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The growing usage of mobile devices and the introduction of 5G networks have
increased the significance of network data for the telecom business. The success of
telecom organizations can depend on employing efficient data engineering tech-
niques for transforming raw network data into useful information by analytics
and machine learning (ML).

Elisa Oyj., a Finnish telecommunications company, receives massive amounts of
network data from network equipment manufactured by various vendors. The
effectiveness of data analytics depends on efficient data engineering processes.
This thesis presents a scalable data parsing solution that leverages Spark, a dis-
tributed programming framework, for parallelizing parsing routines from an ex-
isting parsing solution. We design and deploy this solution as a component of
the organization’s data engineering pipeline to enable automation of data-centric
operations.

Experimental results indicate that the efficiency of the proposed solution is heav-
ily dependent on the individual file size distribution. The proposed parsing so-
lution demonstrates reliability, scalability, and speed during empirical evaluation
and processes a 24-hour network data within 3 hours. The main outcome of the
project is an optimized setup with the minimum number of data partitions to
ensure zero failures and thus minimum execution time. A smaller execution time
leads to lower costs of the continuously running infrastructure provisioned on the
cloud.
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Chapter 1

Introduction

1.1 Motivation

The growing reliance on mobile devices for daily activities has led to an
explosion in mobile traffic. As an example, a telecommunications company
in the city of Shenzen, China, serves 10 million users and produces 5 TB of
data per day [1]. A study [2] suggests that the total mobile traffic is expected
to increase by a factor of 5 over the next six years. Based on the study, the
traffic is forecasted to reach 136 Exabytes (EB) per month by the end of
2024. Moreover, traffic generated by smartphones is projected to reach 95
% of the total mobile data traffic by 2024. As a result, conducting net-
work management routines such as fault mitigation, network configuration
updates, logging and security patching are becoming increasingly challeng-
ing. Network operations are evaluated by certain key performance indicators
(KPI), which can be inferred from network data generated by various telecom
network elements. The KPIs represent the efficiency and performance of the
network, consequently having interest to all stakeholders such as consumers,
operators, media and the government. Machine learning (ML) and artificial
intelligence (AI) coupled with big data and cloud computing resources have
enabled the automation of numerous operations in mobile networks. These
operations include network alarm prediction, optimization of cell configura-
tions, and energy capacity planning for various base stations.

A study by McKinsey in 2016 highlighted that only a handful of telecom
providers have managed to achieve an incremental profit of over 10% despite
having employed ML solutions [3]. The major reasons behind this revolve
around the characteristics of organizational data. To completely utilize the
potential of ML/AI, it is necessary to refine data in terms of de-duplication,
completeness, and complexity. This results in relatively accurate predictions
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CHAPTER 1. INTRODUCTION 2

and evaluations of the network by the ML models.
A cloud-based data engineering system is a solution capable of address-

ing these problems. Data engineering is defined as the process of turning
data to information through utilizing concepts of applied statistics, system
theory, and decision theory [4]. The medium of automation for data engineer-
ing techniques on the cloud is a data engineering pipeline. These pipelines
utilize data engineering practices to convert raw data to useful information
tailor-made for various analytics use cases. A data engineering pipeline firstly
ingests raw data into a centralized storage system. Following this, the data
undergoes processing in the form of parsing to reduce its complexity and
increase its value. Next, the pipeline transforms the data into a format op-
timized for high-speed transfer. By employing data engineering strategies,
these pipelines enable telecom operators to utilize their massive data feeds
and polish them for training ML prediction models. The ML models subse-
quently generate insight from the information which enables timely decisions
beneficial for determining interactions between multiple KPIs. Hence, the
effects of various KPIs representing network characteristics such as perfor-
mance, customer experience, and energy consumption can be deduced. Some
benefits offered by data engineering solutions are [5]:

• Empowerment of exploratory analytics without major reliance on IT.

• Increased data resource productivity across the organization.

• On demand access to processed data sources for analysts.

• Enhance organizational data usage via automation.

All the stated benefits emphasize the importance of employing data en-
gineering pipelines in the industry. The next section presents a real-world
scenario where data pipelines can be leveraged.

1.2 Industrial context

Elisa Oyj, the first Finnish telecom organization founded in 1882, receives
large amounts of network management data from multiple base stations and
cellular network elements across Finland and Estonia. All this data offers
significant value for monitoring the network’s health and devising strategies
for fault mitigation and maintaining network energy and resource utilization.
Daily data feeds for a single mobile vendor have massive volume and often
exceed the hardware specifications of the processing infrastructure. A start-
up by the name of Elisa Automate (EA) has been initiated within Elisa to
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study and utilize its traditional data engineering systems. The existing in-
frastructure consists of decentralized on-premise data processing sub-systems
developed upon various technology stacks. Currently, the existing systems
are incapable of receiving the combined data feed due to their limited com-
putational and storage capacities. To cope with this issue, it is necessary
to automate on-premise data engineering processes and migrate them to a
centralized cloud-based environment. However, real-world data poses many
challenges in the successful implementation of cloud-based data engineering
pipelines:

• Ingesting heterogeneous data from multiple cellular network elements
into the centralized cloud-based system pipeline.

• Ensuring data uniformity across multiple cellular network elements
through parsing routines.

• Employing an optimal storage format for the processed data in terms
of efficiency of input and output (I/O) operations.

• Defining aggregation and filtration routines to prepare datasets for
ML/AI algorithms.

Considering the challenges, this thesis aims to develop a solution that
enables data parsing routines within a data pipeline.

1.3 Goals and contributions

The goal of this thesis is to design and evaluate a minimal scalable parsing
solution leveraging infrastructure on the cloud for processing a 24-hour feed
of raw network data. The proposed solution is designed as a component
that will be integrated into the future data engineering pipeline at Elisa. It
must address the computation and storage limitations of the existing parsing
solution and be integrated with a centralized storage end-point on the cloud.
Additionally, the thesis must provide a solution for the parallelization of
existing parsing routines based on the structure of raw data. The thesis
makes the following contributions:

• Design and implementation of a parallelized workflow for network data
parsing.

• Empirical evaluation of the reliability, scalability, and speed of the pro-
posed parsing solution.
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1.4 Thesis structure

Chapter 2 provides the background for data engineering followed by the
concept of data pipelines. It subsequently introduces the concept of big data
followed by cloud-based solutions designed to process it. Next, it introduces
a distributed programming framework utilized for constructing the proposed
data parsing solution. This is followed by the definition of the raw network
data structure and file format. The chapter concludes by introducing the
existing data engineering infrastructure at Elisa. Chapter 3 identifies the
limitations of Elisa’s existing data parsing solution. Subsequently, the goals
of the proposed solution are highlighted in light of these limitations. The
chapter concludes by identifying key functional and non-functional require-
ments for the solution. Chapter 4 introduces the solution as a component
of the data engineering pipeline and its underlying infrastructure. Next,
the solution workflow is introduced. Moreover, the chapter covers design
choices adapted to process the data in the solution. Chapter 5 defines the
environmental configuration for the implementation. Chapter 6 presents the
experimental results and evaluates the solution in terms of the defined sys-
tem requirements. It also highlights the impact of the findings in determining
the effectiveness of the solution in terms of its non-functional requirements.
Chapter 7 provides a brief insight into existing research work and their im-
pact on the solution. It also provides a comparison of these works with the
solution. Chapter 8 finally concludes the thesis by summarizing the research
outcomes and improvements beneficial for future research relevant to scalable
data parsing on the cloud.



Chapter 2

Background

This chapter provides background information for data engineering tech-
niques and cloud-based solutions comprising parallel processing frameworks
for big data. Section 2.1 firstly defines data engineering and the Extract,
Transform and Load (ETL) process. Next, Section 2.2 introduces the con-
cept of big data and lists all the characteristics and challenges it poses for
telecom organizations in performing analytics. Section 2.3 then introduces
cloud-based solutions for handling big data via data engineering pipelines.
Following this, Section 2.4 presents an overview of the distributed processing
framework and its underlying components utilized in the proposed parsing
solution. Subsequently, Section 2.5 introduces the raw network data file for-
mat supported by its parsing mechanisms. Finally, Section 2.6 discusses the
current data engineering infrastructure at Elisa Automate (EA).

2.1 Data engineering

2.1.1 Definition and purpose

Data engineering is defined as the conversion of raw data into refined
information. This process ensures production readiness of data along with
its underlying formats, resilience, structure, scaling and security, etc. Data
engineering revolves around Extract, Transform and Load (ETL), a pro-
cess responsible for transforming and assembling freshly acquired data into
a suitable format for subsequent analysis tasks. Core tasks involved in ETL
include data parsing and transformation. Numerous data-centric tasks such
as quality assurance, aggregation from multiple sources, reproducible parsing
processes, and managing data provenance [6] are dependent upon these core
tasks.

5
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Traditional data engineering systems combine ETL processes with
resource-intensive post-processing and sanitization techniques to transform
raw data into structured information. The exponential increase in data vol-
ume has resulted in organizations employing data engineering pipelines to
conduct fundamental ETL operations. A data engineering pipeline is de-
fined as a software platform designed to facilitate automated ETL processes.
Data engineering pipelines are responsible for transforming raw data collected
from multiple sources into insightful information. The pipeline subsequently
channels this refined information to targeted consumers comprising business
users, data scientists and application frameworks [7] for ML.

2.1.2 Data engineering pipeline workflow

Most modern data engineering pipelines employed in large organizations
have a common workflow that involves end-to-end components from retriev-
ing raw data to supplying refined information to analytics systems. A high-
level depiction of this workflow is provided in Figure 2.1.

Figure 2.1: A high-level workflow diagram of a modern data engineering
pipeline.
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The upcoming sections 2.1.2.1, 2.1.2.2, 2.1.2.3, and 2.1.2.4 introduce the
basic components of the data engineering pipeline.

2.1.2.1 Ingestion

Ingestion is the process of provisioning data from external sources to a
single target location in a unified and consistent format [8]. Enterprises have
numerous hardware devices with varying specifications. The multi-sourced
raw data is heterogeneous and exists in various formats such as real-time
streams, files, and relational databases. The ingestion process can operate in
batch-mode or stream-mode depending upon the data format. Data engineer-
ing pipelines can also be employed with combinations of multiple operational
modes known as lambda architectures.

