
Learning Embeddings for Graphs and
Other High Dimensional Data

Hasti Narimanzadeh

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 31.12.2019

Thesis supervisor and advisor:

Prof. Parinya Chalermsook

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Aaltodoc Publication Archive

https://core.ac.uk/display/287784144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


aalto university
school of science

abstract of the
master’s thesis

Author: Hasti Narimanzadeh

Title: Learning Embeddings for Graphs and Other High Dimensional Data

Date: 31.12.2019 Language: English Number of pages: 5+54

Computer Science

Professorship: Theoretical Computer Science

Supervisor and advisor: Prof. Parinya Chalermsook

An immense amount of data is nowadays produced on a daily basis and extracting
knowledge from such data proves fruitful for many scientific purposes. Machine
learning algorithms are means to such end and have morphed from a nascent research
field to omnipresent algorithms running in the background of many applications
we use on a daily basis. Low-dimensionality of data, however, is highly conducive
to efficient machine learning methods. However, real-world data is seldom low-
dimensional; on the contrary, real-world data can be starkly high-dimensional. Such
high-dimensional data is exemplified by graph-structured data, such as biological
networks of protein-protein interaction, social networks, etc., on which machine
learning techniques in their traditional form cannot easily be applied.
The focus of this report is thus to explore algorithms whose aim is to generate
representation vectors that best encode structural information of the vertices of
graphs. The vectors can be in turn passed onto down-stream machine learning
algorithms to classify nodes or predict links among them. This study is firstly
prefaced by introducing dimensionality reduction techniques for data residing in
geometric spaces, followed by two techniques for embedding vertices of graphs into
low-dimensional spaces.

Keywords: Graph embeddings, Network embedding, Machine learning, dimen-
sionality reduction algorithms, random walks, spectral techniques



iii

Preface
Like most things, I would like to keep this preface minimal. So, first and foremost, I
would like to thank my supervisor and advisor Parinya Chalermsook for his support
throughout, and for granting me the autonomy to do research on my topic of interest.
As I recall, he once told me nothing repels him more than unmotivated students; I
hope I haven’t let him down in that respect.

The friendships made, I will treasure always. So big thanks to Wanchote, Sor-
rachai, Amit, Ly, and Nidia.

My best friends and partners in crime, Armin and Mona, who also happen to be
my brother and sister, I am indebted to you for your guidance and support.

The process would have been a lot more difficult if it wasn’t for both emotional
and intellectual support, as well as the late night dinners and orange juices Arash
provided every single day. Arash, you simply make life better, thank you.

This wouldn’t be possible after all without my parents giving me the gift of life.
Nader and Shahrbanou, thank you for every step of the way. I will be beholden to
you always.

Otaniemi, 31.12.2019

Hasti Narimanzadeh



iv

Contents

Abstract ii

Preface iii

Contents iv

1 Introduction And Outline Of The Thesis 1

2 Machine Learning 2
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 A Formal Mathematical Learning Model . . . . . . . . . . . . . . . . 2
2.3 Empirical Risk Minimization . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Empirical Risk Minimization and Overfitting . . . . . . . . . . 4
2.4 The Perceptron Algorithm: A Linear Classifier . . . . . . . . . . . . . 6
2.5 Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5.1 Maximum Likelihood Estimator . . . . . . . . . . . . . . . . . 10
2.6 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7.1 Principle Component Analysis: Reconstruction Error Mini-
mization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7.2 Principle Component Analysis: Variance Maximization . . . . 20

3 Introduction To Graph Embedding 23
3.1 Definition and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Definition of Graphs and some of their Associated Matrices . . 23
3.1.2 Graph Embedding: An Encoder-decoder Framework . . . . . . 24

3.2 A Taxonomy on Algorithmic Approaches . . . . . . . . . . . . . . . . 26
3.2.1 Factorization based methods . . . . . . . . . . . . . . . . . . . 26
3.2.2 Random Walk based Methods . . . . . . . . . . . . . . . . . . 26
3.2.3 Deep Learning based Approaches . . . . . . . . . . . . . . . . 27

4 Laplacian Eigenmaps: A Spectral Embedding Technique 29
4.1 Laplacian Eigenmaps Algorithm . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Similarity Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 The Graph Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Formal Definition of the Graph Laplacian . . . . . . . . . . . 32
4.2.2 Heat Equation, Heat Kernel, and The Graph Laplacian . . . . 32
4.2.3 The Intuition Behind The Physical Heat Equation . . . . . . . 34
4.2.4 Eigenvalues And Eigenvectors as Solutions to Optimization

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Mathematical Justification and Intuition . . . . . . . . . . . . . . . . 38
4.4 The Laplace-Beltrami Operator on Riemannian Manifolds . . . . . . 39



v

5 Random Walk Based Approches 41
5.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Social Representation Learning and Language Modelling . . . . . . . 41

5.2.1 Random Walks . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.2 Language Modelling and their Analogy with Random Walks

on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Deepwalk Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.1 Skip-gram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.2 Hierarchical Softmax . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Comparison between Deepwalk and node2vec . . . . . . . . . . . . . 48

6 Discussion 49

References 50



1

1 Introduction And Outline Of The Thesis
Machine Learning (ML) embodies the conversion of experience to knowledge in the
realm of computers. The term originates from computers programmed to “learn”
from the input data available to them. Machine learning is where the sheer abundance
of digital data intersects with mathematical frameworks. In loose terms, the input
to such a learning model is the training data and the output is some expertise.

Such pattern recognition in data has a long history: The astronomical observations
of Tycho Brahe in the 16th century allowed Kepler to discover the empirical laws of
planetary motion, which in turn paved the way for developments in classical mechanics
[1]. And nowadays its applications are innumerable, ranging from recommendation
systems to image classification. Moreover, the type of data used in such models runs
the gamut: images, words, numbers, clicks on social media, etc., enabling all the
more applications to be born.

The nature of the input data can speak to a machine learning model’s efficacy.
Conventionally, data used by learning algorithms are represented in Euclidean space.
However, in many real-world scenarios, the data are represented as graphs with
complex relationships between its entities. Examples of such data are social networks
or biological protein-protein networks [2]. Attempts to apply machine learning
algorithms established the area of representation learning on graphs whose goal is
to encode graphs in low-dimensional embeddings such that the graph structure and
properties are maximally preserved. The encoded graph-structured data can be in
turn fed into a downstream machine learning algorithm as feature inputs.

Traditionally, representation vectors were hand-crafted for graphs, discarding the
graph properties encoded in the graph structure. With the advancement of machine
learning paradigms, research gravitated towards applying machine learning algorithms
on graphs. Fast forward to now, techniques in representation learning on graphs,
also referred to as graph embedding, are broadly categorized into three categories
of factorization based, random walk based, and deep learning approaches. These
categories include countless algorithms and there is ongoing research to concoct all
the more with more efficiency, as well as construct a consistent theoretical foundation
for all techniques.

In Section 2 we explore the mathematical bedrock of machine learning algorithms
and subsequently study a well-known dimensionality reduction technique on data
in geometric spaces and how it bears resemblance to a factorization based graph
embedding algorithm we study in Section 4. In Section 3 we review the general idea
of graph embeddings and provide a literature review of some existing techniques. In
Section 5, a random walk embedding technique is explored, and lastly some challenges
that lie ahead are discussed.



2

2 Machine Learning
We begin to study how learning is mathematically defined in the context of machine
learning. In so doing, we lay groundwork and justification for numerous elements
of the subsequent algorithms and concepts. It can also be viewed as an attempt to
bring the two areas of graph embeddings and machine learning closer.

2.1 Notation
The following notations are used throughout this manuscript:

A scalar is denoted by a roman (non-bold) lowercase letter, e.g. b ∈ R. We denote
vectors in Rd by bold lowercase letters, e.g. x = (x1, x2, . . . , xd)T is a column vector
whose elements are x1, x2, . . . , xd (denoted by roman, indexed lowercase letter) and
where �T denotes the transpose operator. Norm function ‖x‖ without any indices
refers to L2-norm:

‖x‖ = ‖x‖2 =
√∑

i

x2
i

A bold uppercase letter signifies a matrix, for example M ∈ Rd×d is a square
matrix of dimensions d by d. Elements of matrix M are denoted using roman, capital,
double-indexed letters such as Mij

Both P and Pr may donate the probability of a random variable. The dot product
of two vectors is indicated by a dot character, e.g. w.x is the dot product of vectors
w and x.

2.2 A Formal Mathematical Learning Model
Learning has a concrete mathematical notion that is essential to understanding how
learning algorithms operate. To this end, we attempt to present an all-encompassing
albeit terse description of a formal model that describes a simple learning scenario.

Shalev-Shwartz and Ben-David [3] offer a simple but powerful example of a
learning problem which we can deliberately examine to seek the primary components
of a learner. Suppose we have a few papayas at our disposal and would like to
determine their tastiness. Drawing on prior experience we decide to use two features
of papayas to assess tastiness: their color and softness. We begin tasting papayas,
noting their tastiness, color, and softness. Ultimately, we would have a sample of
tasted papayas, having recorded their two features of softness and color. We then
arrive at a prediction rule for predicting the tastiness of future papayas.

We begin with the fundamental mathematical components of the said learning
problem.

• Learner’s input: Learner is given the following in a basic statistical setting:

– Domain set: Often denoted by X , it is the set of objects under study
that we wish to label. In the above-mentioned learning task, the domain



3

set is all the papayas. Each object of the domain set is often referred to as
data points or instances and is usually represented as a vector of features
or dimensions.

– Label set: This is a set, often denoted by Y , including all the labels we
wish to assign to each data point in the domain set. For our example, the
label set is thus tasty and not tasty which we can mathematically formulate
as either {−1,+1} or {1, 0}. In this specific type of learning scheme, we
have the “correct” label for each papaya in the domain set. Nonetheless,
this may not always be the case. In fact, learning tasks to which labels
are not available are dubbed unsupervised learning; whereas learning
schemes that exploit existing correct labels to tune their parameters are
named supervised learning. The most notable example of the former
is clustering [4]. And the papaya example is an instance of supervised
learning, more specifically, a classification task.

X and Y coupled together form a set, namely the training data set S =
{(x1, y1), . . . , (xN , yN)}, where yi is the correct label corresponding to data
point xi. Usually, the domain and label sets are fed to learner as the this
training data set.

• Learner’s output: The learner is expected to learn a prediction rule, or better
yet a mapping from the domain set to the label set h : X −→ Y, which also
constitutes the output of the learner. The mapping is also called the hypothesis
or the predictor. The hypothesis is the rule that the learner adopts to assess
the tastiness of future papayas based on their color and softness. The correct
label yi is however generated by a function f , that is f(xi), where f : X −→ Y .
The “correct” labelling function f is what the learner tries to emulate to the
best of its abilities.

• The probability distribution of the data The training data set is sampled
from an arbitrary probability distribution. In our current learning scheme, we
assume the learner does not have any knowledge of the underlying distribution
D and does not try to estimate it. We will encounter a specific type of learning
paradigm in Section 2.5, that the estimation of the underlying probability
distribution of the generated data lies at the heart of the learning task. This is
however not the case here.

• Measure of performance The efficacy of the trained learner is determined
by how the learner performs on a random, or rather unseen data point drawn
from the underlying distribution. In that sense, the true error of the hypothesis
h is defined to be the probability of label of a random data point—drawn
from probability distribution D—not being equal to the correct label. More
precisely,

LD,f (h) , Px∼D[h(x) 6= f(x)] (1)



4

This measure determines the generalization power of the learning algorithm and
for this reason it is also called the generalization error of the learner. The two
terms, “generalization error” and the “true error ” may be used interchangeably
throughout.
The generalization error is measured with respect to the underlying distribution
D and the correct labelling function f , hence the subscript (D, f). However,
the learner has no knowledge of the two and therefore is incapable of directly
calculating the true error. This lack of knowledge about the target function
and the distribution of the data underpins the necessity of a different notion
of error which the hypothesis h can compute. This brings us to the following
learning paradigm: Empirical Risk Minimization.

2.3 Empirical Risk Minimization
The learner only has access to the training data set drawn from an unknown distri-
bution. It attempts to learn a hypothesis h : X −→ Y that approximates a target
function f that has generated the labels of the training samples. Since the learner
has no knowledge of either f or D and has the training data set at its disposal, it
computes the training error it incurs on the training samples. In the simplest of
forms, such as the papaya example we’ve discussed so far, this error can be calculated
as follows.

LS(h) = |{i ∈ [N ] : h(xi) 6= f(xi)}|
N

(2)

The subscript emphasizes the dependence of the hypothesis loss on the training
data set. And due to this dependence, it is also called empirical risk or empirical
error. Intuitively, the hypothesis attempts to do well on the training data set, or
rather, minimize the empirical risk and for this reason, this learning paradigm is
named Empirical Risk Minimization or ERM for short.

