise and difficulty, with training size n = 500, mislabelling proportion

q = 0.05 and projection dimensions k = 10 and dimensionality d = 1000

k=50
theta n N=50 N=100 N=150 N=250

80

150 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0
500 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0
2000 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0

85

150 94.4/94.5 97.3/97.4 98.2/98.3 98.9/98.9
500 98.8/98.7 99.8/99.7 99.9/99.9 100.0/100.0
2000 99.5/99.6 100.0/100.0 100.0/100.0 100.0/100.0

87.5

150 69.2/69.1 72.1/72.0 73.2/73.3 74.6/74.5
500 79.6/79.8 83.6/83.7 85.6/85.4 86.9/86.9
2000 87.5/88.4 92.5/93.0 94.6/94.8 96.3/96.3

Table D.7: Comparison between the empirical majority vote ensemble accuracy

(left) and our model (right) for data with high s = 10 and k = 50. Observe that the

values are within 1% of the model.
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Figure D.24: Ensemble classification accuracy vs ensemble member size for varying

feature noise and projection dimensions, with training size n = 500, mislabelling

proportion q = 0.05 and difficulty θ = 85 and dimensionality d = 1000

235



50 100 150 200 250

Ensemble Size

0.5

0.6

0.7

0.8

0.9

1

E
n

s
e

m
b

le
 A

c
c
u

ra
c
y

Subspace Count=2

=
8
0

50 100 150 200 250

Ensemble Size

0.5

0.6

0.7

0.8

0.9

1

E
n

s
e

m
b

le
 A

c
c
u

ra
c
y

Subspace Count=10

50 100 150 200 250

Ensemble Size

0.5

0.6

0.7

0.8

0.9

1

E
n

s
e

m
b

le
 A

c
c
u

ra
c
y

Subspace Count=50

50 100 150 200 250

Ensemble Size

0.5

0.6

0.7

0.8

0.9

1

E
n

s
e

m
b

le
 A

c
c
u

ra
c
y

=
8
5

50 100 150 200 250

Ensemble Size

0.5

0.6

0.7

0.8

0.9

1

E
n

s
e

m
b

le
 A

c
c
u

ra
c
y

50 100 150 200 250

Ensemble Size

0.5

0.6

0.7

0.8

0.9

1
E

n
s
e

m
b

le
 A

c
c
u

ra
c
y

50 100 150 200 250

Ensemble Size

0.5

0.6

0.7

0.8

0.9

1

E
n

s
e

m
b

le
 A

c
c
u

ra
c
y

=
8
7
.5

50 100 150 200 250

Ensemble Size

0.5

0.6

0.7

0.8

0.9

1

E
n

s
e

m
b

le
 A

c
c
u

ra
c
y

50 100 150 200 250

Ensemble Size

0.5

0.6

0.7

0.8

0.9

1

E
n

s
e

m
b

le
 A

c
c
u

ra
c
y

Empirical Majority Vote

Empirical (soft vote)

Weighted Majority Vote

Weighted soft vote

Base Classifier Accuracy

Ensemble Accuracy vs Ensemble Size for Training Size=500,

Mislabel Prop=0.05, Feature Noise=4

Figure D.25: Ensemble classification accuracy vs ensemble member size for vary-

ing difficulty and projection dimensions, with training size n = 500, mislabelling

proportion q = 0.05 and feature noise s = 4 and dimensionality d = 1000
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Figure D.26: Majority vote ensemble accuracy as modelled by a Polya-Eggenberger

distribution vs ensemble member size for varying training size and mislabelling

proportion, with feature noise s = 4, difficulty θ = 85 and projection dimensions

k = 10 and dimensionality d = 1000
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Figure D.27: Majority vote ensemble accuracy as modelled by a Polya-Eggenberger

distribution vs ensemble member size for varying training size and feature noise, with

mislabelling proportion q = 0.05, difficulty θ = 85 and projection dimensions k = 10

and dimensionality d = 1000
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Figure D.28: Majority vote ensemble accuracy as modelled by a Polya-Eggenberger

distribution vs ensemble member size for varying training size and difficulty, with

mislabelling proportion q = 0.05, feature noise s = 4 and projection dimensions

k = 10 and dimensionality d = 1000
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Figure D.29: Majority vote ensemble accuracy as modelled by a Polya-Eggenberger