2.1.2.2 Storage

Currently, the processing of massive datasets from telecom networks is
physically impossible to perform on commercial Relational Database Man-
agement Systems (RDBMS). Due to this, data engineering pipelines employ
distributed storage architectures. These architectures are inspired by clas-
sic multi-tier database application architectures which include partitioning,
replication, and the distributed control and caching architecture presented
by D. Kossmann et al [9]. From a business perspective, the data engineering
pipeline should provide a dynamic and distributed means of storage for data.
Enterprise data engineering pipelines commonly demand object-store capa-
bilities enabled across multiple machines. These object stores must provide
performance and availability to facilitate frequent data access. Moreover,
they must offer low latency and high throughput. Finally, the object-stores
must be resilient in handling various application scenarios.

2.1.2.3 Processing

Processing of data involves synchronization, parsing, and indexing oper-
ations based on important variables such as time, location and other data
descriptors [10]. These operations reduce inconsistencies in the data and
enforce a uniform structure upon it by applying pre-defined schemas. As a
result, query optimization is enabled along with the loading of the data into
distributed data structures provided by parallel programming frameworks.
Moreover, data is subjected to aggregation and filtration operations which
generate a subset of the original data suitable for specific AI/ML use cases.
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2.1.2.4 Delivery for analytics

Refined subsets generated from the processing phase are subsequently
persisted in scalable object stores. The last phase of the data engineering
pipeline concludes with the provisioning of the post-processed data from the
object stores to relevant analytics and visualization endpoints such as ML and
deep learning (DL) models, relational databases and Business Intelligence
(BI) tools, etc.

2.2 Big data

Since the inception of the world wide web (WWW), the amount of data
has surged beyond the processing capabilities of modern stand-alone systems.
The term big data was coined to signal the need for a novel paradigm for
processing data of this magnitude [11]. According to the HACE theorem [12],
big data is characterized by large-volume and heterogeneous and autonomous
sources that have distributed and decentralized control. It holds the key to
success for major companies and economies in today’s technological era. The
following subsections introduce the concept of big data by highlighting the
characteristics and some of the challenges it introduces into data engineering
systems.

2.2.1 Characteristics

Big data is characterized by a multi-V model or the 5Vs of big data which
are Velocity, Variety, Volume, Veracity and Value as depicted in Figure 2.2
[13]:

Figure 2.2: Multi-V model describing big data [13].
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1. Value refers to the process of discovering hidden value from massive
datasets of different types [14].

2. Volume is the cumulative measurement of different types of data gen-
erated from various sources and continuously expanding. This accu-
mulation of large volumes of data can lead to the discovery of hidden
information and patterns through data analysis, which in turn con-
tributes to the value of data [14].

3. Velocity refers to the rate at which data is produced and subsequently
processed. The contents of data are subject to constant change due
to the continuous ingestion of independent data collections such as
streamed data from multiple sources, archived data, and legacy data
[14].

4. Variety refers to the various forms of data accumulated via sensors,
mobile phones, and social networks e.g. video, image, text, audio, and
data logs, in both structured and unstructured formats [14].

5. Veracity highlights two aspects of data. Firstly, it concerns the sta-
tistical reliability of the data. Secondly, it focuses on the origin of data
in addition to its collection and processing methods [15].

In consideration of the multi-V model, each aspect of data determines the
design choices for the data engineering pipeline. Firstly, for variety, expected
data formats need to be identified. Common data formats listed in Figure
2.3 are usually encountered in enterprise systems.

Figure 2.3: Common data formats encountered at organizational levels [13].

Secondly, the rate of data influx into the system as highlighted in Figure
2.4 defines the velocity of data. Since data arrives from multiple sources
and possesses heterogeneous formats, integrating all this data into a single
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analytics solution poses major problems. As highlighted in existing work [16],
standard format and interface definition are crucial for efficient integration
of data into the analytics solution.

Figure 2.4: Data flow rates [13].

2.2.2 Challenges

The characteristics of big data discussed in the previous section contribute
to many challenges in migrating existing systems to the cloud environment.
Some of those challenges are:

1. Availability refers to the accessibility of system resources when de-
manded by authorized users. Ensuring sufficient bandwidth for data
access is a major issue. As businesses evolve, real-time data access
will only increase, which means that the existing infrastructure should
comprise additional backup resources to avoid bottlenecks or system
failure [17].

2. Scalability is the ability of the data engineering system’s storage and
compute resources to scale up and out in proportion to the datasets,
which are expected to grow rapidly in volume.

3. Data integrity refers to the ability of data modification only by autho-
rized personnel. The main challenge of data integrity is to ensure data
correctness for analytics. Hence, for big data residing across multiple
resources, adequate mechanisms must be provisioned to the users to
verify data integrity [18].

4. Data quality : The emergence of big data has resulted in its generation
from various sources, some of which may not always be well-known or
verifiable. Hence, poor data quality is yielded due to the data from one
source not being consistent with data captured from another [19].
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5. File format transformation: Effective analytics requires data to be in a
unified storage format optimized for computation and I/O operations.
Since big data originates from various sources, multiple storage formats
are encountered by the data engineering pipelines during ingestion.
Hence, adequate transformation mechanisms are required to transform
incoming data into a unified storage format which supports analytics
operations on the cloud service environment [14].

6. Data format heterogeneity : The big data characteristic of variety leads
to heterogeneous big data, i.e., interconnected data from various sources
with different incompatible types and inconsistent representations. This
heterogeneous data needs to be consolidated into a consistent struc-
tured format. [20].

2.3 Cloud solutions for big data

Data engineering is a highly labor-intensive task for computational and
storage resources. This process often stretches existing infrastructure to its
limits. Large volumes of data require efficient methods for storage, aggrega-
tion and filtering, transformation, and retrieval. Cloud computing services
offered by third-party organizations have revolutionized large data manage-
ment for telecom operators. These services have significantly reduced re-
source costs and maintenance as compared to on-premise systems.

Cloud computing is defined as “a model for allowing ubiquitous, con-
venient, and on-demand network access to several configured computing re-
sources (e.g., networks, server, storage, application, and services) that can be
rapidly provisioned and released with minimal management effort or service
provider interaction” [21].

Cloud service models occur in three categories, namely Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS), which are defined as follows [14]:

• IaaS refers to the cloud-based hardware equipment provisioned by
cloud service providers upon demand.

• PaaS are resources operating on a cloud to provide platform computing
for end-users.

• SaaS refers to applications running on remote cloud infrastructures
offered by cloud service providers and accessible through the internet.
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Cloud service providers offer various deployment models designed to ad-
dress various enterprise requirements. Some common deployment models
offered by cloud service providers are [13, 22]:

• Private Cloud is deployed on a private network, managed by the or-
ganization itself. It is suitable in scenarios where maximum network
bandwidth is a requirement with no compromise on legal issues and
security measures.

• Public Cloud is operated by third-party service providers. Dynamic re-
source provisioning over the internet on-demand via web services allow
public clouds to offer high efficiency and resource availability at low
costs.

• Hybrid Cloud deployment combines both public and private cloud. For
this reason, it is favorable for scenarios where the private cloud’s limited
resources need to be replenished by a public cloud.

2.3.1 Big data as a service (BDaaS)

Cloud computing services offer scalable data storage, parallel process-
ing frameworks, virtualized resources, security and data service integration.
These services not only minimize the automation and computerization costs
for enterprises but also eliminate infrastructural limitations. Moreover, ef-
ficient user access and role management are also provided along with the
necessary services. For organizations undergoing digital transformation, it is
important to understand the characteristics and challenges posed by big data
as discussed earlier. Until the previous decade, the installation and main-
tenance costs of big data infrastructure had been prohibitive for mid-level
organizations. Now, cloud service providers like Google, Microsoft and Ama-
zon are revolutionizing big data solutions in the cloud. Consequently, Big
Data as a Service (BDaaS) [23] is gradually becoming a reality. Mature cloud
regulation procedures have enabled the establishment of big data infrastruc-
ture with minimal installation, maintenance, and integration requirements.
The upcoming sections 2.3.1.1, 2.3.1.2, 2.3.1.3 and 2.3.1.4 highlight how the
BDaaS model addresses the components of a data engineering pipeline:

2.3.1.1 Ingestion

For data ingestion, the BDaaS model provides the option of executing
the enterprise’s in-house ETL scripts on compute services. Besides this,
it also supports commercial ETL tools and deploys them on infrastructure
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provisioned by cloud service providers such as Google, Microsoft, and Ama-
zon. Furthermore, BDaaS provides unified, high-throughput, low-latency
open-source platforms for handling real-time data feeds, such as Kafka [24]
or Amazon Kinesis [25] running on multiple compute instances. The ad-
ministration of the ingestion workflow can be administered by cloud service
providers or the organization itself based upon the requirements.

2.3.1.2 Storage

BDaaS offers storage mechanisms in the form of inexpensive and scalable
object storage services capable of storing unlimited amounts of structured
and unstructured data securely. These services are ideal for acting as storage
end-points for cold data, i.e., archived data that is not accessed frequently.
Some examples include Amazon Web Services (AWS) Simple Storage Service
(S3) [26], OpenStack Swift [27], Windows Azure Binary Large Object (Blob)
storage [28] and Google Cloud Storage (GCS) [29]. Additional distributed
storage services include the Hadoop Distributed File System (HDFS), a fault-
tolerant distributed file system that utilizes the local file systems of multiple
compute nodes in a cluster to store big data [14, 30]. For storing frequently
accessed data, i.e., hot data, NoSQL databases such as MongoDB [31] and
Cassandra [32] can be leveraged for querying unstructured data. Similarly,
relational databases such as MySQL [33] and PostgreSQL [34] can be utilized
for querying structured data.

