
Towards Trainable Synthesis for
Optimized Circuit Deployment on FPGA

Jean-Philippe Legault1, Panagiotis Patros1,2, and Kenneth B. Kent1

1 Faculty of Computer Science, University of New Brunswick, Fredericton, New Brunswick, Canada
Email: {jlegault, patros.panos, ken}@usc.edu

2 Department of Computer Science, University of Waikato, Hamilton, Waikato, New Zealand
Email: ppatros@waikato.ac.nz

Abstract—Field Programmable Gate Arrays (FPGAs) utilize
multiple programmable elements and non-programmable blocks.
After synthesizing an input Hardware Design Language (HDL)
design into a circuit, optimizations are used to discover a
satisfactory deployment on a target FPGA. HDLs’ compound
operations, such as addition, can be implemented in various
ways and thus, multiple but functionally equivalent circuits can
be synthesized. To leverage this, we propose a methodology
that first enables configurable synthesis of compound operations.
Second, it trains the system using a set of HDL files and
architectures to optimize target performance objectives, such as
critical path length and power. We prototyped our technique in
the open source Verilog-To-Routing (VTR) tool. We subsequently
produced two configuration files targeting different deployment
objectives; experimental results with the VTR Verilog bench-
marks revealed significant improvements.

Index Terms—FPGA, HDL, compound arithmetic operators,
reconfigurable synthesis, Verilog-To-Routing

I. INTRODUCTION

An FPGA is an integrated circuit that can be programmed
to emulate other circuits. FPGAs interface through pro-
grammable interconnect pins and maintain a large number
of programmable logic blocks and programmable routing
elements. Hard blocks that execute specific functions, such
as multipliers and memories, are also embedded within the
FPGA fabric for improved performance.

FPGAs are programmed using an HDL. Afterwards, an
FPGA Computer Aided Design (CAD) flow is used to syn-
thesize and optimize the design before packing, placing and
routing it. A bitstream containing the instructions of the
programmable elements can be delivered to be flashed onto
the FPGA (Figure 1).

FPGA CAD synthesis modules can map an HDL operation
to a hard-block or synthesize it into soft-logic. Furthermore,
CAD tools have to select a design when synthesizing com-
pound HDL operations, such as addition, multiplication and
division. For example, the addition operation can be imple-
mented with a ripple carry adder, or a carry select adder, or
even, a hard adder available on the target FPGA architecture.
However, a blanket, “fits-all” solution might not be ideal for
specific circuits and/or architectures. Furthermore, it might
be more beneficial, depending on the target design goals

HDL
File

Synthesis Optimization

PlacementPacking Routing

FPGA
Architecture

File

Bitstream
Generation

001010110101

Fig. 1. FPGA CAD Flow

(e.g., space time tradeoffs), to split the implementation of
a compound operation into a variety of sub-implementations
and/or map it to one or multiple hard blocks. Overall, in this
paper, we make the following contributions:

• We highlight the differences between simple and com-
pound HDL operations.

• We propose a configurable and trainable synthesis tech-
nique that leverages the open-ended specifications of
compound HDL operations.

• We formalize the problem of selecting a satisfactory
compound synthesis configuration based on performance
metrics (e.g., critical path length and FPGA utilization)
as an optimization problem that can be efficiently solved
by existing techniques, such as hill climbing.

• We implement a prototype of our technique on the open
source Verilog-To-Routing (VTR) FPGA CAD toolchain.

• We evaluate our technique using five search sets targeting
different performance metrics. Measurements revealed
significant performance improvements.

II. BACKGROUND

Verilog is an HDL used to design, model and validate
electronic systems [1]. Verilog-to-Routing (VTR) is set of
CAD tools that perform synthesis, optimization, verification,978-1-5386-7557-1/18/$31.00 c�2018 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Commons@Waikato

https://core.ac.uk/display/287785078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

packing, placement and routing of circuits on customized
FPGA architectures. They take as an input a Verilog file and
an architecture description file; the final output is comprised
of a routed, packed and placed netlist for the given circuit, in
addition to a number of performance metrics, such as FPGA
utilization, power requirements and critical path length [2].