2.3.1 Empirical Risk Minimization and Overfitting

Albeit ERM seems intuitive, Shalev-Shwartz and Ben-David [3] outline how it can
lead to overfitting. Overfitting is the phenomenon that the hypothesis h performs
well on the training data set while performing poorly on the unseen data, concluding
that the generalization error is too high for such a hypothesis. A common solution to
this overfitting problem is to constrict the search space. Strictly speaking, the learner
chooses a set of predictors, namely the hypothesis class denoted by H, before seeing
the training data set. Thereafter the problem amounts to finding a mapping function
h ∈ H that performs well enough on the training data set. Therefore, formally, we
would like to find the set of hypotheses in H that achieve the minimum empirical
error

ERMH(S) ∈ arg min
h∈H

LS(h)



5

The choice of the hypothesis class is thus based on some prior knowledge about
the task at hand and leads to a fundamental question in learning theory of how
to choose the hypothesis class H to ensure ERMH learning will not overfit. One
solution to preventing overfitting is restricting the hypothesis class by imposing an
upper bound on its size—which is the number of hypotheses in the hypothesis class.
Theorem (1) states that ERM will not overfit provided the hypothesis space H is
finite and the training sample is sufficiently large.

Theorem (1) makes two simplifying assumptions: the i.i.d. Assumption and
the realizability Assumption. The i.i.d. assumption, on which numerous machine
learning algorithms are founded, states that data points in the training data set are
independently and identically distributed. The realizability assumption is that there
exists h∗ ∈ H such that LD,f(h∗) = 0. Meaning that for a random data point x
sampled from D, the true label given by f(x) equals the calculated label h∗(x) with
probability 1. Therefore, Theorem (1) must show that

LD(hS) < ε with probability at least 1− δ

for accuracy parameter ε > 0 and confidence parameter 1− δ.
That is, the true error of the hypothesis chosen by the ERM is sufficiently low,

that is LD(h) < ε. The confidence parameter is to cater for cases that we may draw
“unrepresentative” samples from the underlying distribution.

Theorem 1 (FINITE theorem) Let H be a finite hypothesis space and assume
realizability. Let ε and δ ∈ (0, 1) be the accuracy and the confidence respectively. And
consider the sample size N to be

N ≥ log (|H|/δ)
ε

Let the Empirical Risk Minimization algorithm select the hypothesis hs over the
sample S ∼ DN . Then

LD(hs) ≤ ε

with probability at least 1− δ

Proof: Define Hε = {h ∈ H : LD(h) > ε}, which includes all hypotheses with
error more than ε > 0. We then move on to calculate the probability that any
hypothesis in Hε is consistent with a sample S of size N



6

P[∃h ∈ Hε : LS(h) = 0]
= P[LS(h1) = 0 ∨ . . . ∨ LS(h|Hε|) = 0]
≤

∑
h∈Hε

P[LS(h) = 0], (Union bound)

Given we have defined the error of the hypotheses to be
LD(h) = Px∼D[h(x) 6= f(x)] > ε

we have
Px∼D[h(x) = f(x)] < 1− ε
therefore
≤ (1− ε)N |Hε|
≤ (1− ε)N |H|

Hence, the probability that all the hypotheses that are consistent with sample S
have error at most ε is at least 1− (1− ε)N |H|. We would like to select N such that

(1− ε)N |H| ≤ δ

This yields

N ≥
ln(1

δ
) + ln |H|

− ln (1− ε) ≥
ln (|H|/δ)

ε

Therefore, in most machine learning scenarios, a suitable loss function, also known
as the cost function, is defined based on the task at hand and subsequently optimized
(minimized) by an optimization method of choice. The choice of the loss function
primarily hinges on the types of parameters we would like to predict and also affects
the choice of the optimization method.

2.4 The Perceptron Algorithm: A Linear Classifier
We study a simple yet powerful linear classifier, the Perceptron [5], to see how the
components of a learning task we set forth earlier play out. We consider a binary
classification task, i.e. Y = {−1,+1} and a training data set X = {x1, . . . ,xN}
where xi ∈ Rd for all i.

For such a training set, we would like to find a linear classifier, that is a hyper-
plane, which correctly classifies all the data points. A hyper-plane is characterized
by the normal vector which is perpendicular to the hyper-plane w ∈ Rd and a bias
parameter b ∈ R. Thus, the learning task amounts to finding the most suited normal
vector and bias. Let the potential hyper-planes, i.e. linear predictors, be the following
set of functions

Ld = {x 7→ w.x + b : w ∈ Rd, b ∈ R}



7

For any data point x there are two options—minus the case where the data point
resides on the hyper-plane and thus the dot product of the two equals zero—: the
data point can form an acute angle with the normal vector and thus the functions in
Ld would output a positive number. Or the data point forms an obtuse angle with
the normal vector in which case the output would be negative. In any case it is not
hard to see that for the predictor to classify data point xi with the corresponding
correct label yi correctly, the following must hold true

yi(w.xi + b) ≥ 0

In order for the predictor to return a valid −1 or +1 label upon receiving a data
point x, we apply the sign function to predictors, that is

sign(w.x + b) =

+1, if w.x + b ≥ 0.
−1, otherwise.

(3)

This brings us to the hypothesis class designed for binary classification tasks,
namely the class of halfspaces

HSd = sign ◦ Ld = {x 7→ sign(hw,b(x)) : hw,b ∈ Ld}

where
hw,b(x) = w.x + b

The Perceptron is an iterative algorithm that finds a linear predictor in such
hypothesis class for a given training data set, using the following loss function upon
receiving a data point xi and its corresponding correct label yi ∈ {−1,+1}

`(xi,yi)(w, b)) =

0, if yi(w.xi + b) ≥ 0.
−yi(w.xi + b), otherwise.

(4)

The total loss function is the summation of the loss incurred on all the data
points in the training data set S = {x1, . . . ,xN}

LS(hw,b) =
N∑
i

`(xi,yi)(hw,b)

Intuitively, if the predictor classifies the data point correctly, no error should
be incurred. However, if not, the learner should be penalized in proportion to how
wrong it was. The convexity of such a loss function guarantees a global optimum,
which is the holy grail of any machine learning algorithm.

To optimize the above loss function, Perceptron utilizes stochastic gradient descent
(SGD). Stochastic gradient descent is a variation of gradient descent (GD). Both
algorithms are unconstrained optimization techniques that aim to minimize a function
by iteratively nudging the parameters from their initial values in the opposite direction
of the gradient of the loss function, until they converge. The two techniques differ in
how they treat the training data set. Gradient descent makes a pass through all the



8

data points for each update of the parameters, whereas stochastic gradient descent
performs an update of parameters based on every single single data point.

Implementation of stochastic gradient descent is outlined in Algorithm 1.

Algorithm 1: SGD(η, T,S) for minimizing f(w)
Input: step size η
number of iterations T
labeled training data set S
Output: function parameters w
Initialize w(1) = 0
for t = 1, . . . , T do

Draw (x, y) ∈ S randomly
w(t+1) = w(t) − η∇`(w(t); (x, y))

return w(T+1);

Parameters η and T ensure the convergence of SGD [3, 1].
The Perceptron uses SGD (with step size η = 1) to minimize the loss function

defined in Equation (4) (as can be seen by the partial derivatives with respect to the
weights and bias used in the update steps) and is described in Algorithm 2. Novikoff
[6] proves that the Perceptron converges if the data is linearly separable (there exists
a linear classifier that classifies all the data points in the training data set correctly).
The theorem is stated below in Theorem 2. It is interesting how neither the size of
domain set X nor the dimensionality of the data points affect the bound on number
of mistakes the perceptron makes. The Perceptron does not necessarily converge for
non-linearly separable data [3].

Theorem 2 (Novikoff, 1962) Consider data points x1, . . . ,xN ∈ Rd where ||xi|| ≤
r for all i ∈ [N ] for some r > 0. We assume there exists ρ > 0 and w∗ ∈ Rd such
that ρ ≤ yi(w∗.x)

||w∗|| (linear separability) for all i ∈ [N ]. Then, we can state the following
about the number of perceptron updates (i.e. the number of prediction mistakes) T
when processing x1, . . . ,xN is

T ≤ r2

ρ2

The Perceptron is one of a plethora of classifiers, linear or otherwise, in the machine
learning realm. It is, however, one of the most simple classification algorithms that
also lays the groundwork for a more competent set of classifiers known as the
support vector machines [3, 1]. The Perceptron is also a precursor to a different
learning paradigm known as artificial neural networks, that will be briefly discussed
in Subsection 2.6.

2.5 Generative Models
When following a discriminative approach, such as the Perceptron algorithm in
Section 2.4, we are oblivious to the underlying distribution of the data. In other



9

Algorithm 2: perceptron(S, T )
Input: labeled training data set S
number of iterations T
Output: predictor parameters w, b
Initialize w = 0 and b = 0
for t = 1, . . . , T do

if ∃i s.t. yi(w(t).xi + b(t)) < 0 then
w(t+1) = w(t) + yixi
b(t+1) = b(t) + yi

else
return w(T+1), b(T+1);



10

words, we do not make any assumptions about the underlying distribution of which
the observed data are sampled from and do not attempt to learn it, rather we learn
a predictor. However, in generative models, we assume the data points are drawn
from a specific parametric distribution whose parameters we attempt to estimate.

More specifically, the distribution of the data, the model, has a set of parameters
θ which the goal is to learn having observed data set S. In other words, we assume
a distribution family for the observed data and subsequently estimate its parameters.
As an example, if we assume the data is sampled from a Gaussian distribution,
the parameters are the mean and the covariance, θ = {µ,Σ}. Generally, given the
training data set S, we have some prior belief about θ, and the Bayes’s rule will
update it in light of newly observed data

P[θ|S] = P[S|θ]P[θ]
P[S] (5)

The term P[S|θ] is the likelihood of the observed data given θ and can be viewed
as a function of θ. P[θ] is called the prior, and P[S] the marginal likelihood or the
evidence.

A brief description of a well-known statistical method is underway, for estimating
the parameters of the distribution over the data, that is the maximum likelihood
principle. Maximum likelihood aims to maximize the likelihood of the observed data
which is, in turn, a function of θ, hence the name. Moreover, we will observe how
maximum likelihood is similar to and differs from the empirical risk minimization
(ERM) studied previously.

2.5.1 Maximum Likelihood Estimator

Simply put, maximum likelihood estimator finds the parameters of the underlying
distribution for which the observed data has the highest probability. More concretely,
it maximizes the likelihood function described above. Shalev-Shwartz and Ben-David
[3] present a concrete example to grasp the idea of this estimator as follows:

Assume a pharmaceutical company has developed a new medicine as a cure to a
deadly disease and would like to gauge the probability of patients’ survival having
used the medicine. The company samples N people independently and provides
them with the medicine. The sample set is denoted by S = {x1, . . . , xN}, where
xi = 1 if patient i survived and xi = 0 otherwise. It can be seen that the random
variable xi follows a Bernoulli distribution which can be modeled with a single
parameter θ ∈ [0, 1], indicating the probability of survival.

The goal is now to estimate θ based on the training data set S. The joint
probability distribution over i.i.d. random variables is

P[xi, . . . , xN |θ] =
N∏
i=1

P[xi|θ]

Therefore, the probability of generating the data set D for the given example is



11

P[D = {xi, . . . , xN}] =
N∏
i=1

θxi(1− θ)1−xi = θ
∑

i
xi(1− θ)

∑
i
(1−xi) (6)

It is often more convenient to work with the logarithm of the likelihood function.
Since logarithm is a monotonic function, the maxima of the logarithm of the likelihood
function, log-likelihood for short, will coincide with that of the likelihood function.
Let L(S; θ) denote the log-likelihood of S given θ, which is

L(S; θ) = log(P[S = {x1, . . . , xN}]) = log(θ)
∑
i

xi + log(1− θ)
∑
i

(1− xi)

The maximum likelihood estimation is then the parameter θ̂ such that it maximizes
the log-likelihood above

θ̂ ∈ arg max
θ

L(S; θ) (7)

To find θ̂ that maximizes the log-likelihood, we take the derivative of L(D; θ)
with respect to θ and set it to zero

d

dθ
L(S; θ) = 0

Taking the derivative of the log-likelihood of our problem, we can arrive at

∑
i xi
θ
−
∑
i(1− xi)
1− θ = 0

Solving this equation we calculate the estimated parameter θ̂ to be

θ̂ =
∑N
i=1 xi
N

The estimated probability of survival, based on maximum likelihood estimation,
is just the fraction of people on the drug who have survived to the total number of
the users of the drug, which also happens to be in line with our intuition as to what
our best guess as to the probability of survival based on currently known data would
be.

In the above-mentioned example the Bernoulli random variable was discrete. A
slight modification is in order for continuous random variables. Due to the fact that for
a continuous random variable X we have P[X = x] = 0, we define the log-likelihood
to be the log of the probability density function of X at x. More specifically, given
an i.i.d. training data set S = {x1, . . . , xN} sampled from probability distribution
Pθ, the log-likelihood is



12

L(S; θ) = log(
m∏
i=1
Pθ(xi)) =

m∑
i=1

log(Pθ(xi))

Shalev-Shwartz and Ben-David [3] adopt the notation P [X = x] to describe the
probability of X = x for both discrete and continuous random variables and the
same notation will be used throughout.

2.5.1.1 Maximum Likelihood and Empirical Risk Minimization

The central difference between the maximum likelihood estimator and the Empirical
Risk Minimization principle is that in the latter there exists an oblivion towards the
underlying distribution of the sampled data. That is, we have a hypothesis class H
that includes the potential hypotheses. The training data set is then used to choose
the hypothesis h ∈ H that minimized the empirical risk.