2.3.1.3 Processing and delivery

For data processing, BDaaS provides a secure, re-sizeable compute service
provisioned on the cloud, which enables the deployment of data services
to connect to the object stores mentioned earlier. Some examples include
AWS Elastic Compute Cloud (EC2) [35] and Google Compute Engine (GCE)
[36]. In addition, MapReduce, a simplified programming model designed for
processing big data, is also offered [37]. For efficient in-memory processing,
the model also provides Spark, a unified engine for big data processing built
on top of the MapReduce framework which supports streaming (discussed
in Section 2.4), Structured Query Language (SQL), machine learning and
graph processing [38]. These services are provisioned on scalable clusters
of compute instances, which subsequently execute the parallel programming
framework upon data hosted on storage services, such as S3. An example of
this is the Amazon Elastic MapReduce (EMR) service. The processed data
can subsequently be delivered to the relevant analytics systems from the S3
storage services.
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2.3.1.4 Analytics

BDaaS offers the incorporation of in-house BI tools managed by the or-
ganization. It also facilitates the outsourcing of analytics and visualization
processes to cloud service providers. With the outsourced services, analytics
workflows can be carried out through web applications without the need for
ML frameworks and data scientists.

2.3.1.5 BDaaS service models

BDaaS consists of three service models, namely Big Data Infrastructure
as a Service (BDIaaS), Big Data Platform as a Service (BDPaaS) and Big
Data Software as a Service (BDSaaS). Figure 2.5 illustrates a high-level de-
scription of each of these service models concerning the components of the
data engineering pipeline:

Figure 2.5: High-level illustration of the BDaaS service models.

The upcoming sections 2.3.1.5, 2.3.1.5, and 2.3.1.5 discuss the details of
each service model. In addition, a high level comparison is subsequently
provided in Section 2.3.1.5.

Big data infrastructure as a service (BDIaaS) The BDIaaS service
model is suitable for an organization whose requirements are similar to pur-
chasing a car engine and constructing the frame around it. BDIaaS can lever-
age the IaaS cloud service model, comprising storage and compute services,
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to persist and process big data [23]. The BDIaaS model mainly addresses
the ingestion and storage components of the data engineering pipeline.

Big data platform as a service (BDPaaS) The BDPaaS service model
is suited to organizations that require a big data platform administered by
cloud service providers, allowing users to access and analyze massive data
sets [23]. The analytics applications are customized by the organization to
operate on the datasets. The BDPaaS model addresses all four components
of the data engineering pipeline, i.e., ingestion, storage, and processing and
delivery for analytics. The BDPaaS service model can be deployed on all
major cloud service providers such as Google (Google App Engine (GAE))
[39], Amazon (AWS) [40] and Microsoft (Azure HDInsight) [41].

Big data software as a service (BDSaaS) The BDSaaS service model
is suited to organizations that require an end-to-end solution for exploiting
structured and unstructured big data to obtain intelligent real-time results.
It is a multi-tenant web-hosted service that enables users to perform self-
service provisioning, analysis, and collaboration [23]. The BDSaaS model
handles all four components of the data engineering pipeline as well as the
analytics and ML operations through online services that encapsulate the
underlying platforms and infrastructure. Some examples of BDSaaS service
model providers are Panoply [42], Etleap [43], Inzata [44] and Looker [45]
etc.

Comparison of BDaaS service models BDaaS service model selection
has proven to be a challenge for many organizations inclusive of those in
the telecom business. While the variety of services provided on the cloud is
more than sufficient, many factors such as the cost, customization flexibility
and technical expertise required for the solution need to be evaluated before
short-listing a BDaaS cloud service model. Table 2.1 provides a high-level
comparison of the various BDaaS service models:

Requirements BDIaaS BDPaaS BDSaaS
Technical expertise High Moderate Low
Customization support High Moderate Low
Support plan cost Low Moderate High

Table 2.1: High-level comparsion of BDaaS cloud service models [23].
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2.4 Spark: A distributed processing frame-

work

Apache Spark is a unified analytics engine for large-scale data process-
ing [38]. It provides multiple application programming interfaces (APIs) de-
signed for various purposes such as processing of unstructured and structured
data, data streaming, ML and graph processing. This framework supports
many programming languages such as Python, Java, Scala, and R. Further-
more, it is compatible with environments ranging from a single desktop to a
cluster of thousands of servers. Due to this functionality, it is the ideal sys-
tem to start on a low level and to gradually scale-up for big data processing.
Figure 2.6 illustrates the libraries and components within Spark [46]:

Figure 2.6: An illustration of Spark’s components and libraries [46].

As depicted by the figure, Spark’s low-level or core API provides two
abstractions, i.e., the resilient distributed database (RDD) and distributed
variables. RDD is a collection of elements that can be partitioned on a
single machine or across a cluster of machines. Distributed variables are ac-
cessible to various tasks operating on RDD partitions, which reside on multi-
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ple machines. Spark’s structured API comprises three abstractions, namely
SparkSQL, DataFrames, and Datasets. In comparison to the core API, Spark-
SQL requires more information about the structure of the data and the list of
operations to be performed on it. Therefore, it performs additional optimiza-
tions during execution. The structured datasets that SparkSQL operates on
are Datasets and DataFrames. A Dataset is a distributed collection of data
similar to an RDD but is strongly-typed through a pre-defined structure or
schema. This enables query optimization for SparkSQL. A DataFrame is a
Dataset organized into named columns. DataFrames can be initialized from
structured data files, SQL databases, and existing RDDs [38].

2.5 Overview of XML structure and parsing

This section explains the structure and content of the Extensible Markup
Language (XML) documents used in the telecommunications industry along
with their representation of data. Next, it presents parsing mechanisms for
XML files. Finally, it highlights the underlying structure of raw network
management data.

XML is a markup language that embodies a rule set used to encode doc-
uments. Hence, the document is transformed into a human-readable and
machine-readable format. It is designed to provide flexible information iden-
tification. It plays a vital role in information exchange in the telecom industry
as it is platform-independent and extensible. A typical XML document is
built upon a list of elements as illustrated in Figure 2.7. Each of these el-
ements comprises three components, i.e., a start tag, some content and an
end tag. Both the start and end tags occur in pairs and are enclosed in <and
>. Content refers to any simple text enclosed within the start and end tags.
An element may include one or more attributes in its start tag [47].
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Figure 2.7: Example of an XML file [48].

Numerous XML parsing technologies exist, but the scope of this thesis
focuses on the Document Object Model (DOM). DOM is defined as a plat-
form and language independent interface which represents XML documents
as object-oriented models. These models are accessible to applications as
iterable trees, as illustrated in Figure 2.8. For this reason, the applications
can dynamically alter the structure and content of these trees [47].
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Figure 2.8: The DOM tree generated from the XML file shown in Figure 2.7.
[48].

2.5.1 Raw network data

The 3rd Generation Partnership Project (3GPP) [49] is a standards orga-
nization that develops protocols for mobile telephony. Vendor-specific XML
file format definitions for different types of network management data such
as performance management (PM) and configuration management (CM) are
standardized and maintained by 3GPP. Alarm types and frequencies at vari-
ous time intervals for various elements of the network are obtained from PM
data to indicate the health and stability of the network. Similarly, hardware
configuration parameters acquired from CM data represent many network
characteristics such as power or energy utilization. Figure 2.9 provides an
overview of the PM data definition for a certain vendor X :
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Figure 2.9: An illustration of the PM data definition for vendor X [49]

As illustrated in the figure above, the DOM tree generated for the PM
data comprises the fileHeader and fileFooter elements. Both elements consist
of vendor-specific information in addition to the start and end timestamps
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for the data capturing event. Furthermore the DOM tree might consist of
one or more measData elements. Each measData element has a managedEle-
ment child element, which holds information about the base station and its
underlying cells. It also has a collection of measInfo elements for grouping
information about the captured PM variables. All variable identifiers and
values reside within the measTypes and measResults elements, respectively
[49].

Similarly, Figure 2.10 illustrates the high-level element definition of the
CM data for vendor X :

Figure 2.10: An illustration of the CM data definition for vendor X [49]

Before discussing the DOM tree structure for CM, it is necessary to in-
troduce two terms, which are the Network Element (NE) and the Managed
Object (MO). A NE is defined as a logical entity for grouping multiple phys-
ical entities in a telecom network. A MO refers to the physical entity which
serves as a unit of the NE.

As shown in Figure 2.10, the DOM tree for the CM data comprises the
fileheader and filefooter elements. Both elements consist of vendor-specific
information in addition to the start and end timestamps for the data cap-
turing event. Furthermore the DOM tree might consist of a collection of
subsession elements. Each subsession element has a collection of NE ele-
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ments. Each NE elements holds information about the NE (base station)
in addition to having a collection of moi elements. Each moi element holds
information about the instance of an MO (cells) in addition to having an
attributes element. The attributes element contains multiple elements with
varying names, each of which comprises the captured CM variables [49].

The above illustrations point towards complexity and dynamism in the
data format. The DOM tree structure varies between vendors. To describe
a concrete example, the scope of the thesis is limited to study vendor X’s
data, which has the definitions illustrated earlier. The definitions highlight
the inter-dependency of child elements on their respective parents; hence
each XML document needs to be supplied as a single unit to the parsing
application.

2.6 Elisa Automate’s (EA) existing data en-

gineering strategy

This section discusses EA’s existing data engineering strategy and maps it
to the underlying components of the data engineering pipeline. Component-
level details are discussed in Sections 2.6.1, 2.6.2, 2.6.3 and 2.6.4. Conse-
quently, the need for data engineering pipelines in the existing infrastructure
is established.

Network management routines are conducted via periodic analysis of net-
work management data comprising various network-based events. This data
is collected in raw format from multiple vendor-specific cellular devices and
Operations Support System (OSS) end-points. This data subsequently un-
dergoes processing and is stored in multiple storage end-points designed for
various use cases. Figure 2.11 illustrates the workflow of the existing data
engineering strategy at EA:
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Figure 2.11: An illustration of the existing data engineering workflow at EA.
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2.6.1 Ingestion

Raw network management data streams are received from multiple cellu-
lar devices spread across multiple regions through Simple Network Manage-
ment Protocol (SNMP) traps. A collector machine schedules these SNMP
traps and persists them in the resulting data streams as semi-structured XML
files. Data collection cycle occurs at 30-minute intervals.