The first tool in the VTR flow is Odin II, which is respon-
sible for compiling/synthesizing the input Verilog file into a
netlist. Odin II takes into consideration the target FPGA archi-
tecture and aims to map Verilog operations onto hard blocks
before converting the rest as soft logic [3]. The netlist output
of Odin II is then handed off to ABC, which is responsible
for logic reduction, replacement and optimization. Finally, the
resulting circuit is passed to the Versatile Placement Routing
(VPR) tool, which is responsible for packing, placing and
routing the circuit onto the target architecture as well as
reporting the final performance metrics [4].

III. RELATED WORK

Design space exploration is utilized in embedded systems to
discover the best solution out of a number of alternatives such
as the number of processors and the type of the interconnection
network [5]. Instead, we propose an efficient methodology for
first enabling design space configuration of compound HDL
operators and second, trainable design space exploration per
FPGA circuit and custom architecture based on user-defined
weights for performance metrics.

Compound HDL operations could be replaced with simple
operations to unambiguously designate a desired implementa-
tion per FPGA. However, defining each compound operation
as a discrete design is error-prone, inconvenient and would
require maintaining multiple iterations of the same circuit.
Instead, we propose that HDL files remain intact and that con-
figuration files instruct the layout of compound operations [6].

Netlist optimizers, such as ABC, perform various opera-
tions that can improve the sequential performance and size
of a design via redundant logic removal and grouping [7].
Nevertheless, optimizations at this stage do not leverage the
actual HDL code nor do they offer circuit parallelism.

HDL synthesizers, such as Odin II, have been used in
various research projects that aimed in producing or fa-
cilitating optimized designs such as: netlist and hard-block
reductions [8] and reset subcircuit elision [9]. We expand Odin
II to synthesize heterogeneous sub-structures of compound
HDL operations via targeted search.

In this work, we prototype our technique focusing on the
adder compound operator. Luu et al. explored using hardened
adders in VTR to improve efficiency of arithmetic opera-
tions as they are a rather small and prevalent circuit [10].
In that work, the authors measured an overall performance
improvement of 15%. That study outlined that improved logic
synthesis should result in higher gains and it is one of the
driving factors of our work. The baseline the authors used is a
soft-logic ripple carry adder and an optimized baseline should
be an interesting comparison. Additionally, the authors used
a “fits all” approach to place their adder hard-blocks. Thus,

TABLE I
SIMPLE VS COMPOUND VERILOG OPERATORS

Operators Source Type
Concatenation {a, b} Simple
Replication {a, {b}} Simple

Arithmetic a+b, a-b, a*b, a/b,
a%b, a**b

Compound

Relational a>b, a>=b, a<b, a<=b Simple

Logical !a, a&&b, a||b, a!=b,
a==b, a!==b, a===b

Simple

Bitwise ∼a, a&b, a|b, aˆ∼b Simple

Reduction &a, ∼&a, |a, ∼|a, ˆa,
ˆ∼a Simple

Shifts a<<b, a<<<b, a>>b,
a>>>b

Simple if b const
Else, compound

Conditional a?b:c Simple
Vector a[b:c] Compound
Array [b:c]a Compound
Bit-select a[b] Simple

augmenting the technique to be tailored for specific circuits
can improve the performance. However, due to the large degree
of freedom in both the adder design and its context, embedding
this information within the synthesizer is impractical.

IV. CONFIGURABLE COMPOUND SYNTHESIS

To improve the circuits performance on FPGAs as well
as circumvent the limitations of traditional optimizers, we
implement a configurable synthesis methodology per implicit
logic subcircuit and bit width. The technique’s guidelines
are passed to the synthesizer in the form of a configuration
file—alongside the HDL file describing the circuit and the
architecture. Thus, the synthesis module can refer to the passed
configuration files to tailor the implementation of the circuit’s
compound components.

Our technique does not alter components that are explicitly
designed by the HDL file; instead, it utilizes the implementa-
tion freedom that implicitly declared compound components
provide. For instance, consider an HDL file with multiplication
(∗). The synthesis module decides the best way to implement
it: a series of additions organized in various types of trees;
multiple shifters and adders; or even use a hard block.