Shalev-Shwartz and Ben-David [3] show how the maximum likelihood estimator
is an ERM for a particular loss function, known as the log-loss.

Assuming we have estimated the parameter of the distribution to be θ̂, we need to
define a loss function to assess the quality of the estimation. One sensible candidate
is the following loss function

`(θ̂, x) = − log(Pθ̂[x]) (8)
`(θ̂, x) is, thus, the loss incurred on x if it is sampled from the distribution Pθ̂.

It stands to reason that if Pθ̂[xi], that is the probability of drawing xi from the
distribution Pθ̂ with the estimated parameter θ̂, is low, then the loss should be
high. It follows immediately that the maximum likelihood principle is equivalent to
minimizing the log-loss function in Equation (8)

arg max
θ

N∑
i=1

log(Pθ[xi]) = arg min
θ

N∑
i=1
− log(Pθ[xi])

We assume that the data follows a distribution P whose parameters do not
necessarily conform with the parameters θ̂ we have estimated. Therefore, a measure
of the risk of θ must be devised. And in in fact, Shalev-Shwartz and Ben-David
[3] define the true risk of θ to be the expected value of the loss on θ defined in
Equation (8)

E[`(θ, x)] = −
N∑
i=1
P [xi] log(Pθ[xi])

=
N∑
i=1
P [xi] log( P [xi]

Pθ[xi]P [xi]
)

=
N∑
i=1
P [xi] log( P [xi]

Pθ[xi]
)︸ ︷︷ ︸

DKL[P||Pθ]

+
N∑
i=1
P [xi] log( 1

P [xi]
)︸ ︷︷ ︸

H(P)

(9)



13

The terms DKL and H(P) are Kullback–Leibler divergence (or the relative en-
tropy [3]) and entropy respectively. The former is a measure of difference (divergence)
between two probability distributions and the latter a measure of how unpredictablilty
of a certain probability distribution. It is noteworthy that that Kullback–Leibler
divergence equates zero if the true and the estimated distributions are the same,
otherwise equal to a non-negative value for discrete random variables. Also we
should note that although frequently introduced as a measure of distance between
two probability distributions, Kullback–Leibler divergence is not a metric as it is not
necessarily symmetric.

The true risk just computed is the loss function of choice in tasks where we
would like to predict a probability, e.g. a classification problem where the output is
a probability distribution among all the available labels in the label set Y . We will
see this particular loss function in use in Section 5.

2.6 Artificial Neural Networks
Artificial neural networks are computational models that have proved exceptionally
powerful in tasks such as image classification, speech recognition, etc. due to their
ability to capture non-linearity in data. Different architectures of these brain-inspired
networks cater for different tasks, for example, convolutional neural networks are
widely in use for image classification tasks [7]. Or recurrent neural networks for speech
recognition [8]. We will briefly review the most simple neural network architecture,
the feed-forward neural networks, to set a rough foundation for the subsequent
sections.

Feed-forward neural networks are directed acyclic graphs G = (V , E), with
collection of neurons (as nodes) stacked in a layers, and a weight function w : E −→ R.
An example of a feed-forward network is illustrated in Figure 1.

Every neuron computes a weighted sum of all its incoming edges and then applies
a function to the computed weighted sum. An example neuron depicted in Figure 2
calculates value h as follows

h = σ(
4∑
i=1

xiwi + b) = σ(x.w + b)

where σ(.) is a non-linear activation function, w = (w1, w2, w3, w4)T is a weight
vector in correspondence with the incoming edges, and b is the neuron’s bias.

The weights of all edges are the parameters to be learned. And the weights of
the blue edges are called bias. Each neuron has its own bias as depicted in Figure
1. Every neural network is composed of at least one input layer, one output layer
and an arbitrary number of hidden layers. The input layer is where a data point
is fed into, with each neuron in the layer accounting for all dimensions of the data
point. The output layer is tailored according to the task at hand; for instance, if we
want to predict a scalar label y ∈ R, there would be one neuron in the output layer,
determining probability of presence of each digit (0−9) of an image of a hand-written
digit would require one neuron for each digit. The hidden layers, however, can have
arbitrary number of neurons and the term “deep” in deep-learning is associated with



14

the number of hidden layers in a neural network. It is this existence of hidden layers
that enables neural networks to learn non-linearly separable problems.

If we define the activation function of a single neuron to be the sign function
we defined in Equation (3), it is not hard to see that this neuron would be an
implementation the Perceptron algorithm described in Section 2.4. And for this
reason, such neuron is called the “perceptron” neuron in the literature [5]. In practice
the choice of the activation function is dependent on the nature of the problem
being solved; for example, in multi-class or binary classification tasks where what is
being predicted is a probability distribution over the class labels, it is common to
use softmax and sigmoid functions respectively to approximate probabilities, due
to their smooth and bounded (normalized in case of softmax) outputs [9]. However,
these should not be the sole reasons why such functions are used to approximate
probabilities; many other differentiable and normalized functions can be viable
candidates. Nonetheless, both functions are commonly used in the last layer of neural
networks to estimate probability distribution in practice.

Softmax in particular is derived from Boltzmann’s distribution, which is the
maximum entropy (arg maxp(−

∑
i pilog2pi)) probability distribution that a system

with temperature T occupies a certain state si, where each state has a different
energy level εi and a defined mean energy ∑i piεi across all possible states:

pi = eβεi∑
j e

βεj

where coldness β = 1
kT

and k is a constant. In many instances, e.g. Equation (38),
parameter β is assumed to be equal to 1.

We will observe both softmax and sigmoid functions approximating probabilities
in practice in Section 5.

The parameters of neural networks are the weights and biases that need to be
learned. Given that the number of parameters are often inextricably large, calculating
gradient of the loss function, which is needed for gradient based optimization methods
such as stochastic gradient descent (SGD), becomes impractical. For this reason,
back-propagation is used to calculate partial derivatives of loss function at each layer
by going through layers backwards and employing chain rule to eliminate redundant
calculations compared to direct calculation of gradient based on the general form of
the loss function [10].



15

Input layer (V0) Hidden layer (V1) Output layer (V2)

x1

x3

x2

v0,1

v0,2

v0,3

1

v1,1

v1,2

v1,3

v1,4

1

v2,1 Output

Figure 1: A feed-forward networks with one hidden layer. A data point x =
(x1, x2, x3)T is fed into the network, for which a single label is produced by neuron
V2,1. The biases of the neurons correspond to the weights of the blue edges.

h

x1

x2

x3

x4

Figure 2: A computational neuron with four incoming edges. The output h is the
weighted sum of all the incoming edges x1, . . . , x4, passed to some non-linear function.



16

2.7 Dimensionality Reduction
Embedding high-dimensional graph-structured data into lower-dimensional vector
spaces is the centerpiece of this thesis, which is at heart a dimensionality reduction
procedure. Before diving into techniques for graph embedding, we study a much
revered unsupervised learning algorithm for reducing the dimensionality of Euclidean
data, namely the Principal Component analysis, PCA for short. We will observe
how it bears resemblance to the well-known graph embedding technique Laplacian
eigenmaps studied in Section 4.

Dimensionality reduction is a technique of mapping high-dimensional data into
a low-dimensional space, and so akin to the concept of lossy compression in infor-
mation theory. In many cases, the high-dimensional data points might lie on a
low-dimensional manifold and thus learning such a manifold would yield the said
mapping. In fact, the terms ‘manifold learning’ and ‘dimensionality reduction’ are
often used interchangeably for this reason [11].

There are several reasons to reduce the dimensionality of the data. From a compu-
tational efficiency standpoint, manipulating high-dimensional data can be challenging.
Furthermore, high-dimensional data can result in substandard generalization ability
of the learning algorithms and in that sense, dimensionality reduction is said to have
a de-noising effect [3]. More generally, dimensionality reduction can be used for
extracting meaningful structures from the data and for visualization purposes.

Many dimensionality reduction algorithms have been developed, of which the
perhaps most well-known is the Principle Component Analysis (PCA). PCA both
compresses and recovers the data points by applying linear transformations and aims
to find such transformations such that the differences between the original vectors
and the recovered vectors are minimal. PCA can also be viewed in light of variance
maximization. More specifically, transformations are such that the variance of the
projected data points is maximal.

There are multitudes of algorithms that apply non-linear transformation such as
Kernel PCA [12] and Laplacian eigenmaps [13]. The Laplacian eigenmaps will be
reviewed extensively in Section 4.

2.7.1 Principle Component Analysis: Reconstruction Error Minimiza-
tion

As said before, PCA is an unsupervised learning algorithm; that is the label set
Y is an empty set. The domain set X includes x1, . . . ,xN that are N column
vectors (data points) residing in Rd. PCA aims to apply a linear transformation
to reduce the dimensionality of the vectors from d to k where k < d. Let matrix
W ∈ Rk×d represent the linear transformation which induces the mapping x 7→Wx.
So, Wx is in Rk and is the lower-dimensional representation of the vector x. Having
defined the compression matrix, we define matrix U ∈ Rd×k to be the decompression
matrix that recovers vector x from its compressed version in the k-dimensional linear
subspace. That is, the reconstructed vector x̂ is equal to UWx and resides in the
high dimensional space Rd.



17

Having written out the compressed and recovered vectors in mathematical terms,
the PCA problem reduces to minimizing the reconstruction error in the least square
sense. That is, we wish to find the matrices W and U for which the total squared
distance between the original and reconstructed vectors among all the data points is
minimized (which constitutes the loss function L)

arg min
W∈Rk×d,U∈Rd×k

n∑
i=1
||xi −UWxi||22 (10)

Additional to this error minimization perspective there is an alternative way
to define PCA. We can also view PCA as finding projections which maximize the
variance. More concretely, the first principal component is the vector in the original
space along which the projections of the data points have the largest variance. The
second principal component is the vector that maximizes the variance along all the
vectors orthogonal to the first, and so on. We will see shortly how the variance
maximization is mathematically equivalent to minimizing the reconstruction error.

In the following lemma, we see that the solution to the Equation (10) takes a
specific form.

Lemma 3 Let W and U be the optimal solutions to Equation (10). Then W = UT

and the matrix U is orthogonal; that is UTU is the identity matrix Ik in Rk

Proof: For any W and U, the mapping x 7→ UWx has the range R of k
dimensions, that is, it is a k dimensional linear subspace of Rd. Such a space then must
have a corresponding matrix V ∈ Rd×k, whose columns are the orthonormal basis
vectors of this subspace—which is the new coordinate system—meaning VTV = I,
with range R. Thus, any vector in this subspace can be written as Vz where z ∈ Rk.
The term Vz is viewed as the reconstructed vector in the original vector space of
dimensional d from the low-dimensional representation vector z. The difference
between the reconstructed and original vectors, for every z ∈ Rk and x ∈ Rd, can
thus be written as follows

f(x, z) = ||x−Vz||22 = xTx + zTVTVz− 2zTVTx = ||x||22 + ||z||22 +−2zTVTx

Where we used the fact that VTV = Ik. To find the vector z that minimizes the
preceding expression, we compute the gradient with respect to z and set it to zero

∇zf(x, z) = 2z− 2VTx = 0 =⇒ z = VTx

Therefore, for every data point x we can write

VVTx = arg min
x̂∈R

||x− x̂||

This provides a lower bound on the objective function stated in Equation (10).
Thus



18

n∑
i=1
||xi −UWxi||22 =

n∑
i=1
||xi −Vzi||22 ≥

n∑
i=1
||xi −VVTxi||22

Since this inequality holds for ever W and U, the optimal solutions for them are
VT and V, and this concludes the proof.

The optimization problem stated in Equation (10) can thus be re-written as
follows.

arg min
U∈Rd×k,UTU=I

n∑
i=1
||xi −UUTxi||22 (11)

The matrix UUT is the projection matrix whose columns are orthonormal.
Specifically, UTxi is the projection of xi onto the subspace spanned by the columns
of U. And UUTxi is the reconstructed xi in the original coordinate system.

We further expand out the term in Equation (11)’s sum for every x ∈ Rd and matrix U ∈
Rd×k such that UTU = I as follows

||x−UUTx||22 = xTx + xTUUTUUTx− 2xTUUTx
= ||x||2 − xTUUTx
= ||x||2 − trace(xTUUTx)
= ||x||2 − trace(UTxxTU)

(12)

Minimizing Equation (12) is equivalent to maximizing the trace term since the
length of vectors are given. So, the minimization problem in Equation (11) can be
re-written as a maximization problem. Using the fact that trace is a linear operator,
we now aim to solve the following optimization problem

arg max
U∈Rd×k,UTU=I

trace
(

UT
n∑
i=1

xixTi U
)

(13)

There are at least two ways to solve Equation (13) which are the spectral theorem
and the Lagrange multiplier method. The former approach is what follows

Let M denote the matrix ∑N
i=1 xixTi . The matrix M is symmetric, as can be seen,

and thus allows for the use of the spectral theorem and so can be written using its
structural decomposition as M = VΛΛΛVT where the matrix V has the orthonormal
eigenvectors of M as its columns which in turn entails that VΛΛΛVT = VTΛΛΛV = I
and the corresponding eigenvalues are along the diagonal of the diagonal matrix
ΛΛΛ. We also assume that the eigenvalues are ordered in a descending order, that
is ΛΛΛ11 ≥ ΛΛΛ22 ≥ . . . ≥ ΛΛΛdd. Moreover, M is positive semidefinite, meaning all its
eigenvalues are non-negative. Having established these characteristics, we can study
the following theorem that claims the solution to Equation (13), matrix U, takes a
specific form.

