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During the recent decades, public transportation journey planning has become
an increasingly digital process. Journey planning websites and applications
are replacing the use of schedules printed on paper. Both proprietary and
free license open-source public transportation routing systems have been de-
veloped. Typically these systems are used as backend services for the journey
planning websites and applications.
Multimodality is an important quality of public transportation routing. Car
navigators only require the capability to find routes that are accessible by car,
and restrictions for when one can drive on a road are limited. On the other
hand, multimodal public transportation routing systems need to take into
account the available public transportation options, which often operate on
schedules, in addition to the other non-transit mobility options. Algorithms
used for routing in these systems have improved. As new features have been
added to the systems, they have become more complex. Testing and quality
assurance (QA) play a key role in the development and maintenance of these
systems, but the research focused on that subject, in this context, is scarce.
In this thesis, use of known failed routing requests for improving the quality
of routing is explored. Additionally, it was studied how benchmarking can
be used as a quality assurance tool for public transportation routing systems.
From a sample failed requests (N=10000), 90% of requests were filtered out
because with varying probabilities they had failed due to known issues. Ex-
amination of individual requests showed that the filtering criteria should be
improved as only one request from a sample of requests (N=30) was caused by
a potentially unknown cause. The usefulness of benchmarking was examined
through three use cases. One finding was that certain public transportation
modes can be preferred in the Greater Helsinki and it does not significantly
affect the durations of the suggested itineraries. OpenTripPlanner was used
as a routing system in this thesis, but these approaches should also be appli-
cable to other systems. More research should be done on testing and QA of
public transportation routing systems as there are still open questions.
Keywords: quality assurance, routing, public transportation
Language: English
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Viimeisten vuosikymmenten aikana julkisen liikenteen matkojen suunnittelu
on muuttunut digitaalisemmaksi. Matkaopassivustot ja -sovellukset ovat kor-
vaamassa paperiset aikataulut. On kehitetty kaupallisia ja vapaasti käytet-
täviä avoimen lähdekoodin reitityssysteemeitä. Näitä systeemeitä käytetään
matkaoppaissa taustapalveluina.
Multimodaalisuus on tärkeä ominaisuus julkisen liikenteen reitityksessä. Au-
tonavigaattoreissa riittää, että autoreititys toimii, ja teiden käyttöön liittyviä
aikarajoitteita on vähän. Julkisen liikenteen reitityssysteemeissä pitää taas
ottaa huomioon julkisen liikenteen kulkumuodot, jotka usein noudattavat ai-
katauluja, sekä kävely ja muu liityntäreititys. Näissä systeemeissä käytetyt
reitityslgoritmit ovat kehittyneet. Uusien ominaisuuksien myötä systeemeiden
kompleksisuus on kasvanut. Testaus ja laadunvalvonta ovat tärkeässä roolis-
sa näiden systeemeiden kehityksessä ja ylläpidossa, mutta aiheeseen liittyvää
tutkimusta ei ole tehty laajasti.
Tässä tutkielmassa kokeillaan epäonnistuneiden reitityskyselyiden käyttöä
reitityksen laadun parantamiseen ja vertailuanalyysin hyödyntämistä laadun-
valvonnassa. Epäonnistuneiden kyselyiden otoksesta (N=10000) poistettiin
90% kyselyistä, koska vaihtelevalla todennäköisyydelle ne olivat epäonnistu-
neet tunnettujen syiden takia. Yksittäisiä kyselyitä pienemmästä otoksesta
(N=30) tutkittiin ja vain yksi niistä epäonnistui potentiaalisesti tuntemat-
tomasta syystä, joten kyselyiden suodatuskriteereissä on kehitettävää. Ver-
tailuanalyysin hyötyä tutkittiin kolmen käyttötapauksen kautta. Työssä ha-
vaittiin, että pääkaupunkiseudulla voidaan suosia tiettyjä julkisen liikenteen
kulkumuotoja ilman, että ehdotettujen reititystulosten kesto kasvaa huomat-
tavasti. Työssä käytettiin OpenTripPlanner-reitityssysteemiä, mutta esitet-
tyjä metodeja voi soveltaa muihin vastaaviin systeemeihin. Reitityksen tes-
taukseen ja laadunvalvontaan liittyy avoimia kysymyksiä, joten tämän osalta
tarvitaan lisätutkimusta.
Asiasanat: laadunvalvonta, reititys, julkinen liikenne
Kieli: Englanti
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Abbreviations and Acronyms

API Application Programming Interface
CPU Central Processing Unit
GBFS General Bikeshare Feed Specification
GeoTIFF Georeferenced Tagged Image File Format
GTFS General Transit Feed Specification
HSL Helsinki Regional Transport
HSLdevcom HSL Developer Community
JAR Java ARchive
NeTEx Network Timetable Exchange
NLS National Land Survey of Finland
OSM OpenStreetMap
OTP OpenTripPlanner
QA Quality assurance
SIRI Service Interface for Real Time Information
stdout standard output
stderr standard error
TriMet Tri-County Metropolitan Transportation District of

Oregon
UI User Interface
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Chapter 1

Introduction

Journey planning has become less difficult in the recent decades. Before, one
would have had to find information from sources that were not digitized, and
the required information was often not centralized. With prior experience and
existing knowledge, it is possible to drive to the destination, or take the usual
bus, and hope that nothing has changed. With slightly less knowledge of the
upcoming journey, paper maps and public transportation schedules can help
in getting to the destination but finding the most optimal route on a longer
journey in a complex public transportation network from those sources is a
time-consuming and a difficult task. Because of the advances in information
technology, it is now possible to plan journeys relatively fast and conveniently
through use of public transportation journey planner websites and applications.

In almost any facet of life, technology has helped us to be more efficient
on average. Journey planning is no exception. The performance of public
transportation routing algorithms has improved in the recent years [5, 7]. But
just like with any other complex digital system, journey planners, and the
routing systems in the background, are at constant risk of minor and major
failures. Some routing query might fail because developers have not considered
a rare edge case, or all routing requests could fail due to changes in code or
data. Those are two examples from the opposite sides of spectrum, in terms of
impact on the userbase, but there are almost unlimited number of scenarios that
can happen on a routing system, which would cause occasional or systematic
failures. Multimodal routing is a complex problem, and routing results from
the current solutions do not always resemble the often quite subjective view of
an optimal itinerary that the users have. Additionally, from a technical point
of view, the performance of these systems requires optimization. Therefore, it
is essential to have testing and quality assurance (QA) tools and processes for
routing systems.

Research done by Delling & al. set a foundation for how use of compar-
ison against a "ground truth" can be used to validate quality of routing [8].
In this thesis, that approach is explored. First, the theoretical background of
multimodal routing systems and testing methods is introduced. Next, Open-
TripPlanner (OTP), the public transportation routing system we use, and par-
ticipate in the development of, at the Digitransit journey planner project [11]
in Finland, is introduced. Then, it is described how user data is utilized to im-
prove testing and QA tools and processes, and how benchmarking of a routing
software has been used in QA. The results then are analyzed and conclusions
of what can be done in the future are presented. The research questions for
this study are as follows: How can failed routing queries be effectively utilized

8
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for improving routing’s quality? What can be done to assure that there are
no unintended changes to routing’s quality during development, or in inclusion
of new data? How can quality benchmarking be utilized in optimization of
routing parameters’ usage?



Chapter 2

Background

2.1 Routing algorithms

2.1.1 Path finding algorithms
Graphs are often used to model the data for path finding algorithms. A graph
consists of nodes, sometimes referred as vertices, and edges, that create connec-
tions between nodes. Depending on the algorithm, context and terminology,
different values are attached to nodes and edges. In a simple case, edges have
lengths. However, cost, or weight, can also associated for traversing edges. In
some algorithms, nodes and edges have labels. For example, they can be used
to track if a node has been visited already. Sometimes the graphs are directed
[10]. For example, if the road network is modeled, one-way roads should be
taken into account.

Dijkstra’s Shortest Path First algorithm, often referred only as Dijkstra’s
algorithm, has been a cornerstone for many path finding algorithms. It defines
a relatively efficient way to find the shortest path between any pair of nodes in
a graph [5]. Bidirectional search, where the search is started from the start and
the end node simultaneously, can be used to find the shortest path between two
nodes, while potentially less nodes are explored overall [5, 10]. Additionally,
Dijkstra’s algorithm can be used to find the shortest-path tree between a node
and all other nodes. Unlike some other algorithms, the normal version of it
always finds the shortest path, and it is relatively easy to implement.

A*—sometimes written as A-star—search algorithm can be viewed as an
extension to Dijkstra’s algorithm. It uses heuristics to estimate the remaining
length, or cost, of the path to the goal node [5, 13]. It chooses what edges to
explore based on these predictions [5, 13]. There are popular and researched
heuristics, for example use of Euclidean distance for estimates, but new heuris-
tics can be designed and implemented if need be [10]. The goal for the use of
heuristics is to potentially reduce the number of nodes that need to be explored
by avoiding traversing edges that are to the "wrong direction" [5]. A* should
find the shortest path if the heuristics in use do not overestimate the remaining
cost [13]. However, use of certain performance optimization methods, such as
bidirectional search and geographical distance bounds, can put that into risk
[5].

These are just two examples of path finding algorithms. There are many
more, and there is research done on comparing different algorithms. A couple
of good examples of such are the work by Bast, Delling & al. [5, 10].

10
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2.1.2 Public transportation routing algorithms
There are algorithms that allow computation of a shortest path in continental
sized road networks in a fraction of a second [5]. Public transportation adds
complexity to route planning. Routes depend on time as they are often con-
nected to schedules of public transportation lines [5]. Multimodality of public
transportation is another problem that makes it harder to efficiently find the
fastest way to get from point A to point B [5, 8].

Some algorithms are only usable in finding routes with a single unrestricted
mode. These modes include car, walk and bicycle as they are not limited by
schedules [5]. Although, in reality, there can be restrictions on when some area
is available for walking, or some road is open for traffic, but these restrictions
are sometimes ignored in routing. Then there are algorithms which can be
used both, in single unrestricted travel mode routing, and in multimodal public
transportation routing. Naturally, there also exist algorithms which are specific
to public transportation.

Dijkstra’s algorithm and A* can be used for both, public transportation
routing, and for street network routing. One common approach, when using
one of them in public transportation, is to use a time-dependent cost function
and graph [4]. Then the edges can have a different cost based on the date and
time [23]. For example, if at certain time, the next bus departs in 10 minutes,
the edge has less cost than if the bus would depart in 20 minutes [23]. An
alternative method is to use a time-expanded graph [24]. Then there would be
as many nodes in a stop as there are departures instead of reusing one node
[24].

Many of the algorithms used in multimodal public transportation journey
planning require preprocessing to achieve an acceptable performance level [5].
For example, one common practice is to calculate transfer routes between pub-
lic transport stops in advance. Also, if every small detail is taken into ac-
count, routing will become too complex and slow. Therefore, simplifications
are needed [5].