2.6.2 Storage

On completion of an interval of data ingestion, the collector machine
stores the captured raw XML files into a vendor-specific directory structure
on its disk. The retention time of this raw data is short due to the limited disk
capacity of the collector machine. Based on the frequency of expected data
access, hot and cold data storage end-points are dedicated to the data after it
undergoes processing. For cold data, scalable third-party object stores such
as Ceph [50] and MinIO [51] are allocated to store vendor-specific data sepa-
rately. Similarly for hot data, the collector machine schedules containerized
services on Docker [52] to export the processed JSON data to time-series
data storage and searching services such as ElasticSearch [53] and Redis [54].

2.6.3 Processing

Upon receiving an entire 30-minute payload of raw data, the collector ma-
chine activates the parsing daemon. This daemon converts vendor-specific
data from different OSS to JavaScript Object Notation (JSON) format based
upon customized parsing functions designed for network management data
specifications defined in vendor-specific catalogs. The parsing functions are
executed by a multi-threaded Python application that utilizes the available
processing cores on the collector machine. The JSON files yielded are sub-
sequently transmitted to the hot and cold data stores mentioned in Section
2.6.2.

2.6.4 Delivery for analytics

As mentioned earlier in Section 2.6.2, the processed data is exported to
ElasticSearch and Redis. In-house analytics and visualization APIs coupled
with open-source APIs such as Kibana [55] subsequently retrieve the data
from these storage end-points.



Chapter 3

Problem definition

This chapter presents the problems encountered in the processing of tele-
com network data. Infrastructural limitations of the existing data engineer-
ing system are identified, motivating the necessity to have a parallelized data
parsing solution capable of handling massive datasets. The chapter concludes
by highlighting the system requirements necessary to address all the identi-
fied limitations.

3.1 Motivation

Raw network data comprises PM and CM data. PM data carries several
important performance counters such as the data transmission rate, down-
time of each base station and alarm events occurring in the network. Simi-
larly, CM data contains event-based hardware configuration parameters for
devices installed on the base stations. A 24-hour compressed PM data feed
can reach up to a 15 GBs of compressed files with an average compression
ratio of approximately 10%. Although CM data is relatively insignificant in
volume, the combined network data from PM and CM is categorized as big
data. The existing data engineering system at EA utilizes a single central-
ized collector machine for capturing periodic intervals of network data. This
collector machine also dedicates its computational resources for the network
data processing routines. Due to the increasing bandwidth and volume of the
raw data, the existing data engineering system has the following limitations:

• A single machine is dedicated to processing the data without any mech-
anism for parallelism. The machine requires 8 to 9 minutes to process
30-minute intervals of network data. Based on estimation, a cumula-
tive processing time of approximately 7 hours is required for the entire

25
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24-hour dataset. This leads to unnecessary delays in initiating the an-
alytics workflows.

• Limited random access memory (RAM) and disk capacity of the single
collector machine prevents parsing an entire 24-hour PM dataset in one
pass.

• The JSON file format is not optimized for loading massive datasets with
complex schemas into processing frameworks. As a result, conducting
repetitive analytics and ML modeling tasks on a large dataset is time-
consuming for data scientists due to prolonged read operations on the
files.

3.2 Goal of the solution

For designing an efficient solution to the limitations described earlier, the
consideration of resource provisioning and application optimization is cru-
cial. The proposed solution must be equipped with scalable object storage
to ingest raw network data within timeframes of 24 hours instead of short
30-minute intervals for cold storage. The retention policy for this data should
also be prolonged to enable historical analysis. The solution must have ad-
equate memory for loading multiple GBs of compressed raw data into the
processing framework. Moreover, it should be equipped with sufficient com-
putational resources to enable maximum parallelization of the parsing rou-
tines. Finally, the solution must store the processed data in a file format
optimized for high-speed reading and loading into applications. As far as re-
source provisioning is concerned, the BDaaS cloud service models discussed
in Section 2.3.1.5 addresses the majority of the computational and storage
requirements. The goals of the proposed parsing solution are as follows:

• Support for dynamic allocation of computational and storage resources
in a cloud environment.

• Support distributed parsing routines for unstructured datasets.

• Support the conversion of processed data into a file format optimized for
compression and loading data into the applications for efficient query-
ing, analytics, and visualization.
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3.3 System requirements

Considering the solution goals, the requirements for the cloud-based solu-
tion are categorized under functional and non-functional requirements. The
following sections introduce these two requirements categories respectively:

3.3.1 Functional requirements

Automation of data parsing within the data engineering pipeline has the
following functional requirements:

3.3.1.1 F1: Data transmission

The solution must be able to read raw data from the input data store
and write parsed data to the output data store.

3.3.1.2 F2: Resource allocation

The solution must have sufficient memory and disk capacity to create
data structures to hold the results of parsing a 24-hour raw XML feed.

3.3.1.3 F3: Distributed parsing

The solution must be able to distribute the parsing workload across mul-
tiple compute nodes.

3.3.1.4 F4: Schema transformation

The solution must parse raw data into a unified structure similar to the
JSON structure yielded by the existing solution at EA.

3.3.1.5 F5: File-format support

The solution must be able to yield the structured data as a file format
optimized for high-speed reading and compression.

3.3.1.6 F6: Automation

The solution must initiate scheduled parsing jobs without human inter-
vention.
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3.3.2 Non-functional requirements

The data parsing solution must fulfill the following non-functional re-
quirements to achieve the desired mode of operation:

3.3.2.1 NF1: Reliability

The solution must successfully parse the entire input dataset even if some
of its resources encounter hardware or software failure.

3.3.2.2 NF2: Scalability

The solution must have the ability to parse large volumes of raw data
with its dedicated infrastructure.

3.3.2.3 NF3: Speed

The solution must successfully parse 24-hour raw data feeds within a
maximum time frame of 3 hours.

The proposed system will be evaluated through multiple experiments.
The experimental evaluation will determine the degree to which the proposed
solution addresses each of the non-functional requirements. But prior to this
information, Chapter 4 introduces the design and workflow of the proposed
parsing solution.



Chapter 4

Solution Design

This chapter introduces the proposed parsing solution as a component
of the data engineering pipeline along with its internal design and workflow.
Section 4.1 firstly presents the architecture for the data engineering pipeline
employed by EA. Subsequently, Section 4.2 introduces the application-level
design of the solution. The chapter concludes with Section 4.3 highlighting
the workflow of the solution. In each section, design choices are explained in
light of the relevant functional requirement.

4.1 System Infrastructure

For solution deployment, AWS has been selected as the cloud service
provider for hosting the data engineering pipeline based upon feasibility stud-
ies regarding security that is beyond the scope of the thesis. The following
diagram illustrates the development infrastructure of the data engineering
pipeline and highlights the proposed parsing solution as a component within
the pipeline:

29
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Figure 4.1: Overview of the developed data engineering pipeline. The pro-
posed parsing component is enclosed within the dotted lines.

The infrastructure follows the hybrid cloud model comprising a Virtual
Private Cloud (VPC) that is isolated from external internet access except for
trusted sources. The VPC receives on-demand services from the AWS public
cloud. The data pipeline architecture is based on the BDPaaS service model.
Moreover, the solution utilizes microservices provisioned by AWS to assign
resources with configurable storage and compute capacities. Microservices is
defined as an approach to software development where software is built on
minor independent services that communicate over well-defined APIs. The
architecture models provided by AWS thus possess the flexibility of scaling in
terms of computational and storage capacity and ensuring high availability
in the process.

F2: Resource allocation We chose the Amazon S3 [56] service to host
the data storage for the parsing component. It is an object storage ser-
vice provided by AWS that offers scalability, data availability, security, and
performance according to a usage-based cost model. This storage service
provides data partitioning based on key features into buckets and supports
both structured and unstructured file formats [56]. The service persists files
within a virtual directory structure, which is useful for data categorization.
As depicted by Figure 4.1, separate buckets have been assigned for the raw
data and the parsed data. The underlying data in each bucket is categorized
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by type, i.e., PM and CM data and by duration e.g. 24-hour data, weekly
data or monthly data. For this thesis, only 24-hour data feeds are considered.
The S3 service is solely designed for storage and has no dependency on the
life time of other services and computational resources.

We employed Amazon EMR [57] to perform scalable computations in the
parsing component. EMR is a cloud-native platform that utilizes open-source
tools to enable big data processing. An EMR cluster comprises multiple Elas-
tic Compute Cloud (EC2) [58] machines or instances allocated by Amazon as
computational resources. The dynamic scalability of EC2 instances equips
the EMR service with the elasticity to execute big data parsing and trans-
formation jobs. EMR provisions clusters with both transient and persistent
lifetimes. These clusters automatically scale according to the input data to
undergo processing.

F1: Data transmission The EMR service consists of the Elastic MapRe-
duce File System (EMRFS), a customized implementation of the Hadoop
file system. It provides an EMR cluster with the ability to directly read
and write between Amazon S3 buckets. Moreover, since it is based on the
Hadoop file system, it also supports the transmission of data into parallel
programming frameworks such as MapReduce [57].

A dedicated EC2 instance, Splitter, has been deployed within the infras-
tructure as a future iteration of the original solution workflow. This instance
detects large XML files being sent to the EMR cluster and leverages the
Simple API for XML (SAX) parser to split them into more manageable files
while retaining their internal structure.

4.2 Distributed Spark parser

We chose to construct the proposed parsing solution on a Spark applica-
tion, which offers multiple features and APIs as discussed earlier in Section
2.4.

F3: Distributed parsing Since PM and CM data is semi-structured with
a non-uniform schema, the solution leverages the RDD API to read the raw
data into the application and execute multiple parallel processes across a
cluster of nodes. An RDD is an immutable object collection partitioned
across multiple machines. The concept of RDD lineage ensures that each
RDD possesses sufficient information about its derivation to reconstruct itself
in case of failure. RDDs are initialized from files residing in any Hadoop-
supported file system which in this scenario is S3. The application ensures
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the reusability of RDDs by offering RDD caching in shared memory across
the cluster [59].

A simplified component model depicting cluster management by the par-
allel parsing application is shown in Figure 4.2. A cluster manager keeps
track of permissions regarding task scheduling on worker nodes and the re-
source allocation [60].

Figure 4.2: Cluster management in Spark based parsing solution [60].