Theorem 4 Given arbitrary vectors x1, . . . ,xN in Rd, let M = ∑N
i=1 xixTi , and let

U be a matrix whose columns are the eigenvectors u1, . . . ,uk of M corresponding



19

to its k largest eigenvalue.Then, the solution to the optimization problem given in
Equation (13) is matrix U and W = UT

Shalev-Shwartz and Ben-David [3] provide a solid proof using the spectral decom-
position theorem:

Proof: We choose an arbitrary matrix U ∈ Rd×k whose columns are orthonormal
and let VΛΛΛVT be the spectral decomposition of matrix M. Additionally, we define
matrix B to be VTU. Then, VB = VVTU. Given that matrix V is an orthogonal
matrix we have VB = U and consequently the following equality also holds

UTMU = BTVTVΛΛΛVTVB = BTΛΛΛB

Where BTB = I, meaning its columns are orthonormal. Then, we can write out the
trace of the resulting matrix as

trace(UTMU) =
d∑
i=1

Λii

k∑
j=1

B2
ij

We attempt to exploit a square matrix instead of B to provide an upper bound on
the trace value. Let’s define B̂ to be in Rd×d whose first k columns are that of B and
to also be orthogonal, that is B̂T B̂ = B̂B̂T . The orthogonality of matrix B̂ allows us
to have ∑d

j=1 B̂
2
ij = 1 for every row i, which in turn implies that ∑k

j=1B
2
ij ≤ 1. So,

given these, and the fact that ∑d
i=1

∑k
j=1B

2
ij = k, we can assimilate a vector into the

the right-hand side of the equation above to capture the characteristics just derived,
providing an upper bound for the trace value

trace(UTMU) ≤ max
b∈[0,1]d:||b||≤k

d∑
i=1

Λiibi

The right-hand side of the equality above is simply a weighted sum of the d
largest eigenvalues of matrix M. Noting that the sum of elements of the vector b
must be less than or equal to k and the eigenvalues are along the diagonal of ΛΛΛ in a
descending order by assumption without loss of generality, the maximum is achieved
when the first k elements are set to one and the rest to zero, that is ∑k

i=1 Λii.
Thus, for any matrix U ∈ Rd×k with orthonormal columns we have

trace(UTMU) ≤
k∑
i=1

Λii

If we place U by the matrix whose columns are the k eigenvectors of M, corresponding
with the k biggest eigenvalues we get

trace(UTU︸ ︷︷ ︸
I

ΛΛΛ) =
k∑
i=1

Λii

Therefore, we observe that trace(UTMU) = ∑k
i=1 Λii when U’s columns are the k

leading eigenvectors of M and the proof is concluded.



20

The PCA algorithm is summarized in Algorithm 3. We construct M in time
O(Nd2) and compute its eigendecomposition in O(d3) and so the computational
complexity of PCA is O(Nd2 + d3)

Algorithm 3: PCA(x1, . . . ,xN , k)
Input: N data points x1, . . . ,xN
number of principal components k
Output: k principal components u1, . . . ,uk
Compute M = ∑N

i=1 xixTi
Compute k eigenvectors u1, . . . ,uk of M corresponding to the k largest
eigenvalues subject to uTi uj = 0 for all i 6= j and ||ui|| = 1 for all i
return u1, . . . ,uk;

2.7.2 Principle Component Analysis: Variance Maximization

We observed that PCA optimization problem was formed out of minimizing the
reconstruction error in the previous section. However, an alternative approach
comes into light when we attempt to decipher what the maximization problem
in Equation (13) signifies. We start by discerning what the matrix ∑n

i=1 xixTi
represents. We calculate the expectation of each dimension of the data points, that
is µµµ = 1

n

∑n
i=1 xi, that is in Rd. If we subtract µµµ from each data point, the matrix

becomes ∑n
i=1(xi −µµµ)(xi −µµµ)T . This new matrix divided by n yields the covariance

matrix. Therefore, the original matrix ∑n
i=1 xixTi is in fact the covariance matrix

of the centered data points times constant n. Centering the data points is referred
to the act of subtracting the mean from the data points so as to make the mean
zero, which is a common practice to do prior any calculation. Now that we have
established matrix M is in fact the covariance matrix of the data points, we begin to
look at the PCA problem from a different perspective.

PCA can be formulated as finding a different coordinate system for the data
in which the variance of the data is maximized. Let xi ∈ Rd be a data point and
u ∈ Rd a basis vector of the new coordinate system. The projection of xi onto u
is the their dot product uTxi assuming ||u|| = 1. What we would like is for the
variance of the projections of xi for i = 1, . . . , N to be maximum. Recalling what
variance mathematically is and assuming that the data points are centered, i.e. their
mean is zero, the variance of the projections is as follows



21

1
N

N∑
i=1

(
uTxi

)2

= 1
N

N∑
i=1

(
uTxi

) (
xTi u

)

= uT
1
N

N∑
i=1

(
xixTi

)
u

we substitute in the matrix U ∈ Rd×k whose columns are the new orthonormal
basis vectors, as well as the covariance matrix Σ in place of 1

N

∑N
i

(
xixTi

)
to arrive

at the following optimization problem

arg max
U∈Rd×k,UTU=I

trace
(
UTΣU

)
(14)

Equation (14) chooses a new coordinate system of k(k < d) dimensions spanned
by columns of U such that the total variance of the projected data points, that is
the sum of the variance of each dimension d, is maximized. We already observed
in Theorem 4 that the solution to this optimization problem is given by first k
eigenvectors, arranged in an ascending order, of what we now know as the covariance
matrix.

The Lagrange multipliers is an alternative way to deduce the same conclusion. For
the sake of simplification, we assume we would like to find the variance of projections
onto a single vector u. The constrained optimization method is thus

maximize uTΣu s.t. ||u||2 = 1
We will see in Section 4 that this term is called the Rayleigh quotient—of the co-

variance matrix—and yet another perspective is introduced that deduces eigenvectors
are solutions to maximizing/minimizing such terms.

We use the Lagrange multiplier λ to combine the constraint with the function to
be maximized [14]

maximize f(u, λ) = uTΣu− λ(uTu− 1)
We solve for u by finding the stationary point of the above function, that is

differentiating with respect to u and equating it to zero

∂f(u, λ)
∂u

= 2uTΣ− 2λuT = 0

uTΣ = λuT

(uTΣ)T = (λuT )T

Σu = λu



22

And we have therefor arrived at the eigenvector equation of the covariance matrix
σ. Thus, for k biggest eigenvalues λ1 ≥ . . . ≥ λk ≥ 0 of covariance matrix Σ, u1
gives the orientation of the largest variance, u2 gives the orientation of the largest
variance orthogonal to u1 (the second largest variance), all the way to uk that is
orthogonal to all the other eigenvectors, achieving the least variance among.

Therefor, we validated that the variance maximization and reconstruction error
minimization in PCA are mathematically equivalent.



23

3 Introduction To Graph Embedding
Graph embedding methods aim to learn vector representations, embeddings, for the
vertices of a graph. The goal is to produce an embedding for each of the vertices
of the graph in a way that capture the graph topology, node-to-node relationship,
or some relevant information of interest regarding each nodes, the graph, or the
subgraph. The geometric relations in the latent space, where nodes are projected
into, correspond to relations among them (e.g. links) in the original graph [15].

The low-dimensional embeddings represent the high-dimensional non-Euclidean
graph-structured data and can be subsequently used for downstream tasks, such as
community detection and link prediction.

Goyal and Ferrara [16] abstract the applications of graph embeddings into four
categories: node classification, link prediction, clustering, and visualization. So we
may be interested in determining labels of vertices of a partially labeled graph [17],
to predict missing links between vertices [18], or to cluster similar nodes together
[19]. A multitude of methods exists for such applications. For node classification
there are methods that extract features from the graph vertices to subsequently feed
them into a classifier [20], or methods that exploit random walks to propagate the
labels [21]. Among approaches for link prediction exist maximum likelihood models
[22] or similarity measure [23].

3.1 Definition and Preliminaries

3.1.1 Definition of Graphs and some of their Associated Matrices

Let G = (V , E) be a graph that is a collection of vertices (nodes) represented by the
set V = {v1, . . . , vn} and edges (links) among them represented by E ⊆ V × V .

The adjacency matrix of a graph is denoted by A ∈ R|V|×|V| whose elements
are 1 or 0, representing existence of edges among the vertices. More concretely
Aij = 1 if (vi, vj) ∈ E otherwise Aij = 0. For a weighted graph, however, a non-
negative weight is associated with every edge in graph and the adjacency matrix
is directly translated into a weight matrix—a.k.a. weighted adjacency matrix—W
where Wij ≥ 0 ∀i, j ∈ [n]. If nodes vi and vj are not connected then Wij = 0

We assume that the graphs are undirected—unless stated otherwise—, that
is if (vi, vj) ∈ E then (vj, vi) ∈ E. In such graphs we may use the set notation
{vi, vj} ∈ E instead of the tuple. And the corresponding adjacency or weight
matrices are symmetric, that is Wij = Wji ∀i, j ∈ [n].

The edge wights Wij are generally studied as a measure of similarity between
nodes vi and vj and the higher it is, the more similar the two nodes are presumed to
be [16].

For an unweighted undirected graph G, the degree of a vertex vi, denoted by di,
is defined as follows

di =
n∑
j

Aij



24

In case of a weight matrix this is directly translated into the following

di =
n∑
j

Wij

This gives way to another matrix associated with graphs called the degree matrix
D. The matrix D is a diagonal matrix that has the degrees d1, . . . , dn along its
diagonal and 0 elsewhere.

3.1.2 Graph Embedding: An Encoder-decoder Framework

We try to put the concept of graph embedding1 introduced thus far on a concrete
and unified footing by shedding light on the encoder-decoder framework, proposed
by Hamilton et al. [24].

Two key components of the framework are two mapping functions: an encoder
and a decoder. The idea is for the model to be able to learn high-dimensional
information about the graph—such information can be the structure of local graph
neighborhoods of nodes, or classification labels for the nodes [17]—from the low-
dimensional embeddings of nodes. To this end, the encoder should map each node to
a low-dimensional vector, and the decoder should decode the structural information
of the graph from the learned embeddings. In principle, the embeddings should
suffice to provide all the needed information for the subsequent off-the-shelf machine
learning algorithms. The encoder and decoder are functions as follows.

ENC : V → Rd (15)

DEC : Rd × Rd → R+ (16)

The encoder takes node vi ∈ V as an input, and outputs the associated embedded
vector zi ∈ Rd. The decoder, on the other hand, takes two embeddings as inputs and
outputs some similarity measure. This measure could be any user-defined similarity
measure, e.g. the shortest path length between the two nodes [25] or the existence
of an edge [26]. [24] claims that although numerous decoders are possible, in most
instances in the literature decoders take the aforementioned pairwise form. In 3.2.3
we will see an approach where a unary decoder is used.

The course of action is therefore as follows. The encoder embeds input nodes of
the original graph vi and vj and outputs the corresponding embeddings, zi and zj
respectively. The two embedded vectors are then passed to the decoder. The decoder,
thereafter, reconstructs a similarity measure between the pair of nodes vi and vj
in the original graph. The problem is then turned into the optimization of the
encoder-decoder model to minimize the error in the reconstruction so that

DEC(ENC(vi), ENC(vj)) ≈ sG(vi, vj) (17)
1The term graph embedding is referred to the embeddings of the vertices of graphs throughout.

However, in the literature, sub-graphs can also be embedded, as discussed in [24].



25

sG : V × V 7→ R+ 2 is a similarity measure between the nodes of the graph and
can thus be represented as a similarity matrix S ∈ R|V|×|V|. The similarity matrix is
user-defined, examples of which include the adjacency matrix [26], sG(vi, vj) , Ai,j,
or the probability of two nodes co-occurring in a fixed-length random walk over G
[27, 28].

Many approaches of graph embedding differ in how they define similarity matrices.
[16] states two different measures:

• First-order proximity
Because edge weights provide the most primitive similarity measure between
nodes, they are also named first-order proximity. An example of such weight is
illustrated by Equation (20).

• Second-order proximity
Second-order proximity provides measure of similarity of the neighborhoods
of nodes. More specifically, if we denote row i of matrix S by si, such vector
would yield the similarity measure of vertex vi with all other vertices, that
is si = (Si1, . . . , Si|V|)T . The second-order proximity of nodes vi and vj is
thus given by the similarity of si and sj. Examples of higher-order proximity
measures include Common neighbors, or Katz Index, etc. [29]. Techniques such
as [27, 28] preserve high-order proximity among nodes.

The next building block is the bedrock of the learning paradigm: a user-defined
loss function, ` : R× R→ R, that measures the discrepancy between the estimated
and the true similarity measure between all pairs of nodes. The empirical loss function
is thus to be minimized over all the pairs of nodes in the training set S

L =
∑

(vi,vj)∈S
`(DEC(zi, zj), sG(vi, vj)) (18)

Minimizing the loss function in Equation (18) results in a trained encoder-decoder
model. The model can then be used to output embeddings for the nodes. The
resulting latent features may be fed into downstream machine learning algorithms
to, for instance, classify node labels or perform link predictions.

