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Paying by invoice has several advantages for businesses over conventional pay-
ment methods such as Debit/Credit cards. An invoice not only allows a buyer to
make the purchase on credit but also contains the tax information for each pur-
chased item. Businesses need to save this information in their financial records
and report it to the authorities. The core challenge in an invoice-based payment
method is the ability to make an accurate credit decision for a given purchase.
Such a credit decision requires information about the buying company such as
their credit rating. The company information is gathered in real time from differ-
ent third-party sources. In this context, Enterpay Oy provides an invoiced-based
B2B payment solution and is growing its payment service to European countries.
In order to support this expansion, Enterpay needs to develop new capabilities
such as the ability to detect fraudulent purchases. These new features require the
application architecture to be flexible in terms of technology. For example, differ-
ent components of the service should be built with the most suited programming
language, libraries, and frameworks.

The goal of this thesis is to enable efficient scaling and high availability for Enter-
pay’s payment service. Thus, we have migrated from a monolithic a microservice-
based architecture. This transition allows us to choose the best suited technology
for the business case of the given microservice. We extracted various modules
from the original monolithic application, which have different scalability criteria.
We built these modules as Docker containers, which run as independent microser-
vices. We used Kubernetes as the container orchestration framework and deployed
the microservice in Amazon Web Services (AWS). Finally, we conducted experi-
ments to measure the performance of the service with the new architecture. We
found that this architecture not only scales faster but also recovers from instance
failures quicker than the previous solution. Additionally, we noticed that the
average response time of service request is similar in both architectures. Finally,
we observed that new microservices can be built using different technology stack
and deployed conveniently in the same Kubernetes cluster.
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Microservices, containers, virtualization
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Abbreviations and Acronyms

AMI Amazon Machine Image
API Application Programming Interface
AWS Amazon Web Services
B2B Business-to-Business
CD Continuous Deployment
CI Continuous Integration
CLI Command Line Interface
DRY Do not Repeat Yourself
EC2 Elastic Compute Cloud
ECS Elastic Container Service
ELB Elastic Load Balancer
IDE Integrated Development Environments
JAR Java ARchive
JVM Java Virtual Machine
OTP One Time Password
PSP Payment Service Provider
RDBMS Relational Database Management System
RDS Relation Database Service
SRP Single Responsibility Principle
SSH Secure Shell
UI User Interface
URL Uniform Resource Locator
VAT Value Added Tax
VM Virtual Machine
VPC Virtual Private Cloud
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Chapter 1

Introduction

The traditional software development approach aims to build a complete
application as a single unit. All of the modules or components in an appli-
cation are packaged together in a single deployment artifact [39]. Although
this strategy is easy and convenient option to start with, it can become an
obstacle for scalability [43]. This development methodology makes the appli-
cation rigid and difficult to change in the future. In practice, many software
applications face the challenge of adapting to the dynamics of growth and
agility. These applications typically undergo architectural changes to match
the scaling requirements and to provide new features and services to their
end users. Applications failing to meet these requirements, not only risk
loosing the competitive advantage, but can quickly become obsolete.

In general, web applications can be deployed either on premises or over
the cloud. The Cloud computing is an efficient solution for deployment as
the cloud provider takes the responsibility of management, configuration,
and maintenance of the server hardware. Cloud providers rely heavily on
virtualization, which allows different applications targeting different operat-
ing systems to run simultaneously on a given computer system [52]. These
operating systems run in a layer abstracted from the actual hardware in isola-
tion [47]. Virtualization enables efficient sharing of resources across multiple
operating systems.

Software containers aim to implement the virtualization logic at the oper-
ating system level [48]. It packages an application along with its dependencies
and runtime environment in a single deployment unit. Each application runs
inside a container and one can create multiple copies of the application to
scale out when required. Docker is a famous containerization platform, which
provides en efficient way of packaging the application and dependencies inside
a docker image [11]. This image can be saved in a local or remote repository.

The microservice-based architecture is a modern approach for software de-
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CHAPTER 1. INTRODUCTION 9

velopment. It focuses on building an application as a group of many loosely
coupled services, which run independently in a a distributed system. These
services communicate with one another by lightweight communication mech-
anisms, such as Application Programming Interface (API) calls over HTTP
[41]. Different microservices running in an application can have different
scalability needs. Thus, one microservice can be scaled independently ac-
cording to its own needs. Containerization is best suited for microservices
applications [57]. Each microservice can run as a container and use minimum
resources.

Container orchestration is essentially the process of managing the life
cycle of the containers, particularly in large and complex environments. Ku-
bernetes is a platform for container orchestration, which was originally devel-
oped by Google [59]. It provides an effective deployment and management
of container’s life cycle in clusters. Kubernetes provides services that are
helpful to achieve predictability, scalability, and availability [25].

1.1 Business case

Many businesses rely on the goods, and services offered by some other busi-
ness to produce their own goods and services. Such transactions where both
the seller and the buyer are businesses, are termed as Business-to-Business
(B2B) trade. The conventional payment methods such as Checks and Deb-
it/Credit cards are inefficient for B2B trade. Paying with these methods is
not only cumbersome but also inconvenient when it comes to keeping finan-
cial records up-to-date. On the contrary, paying by an invoice is a preferred
by businesses because it solves the problems posed by the conventional pay-
ment methods. For example, invoices allow the buyers to purchase the items
on Credit and offer a convenient way to update the financial records.

Enterpay Oy provides an invoice-based B2B payment method, which en-
ables the buyers to make purchases on credit and takes the credit risk away
from sellers. From the prospective of banks and financial companies, En-
terpay offers an online credit decision engine that helps them expand their
business and offer a reliable payment service in the B2B market.

1.1.1 Problem statement

In recent times, Enterpay has been growing its payment service to various
European countries. Enabling the payment service in a new country, requires
localization of the application for that particular country. This localization
typically involves an integration with local information providers, creating a
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credit policy for the given country, and implementing some country-specific
features. Each localization introduces complexity in the application. Further-
more, the payment service needs to be highly available in different countries
and should scale efficiently when required.

Additionally, Enterpay wants to develop new capabilities such as the
ability to detect fraudulent purchases. These new features require differ-
ent components of the service to be built with the different programming
languages, libraries, and frameworks. For instance, fraud detection requires
implementing different machine learning algorithms. These algorithms can
be conveniently implemented in the Python programming language due to
the availability of many libraries. Consequently, the application architecture
needs to be flexible in choice of technology.

This thesis has the following two primary objectives

• Enable high availability and efficient scalability for Enterpay’s payment
service.

• Introduce flexibility in the application architecture, so that the new fea-
tures can be built with the best suited programming language, libraries
and frameworks.

1.2 Contribution

We proposed microservice-based architecture as the solution for the above-
mentioned challenges.

• We identified 5 modules of the original monolithic application that
could be extracted and run independently as microservices. Each mi-
croservice was built as a separate Docker image.

• For each microservice, we created kubernetes deployment resources and
defined replication strategy. Additionally, we created service resources
for load balancing between multiple pods of the individual microservice.
Finally, we added an ingress resources to implement the API gateway
design pattern.

• We conducted experiments to measure the performance of microservice-
based architecture. We noticed that the new microservice-based archi-
tecture offers better scaling and recovers from instance failures faster
than the previous solution.

• The new microservices targeting different technology stack were suc-
cessfully deployed in the same Kubernetes cluster.
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1.3 Structure of the thesis

Chapter 2 introduces the background technical concepts such as virtualiza-
tion and container-based virtualization. Additionally, it discusses the preva-
lent platform for software containers ,i.e, Docker. Chapter 3 compares two
software development methodologies ,i.e, monolithic and microservice-based
architecture. Chapter 4 explains the process of container orchestration. It
also provide a detailed discussion on Kubernetes, the most widely used con-
tainer orchestration framework. Chapter 5 introduces invoice-based B2B
payments. Additionally, it presents the payment service of Enterpay, which
serves as the case study for this thesis. Chapter 6 provides implementation
details of the migration from monolithic to microservice-based architecture.
Chapter 7 evaluates the microservice-based architecture. Finally, Chapter 8
concludes this thesis.