Trade-offs exist when selecting which algorithm to use. Some of them per-
form better on larger transportation networks, some do not require as much
preprocessing or memory, and some are simple to implement [5]. One important
consideration to make when implementing an algorithm, and the data structure
for it, is if it supports patching the data model. In public transportation, the
schedules can change, and users of journey planners benefit from getting rout-
ing results based on updated information. Some algorithms are better suitable
for handling realtime updates than others [5].

Since users of journey planners have different preferences – even the same
user can prefer different qualities on different occasions – it makes sense to
suggest journeys that either balance multiple criteria for each suggestion, or al-
ternatively to offer itineraries where each itinerary is optimized by one criterion
from a set of criteria. Although, it is also possible to use the balanced com-
bination of multiple criteria as one criterion when using the latter approach.



CHAPTER 2. BACKGROUND 12

One method is to use a single criterion—cost—which balances different prefer-
ences [8]. On the other hand, certain algorithms, and their implementations,
are able to optimize multiple criteria in Pareto sets efficiently [7, 8]. These
Pareto sets include itineraries that are better than all the other itineraries in
at least one chosen criterion [8]. Finding Pareto sets is typically an NP-hard
problem, but certain algorithms are able to find them reasonably fast in the
public transportation context [7].

Algorithms in the Round-Based Public Transit Routing (RAPTOR) family
are becoming more popular as they enable fast public transportation routing
[7, 9]. Their high performance is based on an optimized data layout, that al-
lows quick processing of data from memory, and in enabling parallel computing
[9]. They are examples of algorithms that are specific to public transportation
routing [9]. In a multimodal routing system, if you choose to use RAPTOR
based algorithms, you need to use some other algorithm for ingress and egress
routing on the street network. Multi-criteria RAPTOR (McRAPTOR) is a
generalization of RAPTOR that allows finding itineraries that optimize mul-
tiple criteria instead of just one, and range RAPTOR (rRAPTOR) can find
itineraries from a range of departure times [9].

It has been feasible to do two-criterion optimization in public transporta-
tion routing for years now, but the recent advances in public transportation
routing algorithms have made it possible to do fast multi-criteria optimization
with more than two criteria even on metropolitan size public transportation
networks [7, 8]. Use of restricted Pareto sets instead of full Pareto sets has
proven to be effective. Recently presented Bounded McRAPTOR collection of
RAPTOR based algorithms are able to find itineraries in under 50 ms even
with four criteria on metropolitan size networks [7]. The restricted sets still
contain the same significant itineraries as the full sets while giving a boost
to the performance [7]. After decades of research, the algorithms are finally
reaching the level of performance and supported features, where it is becom-
ing more difficult to improve on while still giving users of journey planners a
noticeable upgrade in user experience. Although, not all implementations of
these newer algorithms will be as fast as the numbers presented in research and
users sometimes want more than four criteria to be optimized.

2.2 Static data

2.2.1 Transit data
A multimodal public transportation routing system requires transit data to
fulfil its purpose. Since the turn of the century, there has been a push towards
open public transportation data and as a result, standards have been created
to provide this data [2, 18].

General Transit Feed Specification (GTFS), formerly known as Google Tran-
sit Feed Specification, is one of the transit data standards. Its development was
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started by Google, Tri-County Metropolitan Transportation District of Oregon
(TriMet) and a few other American public transportation agencies in 2005-2006
[18]. After that the specification has been changed through minor and major
revisions [35]. The format has since spread to wide use across the globe because
it is supported by many popular public transportation information systems and
routers including Google Transit but its use is not mandated by laws or regula-
tions [2, 18]. Authorities and agencies publish their transit data in this format
in Finland as well.

GTFS has been intended to be general, easy to edit and easy to consume
[18]. That has caused a need for extensions because the basic GTFS speci-
fication does not cover all transit data use cases. Even Google has its own
extensions [40]. Another example of a proposed GTFS extension is GTFS-flex
which is meant for modeling demand-responsive transportation [20].

Typically, GTFS feeds are maintained by transit agencies or authorities [2].
Some of them only maintain data for just one route, some of them maintain
data for hundreds, maybe even thousands, of routes. Even though all data sets
try to follow the same specifications, the data sets tend to be heterogeneous in
structure. The available tools and level of expertise varies a lot between the
maintainers of the data. There are also alternative ways to model the same
transit network in GTFS [39]. Additionally, the maintainers might optimize
their data to work on some specific system [15]. Therefore, it is not always
guaranteed that the data works as intended on every system that uses GTFS
data. Some parts of the data can be outright unusable, or the way something
is modeled can cause suboptimal behavior. For example, one could create own
GTFS route for each trip of an actual route, instead of grouping the trips under
one route.

There has been some criticism towards GTFS. Mainly because of its ties to
Google, focus on the American market, the use of comma-delimited text files,
vagueness in terminology, lack of metadata, structural inconsistencies and the
requirement for extensions to cover all use cases [15, 87]. One of the original
goals of GTFS was that it would be conveniently maintainable and consumable
but because of its inconsistencies, it can be difficult for some system to consume
data coming from numerous different publishers [15, 18].

A new emerging standard is Network Timetable EXchange (NeTEx) which
is based on a reference data model called Transmodel [29]. Each member state
in the European Union, and other countries that follow EU regulations, should
have had their public transportation information available in NeTEx format
by December 1st, 2019 [29]. So far, NeTEx is not widely in use yet, and Fin-
land’s own Transmodel implementation is still under construction when writing
this thesis [84]. Because NeTEx and Transmodel leave room for interpretation,
there already exists different implementations that are not identical and leave
open questions for what specific model should some agency, authority or coun-
try use [29, 84].
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2.2.2 Street network
Since transit data contains only public transportation information and people
do not often start or end their journeys at transit stops, routers also need
information about the street network that connects the stops. A proportion
of the street network data sets focus on roads accessible with cars, but for
public transportation routing systems, the streets and paths where one can
walk or cycle are as important, if not more important. Sometimes no public
transportation information is needed to find the optimal route as origin and
destination might be near each other or users of the router opt to just use
non-transit traverse modes.

There are different sources for street network information. Some of those
are proprietary. OpenStreetMap (OSM) is an open data initiative for providing
map data under Open Data Commons Open Database License (ODbL) [58].
This license allows free usage of the data and distribution of the edited data
with the same license if OSM and its contributors are credited [57, 58]. Among
its data types, OSM includes street network data and transit stops.

OSM data is based on the contributions from the community. In theory,
anyone can contribute to OSM. In some cases, license allows that larger existing
data sets are imported into OSM [60]. This can be done either manually or
through scripting [60]. Despite of the existence of OSM validation and change
monitoring tools, it is possible that even larger scale changes, which contain
errors, are done to OSM and taken into production use by different systems
before the changes are either fixed or completely reverted [50, 62, 63].

There are three types of elements in OSM: nodes, ways and relations [64].
Ways define linear features and area boundaries by combining nodes into an
ordered list [64]. However, nodes themselves can also be alone to model a
pointlike features, such as bus stops. Relations are used to define how other
elements construct larger structures [64]. For instance, a site type relation
could be used to model a university campus area that consists of any number
of elements [65]. It is possible to include other relations inside a relation [64].

Tagging is used to add meaning to elements through key-value pairs. Nodes
can have tags, but it is not necessary for a node to have a tag as it might just
be a point where a way changes its direction. Ways need to have at least one
tag unless they are part of a relation. [64]

It is not always straight-forward to interpret OSM guidelines regarding us-
age of tags, which occasionally causes issues. Editors of the data expect an
object with tags to be interpreted in a certain way and a system that consumes
the data handles it differently. One way to circumvent this issue is to give
specific instructions for OSM editors on how to modify this data so that it gets
interpreted correctly by a system. Some projects that use OSM data, such as
the Finnish Digitransit project, have their own pages on OSM wiki partly for
this purpose [59, 61]. Obviously, there should not be large conflicts between
how different systems interpret the data or else the data becomes too specific
for a project or a set of projects.
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Figure 2.1: OSM data visualized on Java OpenStreetMap Editor (JOSM). OSM
data is c© OpenStreetMap contributors.

One of the advantages of using OSM data is that it includes a lot of data
in a relatively standardized format. However, the data’s spatial coverage and
quality depend on the activity and expertise of the community. Studies have
shown that the spatial coverage and quality of Germany’s and Ireland’s OSM
data was almost equivalent to proprietary data sets [6, 22]. OSM data included
information that was missing from those proprietary data sets and vice versa
[6, 22].

2.2.3 Elevation data
People walk and cycle at different speeds when they are on level ground, uphill
or downhill. Therefore, to get more realistic weight estimates for walking and
cycling, elevation data can be included in constructing street network in a
routing graph. Although, elevation data is not as necessary as transit data
or street network data for a public transportation router. Streets or paths, in
general, have been designed to not include elevation changes that would make
it impossible, or nearly impossible, for people to walk on them.

Georeferenced Tagged Image File Format (GeoTIFF) is one of the standards
that can be used for storing elevation data. Elevation data is stored in GeoTIFF
files as pixels [82]. The distance between these pixels affects the accuracy of
the data. For example, if the resolution is 5x5m, each pixel defines elevation at
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the center of an area which area is 25m2. Naturally, if the elevation profile can
be collected with better accuracy and stored in a GeoTIFF file with smaller
resolution, the data will be more accurate, but the file will be larger.

National Land Survey of Finland (NLS) is a government agency that pro-
vides a digital elevation model that covers Finland in two resolutions: 2x2 and
10x10 meters [52, 53]. Both data sets are available in GeoTIFF format licensed
under Creative Commons Attribution 4.0 International License [52–54]. The
2x2 meter resolution data has been collected through laser scanning the sur-
face of the earth, but it does not cover whole Finland [53]. On the other hand,
10x10 meter resolution data is constructed from the same data as 2x2 meter
resolution when feasible, but the missing areas are derived from other sources
[52]. The accuracy of the 10x10 meter resolution data is worse than the ac-
curacy of the 2x2 meter resolution for two reasons: less accurate source data
on average and larger resolution. The 10x10 meter resolution data is the one
used at the Digitransit project as the smaller resolution data is too resource
intensive.

Figure 2.2: Visualizations of the 2x2 and 10x10 meter resolution NLS elevation
data sets around a small hill in Helsinki on top of an OSM map layer. Areas
colored with darker shades of orange have higher elevation values. Map layer
is c© OpenStreetMap contributors.

2.3 Realtime data

2.3.1 Trip updates
Public transportation is mostly based on predefined schedules that are often a
relatively accurate representation of the real world. Bus drivers try to follow
the schedules for their routes. However, there might be more people boarding a
vehicle at a certain stop than expected, or more traffic on the road which causes
a bus to arrive late to the next stop. Occasionally, a bus breaks down and the
whole trip is cancelled, or the bus will not stop at all scheduled stops. Because
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of these factors, and others that affect how well public transportation really
follow the predefined schedules, realtime data formats have been introduced to
support the static schedule data formats.