RDD operations supported by Spark are categorized as transformations
and actions. An action operation initiates a computation job and returns
a value to the program or writes data to external storage. Transformation
operations, on the other hand, are lazy operations that result in a new RDD.
Lazy operations mean that the new RDDs are not computed until an action
requiring them is initiated. In addition to these operations, Spark also sup-
ports the persistence of RDDs in the cache as mentioned earlier. Figure 4.3
describes all the RDD action and transformation operations [59].
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Figure 4.3: RDD operations in Spark. Seq[T] denotes a sequence of elements
of type T [59].

F4: Schema transformation Spark also offers structured APIs such as
DataFrames and Datasets for reading data into table-like structures opti-
mized for querying records and transformations. But the limitation of these
APIs is that they expect data to be in a uniform structured format. Since the
RDD API supports transformation operations on unstructured data, struc-
tural constraints can be enforced on the RDD contents. In addition to these,
RDD operations can also execute user-defined functions. Support for Python
libraries on Spark enables the parsing routines of the existing solution at EA
to be imported into the proposed parsing solution. Hence, the generated
schema format is similar to the existing JSON format. Once data has been
reformatted, the compatibility of RDDs with DataFrames and Datasets al-
lows the data to be migrated to the structured APIs, which are optimized
for searching and manipulating the data in place.

F5: File-format support EMR clusters are pre-installed with Apache
Spark, Hadoop HDFS and MapReduce. This enables them to convert input
data, loaded within the Spark application context, to the Parquet format.
“The Parquet format is an efficient columnar data representation designed to
support efficient compression and encoding schemes. It allows compression
schemes to be specified on a per-column level and is future-proofed to allow
adding more encodings as they are invented and implemented” [61]. This
format is optimized for loading massive datasets into data structures.
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4.3 Solution workflow

F6: Automation To initiate the workflow without human intervention,
we utilized AWS Step Functions [62]. AWS Step functions have the ability to
initiate a Spark application based on a schedule. They provide the service of
automatically triggering jobs on the EMR’s master EC2 instance. Moreover,
these functions also track each step and initiate retries in case of errors,
ensuring resilience and system availability for existing and future datasets
[62]. An end-to-end depiction of the workflow is provided by Figure 4.4.

Figure 4.4: A high-level illustration of the solution workflow from raw XML
data to processed data in the Parquet format

The data engineering pipeline persists raw PM and CM data as a collec-
tion of XML files stored in the Raw Datastore highlighted in Figure 4.1. This
data is categorized in the bucket by its type and date (24 hours). Once a
complete 24-hour dataset is imported to the S3 bucket, the solution workflow
highlighted in Figure 4.4 is initiated by the AWS Step function by activat-
ing the Spark driver program on the master node of the Data Parsing EMR
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cluster. The driver program subsequently activates four sequential steps.
Step 1 initiates the reading of raw XML files from the Raw Datastore into

an RDD via the Spark application. The RDD API supports RDD formation
via two methods. The first method assigns unique keys to each line read from
an I/O stream directed towards one or more XML files to create an RDD.
The second method involves assigning the XML file name as the key and its
underlying content as the value of an RDD. This particular RDD is known
as a PairRDD. Due to the complex structure and intra-element dependencies
of the DOM tree generated from the raw XML files, the PairRDD structure
is employed in this scenario. The reason is to ensure that the entire content
of each XML file is available to the specific node assigned to parse it. For
this reason, there is no data dependency between the nodes of the cluster
and parallelism can be exploited. After the content has been imported into
a PairRDD, it is split into equally sized partitions comprising multiple XML
files. The quantity of XML files per partition is dependent on the relationship
between the partition size and the individual XML file sizes. The driver
program subsequently requests the cluster manager to randomly assign these
partitions to the nodes of the EMR cluster.

As illustrated earlier in Figure 4.2, each node comprises one or more
executors responsible for carrying out the remaining steps of the workflow as
shown in Figure 4.4. An executor is assigned pre-defined computation and
storage resources of the node. These include the amount of RAM and the
number of Central Processing Unit (CPU) cores. Based on these capacities,
the executor spawns an adequate number of tasks to process the assigned
partitions in parallel. As a result, multiple executors running across the
nodes of the EMR cluster parse the partitioned data in a distributed fashion.
Step 2 leverages the RDD’s map operation to apply the parsing function to
each of the XML files. The functions are mapped to the values or content of
each XML file based upon their key or qualified name of the file.

The parsing and organization of the data via RDD transformations en-
ables the DataFrame API to convert the PairRDD into a structured Data-
Frame. Step 3 enables this for firstly converting the structured content for
each key-value pair of the PairRDD into Row format [63] by applying a map
operation on the structured value content. The Row format [63] enforces
Spark’s primitive data types upon the structured content to give it the shape
of a relational database. DataFrames are constructed based on these formats
upon a simple invocation of the toDF() method.

Step 4 finally saves the resulting DataFrame in the Parquet format to the
Post-processed Datastore. Each node concurrently saves its assigned partition
independently of the other nodes. Once the writing phase is complete, the
context is switched from the worker programs on the nodes to the driver
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program on the master node. The driver program subsequently terminates
successfully, signaling to the Step function that the workflow for a single
batch of the network data has reached completion.

In summary, the proposed solution utilizes Apache Hadoop’s resource
manager or Yet Another Resource Negotiator (YARN) on the EMR cluster
to access the S3 buckets and exchange data between them. It subsequently
converts the data into a partitioned and parallelizable dataset via Spark’s
RDD API. The partitioned dataset is distributed among the EMR’s nodes,
which ensures load-balancing and prevents per-node disk and memory over-
load errors. Furthermore, it also provides fault-tolerance and reliability as
each partition can be re-constructed on each node in case of task-level fail-
ures. The executors operating on each node support user-defined parsing
functions. PySpark provides access to all the necessary Python libraries for
these functions. This ensures the reusability of EA’s existing parsing tech-
niques. Secondly, the conversion of the RDD to a DataFrame provides a data
representation for the parsed content similar to a relational database. Lastly,
multiple tasks running under each executor utilize the CPU cores and RAM
of each node to boost the performance of the solution for massive datasets.



Chapter 5

Experimental setup

This chapter introduces the experimental setup for the empirical evalua-
tion of the proposed solution. Section 5.1 firstly highlights the design details
and system specifications for the experimental framework. Next, Section 5.2
introduces the sample datasets considered for the experiments. The chapter
concludes with Section 5.3 which discusses the rationale behind the Spark
application configurations selected for the experiments.

5.1 System specifications

As illustrated earlier in Figure 4.1, the Data Parsing EMR cluster func-
tions as the core platform for conducting the experiments. For each exper-
iment, the raw data sample is acquired from the Raw Datastore. Similarly,
after being parsed, the processed data sample is saved in the Post-processed
Datastore. The EMR cluster is built upon multiple Amazon EC2 instances.
Amazon provides a diverse collection of EC2 instance types, each designed
for varying use cases. These instance types are grouped into families con-
sisting of different combinations of CPU, network capacity, RAM, and disk
storage. This feature provides added flexibility for addressing the resource
requirements of the applications. Table 5.1 provides the specifications for the
Data Parsing EMR cluster:

Data Parsing EMR specifications
Node quantity EMR version Cluster type Spark version
4 5.22.0 Persistent 2.4.0

Table 5.1: List of specifications for the Data Parsing EMR cluster.

37



CHAPTER 5. EXPERIMENTAL SETUP 38

Since EMR version 5.x, support for Python 3.6 has also been provided.
During the project implementation, version 5.22.0 was considered as it ful-
filled all the Python library requirements of EA’s existing parsing modules.
Furthermore, Spark 2.4.0 has been employed in the selected EMR version
[64]. Lastly, Amazon offers the EMR service in two modes, i.e., persistent
and transient. Persistent mode keeps the cluster active at all times whereas
transient mode terminates the cluster upon completion of a job. In this
scenario, the persistent mode is favorable firstly since reliability, one of the
key performance requirements of the solution, is compromised during the
spawning of the cluster which takes around 10 to 20 minutes. Secondly, the
frequent cluster reformations incur additional cost. Table 5.2 provides the
EC2 instance specifications deployed in the EMR cluster:

EC2 instance specifications
Instance name Instance type vCPU RAM (GB) Storage (GB)
m5.2xlarge master 8 32 128
m5.2xlarge worker 8 32 1000
m5.2xlarge worker 8 32 1000
m5.2xlarge worker 8 32 1000

Table 5.2: EC2 instance specifications for the Data Parsing EMR cluster
[58].

Since this solution has been designed as a research project, the EMR
operates in a non-production environment. Based on this, the instance family
selected for the experiments is the M5 instance family. This family is the
latest generation of general-purpose instances. It provides a balanced set of
computational, memory, and storage resources. As a result, it is an all-round
choice for conducting processing jobs [58].

5.2 Sample datasets

As discussed earlier in Section 3.2, the proposed parsing solution has
been designed to process a 24-hour dataset. Since the solution workflow is
identical for both PM and CM data (Figure 4.4), the sample datasets have
been chosen for PM data only as it is larger in volume. To study the behavior
of the solution concerning reliability, scalability, speed and ultimately the
best configurations for Spark, a total of five dataset samples were chosen for
the experiments.
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Data selection To identify the problems introduced by real-world data
capturing, network data archives stored in EA’s existing data engineering
solution have been used for extracting the samples used in the experiments.
These archives represent live data captured from telecom equipment belong-
ing to a single vendor. Archives spanning over 24-hours are stored within
a folder and consists of multiple sub-folders for categorizing the network
equipment by region. Within each of the region-specific folders lie com-
pressed XML files representing the PM data. Since one region may have
more network equipment than another, the number of PM KPIs or counters
represented by each XML file may vary. Hence, selecting samples from differ-
ent regions ensures diversity but at the price of possible bias introduced by
the variation between the compressed XML files. The benefit of multi-region
selection is the exposure of all edge-cases of the data processing workflow for
the proposed solution.

Each file is a subset for a 24-hour PM data feed. For ensuring consistency
in the samples, each of them has been generated from the same 24-hour
dataset. The largest sample is the entire 24-hour data feed itself. The overall
size of each sample is approximately twice the size of the previous one as
illustrated in Table 5.3.