The four primary methodological components of graph embeddings discussed
thus far can be summarised as follows.

1. A similarity matrix, S, that describes a notion of user-defined similarity
between the nodes of graph G—or the neighborhoods of the nodes.

2. An encoder function, ENC, that encodes the nodes into latent vector
representations, i.e. embeddings. Usually most of the parameters of the model
that are parameters of the in the encoder function.

3. A decoder function, DEC, which estimates the pairwise similarity measures
from the generated embeddings and usually has no trainable parameters [24].

2The subscript emphasizes that the function is applied to the vertices of graph G.



26

4. A loss function L, that quantifies the quality of the reconstructed pairwise
similarity measures with the help of true similarity measure function sG.

The existing graph embeddings differ primarily in how they define these four
components, two examples of which we will observe in Section 4 and Section 5

3.2 A Taxonomy on Algorithmic Approaches
Initially, graph embedding algorithms were developed as a means to reducing the
dimensionality of the data [16]. A powerful approach is Laplacian eigenmaps method
[13]—which we will extensively study in Section 4—where a graph is constructed that
encodes some similarity notion among N d-dimensional data points. The data points
are then embedded in a lower-dimensional vector space, preserving the proximity of
the vertices of the graph. These methodologies however lack scalability given they
often operate in time quadratic in dimensionality of the data O(d2).

More scalable methodologies lean more towards random walk based methods—of
which Deepwalk [28] will be discussed in Section 5— or neural networks as studied
in [30] that both captures the non-linear structure of the graph and leverages the
sparsity of real-world graphs.

There has been a surge in survey papers on the topic, among which are [24, 16]
that we will explore to present an overview of the existing taxonomy on graph
embedding technique.

Goyal and Ferrara [16] categorize the existing graph embedding techniques into
three broad categories: factorization based techniques, random walk based methods,
and deep learning based approaches. Hamilton et al. [24] provide a slightly different
taxonomy in that embedding can take place at two different scales of (1) embedding
nodes or (2) embedding sub-graphs. Among the node embedding techniques, they
introduce two categories of deep neural networks, and shallow embedding within
which factorization based methods and random walk-based approaches fall.

3.2.1 Factorization based methods

Factorization based algorithms, inspired by classic dimensionality reduction tech-
niques leverage the connection of graphs and matrices. More broadly, spectral graph
theory aims to explore graphs through the lens of eigenvectors and eigenvalues of
matrices naturally associated with graphs. These matrices, namely adjacency matrix,
Laplacian matrix, etc. can be factorized to obtain node embeddings. The techniques
used to factorize the representative matrices differ depending on the properties of
the matrices. In Section 4 we will study an example of factorization-based method
that leverages eigenvalue decomposition of the Laplacian matrix.

3.2.2 Random Walk based Methods

Random walks are exclusively useful when graphs are too large to be studied in their
entirety. The sampled random walks from the graph are to approximate the structure
of the whole graph and therefore prove to be scalable. Deepwalk, a proposed random



27

walk approach for node embedding by Perozzi et al. [28] will be explored closely in
Section 5. A brief comparison will additionally be provided with another well-known
approach named node2vec [27].

3.2.3 Deep Learning based Approaches

This branch of approaches has witnessed a surge in surveys recently [31, 32] and it is
a growing research topic. We will not cover any algorithms in the arena, rather, we
will provide a general overview and what lies ahead.

There are some drawbacks associated with factorization based and random walk
based techniques [24]:

• As we will see, algorithms in factorization and random walk based techniques,
e.g. algorithms in Section 4 and Section 5, do not leverage node attribute
information if provided by the underlying network. Many real-world networks
provide node features that are not represented by the graph, e.g. age, gender
or average income for social networks, that might be of benefit if Incorporated
in the learning process.

• Such techniques can be computationally inefficient since they grow linearly in
number of graph vertices, O(|V|), and do not embrace parameter sharing as a
means to regularization [3]. In short, parameter sharing reduces the number
of parameters of the model which results in faster convergence and combats
overfitting.

• These algorithms only generate embeddings for the nodes they are trained
upon [33] and need extra rounds of optimization to produce embeddings for
unseen nodes. This renders such algorithms incompetent for evolving or massive
graphs.

Deep learning approaches were proposed to counter some or all of the aforemen-
tioned drawbacks. These approaches exploit more complex encoders inspired by
neural networks, and leverage the structure and attributes of graphs, more so than
previously-mentioned techniques.

Drawing on auto-encoders—a specific architecture of neural networks—that have
been used for the purpose of dimensionality reduction [34], approaches DNGR [35],
and SDNE [30] compress and reconstruct neighborhood information vectors of every
node in graph. These compression and reconstruction are done through a deep
auto-encoder as depicted in Figure 3, much like PCA discussed in Section 2.7. Many
other approaches exist, inspired by different other neural network architectures [31].

There is additionally a rich research area that provides theoretical foundation
determining how expressive graph neural networks are [36] and show how certain
graph neural networks’ expressiveness is akin to that of 1-dimensional Weisfeiler-
Leman graph isomorphism heuristic (1-WL) [37].



28

… …

si

zi

ŝi

vi

2. Compress si to low-dimensional embedding, zi

(using deep autoencoder)

(si 2 R|V| contains vi’s proximity to all other nodes)

1. Extract high-dimensional neighborhood vector

Figure 3: How neighborhood auto-encoder works in approaches SDNE and DNGR.
Figure republished from [24] c© 2017 IEEE.



29

4 Laplacian Eigenmaps: A Spectral Embedding
Technique

Among the family of dimensionality reduction techniques—including linear dimension-
ality reduction method PCA, discussed in Subsection 2.7—there exists the family of
manifold learning that gained traction due to their geometric intuition and non-linear
nature. Manifold learning algorithms stem from the assumption that the input data
is in a high-dimensional space Rd where in fact lies on or close to a k-dimensional
manifold where k � d.

There is a natural correspondence between the graph Laplacian, the heat equation,
and the Laplace-Beltrami operator on a manifold. Belkin and Niyogi [13] exploit
such correspondence and offers a computationally efficient non-linear dimensionality
reduction method that builds a representation for data points sampled from a low-
dimensional manifold embedded in a high-dimensional space, while preserving the
locality properties of the data points.

We first illustrate the core algorithm given by Belkin and Niyogi [13] and subse-
quently discuss its association to the geometric properties of the underlying manifold.
We will see that the graph Laplacian obtained from the data in fact approximates
the Laplace-Beltrami operator applied to the manifold. Furthermore, the connection
between the graph Laplacian and the solution to the heat equation motivates [13] to
select a particular set of weights for the constructed graph.

4.1 Laplacian Eigenmaps Algorithm
Laplacian eigenmaps algorithm is three-pronged:

1. Constructing the graph from the sampled data points.

2. Choosing weights for the edges of the graph.

3. Calculation of the eigenmaps with respect to the constructed graph.

The core algorithm is described in Algorithm 4. We furthermore dive into the
some of the mathematical justifications that corroborate the intuition behind the
laplacian eigenmaps, as well as a synopsis of the physics metaphor of the graph
Laplacian and its properties.



30

Algorithm 4: Laplacian-eigenmaps(x1, . . . ,xN)
Input: N data points x1, . . . ,xN in Rd

Output: N embedding vectors ψψψ1, . . . ,ψψψN in Rm

[Constructing the graph G] There is an edge between nodes i and j if xi and xj
are “close” or “similar”. This closeness can be defined in two ways:
• ε-neighborhood: Nodes i and j are connected by an edge if
||xi − xj||2 < ε for ε ∈ R

• n nearest neighbors: Nodes i and j are connected by an edge if xj is among
the n nearest neighbor of xi or vice versa for some n ∈ N.

[Choosing the weights of G] We choose weights for the edges of the constructed
graph and construct the weight matrix. Again, there are two approaches:

• Heat kernel: Assign the following weight to the edge between nodes i and j:

Wij = e−
||xi−xj ||

2

t t ∈ R

• Adjacency matrix: Wij = 1 if there is an edge between nodes i and j,
otherwise Wij = 0

[Compute eigenmaps] It is assumed the constructed graph G is connected. If
not, the following step is applied to each connected component.
Compute the eigenvectors and the corresponding eigenvalues for the graph
Laplacian of the graph G

Lψψψ = λDψψψ (19)

Where D is a diagonal matrix whose elements take form of Dii = ∑
jWij.

Additionally, L = D−W is the Laplacian matrix. Let ψψψ0, . . . ,ψψψk−1 be the
solutions—which constitute the eigenvectors of the graph Laplacian—to
Equation (19) in an ascending order with respect to their corresponding
eigenvalues (ψψψ0 has the smallest eigenvalue ).
Hence, the embedding vector of xi is ψψψi ∈ Rm whose elements are
(ψψψ1(i), . . . ,ψψψm(i)).
return ψψψ1, . . . ,ψψψN ;



31

4.1.1 Similarity Graphs

Similarity graphs are graphs that attempt to capture local neighborhood relationships
among a given set of data points x1, . . . ,xN with some notion of pairwise similarity.
Some of the most well-known constructions for such transformations are what follows,
as stated by [38]. We will also see one of such approaches in use in Section 4.
• The ε-neighborhood graph

Each pair of vertices vi and vj are connected by an edge if the geodesic distance
(e.g. L2 distance) of the corresponding data points xi and xj is smaller than
some ε > 0. By definition, the distances between every endpoints of all the edges
in the constructed graph are roughly of the same scale (at most ε), assigning
additional weights to the edges of the graph would not supply more information.
Therefore, the ε- neighborhood graphs are usually deemed unweighted.

• The k-nearest neighbors graph
In this scheme, vertices vi and vj are connected if both vertices are among the
k nearest neighbors of the other. The k nearest neighbor of a data point is the
collection of k other data points that have the smallest distances to the original
data point. The resulting graph is a directed graph since we established, by
definition, an edge is placed if both of the corresponding data points are among
each other’s k nearest neighbors. Otherwise, we would be left with a directed
graph since the neighborhood relationship is not symmetric. Having placed all
the edges in either case, weights are assigned to them proportionately with the
similarity, e.g. the inverse of the distance, of their endpoints.

• The fully-connected graph
To constructing such graphs, all the vertices are connected and the weights are
assigned to all edges to capture the local neighborhood relationships, that is
the neighbors of each vertex are weighted. For this type of graphs, a similarity
function—also known as the kernel function [39]—needs to be defined that
quantifies the similarity between a pair of data points. And example of such a
function is the following known as the Gaussian function

f(xi,xj) = e−
||xi−xj ||

2

2σ2 (20)

where the parameter σ controls the width of the neighborhoods. Therefore,
all the edges of the graph are assigned weights computed by the Gaussian
similarity function in Equation (20).
The kernel function in Equation (20) decays with distance. Intuitively, the
smaller the distance between two data points, the larger the weight of their
connecting edge. Equation (20) is, in fact, the probability density function of a
Gaussian random variable, in which σ represents the standard deviation of the
distribution. Roughly, if we assume xj to be a query point, the edge connecting
it to data point xi will be weighted heavily if xj falls within distance σ of the
data point xi.



32

4.2 The Graph Laplacian

4.2.1 Formal Definition of the Graph Laplacian

The graph Laplacian, the Laplacian matrix of graph G = (E,V), is formally defined as
the difference between the degree matrix and the adjacency matrix, that is L = D−A.
This entails that the Laplacian matrix has the degrees of the nodes on its diagonal,
and -1 where there is an edge between nodes i and j and 0 otherwise. The elements
of the Laplacian matrix, written out in full, are

Lij =


di if i = j,

−1 if (i, j) ∈ E and i 6= j,

0 otherwise.
(21)

A brief description of the physics intuition behind the Laplacian matrix (the
graph Laplacian) is in order, to better grasp the idea behind Laplacian eigenmaps.
We start by briefly formulating the heat equation both mathematically and intuitively
and proceed to lay foundation from a physics standpoint. This allows to observe how
the graph Laplacian is associated with the heat equation and its solution.

4.2.2 Heat Equation, Heat Kernel, and The Graph Laplacian

Diffusion is the analogous physical process that offers ample intuition for the graph
Laplacian. Diffusion can be described as a process by which heat (or a fluid) moves
from regions of high temperature (density for fluids) to regions of low. To exemplify,
we assume that we have a simple undirected graph at our disposal where each node
has a different temperature. The heat will flow in the direction of high temperatures
to low, eventually reaching an approximate equilibrium. However, before equilibrium,
the heat is distributed in such a way that the more closely connected nodes would
have similar temperatures [40]. The nodes of the graphs can therefore be represented
by a single value of temperature, embedding the nodes in a 1-dimensional vector
space. It can be deduced that nodes that are closer in the graph have more similar
temperatures and vice versa.

The mathematical formulation of the diffusion process holds significance in
cementing that of the graph Laplacian. So, what follows is the mathematical
modelling of diffusion in a simple undirected graph given by Newman [2]:

Suppose we have some substance at the vertices of a graph, denoted by ψi at
vertex i. The substance flows along the edges, from node j to the adjacent node i at
a rate α(ψj − ψi) where α is a constant named the diffusion constant. The amount
of substance flowing from node j to i in a small interval of time is thus α(ψj − ψi)dt.
The rate of change of ψi is therefore

dψi
dt = α

∑
j

Aij(ψj − ψi) (22)

If we split the two terms we get



33

dψi
dt = α

∑
j

Aijψj − αψi
∑
j

Aij = α
∑
j

Aijψj − αψidi (23)

The expression that is being summed on the most right-hand side of Equation (23)
can be divided into two constituents where i = j and i 6= j as follows.