Since regular GTFS is meant for serving a data set that models an agency’s
or, a set of agencies’, public transportation network, there is a lot of static
information that does not need to be constantly updated. Therefore, GTFS
Realtime was added as an extension to the GTFS format to allow continuous
updates to systems that use GTFS data [34]. It was originally created by
Google and its partner public transportation agencies, in cooperation with
public transportation focused developers [34]. Since the first version, which was
released in 2011, GTFS Realtime specification has been updated several times
[41]. GTFS Realtime data can contain updates that affect either something
that was defined in the static GTFS data, or something new.

Trip Update is one of the components in GTFS Realtime. Arrival and
departure times at stops can be updated with Trip Updates, or new trips can
be added that do not exist in static schedules [37]. It is also possible to cancel
a trip, skip certain stops during a trip, and reroute a trip to visit different stops
than defined in the static schedule [37].

There are also two other components in GTFS Realtime, Service Alerts
and Vehicle Positions, but their original purpose is not to affect routing results
[36, 38]. Service Alerts contain information about disruptions in public trans-
portation network and Vehicle Positions contain information about vehicles,
and their positions and movement [36, 38]. In theory, Vehicle Positions’ Occu-
pancy status information could be used to prevent a trip, if a vehicle’s status
is “Not accepting passengers”.

As with static transit data, European Union is pushing a relatively new
standard, called Service Interface for Real Time Information (SIRI), for serv-
ing realtime updates [29]. There are already realtime data feeds in Finland
that use SIRI but their structures are not identical as the specification can be
interpreted, and used, in different ways [49, 86, 87].

2.3.2 Bicycle and scooter rental stations
There has been a growing trend of bicycle and scooter rental networks starting
their operations at cities around the world. Some of these services do not have
stations where users pick up and leave their vehicles. In those cases, the vehicles
can be left within a larger area where the next user can pick it up. However,
there are also services which have stations, where the vehicles should locate
when they are not in use.

Similarly, as for other types of open data, there is a data standard which
could be used for many services. General Bikeshare Feed Specification’s (GBFS)
development was started in 2015 and led by North American Bikeshare Associ-
ation [55]. It supports both bicycle rental networks with and without stations
[55]. It is in use in over 200 different bicycle rentals systems around the world
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[56]. However, many operators in this field choose to develop their own format
for publishing data about their services.

2.3.3 Bicycle and car parks
There are limitations to what public transportation vehicles, and when, one
can board with a bicycle. In GTFS, those limitations can be defined for trips.
For instance, in Greater Helsinki, you are only permitted to take a normal
unfoldable bicycle with you to commuter trains and metro, if it is not too
crowded [45]. Therefore, in other cases, passengers need to park their bicycles
somewhere near a bus station, for example, before boarding a vehicle.

It is common to travel a part of a journey on a car and then on public
transportation, or vice versa. It can save time and lessen the issues of navigating
through a city or finding a parking spot. Unless you travel on a long-distance
train, or on a ferry that can hold cars, it is not possible to combine car legs,
where you are not getting picked up or dropped off by someone, to transit legs
without parking or picking up your car from a parking spot.

It is in the interest of public transportation agencies and authorities to
promote bicycle and car park locations near public transportation stops and
stations because it can guide more people to travel on public transportation. It
is possible to have the locations of bicycle and car parks in a static format. Al-
ternatively, available spaces and the status of the service can be given through
a realtime feed. For Greater Helsinki, Helsinki Regional Transport (HSL) pro-
vides a park and ride application programming interface (API) with status and
availability information for developers to use [46].

2.3.4 Street network updates
The traffic on roads is not constant. For instance, a popular event can affect
the speed at which a vehicle can traverse certain roads. It is also possible that a
road segment is temporarily closed due to an accident or roadworks. Therefore,
this information can be, and have been, used in affecting which routes are given
by a routing system at realtime [16].

2.4 Testing and quality assurance

2.4.1 Approval testing
There are instances, when it is not possible to create output validation logic
that can be generalized to be correct on all input and output pairs. People
need to validate these outputs on a case-by-case basis.

Approval testing is a testing methodology – known also by other names –
which can be used when it is not possible to let a computer choose through
predefined assertions if tests have passed or not [3, 80]. During approval testing,
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a set of input is inserted into a software and stored with the set of output that
comes as a result. Then the input-output pairs are manually examined. If the
output values given the input are within the limits thought to be acceptable by
a person reviewing the results, changes can be accepted [3, 80]. This method
is often used for tracking behavior of legacy software [3].

This approach can also be applied to testing of multimodal public trans-
portation routing systems as what is a good quality itinerary cannot specified
accurately. However, if returned itineraries for the given input parameters can
examined, it is possible to determine through knowledge of the transporta-
tion network if there are potentially better itineraries available considering the
preconditions.

2.4.2 Test automation
Sometimes testing is a fully manual process. Person tests software by inserting
input and analyzes the output without using any automation. It can be a
good testing strategy for projects, where adding test automation would not be
feasible because of limited resources or the testing does not need to be repeated.
However, usually test automation can replace this manual work either partly,
or completely.

The goal of test automation is to reduce manual work, increase test effi-
ciency and consistency [12]. Manual testing is time-consuming and often ex-
pensive [12]. Unlike the time spent writing computer run tests for a software
component, the time spent in doing manual tests does not necessarily lessen
the time needed to test the software in the future as the manual testing of the
same component can be as time-consuming the next time testing is required.
Because humans are prone to errors, there is no guarantee that the tester does
all the required steps to test each component on every test [12].

Test automation consists of many layers. For example, a unit test can
automatically insert input and validate output of a software component. Then
a test runner can run this unit test together with other tests. Continuous
integration tools can be used to automatically start up a test environment
where the test runner runs the unit test.

2.4.3 Quality assurance and control
Quality can be examined as a property of software, or for example, as a property
of the given input and returned output of the software. Sometimes it is difficult
to define what characteristics define the quality. Quality assurance (QA), and
quality control, are processes used to ensure that the quality of an item stays on
an acceptable level [1]. QA and quality control have slightly different meanings,
but as a simplification in this thesis, QA is used as an umbrella term that covers
both.

QA of public transportation routing is sometimes touched on in research
that is focused on documenting the performance of existing routing algorithms,
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or on introducing new algorithms. For instance, Delling & al. have presented
methods and criteria they use to rate routing algorithms and routing results
in their RAPTOR related papers [7, 8]. They argued that arrival time, costs
and "convenience" are the most the important qualities for users, but they
also acknowledged the difficulty in defining which itineraries are the "best"
[8]. Itineraries have too many qualities that people prefer differently. Also,
an itinerary needs to be realistic. Nobody wants an itinerary suggestion that
cannot be completed in the real world.

If a model for rating quality of itineraries exists, it can also be used as part
of routing code in additional to its use in external QA processes. For example,
the RAPTOR based algorithms typically find a large set of itineraries during
a search [7, 8, 19]. However, the users of journey planners do not want to
get flooded by information. Therefore, a quality model can be used to rank
itineraries as a post-processing step to filter out extra itineraries [8, 19]. It
should be examined how significantly different the itineraries are so that sending
homogeneous itineraries to users can be avoided [8].

Use of benchmarking against a "ground truth" has been introduced as a
potential way to showcase the performance of multimodal public transportation
routing systems [8]. Itineraries from different implementations of algorithms
were compared against the ground truth, which in that research was itineraries
from an implementation of multimodal multicriteria RAPTOR algorithm [8].
This approach is interesting as it focuses on the quality of the routing results.
Often the research in this field has focused on the speed-wise performance and
resource consumption of the algorithm implementations.



Chapter 3

Public transportation routing sys-
tems

3.1 Background

3.1.1 Functionalities
With public transportation, people can move from one place to another. The
available public transportation modes vary based on location and time. For
example, in Helsinki, one can choose between using bus, train, metro, ferry
or tram but in more rural areas of Finland, bus can be the only option avail-
able. Most of public transportation is schedule-based, and routes consist of
predefined stop patterns that the departures, or trips, follow [8]. A vehicle
departs from a stop when it is scheduled to depart if it is running on time.
However, there are also on-demand based public transportation services that
do not follow a schedule or predefined stop patterns. Additionally, bike-share
and scooter-share systems that function differently from more traditional public
transportation systems can be viewed as part of public transportation.

Multimodal public transportation routing systems combine transit with
other travel modes [8]. As public transportation does not necessarily cover
the "first mile" or the "last mile" of the journey from a traveler’s location to
the destination, or the travel between transfer stops, routing systems fill these
holes with walk, bicycle, car or scooter legs, for instance.

Routing can be configured. The ease of configuration, and available config-
uration options depend on what routing system is in use. These configuration
options vary from query level parameters, such as what transit modes should be
used, to more global settings that, for example, set limits to how long a query
can be processed for. Some of the systems have support for realtime updates
which can be used for patching the schedules for a trip, or the availability of
bicycles at a bike-share station, for instance.

In addition to the routing from an origin to a destination, public trans-
port routing systems can have other functionalities. For example, via-point
routing is a special case of journey planning that some systems support. Also,
these systems may have support for processing simultaneously one-to-many or
many-to-many location routing queries that can be used in research of public
transportation networks [10, 42]. As the public transportation routing systems
require a lot of data to function, sometimes they provide APIs from which
it is possible to fetch information about the public transportation network in
addition to itinerary suggestions.

21
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It is possible for a public transportation authority or a company to use a
routing system to steer passengers into using preferred public transportation
modes, routes, departures or stops. It is done by configuring these systems or
the transit data in use in a desired way. This is part of people flow management
that can be used to guide passengers into using transportation options that can
be efficiently operated and to reduce burden from congested routes, for example.

3.1.2 Examples of implementations
There are both proprietary closed-source and free license open-source routing
systems. A few well-known examples of proprietary public transportation rout-
ing systems are the ones used in the backends of Google Maps [33], Apple Maps
[27] and Bing Maps [51]. These services originally had, and still have, a heavy
focus on maps. However, there are also proprietary journey planning and rout-
ing software developed and used by for-profit organizations and publicly owned
transportation authorities with the focus on journey planning [28, 44].

There are only a few widely used open-source public transportation routing
software but additionally there are smaller projects. OpenTripPlanner [70] and
GraphHopper [42] are a couple of better known examples. Then there are,
for instance, open-source routers with less features that focus on a specific use
case, such as capability to be run directly on web browsers or mobile devices
[48].

3.2 OpenTripPlanner

3.2.1 Introduction
OpenTripPlanner (OTP) is an open-source public transportation routing soft-
ware. Its development was started in 2009 on TriMet’s initiative [73]. OTP
is part of Software Freedom Conservancy’s portfolio of projects [73]. Devel-
opment of OTP is coordinated by OTP Project Leadership Committee, which
has members representing organizations from the United States and Europe
[73, 75]. Git is used as the version control system for development and the
routing code is written in Java [71].