Nevertheless, the best synthesis option for each compound
operation varies on a number of parameters and goals as well
as the bit length of the to-be-synthesized component. Conse-
quently, a “fits-all”, general solution is unlikely to consistently
produce satisfactory results.

A. Simple vs Compound HDL Operations

Simple operations can be unambiguously synthesized into
soft logic. For example, negating a bit can be directly synthe-
sized with a NOT gate. Compound operations have no explicit
logic implementation defined in the language specifications.
For instance, an array can be synthesized as a set of various
types of flip-flops or be mapped to an available hard register on
the FPGA. Table I displays all Verilog operators and whether
we consider them simple or compound.

B. Configuration File Format

A configuration file passed to the CAD flow is a 2D
map describing implementation instructions in multiple lev-
els. First, per different type of implicit operation (addition,
multiplication, etc.) and second, per target bit-length of this
operation. Constructions can be either implemented in soft
logic or a hard block. Each construction is implemented for
a specific bit width; if this width is less than the target, the
complete construction is defined recursively using a dynamic
programming scheme. For example, an instruction for a 32-bit
adder could be creating a 24-bit ripple-carry adder and then,
looking up the remaining 8 bits recursively.

More formally, a compound operations configuration file is
defined as a set of lines, each formatted as follows:

<op> <m> s o f t | ha rd <c o n s t r > <n>

A valid operation “op” can be any of the defined compound
HDL operators, such as addition (+) and subtraction (−).
Each construction can be either soft logic (soft) or map
to a hard block (hard). A valid construction “constr” can
refer to any type of soft-logic implementation or hard block
for that operation (e.g., “carrySelect” or “carryChain” for
adders). Finally, two bit widths are also required: the target
bit width “m” of the operation and the bit width “n” of the
construction—a valid bit width is an integer greater than 0.

C. Configurable Compound Synthesis

Our compound-operator synthesis algorithm extends exist-
ing synthesis modules. A configuration file needs to be loaded
and the operation synthesis step has to be instrumented as
follows: The pair of the operation to be synthesized and its
bit width are looked up as a key in the file-map and, if not
found the default soft logic is synthesized. Otherwise, a triplet
of a type (soft or hard), a construction name and a bit width
are retrieved. First, if the mapping requires a specific soft-
logic, it is constructed and attached to the netlist. Second,
if the instruction requires a hard-block, it is attached to the
netlist, if there are sufficient hard blocks of this type and
length in the architecture. If not, again the default soft-logic is
synthesized. In both cases, the process is repeated recursively
until all outgoing wires have been connected to the netlist.
The specifics of our solution are elaborated in Algorithm 1.

D. Choosing Synthesis Configurations

The next step is selecting a proper configuration file, which
can be done in a variety of ways. For instance, a specific
file can be designed for a specific circuit (or circuit group),
or a specific FPGA architecture (or group) or a combination
thereof. In general, circuits synthesized with different con-
figurations will also have varying properties, such as FPGA
utilization and operating frequency; therefore, selecting an
ideal synthesis configuration becomes an optimization problem
with an objective function defined by the deployed circuit’s
metrics—which can be acquired via a CAD tool, such as VTR.

More formally, consider a set of FPGA architectures A, a
set of circuits C and a set of configuration synthesis files F . A

1 configurableCompoundSynth(
Data: A configuration file map L
Data: An operation op
Data: A set of incoming wires in
Data: A set of outgoing wires out with length m
Data: An FPGA architecture A

2)
3 begin
4 if m <= 0 then
5 return
6 end
7 if (op,m) /∈ L then
8 N ←−Default soft-logic for op,m
9 Attach N to in

10 Attach out[1 : m] to N
11 return
12 end
13 (logicType, constr, n) ←− L(op,m)
14 if logicType is soft then
15 N ←−Create soft logic for length n
16 Attach N to in
17 Attach out[1 : n] to N
18 Invoke configurableCompoundSynth for

in[1 + n : m]
19 return
20 end
21 if A.availableHardBlock(op, n) then
22 N ←− A.useHardBlock(op, n)
23 Attach N to in
24 Attach out[1 : n] to N
25 Invoke configurableCompoundSynth for

in[1 + n : m]
26 return
27 end
28 N ←−Default soft-logic for op,m
29 Attach N to in
30 Attach out[1 : m] to N
31 return
32 end