distribution vs ensemble member size for varying training size and projection dimen-

sions, with mislabelling proportion q = 0.05, feature noise s = 4 and difficulty θ = 85

and dimensionality d = 1000
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Figure D.30: Majority vote ensemble accuracy as modelled by a Polya-Eggenberger

distribution vs ensemble member size for varying mislabelling proportion and feature

noise, with training size n = 500, difficulty θ = 85 and projection dimensions k = 10

and dimensionality d = 1000
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Figure D.31: Majority vote ensemble accuracy as modelled by a Polya-Eggenberger

distribution vs ensemble member size for varying mislabelling proportion and difficulty,

with training size n = 500, feature noise s = 4 and projection dimensions k = 10 and

dimensionality d = 1000
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Figure D.32: Majority vote ensemble accuracy as modelled by a Polya-Eggenberger

distribution vs ensemble member size for varying mislabelling proportion and projec-

tion dimensions, with training size n = 500, feature noise s = 4 and difficulty θ = 85

and dimensionality d = 1000
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Figure D.33: Majority vote ensemble accuracy as modelled by a Polya-Eggenberger

distribution vs ensemble member size for varying feature noise and difficulty, with

training size n = 500, mislabelling proportion q = 0.05 and projection dimensions

k = 10 and dimensionality d = 1000
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Figure D.34: Majority vote ensemble accuracy as modelled by a Polya-Eggenberger

distribution vs ensemble member size for varying feature noise and projection di-

mensions, with training size n = 500, mislabelling proportion q = 0.05 and difficulty

θ = 85 and dimensionality d = 1000
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Figure D.35: Majority vote ensemble accuracy as modelled by a Polya-Eggenberger

distribution vs ensemble member size for varying difficulty and projection dimensions,

with training size n = 500, mislabelling proportion q = 0.05 and feature noise s = 4

and dimensionality d = 1000
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D.3 Appendix to Chapter 77
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Figure D.36: ResNet-50 classification of “gradient-based” adversarial attacks on

the original form (left), and PseudoSaccade form (right). Image in the centre column

is a visual representation of the adversarial attack. Observe that classification is very

robust on the PseudoSaccades forms, returning a high confidence prediction on the

true label.
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PointwiseAttack Resnet-50

Border collie (0.3052)

50 100 150 200

50

100

150

200

Non-random

Peturbation

50 100 150 200

50

100

150

200

Saccade View Resnet-50

giant panda (0.9744)

50 100 150 200

50

100

150

200

SaltAndPepperNoiseAttack Resnet-50

Border collie (0.2611)

50 100 150 200

50

100

150

200

Non-random

Peturbation

50 100 150 200

50

100

150

200

Saccade View Resnet-50

Border collie (0.2415)

50 100 150 200

50

100

150

200

Figure D.37: ResNet-50 classification of “pixel-based” adversarial attacks on the

original form (left), and PseudoSaccade form (right). Image in the centre column

is a visual representation of the adversarial attack. Observe that classification is

somewhat robust on the PseudoSaccades forms, returning the moderate confidence

predictions on the true label.
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Figure D.38: ResNet-50 classification of “contrast-based” adversarial attacks on

the original form (left), and PseudoSaccade form (right). Image in the centre column

is a visual representation of the adversarial attack. Observe that classification is

not robust on the PseudoSaccades forms, returning an incorrect or low confidence

predictions on the true label.
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Figure D.39: ResNet-50 classification of “gradient-based” adversarial attacks on

the original form (left), and PseudoSaccade form (right). Image in the centre column

is a visual representation of the adversarial attack. Observe that classification is very

robust on the PseudoSaccades forms, returning a high confidence prediction on the

true label.
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Figure D.40: ResNet-50 classification of “pixel-based” adversarial attacks on the

original form (left), and PseudoSaccade form (right). Image in the centre column

is a visual representation of the adversarial attack. Observe that classification is

somewhat robust on the PseudoSaccades forms, returning the moderate confidence

predictions on the true label.
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Figure D.41: ResNet-50 classification of “contrast-based” adversarial attacks on

the original form (left), and PseudoSaccade form (right). Image in the centre column

is a visual representation of the adversarial attack. Observe that classification is

not robust on the PseudoSaccades forms, returning an incorrect or low confidence

predictions on the true label.
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True Label Base Labels Saccade Labels Ensemble Labels