Chapter 2

Virtualization

This chapter introduces the fundamental technologies that are related to this
thesis. It first discusses the concept of virtualization and analyzes hypervisor-
based virtualization and container-based virtualization. Finally, it studies
Docker, the prevalent tool for software containers, and reviews its archi-
tecture in detail. The discussion presented in this chapter serves as the
foundation for the concepts and tools explained in next chapters.

2.1 What is virtualization?

In general, virtualization means running a virtual instance of an operat-
ing system on an actual hardware. Virtualization allows different operating
systems to run in parallel on a computer system. From the perspective of
running operating systems, each operating system thinks that it is running
on a dedicated hardware [47].

In other words, virtualization consolidates the physical resources of a
hardware as a logical pool of resources, and allows sharing of these resources
across multiple operating systems that are running on the same hardware.
This resource sharing is done via different techniques including hardware/-
software partitioning, emulation etc [19]. These virtual operating systems
are often referred to as virtual machines and are run in isolation from one
another. These virtual machines share resources like processor, storage etc
depending on their needs, thus reduce the hardware cost and yield better
resource utilization. Figure 2.1 shows how various virtual machines can be
run on a single physical host using virtualization.

Virtualization allows the scaling of resources. For example, when the
demand increases, these virtual machines can be scaled horizontally by run-
ning more virtual-instances/replicas. However, this setup would require a
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CHAPTER 2. VIRTUALIZATION 13

Figure 2.1: Overview of how virtualization enables running multiple appli-
cations targeting multiple operating systems on the same hardware [21]

load balancer, which will be placed in front of these replicas. The load bal-
ancer will receive outside traffic and distribute it amongst these replicas.
On the other hand, scaling a virtual machine vertically involves allocating
more resources to a given virtual machine. Similarly, when the demand re-
duces, additional resources can be taken back or additional instances can be
terminated as well [2].

Additionally, virtualization allows each virtual machine to run its own
operating system in complete isolation from other virtual machines and the
host operating system. Consequently, different virtual machines with het-
erogeneous operating systems can run simultaneously on the same hardware
[52].

Another advantage of virtualization is that it facilitates consistency among
development, testing and production environments. It allows a developer to
emulate the production/testing environment on his/her own computer by
running a virtual machine matching the production/testing environment.
This enables the developer to test the application behavior against the de-
sired environment and reduces the risk of unwanted deployment issues when
the application is released to production.

Below we will briefly discuss the two popular virtualization types.



CHAPTER 2. VIRTUALIZATION 14

2.1.1 Hypervisor-based virtualization

The Hypervisor is a software component that controls the system resources
and administers the sharing of resources among virtual machines. The hy-
pervisor is responsible to create virtual machines and manage their assigned
resources. From virtual machine’s perspective, each Virtual Machine (VM)
gets a run-time environment which is identical to the dedicated hardware.

Hypervisors are generally classified in two types [49]. The first kind is
called Type-1 or native/bare-metal hypervisors and the second kind is called
Type-2 or hosted hypervisors.

• Type-1 hypervisor operates directly on the host hardware and admin-
isters the virtual operating systems. An example of commercially used
type-1 hypervisor is Microsoft’s Hyper-V.

• Type-2 functions as a process running on the host operating system
abstracting the host operating system from virtual machines. An ex-
ample of commercially used type-2 hypervisor is VMware WorkStation.

Figure 2.2: Overview of how virtualization enables running multiple appli-
cations targeting multiple operating systems on the same hardware [47]

As shown in Figure 2.2, type-2 hypervisors coordinate with the host oper-
ating system to serve the resources required by guest operating systems. This
makes them a good choice for running multiple virtual machines on a single
personal computer. In contrast, type-1 hypervisors are directly installed on
dedicated hardware and have a management console, which means that they
are more likely to be used in data centres [37]. The choice of hypervisor type
depends on the performance metrics like CPU overhead, memory, number of
supported host operating systems etc.
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Irrespective of the hypervisor types, virtual machines provide strong iso-
lation [17]. A problem in any of the guest operating systems does not usually
affect the host operating system or the other guest operating systems run-
ning on the same hardware. However, this isolation comes at the expense of
computational overhead required for virtualizing the hardware [7].

Furthermore, virtual machines can take a long time to get started as
they require to boot the complete guest operating system, in addition to
the software program they aim to run. Moreover, two software programs
targeting the same operating systems, might have higher needs for isolation
and require to be run in separate virtual machines. Consequently, running
multiple virtual machines to support high isolation can result in inefficient
resource utilization [7].

2.1.2 Container-based virtualization

Container-based virtualization or containerization provides a light weight
substitute for hypervisor based virtualization. Containerization does not
require a hypervisor and the virtualization is done on OS level, where multiple
isolated user-space instances can coexist on the same kernel [48].

Containerization aims to encapsulate a given software application along
with all of its dependencies and operating environment inside a software
container. Bundling the application in a container provides abstraction from
the actual run environment. Multiple containers running on the same host
OS, will share the resources and can communicate with one another when
required. Additionally, these containers are independent and isolated. How-
ever, this isolation is weaker when compared to hypervisor-based virtualiza-
tion [46].

Unlike virtualization, one does not need to launch an entire virtual ma-
chine for every application, rather multiple containers can run within a single
host [35]. This means instead of running multiple guest operating systems on
the host operating system, multiple containers run directly on host operating
system. This makes containers a lightweight substitute of virtual machines
because they have low start time and require only a fraction of the memory
as compared to virtual machines [18]. Similarly, containers ensure isolation
between different programs by utilizing the low-level mechanics of host oper-
ating system. The cost of this isolation is considerably small when compared
to that of virtual machines. Consequently, containers results in efficient
resource utilization because of low overhead of virtualization of hardware
resources [10].

Figure 2.3 compares the container based virtualization with the VM based
virtualization. The container based infrastructure is running only one oper-
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Figure 2.3: Virtual machines vs Containers [18]

ating system and there are three containers running independently on the
same host operating system. The absence of guest operating system makes
this scheme more resource efficient when compared to virtual machines.

Just like virtual machines, container are also built from an executable im-
age. This image is a file which comprises of all essential pieces of information
like the code, dependencies, run-time and system resources that are required
to run the container.

2.2 Docker

Docker is a software program that provides a platform to develop, maintain
and deploy applications inside containers [11]. Docker allows the develop-
ers to focus on development activities rather than the system on which the
application will be deployed. Additionally, the developers can speed up the
development by utilizing different tools that are already developed for docker
environment. Docker helps to reduces the size of the application because
some of the application dependencies can be resolved from the host system.
This makes Docker beneficial for system admins too, as it provides flexibility
with the choice of system and yields a smaller footprint with lower overhead
[55].

Docker bundles all of the application dependencies and configurations in
a single portable entity called docker image. This docker image is used to
instantiate one or more containers. Docker containers can run on one or
more hosts in isolation [12]. These containers are designed to be stateless so
that they can be scaled up and down at any time to meet the application
requirements.

Docker introduces efficiency in software development by allowing develop-
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ers to create identical production environment on their development machine.
The docker container, containing the necessary application dependencies and
infrastructure details, can be run on developer’s machine. The developer can
essentially find and fix all the bugs that would otherwise be found only in
the production environment. Similarly, containers are a good choice to im-
plement continuous integration (CI) and continuous deployment (CD) work
flows. Thus, docker allows development teams to move away from the con-
ventional waterfall model and adapt the modern Agile practices of software
delivery [16].

2.2.1 Docker engine

Before we analyze the architecture of docker, it is important to get the high
level understanding of the docker. The docker engine follows the client-
server architecture and allows the developers to develop, deploy and maintain
applications with containers. It has the following three main components.