Algorithm 1: The Configurable Compound Synthesis Al-
gorithm

combination (a, c, f) ∈ A×C×F corresponds to the circuit c
synthesized with the configuration file f and deployed on the
FPGA a. Since each deployment is associated with a set of
performance metrics, an objective function f : A×C×F → R
can be defined. Therefore, an acceptable configuration file facc
is one whose aggregate objective function value is less than
or equal to a target threshold G:

Aggregate{f(a, c, facc), ∀a ∈ A, ∀c ∈ F} ≤ G (1)

The aggregate function in Equation 1 can be selected by
the user. For instance, it could be the arithmetic mean, the
geometric mean or a weighted mean. Consequently, if the
search space is small, exhaustive techniques suffice; otherwise,
more elaborate optimization algorithms, such as hill climbing
or linear programming, should be employed.

V. PROTOTYPE IMPLEMENTATION ON VTR

To gain insight on the feasibility and efficacy of our model,
we designed, implemented and open-sourced a prototype on
VTR. For brevity, only the addition (+) compound operator
was chosen since it is frequently used in increment-by-one
operations in behavioral loops as well as for multiplication,

division and subtraction. In addition, a dynamic-programming
compound-operation configuration search algorithm was de-
signed and implemented on VTR that greedily finds the best
synthesis instructions for a given set of goals, circuits and
FPGA architectures. Using these, five prototype configuration
files for adders were created by five search modes targeting
different performance goals.

A. Configurable Compound Synthesis in Odin II

We first extended VTR’s synthesizer, Odin II, to parse an
input configuration file. A C++ map was used to store each
combination of an operation and a target bit width to a struct
containing the instructions for this component—soft vs. hard,
design type and bit width.

Odin II preprocesses the input Verilog file performing
search-and-replace operations. Next, it parses it into an Ab-
stract Syntax Tree (AST), which is created by the context-free
rules of Verilog and represents the syntactical relations of the
Verilog file’s various elements. Third, it traverses the AST
and from it, builds a netlist, which is a graph representing the
circuit’s pins, wires and gates. Before Odin II exits, the netlist
is traversed to export the final output to a file.

Our configurable synthesis algorithm could be implemented
in any of the aforementioned stages of Odin II: The target
operator could be unfolded in the Verilog file by the prepro-
cessor, expanded at the AST level, or wired at the netlist level
or even, synthesized at the netlist level via a post-processor.
Nevertheless, Odin II perform various optimizations between
these stages; using Verilog code unfolding was discarded as
there would be loss of information preventing AST optimiza-
tions, such as arithmetic reduction.

Furthermore, AST node expansion was discarded because
of its increased complexity and lower maintainability. Imple-
menting configurable compound synthesis at the AST would
require two steps: first, subdividing the compound operator
using AST annotations according to the configuration file.
Second, building the defined circuitry inside the netlist, by
using these annotations. This would make expansions of our
prototype harder since changes would be required in multiple
locations. In addition, if an AST does not correlate one-to-one
with the provided Verilog file, it reduces ease of debugging.

Expanding and rewiring the netlist was selected, as this
enables every other optimization technique to work unimpeded
and eases future development of other operators and designs.
In particular, we traverse the netlist and each time we en-
counter an addition node (for future versions, more operators
can be added here), we invoke Algorithm 1.

Regarding possible adder designs, we included Carry Select
Adder (CSLA) [11], Carry Lookahead Adder (CLA) [12],
Carry Select Adder with Binary in Excess (BEC CSLA) [13]
and the baseline Ripple Carry Adder (RCA). Consequently,
any addition operation encountered is divided and wired to use
any valid combination of the adder available, hard adder or soft
adder, according to the instructions stored in the configuration
map—in this prototype, we do not support mixed soft/hard
block implementations.