Cleaver
Cleaver (4)
Carpenter’s Kit (5)

Cleaver (3)
Carpenter’s Kit (5)

Cleaver (4)
Carpenter’s kit (5)

Spatula Spatula (3) Spatula (2) Spatula (2)

Sunscreen
Sunscreen (4)
lotion (5)

Sunscreen (3)
lotion (5)
packet (3)
ice lolly (3)

Sunscreen (3)
lotion (5)
packet (3)
ice lolly (4)

Tub
Tub (4)
bathtub (14)
washbasin (4)

Tub (4)
bathtub (15)
washbasin (3)

Tub (6)
bathtub (12)
washbasin (3)\

Velvet
Velvet (4)
purse (3)
wool (3)

Velvet (4)
purse (3)
wool (3)

Velvet (5)
wool (3)

Projectile
Projectile (5)
missile (15)

Projectile (3)
missile (16)

Projectile (5)
missile (16)

Screwdriver Screwdriver (6)
Screwdriver (4)
padlock (3)

Screwdriver (5)
padlock (3)

Hair Spray
Hair Spray (5)
nipple (3)
water bottle (3)

Hair Spray(6)
lotion (3)
soap dispenser (3)

Hair Spray (4)

Table D.8: Labels where AlexNet Imagenet classifier achieved ≤ 10% recall. Number

of instances for which the given label was returned by classifier in brackets. Note

that there are 50 instances for each of the classes. We omitted all predictions that

occurred two or less times therefore the sum of the instances does not total to 50.
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True Label Base Label Saccade Label Ensemble Label

Border terrier
Border terrier (21)
bloodhound (3)

Border terrier (24) Border terrier (27)

Ram
Ram (16)
bighorn sheep (16)

Ram (20)
bighorn sheep (10)
llama (3)

Ram (23)
bighorn sheep (12)

bikini
bikini (17)
maillot (7)
swimming trunks (3)

bikini (20)
maillot (3)
swimming trunks (3)
tub (3)

bikini (22)
maillot (3)
swimming trunks (3)

cardigan
cardigan (23)
suit (3)

cardigan (27)
stole (3)

cardigan (29)
stole (3)

harvester
harvester (25)
thresher (5)
tractor (6)

harvester (32)
thresher (3)
tractor (5)

harvester (30)
thresher (4)
tractor (5)

lawn mower
croquet ball (3)
go-kart (3)
lawn mower (29)

lawn mower (29)
croquet ball (3)

lawn mower (34)
croquet ball (3)

mitten
mitten (28)
Christmas stocking (3)
sock (3)

mitten (21)
Christmas stocking (3)

mitten (33)
Christmas stocking (3)

prison
prison (22)
shoji (3)

prison (26)
shoji (3)

prison (27)
shoji (3)

shopping cart shopping cart (24) shopping cart (27) shopping cart (31)
bell pepper bell pepper (32) bell pepper (36) bell pepper (37)

Table D.9: Labels where ensemble method performed significantly better (≥ 10%)

than the baseline AlexNet Imagenet classifier. Number of instances for which the

given label was returned by classifier in brackets. Note that there are 50 instances

for each of the classes. We omitted all predictions that occurred two or less times

therefore the sum of the instances does not total to 50.

True Label Base Label Saccade Label Ensemble Label

bighorn sheep
bighorn sheep (30)
ram (8)

bighorn sheep (26)
ram (12)

bighorn sheep (25)
ram (12)

hamper
hamper (29)
shopping basket (4)

hamper (25)
shopping basket (6)

hamper (24)
shopping basket (6)

Table D.10: Labels where ensemble method performed significantly worse (≥ 10%)

than the baseline AlexNet Imagenet classifier. Number of instances for which the

given label was returned by classifier in brackets. Note that there are 50 instances

for each of the classes. We omitted all predictions that occurred two or less times

therefore the sum of the instances does not total to 50.
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True Label Base Label Saccade Label Ensemble Label

CRT Screen

CRT screen (3)
desk (7)
desktop computer (7)
monitor(12)
television (7)

CRT screen (3)
desk (6)
desktop computer (6)
monitor (13)
television (7)

CRT screen (2)
desk (7)
desktop computer (7)
monitor (13)
television (7)

velvet

velvet (2)
purse (3)
studio couch (3)
wool (3)

velvet (2)
cardigan (3)

velvet (3)
cardigan (3)
studio couch (3)
wool (3)

Table D.11: Labels where GoogLeNet Imagenet classifier achieved ≤ 10% recall.