• Docker Daemon. It is the core component responsible for carrying
out the docker jobs like creating and running containers etc. Docker
daemon manages the resources such as storage and network, and runs
as a background process. Docker daemon waits for the client request
and executes it.

• REST API. This is an interface exposed to the client application to
communicate with the daemon. Applications can use HTTP protocols
to send their jobs to the daemon.

• Docker CLI. This is a command line interface (CLI) to communicate
with the daemon. This interface allows developers to efficiently manage
the container instances via direct commands.

2.2.2 Docker architecture and objects

The client-server model of docker has three tiers, i-e., docker client, docker
host and the registry. Figure 2.4 elaborates the architecture of docker. The
docker client is authorized to establish communication with the docker dae-
mon, which otherwise is not accessible to the end user. The end user sends
a command using docker client, which may not necessarily be on the same
machine as the daemon. The command is received by the docker daemon via
Rest API interfaces. Docker daemon then executes the command and sends
back the response. The daemon is responsible for building, running, and dis-
tributing the containers. Additionally, the docker daemon can communicate
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Figure 2.4: Docker architecture [12]

with other daemons and services to execute the required task efficiently. The
docker architecture has the following entities called docker objects:

Docker Image

Docker image is a read-only binary template which is used to instantiate
a docker container. This image is a portable entity that is used to store
and ship the software module or the application. A docker image, in its own,
contains all the information that is required to build the container, such as the
system requirements and capabilities of the container[6]. A docker image is
built on as the base image, which typically contains the system requirements.
Further customization is performed on the image as per the needs of the
application. For example, all of the libraries and other dependencies that
are needed for the application to run, would be added in the docker image.
These modifications create a new layer on top of the previous image. Each
layer contains only the difference between the previous layer, thus allows the
developers to track individual changes done in the docker image [8].

Docker Registry

Docker registries provide storage for docker images. In simple words, docker
registries contain the repositories where one can store docker images and
retrieve them when necessary. These registries can be public, where the
image is stored to a remote location and the developer can manage its access
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for outside world or his own peers. Some of the popular public registries are
Docker Hub and Docker cloud. On the other hand, one can choose to store
the images on an internal storage location of the organisation, which can be
accessible over the intranet. The usage of these repositories is familiar for the
developers as it is similar to the popular source code version control systems
like GIT [23].

Dockerfile

The dockerfile consists of the instruction to automatically build the image.
This file consists of the executable commands in the correct order. For ex-
ample, a docker file contains the information where to pull the base image
from and what configurations should be applied to prepare the required run-
time for the application. The user can use the docker build command which
can execute command-line instructions in sequence and yield an automated
build.

Multi-stage Dockerfile

Managing the size of the docker image and ensuring that it stays within
reasonable limits, can become demanding with the regular docker file. A
docker file usually adds a layer with every command. All the artifacts that
are not required in future layers, should be removed to keep reduce the
image size. Consequently, in many scenarios, you would need to maintain
different dockerfiles for different hosting environments such as development,
testing and production. Each docker file would be optimized to have only the
required libraries for the said environment. This approach is far from being
ideal, as the multistage docker file provides a more efficient alternative. It
offers the possibility to have multiple stages. Each stage can use a different
base and one can choose to copy only the required artifacts from one stage
to another. Thus, a single multistage docker file can yield the environment
specific image for multiple environments [15].

Docker container

Containers are the instances built from the docker image 1. A single docker
image can be used to instantiate as many containers as required. Addition-
ally, each container has a writable layer, which is used to maintain the state
of the said container. The state of the container usually gets deleted when
a container is terminated. However, this state can be persisted if required.

1https://www.docker.com/resources/what-container

https://www.docker.com/resources/what-container
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The containers are run by using the docker run command. Applications and
services are deployed inside a container and run in isolation from applications
and services running in other containers on the same host.

Docker services

Services offer a convenient way to scale the application as per the needs.
These services create a swarm of docker daemons, where each service can
communicate to different daemons. User can define scalability configura-
tions. For instance, the maximum/minimum container instances running in
parallel. Additionally, services provide load balancing, which means that all
the requests coming to the service are distributed across all running contain-
ers [12].



Chapter 3

Software Architecture

This chapter focuses on software architecture and discusses two prominent
software design strategies. It aims to illustrate some of the benefits and chal-
lenges posed by these design strategies. It first introduces the classic mono-
lithic architecture and highlights its core strengths and weaknesses. Later,
a popular modern architecture style named microservice-based architecture
is explained. Finally, it briefly enlists the core incentives of using software
containers with microservice-based architecture.

3.1 Monolithic architecture

Monolithic architecture is the traditional style of building a software system.
This architecture has been the core design principle of many software systems
currently in use in various businesses and industries. Monolithic architecture
intends to compose all software components in one large piece [39]. Mono-
lithic softwares often lack modularity between their different components as
they are interconnected and have strong dependencies on one another. These
components have obscure boundaries of modularity. Eventually, all of these
components or vaguely separated modules are deployed together as a single
process.

Generally, a monolithic application may contain many components or
modules designed to support different functionalities. The components hav-
ing similar or related functionalities are usually placed together under logical
groups called software layers. For example, the user interface (UI) layer or
often called presentation layer, logically groups all the modules related to the
UI for a monolithic application. Figure 3.1 presents a general layered archi-
tecture of a monolithic application, where different components or modules
are logically grouped under software layers. Eventually, all of these software
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Figure 3.1: Typical layered architecture of monolithic applications

layers are packaged in an autonomous unit for deployment and delivery.

Pros

First, we will analyze some of the advantages of monolithic architecture.
The deployment of monolithic applications is relatively easy as the whole

codebase is packaged into a single unit, requiring the same single deployment
cycle every time. Similarly, monolithic softwares are easier to develop, test
and maintain as long as the codebase is relatively small. Many existing
integrated development environments (IDE) are mainly designed to ease the
development processes of the monolithic applications [43].

In monolithic architecture, various software components are strongly in-
terconnected. This unification of components minimizes the communication
cost between various components and often yields high throughput [39].

Furthermore, small monolithic applications can be scaled up easily using
either vertical or horizontal scaling techniques. Horizontal scaling is achieved
by running multiple copies of the same monolithic application on multiple
servers. Typically, these are placed behind a load balancer, which is a dedi-
cated device with the core responsibility of coordinating the communication
between these application servers and the outside world. The load balancer
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receives the incoming requests, distributes the requests among the applica-
tion servers, with the aim to balance the traffic load and finally returns the
response/data back to the initiator of requests. On the other hand, vertical
scaling involves migrating the application to a machine which has relatively
higher or more powerful resources, such as computing power or memory.
However, this results into a service down time [44]. This service down time
can be reduced by adding a load balancer and hot swapping1 the server with
the new more powerful server.

Cons

The advantages of monolithic applications diminish as they grow in size. A
bigger codebase often results into stronger dependencies between its differ-
ent modules. The strong dependency between various components is called
high coupling, which makes the larger codebase more complex and hence,
difficult to develop and debug. For example, an inappropriate bug fix in the
complex codebase can cause ripple effects and create more bugs, which can
be further hard to find and fix. Overall, complex codebase not only cause
the developer’s productivity to decline but maintaining the code quality also
becomes increasingly challenging.

In many software applications, various components have different needs
for computational resources at any given time. In other words, different
components can have different scalability requirements within the same ap-
plication. This specific situation is fundamentally undermined in monolithic
architecture. All components are treated the same and are thought to have
the same scalability criteria. As a result, all components are scaled up or
down at the same time, without considering whether a certain component ac-
tually requires additional computational resources on not. If any component
requires more resources, the whole application must be scaled up.

Similarly, all the components in a monolithic application have the same
life cycle. All modules need to be compiled and deployed together at the
same time. This single unit design means that a bug in any module or
component will break the whole monolithic application. Consequently, the
whole monolithic application needs a new deployment, irrespective of the size
and relevant module of the bug. Furthermore, if a monolithic application is
benefiting from horizontal scaling (replication of application), all instances
of the application will be redeployed, once a bug has been identified in any
of the components.