α
∑
j

Aijψj = α(
∑
j,i6=j

Aijψj +
∑
j,i=j

Aijψj)

Given that the graph is assumed to be simple we have

∑
j,i=j

Aijψj = 0

Plugging this result back into Equation (23) we get

dψi
dt = α

∑
j,i6=j

Aijψj − αψidi

This allows us to incorporate the Kronecker delta δij which is 1 if i = j and 0 otherwise,
yielding

dψi
dt = α

∑
j

(Aij − δijdi)ψj (24)

Equation (24) can be more concisely written in matrix form as follows

dψψψ
dt = α(A−D)ψψψ (25)

Where A is the adjacency matrix, D is the diagonal matrix that has the vertex
degrees along its diagonal, and ψψψ is a column vector whose ith element is ψi.

We can move the right-hand side to the left; and factoring in the minus sign
developed by this displacement yields a the matrix commonly defined as the graph
Laplacian

L = D−A (26)

So the final diffusion equation becomes

dψψψ
dt + αLψψψ = 0 (27)

The heat equation, as described in 4.2.3, takes the same form as Equation (27)
with the matrix L replaced by the Laplacian operator ∇2. Hence the name graph
Laplacian for the matrix L [2].



34

We can solve Equation (27) by expanding vector ψψψ in the basis of the eigenvectors
of L. Writing the vector ψψψ as a linear combination of the eigenvector ui of the
Laplacian we get

ψψψ(t) =
∑
i

ci(t)ui

where the coefficients ci(t) are functions of time. We substitute this form into
Equation (27) and make use of the fact that Lui = λiui for eigenvector ui with its
corresponding eigenvalue λi to get

∑
i

(
dci
dt

ui + αci(t)Lui
)

=
∑
i

(
dci
dt

+ αλici(t)
)

ui = 0

Considering that the eigenvectors of a symmetric matrix such as the Laplacian are
orthogonal, taking the dot product of Equation above with any eigenvector results in

dci
dt

+ αλici(t) = 0

This differential equation, where the derivative of the function is proportional to
itself has the solution of the following form

ci(t) = ci(0)e−αλit for all i and initial condition ci(t) (28)
Equation (28) is named the heat kernel and is the solution to the discrete heat

equation. We observed when discussing about similarity graphs in Section 4.1.1 how
this continuous function would be an appropriate option for weight assigning to
edges, which Algorithm 4 also exploits.

4.2.3 The Intuition Behind The Physical Heat Equation

Heat equation is a partial differential equation (PDE) that describes the course of
heat distribution over time in a physical medium. For a multi-variable function
ψψψ(x, y, z, t) where t denotes time and (x, y, z) denote the spatial variables, the heat
equation is as follows

∂ψψψ

∂t
= α

(
∂2ψψψ

∂x2 + ∂2ψψψ

∂y2 + ∂2ψψψ

∂z2

)
Written more compactly we have

∂ψψψ

∂t
= α∇2ψψψ (29)

Where ∇2 is the Laplace operator, alse denoted by ∆, which is defined as the
divergence of the gradient of a function on Euclidean space. Assuming n-dimensional
vector space and a twice-differentiable real-valued function f we can formally write



35

∇2f := div∇f (30)

Where the divergence operator is a vector operator that operates on a vector
field. For a continuously differentiable vector field F in n-dimensional vector space,
to calculate the divergence we simply compute the dot product of the gradient and
the vector field

divF = ∇.F = ( ∂

∂x1
, . . . ,

∂

∂xn
).(Fx1 , . . . , Fxn) =

n∑
i

∂Fxi
∂xi

Intuitively the Laplace operator provides a measure of how different a value at a
particular point is from the average of its neighbors. In the case of the heat equation,
imagine two rods of different temperatures are connected at the ends. For a particular
point on one of the rods, if the average temperature of its neighbouring points is higher
than its temperature, the temperature of the point will rise. And in fact, the higher
this difference, the faster the point’s temperature increases. This proportionality
directly, known as Newton’s law of cooling, results in the heat equation.

4.2.4 Eigenvalues And Eigenvectors as Solutions to Optimization Prob-
lems

In our discussion about the linear dimensionality reduction PCA in Section 2.7
we observed that the eigenvectors associated with the largest eigenvalues of the
covariance matrix provided a lower-dimensional coordinate system that could well
describe the higher-dimensional data points. In the case of the Laplacian matrix,
however, it turns out that the smallest eigenvalues and their associated eigenvectors
deliver useful information about the underlying graph, as well as embed the vertices
of the graph in a vector space.

What follows is the description of the Rayleigh quotient and how they pertain to
eigenvalues and eigenvectors [41].

Lemma 5 Let matrix M be symmetric with orthonormal basis of eigenvectors
u1, . . . ,un corresponding to the eigenvalues λ1, . . . , λn. And let x be an arbitrary
vector that can be written as

x =
n∑
i=1

ciui where ci = uTi x

Then,

xTMx =
n∑
i=1

c2
iλi

Proof: We compute the Laplacian quadratic form of x, plugging in the expansion



36

of x in the eigenbasis

xTMx =
(∑

i

ciui
)T

M
(∑

i

ciui
)

=
(∑

i

ciui
)T (∑

i

ciλiui
)

=
∑
i,j

cicjλiuTi uj

When i = j the expression would evaluate to zero since the two distinct eigenvectors
are orthogonal. So when i 6= j we have

=
n∑
i=1

c2
iλi

And the proof is concluded
To clarify how eigenvalues are solutions to quadratic optimization problems, we

first define the Rayleigh quotient of a vector.
The Rayleigh quotient of a vector x with respect to a matrix M is defined as

xTMx
xTx

(31)

Therefore, we can deduce that the Rayleigh quotient of an eigenvector with respect
to matrix M is equal to its corresponding eigenvalue. So, if we have Mu = λu then

uTMu
uTu

= uTλu
uTu

= λ

The Courant-Fischer Theorem—a.k.a the min-max theorem—cements the state-
ment we made above: finding the eigenvalues of a matrix is an optimization problem
at heart. The theorem states that the vector that maximizes Equation (31) is the
eigenvector corresponding to the largest eigenvalue of the symmetric matrix M, and
in fact, provides a similar characterization of all the eigenvalues of M, implying it
provides bounds on the Rayleigh quotient of any non-zero vector x.

Theorem 6 (Courant-Fischer Theorem) Let M be a symmetric matrix and sup-
pose its eigenvalues are denoted by λ1 ≥ λ2 ≥ . . . ≥ λn with the corresponding
orthonormal eigenvectors u1, . . . ,un. Then the following holds

λk = max
S⊆Rn

dim(S)=k

min
x∈S
x 6=0

xTMx
xTx

= min
T⊆Rn

dim(T )=n−k+1

max
x∈T
x 6=0

xTMx
xTx

Proof:Given that M is a real-valued symmetric matrix, it has a set of orthonormal
basis of eigenvectors u1, . . . ,un, corresponding to eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn



37

ordered in a descending order. Suppose the subspace S is span{u1, . . . ,uk}. So any
vector x in such a subspace can be re-written as x = ∑k

i=1 ciui. If we plug in the
result of Lemma 5 we achieve

xTMx
xTx

=
∑k
i=1 c

2
iλi∑k

i=1 c
2
i

≥
∑k
i=1 c

2
iλk∑k

i=1 c
2
i

So this proves that λk is the minimum of the Rayleigh quotient. We subse-
quently need to prove that this is also the maximum. Assuming the subspace T is
span{uk, . . . ,un}. Considering the subspaces T and S of dimensions n − k + 1, k
respectively, it can be seen their intersection is non-empty. Consequently, there exists
a vector in their intersection that can be written as

x =
n∑
i=k

ciui

so

xTMx
xTx

=
∑n
i=k c

2
iλi∑n

i=k c
2
i

≤
∑n
i=k c

2
iλk∑n

i=k c
2
i

And this concludes the proof.

Thus in a more general sense we can state the following theorem.

Theorem 7 Let M ∈ Rn×n be a symmetric matrix and suppose its eigenvalues are
denoted by λ1 ≥ λ2 ≥ . . . . ≥ λn associated with orthonormal eigenvectors u1, . . . ,un.
Then for an arbitrary vector x we have

max
x 6=0

xTMx
xTx

= λ1 where u1 ∈ arg max xTMx
xTx

min
x 6=0

xTMx
xTx

= λn where un ∈ arg max xTMx
xTx

Proof: There are numerous ways to prove, such as using the spectral decomposi-
tion of M. The easiest way however is to use Lemma 5.

Applying Lemma 5 we get

xTMx
xTx

=
∑n
i=1 c

2
iλi∑n

i=1 c
2
i

≤
∑n
i=1 c

2
iλ1∑n

i=1 c
2
i

= λ1

In a similar fashion we provide the lower bound

xTMx
xTx

=
∑n
i=1 c

2
iλi∑n

i=1 c
2
i

≥
∑n
i=1 c

2
iλn∑n

i=1 c
2
i

= λn

It is not hard to observe that the equality is achieved when vector x is the
corresponding eigenvector.



38

The characterization provided by Theorem 7 can be generalized further to all
eigenvalues of M

ui ∈ arg max
xTuj=0:j<i

xTMx
xTx

for all 2 ≤ i ≤ n (32)

We will not closely study the proof here but it follows Theorem 7 by induction.

4.3 Mathematical Justification and Intuition
The premise of Laplacian eigenmaps is that given N data points we construct an
undirected weighted graph G = (V , E, w), w : E −→ R+ with some predefined notion
of how edges are drawn between vertices as seen in Algorithm 4. It is more intuitive
to first consider the problem of mapping the graph to a line, that is embed the
vertices of the graph in a 1-dimensional space. The goal in this case would be that
more strongly connected nodes in the graph, be mapped to closer points on the line.
This directly translates into minimizing the following expression

∑
i,j∈V

Wij(ψi − ψj)2 (33)

Where ψi ∈ R is the mapped 1-dimensional coordinate we would like to optimize.
This expression is known as the Laplacian quadratic form [41]. Using the fact that
Dii = ∑

jWij and LLL = DDD −WWW we can expand Equation (33) as follows

∑
i,j

Wij(ψi − ψj)2 =
∑
i,j

Wij(ψ2
i + ψ2

j − 2ψiψj)

=
∑
i,j

ψ2
iWij +

∑
i,j

ψ2
jWij − 2

∑
i,j

ψiψjWij

=
∑
i

ψ2
iDii +

∑
j

ψ2
jDjj − 2

∑
i,j

ψiψjWij

= 2(ψψψTDψψψ −ψψψTWψψψ)
= 2ψψψT (D−W)ψ
= 2ψψψTLψψψ

where ψψψ = (ψ1, . . . , ψN)T ∈ RN , that is the 1-dimensional embedding for all the
N vertices of the graph and LLL the Laplacian matrix.

We have thus shown that minimizing Equation (33) is equivalent to finding the
following

arg min
ψψψTDDDψψψ=1

ψψψTLLLψψψ (34)

We showed previously in Theorem 7 that ψψψ that solves the optimization problem
above is in fact the eigenvector of LLL associated with the smallest eigenvalue. A



39

natural choice for the embedding vector ψψψ is the diagonal of the degree matrix D.
To remove such solution, the constraint ψψψTDDDψψψ = 1 is added.

The Laplacian matrix is positive semi-definite, meaning its eigenvalues are non-
negative—which can be deduced from the expansion of Equation (33) we just per-
formed above. It is not hard to see that, in fact, the constant vector 111 whose elements
are one is an eigenvector of the Laplacian with eigenvalue zero (every row of the
Laplacian sums to zero). In the case of a connected graph, 111 is the only eigenvector
whose eigenvalues are zero [42]. Therefore, the trivial solution where all the vertices
are collapsed onto the real number one must be eliminated. This means the solution
to the optimization problem above is given by the eigenvector associated with the
smallest non-zero eigenvalue

ψψψopt = arg min
ψψψTDDDψψψ=1
ψψψTDDD111=0

ψψψTLLLψψψ (35)

Theorem 6 tells us ψψψopt is the eigenvector corresponding with the second smallest
eigenvalue.

We can extrapolate this 1-dimensional case to find m-dimensional embeddings
of the graph vertices. In fact, this problem is analogous to the PCA algorithm
discussed in Subsection 2.7. Likewise, the goal is to find an m-dimensional coordinate
system onto which the graph vertices will be projected, that is matrix ΨΨΨ with m
N -dimensional columns whose ith row provides the m-dimensional embedding vector
of the ith vertex of the graph.