Number of instances for which the given label was returned by classifier in brackets.

Note that there are 50 instances for each of the classes. We omitted all predictions

that occurred two or less times therefore the sum of the instances does not total to 50.
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True Label Base Label Saccade Label Ensemble Label

water snake
water snake (20)
ringneck snake (4)

water snake (25)
sea snake (3)

water snake (26)
ringneck snake (3)

toy terrier

toy terrier (19)
Chihuahua (6)
miniature pinscher (8)
basenji (5)

toy terrier (22)
Chihuahua (7)
miniature pinscher (8)
basenji (4)

toy terrier (24)
Chihuahua (6)
miniature pinscher (8)
basenji (3)

wire-haired
fox terrier

wire-haired fox
terrier (25)
Lakeland terrier (14)

wire-haired fox
terrier (28)
Lakeland terrier (13)

wire-haired fox
terrier (30)
Lakeland terrier (12)

Bouvier des
Flandres

Bouvier des
Flandres (26)
giant schnauzer (4)

Bouvier des
Flandres (29)
giant schnauzer (5)

Bouvier des
Flandres (31)
giant schnauzer (4)

sea cucumber
sea cucumber (27)
sea slug (3)

sea cucumber (31)
sea cucumber (32)
sea slug (3)

mink mink (28) mink (33) mink (33)

marmoset
marmoset (37)
squirrel monkey (5)

marmoset (39)
squirrel monkey (4)

marmoset (42)
squirrel monkey (4)

barbershop

barbershop (11)
bakery (5)
barber chair (4)
restaurant (4)
tobacco shop (7)

barbershop (15)
bakery (3)
barber chair (3)
restaurant (4)
tobacco shop (7)

barbershop (16)
bakery (3)
barber chair (3)
restaurant (4)
tobacco shop (6)

stone wall stone wall (31) stone wall (33) stone wall (36)

Table D.12: Labels where ensemble method performed significantly better (≥ 10%)

than the baseline GoogLeNet Imagenet classifier. Number of instances for which the

given label was returned by classifier in brackets. Note that there are 50 instances

for each of the classes. We omitted all predictions that occurred two or less times

therefore the sum of the instances does not total to 50.
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True Label Base Label Saccade Label Ensemble Label

polecat

polecat (24)
weasel (4)
mink (4)
ferret (14)

polecat (20)
weasel (5)
mink (5)
ferret (15)

polecat (19)
weasel (4)
mink (6)
ferret (15)

bathtub
bathtub (20)
tub (14)

bathtub (20)
tub (13)

bathtub (15)
tub (15)

bow bow (29) bow (26) bow (24)

computer
mouse

computer
mouse (20)
computer keyboard (3)
desktop computer (8)

computer
mouse (16)
computer keyboard (4)
desktop computer (8)

computer
mouse (13)
computer keyboard (3)
desktop computer (8)
notebook computer (3)

Table D.13: Labels where ensemble method performed significantly worse (≥ 10%)

than the baseline GoogLeNet Imagenet classifier. Number of instances for which the

given label was returned by classifier in brackets. Note that there are 50 instances

for each of the classes. We omitted all predictions that occurred two or less times

therefore the sum of the instances does not total to 50.
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True Label Base Label Saccade Label Ensemble Label

tiger cat

tiger cat (8)
tabby cat (17)
Egyptian cat (5)
tiger (11)

tiger cat (7)
tabby cat (15)
Egyptian cat (7)
tiger (12)

tiger cat (6)
tabby cat (17)
Egyptian cat (4)
tiger (11)

laptop
computer

laptop
computer (10)
desktop computer (3)
notebook
computer (29)

laptop
computer (13)
notebook
computer (27)

laptop
computer (13)
desktop computer (3)
notebook
computer (26)

overskirt

overskirt (9)
apron (3)
gown (3)
hoopskirt (6)

overskirt (8)
apron (3)
gown (4)
hoopskirt (6)

overskirt (10)
apron (3)
gown (3)
hoopskirt (6)