As a disclaimer, this thesis is focused on the HSL Developer Community
(HSLdevcom) fork of OTP, which is the version used at the Digitransit project
in Finland. The basic structure and algorithms of the project are largely the
same as in the upstream version. However, new features have been added, and
especially in regard to error tracking and APIs there are noticeable differences.
These features are described in Sections 3.2.7 and 3.2.8. Additionally, a filtering
of itineraries as a post-processing step has been added, which is explained in
Section 3.2.2. OTP is under constant development and therefore, everything
stated here about OTP’s features may not be accurate anymore in the future.
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3.2.2 Algorithms and data model
OTP uses an A* algorithm implementation for routing [16, 19, 76]. What
separates A* from Dijkstra’s algorithm, is the use of heuristics, and naturally
OTP’s routing uses them to optimize performance [61, 76]. There is a version
2 of OTP under development, which uses RAPTOR based algorithms instead
of A* for transit routing, but that version is not studied in this thesis [19].

Since A* requires a graph to search paths from, OTP’s street network and
transit data is contained in a graph [61, 76]. Everything is therefore modeled
either as an edge, or a vertex, or as an combination of those two. OTP’s graph
is time-dependent and directional [76].

Part of graph modeling is quite intuitive. For example, stops are modeled
as vertices and streets modeled as edges. However, it gets more complicated
when you dig into details on how transit is modeled and connected to the
street network. For instance, to model a passenger boarding a vehicle, both an
onboarding vertex and an onboarding edge are needed. Some of the edges and
vertices are permanently stored in the graph. Others are created for temporal
use at runtime and some of them can only be used within the scope of one
itinerary.

There is a cost, sometimes referred as weight, attached to traversing an edge.
These costs are then used to decide which paths should be searched further. In
public transportation routing, it would be possible to optimize multiple criteria.
For example, number of transfers and fare costs could be minimized, but OTP
uses a single criterion—cost—for deciding what are the best paths in routing as
with the current implementation of the algorithm using multiple criteria would
slow down the routing too much [19, 61, 76]. The basic unit of cost is seconds.
However, users of public transportation have preferences on how time should
be spent, and what is convenient. For example, time spent walking on stairs
has a higher cost than the same amount of time spent walking on a street, by
default, and even higher cost if travelling on a bicycle. In addition to the cost,
OTP keeps track of time spent in traveling, and it is returned to users when
they fetch itinerary suggestions. Showing the accumulated cost would not be
meaningful to users.

Static costs for events and cost multipliers for the spent time can be used
to find results balancing multiple criteria for each itinerary [8]. However, the
results from routing queries using the cost function tend to be homogeneous,
and it is not necessarily what users want. Multi-criteria search with Pareto sets
would allow users to pick between choices that differ more from each other and
it could be communicated that in which way each itinerary is optimal. It is also
extremely difficult to balance the different cost factors. If a certain factor is
tuned, itinerary suggestions for some examined context can be improved while
for some others they can get worse.

By default, OTP searches for itineraries which depart after a given time
but it is also possible to search itineraries that should arrive before a given
time [61]. To perform routing that aims towards the arrival time, OTP starts



CHAPTER 3. PUBLIC TRANSPORTATION ROUTING SYSTEMS 24

looking for routes backwards from point B to A. This means that traversal in
the graph can be reversed.

During a routing query, OTP goes through edges and vertices in a shortest
path tree containing states that are linked to each other. States maintain
information regarding the cumulated cost and time until that point among
other things. States are edited with a state editor to create new child states,
and each state can only have one child state. A new child state is created, for
instance, when a street edge is traversed. State domination rules are used to
determine which states can be dismissed.

OTP relies on preprocessing of data to a format that can processed more
efficiently at runtime. This includes combining stop visits from trips into pat-
terns and prerouting of transfers between stops. Preprocessing of data and the
loading processes are explained further in Section 3.2.5. There are also post-
processing steps in which the itineraries are constructed into a format that the
users receive. Additionally, it has been observed that when multiple itineraries
are fetched, some of the itineraries are objectively much worse than others. For
instance, one itinerary can take one hour in total while another one includes
five hours of waiting at a transit stop. Therefore, in the Digitransit project, we
have created a logic that filters out these "bad" itineraries from the responses.

The search range of stops from origins, destinations and in transfers is
limited as otherwise routing would be considerably slower, and more transfers
would have to be prerouted and stored in memory. However, this can in some
occasions mean that the optimal path, or any path, cannot be found, as it would
require to travel longer distances on non-transit modes. The search range is
limited by either maximum walking or cycling distance, or by a maximum
pre-transit time if car is used from origin.

OTP uses different heuristics for different purposes [76]. The first of the
three heuristics used by OTP is Euclidean remaining weight heuristic. It con-
siders the distance between the current location and the destination. It is
used both in street network routing and in transit routing. In street network
routing, it just simply calculates the distance between points and divides it
by the average velocity. When there is a possibility that a transit vehicle is
boarded, it uses the velocity in public transportation and adds the boarding
cost to the estimate. On the other hand, if the passenger is already on a public
transportation vehicle, it does not take the boarding cost into account again.

The second heuristic is Interleaved bidirectional heuristic. It is again used
for both street network and transit routing. It uses either maximum travel
distance limit, or a maximum pre-transit time limit, to confine the search area
depending on which unrestricted mode is being used. The heuristic is used for
interleaved search from two directions – from the origin towards the destina-
tion, and vice versa. As mentioned in Section 2.1.1, there are risks in doing
bidirectional search. Nodes should not be rediscovered, or else the search might
not be consistent and potentially the optimal path, given the limitations in pa-
rameters, cannot be found. This heuristic ignores the time-dependency of the
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graph, and all the wait times at transit stops are set to 0 as it is unknown when
the passenger will arrive to the destination when the search has begun. This
heuristic is used before the main graph search starts to find non-transit vertices
around the two locations, and lower bound weight estimates for them. Dur-
ing the main graph search it additionally explores the transit vertices, and the
estimates for remaining weight are based on the lower bound values gathered
during the pre-search.

The third heuristic is Trivial remaining weight heuristic which always re-
turns 0 as the remaining weight estimate, and it is not typically used during
normal routing. Interleaved bidirectional heuristic is the most suitable heuristic
for transit routing, as Euclidean remaining weight heuristic does not account
for the fact that sometimes it is better to travel slightly away from the desti-
nation before approaching it. Also, the Euclidean heuristic prefers transit too
much compared to walking as the difference in velocity is large. The Euclidean
heuristic is used for non-transit searches.

After an itinerary is found, it is compacted through two-phase reverse-
optimization. The goal is to find the latest possible departure trip from the
origin, and the earliest possible arrival at the destination. First, a backwards
search is performed to find the earliest possible arrival at the destination. Then
another forward search is used to optimize the departure time. Euclidean
remaining weight heuristic are used for this purpose. The process is shown in
Figure 3.1.

Figure 3.1: Compacting an itinerary. Copied from Mellemstrand and Gran
[19]. Copyright by Entur, Norway. Used with permission from Thomas Gran.

If it is possible to use public transportation modes, OTP is often able to
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find more than one itinerary. Once the first path is found, the trips used in
that path are banned and cannot be used in finding more itineraries [19]. This
process is repeated until OTP is able to find as many itineraries as requested,
or a timeout limit is met [19]. There are downsides to this approach. First,
it is not able to find multiple itineraries that purely use walk, cycle or car
mode. Secondly, it is sometimes desirable to reuse the same trip for multiple
itineraries that are otherwise different instead of using a completely different
route. Lastly, banning a trip of a route, but not the whole route, can lead to
an itinerary suggestion, where a user is told to wait extra time at a stop for
the next departure of a route because the earlier departure was already used
for another itinerary.

Routing with intermediate places, or via points in other words, is done
by searching a route from point A to B and then another search from point
B to C that starts by default at arrival time to B. These two searches are
then combined into one itinerary where the two parts are connected by a leg
switching edge. In the Digitransit project, we have added a possibility to query
an itinerary where user spends a certain time at an intermediate location, and
the time is then taken into account while traversing the leg switching edge.

The implementation of OTP’s routing has become quite complex and its
performance is not fully optimized [76]. Understanding and troubleshooting it
is a time-consuming process [19]. Partly due to the complexity, routing contains
many known and unknown bugs. Whenever a new functionality is added, that
requires the core classes used in routing to be edited, there is a high probability
that new bugs are introduced.

3.2.3 Supported data
OTP was originally built to support GTFS format static transit data. Support
for GTFS Realtime was added later to provide realtime transit data [61]. Entur,
in Norway, has been adding support for Transmodel and SIRI in their version
of OTP [85]. In the future, those formats might be more widely used in OTP.

OTP uses OSM as a street network information source [61]. Only a small
subset of tags is used for any purpose. For example, OTP uses the highway tag
to determine how suitable a way is for bicycles [61]. On the other hand, if a
way has a tag with carriage key, OTP will not use nor store this information in
any way as horse carriage routing is not an available traverse mode in routing.
It is possible to configure different rules for ways with different tags for all OTP
instances, but also to configure specific rules, which can be enabled for an OTP
instance [67]. These custom rules can be used to apply country specific speed
limits for road types, for example.

Elevation data can be included in OTP [61]. This data is applied to street
edges and it affects velocity on, and use of, street edges in routing [61]. It is
possible to include elevation data for non-transit legs in itineraries returned
from OTPs APIs.

OTP has support for bicycle-sharing networks with stations [61, 67]. Bicycle
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and car parks can be added to OTP as a static import, or through an updater
that keeps fetching new data from an API. There are many different updaters
that can be used for setting up stations and updating their information. Most
of them are for data formats that just a single operator uses but there also
exists support for fetching data in GBFS format.

3.2.4 Traverse modes
Since OTP is a multimodal routing system, it supports multiple traverse modes
[16]. OTP takes advantage of the extended GTFS route types to deduce transit
traverse modes from data [67]. Although, it uses just a limited number of types
and does not differentiate high speed rail service from normal rail service, for
instance. There are multiple ways to define traverse modes used in routing. The
modes can be chosen individually, or through collections of modes [67]. Transit
and non-transit modes can be combined together. For example, if bicycle and
train modes are chosen, it is sometimes possible to board a train with bicycle,
if that is allowed in GTFS data. Additionally, the behavior of bicycle and car
modes can be altered through use of qualifiers [67]. These qualifiers can enable
routing that uses bike-share or car parks, for example. There are limitations to
how different traverse modes can be used together. For instance, a car park leg
is always before a transit leg and a bicycle leg cannot exist in same itinerary
with a car leg.

OTP uses elevation data to adjust walking and cycling speed on street
edges, if such data is available. For cycling, there are different optimization
types available which change what factors affect the cost of traversing street
edges, and in what proportions. Cycling velocity—with elevation changes taken
into account—is one of the factors. Others consider the safety of the streets
based on the tags used on the way objects in OSM data, and the required work
in cycling on different angle slopes. For walking, OTP does not have different
optimization types. OTP avoids walking, cycling and driving, by default, and
the cost is twice as high as compared to equal length travel on transit. There
are also other costs attached to these modes. For instance, walking on roads
where cars can drive also increases the cost by default.