Sample Datasets

Sample #
(GB)
Size

(millions)
Records

(thousands)
XML files

(KB)
Min Size

(KB)
Max Size

Dataset 1 0.36 12.04 8.35 12.30 77.80
Dataset 2 0.67 24.46 16.36 16.40 81.90
Dataset 3 1.40 49.07 32.26 8.20 81.90
Dataset 4 3.00 100.48 49.17 12.30 4608
Dataset 5 5.60 205 93.04 8.20 9932.80

Table 5.3: List of the PM dataset samples selected for the experiments.

In Table 5.3, the Records field indicates the combined number of network
data counter records in the entire dataset. The table also lists the total
number of XML files (XML files) for each dataset along with the minimum
(Min Size) and maximum (Max Size) sizes of the compressed XML files in
each dataset.



CHAPTER 5. EXPERIMENTAL SETUP 40

5.3 Spark configurations

Static vs. dynamic configuration Resource allocation is one of the
most crucial aspects of a Spark application when it comes to reliability and
resource utilization. As discussed earlier in Section 4.3, an executor is the
main work unit responsible for carrying out tasks or jobs within a Spark
application. By default, Spark applications initiated on the EMR cluster are
allocated executors dynamically by the Spark driver program after collabo-
ration with a cluster resource manager such as YARN. This feature allows
flexibility in terms of the number of executors allocated for an application.
But it remains insufficient for determining critical configurations such as the
number of executors, memory allocation per executor and the num-
ber of partitions for the input data. Due to this, it is recommended to
configure Spark applications to employ static resource allocation based on
custom parameters supplied by the user.

Parameter definitions Since Spark 2.0, the SparkSession object is re-
sponsible for managing the connection to a Spark application. It contains
a SparkConf object, which accepts a set of parameters to configure the ap-
plication. These parameters are represented as key/value pairs. Table 5.5
highlights these parameters, which determine the performance and reliability
of an application.
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Spark Configurations
Name Description Value Restrictions Guidelines

spark.driver
.memory

The size of
the Spark
driver

1024
MB

In YARN
cluster
mode, no
larger than
YARN
container
including
overhead.

A higher
setting may be
required if
collecting large
RDDs to the
driver or
performing
many local
computations.

spark.executor
.memory

The size of
the Spark
executor

1024
MB

One
executor
plus
overhead
cannot be
larger than
one request
(a single
YARN
container).

Larger Spark
workers may
prevent
out-of-memory
errors for jobs
with
unbalanced
workloads but
they are
inefficient.

spark.driver.
cores

Number of
virtual cores
allocated to
the driver

1

The number
of cores
available in
the YARN
container.

A good number
is 5. It should
be scaled up
according to
the resources.

spark.executor.
cores

Number of
virtual cores
allocated to
each executor

1

The number
of cores
available in
the YARN
container.

A good number
is 5. It should
be scaled up
according to
the resources.

spark.executor.
instances

Number of
executors

2

The initial
number of
executors on
the cluster.

It should be
scaled up
according to
the resources.

spark.default.
parallelism

Parallelism
within the
RDD

2
The number
of partitions
in RDDs.

At least 2 times
the total
number of cores
available on the
cluster.

Table 5.5: A list of Spark configuration parameters critical to the tuning of
an application [65].
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For achieving the goal of maximum resource utilization, we configured
the EMR cluster to execute Spark applications with pre-defined settings com-
puted through formulas endorsed by Spark and AWS users [65, 66]. Equation
sets 5.1, 5.2, and 5.3 depict variables and formulas employed for the compu-
tation of the Spark application configuration parameters:

Ne = executors per node

Ecores = cores per executor (supplied by user)

Nvc = virtual cores per node

TNmem = total memory per node

TEmem = total executor memory

Nmem = YARN allocated memory per node

Emem = available memory per executor

Ememoverhead = overhead memory per executor

Nnodes = nodes in the cluster

Neinstances
= executors in the cluster

P = partitions for the data

X = parallelism factor (supplied by user)

(5.1)

Ne =

⌊
Nvc − 1

Ecores

⌋
TNmem =

Nmem

1024

TEmem =

⌊
TNmem

Ne

⌋
Emem = bTemem ∗ 0.90c

Ememoverhead = dTemem ∗ 0.10e
Neinstances

= Ne ∗Nnodes − 1 (one executor reserved for driver)

P = Neinstances
∗ Ecores ∗X

(5.2)

spark.executors.cores = Ecores

spark.executor.memory = Emem

spark.driver.memory = Emem

spark.driver.cores = Ecores

spark.executor.instances = Neinstances

spark.default.parallelism = P

(5.3)
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As illustrated in Equations set 5.3, spark.default.parallelism,
spark.executor.memory and spark.executor.instances are determined
based on two user-supplied variables. These are the number of CPU cores
per executor (Ecores) and the multiplier for the default parallelism (X).

Number of executors The formula for determining the number of execu-
tors per node (Ne) indicates that a single core from each node is reserved for
the Hadoop daemons [66]. Moreover, a single executor is not able to span
across multiple nodes as indicated by the floor function. Also, out of the
total executors allocated over the entire cluster (Neinstances

), one is reserved
for the Spark driver.

Executor memory The memory available on each node (TNmem) is al-
ways less than the per-node memory specification as YARN allocates an
adequate portion for the Operating System (OS) [65]. The available node
memory is subsequently divided among the number of executors per node
(Ne) to yield the total memory allocated per executor (TEmem). From this
allocation, 10% is reserved for overhead (Ememoverhead) and the remaining is
dedicated for core computations (Emem). Spark allocates the same (Emem)
for all the executors across the nodes.

Partitioning and parallelism Lastly, the number of input data partitions
is dependent upon (Ne), (Ecores) and the parallelism factor (X). (Ecores)
determines the number of jobs an executor executes in parallel. Ideally, the
number of partitions must always be more than or equal to the total available
CPU cores on the cluster. Larger and fewer partitions provide a good speed
up but compromise on reliability and application stability in case of massive
files in each partition overburdening the executor resources. Smaller and
more abundant partitions provide stability but have an upper bound for the
speed as there is frequent inter-node data transfer and I/O bottlenecks [65].

Configuration presets For the experiments, we defined three presets for
the Spark settings. Each preset was designed based on three objectives.
These are the maximum utilization of the CPU cores, maximum memory al-
location per executor and a balance between the first two objectives. The first
objective addresses computationally intensive Spark applications where data
partitions can be managed by a large number of executors with minimum
memory and compute resources. The second addresses memory-intensive
applications where the data volume requires a few executors equipped with
maximum memory and compute resources. The third and final objective is
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suitable for applications of a balanced nature, i.e., dependent upon data vol-
ume and computation. Based upon the objectives, the first preset is designed
to exploit the maximum amount of cores on a node and ensure maximum
utilization of all cores within the EMR. The second preset is expected to
target datasets yielding large data partitions that require significant memory
to be loaded onto the Spark worker application. Due to this, the executors
are equipped with multiple cores and sufficient memory to complete the job.
The third preset is designed to find a balance between the first two presets
in terms of data volume and computational utilization. Table 5.6 provides
the Spark configuration presets employed for the experiments:

Spark Configuration Presets

Preset # Ecores Neinstances (X)
Parallelism factor

Objective

Preset 1 1 21 { 2, 4, 6, 8 } CPU core utilization
Preset 2 3 6 { 2, 4, 6, 8 } Balanced
Preset 3 5 3 { 2 ,4, 6, 8 } Memory allocation

Table 5.6: List of the Spark configuration presets selected for the experi-
ments.

The experimental phase involves a total of 60 trials with 20 for each Spark
preset. Each preset has 4 groups of trials based on the varying parallelism
factor for determining the number of data partitions, i.e, X = { 2, 4, 6, 8 }.
Subsequently, each group has a total of 5 trials for each of the datasets listed
in Table 5.3. Chapter 6 highlights the results from the experiments designed
for the empirical evaluation of the solution.



Chapter 6

Evaluation

This chapter presents the experimental results and evaluates the solu-
tion concerning its non-functional requirements, i.e., reliability, scalability,
and speed. The goal of the evaluation study is to determine the optimal
Spark configuration parameters required to make the application reliable
but not unnecessarily expensive in terms of the total number of data parti-
tions and the number of parallel executors. Section 6.1 firstly provides the
reliability statistics obtained from the experiments conducted for the three
Spark configuration presets. Next, Section 6.2 visually illustrates the rela-
tionship between the total execution time, dataset size, and the parallelism
factor governing the total data partitions, thus highlighting the solution’s
scalability. Section 6.3 subsequently discusses the execution times of the ex-
periments, highlighting the extent to which the solution addresses the speed
requirement. Section 6.4 summarizes the overall efficiency of the solution
with respect to its reliability, scalability and speed. Furthermore, it briefly
explores minor data partitioning manipulations within the proposed solution
to study the results on its non-functional requirements. The chapter con-
cludes with Section 6.5, which highlights how the file size distribution affects
the efficiency of the solution. Furthermore, it briefly covers some additional
steps employed in the proposed solution. Results from the second iteration
of the proposed solution are subsequently discussed to emphasize the effect
of file size distribution on the solution.

6.1 Reliability

After the execution of the experimental trials, a comparative analysis was
conducted for the three Spark configuration presets discussed in Section 5.3.
In Spark, executors spawn multiple tasks for parsing each data partition. To

45
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study the reliability of the system, the relationship between the task failure
percentage and the parallelism factor X was studied. Figures 6.1, 6.2 and
6.3 illustrate these relationships for the three presets.

Figure 6.1: An illustration of the relationship between the task failure per-
centage and parallelism factor for Preset 1.
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Figure 6.2: An illustration of the relationship between the task failure per-
centage and parallelism factor for Preset 2.
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Figure 6.3: An illustration of the relationship between the task failure per-
centage and parallelism factor for Preset 3.