In addition to high coupling between components, monolithic applica-

1replacing or adding components while the system is still in use [38]
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tions introduce high coupling with the technology stack as well. For in-
stance, consider a monolithic application that was initially developed using a
specific version of Java Virtual Machine (JVM). Imagine that specific JVM
has been succeeded by a newer version. Despite of the fact that using the
new version of JVM will have certain performance improvements in the ap-
plication, the migration to the new version of JVM will not be possible if
even a single component is incompatible with the newer version. In short,
monolithic applications, often get stuck with the already chosen technology
stack and incremental migration to some other technology stack is impossible
[42]. Similarly, in some extreme cases, monolithic application might require
a complete application rewrite. For example, if the Monolithic application
was developed against a platform which becomes obsolete soon [43].

3.2 Microservice-based architecture

Microservice-based architecture aims to build an application as a collection
of small independent services, which have their own life cycle and set of
available resources. These small services are called microservices and com-
municate with one another by lightweight communication mechanisms, such
as Application Programming Interface (API) calls over HTTP [41]. Microser-
vices are deployed independently in a distributed system.

Microservices introduce clear boundaries of modularity and help develop-
ers to focus on one business context at a time in a specific service. Different
microservices can be developed by different teams and can have different
release cycles. One team can deploy their updated microservice without af-
fecting the rest of the microservices running in the distributed application.
Ultimately, maintaining and debugging a particular microservice becomes
relatively easy.

The size of a microservice usually depends on the situation and can vary
depending on the company and the needs. However, as a general principle,
one microservice should be small enough to be handled by one team [56].
Nonetheless, the microservices should not be too small because they intro-
duce additional inter-service communication. This communication can dent
the overall performance if there are too many service calls [40]. The execution
time of each call will add up to the overall response time of the application.
This may lead to a situation where developers have to reconsider the modular
boundaries or the scope of the microservices.

Another guideline for identifying the size and scope of a particular mi-
croservice is to ensure that the microservices are developed in accordance
with the design principle called Single Responsibility Principle (SRP). The
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Figure 3.2: High level view of microservices based application

SRP implies that a specific module should have a unique responsibility. The
compliance with SRP introduces high cohesion and low coupling between dif-
ference microservices. Cohesion indicates the “degree to which the elements
inside a module belong together” [60]. On the other hand, the coupling be-
tween different software modules indicates their dependency on one another;
high coupling means that the modules are highly dependent on one another
[1]. A microservice interacts with the second microservice via its exposed
interface and does not know the internal details of the second microservice.
Hence, microservices are loosely coupled and highly cohesive.

However, the low coupling and high cohesion comes at a price. Consider a
certain piece of code which is being used by multiple modules, while creating
microservices, the developer either has to create a new microservice for this
specific code or duplicate the code in multiple microservices. The first ap-
proach increases the inter-service communication, while the second approach
goes against another software design principle called Do not Repeat Yourself
(DRY). DRY discourages the repetition of the code and emphasises on the
code reuse. The repetition of the code has a clear disadvantage of maintain-
ing multiple copies of the same chunk of code, which essentially means that
a single change must be replicated on all copies.

Microservice-based architecture goes well with scalability, especially in
applications where different modules have different requirements. Microser-
vices enable distributed systems to have fine-grained and flexible scaling.
Developer has full control to decide which microservice should be scaled to
what extent and using which scaling dimension, i.e., horizontal or vertical.
For example, imagine three microservices in a random distributed system,
which have different scalability requirements. Suppose one microservice is
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getting increasingly high traffic/customer traction and needs rapid scaling.
It can scaled horizontally by spinning up more instances of the particular mi-
croservice. The second microservice needs more computational power. Thus,
it can be scaled vertically by migrating the microservice to a more power-
ful/resourceful server. Finally, the third service does not require any scaling
and efficiently runs on the current resources. Consequently, unlike monolithic
architecture, microservices can serve the different scalability needs.

Microservice-based architecture is a better choice for canary deployments
[54]. Canary deployments means developers can release specific versions of
the software to specific groups of users, mainly to test the features and col-
lect feedback. Microservices enable incremental testing of various features in
production environment on actual users. For example, multiple versions of a
specific microservice can be deployed to the production at the same time. The
team can collect vital user feedback on multiple versions of the microservice
from real users. Canary deployments are also possible in monolithic archi-
tecture with limited flexibility. In monolithic application, every version of a
service, independent of the update size, requires the entire application to be
redeployed.

Another distinctive feature of microservice-based architecture is its ability
to support multiple technology stacks within the same application. Various
microservices within the same application can be developed using different
technology stacks or dependencies. For example, two microservices using
different versions of Java can coexist in the same microservice application.
Microservice-based architecture gives development teams the flexibility to
choose the technology stack which is the best in the business context of
the microservice. For example, machine learning team can freely choose the
Python or the R programming language and does not have to worry about the
fact that the rest of the microservices are developed in some other technology
such as JAVA or Scala. This can boost the performance of the individual
microservice as different microservices can benefit from different languages
or technology stacks according to their business context [56].

Similarly, one microservice team can decide to use a database that is
most suited for their business need. As shown in Figure 3.2, multiple mi-
croservices can have their own databases targeting different database engine
types. For example, if other microservices are using a Relational Database
Management System (RDBMS), but that is not the optimal choice for a par-
ticular microservice, the team can choose to use any NoSQL database such
as MongoDB. The clear boundary of modularity and communication over
standard protocols like HTTP, allow different microservices having different
technology stack and database choices, to coexist in the same application.
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3.2.1 Software containers in microservice-based
architecture

Containers are best suited for microservices applications [57]. Each microser-
vice can run as a container and use minimum resources. Containers provide
isolation between different microservices unless developers explicitly connect
them. Additionally, multiple instances of a same microservice container can
be run in parallel either on the same host or a different machine. Each mi-
croservice running in a container is independent of other microservices. This
allows microservices to be deployed in a data center with the same ease and
consistency as if they were deployed on a developer’s personal computer [10].

In a typical microservice-based architecture, following are some of the
distinctive benefits of software containers.

Efficient resource usage

Unlike virtual machines, containers do not have to run the entire operating
system. Hence, their consumption of resources is low. You can run more
instances of a container on a single physical machine than the number of
virtual machines.

Faster start time

The startup time of a container application plays a significant role is building,
testing and scaling applications [20]. A container usually starts much quicker
than a virtual machine [34]. In microservice application, there can up-to
dozens or hundreds of small services, starting all of them in virtual machines
will consume a considerable amount of time and resources. Furthermore,
the building and deployment of docker containers can be automated, which
further speeds up the process and reduces the effort.

Quicker scaling

Considering the small size and footprint of a container, it can be created and
destroyed rather quickly when compared to virtual machines. Consequently,
if a microservice application needs to scale rapidly, creating more replicas of
the required containers would take relatively less time. Similarly, if any of
the containers fails for some reason, replacing it with a new healthy replica
would be faster than replacing a failed virtual machine with a new one. Thus,
containers can reduce the downtime in case a failure occurs.
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Portability

The absence of complete operating system, allows a docker container to be
ported to a different machine in a different environment easily.

Support

Docker is available for most of the famous operating systems, i.e., Windows,
Mac, and Debian etc.



Chapter 4

Container Orchestration

This chapter aims to define the container orchestration and highlights its
main features. Additionally, it provides a detailed discussion on Kuber-
netes, the prevalent orchestration frameworks. Furthermore, it presents a
brief overview of another orchestration frameworks named Amazon Elastic
Container Service (ECS). This information is important to understand the
technical implementation of this thesis.