B. Search Algorithm

To train our system and create our prototype configuration
files, a dynamic-programming optimization script was devel-
oped and added in VTR. The script iteratively (and with greedy
first selection) searches all possible splits of the target oper-
ations and design implementations for up to a maximum bit
length. Functional verification through simulation is conducted
and any invalid runs are discarded. For each valid combination,
the operation that scores the best in the objective function is
selected as part of the configuration file (Algorithm 2).

1 dynamicConfigurationSearch(
Data: A maximum bit width W
Data: A set of target operations OP
Data: A map from operations to a set of implementations I
Data: A set of circuits C
Data: A set of FPGA architectures A
Data: An objective function f
Output: A synthesis configuration file F

2)
3 begin
4 foreach op ∈ OP do
5 for w ← 1 to W do
6 foreach (i, ws) ∈ I[op]× [1, w] do
7 if Run[(op, i, ws)] �= null then
8 Run[(op, i, ws)] = aggregate results of

running this configuration ∀(c, a) ∈ C ×A
9 end

10 if Run[(op, i, ws).isV alid then
11 if f(Run[(op, i, ws)]) < bestScore then
12 bestScore ← f(Run[(op, i, ws)])
13 best = (i, ws)
14 end
15 end
16 end
17 F [op, w] ← (best.i, best.ws)
18 end
19 end
20 end

Algorithm 2: The Dynamic Configuration Search Algo-
rithm

Nevertheless, an exhaustive search was considered to be
impractical and futile–we aim to show that we can gain
better improvement via input and ouptut path optimization
of circuit than predesigned or patterned circuit–instead, we
tested all the designs minus the RCA baseline using an adder-
tree circuit and found that in the vast majority of the cases,
CSLA and BEC CSLA were solutions that showed the most
changes in the target characteristic. Consequently, we then
restricted the optimization script to search all possible bit-
width groupings that are implemented with either an RCA, a
CSLA or BEC CSLA.

VI. EXPERIMENTAL EVALUATION

To experimentally evaluate our technique, we first trained
the system to produce five configuration files, each targeting
different metrics. Second, we ran the VTR flow with the
five configuration files for two FPGA architectures using
circuits from the VTR benchmarking suite. The experimental
deployment results were then compared against Baseline, the
unmodified version of VTR, which did not include config-

TABLE II
OBJECTIVE FUNCTION WEIGHTS OF THE FIVE EXPERIMENTAL SEARCH

MODES

Search Mode /
Variable

crit
path

total
dyn

total
power

num
clbs

CP 1 0 0 0
Dyn 0 1 0 0
Pow 0 0 1 0
Size 0 0 0 1
Mix 1 1 1 1

urable synthesis. It should be stressed that none of the circuits
used during the search phase were also used for the evaluation.

A. Search Phase

The objective function of the search script was defined as
a weighted average of the metrics acquired after deployment.
Five search modes were tested by using the same circuits and
FPGA architectures but different sets of optimization weights
applied on the VTR metrics for each fully deployed circuit.
The first four search modes – critical path (CP), dynamic
power (Dyn), total power (Pow) and Size – targeted exactly
one metric for optimization; the fifth (Mix) targeted each of
the metrics of the other four with an equal weight (Table II).

After conducting the search, a compound operation syn-
thesis configuration file was created for each of the five
optimization modes. Visually examining the configuration files
revealed that they were all different from each other; conse-
quently, the prototyped search was able to produce different
recommendations for different optimization targets.

B. Testing Phase

To evaluate our system, we used the configuration files
we produced with the VTR micro and power benchmarks
suite through the VTR flow. To sanitize our test suite,
we first removed any circuit that did not report any adder
creation. Second, we discarded Verilog circuits that were
asynchronous because VTR’s power estimation module can
only evaluate synchronous circuitry. Third, we checked for
benchmarks that were overfitting our search set, a 2-level
and a 3-level adder tree of parameterized bit-width. There
were 62 benchmarks in the micro regression suite and
18 in the full regression suite. Only eight from micro
and nine from full fitted our requirements. We used the
flagship 40-nanometer architecture offered by VTR with
and without fracturable LUT: (K6 N10 mem32K 40nm) and
(K6 frac N10 mem32K 40nm), as these are well tested.