Wheelchair accessible routing is supported in OTP and it can be enabled
in a routing query [61]. The mobility restrictions need to be considered when
traversing edges. Routing on edges that have slopes steeper than the limit—4.8
degrees—in Americans with Disabilities Act (ADA) for wheelchair ramps is not
allowed[81]. Also, it is possible to use the wheelchair tag in OSM to define that
something is not accessible on a wheelchair and OTP respects these values, by
default. Additionally, GTFS specification allows, and OTP obeys, definition of
wheelchair accessibility information to stops, stations and trips [39].
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3.2.5 Data loading and preprocessing
To achieve an acceptable performance, and to combine data from different
formats into Java objects that can be processed in memory, OTP relies on
data loading and preprocessing before requests from users can be handled.
During this process, GTFS, OSM and elevation data are loaded into models
and the available transfers and their walk paths between stops are searched.
The result of the preprocessing is a graph. It can be serialized into a graph
object file, which can be loaded into memory later when OTP server is started.
Alternatively, the server is started directly after the graph build and the graph
is not stored into a file between those two lifecycle phases. When the server
starts, it first creates a search index for objects in the graph before accepting
requests.

Since it cannot be trusted that data does not contain errors, OTP does
data validation while building a new graph, which can lead to some parts of
the data being dismissed or edited. For example, a trip with only one stop does
not make sense and is ignored. On the other hand, if two routes have identical
names, OTP adds uniqueness to the names instead of removing the routes.

It can make sense to use a wrapper project for building a new graph for
OTP. This way downloading of latest data can be automated, additional data
validation and modification steps can be added, and routing with real data can
be tested. At the Digitransit project, we have created https://github.com/
hsldevcom/opentripplanner-data-container for this purpose.

At the beginning of each build, it downloads the data from the previous
successful build. This data is used as a seed. If download or validation fails
for a new version of a data set, the seeded version is used instead. To validate
a GTFS or an OSM data set, it uses OTP to build a new graph individually
for each set, and if the build is successful, the data is usable. Then it edits
GTFS data based on data package specific rules, if they exist. For example,
the VR Group’s agency identifier is edited to be "VR" instead of a number. A
feed identifier, which is not part of the official GTFS standard, is added to feed
information in each GTFS data set because OTP uses it to make GTFS related
identifiers unique. For some data sets, GTFS stop coordinates are replaced with
coordinates from OSM when feasible. Lastly, it builds a graph or graphs with
a graph specific configuration file and with the new data sets supplemented
with seeded data. Routing is tested before deploying the new graph and data,
unless a test has failed. The implementation for the routing tests is explained
in detail in Section 5.2.

3.2.6 Configuration
There are five main ways to configure OTP and some of them overlap. It
depends on the context which is the optimal way to configure the system. What
configuration options are available depend on if OTP is building a new graph, or
if the server is running [67]. The scope, that the configuration affects, depends

https://github.com/hsldevcom/opentripplanner-data-container
https://github.com/hsldevcom/opentripplanner-data-container
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on what configuration option is used. The different configuration options and
how values are overridden is shown in Figure 3.2.

There are default values stored in variables in OTP’s code. Some of those
values cannot be changed through any other means than by editing the code.
However, the default values in code will be ignored if a valid value is provided
in some other configuration option. These default values exist so that every
variable does not need to be configured outside of the code. If the goal is to
configure OTP in a way that affects all OTP instances by default, this is the
best way to do it. Some of these variables affect both graph building and a
running OTP server, others affect just one lifecycle phase.

Figure 3.2: Configuration inheritance. Parameters are overridden in the direc-
tion of an arrow.

Whether OTP is started to build a new graph, or to run the server, is chosen
based on command-line flags used when launching OTP [72]. For example, the
flag "–build" indicates that OTP should build a graph [72]. These values cannot
be overridden through other configuration means.

There are two configuration files that can be used to configure OTP at dif-
ferent phases of the lifecycle. First, a build configuration file affects building
of a graph [67]. For example, what implementation should be used to interpret
fare rules and attributes from GTFS can be defined in this file [67]. Secondly,
a runtime configuration file is used to configure OTP server [67]. This file can,
for instance, be used to define what realtime data updaters should be used
and to set routing parameters [67]. If there is a need for OTP server instance
specific configuration, or for variables that should not be defined through other
means because of technical, security or usability reasons, a runtime configura-
tion file should be used. New configuration options have been added to both
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configuration files in the Digitransit project. For example, a method to prefer,
or avoid, certain traverse modes over others has been added.

Finally, users of OTP’s API can use a limited set of arguments in requests
that override variables specified in code and in a runtime configuration file
[67]. These arguments only have an effect in the scope of the request. This
way of configuring OTP’s behavior is especially necessary to exist in order to,
for example, configure on request basis what are the origin and destination
coordinates, and when is the departure or arrival time. Additionally, request
parameters can be used to change routing’s behavior, and the routing response,
based on user’s preferences instead of using the default values defined in code
or in a runtime configuration file.

3.2.7 APIs
OTP has two APIs, a newer GraphQL [43] API originally developed in the
Digitransit project, and a legacy, but still widely used elsewhere in the world,
representational state transfer (RESTful) API [16, 66]. These APIs are in our
context only used for reading data. Modifications done to the routing graph in
a routing request should not persist outside of the scope of the request.

The APIs allow users to make routing requests but also to query transporta-
tion network information. For example, stops, routes and trips can be fetched
from the APIs. Therefore, OTP’s APIs can even be useful for systems that do
not need itinerary suggestions. As OpenTripPlanner has been used for various
purposes all over the world in different contexts, the RESTful API contains
request paths that do not work anymore, contain vulnerabilities or allow heavy
transport network analytic queries which are unwanted [66, 77].

3.2.8 Integrated testing, debugging and logging features
As a part of the OTP codebase, there are unit tests written with JUnit [14],
which is a popular unit testing framework for Java projects. Surefire [26] is used
as the test runner when tests are automatically run as part of the process to
create an executable Java ARchive (JAR) file [68]. However, it is also possible
to skip running tests while generating the JAR file [68].

In addition to the external debugging tools one can use as part of the
development and testing process, there are also graphical interfaces written to
OTP that can provide with additional help. First, there is a journey planning
website that can be used when OTP server is running [16, 61]. It can be used
to search itineraries from OTP, display a summary of them and visualize the
routes on top of a map layer [61]. There are also separate map tiles, which
can be fetched from OTP, that visualize street network graph’s wheelchair
accessibility, cycling safety factors or traverse mode permissions (walk, bike
and car) [61, 79]. These layers can be shown on OTP’s own trip planner
user interface (UI), or be fetched to some other UI [61, 79]. Lastly, there is
a visualizer component that has various features, some of which do not work
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Figure 3.3: OTP’s trip planner user interface (UI) with bicycle safety factor
visualization shown

anymore. One of its core features is an animation of how edges are explored
during routing.

OTP logs warnings and errors in standard output (stdout) and standard
error (stderr). This happens both, during the graph build, and when the server
is running. In addition, in the Digitransit project we have integrated Sentry, an
error tracking software, to send information regarding error events to Sentry’s
servers where the events are categorized [30].

OTP uses annotations in graph building to mark potential issues faced
during graph building [79]. A summary of these is printed at the end each
build [79]. When a new graph is built for OTP with the wrapper project, the
stdout and stderr logs of the data build are stored, including OTP’s logs. The
data build also outputs lists which GTFS stops were connected to OSM stops
during the build, and those which were unconnected.

3.2.9 Performance factors
The resources which are available for the routing software, OTP in this case,
affect the performance and quality of routing. More suitable hardware allows
higher throughput for processing queries, and the quality of routing is directly
affected by performance as it is necessary to have some sorts of timeout limits
for itinerary search times in most use cases. There are three resources that affect
OTP’s performance during runtime: network, memory and central processing
unit (CPU). Out of those three, it is known that memory and CPU are more
likely to be bottlenecks than network.

There are some hard limits for the host that the routing system is running
on. For instance, graph should reside in memory but it cannot be loaded there
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Figure 3.4: OTP’s visualizer UI after a processed itinerary search

if there is not enough memory allocated for Java [72]. Similarly, there needs
to be enough processing power to handle routing requests. After a critical
point is reached and routing is functional, throughput can be improved by
scaling up the resources horizontally or vertically. In this context, horizontal
scaling means adding more CPU cores of the same quality. On the other hand,
vertical scaling means that the resource is replaced by a product with better
performance. In practice, this means memory with faster access times, or CPU
with better single-thread performance, for example.

Naturally, the performance can also be improved by optimizing configura-
tion or code. For example, the maximum walk distance limit can be reduced
to allow faster search times. Data model can be minimized so that it fits in
less space, and the memory layout can be optimized to allow better access
times from memory and from CPU cache. Code can be refactored to use less
operations processed with CPU and to allow processing of more operations in
parallel. Throughput of routing can also be improved by duplicating routing
instances and putting them behind a load balancer.
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Methods

4.1 Common research context
For production use of OTP, there are three sets of configurations and data—
both static and realtime—used in the Digitransit project. One is meant for
HSL area, Greater Helsinki in other words, use. The second one, referred as
Waltti, is for 16 other cities, and their surrounding areas, in Finland. The
final one contains almost all the data that the other two have in use, but also
additional data from, for instance, the national railway company VR Group.

Figure 4.1: Simplified routing instance architecture

These are typically the different types of OTP instances we want to test
and have data for and from in the Digitransit project. Therefore, those are in
the focus in this thesis. Realtime data was not used in the test setups here as
it adds a variable that cannot be easily controlled. However, when data that
originated from the production instances was used, it was potentially affected
by the use of realtime data.

4.2 Processing of known faulty queries
Sentry groups errors by their fingerprints [31]. Additionally, it is possible to
see how many of the events for the same issue had some value for certain "tag"
[32]. It can be checked, for instance, if certain issue occurs more often in OTP
instances configured to use certain graph than in other instances. However,
this functionality is slightly limited, and therefore, it makes sense to fetch the
data from Sentry through its API and process the data elsewhere. To this end,
a tool was created, and its implementation and usage were documented.

33
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The Sentry event handling in OTP had been modified in the Digitransit
project earlier so that the routing parameters, and debug data produced by
OTP, are sent to Sentry when no itineraries are found for a routing query. A
sample of these events was then fetched from the API with the tool created
for this study. This data was used to group and visualize the parameters that
were present in those queries. Additionally, a sample of the queries was resent
to OTP to see if it was still unable to find itineraries. If the problems could be
reproduced, the potentially causes for the issues were searched.

Before grouping of parameters from queries was started, known patterns
that can cause no itineraries to be found were identified. Then queries that
most likely failed due to those patterns could be programmatically filtered
out. That by itself is a useful process as if individual queries are examined to
pinpoint problems, browsing events with known problematic parameters is not
desired.

Parameters from these faulty queries can be grouped by exact values or
through fuzzy logic. For example, there are only limited number of options for
the maximum number of transfers. On the other hand, for some parameters
there are too many options to group them by exact values. Those parameters
with only a limited number of options available, or in use, were combined into
sets of combinations. The total number of combinations and the number of
occurrences for each combination were calculated.

Coordinates that are relatively near each other were clustered, and those
that could not been clustered were stored as outliers, so it would be potentially
possible to see if there are larger areas that cannot be accessed because of errors
in data or code. The coordinates and coordinate clusters were visualized. QGIS
[25] was used to this end.