Writing Equation (35) in matrix form we get

ΨΨΨopt = arg min
ΨΨΨTDDDΨΨΨ=I

trace(ΨΨΨTDDDΨΨΨ) (36)

4.4 The Laplace-Beltrami Operator on Riemannian Mani-
folds

The original setting of the Laplacian eigenmaps techniques is that the data points
lie on an underlying manifold M. And the graph Laplacian is in fact the graph
analogy of the Laplace-Beltrami operator on manifolds. For a smooth m-dimensional
Riemannian manifoldM⊂ Rd—that is a manifold accompanied by a metric that
allows for distances to be measured locally [43]—we consider the mapping function
f : M 7→ R. The function f directly translates into embedding the data points
lying onM in a 1-dimensional vector space. We also defined the Laplace-Beltrami
operator on Riemannian manifolds—in Equation (30)—to be the divergence of a
vector field (∇f) in local coordinates of the manifold. Therefore, the change in
output for a small δx can be approximated by the dot product of the gradient of f
and the vector of change in the input variables of f

|f(x+ δx)− f(x)| ≈ |∇f(x).δx| ≤ ||∇f || ||δx||



40

where the inequality holds by the Cauchy–Schwarz inequality. We can thus
deduce the smaller the ||∇f ||, the smaller the change in the output of the mapping
function. Consequently, the points close to the point x would also be mapped close
to the mapping of x which is f(x).

The problem hence amounts to finding a mapping function f that best maintains
locality on all the data points lying on manifold M by minimizing the squared
gradient of f

arg min
||f ||L2(M)=1

∫
M
||∇f(x)||2

This minimization is equivalent to minimizing the Laplace quadratic form in
Equation (33) on a graph and in fact is the minimization of the Rayleigh quotient of
the Laplace-Beltrami operator with respect to function f . Thus the minimization
reduces to finding the eigenfunctions of the Laplace-Beltrami operator ∇2 or ∆.



41

5 Random Walk Based Approches
Random walk-based approaches are staple of literature on graph embedding. As most
algorithms have high levels of similarity we will discuss one, Deepwalk as presented by
Perozzi et al. [28], in detail, then a comparison is made between that and node2vec,
another heavily used method.

Deepwalk provides a novel approach in encoding the nodes of a graph in a
continuous vector space. By modelling a stream of random walks, Deepwalk acquires
social representations of the graph’s nodes. The social representations are then
encoded as latent features of the vertices that capture neighborhood similarity among
nodes.

5.1 Problem Definition
Perozzi et al. [28] study the classification of members of a social network into one or
multiple categories. Let G = (V , E) where V represents the members of the network
whose connections is represented by E ⊆ (V × V). Then, GL = (V , E,X , Y ) is a
partially labeled graph, where X ∈ R|V|×k with k being the size of the feature space
for every representation vector and Y ∈ R|V|×Y where Y is the label set.

In a traditional machine learning setting, the goal is to find a classifier h : X −→ Y
that does not take into account the underlying connection among the data points
that is the graph G. In the literature, this type of classification that classifies the
unlabeled data based upon the labeled data points while also accounting for the
underlying connections among the data points delineated by the structure of graph
G is known as the collective classification problem [44]. Due to the fact that inferring
the labels is an NP-hard problem, iterative approximate inference algorithms are
used to compute the posterior distribution of labels [44].

Deepwalk, on the other hand, does not exploit the partially-labelled graph GL

and presents an unsupervised algorithm that learns an embedding matrix ΦΦΦ ∈ R|V|×d,
that can also be interpreted as a mapping function, that is φφφ : |V| 7→ Rd, where d is
the small number of dimensions of the latent space that the nodes are projected onto.

5.2 Social Representation Learning and Language Modelling
Deepwalk is substantially inspired by language modelling. For his reason, we first
discuss the approaches used in the language modelling realm to lay the groundwork
for Deepwalk, and additionally to justify why the techniques can be applied to social
representation learning tasks.

5.2.1 Random Walks

A random walk on graph G is a stochastic process defined by the sequence of moves
of a random walker between the vertices of G. Perozzi et al. [28] denote a random
walk starting at vertex vi by Wvi . Such a random walker generates a walk such as



42

W 1
vi
,W 2

vi
, . . . ,W k

vi
where W k+1

vi
is a vertex chosen uniformly from the neighbors of

W k
vi
.
Random walks have proved useful in capturing local community structures, as

they have been used as a similarity measure among nodes. Examples can be seen
in the works of Pons and Latapy [45] where random walks have been utilized for
the purpose of community detection, or that of Konstas et al. [46] where friendship
relations in social networks are used to improve recommendation systems, by taking
a random walk-based approach.

Alongside random walks’ inherent ability to gain local community information,
two other reasons are presented by Perozzi et al. [28] to further cement random walks’
efficacy. First, the random walks can be parallelized given that they are generated
for the graph nodes simultaneously and distinctively. And second, in case of a future
change to the graph, the learned model can be iteratively updated by sampling new
random walks from the changed portion of the graph in a nearly linear time in the
number of graph nodes.

5.2.2 Language Modelling and their Analogy with Random Walks on
Graphs

Most often, the objective of a language modelling algorithm is to categorize documents
by topic and a way to accomplish this is by grouping similar words that best categorize
documents on the basis of their topics. For instance, in a passage about animals, we
can safely presume that words such as “mammals” and “animals” are highly likely to
occur. An intuitive way to model such a problem is to think in probabilistic terms,
that is, maximization of the probability of the corpus.

The Skip-gram model introduced by Mikolov et al. [47], which lies at the heart of
Deepwalk, generates word embeddings to capture semantic and syntactic relationship
among words in that similar words will also have similar word representation vectors.
A well-known extension of the Skip-gram model was introduced by Mikolov et al. [48]
that enhanced both the quality and the speed of the original skip-gram by introducing
the concept of window.

Skip-gram’s objective in Mikolov et al. [47] is to provide word embeddings that
prove beneficial for predicting the words in a specific-sized window within the word.
Formally, for a training sequence of words (w1, w2, . . . , wn), Skip-gram aims to tune
a set of parameters ΦΦΦ such that probability of the sequence of words, that is the
product of independent conditional probabilities of each word in the context (the
window) of every word of the sentence or the target word, is maximized

arg max
ΦΦΦ

1
n

n∏
t=1

∏
−c≤j≤c,j 6=0

P[wt+j|wt;ΦΦΦ]

Taking the logarithm of the above equation, [48] re-defines the objective function
of Skip-gram as a maximization of the average log probability

1
n

n∑
t=1

∑
−c≤j≤c,j 6=0

logP[wt+j|wt] (37)



43

c is defined to be the size of the context of each word wt, that is the size of the
window. The higher the c is, the more training data we possess, which can lead
to higher accuracy albeit probably leading to more training time. On a positive
note, c removes the constraint of order, that is Skip-gram maximizes the probability
of word’s appearance within the context of the target word, without imposing any
restriction of where in the context. In the simplest form, the probability term in
expression (37) is the following, approximated by the softmax function

P[wi|wj] = eΦΦΦ(wi)TΦΦΦ(wj)∑
w∈W e

ΦΦΦ(w)TΦΦΦ(wj)
(38)

Where W is the entire vocabulary and ΦΦΦ(wj) and ΦΦΦ(wi) are the embeddings of
the words wj and wi respectively. The parameters that we would like to optimize
by maximizing the conditional probabilities of the words in a word sequence is the
embedding matrix ΦΦΦ.

The normalizing term in the denominator of the conditional probability (38)
can become very expensive as the vocabulary increases in size. This inefficiency
is counteracted by introducing the notion of hierarchical softmax which will be
extensively discussed in the following section.

The analog of the “word sequences” in language modelling is the “random walks”
in Deepwalk where the objective appears as maximizing the likelihood of vertex vi
given all the previously visited vertices along the random walk, that is

P[vi|(v1, v2, . . . , vi−1)]

The latent feature vectors need to be incorporated into above-mentioned condi-
tional probability, just as they did in Skip-gram, since they constitute the parameters
Deepwalk will attempt to tune. And so the conditional probability becomes

P[vi|(ΦΦΦ(v1),ΦΦΦ(v2), . . . ,ΦΦΦ(vi−1)] (39)

Considering all the aforementioned characteristics of Skip-gram and additionally
the fact that Deepwalk aims to maximize likelihoods of the seen vertices in each
sampled random walk, the following cost function is reasonably defined

min
ΦΦΦ

− logP[{vi−w, . . . , vi+w}\{vi}|ΦΦΦ(vi)] (40)

Minimizing Equation (40) yields continuous vector representations for vertices
preserving neighborhood proximity, meaning nodes that reside in vicinity of one
another will obtain similar embeddings. What follows is how Deepwalk obtains such
representation, its benefits and shortcomings.

5.3 Deepwalk Algorithm
Presented here is the Deepwalk algorithm, alongside the skip-gram implementation
tailored to the sampled random walks from the graph. The random walks are



44

Algorithm 5: Deepwalk(G,w, d, γ, t)
Input: graph G = (V , E)
window size w
embedding size d
walk length t
number of walk per node γ
Output: matrix of node embeddings ΦΦΦ
Initialize ΦΦΦ
Build a binary Tree T from V
for i = 0 to γ do
O = Shuffle(V)
for vi ∈ O do

Wvi = Randomwalk(G, vi, t)
Skipgram(ΦΦΦ,Wvi , w)

return ΦΦΦ;



45

analogous to the training sentences in the language modelling scenario. The concept
of corpus is akin to graph and the vertices of the graph constitute the vocabulary.

Algorithm 5 delineates the course of Deepwalk. Adhering to the sequence in
Algorithm 5 , the embedding matrix is initialized and a binary tree is constructed
with the graph nodes at the leaves. The details of the tree construction is discussed
in Section 5.3.2.

Having performed the initialization and the binary tree construction, the algorithm
enters a loop of sampling γ random walks per vertex. Within each random walk of
length t, Algorithm 5 passes over all the nodes of the graph, generating a random
walk Wvi rooted at vi. The sampled random walk is subsequently passed to the
Skip-gram procedure described in Algorithm 6 to tune embedding of node vi in
accordance with both the random walk generated rooted at vi and the objective
function.

5.3.1 Skip-gram

Skip-gram is at the center of the optimization process of embedding matrix. Each
random walk Wvi rooted at vi is passed to Skip-gram, along with a fixed window size
and the embedding matrix ΦΦΦ.

Algorithm 6: Skip-gram(ΦΦΦ, w,Wvi)
Input: window size w
random walk Wvi

embedding matrix ΦΦΦ
Output: matrix of node embeddings ΦΦΦ
for vj ∈ Wvi do

for uk ∈ Wvi [j − w : j + w] do
J(ΦΦΦ) = − logP[uk|ΦΦΦ(vj)]
ΦΦΦ = ΦΦΦ− ∂J(ΦΦΦ)

∂ΦΦΦ

return ΦΦΦ;

Skip-gram implementation of Deepwalk is inspired by that of language modelling,
in the sense that it attempts to maximize co-occurrence probabilities of nodes in a
random walk, within a fixed-size window. For every node vj in random walk Wvi ,
Skip-gram in Algorithm 6 iterates over all 2w neighbors of vj, and maximizes each
neighbor’s probability given the current embedding of vj , ΦΦΦ(vj) ∈ Rd. This posterior
probability is approximated by a softmax function, as illustrated in Equation (38).
The normalizing term in the denominator passes through all the graph nodes—the
time complexity of which is O(|V|)—which can be expensive to compute. This
shortcoming brings us to the following section.

5.3.2 Hierarchical Softmax

As discussed previously, the normalizing factor in the softmax function Equation (38)
(the probability calculation of Skip-gram in Algorithm 6) is expensive to calculate



46

and therefore not computationally viable. Hierarchical softmax is, on the other
hand, a computationally efficient approximation of the softmax function, initially
introduced by Morin and Bengio [49] and used by Mikolov et al. [48] and Mnih and
Hinton [50] in area of language modelling.

In Deepwalk, hierarchical softmax employs a binary tree and in so doing reduces
the time complexity of the conditional probability P[uk|ΦΦΦ(vj)] fromO(|V|) to O(log |V|).
The structure of the binary tree delineates how the calculation of the posterior prob-
ability P[uk|ΦΦΦ(vj)] takes place. If we assign the vertices of the graph to the leaves of
the tree, the calculation of P[uk|ΦΦΦ(vj)] can be revisited as maximizing specific paths
in the tree that originate at the root of the tree and ends at the leaf corresponding
to uk. Mikolov et al. [48] provide the following concrete notation based on which
hierarchical softmax defines the posterior probability P[uk|ΦΦΦ(vj)]. Let n(uk, i) be the
i-th node on the path from the root to uk and ch(b) be a fixed child of node b. In
addition, L denotes the length of the path and [[x]] is 1 if x is true and -1 otherwise.
Thus, the conditional probability P[uk|ΦΦΦ(vj)] can be re-written as

P[uk|ΦΦΦ(vj)] =
L−1∏
j=1

σ([[n(uk, j + 1) = ch(n(uk, j))]].ΦΦΦ(vj)T zn(uk,j)) (41)

where zn(uk,j) is a vector representation of the node n(uk, j)) and σ(x) = 1
1+e−x . The

cost of computing P[uk|ΦΦΦ(vj)], as seen in Equation (41), is proportional to the length
of the paths leading to uk, which renders it logarithmic in |V| (O(log |V|)).Thus,
hierarchical softmax formulation has a vector representation for each vertex of graph
and one for every inner node of the binary tree. We are however only interested in
the embedding vectors of the graph vertices and the optimized binary tree nodes’
embeddings are solely a means to an end.