4.1 What is container orchestration?

As discussed in the previous chapter, modern applications that follow mi-
croservice architecture, are composed of several loosely coupled components.
These components are usually built as a container. These containers need to
work together to achieve the desired functionality. As a result, the efficient
management of these containers becomes an uphill task. Furthermore, in
large distributed applications, the number of these containers can increase
rapidly as the application grows bigger or move towards higher levels of mod-
ularity. Consequently, the container management becomes an increasingly
difficult challenge. Although, one can apply different automation techniques
to reduce the effort of container management, yet these techniques would
require writing complex automation scripts. These scripts tend to become
progressively difficult to maintain and end up consuming more and more
effort in the long run.

Container orchestration is essentially the process of managing the life cy-
cle of the containers, particularly in large and complex environments. Con-
tainer orchestration allows the administrators to control and automate many
of the processes that would otherwise consume a lot of time and effort. Con-
tainer orchestration tools allow the users to describe the configurations that
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the containers and other cluster components should adhere to. The con-
figurations are typically provided in a YAML or JSON file and specify the
way the containers should be built, the storage they should be allowed to
use and how the communication should be established between containers
and different cluster components. Once the configuration is defined by the
administrator, the container orchestration framework makes sure that all
components match to the specified configuration [22].

Some of the main features of the prominent orchestration frameworks are
discussed briefly below [45]:

• Deployment and provisioning. When new containers are built with
new deployment, the orchestration framework will find the appropriate
host for these containers according to CPU, memory and network avail-
ability. Once the containers are hosted, the framework will manage the
container life cycle. The framework can monitor the health of the host
and report any possible fault.

• Replication and load balancing. Orchestration framework can cre-
ate multiple copies of the specified containers and distribute the traffic
across all replicas.

• Availability and fault tolerance. If the user wants a particular
container to be available at all times, the framework can ensure that
even if a particular container encounters a failure, a new copy replaces
the failed container.

• Scaling. Orchestration framework can respond to incoming traffic or
workload by automatically scaling the service up or down.

• Communication. Orchestration framework can not only allow dif-
ferent containers to communicate over the predefined interfaces but
expose the required services out side of cluster as well.

Next, we discuss two of the most common orchestration frameworks used
all over the world.

4.2 Kubernetes

The name kubernetes has its roots in Greek language and translates to pi-
lot or helmsman [32]. Kubernetes is a platform for container orchestration,
which was originally developed by Google. Kubernetes provides effective de-
ployment and management of container’s life cycle in clusters. It emerged
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from a tool called Borg [59], which had been used for cluster management
by Google for several years. In 2014, kubernetes was released under an open
source licence. Currently, Kubernetes is extensively used world wide and has
a large and growing ecosystem, which means that the essential Kubernetes
support and tools are readily available [32]. Kubernetes provides services
that are helpful to achieve predictability, scalability, and availability.

Kubernetes allows you to define declarative configurations that describe
the way containers should run and interact with other containers or appli-
cations. It can automatically scale your application up or down as per the
requirements. Kubernetes allows you to manage the traffic between different
containers, which is helpful in many scenarios. For example, when you want
to rollback a faulty deployment or you want to release different versions of
you application for testing and gathering feedback. Kubernetes, not only
brings ease in deployment, scaling, and maintaining the applications but in-
troduces portability as well. For instance, if a containerized application is
hosted in on-premises, Kubernetes can allow an efficient migration to a cloud
provider environment.

Kubernetes can be conceptually seen as system having layers in which
each higher layer abstracts the complexity of lower layer [25]. Kubernetes
groups together the physical and virtual resources in the cluster and manages
their communication. As per the configurations provided, the machines in
the cluster are given a role that they need to perform. These roles and some
of the other kubernetes concepts are explained below:

4.2.1 Master

One server is assigned the role of master. This server acts as the brain
of the cluster and performs most of the containerization logic [25]. In an
environment where availability requirements are high, the master role can
be given to a small group of servers too. The application containers are
usually run on different servers than the master server, which ensures a simple
and easy cluster management. Master server, being the primary contact
point of administration, has many components that collectively manage the
cluster. The responsibility of these components range from receiving the end
user requests to monitor the health checks of other cluster resources. The
components can either be placed solely on a particular server or one can
choose to deploy different components to different servers. Some of the main
components of master server are briefly described below.

etcd is a configuration store that is available globally. It is a distributed
key-values store which saves the configuration data. This can be used by
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other nodes for service discovery and staying up-to-date with the latest con-
figurations. Additionally, the store tracks the cluster state and provides
functionalities like distributed locking and leader election. This component
is usually placed on a single machine but can be distributed across multiple
servers provided it can be accessed by other nodes [25].

kube-apiserver being the main management point, is one of the most
important components of the master server. It receives the data on REST
interface and updates the relevant values in cluster stores such as etcd. API
server enables the communication between master and other cluster compo-
nents and helps maintain the cluster health [53]. This API server is also
the communication bridge between the administrators and the Kubernetes.
The administrator can use tools like kubectl from their local computer to
communicate and manage the cluster resources.

kube-scheduler is the main process designated to assign workload to dif-
ferent nodes. The scheduler also keeps track of the total capacity of nodes.
Every time a new workload requires placement, this scheduler examines the
available capacity of existing nodes and assigns the workload to the most
suited node(s). The selection of node(s) is affected by different software,
hardware, and network constraints. The scheduler aims for efficient load
distribution so that the workload does not exceed the available resources.

cloud-controller-manager One of the distinctive features of Kubernetes
is its ability to be deployed in different environments using different infras-
tructure providers. cloud-controller-manager essentially provides a way for
the Kubernetes to interact with resources provided by heterogeneous cloud
providers by running cloud-specific control-loops [29]. This enables Kuber-
netes to maintain a consistent state, manage the existing cloud resources,
and create more cloud services when needed [25].

4.2.2 Pods

A pod corresponds to one or more containers that should be controlled as a
single entity within the application. It is the fundamental building block in
Kubernetes object model. All containers within a single pod will always be
created, terminated and scheduled together. In other words, these containers
will not only have the same life cycle but will share the same storage and
network resources too1. The containers inside a pod will use localhost for

1https://kubernetes.io/docs/concepts/workloads/pods/pod/

https://kubernetes.io/docs/concepts/workloads/pods/pod/
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internal communication and use the shared network resources like IP address
and port number for external communication.

Conceptually, the pod can be seen as a single monolithic application,
even if it is hosting multiple containers [25]. Consequently, a failure in any
of the containers will render the whole pod as faulty. Thus, Kubernetes will
replace the complete pod with a healthy replacement. Similarly, scaling in
Kubernetes always results into creating/deleting the pods.

4.2.3 Node Server

The servers that host the pods are called node servers or nodes 2. Nodes are
controlled by master server(s). Their primary responsibility is to provide the
run time environment for the pods which they are hosting. Following are
the node server components which are critical for network configuration and
establishing the communication between master and node servers.

Container Runtime is required to run the containers and execute the ac-
tual workload. Normally container runtime is provided by docker. However,
Kubernetes provides the support for other container runtimes like CRI-O,
Containerd, and Frakti [26].

kubelet is the service responsible for executing the containers. It commu-
nicates with control plane services including etcd store. This service receives
the workload from master components. Kubelet reads the PodSpecs which
typically is in the JSON or YAML file. It creates the pod according to the
specifications and controls/monitors the runtime for the container. It can
launch or destroy the containers if required.

kube-proxy service resides on each server node and is responsible for host
subnetting and ensuring the availability of services to other components.
This component provides primitive load balancing solution with low perfor-
mance overhead. Working on transport layer, kube-proxy can perform simple
and round-robin TCP, UDP, and SCTP stream forwarding among different
backends [28].

Figure 4.1 illustrates the architecture of Kubernetes. Master server is
hosting components like API server, scheduler, manager controller and etcd
store. Whereas, the node servers are hosting pods along with node compo-
nents.Each node is running its own designated containers.