The overall goal was to focus on identifying and fixing issues that still
existed when the events were fetched from Sentry. Some of the events were
potentially not relevant anymore as the data or code had been changed since
then, and the underlying problems had been fixed. Therefore, data from the
date when the issues were attempted to be produced was used instead of the
data from the date when a particular event was generated. This also simplified
the process as it was not required to test against multiple versions of OTP.

The hypothesis was that identifying issues through visualization and group-
ing is slightly uncertain. However, manual examination of the queries that were
left after the filtering was expected to yield results.
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Figure 4.2: Context for studying individual events

4.3 Routing quality benchmarking
To enhance understanding of routing’s quality and to track how it evolves, met-
rics are needed to measure it. Additionally, a way to benchmark how different
versions of a routing system, or even completely different routing systems, com-
pare against each other in terms of these metrics is required. The differences
between versions can be in code, how they are configured, or in the data they
use. Therefore, a software that can automatically, or semi-automatically, be
used to benchmark routing based on different metrics is needed.

In this study, a quality benchmarking tool, and the changes done it, are
documented. Additionally, its usage for three use cases is described through
practical examples. First, to support development work. On top of other
testing methods, it can provide information that adds confidence in that the
changes are working as intended, or alternatively it can bring forth potential
issues. Secondly, it can be used as part of a data building process to test that
the quality of routing has not dropped. Lastly, to aid the process for choosing
how a router should be configured. Information on how changes in configuration
affect individual routing results, and results overall, should be gathered before
it is possible to estimate what is the "most optimal" configuration or set of
configuration profiles. The usefulness of this approach was tested by changing
a small set of parameters, which affect the cost of traversing edges, and the
results were visualized and analyzed.

Information was gathered on what origin and destination coordinates users
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of journal planner websites have used. This data comes from Matomo, a web
analytics software that was already in use in the Digitransit journey planner’s
UIs [17]. This information is useful as it provides insight into what should be
tested if the focus is on improving user experience. The coordinates are then
used in the benchmarking tool to mimic queries from users while testing the
quality of routing.

For this study, data from 14 of these UIs was used to test routing of OTP
instances. The chosen UIs are all websites and they use the same UI project
that is merely configured slightly differently for each instance and they all use
OTP for routing. Each site is used in different parts of Finland, and therefore,
the coordinates from users should be mostly limited within the geographical
area of the intended area for each UI. Data from one of the sites, https:
//reittiopas.hsl.fi, was used to test HSL routing instances. The data from
the remaining sites was used to test Waltti and Finland OTP instances’ routing.
For the latter, the data from HSL area was also utilized.

Figure 4.3: A screenshot from https://reittiopas.hsl.fi after a successful
itinerary search.

https://reittiopas.hsl.fi
https://reittiopas.hsl.fi
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Results

5.1 Faulty queries filtered, visualized and grouped
The tool that was created for fetching and processing Sentry events is https://
github.com/hsldevcom/digitransit-sentry-analytics. It processes the data
and generates a summary of the error events. In addition, it creates a file
containing coordinates from individual queries, and another one for coordinates
of clusters, and outliers, created based on the coordinates from queries. It stores
the number of queries that used each coordinate, or coordinates belonging to
each cluster, together with the coordinates.

A small number of known reasons to why no routes are found sometimes
were identified. Events that were potentially caused by these known issues were
automatically filtered out from the fetched data as there is more interest for
the unknown causes for errors. Queries which had invalid coordinates as either
origin or destination were removed because no itineraries can ever be found for
these. If a search has coordinates too close to each other—30 meters was used
as the limit—it can cause them to be projected on the same edge which causes
an error in routing, and therefore those entries were filtered out. Coordinates,
which were clearly outside of the areas with good data coverage for each routing
instance type, were removed. Also, because it is not guaranteed that the GTFS
data includes historical data, queries that had the aimed arrival or departure
time over one day in the past from the date when the event was triggered were
removed. Fare restrictions can cause routing to fail because it is possible that
no routes will be found with the selected fare, and therefore those entries were
discarded. Lastly, queries which allowed usage of transit modes, but did not
include bus, were left out since stops for other modes are not as widely available
and it can cause routing to fail because the search range for stops from origin
and destination is limited.

A sample of 10000 sentry events regarding no itineraries found in routing
was fetched. These events were generated between November 5, 2019 and
November 27, 2019. Of the error events, 13.6% were from the Finland routing
instances, 51.1% were from the HSL instances and 35.4% were from the Waltti
instances. In these events, 53 combinations of routing parameters were used.
The result of the filtering process is presented in Table 5.1.

The different origin and destination coordinates used in different routing
instance types were clustered. Summary of the coordinates, clusters and out-
liers can be found in Table 5.2. Coordinates from all routing instance types
are visualized in Figure 5.1. A visualization of the clusters and outliers can be
found in Figure 5.2.
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Category Occurrences Percentage of events
From or to has invalid coordinates 3380 33.8%
From and to are close to each other 2440 24.4%

Coordinates are outside of router’s area 392 3.9%
Search time too much in the past 1820 18.2%

Ticket limitation 22 0.5%
Bus not in public transportation options 1110 11.1%
At least one known potential cause 9000 90.0%

Other causes 997 10.0%

Table 5.1: General Sentry errors summary from November 27th, 2019

Category Coordinates Clusters Outliers
HSL origins 386 21 46

HSL destinations 355 21 34
Waltti origins 235 24 76

Waltti destinations 233 26 104
Finland origins 97 6 70

Finland destinations 97 11 66

Table 5.2: Coordinates, clusters and outliers

A sample of events left after the filtering was randomly chosen for closer
examination. However, 10 events from each routing instance type were included
so it could be examined if there are major differences between events from
different instance types. For each event, a routing request was created with
the stored parameters. Those requests were then sent to OTP. If no itineraries
were found, the potential root cause for it was searched. OTP version and data
from November 27th, 2019 was used for this testing as it was the date when
the data was fetched from Sentry. The results are shown in Table 5.3.

Category Occurrences Percentage of events
Could not be reproduced 9 30.0%

From and to are close to each other 5 16.7%
No stops within search range 15 50.0%
Potentially unknown issue 1 3.3%

Table 5.3: Sample events categorized
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Figure 5.1: Coordinates visualized with QGIS on top of an OSM map layer.
Map layer is c© OpenStreetMap contributors
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Figure 5.2: Coordinate clusters around Helsinki visualized with QGIS on top
of an OSM map layer. Map layer is c© OpenStreetMap contributors
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5.2 Routing quality benchmarking tool

5.2.1 Implementation
We have continued development of OTPQA [74], a project written in Python
and originally started by OTP developers in 2012 for the purpose of testing
OTP’s routing, as part of the Digitransit project in a fork under HSLdevcom
organization in Github. The project is open-source and licensed under GNU
General Public License v3.0 [69].

The project originally only contained a method to generate coordinates
based on GTFS stop locations and highway locations from OSM data. Sup-
port for fetching origin and destination coordinates from Matomo has been
developed in the Digitransit project to replace the existing way of generating
coordinates. Also, a developer from the Digitransit project has integrated into
this process the clustering of the fetched coordinates that reside close to each
other into one coordinate. The coordinates, that are clustered into one co-
ordinate, each have a weight based on how many times the coordinate have
been used in routing, and that is used in deciding the location for the cluster
coordinate. These coordinates should more accurately correspond to what the
users will query, and therefore those are used for every use case of OTPQA in
the Digitransit project and in this thesis.

The coordinates were then used for building requests, which were later
sent to fetch itineraries from OTP. As it is known from which website each
coordinate is from, the requests are grouped under websites that the coordinates
originated from. These collections of requests are linked to an instance type, or
to instance types, that should have data for the areas of these coordinates. This
way different sets of requests can be used against different routing instances
and to pinpoint the geographical area in which the routing is not working well
enough.

Another feature added as part of the Digitransit project is a new way to
compare two sets of routing results. It can be used for benchmarking based on
various metrics. As a prerequisite, the two versions of OTP need to be profiled
with another component of OTPQA that already existed with the project.
Prior to this thesis and during it, this component has been modified to be more
configurable, and to output more data that can be used in comparisons. The
profiler was used to send routing requests to an OTP server that was located on
the same host, as sending queries to another host adds an unnecessary variable
that can change results. The profiler outputs a run summary file which can
used for the comparison.

Metrics for benchmarking were chosen based on what information is avail-
able from OTP’s output, and what is needed for measuring quality. The list of
metrics that are used in comparing each itinerary search result is listed below
in the order they were added and from those, the first two metrics were added
prior to this thesis by another developer.
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1. The first itinerary’s total duration (s)

2. Was an itinerary returned (true/false)

3. Number of returned itineraries

4. Number of different traverse modes included in one response

5. Number of legs in the first itinerary

6. Average walking velocity (m/s)

7. Average cycling velocity (m/s)

8. Time it took to perform the itinerary search (ms)

9. Number of timeouts during the itinerary search

10. Number of trips within the first itinerary

The comparison outputs a summary of differences regards to the chosen
metrics between the two input run summaries from profiling. It prints a line
of information about the differences for each metric used in the itinerary level
comparison if the difference between the two input files was above a threshold,
which can be configured for each of those metrics.

The first two metrics are the only ones that are enabled by default. Others
are disabled by default and can be enabled with use of command-line flags.
This way the focus can be put on the information that is relevant for the QA
context at hand. For instance, if only transit related code is changed in OTP,
the average walking and cycling velocities are not particularly relevant metrics.
Using extra metrics increases the amount of output from the comparison. Al-
though, otherwise it does not cause any harm, and the comparison is always
a quick operation compared to profiling. Different magnitudes of change can
be observed by changing the thresholds. For example, if it is desired to find
the edge cases where the average cycling velocity has changed considerably, a
higher threshold can be used. If the focus should be put more broadly on all
changes in cycling velocity, a lower threshold is used.

We have created as part of the Digitransit project a wrapper script for the
profiling component that can be integrated into a test pipeline. It runs the
profiler with requests generated for routing instance types given as parameters.
If it considers over 10% of the queries to have failed, it exits with error code.
The query can be considered as failed if no itineraries are found. This script
also produces a report that lists queries for each test set, if itineraries were
found for those queries, and the success rate of tests per test set. When new
data is fetched from Matomo, this component is used to test that the data is
still usable for testing routing and does not cause too many itinerary searches
to fail. Only after that is validated, the new data can be taken into use for all
benchmarking use cases.
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Figure 5.3: Process diagram for OTPQA’s two benchmarking methods

5.2.2 Case 1: tracking quality during development
OTPQA has been used to support development of OTP in the Digitransit
project, and to review changes done by external developers. One example of
such usage was a review of a change to how walking velocity was calculated
considering elevation changes. The algorithm was changed to use Tobler’s
hiking function. The function’s formula is

(5.1)W = 6e−3.5| dh
dx

+0.05|

where W = walking velocity and dh
dx

= slope [83]. This means that the maximum
walking velocity is on downhill where the slope is -2.86 degrees. OTP then
calculates edge’s effective length using this velocity. The effective length can be
at maximum three times the normal length to avoid issues caused by inaccurate
data. The time and cost it takes to travel an edge are calculated using the
effective length and the normal walking velocity.