As illustrated in the figures above, the number of successful tasks in-
creases with the parallelism factor, i.e., the multiplier for the number of data
partitions. Since the EMR resource allocation for the experimental phase
was static as highlighted by Table 5.2, the cluster had an upper bound for
the size of the raw data. But the resources allocated for the experiments
were sufficient to parse an entire 24-hour dataset as depicted by Figure 6.3.
Tasks spawned by the executors mostly fail due to memory overflow errors.
The reason behind insufficient memory is the size of XML files being handled
by the tasks. Since the atomic data units being processed are the XML files
themselves, the parallelism factor is used to govern how many XML files are
sent to each task for parsing. Increasing the parallelism factor increases the
total data partitions which consequently decreases the number of XML files
per partition. Having more partitions reduces task failures. The downside of
abundant partitions is execution time overhead due to network latencies in
transferring data partitions across multiple nodes in the EMR. Therefore, a
good parallelism factor should neither be too large nor cause executor fail-
ures. In comparison to the other two presets, preset 3 had the lowest number
of executors configured with the highest memory and the number of cores.
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Executors which receive partitions composed of relatively large XML files are
more likely to face memory overflow errors. If all the executors encounter
memory overflow errors, the whole Spark execution is terminated with 100%
task failure. The results indicate the fact that datasets 4 and 5 have rela-
tively larger XML files as compared to datasets 1, 2 and 3. As highlighted
by Figure 6.3, successful parsing is demonstrated for all the datasets for a
parallelism factor of 8. Hence, the proposed solution parses entire 24-hour
network data reliably with preset 3.

6.2 Scalability

To study the solution’s scalability, the relationship between the job exe-
cution time and the parallelism factor X was studied for each preset. Figures
6.4, 6.5, and 6.6 illustrates these relationships:

Figure 6.4: An illustration of the relationship between execution time and
the parallelism factor for Preset 1.



CHAPTER 6. EVALUATION 50

Figure 6.5: An illustration of the relationship between execution time and
the parallelism factor for Preset 2.

Figure 6.6: An illustration of the relationship between execution time and
the parallelism factor for Preset 3.

As highlighted by the results, the solution manages to demonstrate scal-
ability for data of increasing volume. The results also signal the fact that
parsing is a memory-intensive application and computational resources do
not affect the reliability of the solution. Therefore, preset 3 has the least
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number of task failures in parsing the entire 24-hour dataset. Furthermore,
task failures encountered with presets 1, 2 and in some of the trials with
preset 3 indicate that large XML files require more executor memory and
hence cause errors. Increasing the parallelism factor increases the number of
data partitions which consequently reduces the number of large XML files
within a single partition and therefore reduces the memory requirement per
executor. Detailed results have been provided in the Appendices A.

6.3 Speed

As illustrated in Figures 6.4, 6.5 and 6.6 in the previous section, all the
three presets provide similar performance. Theoretically, parsing is a sequen-
tial process that requires traversal through the contents of a file, which has
a time complexity of O(n). In all the experiments for the three presets, the
execution time remains linear for the first three smaller datasets 1, 2 and 3
but deviates significantly for the remaining two larger datasets 4 and 5. Raw
data is read as unsplittable XML files, which are divided into equally-sized
data partitions. Since the RDD is partitioned randomly, some partitions
might be assigned a handful of large files while others might receive numer-
ous small files. Hence, a task receiving a partition consisting of large XML
files will take longer to parse the data. Section 6.5 provides more insight
for these bottlenecks in speed. The existing parsing solution at EA takes
approximately 8.5 minutes to parse 30 minutes of data on a single machine.
In comparison, the proposed parsing solution processes 0.36 GB (roughly
6.25% or 90 minutes of the 24-hour data) in 2.5 minutes on three machines.
Furthermore, a rough estimate for parsing the entire 24-hour dataset for the
existing solution was 6.8 hours or 408 minutes. Figure 6.7 depicts a com-
parison of the execution time of the proposed solution and the estimated
execution time of the existing solution.
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Figure 6.7: A comparative analysis of the speed of the proposed and existing
parsing solutions.

As indicated by Figure 6.7 the proposed solution achieves a significant
speed-up. As identified by the experiments, the solution manages to parse
the entire 24-hour dataset within 160 minutes or approximately 2.67 hours.
Hence, a speed-up factor of approximately 2.55 is a considerable improve-
ment.

6.4 Summary

As illustrated in Figure 6.7, the overall speed of the proposed solution is
superior to the existing solution. On the other hand, the solution is unable
to attain the expected efficiency that a distributed processing framework
offers. Ideally, the relationship between the execution time and the size of
the data must be linear. But in the experiments for datasets 4 and 5, the
execution time exceeds the expectation considerably. As mentioned earlier,
this is caused by unevenly sized XML files in the datasets resulting in the
executors receiving imbalanced workloads and also causing out-of-memory
failures. The main reason behind the out-of-memory failures is large XML
files. For parsing, the solution leverages Python libraries to load the entire
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DOM tree of each XML file into memory. Therefore, all inherent content
of the XML file along with temporary variables and data structures utilized
by the parsing application explode in memory and exceed the maximum
executor memory. To avoid this, one method is to split large XML files
into smaller ones retaining their schema. The second method is to increase
the parallelism factor and hence the data partitions to the extent that task
failures are non-existent within the application. In the second method, a
higher parallelism factor leads to more inter-node file transfers within the
cluster as every node has to keep a copy of the files to ensure fault-tolerance.
Since this approach introduces execution time overheads due to frequent data
transmissions within the cluster nodes, splitting the XML files is a feasible
solution as the next step for improving the current solution.

Executor workload imbalances are detected by examining the execution
times of each task from the Spark application History Server User Interface
(UI) [38]. Table 6.1 highlights the distribution of task execution times for
preset 3 on dataset 5:

Execution time distribution
Minimum 25th percentile Median 75th percentile Maximum
35 s 1.4 min 1.6 min 6.0 min 31 min

Table 6.1: Distribution of task execution times for Preset 3 on Dataset 5.

In summary, the experiments suggest that Spark applications must be
configured to ensure maximum memory allocation for each executor. As
highlighted by the results, preset 3 causes the least number of task failures
and hence better reliability compared to the other presets. Also, for a fixed
set of resources, the results suggest that the spark.default.parallelism or
the total number of data partitions must be at least 8 times the total number
of CPU cores available in the EMR cluster to attain optimal reliability and
speed in parsing a 24-hour dataset. In the case of dynamic EMR resource
allocation through auto-scaling policies, studies [65] suggest a value between
2 to 4 times the number of CPU cores in the cluster. This deviation in
the parallelism can be accounted for by the varying XML file sizes within
the datasets. Thus, a higher parallelism factor leads to a large number of
granular data partitions and hence more reliability, scalability, and speed. In
addition, the number of executor instances (Ne) and the executor memory
(Emem) also affect the reliability of the solution as indicated earlier.
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6.5 Discussion

The proposed parsing solution was not able to attain the optimum scala-
bility for the larger two datasets in the experimental phase. A major reason
behind this was the uneven file size distribution of the raw XML data, which
leads to imbalanced workloads among the executors as highlighted by Table
6.1. Since the proposed solution is designed to parse XML files as indivisible
units, the per XML file workload for each executor cannot be distributed
evenly. For this reason, large XML files cause a significant rise in the overall
execution time as highlighted in Figure 6.6 even after the optimal Spark con-
figuration. Figures 6.8 and 6.9 illustrate the degree of imbalance introduced
by the varying XML file sizes by comparing the smallest and largest sizes of
the compressed XML files in the five datasets selected for the experiments:

Figure 6.8: An illustration of the minimum and maximum compressed XML
file sizes in Datasets 1, 2 and 3.
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Figure 6.9: An illustration of the minimum and maximum compressed XML
file sizes in Datasets 4 and 5.

Upon closer inspection of the compressed XML file size distribution for
each dataset with a folder explorer tool, we grouped the sizes into three
categories, i.e., Small, Medium and Large. Small files have sizes under 100
KB. Medium files have sizes between 100 KB and 5 MB. Lastly, Large files
have sizes above 5 MB. The absence of Medium and Large file size categories
in the three smaller datasets 1, 2 and 3 accounts for their results in terms of
scalability and speed. Similarly, Figure 6.10 illustrates the file distributions
in the larger two datasets 4 and 5 by the aforementioned categories.
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Figure 6.10: An illustration of the distribution of XML files by size categories
in Datasets 4 and 5.

The presence of the only Small files in dataset 1, 2 and 3 indicate the
reason for significant deviation in the execution times for datasets 4 and
5. To ensure an even distribution of Small, Medium and Large files for
each executor, a salting technique is applied to the RDD. This technique
involves the addition of a random number to the RDD keys for each XML
file, resulting in more efficient shuffling of the XML files to the partitions.
Table 6.2 highlights the distribution of task execution times for preset 3 on
dataset 5 after applying the salting technique:

Execution time distribution (after salting)
Minimum 25th percentile Median 75th percentile Maximum
4.5 min 5.5 min 6.1 min 11 min 27 min

Table 6.2: Distribution of task execution times for Preset 3 on Dataset 5.

The salting technique boosts the per executor resource utilization by en-
suring even distribution of the XML files belonging to different size cate-
gories. But it still fails to make a significant improvement in the scalability
and speed of the solution as the executors have considerably large workloads
and consequently might fail to meet the resource requirements for certain
data partitions. Furthermore, salting also introduces execution time over-
head for the key randomization procedure, which is proportional to the size
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of the data. As a result, the earned benefit is not worth the additional ex-
ecution time overhead of repartitioning and shuffling the XML files across
the executors. As discussed in the previous section, task failures and longer
execution times are a result of large XML files within the partition. Despite
even distribution of the XML files, the salting technique only ensures that
an approximately equal number of files is allotted to each partition assigned
to an executor. But the effective processing of each XML file concerning its
size and content is beyond the capability of the Spark application. Hence,
when large compressed XML files are extracted into memory, the content
and intermediate data structures holding the raw data for parsing explode in
size and exceed the maximum resources assigned to each executor. A quick
solution to prevent memory exceptions is to limit the number of files within
each data partitions by increasing the number of data partitions. But since
the ultimate goal of the solution is to achieve reliability at the minimum
possible cost by reducing the execution time, this solution is not viable.