2https://kubernetes.io/docs/concepts/architecture/nodes/

https://kubernetes.io/docs/concepts/architecture/nodes/
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Figure 4.1: Overview of the various components in Kubernetes architecture
[33]

4.2.4 Replication Controller

High scalability and availability often means running multiple copies of a
single pod. Every pod is created from a pod template which contains a set
of rules for the pod. One pod template can be used to create many identical
pods. These identical pods are called replicas and are managed by replication
controller to make sure that the required number of replicas are running at
any given time. It can scale up the pods by running more replicas of the
pod, or scale down by removing unnecessary pods.

Additionally, replication controller helps in fault tolerance. It has the
capability to detect the pod failure and it can create a new identical pod
and replace it with the faulty pod [30]. Consequently, using a replication
controller is beneficial even if the application needs to run only a single
pod. The life cycle of replication controller is independent of the pods it
monitors, meaning the replication controller can be terminated with/without
terminating the relevant pods.

4.2.5 Deployment

A deployment is the recommended way to deploy on Kubernetes. A deploy-
ment updates the pods to reach the desired state at a controlled rate. A
deployment can either create new replicas or utilize the resources of the old
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deployments3.

4.2.6 Services

A Kubernetes service is a component that groups the pods (performing the
same function) into a single logical entity. The service defines the policies
as how a certain set of pods should be accessed. The service keeps track
of these pods and routes the traffic to them. Unlike the pods, the service
has a stable endpoint which is exposed to the consumers. Consumers do not
communicate directly to the pods, because a particular pod can be removed
or new pods can be added during the run time. Any deployment can add,
remove or update these pods. Thus, the consumers communicate to the
service via RESTful operations. The service then forwards the requests to
the relevant pod(s). This abstraction allows the services to do internal load
balancing and yields a better discover-ability for the consumers.

4.2.7 Ingress

Ingress is responsible to manage the external access to the cluster services.
Ingress assigns an externally-accessible URL to the service, and performs
load balancing. It accepts outside requests on HTTP or HTTPS endpoints
and forwards the requests to the relevant services in the cluster. One can
define the rules about how the traffic should be routed4.

4.2.8 Web User Interface

Kubernetes has a web-based user interface also called the dashboard. This
interface can be used by the administrators to manage the deployments and
other cluster resources. It also allows the users to troubleshoot the possible
problems and take corrective actions.

4.3 Elastic Container Service (ECS)

Elastic container service is a container management service provided by Ama-
zon, which allows a container-based application to run in a cluster. This
cluster can be hosted in either Elastic Compute Cloud (EC2) or in a server-
less environment such as Amazon Fargate. ECS enables an easy and efficient

3https://kubernetes.io/docs/concepts/workloads/controllers/
deployment/

4https://kubernetes.io/docs/concepts/services-networking/ingress/

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/ingress/
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deployment of the containers-based application. It provides a centralized ser-
vice, which continuously manages the state of the cluster. ECS entails many
other features, such as load balancing, auto scaling, implementing isolation
policies and ensuring availability. ECS provides an excellent platform for de-
ploying and managing the sophisticated applications built on microservices
architecture [5]. Some of the key concepts of ECS are explained briefly below:

4.3.1 Task Definition

The first step to run the container based application on ECS, is to create a
task definition. Task definition is a JSON file that contains the configurations
required to run the containers. One task definition can describe at maximum
ten application containers [4]. The configurations include specification of the
base docker image and data volumes, CPU and memory allocation, mapping
of ports, and setting up the environment variables for the specified con-
tainer. Additionally, task definition specifies the launch type. The launch
type determines whether the containers should be run on EC2 or serverless
environment like Fargate. The specification of configuration parameters can
vary based on the specified launch type.

4.3.2 Task

Instantiation of a task definition within a cluster yields a task. One task
definition can be used to create as many tasks as required. Tasks running
in serverless environment, run is isolation with sharing CPU, memory or
network interfaces with other tasks.

4.3.3 Scheduler

The scheduler is the component that takes care of the placement of the tasks
in the cluster. For example, if the launch type is EC2, the scheduler decides
which task should be run on which EC2 instance. ECS also allows you to
define the scalability and availability constraints that should be considered
while scheduling the tasks [58].

4.3.4 Cluster

A cluster represents a logical grouping of resources. All tasks are run inside
the clusters. The responsibility to manage the cluster resources depends on
the launch type. For example, if the environment is serverless, ECS will
take care of the management of the resources. However, with EC2 launch
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type, the cluster comprises of the ECS container instances which should be
managed by the administrator.

4.3.5 ECS container instance

The term ECS container instance is used for an EC2 instance that is running
the ECS container agent. Each container instance is created from an al-
ready specified container image, which is fetched from a predefined container
registry.

Amazon ECS

Amazon ECS Cluster

Service

Container
Registry

Container Instance

Container Agent

Container Instance

Container Agent

Task
Docker containers

Task
Docker containers

Task
Docker containers

Task
Docker containers

Service Run task Run task

Figure 4.2: Overview of Amazon Elastic Cloud Service

4.3.6 Container Agent

The container agent is responsible for the communication between the cluster
resources and the ECS. The container agent runs on each resource and sends
the status information back to the ECS. In case of EC2 launch type, the in-
formation about running tasks and resource utilization is also communicated
to ECS by the container agent. It can start and stop a particular task when
requested by ECS.
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4.3.7 Service

A service is deployed on the cluster and allows you to manage the instances
of a task definition. For example, you can define the maximum or minimum
number of instances that should be running in parallel. The service ensures
the availability by maintaining the specific minimum number of instances. It
responds to the failure of any instance and replaces the failed instance with
a new one. Additionally, a cluster can run multiple services, which means
If you have multiple applications that you want to deploy and you want to
optimize the resource utilization. You can choose to run them within the
same cluster.

As shown in Figure 4.2, the ECS communicates with the container agent
which is running on all instances. The container agent downloads the con-
tainer image and runs the tasks when instructed by ECS. On the other hand,
the service manages all instances running inside a cluster.

Some of the major advantages of ECS are listed below [24]:

• Easy cluster management. ECS provides easy management of clus-
ters which contain docker containers. It maintains the information
about the cluster state can scale clusters across multiple availability
zones.

• Flexible Scheduling. The ECS scheduler ensures a balanced avail-
ability and utilization. Additionally, ECS allows you to use any existing
open source scheduler as well.

• Resource Efficiency. ECS aims for the efficient resources utilization.
One can run various unrelated containers on a single EC2 instance.
these containers can coexist while using the resources of the same un-
derlying EC2 instance.

• Resource Efficiency. ECS allows the usage of many other Amazon
Web Services (AWS) resources like Virtual Private Cloud (VPC), re-
source tags, and Elastic IP addresses etc.

• Security. The EC2 instances run in Amazon VPC and benefit from
other AWS security features, such as IAM role and security groups.



Chapter 5

Invoice-based B2B payments

This chapter introduces business-to-business (B2B) payments. It provides
a high level discussion on an invoice-based B2B payment service, which is
used as the case study for this thesis. It describes the main entities that
are typically involved in such a service. Additionally, it presents a brief
overview of the life cycle of an invoice-based B2B purchase. This discussion
is important to understand the business domain of the product, which has
been migrated to microservice-based architecture in this thesis.

5.1 What is B2B payment?

The term B2B refers to a commercial transaction between businesses. In
other words, when both the consumer and the producer of the exchanged
goods or services are businesses, the said transaction is termed as a B2B
transaction [36]. There are many payment methods which have been tradi-
tionally used to transfer the funds from the buyer to the seller. Some of them
are highlighted below [50]:

• Checks are the traditional payment method, where the buyer gives a
check to the seller, who has to deposit it in the bank to transfer the
funds from buyer’s bank account to the seller. This process is slow and
usually takes a few days.

• Wire transfers are relatively faster than the checks. The funds are
transferred through a financial network in a few hours.

• Credit/Debit cards allow the buyer to buy products conveniently
and the payment can be completed in one or more billing cycles.
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• Payment gateway requires the buyer to pay during the checkout
process.

• Invoices. The seller sends an invoice to the buyer once the goods are
delivered to the buyer. The invoice contains the details of the purchase
items, total amount, and the payment due date.