OTPQA was used to check what the average walking velocity was after
this change. It was observed that the average walking velocity went up from
1.10 m/s to 1.46 m/s when the suggested walking velocity in the request was
1.22 m/s. This result was not expected as the velocity should at maximum be
20% faster compared to the velocity on level ground, and the itineraries do not
consist of walk legs that are purely on the optimal angle downhill. After this
was noticed, the algorithm was shortly fixed to output more realistic walking
speeds on edges.
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5.2.3 Case 2: QA as part of graph build automation
OTPQA was integrated into our process for building new graphs with updated
data for the use of OTP instances in our development and production envi-
ronments. At the end of the build process for each graph, the graph is loaded
into OTP together with a runtime configuration file, which could also have
potentially changed since the previous successful graph build. A set of 200 test
queries is then run per each site that is relevant for testing the graph using
the clustered coordinates. The departure time for the queries is 14:00 local
time one week from the moment of the test. If the date is on weekend, or on a
day with special public transportation arrangements, one day is added to the
date until it is a normal working day. If the test fails because less than 90% of
the queries get itineraries as response, the graph build has failed, and the new
graph is not deployed.

The most common problems that the test can catch relate to quality of
GTFS data. Publishers of the data have either made mistakes while updating
the data that reduce the available departures, or they have not yet added new
schedules while old ones are expiring. The test rarely fails due to issues in OSM
data, or in configuration.

5.2.4 Case 3: configuration optimization
Finding an optimal routing configuration is a difficult task. Often the demand
for changing configuration arises from witnessing an itinerary suggestion that
does not correlate well with what was expected. It might be possible to get the
desired suggestion after changing a parameter, or a set of parameters. How-
ever, as a side effect some other itinerary suggestions are not optimal anymore.
Therefore, it was tested how statistics from OTPQA could be utilized in con-
figuration optimization.

In this case study, the value of a walk reluctance parameter was changed in a
HSL routing instance. It is a multiplier which affects the cost for walk legs, and
it is used for controlling how much less desirable walking is compared to time
spent on public transportation. The "ground truth", or the benchmark in other
words, used for this study was the code, data and configuration—can be found
in Appendix A.1—from production HSL routing instances without the use of
realtime data. This version of OTP was profiled and all the other versions of
OTP were compared against the results from that profile run. Each version was
profiled by doing 800 routing queries with walk and transit traverse modes. The
value of the walk reluctance parameter was increased and decreased by 0.25 at
a time. The focus was on two variables: duration of an itinerary and number
of transit vehicle boardings.

First, only the walk reluctance value was changed. Then all the traverse
mode preference settings, which are normally in use, were removed from the
configuration and the same values for the same values for the walk reluctance
parameter were tested as in the first test case. Lastly, the traverse mode pref-
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erences were included again but an extra cost for boarding vehicles was set to
zero. Results were visualized on a Cartesian coordinate plane. A visualization
of the first and second case is shown in Figure 5.4 and a visualization of the
first and the third case is in Figure 5.5.

Figure 5.4: Effects of changing a walk reluctance parameter’s value from the
current value—1.75—shown on a Cartesian coordinate plane. Red points are
from OTP instances with otherwise normal configuration and green points are
from OTP instances configured to have no cost reductions and increases based
on traverse mode preferences. All points are results from comparing profile run
results from OTP instances with aforementioned configuration changes against
profile run results from an OTP instance with no configuration changes. x is the
number of itineraries with less duration with new configuration subtracted by
the number of itineraries with less duration with the benchmark configuration.
y is the number of itineraries with more transit vehicle boardings with new
configuration subtracted by the number of itineraries with more transit vehicle
boardings with the benchmark configuration.
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Figure 5.5: Otherwise same visualization as in Figure 5.4, but instead of green
points there are blue points, which are from OTP instances configured to have
zero extra cost for boarding vehicles.
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Discussion

6.1 Use of known errors in QA
The project that was created for processing Sentry events made it more feasible
to examine individual queries that were failing, but also the grouping and
filtering of results is helpful in understanding the bigger picture regarding these
errors. For instance, the percentages of error events that were generated by
each routing instance type differ considerably from the percentages of requests
going to each type. HSL routing instances handle 74.7% of all queries but
for the filtered error events, its slice of the cake was only 51.0%. Naturally,
the other routing instance types were proportionally more prevalent in the
error events. Finland routing instance type’s share of all requests became over
two times bigger from 6.7% to 13.6%. Although, there is some inaccuracy
in this comparison as no data is available on what percentage of all queries
are routing queries, but there are no known reasons to why the proportions
of routing queries from all queries should differ considerably between routing
instance types.

There are at least three important reasons why routing for these larger areas
had proportionally more failing queries than the routing for HSL area. First,
the coverage of public transportation in HSL area is far better than it is in
less populated areas. If there are no stops with available departures near the
intended origin or destination within the maximum walking or cycling distance
limitation, routing will fail. Secondly, HSL routing contains OSM data for a
smaller area and consumes less GTFS data sets compared to other routing
instance types. Often, the maintenance of the OSM and GTFS data for less
populated areas is not on the same level as it is for HSL area data. Consuming
many GTFS data sets can create problems because despite using the same
specification, the data is not always modeled the same way and more attention
is paid to making sure that one larger data set is being consumed as intended
compared to a set of smaller ones. Lastly, Finland’s graph is more complex than
HSL’s which slows down routing and occasionally leads to timeouts. However,
the timeout limits have been configured to be higher for the nationwide routing.

The used filtering criteria varies in probability to cause issues in routing. If
at least one of the coordinates is null, this causes routing to always fail. On the
other hand, if a user has selected only tram and walking as possible traverse
modes, it can be the reason why no routes were found if at least one of the
coordinates is far away from a tram stop. However, it is also possible that the
coordinates are near tram stops and the reason why no routes were found is
something else.

47
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It would be possible to go through a part of the queries that were filtered
out solely because of only one criterion and figure out if that was really the
reason for why the query failed. Then it is possible to derive the probability
for each criterion to be the reason for a query to fail. Instead of always filtering
out the queries that match at least one criterion, a probability could be set for
the query to be faulty because of one criterion, or a set of criteria if the query
would have been filtered out because of multiple reasons. While generating the
report, a limit could be set for what the probability should at least be for a
query to have failed due to a known reason before filtering the event out. The
probability would be a discrete variable with only a limited number of possible
values due to a small number of criteria used in filtering.

Even with the current setup, there are more than enough of error events to
go through manually. Therefore, putting extra effort into filtering less events
out is somewhat questionable. Although, keeping more events for manual
checking would increase the heterogeneity of the events. For instance, now
events with certain combinations of traverse modes are filtered out because
they are estimated to have failed due to no stops being near origin or destina-
tion. Hence, possible issues specific to certain combinations of modes cannot
be found through this method.

There is clearly room for improvement when it comes to the tool. The
current level of filtering is helpful but not enough. There are many ways to
tackle this issue. For instance, the arbitrary minimum distance limit between
origin and destination to get rid of events caused by points being too close to
each other could be increased, or alternatively information could be fetched
from OTP that this was indeed the cause for the failure. The number of events
left after filtering that have failed due to the distance from a coordinate being
over the maximum walking or cycling distance away from the nearest stop
could be lessened. The polygon area, or areas, used to filter out events cover
large areas with no stops nearby. A geographical information systems (GIS)
software could be used to limit the area so that there is always a stop closer
than x meters away. However, the difficulty is that the maximum walking or
cycling distance can be configured to be different in each request. Although,
the number of different values for this variable in the queries left after filtering
was only nine. Therefore, it is reasonably feasible to maintain, or generate at
runtime, a set of polygons for this purpose. Another potential issue is that
this would cause areas to consist of large number of polygons which would slow
down the point-in-polygon calculations done to figure out if an event should be
filtered out.

From the small sample events that were manually examined, it became clear
that there are events which cannot be reproduced through querying itineraries
from OTP with the stored parameters. More research should be done into
figuring out the cause for this. There are more than one potential root cause.
Some of these events could have been triggered because the OTP instance
that was handling the query was under heavy load and the search timeouted.
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OTP does return information on if the itinerary search was stopped due to a
timeout limit. However, these events should not be filtered out for this reason
as queries that take long to process provide useful information for improving the
performance. Instead, maybe these queries should be grouped for inspection.

Another reason to why an issue could not reproduced in routing is that
the data was potentially different. Static data from the date an event was
generated on could be used to test the reproducibility of an event, if the goal
was to pinpoint the reason for why the issue could not be reproduced with
the data from a future date. However, it is nearly impossible to test with
the realtime data that was in use at that moment because there can be many
updates even within a second and it is not known which of those the routing
instance has successfully received.

The routing parameters used in attempts to reproduce the events did not
necessarily match the parameters used during the original search. More pa-
rameters should be passed from OTP in the context information, and those
should also be taken into use. For instance, information regarding possible in-
termediate places was not stored in the filtered events and it is already known
that there are bugs in such itinerary searches.

The grouping of coordinates did not yet prove to be helpful. This is partly
due to the sample size of events but also because not enough effort was put into
optimizing it. For instance, there is no clear reason why we origins and destina-
tion should be separated for clustering. It should not matter if the coordinate
is an origin or a destination in debugging potential issues in OSM network as
there are only minor differences when it comes to the traverse direction in the
way OTP interprets OSM data. Separate clusters were created from each rout-
ing instance type as the availability of transit data is different in those types
and lack of data can cause queries to fail. However, the OSM data should be
the same for the coordinates from different routing instance types as coordi-
nates outside of the OSM area in use are filtered out. Therefore, clustering
with combined coordinates from all routing instance types could be attempted.

In theory, Sentry could be used more for reactive problem solving through
usage of its API together with some scripting. One of the core features of
Sentry is to alert when there are new issue types. However, if a new issue, that
causes no itineraries to be found, is grouped under an existing issue type, it
does not raise a red flag unless it affects the total number of errors for that
issue type dramatically. If errors within an error type can be categorized in
an external component, an alert can be sent from there to developers to take
a closer look at a potentially new or trending issue. Another option would be
to use more exception types in OTP so the events would automatically be put
into different issue types.
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6.2 Quality benchmarking
The structure of the data in Matomo is not universal to journey planner UIs,
and to successfully fetch data from Matomo with the scripts created in the
Digitransit project, one would have to either use the Digitransit UI [47], or copy
its behavior for use of Matomo events and Uniform Resource Locator (URL)
query strings. This is not ideal and makes copying the work documented in
this thesis difficult for others, but this work can be used as an inspiration for
fetching coordinates from a similar data source.

The usage of OTPQA as part of the development process, which was out-
lined in Section 5.2.2, has been found to be useful. However, it is slightly
inconvenient to use because it required manual work and time. It is only used
when there is not enough confidence otherwise that the quality routing is at
the expected level. Ideally, this process could be more automated. If it was
more convenient to use, it would be used every time changes are done, and
unintended changes to the quality of routing could be prevented with more
certainty.