We conducted sanity tests on all the Verilog files to assure
adders were being synthesized before evaluating their perfor-
mance. The comparison was performed against Baseline: the
unmodified VTR version we performed our changes on. We
repeated each condition of search mode, benchmark and FPGA
architecture on the VTR flow multiple times and recorded the
following dependent performance variables produced by the
tool: critical path length, total dynamic power, total power
and number of CLBs. No variance was recorded.

TABLE III
AGGREGATE TESTING PERFORMANCE RELATIVE DIFFERENCES OVER

BASELINE (SIGNIFICANT RESULTS WITH P-VALUE LESS THAN 0.05 ARE
MARKED WITH A ‘*’; RESULTS TARGETED BY THE SEARCH MODE’S

OBJECTIVE FUNCTION ARE SHADED)

Search Mode /
Variable

crit
path

total
dyn

total
power

num
clbs

CP -3.58%* 2.09%* 3.52%* 3.63%*
Dyn 0.55% -2.29%* 0.58% 10.14%*
Pow 1.26% -0.35% -0.09% 4.44%
Size 3.29%* -1.17% -0.70% 3.16%
Mix 3.29%* -1.17% -0.70% 3.16%

C. Search Mode Significance

First, we conducted a paired t-test of each search mode
against Baseline to decide the performance variables for which
significant differences were produced via our technique. We
set the significance level to the commonly used threshold of
p < 0.05. Second, we calculated the geometric mean of the
relative difference over Baseline across all combinations of
FPGA-benchmark per dependent variable.

The aggregate significance/changes results are displayed in
Table III and suggest that the CP and Dyn search modes were
successful in significantly improving their target performance
variables. On one hand, CP significantly reduced the critical
path of the benchmarks by 3.58% and Dyn significantly
reduced their dynamic power by 2.29%. However, these
improvements came at a price: CP significantly worsened
the other three metrics between 2.09% and 3.63% and Dyn
significantly increased the number of CLBs by 10.14%. Never-
theless, these two search modes should be considered effective
as their target was reached.

On the other hand, none of the Pow, Size or Mix search
modes proved to be effective with a p value above our target
threshold. Furthermore Pow did not record any significant
differences; Size had no significant difference on its target
number of CLBs variable (it also worsened the critical path);
and Mix significantly worsened the benchmarks’ critical path,
which it was targeting to improve with a 25% weight. How-
ever, this is not surprising as the designed adder circuitry
was better fit to improve critical path and as a tangent, also
improved dynamic power via improved circuit parallelism.

The three ineffective modes were used to display the
flexibility of the system. Regarding adder-only trainable and
configurable synthesis, the ripple carry adder has the best
performance in terms of size and overall power since it is
the smallest circuit that implements the addition logic. Our
search set is focused on improving inter adder delay, which
skewed the performance metrics towards this direction.

D. Correlations with Benchmark Characteristics

To investigate the effect the characteristics of the bench-
marks had on the results, we extracted adder information in
Odin II after elaboration—at this stage, any compound opera-
tions that resolve to addition have already been transformed to
a set of adders. For each benchmark, we calculated the number
of adders, the average adder bit-width and standard deviation

Correlations
Number of

Adders
Avg of Adder

Width
StdDev of

Adder Width
Clocked

Adder Ratio

CP
critical path

0.19 -0.32 -0.08 -0.33

Dyn
total dyn

-0.36 0.34 0.20 -0.24

Pow
total power

0.21 0.18 -0.17 -0.29

Size
numb clbs

-0.28 -0.07 0.04 -0.23

Mix
geomean

-0.22 -0.02 -0.02 -0.27

Adder Information of Benchmarks

Fig. 2. Color-Coded Correlations of Target Performance Metrics per Search
Mode with General Adder Information of the Benchmarks (The smaller, the
better)

Correlations up to 7 8 to 15 16 to 31 32 and up

CP
critical path

-0.18 0.10 0.05 -0.05

Dyn
total dyn

0.29 -0.28 0.11 0.04

Pow
total power

0.29 0.39 0.48 -0.78

Size
numb clbs

-0.08 -0.41 -0.35 0.62

Mix
geomean

-0.15 -0.32 -0.44 0.64

Distribution of Benchmark Adders per Bit Width

Fig. 3. Color-Coded Correlations of Target Performance Metrics per Search
Mode with Width Distribution of the Adders in the Benchmarks (The smaller,
the better)

as well as the proportion of clocked—timing-driven—adders.
Furthermore, we also calculated the proportion of adders per
bit-lengths: 1 to 7, 8 to 15, 16 to 31, 32 and above.