All of the above mentioned payment methods are used in various indus-
tries and have their own advantages and disadvantages. However, we will
mainly focus on the invoices as the payment method for B2B transactions.

5.2 Enterpay’s invoice-based B2B payment

Service

Enterpay Oy1 is a Finnish company, which offers a payment service that
provides invoicing capability to the sellers for their business customers. We
will refer to this service as the payment service in the further discussion. The
sellers can sell their goods without having to setup a credit policy, invoicing
process, reminding process, and collection process. All these processes are
automated by the payment service. Additionally, the payment service takes
away the credit risk for the seller. All purchases are insured and the seller is
guaranteed to receive the payments.

The payment service has been developed over the last 7 years and follows
monolithic architecture. Enterpay is growing its business and expanding
its services to different countries in Europe. Consequently, the ability to
scale rapidly and handle increasing service requests, are currently one of
the top priorities. This thesis focuses on migrating the payment service to
microservice-based architecture to enable efficient scaling for the growing
requests.

In order to understand how the payment service functions, it is important
to know the main actors involved in the payment service. These actors are
listed below:

• Merchant is the seller of the goods or services. The merchant usually
has an electronic webshop/website, which is integrated with the service
provider, i.e., Enterpay.

• Buyer is the company that needs to purchase goods from the merchant.

1https://www.enterpay.fi/

https://www.enterpay.fi/
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• Payment Service Provider (PSP) provides the merchant a portal
which integrates different payment methods or services. Some mer-
chants do not integrate directly to the payment service, rather they are
integrated to a PSP, which already has an integration with the payment
service.

• Financing partner is usually a bank or a financial service company.
Financing partners are customers of Enterpay and are responsible for
taking the credit risk and collecting the payment from buyers.

5.2.1 Life cycle of a purchase

As a prerequisite of using the payment service, the merchant needs to in-
tegrate to the Purchase API, which is a REST API exposed by Enterpay.
Once the integration is done, the merchant will enable Enterpay as one of
the available payment methods on its webshop.

Figure 5.1 provides a high level view of the purchase life cycle. The buyer
creates a shopping cart on the merchant’s webshop. During the checkout
stage, the buyer chooses a payment service as his/her preferred payment
method. Merchant sends the shopping cart data to the payment service,
either directly or via PSP. The payment service validates the data received
from the merchant. If the validation checks are passed, the buyer is redirected
to the payment service’s website.

After redirection, the payment service performs the buyer identification/au-
thentication. The payment service sends a One Time Password (OTP) on
buyer’s phone number or email address for authentication. After this step,
the buyer specifies the invoicing details that are necessary to deliver the in-
voice correctly. For example, the buyer can choose whether he/she wants the
invoice in paper form, over email, or as an electronic invoice2.

As the last step, the buyer confirms the purchase. During the confirma-
tion, the payment service makes the credit decision whether the buyer should
be allowed to make this purchase or not. This credit decision is based on
various parameters such as the credit rating of the buying company, allowed
credit limits of the buying company, credit limits of the buying person etc.
If the credit decision is positive, the buyer is allowed to make the purchase.
Finally, the buyer is redirected back to the merchant’s webshop, while the
payment service informs the merchant about the purchase status.

After a successful purchase, the merchant prepares the goods for delivery.
Once the merchant is ready to ship the goods, it can call the Invoice API to

2An electronic invoice goes directly in the buyer’s bank account. This kind of invoice
might not be available in all countries.
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Figure 5.1: Overview of the life cycle of an invoice-based B2B purchase

activate the invoice. The payment service sends the invoicing information to
the relevant financing partner, which sends the actual invoice to the buyer.
The buyer usually has 14-60 days to pay the invoice. Once the invoice is paid,
the financing partner informs the payment service. The payment service then
updates the purchase status and the relevant buyer credit limits.

5.2.2 Benefits of invoices for businesses

In many countries such as Finland, businesses can deduct the Value Added
Tax (VAT) on their purchases [51]. In simple words, businesses are reim-
bursed for the VAT paid on their purchases. However, they have to report
it while settling their annual tax return. Therefore, it is very important for
companies to save the receipts of their purchases. These receipts should have
the details such as what was bought and the VAT paid on individual items.
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These receipts are collected and the tax information is manually added in
the company’s tax files.

Unfortunately, many of the traditional payment methods are not favourable
in this situation. For example, the Credit/Debit cards have a fundamental
drawback that they do not record the details of purchase items. Rather, only
the final due amount is displayed on the receipt. Consequently, companies
either lose the VAT reimbursement, or they have to ask for a separate receipt
from the merchant, which has the purchase item details. In any case, these
detailed receipts do not eliminate the cost of adding the tax information
manually to the bookkeeping3 system.

On the other hand, the invoice-based payment methods such as Enter-
pay’s payment service provide an efficient solution to this problem. The
invoice contains the detailed information about the purchase items and can
directly be sent to the buyer’s bank account. The electronic invoice can be
imported to the buyer’s bookkeeping system and can automate the process
of adding the relevant VAT taxes.

Another distinctive benefit of invoices, is the efficient management of
purchase rights. In big companies, many people have the purchase rights
and buy for the company on regular basis. Without invoice-based payments,
the company would require to obtain a separate business credit card for these
procurists. Similarly, if the employee leaves the company, the issued credit
card needs to be cancelled. Consequently, managing these credit cards can
be slow and an inconvenient task.

Finally, with invoice-based payments, companies do not have to pay up-
front. The purchase is done on the credit and the buyer does not get the
invoices until the goods are delivered.

5.2.3 Features of the payment service

Enterpay’s payment service has the following additional features which are
helpful for the buyer, the merchant, and the financing partners.

• Purchase reports. The buyer can login to the payment service and
access the list of purchases made by his/her company. In some cases,
the buyer can request for a change in the invoicing details of a particular
purchase or request a copy of the invoice.

• Sales reports. The merchant can also login to the payment service
and see the sales report. The merchant can make cancellations/refunds

3bookkeeping is the process of maintaining or recording all of the financial transactions
such as sales and purchases.
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of the purchases.

• User management. Both, the buyer and the merchant can register
more users to the payment service. Additionally, payment service al-
lows them to define various privileges and purchase limits on the users
of their organisation.

• In-Store Mode. Enterpay provides a tool to create purchases in the
payment system. This is specially beneficial for the merchants which
do not have a webshop but want to sell their goods using invoices.



Chapter 6

Implementation

This chapter provides a detailed discussion of the technical implementation
for this thesis. It explains the main migration stages of Enterpay’s payment
service from monolithic to the microservice-based architecture. Additionally,
it briefly describes the tools and commands that were used in these stages.

6.1 Migration to microservice-based

architecture

The migration from monolithic to microservice-based architecture was pri-
marily done in three stages. Each stage involved introducing new tools to
the technology stack of the payment service. In the following discussion we
describe each of the stage in detail. Additionally, we explain some of the
challenges faced and how they were overcome.

6.1.1 Introducing Docker

The first step of the migration process was to introduce Docker in the tech-
nology stack of the payment service. This step was primarily performed
on the developer’s machine. We installed the Docker by downloading and
installing Docker Desktop for Mac from the official Docker website [13].

The deployment of the current monolithic application begins by building
a Java ARchive (JAR) file, which includes all of the classes and dependent
libraries for the monolithic application. This file is then deployed as a service
on a Linux machine. Introducing Docker in the current deployment model,
meant that we encapsulate the same JAR file inside a Docker image. Conse-
quently, we created a .dockerfile as shown in File 1. The dockerfile includes
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the information on the base image, required libraries for the runtime, and
the application configurations required by the JAR file.

FROM <base_image>

WORKDIR /workspace/

RUN apt-get -y update

RUN apt-get install -y mysql-client

RUN apt-get -y install openjdk-8-jdk

COPY ./project ./project

COPY ./conf ./conf

COPY ./ui ./ui

COPY ./run_jar.sh ./<fat_jar_file.jar> ./

EXPOSE <port_no>

ENTRYPOINT ["./run_jar.sh"]

File 1: .dockerfile for the monolithic application.