In theory, after some modifications, OTPQA comparison feature could be
integrated into a continuous integration (CI) tool used for checking pull requests
done to OTP repositories in Github, or as a separate process that gets triggered
by a new pull request. Then it could be observed how a pull request would
change routing’s quality in terms of the available metrics. However, there are
some challenges attached to it. First, the performance of the machine where
the profiling is done should be stable – machines used by CI platforms are often
not stable enough. This problem could be circumvented by doing the profiling
and comparison on a remote machine as a separate process. Additionally, each
routing instance should be tested with relatively up-to-date data that includes
data types that should be supported by the instance at hand.

For the second example case described in Section 5.2.3, the reason for pick-
ing a test date one week in the future from the current date, in data loading
tests, was to a get a confirmation that the routing still works with the data
then. This does effectively stop new graph, which is extensively broken, from
being deployed in most cases. However, there is a potential risk that the data
is valid in the future, but not for the next 6 days following the build. Addi-
tionally, if the routing would work perfectly fine for the next 6 days but not for
the days after that, the updated graph is not deployed. This potentially blocks
important updates for the near future from being deployed to production use.
An alternative method for testing could be to first test as it is done now, and
if the tests fail, send an alert about it and rerun tests by subtracting one day
from the date until tests pass or a hard limit, for how many days the data
should be valid for, is met.

There have been occasions where the tests pass during the graph build even
though there are extensive changes done to OSM data since the last successful
build. For instance, a large part of the street network could be removed, and
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OTP would still be able to find itineraries, but they would be using a more
limited set of streets which affects the itineraries significantly. Hence, it could
make sense to use the approach of comparing the new version of the router
against a benchmark version instead of the more limited comparison against a
static limit for success rate. Then a deployment of a new graph could be pre-
vented if the returned itineraries differ too much from the ones from the version
used as the benchmark. If larger changes are anticipated and acknowledged,
thresholds for an acceptable change can be fine-tuned for that build. Problem
with this approach would be finding optimal limits for how much the itineraries
can differ and what characteristics are monitored.

A limit for how much the change can be to "worse" direction before the new
version is considered to have changed "too significantly" was already added for
each metric. This feature has not been found to be useful as of yet because the
comparison is used to get more insight into changes, and for an approach that
resembles approval testing, not to potentially stop some test pipeline because
of the comparison has found the new version to be "worse". Most of the metrics
can change to either direction and be viewed as an acceptable change depending
on what was intended to change, and what side effects are acceptable. However,
if use of this benchmarking method as part of the graph building process is
developed, this can be used as the starting point.

In the third example of OTPQA’s usage, which was introduced in Section
5.2.4, a walk reluctance parameter’s value was changed, traverse mode prefer-
ences were removed and extra costs added for boarding transit vehicles were
set to zero. The results were visualized on a Cartesian coordinate plane.

When other parameters were unchanged, or traverse mode preferences were
removed, increasing the value of the walk reluctance parameter reduced the
duration of itineraries with all the values that were tried in this study com-
pared against a version of OTP that uses the current value. However, it seems
like the duration of the itineraries would increase if the value of the walk reluc-
tance parameter is increased too much. In theory, the duration of an itinerary
in a itinerary suggestion should have the lowest possible value when the cost
of traversing edges equals the time spent traversing those because then a path,
which takes longer to travel on than on an alternative path, should not be used.
The hypothesis is that increasing the reluctance parameter’s value, which is al-
ready over one, reduces the duration of the itineraries because it counteracts
the effects from use of other reluctance parameters and static costs attached to
events. Evidence towards this theory could be witnessed when extra cost for
boarding vehicles was set to 0 and then the duration of itineraries seemingly
reaches the lowest value below the current value of the walk reluctance param-
eter. It is also possible that there are issues in routing which cause it to behave
sub-optimally.

The increase in number of trips used in itineraries when walk reluctance
parameter was increased was unsurprising. Naturally, more vehicles will be
boarded on average to travel between two points if walking is avoided. The
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number of trips used in itineraries was highest when the extra vehicle boarding
cost was removed as there are less costs left related to public transportation to
balance out the effects from the walk reluctance.

When the extra cost for boarding vehicles was removed, itineraries had
shorter durations than the other two tested base configuration. This was some-
what expected as the added cost for boarding vehicles is relatively large and
traversing on transit is faster than walking. The most interesting finding from
this study was that the traverse mode preferences do not increase the duration
of itineraries considerably with most of the tested values. On the contrary,
when walk reluctance value was between 2.25 and 2.75, the itineraries had less
duration with the preferences compared against no preferences. The goal be-
hind the traverse mode preferences is to steer passengers into using train and
metro instead of especially buses for travelling, as metro and train are able to
handle more capacity efficiently.

In this small experiment, only few parameters were touched out of large
number of available parameters that affect routing. However, it would be pos-
sible to try changing more parameters separately or simultaneously. Also, the
focus was now on how reconfiguration affects the duration of the travel and
the number of itinerary boardings. However, more variables could have been
examined and a Pareto set, where the values are "optimal", could have been
searched.

The current problem in optimizing parameters, or code, in a way that affects
routing results is the lack of understanding on what an ideal itinerary suggestion
should look like in general. Experts might have a strong opinion that certain
itinerary suggestion is absolutely the best for travelling between points A and
B, but they might not be aware of all the available options and the preferences
of passengers are subjective. The current models for programmatically rating
itinerary suggestions are really simple compared to the complex preferences of
journey planner users.

What can be done with the parameter optimization of a routing system
that uses a single criterion—cost—is to find sets of parameters that can be
used as profiles. For example, if a user wants the fastest itineraries that the
router is able to give, a set of parameters found to be the most optimal for that
purpose can be used. Although, what is the most optimal set of parameters
depends also on the data that the router uses as, for example, the structure of
the transportation network can affect what is the optimal set [5].

In this thesis, the examples of how OTPQA can be used exist as a ground-
work for future research. To get a better understanding on the usefulness of
these approaches, a study should be conducted where the use of these methods
is tracked. For example, it would be possible to track how much time is used by
developers for QA, and how often potential issues are found through the usage
of these methods. Similarly, it could be studied how many times OTPQA, or
a similar implementation, is used as part of graph building process, how many
times it stops a new graph from being deployed due to actual issues or false
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positives, and how many times a faulty graph is deployed because the tests
failed to notice an issue.

There is a new project under development for comparing different versions
of a router, or different routing systems. Thomas Gran from the OTP developer
community started this project under the name of TrakPi [78]. It is designed
to have a better structure and more flexibility than OTPQA. It uses a concept
of key performance indicators (KPI) to track performance of a system based
on predefined criteria [78]. It is likely that at some point in the future this will
replace the use of OTPQA.

6.3 Future prospects for data validation
Many of the problems in routing are due to data related issues. Not all OSM
edits are useful. Quite often clearly unwanted edits are done to OSM. For
example, someone can modify a street name to be a curse word. It can take
a while before someone else spots it and reverts the change. Sometimes issues
are not that clear-cut. A way can be added to OSM with a slightly wrong
tag that causes issues in systems that consume the data. If it is known that a
certain routing query fails due to improper tag usage in an OSM object, that
object can be edited. However, ideally, the potential data issues should be
spotted before they start affecting routing results in production. Therefore, it
is important to have as many data validation steps before new data goes into
real use as possible without making the process too slow, complex and hard to
maintain.

At the Digitransit project, we do not have a local copy to which we would
hand-pick edits from the master data. Instead, the local copy is replaced with
a cut of the master data for the desired area, if OTP can load the new version
without major issues and the routing tests pass. Validation of every edit that is
done to OSM is a time-consuming process that requires experts who are solely
focused on it, if it is done manually. Therefore, it is not a feasible option for
smaller projects.

Facebook revealed that they are using machine learning to validate OSM
edits that they take into their local copy of OSM [21]. If this is turns out to
be successful in the long run, and more automation is added, it could make it
possible for smaller scale operations to effectively maintain a local copy of OSM.
Similarly, the GTFS validation tools can be improved to avoid regressions in
data.
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Conclusions

Testing and quality assurance (QA) of a public transportation routing system
is not a widely researched or documented subject. Many of the principles from
general testing and QA theory apply to this domain. However, how they should
be applied in this context is mostly learnt through experience. Therefore, there
should be more information available on this subject so that the efforts of
testing and QA could be focused to be more effective.

In this study, it was presented how known failed routing queries can be
programmatically preprocessed to aide reactive identification of problems in
routing. Additionally, use of benchmarking to assure quality during develop-
ment, data building and reconfiguration was studied.

The use of failed routing requests for tracking issues in routing has potential,
but the implementation presented in this thesis is not effective enough for
filtering out enough requests caused by known issues, and it currently removes
requests that should be left in for further examination. Only one request from
a sample of examined requests (N=30) could be ruled to have failed with a
high probability due to a potentially unknown issue. The use of benchmarking
for QA in routing has been found to be useful and as an important finding, a
preference of certain public transportation modes in the Helsinki metropolitan
area did not seem to cause the routing to find itineraries with considerably
longer durations or more transfers compared to use of no mode preferences.

More research should be done on the topic of how to measure quality of
itineraries. Currently, human expertise is required in judging if an itinerary
suggestion is considered to be "good" given the preconditions. The quality
benchmarking tool—OTPQA—described in this study provides a method to
compare a version of a routing system against the best version known of that
system. What is the best version still needs to be validated by a person or
group of people. The information gathered from the comparison can be helpful
in deciding if a new version is better than the other versions.

There are promising advances in the field of data validation. Use of machine
learning could lessen the errors in routing, as many of the problems are because
of issues in data. However, it can still take a while before machine learning is
taken into use smaller projects.

This thesis is focused on the use of OpenTripPlanner (OTP). However, the
concepts and ideas presented here can be applied to other public transportation
routing systems. One part of the quality assurance process could be to compare
different routing systems against each other to get an idea on which parts some
other system is performing better.
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Appendix A

First appendix

A.1 Configuration files
router-config.json
{

" modeWeight ": {
"BUS ": 1.2,
" SUBWAY ": 0.9,
"RAIL ": 0.95

},
" routingDefaults ": {

" walkSpeed ": 1.3,
" transferSlack ": 120,
" maxTransfers ": 4,
" waitReluctance ": 0.95 ,
" waitAtBeginningFactor ": 0.7,
" walkReluctance ": 1.75 ,
" stairsReluctance ": 1.65 ,
" walkBoardCost ": 540,
" walkOnStreetReluctance ": 1.5,
" carParkCarLegWeight ": 2,
" itineraryFiltering ": 2

},
" routePreferenceSettings ": "HSL",
" updaters ": [
]

}

build-config.json
{

" areaVisibility ": true ,
" staticParkAndRide ": false ,
" parentStopLinking ": true ,
" subwayAccessTime ": 0,
" osmWayPropertySet ": " finland ",
"fares ": "HSL",
" elevationUnitMultiplier ": 0.1,
" vertexConnector ": "HSL"

}
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