Figure 2 displays the correlations of the target metric
per search mode against the general adder information of
the benchmarks. In all five search modes, larger reductions
were measured as the proportion of the clocked adders in
the benchmarks increased. This is an indication that clocked
versus unclocked adders—and thus, compound HDL operators
in general—require different synthesis configurations for op-
timized performance since in our search set we only included
clocked adders. In hindsight, enabling different synthesis of
clocked and non-clocked operations of the same bit width,
might have produced improved results.

Focusing on CP and Dyn, they performed well for opposite
characteristics: CP was more effective with larger adders but
less effective with more adders. For Dyn the correlations
were inverse. The result supports that synthesizing compound
operators should be customized.

Figure 3 displays the correlations of the metric per search
mode against the distribution of adders bit-widths used. Dyn
performed better when more medium-low-sized (8–15-bit)
adders were present but worse with more small (up to 7 bits)
adders. This result corroborates the combined correlation in
Figure 2: Dyn performs better with short adders. Instead, CP
tilted towards shorter adders in the circuit.

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

R
el
at
iv
e
Pe
rc
en
ta
ge
 D
if
fe
re
n
ce
 (
C
ri
ti
ca
l P
at
h
)

Fig. 4. CP Search Mode: Relative Percentage Changes of Critical Path
(Objective) over Baseline per VTR Verilog Benchmark

Fig. 5. Dyn Search Mode: Relative Percentage Changes of Dynamic Power
(Objective) over Baseline per VTR Verilog Benchmark

E. Benchmark Improvements

Next, we investigated the performance changes of each
Verilog benchmark per effective search mode (CP and Dyn).
In all cases, we visually inspected the benchmarks’ Verilog
code to shed light on the recorded variations.

In Figure 4, we display the benchmarks’ critical path
changes for the CP search mode. Out of 17 total bench-
marks, 12 registered reductions in their critical path length,
four increases and one, no changes. The median improve-
ment was −5.16% and the average, −6.44%. The difference
between the average and median is mainly attributed to a
specific Verilog file, bm expr all mod, which registered a
dramatic critical path change of −24.42%; this benchmark
is rather small and contained operations organized in a
way similar to our search set. Furthermore, four large VTR
benchmarks (arm core, blob merge, bm match2 str arch and
mkSMAdapter4B) scored critical path improvements around
7%, which we mainly attribute to the efficacy of leverag-
ing BES CSLA adders for simple increment by-one opera-
tions. Regarding benchmarks our technique underperformed,

bm match4 str arch relies on heavy usage of chained multi-
plication without a power of two bit-length.

Figure 5 displays the benchmarks’ dynamic power changes
over Baseline using Dyn. This time, 12 out of 17 bench-
marks reduced their dynamic power requirements; whereas, 5
increased it. The median dynamic power change was −1.58%
and the average −3.63%. One benchmark, blob merge regis-
tered a dramatic change of −22.04%, attributed to its rather
high proportion of clocked and short adders as diplayed with
the previously discussed correlations. The arm core bench-
mark performed the worst in this category with a 4.84%
change, attributed to its low proportion of clocked adders.

VII. CONCLUSION

HDL compound operators–addition, multiplication–can be
synthesized in a variety of ways, some better suited for a
certain performance metric, architecture.

To facilitate customized implicit circuit synthesis, we pro-
pose adding reconfigurable compound operators to the syn-
thesizer. Two ways are offered to configure the implicit
circuit design: First, a computer architect can fine tune the
configuration file to suite a project. Second, since finding the
best synthesis configurations requires exponential time, a set of
targeted circuits, FPGA architectures and performance metrics
can be used to produce a satisfactory configuration file.