The set of parameters that are to be optimized are the embedding matrix ΨΨΨ and
the embedding matrix of all inner nodes of the constructed binary tree Z. Stochastic
gradient descent [51] is the optimization method of choice and the the partial
derivatives in Algorithm 6 are estimated using the back-propagation algorithm [10].

An overview of Deepwalk is depicted in Figure 4. The tree is in fact akin to a
neural network where a single representation vector is passed through the layers,
with the last layer having the sigmoid function as the activation function to output
a probability distribution, as briefly studied in Section 2.6. viewed in the encoder-
decoder light discussed in Section 3.1.2, Deepwalk uses the sigmoid function as the
decoder to estimate probability; and the loss function is log-loss, studied in Section
2.5.1.



47

T0 =

T1 =

T2 =

T3 =

T4 =

T5 =

T6 =

T7 =

T8 =

T9 =

T10=

T11=

T12=

T13=

T14=

Φ(v1)

Pr(v1|Φ(v1))

Pr(v2|Φ(v1))

Pr(v3|Φ(v1))

Pr(v4|Φ(v1))

Pr(v5|Φ(v1))

Pr(v6|Φ(v1))

Pr(v7|Φ(v1))

Pr(v8|Φ(v1))

2
7
5
2
1
8
3
6
8
⋮

wv2
=

Figure 4: A random walk Wv2 is generated, rooted at vertex v2 on a graph with
eight vertices. A window of size three slides through the vertices. For example,
the embedding of vertex v1 is computed in such a way that the probability of v1
co-occurring with its context {v2, v8} is maximized. This amounts to maximizing
the probabilities of the paths leading to vertices v2 and v8.



48

5.4 Comparison between Deepwalk and node2vec
A similar method called node2vec [27] uses biased random walks to generate repre-
sentation vector for graph vertices. We will not scrutinize node2vec in same level of
detail as of Deepwalk in this manuscript; however it is worthwhile to point out their
similarities and differences briefly.

Deepwalk [28] and node2vec [27] are similar in that they both maximize the
probability of node co-occurrences in sampled random walks across the graph. The
difference however lies in how the random walks are sampled. The former uses
unbiased random walks, that is subsequent vertices at each step in the random walk
are chosen uniformly, whereas the latter biases the random walks using two random
walk hyperparameters return parameter p and in-out parameter q. The return
parameter p is responsible for controlling the likelihood of immediately revisiting a
vertex; and the in-out parameter q controls the likelihood that the walk revisits a
vertex’s one-hop neighborhood. Deepwalk can in fact be viewed as a special case of
node2vec where p = q = 1.

In the context of the encoder-decoder framework, node2vec utilizes the softmax
function as its decoder function to approximate the probabilities of vertices co-
occurring with vertices in their neighborhood. The loss function is again formulated
as the log-loss used also by Deepwalk, followed by stochastic gradient descent as a
means of optimization.

It was stipulated by Grover and Leskovec [27] that parameters p and q allowed
tradeoff between the Depth-First Search and Bredth-First Search, which in turn
implied tradeoff between learning embeddings that underpin local structural roles,
or embeddings that reflect community structures.



49

6 Discussion
We started by laying foundation of machine learning algorithms in the hope of
justifying the methodologies presented by the subsequent graph embedding algorithms,
as well as drawing on the many similarities. The Laplacian eigenmaps in Section 4
provides a mathematically just algorithm for producing embeddings, although it does
not constitute a scalable one given the mere construction of the Laplacian matrix is
quadratic in number of graph nodes.

An algorithmically different method discussed in Section 5 is Deepwalk that is
inspired by methods proposed in language modelling. Deepwalk is much scalable,
linear in the number of graph vertices.

The sheer volume of massive data that are nowadays generated on a daily basis
fuels the necessity of developing all the more scalable algorithms. On top of scalability,
graph embedding techniques, although empirically successful, are lacking in some
respects as well.

There is a stark lack of theoretical justification as to the learned embeddings are
truly learned encoded graph information, and not mere exploitation of statistical
features of the benchmarks on which they achieve state-of-the-art performance [24].
Although the mathematical justification of the factorization based method such
as the Laplacian eigenmaps in Section 4 is legitimate, it is not however as just
in the Deepwalk method studied in Section 5. There is much work to be done
for rigorous mathematical justification as to decoder functions in Deepwalk (the
sigmoid function) and node2vec (the softmax function) truly estimate co-occurrence
probabilities. Moreover, the loss function used in both Deepwalk and node2vec is
non-convex [52]; and optimization of non-convex functions is a highly developing
area of research.

Most existing methods do not attempt to capture high-order structural motifs
of graphs that play a key role in understanding how massive graphs function. To
exemplify, exploitation of local graph motifs can enable graph convolutional neural
networks to be applied to directed graphs as well [53].

The extension of this work is hoped to be a thorough study of the existing graph
neural networks techniques and further theoretical study of their expressiveness
and abilities on a unified mathematical setting across all literature. Given the
correspondence between graph neural networks and artificial neural networks in the
machine learning area, improvement in one can lead to exciting findings in the other.
The theory of neural networks is a nascent research field that aims to provide insights
into the tradeoff between the number of layers (depth) and the number of neurons
per layer (width). Such theoretical findings can speak to neural networks’ efficacy
and in turn be beneficial for the growth of graph neural networks.



50

References
[1] Christopher M Bishop. Pattern recognition and machine learning. springer,

2006.

[2] Mark Newman. Networks: an introduction. Oxford university press, 2010.

[3] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

[4] Sanjoy Dasgupta. The hardness of k-means clustering. Department of Computer
Science and Engineering, University of California . . . , 2008.

[5] Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386, 1958.

[6] Albert B Novikoff. On convergence proofs for perceptrons. Technical report,
STANFORD RESEARCH INST MENLO PARK CA, 1963.

[7] Dan Claudiu Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and
Jürgen Schmidhuber. Flexible, high performance convolutional neural networks
for image classification. In Twenty-Second International Joint Conference on
Artificial Intelligence, 2011.

[8] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory
recurrent neural network architectures for large scale acoustic modeling. In Fif-
teenth annual conference of the international speech communication association,
2014.

[9] John S Bridle. Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition. In Neurocomputing,
pages 227–236. Springer, 1990.

[10] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In
Neural networks for perception, pages 65–93. Elsevier, 1992.

[11] Ali Ghodsi. Dimensionality reduction a short tutorial. Department of Statistics
and Actuarial Science, Univ. of Waterloo, Ontario, Canada, 37:38, 2006.

[12] Sebastian Mika, Bernhard Schölkopf, Alex J Smola, Klaus-Robert Müller,
Matthias Scholz, and Gunnar Rätsch. Kernel pca and de-noising in feature
spaces. In Advances in neural information processing systems, pages 536–542,
1999.

[13] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques
for embedding and clustering. In Advances in neural information processing
systems, pages 585–591, 2002.



51

[14] Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods.
Academic press, 2014.

[15] Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space approaches
to social network analysis. Journal of the american Statistical association,
97(460):1090–1098, 2002.

[16] Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications,
and performance: A survey. Knowledge-Based Systems, 151:78–94, 2018.

[17] Smriti Bhagat, Graham Cormode, and S Muthukrishnan. Node classification
in social networks. In Social network data analytics, pages 115–148. Springer,
2011.

[18] Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction
in knowledge graphs. In Advances in Neural Information Processing Systems,
pages 4284–4295, 2018.

[19] Petros Drineas, Alan Frieze, Ravi Kannan, Santosh Vempala, and V Vinay.
Clustering large graphs via the singular value decomposition. Machine learning,
56(1-3):9–33, 2004.

[20] Przemyslaw Kazienko and Tomasz Kajdanowicz. Label-dependent node classifi-
cation in the network. Neurocomputing, 75(1):199–209, 2012.

[21] Arik Azran. The rendezvous algorithm: Multiclass semi-supervised learning
with markov random walks. In Proceedings of the 24th international conference
on Machine learning, pages 49–56. ACM, 2007.

[22] Aaron Clauset, Cristopher Moore, and Mark EJ Newman. Hierarchical structure
and the prediction of missing links in networks. Nature, 453(7191):98, 2008.

[23] Panagiotis Symeonidis, Eleftherios Tiakas, and Yannis Manolopoulos. Transitive
node similarity for link prediction in social networks with positive and negative
links. In Proceedings of the fourth ACM conference on Recommender systems,
pages 183–190. ACM, 2010.

[24] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on
graphs: Methods and applications. arXiv preprint arXiv:1709.05584, 2017.

[25] Andrey Kutuzov, Alexander Panchenko, Sarah Kohail, Mohammad Dorgham,
Oleksiy Oliynyk, and Chris Biemann. Learning graph embeddings from wordnet-
based similarity measures. arXiv preprint arXiv:1808.05611, 2018.

[26] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski,
and Alexander J Smola. Distributed large-scale natural graph factorization. In
Proceedings of the 22nd international conference on World Wide Web, pages
37–48. ACM, 2013.



52

[27] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 855–864. ACM, 2016.

[28] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of
social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 701–710. ACM,
2014.

[29] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric
transitivity preserving graph embedding. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 1105–1114. ACM, 2016.

[30] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding.
In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1225–1234. ACM, 2016.

[31] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S Yu. A comprehensive survey on graph neural networks. arXiv preprint
arXiv:1901.00596, 2019.

[32] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods
and applications. arXiv preprint arXiv:1812.08434, 2018.

[33] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems,
pages 1024–1034, 2017.

[34] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning:
A review and new perspectives. IEEE transactions on pattern analysis and
machine intelligence, 35(8):1798–1828, 2013.

[35] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning
graph representations. In Thirtieth AAAI Conference on Artificial Intelligence,
2016.

[36] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are
graph neural networks? arXiv preprint arXiv:1810.00826, 2018.

[37] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural:
Higher-order graph neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 4602–4609, 2019.

[38] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007.



53

[39] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive
data sets. Cambridge university press, 2019.

[40] Laurenz Wiskott and Fabian Schönfeld. Laplacian matrix for dimensionality
reduction and clustering. arXiv preprint arXiv:1909.08381, 2019.

[41] Daniel Spielman. Spectral graph theory. Lecture Notes, Yale University, pages
740–0776, 2009.

[42] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall
Upper Saddle River, NJ, 1996.

[43] Frank Schmidt. The laplace-beltrami-operator on riemannian manifolds. In
Seminar Shape Analysis, 2014.

[44] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher,
and Tina Eliassi-Rad. Collective classification in network data. AI magazine,
29(3):93–93, 2008.

[45] Pascal Pons and Matthieu Latapy. Computing communities in large networks
using random walks. In International symposium on computer and information
sciences, pages 284–293. Springer, 2005.

[46] Ioannis Konstas, Vassilios Stathopoulos, and Joemon M Jose. On social networks
and collaborative recommendation. In Proceedings of the 32nd international
ACM SIGIR conference on Research and development in information retrieval,
pages 195–202. ACM, 2009.

[47] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[48] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119, 2013.

[49] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network
language model. In Aistats, volume 5, pages 246–252. Citeseer, 2005.

[50] Andriy Mnih and Geoffrey E Hinton. A scalable hierarchical distributed language
model. In Advances in neural information processing systems, pages 1081–1088,
2009.

[51] Léon Bottou. Stochastic gradient learning in neural networks. Proceedings of
Neuro-Nımes, 91(8):12, 1991.

[52] Rene Vidal, Joan Bruna, Raja Giryes, and Stefano Soatto. Mathematics of
deep learning. arXiv preprint arXiv:1712.04741, 2017.

[53] Federico Monti, Karl Otness, and Michael M Bronstein. Motifnet: a motif-based
graph convolutional network for directed graphs. In 2018 IEEE Data Science
Workshop (DSW), pages 225–228. IEEE, 2018.


	Abstract 
	Preface
	Contents
	Introduction And Outline Of The Thesis
	Machine Learning
	Notation
	A Formal Mathematical Learning Model
	Empirical Risk Minimization
	Empirical Risk Minimization and Overfitting

	The Perceptron Algorithm: A Linear Classifier
	Generative Models
	Maximum Likelihood Estimator

	Artificial Neural Networks
	Dimensionality Reduction
	Principle Component Analysis: Reconstruction Error Minimization
	Principle Component Analysis: Variance Maximization


	Introduction To Graph Embedding
	Definition and Preliminaries
	Definition of Graphs and some of their Associated Matrices
	Graph Embedding: An Encoder-decoder Framework

	A Taxonomy on Algorithmic Approaches
	Factorization based methods
	Random Walk based Methods
	Deep Learning based Approaches


	Laplacian Eigenmaps: A Spectral Embedding Technique
	Laplacian Eigenmaps Algorithm
	Similarity Graphs

	The Graph Laplacian
	Formal Definition of the Graph Laplacian
	Heat Equation, Heat Kernel, and The Graph Laplacian
	The Intuition Behind The Physical Heat Equation
	Eigenvalues And Eigenvectors as Solutions to Optimization Problems

	Mathematical Justification and Intuition
	The Laplace-Beltrami Operator on Riemannian Manifolds

	Random Walk Based Approches
	Problem Definition
	Social Representation Learning and Language Modelling
	Random Walks
	Language Modelling and their Analogy with Random Walks on Graphs

	Deepwalk Algorithm
	Skip-gram
	Hierarchical Softmax

	Comparison between Deepwalk and node2vec

	Discussion
	References