CRT screen

CRT screen (6)
desk (4)
desktop computer (7)
monitor (8)
television (11)

CRT screen (5)
desk (5)
desktop computer (7)
monitor (7)
television (11)

CRT screen (5)
desk (6)
desktop computer (8)
monitor (7)
television (10)

sunglass
sunglass (10)
seat belt (3)
sunglasses (15)

sunglass (10)
sunglasses (13)

sunglass (11)
sunglasses (11)

velvet
velvet (9)
purse (4)

velvet (5)
velvet (8)
quilt (3)

Windsor tie

windsor tie (9)
lab coat (3)
suit (11)
groom (4)

windsor tie (9)
lab coat (4)
suit (13)
groom (3)

windsor tie (8)
lab coat (4)
suit (12)

Table D.14: Labels where ResNet-50 Imagenet classifier achieved ≤ 20% recall.

Number of instances for which the given label was returned by classifier in brackets.

Note that there are 50 instances for each of the classes. We omitted all predictions

that occurred two or less times therefore the sum of the instances does not total to 50.
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True Label Base Label Saccade Label Ensemble Label

wolf spider
wolf spider (35)
barn spider (4)

wolf spider (38) wolf spider (40)

German short-
haired pointer

German short-
haired pointer (36)
Great Dane (3)

German short-
haired pointer (34)
Hungarian Pointer (3)

German short-
haired pointer (41)

diaper diaper (29) diaper (32) diaper (36)

tub
tub (12)
bathtub (29)

tub (15)
bathtub (27)

tub (17)
bathtub (25)

book jacket
book jacket (25)
packet (4)
comic book (11)

book jacket (28)
packet (3)
comic book (8)

book jacket (30)
packet (5)
comic book (6)

Table D.15: Labels where ensemble method performed significantly better (≥ 10%)

than the baseline ResNet-50 Imagenet classifier. Number of instances for which the

given label was returned by classifier in brackets. Note that there are 50 instances

for each of the classes. We omitted all predictions that occurred two or less times

therefore the sum of the instances does not total to 50.
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True Label Base Label Saccade Label Ensemble Label

electric ray
electric ray (35)
stingray (4)

electric ray (32)
stingray (4)

electric ray (30)
stingray (5)

Siberian husky

Siberian
husky (31)
Eskimo dog (9)
malamute (6)

Siberian
husky (27)
Eskimo dog (12)
malamute (6)

Siberian
husky (25)
Eskimo dog (12)
malamute (6)

bannister
bannister (32)
coil (4)

bannister (25)
coil (4)
prison (4)

bannister (26)
coil (4)

hair spray
hair spray (23)
lotion (3)
web site (3)

hair spray (20)
lotion (5)
web site (3)

hair spray (18)
lotion (4)
web site (3)

joystick joystick (36)
joystick (30)
electrical switch (3)

joystick (31)

magnetic
compass

magnetic
compass (25)
analog clock (3)
barometer (7)

magnetic
compass (17)
analog clock (3)
barometer (7)
buckle (3)
stopwatch (4)

magnetic
compass (18)
analog clock (3)
barometer (7)
stopwatch (4)

computer
mouse

computer
mouse (23)
computer
keyboard (3)
desktop computer (7)
monitor (3)

computer
mouse (16)
computer
keyboard (4)
desktop
computer (8)

computer
mouse (16)
desk (4)
desktop
computer (9)

Petri dish Petri dish (30)
Petri dish (24)
jellyfish (3)

Petri dish (25)
jellyfish (3)

pitcher
pitcher (27)
teapot (3)
water jug (5)

pitcher (22)
goblet (3)
teapot (5)
vase (3)
water jug (4)

pitcher (22)
goblet (3)
teapot (3)
vase (3)
water jug (3)

spindle spindle (45) spindle (38)
spindle (38)
maraca (3)
wool (3)

stethoscope
stethoscope (30)
lab coat (5)

stethoscope (24)
lab coat (5)

stethoscope (25)
lab coat (6)

Table D.16: Labels where ensemble method performed significantly worse (≥ 10%)

than the baseline ResNet-50 Imagenet classifier. Number of instances for which the

given label was returned by classifier in brackets. Note that there are 50 instances

for each of the classes. We omitted all predictions that occurred two or less times

therefore the sum of the instances does not total to 50.
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