We prototyped, open sourced and made available our tech-
nique in the academic VTR FPGA toolchain enabling the
configurable synthesis of addition and any other operation
that reduces to it—e.g. multiplication and subtraction. Our
experimental evaluation revealed significant performance im-
provements in two out of five search sets we explored. In
particular, we measured 3.58% average critical path reduction
with the search set that aimed in optimizing the critical path;
and 2.29% average dynamic power with targeted search.

Two further outcomes of our analysis were: First, a subcir-
cuit that adds the constant 1 can create significant improve-
ments, if implemented as an increment rather than using a
full adder; older HDL standards lack such operator. Second,
we measured a consistent correlation between improved target
metric and proportion of clocked adders. In our prototype
design we did not differentiate between synchronous and asyn-
chronous circuits. Since, we trained exclusively with timing-
driven adders but experimented with mixed designs, it should
be concluded that further improvements and increased fit
should be attainable with timing-aware configurable synthesis.

Direct extensions of our work include providing further
adder designs; expanding configurable synthesis to further
compound operators, such as variable shifts; incorporate mixed
soft/hard logic designs; and experimenting with larger search
sets leveraging contemporary machine learning algorithms.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of the
Natural Science and Engineering Research Council and CMC
Microsystems for their support of this project.

REFERENCES

[1] D. Thomas and P. Moorby, The Verilog R� Hardware
Description Language. Springer Science & Business
Media, 2008.

[2] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T.
Yu, K. Nasartschuk, M. Nasr, S. Wang, T. Liu, and
N. Ahmed, “VTR 7.0: Next generation architecture and
CAD system for FPGAs,” ACM Transactions on Re-
configurable Technology and Systems (TRETS), vol. 7,
no. 2, p. 6, 2014.

[3] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon,
“Odin II-an open-source verilog HDL synthesis tool
for CAD research,” in Field-Programmable Custom
Computing Machines (FCCM), 2010 18th IEEE Annual
International Symposium on, IEEE, 2010, pp. 149–156.

[4] V. Betz and J. Rose, “VPR: A new packing, place-
ment and routing tool for FPGA research,” in Field-
Programmable Logic and Applications, Springer, 1997,
pp. 213–222.

[5] A. D. Pimentel, “Exploring exploration: A tutorial intro-
duction to embedded systems design space exploration,”
IEEE Design & Test, vol. 34, no. 1, pp. 77–90, 2017.

[6] J.-P. Legault, “Experimental verilog synthesis features
for odin & alternative multiplier hard-block for fpga,”
University of New Brunswick, Tech. Rep., 2017.

[7] R. Brayton and A. Mishchenko, “Abc: An academic
industrial-strength verification tool,” in International
Conference on Computer Aided Verification, Springer,
2010, pp. 24–40.

[8] B. Yan and K. B. Kent, “Hard block reduction and
synthesis improvements in Odin II,” in Rapid System
Prototyping (RSP), 2015 International Symposium on,
IEEE, 2015, pp. 126–132.

[9] P. Patros and K. B. Kent, “Automatic detection and eli-
sion of reset sub-circuits,” in Rapid System Prototyping
(RSP), 2016 International Symposium on, IEEE, 2016,
pp. 1–7.

[10] J. Luu, C. McCullough, S. Wang, S. Huda, B. Yan, C.
Chiasson, K. B. Kent, J. Anderson, J. Rose, and V. Betz,
“On hard adders and carry chains in FPGAs,” in Field-
Programmable Custom Computing Machines (FCCM),
2014 IEEE 22nd Annual International Symposium on,
IEEE, 2014, pp. 52–59.

[11] V. Viswam and S. S. Nair, “Vhdl architecture for delay
efficient sqrt carry select adder,” International Journal,
vol. 6, no. 6, 2016.

[12] R. Zlatanovici, S. Kao, and B. Nikolic, “Energy–delay
optimization of 64-bit carry-lookahead adders with a
240 ps 90 nm cmos design example,” IEEE Journal of
Solid-State Circuits, vol. 44, no. 2, pp. 569–583, 2009.

[13] P. S. Wasekar, “An area efficient carry select adder
using binary excess converter,” Imperial Journal of
Interdisciplinary Research, vol. 2, no. 10, 2016.