6.5.1 Next steps

Due to the time constraints for the thesis, dynamic EMR resource al-
location strategies and auto-scaling policies were not employed for the pro-
posed solution. Also, since the infrastructure was in a test environment, the
experimental phase was conducted on data for a specific vendor. As a sec-
ond iteration to the proposed solution, we designed an application to detect
XML files with sizes occurring within the Large category and splitting them
through a SAX parser into smaller files with more manageable content. A
SAX parser operates in a sequential manner identical to a DOM parser with
the only difference being the memory usage. A DOM parser loads the entire
tree of tags and their underlying content into memory. It is suitable for ma-
nipulations within the tag content and keeps the state of parent and child
tags during the parsing process. A SAX parser, on the other hand, follows a
stateless method of loading a single tag into memory at a time. It is suited
to scenarios which only require traversal and storage of the XML content
without any modifications. Due to resource usage expenses on the cloud, we
were unable to conduct an empirical evaluation for additional tests with the
split XML files on all the five datasets. Therefore, we conducted three dry
runs on Dataset 5 after splitting each XML file based on the frequency of a
tag within its DOM. As depicted by Figure 2.9, we selected the measValue
tag and set a cut-off value of 1000 occurrences of the stated tag to split the
XML file. The splitting process yielded numerous small files instead of a
smaller quantity of large XML files with roughly the same cumulative size.
Table 6.3 provides the results obtained from the dry runs.
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Post-Splitting Dry Runs

Dry Run #
(minutes)

Time
(%)

TaskFailures
Parallelism Factor

1 44 0 2
2 47 0 2
3 51 0 2

Table 6.3: Results obtained from the three dry runs conducted after splitting
the large XML files.

Based on the results from Table 6.3, the entire 24-hour takes an average
time of 47.33 minutes. In comparison to the existing solution at EA, the
reduction in execution time has been brought down further to 87 % with
a speed-up factor of 9.37. Provisioning equally-sized granular XML files to
the solution has assured two characteristics. Firstly, due to equal workload
among the executors, the scalability of the solution now remains uniform
throughout the five datasets, similar to its uniformity for the three smaller
datasets 1, 2 and 3. Hence, the execution time is linearly dependent upon
the size of the dataset. Secondly, granular XML files have now resulted in
the executors parsing each XML file in shorter durations. Since the parsing
process is sequential, therefore smaller files lead to better exploitation of the
overall parallelism of multiple executors.
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Related work

This chapter highlights existing research work on big data processing on
the cloud. It briefly discusses the approaches from the relevant research pa-
pers and compares their published results with those of the proposed parsing
solution.

Related studies [67, 68] conducted on Spark and Hadoop feature cloud-
based infrastructure for the evaluation of the solution. These solutions lever-
age the RDD API in Spark combined with scalable heterogeneous resources
from the cloud in the form of EC2 instances. The first solution [67] em-
ploys a 9-node cluster to processes half a Terabyte (TB) of data in under
4 hours. From the aspect of data volume, our proposed solution processes
around 60 GB on uncompressed XML files on 3 homogeneous nodes. Con-
verting these metrics to a single node comparison with the same time-frame,
a processing speed of 0.042 TB per hour compared to our solution’s 0.007
TB per hour highlights two details. Firstly, it exposes the potential par-
allelism not being utilized in our proposed solution. As illustrated by the
scalability plots in Chapter 6, the solution’s throughput can be brought up
to 0.027 TB per hour after improving the overall execution time to around
50 minutes for a 24-hour network data feed as demonstrated in the sec-
ond iteration for the solution. Secondly, the specifications of the EC2 in-
stance also contribute to the throughput. As highlighted in our results, 3
homogeneous EC2 instances compared with 9 heterogeneous instances would
lead to an inconclusive comparison. Lastly, the processing operations are
computationally-intensive arithmetic operations in the related solution. For
our solution, the operations are memory-intensive scanning and string stor-
age operations. Similarly, the solution [68] receives input data as a stream
instead of as files through the Spark streaming API. Operating on a scal-
able cluster of 100 EC2 nodes, it offers a processing throughput of 60 million
records per second. In comparison, our proposed solution offers a processing
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rate of 0.021 million records per second on 3 nodes (0.7 million when scaled
to a 100 nodes). After the second iteration, the throughput of the proposed
solution has been increased to 0.075 million records per second (2.5 million
when scaled to a 100 nodes). Once again, the emphasis is brought upon the
way the input data is loaded into the executors across the cluster. Stream-
ing ensures consistent data inflow on a controllable scale instead of taking a
considerably large amount of time to load the entire dataset at once. Despite
these shortcomings, the important facts indicated by these results are that
Spark coupled with YARN provides sufficient scalability for handling massive
datasets. Furthermore, 51.3% memory utilization for caching frequently ac-
cessed data and an error rate of 3% for data-intensive operations [67] signals
the degree of efficiency and reliability that can be achieved with Spark.

To support input data complexity encountered by our solution, results
[69] from a comparative analysis between Hadoop MapReduce and Spark
suggest that Hadoop provides more stability in executing memory-intensive
operations compared to Spark. This condition favors scenarios where the
input file size exceeds the memory resources allocated to Spark executors.
This choice is not favorable in situations where a large input file can be
divided evenly without losing its schema. Since Hadoop does not provide
a significant speed-up compared to Spark, it is viable to manipulate the
input data to adhere to the distributed structure of the Spark programming
framework.

Other work [70, 71] was focused on the optimization of Spark. The first
study [70] focuses on the Spark engine by presenting an improvement to its
shuffling engine by the name of Sparkle. Although this approach benefits
most from machines with high memory specifications, it still offers a 1.6x to
5x performance improvement for scale-out clusters. As of Spark 2.0, this op-
timization is already available. In the context of our proposed solution, this
study clearly states that file shuffling across multiple nodes in a cluster does
not cause a major performance degradation. The second study [71] focuses
more on Spark parameter tuning. It highlights 12 application-specific param-
eters, some of which have already been addressed in our solution design. As
suggested by the results, parameter tuning brings down the execution times
of applications by 20%. In support of these results, parameter tuning for our
solution enhanced the overall reliability and enabled it to process an entire
24-hour dataset with proper parameters. Besides, compression codec choices
and shuffle strategies for the input files could be considered as potential fu-
ture work.
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Conclusion

In this thesis, we proposed a distributed parsing solution designed to
utilize scalable cloud-based resources to process massive amounts of telecom
network data. Our solution utilizes Spark as the programming framework for
distributed computations and AWS as the platform for resource provisioning.

After deployment on a fixed set of resources in the cloud, the solution
managed to parse an entire 24-hour PM dataset of roughly 60 GB in 2.67
hours. In comparison to the existing solution at EA, an approximate 39
% reduction in the execution time with a speed-up factor of 2.55 signals
great potential in the direction of distributed computing alternatives for
data engineering processes at large organizations. Furthermore, the solution
transforms the processed data into an organized format resembling relational
databases to support data filtration and aggregation and analysis.

Our solution was designed to serve as a component of a data engineer-
ing pipeline. For achieving this, it was required to possess the ability to
read raw data from multiple sources, allocate adequate resources for the pro-
cessing phase and store the processed data in designated end-points within
the pipeline without any human intervention. The solution fulfilled these
requirements by leveraging micro-services provided by AWS. Although the
resource allocation was static in the scope of this thesis, it proved sufficient
for the datasets used in the experimental phase. For parsing mechanisms,
the solution was required to distribute the raw data among multiple workers
to conduct a parallelized workflow. Also, the solution was expected to trans-
form the structure of the data to adhere to strict rules similar to those of
a relational database. Lastly, it was required to store this refined data in a
file-format optimized for loading onto analytics applications for subsequent
querying and analysis. The solution fulfilled these expectations by employing
the Spark programming framework to load raw data into distributed RDDs
and subsequently transform them into a structured DataFrame after applying
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parsing routines imported from EA’s existing solutions. Utilizing Spark, the
solution saved the resulting DataFrame as Parquet, a columnar file-format
optimized for high-speed loading of large datasets into applications and sup-
porting superior compression codecs.

For evaluating the efficiency of our solution and the optimal Spark pa-
rameters, we defined experiments to test its reliability, scalability, and speed.
A total of five datasets of varying sizes were processed by the parsing solu-
tion operating on three different Spark presets. The solution managed to
fulfill the reliability and speed requirements for all the datasets on the op-
timal preset. Scalability was demonstrated for the smaller three datasets
but not for the remaining two larger datasets. Upon closer inspection, large
XML files present within the larger two datasets overburdened the Spark
executor resources, thus affecting the overall scalability. After employing an
additional mechanism for splitting the XML files in the solution, the desired
scalability results were eventually achieved and the reduction in execution
time increased from 39 % to 87 % with a speed-up factor of 9.37

In conclusion, the solution demonstrates a high potential for tackling pars-
ing challenges posed by big data in the telecom environment. As suggested
by related studies, Spark is designed to offer scalability, and many published
results also highlight this fact. For future work, the employment of auto-
scaling policies through AWS for better resource utilization and provisioning
would enable this solution to adapt to massive data volumes without any
significant design changes. Lastly, the exploration of the AWS EC2 instance
families coupled with the deployment of clusters comprising heterogeneous
instances would also provide valuable insight regarding the maximum speed-
up that can be achieved by this solution.
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Appendix A

Appendices

Dataset1 Dataset2 Dataset3 Dataset4 Dataset5
P=2 2.90 4.80 8.70 N/A N/A
P=4 2.70 4.50 7.90 N/A N/A
P=6 2.80 4.40 7.90 63.50 N/A
P=8 2.80 4.40 7.70 64.50 N/A

Table A.1: Execution time (in minutes) for Preset 1. P represents the par-
allelism factor.

Dataset1 Dataset2 Dataset3 Dataset4 Dataset5
P=2 2.60 4.00 7.50 N/A N/A
P=4 2.50 3.90 7.50 59.20 N/A
P=6 2.30 3.90 7.25 54.00 N/A
P=8 2.30 3.90 7.10 45.30 N/A

Table A.2: Execution time (in minutes) for Preset 2. P represents the par-
allelism factor.

Dataset1 Dataset2 Dataset3 Dataset4 Dataset5
P=2 2.50 4.00 8.00 77.30 N/A
P=4 2.50 3.80 7.40 66.70 N/A
P=6 2.30 4.00 7.50 81.50 166.80
P=8 2.50 4.00 7.50 50.00 160.30

Table A.3: Execution time (in minutes) for Preset 3. P represents the par-
allelism factor.
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