Once the .dockerfile was ready, we built the Docker image. The following
command creates a Docker image and assigns it the tag latest. At this stage
the Docker image was saved locally on the developer’s machine.

#builds the docker image

$ docker build -t enterpay -app ./

This image was used to create a container. This following command ran
the whole monolithic application inside a single Docker container.

#runs the docker image on localhost:<port_no >

$ docker run -p <port_no >:<port_no > enterpay -app

6.1.2 Modularization - Transition to Microservices

In the second stage, we identified some of the modules that should be ex-
tracted and run independently as microservices. The choice of these modules
was based on parameters such as, scalability needs, visibility of the module
to the end user, and effort required to extract and decouple the modules.
For the scope of this thesis, we divided the monolithic application into the
following microservices:

• User Interface (UI). This service is responsible to serve the HTML
content.

• ConnectIn. This is a REST API which is in charge of receiving
the purchase requests from merchants (machine-to-machine commu-
nication).
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• Background-actors. This service sends invoicing data to the financ-
ing partners. It has a specific requirement that only one instance of
this service should be running at any given time. In simple words, this
service should be available at all times but must never be scaled to
multiple instances.

• Main server. This is the part which has the rest of the modules of the
monolithic application. In future, we will split this further into more
microservices.

• Merchant API. This is a REST API which is exposed to merchants
to perform operations like updating invoice details, refunds, and can-
cellations.

Each module was built as a stand-alone independent application, which
presented the following two main challenges:

• Inter-Module communication. Before extraction, one module could
conveniently import the assembly references of other modules to con-
sume the offered functionality. Although these assembly references in-
troduce build dependencies, this arrangement is easy and efficient as
all of these modules are built under the same monolithic application.
However, after the extraction, the build dependencies are not desir-
able. Consequently, we created additional REST interfaces for these
independent applications to establish communication and collaborate
on a given task.

• Base modules. Some modules of the payment service serve as the base
for application structure and are used by other modules. For example,
a module named Common Module contains different helper classes that
are used in different other modules. One such helper class is named
LogUtils, which contains the logic to write a given entry in the log table.
In the monolithic application model, the common/base modules are
used as assembly reference by other modules. Hence, there is only one
copy of the base module. However, after extraction, this base module
needs to be available to all of the independent applications. Extracting
this module as a separate microservice will introduce a considerable
communication between different microservices, which is not desirable.
Thus, we allowed the replication of this base module in the extracted
modules.

We created a separate dockerfile for each independent application, to treat
it as a separate microservice. The newly introduced REST interface are kept
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private and are only visible to other microservices. The details about the
intermediate implementation steps are list under appendix A.

6.1.3 Deploying to Kubernetes cluster

Once the monolithic application is converted to a microservice-based appli-
cation, we deployed these microservices to a Kubernetes cluster on Amazon
Web Services (AWS). The goal of introducing Kubernetes was to enable ef-
ficient deployment and orchestration of these microservices. The choice of
AWS as the deployment platform is governed by the fact that AWS is already
a part of the current technology stack of Enterpay’s payment service.

We created the deployment and service resources for each microservice.
Later, we deployed these resources on the Kubernetes cluster. File 4 presents
an example of the deployment and service resource for the Main Service.
Additionally, we used the Web UI for Kubernetes, which is a convenient
interface for deploying/managing the Kubernetes services and resources. For
example, this tool can be used to create, modify or scale the deployments1.

The Docker images of the microservices were stored in a cloud registry.
The images are saved under private repositories and can only be accessed
through valid credentials. Kubernetes allows the users to create a secret ob-
ject, which is used to store passwords, Secure Shell (SSH) Keys, and other
authentication tokens [31]. Consequently, we created a secret object on Ku-
bernetes cluster named regcred, using the following command. This regcred
object is specified under the Kubernetes deployment resources, and is re-
quired to pull Docker images from private repositories.

# creates the regcred secret on Kubernetes using

# the docker credentials

$ kubectl create secret generic regcred \

--from -file=. dockerconfigjson=<path_of_docker -config.json_file > \

--type=kubernetes.io/dockerconfigjson

Furthermore, we created an ingress resources as shown in the File 2. The
ingress resource implements the API gateway pattern and acts as a single
entry point for all of the end user requests. It routes the request to the
relevant services that are not visible directly to the end user [9].

1https://kubernetes.io/docs/tasks/access-application-cluster/
web-ui-dashboard/

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/


CHAPTER 6. IMPLEMENTATION 49

kind: Service

apiVersion: v1

metadata:

name: ingress-nginx

namespace: ingress-nginx

labels:

app.kubernetes.io/name: ingress-nginx

app.kubernetes.io/part-of: ingress-nginx

annotations:

service.beta.kubernetes.io/aws-load-balancer-proxy-protocol: "*"

service.beta.kubernetes.io/aws-load-balancer-connection-idle-timeout: "120"

spec:

externalTrafficPolicy: Local

type: LoadBalancer

selector:

app.kubernetes.io/name: ingress-nginx

app.kubernetes.io/part-of: ingress-nginx

ports:

- name: http

port: 80

targetPort: http

- name: https

port: 443

targetPort: https

---------------

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

name: ingress

spec:

rules:

- host: <public_url_of_payment_service>

- http:

paths:

- path: /connectin

backend:

serviceName: connectin-service

servicePort: <connectin_service_port>

- path: /

backend:

serviceName: main-service

servicePort: <main_service_port>

File 2: ingress.yaml: configuration for the ingress controller and the ingress
resource

Figure 6.1 elaborates the high level architecture of the payment service
after moving to microservice-based architecture. Different microservices are
running independently and have their own replication policies. For exam-
ple, the Main service is running three replicas and the Actor Service is run-
ning only one. The deployment resources for these microservices control the
restart policy, which is set to ‘Always’. This means that in case a pod fails
for some reason, the deployment will create a new pod automatically to re-
place the failed one. All services in Kubernetes cluster are by default, kept
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Figure 6.1: Overview of how ingress controller directs the traffic to different
services

invisible to the end user. However, these services can directly communicate
with one another, when required.

It is important that in a microservice-based architecture, only the relevant
services are exposed to the end user. Furthermore, these service should be
exposed on a specific public Uniform Resource Locator (URL). Therefore,
the ingress controller receives all customer requests on a specific base URL.
It parses the URL and identifies the relevant service which should handle the
particular request. Ingress controller acts as a load balancer and forwards
these requests to the relevant service objects. Additionally, ingress controller
is used to manage the visibility of the microservices to the outside world. For
example, as shown in Figure 6.1, ingress controller only exposes the Main
and Connectin services to the end user. The rest of microservices continue
to run privately and collaborate with other microservices on a given task.
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Evaluation

This chapter presents the evaluation of the microservice-based architecture
developed in this thesis. We first provide the details of the experimental
setup and methodology. Then explain the experiments conducted as well as
the reported results.

7.1 Experimental setup and methodology

To compare the monolithic and microservice-based architectures, we setup
an environment where we can run our experiments. We aimed to create a
setup where both architectures have the same physical resources, so that the
results are not biased.

• Microservice-based architecture. A kubernetes cluster was cre-
ated on Amazon Web Services (AWS), with exactly one master and
two worker nodes. The instance type of master node was m3.medium
and the worker nodes had t2.small1 as their instance type. Both of the
worker nodes were configured to save the data in a single instance of
MySql based Relation Database Service (RDS). The instance type of
the RDS machine was db.t2.small2. The motivation behind choosing
these instances types was to create an experimental setup, which re-
sembles the actual test and demo environments of the payment service.

• Monolithic architecture. We created an Auto Scaling group, which
consists of Elastic Compute Cloud (EC2) instances. These instances
can be managed and scaled automatically. An Auto Scaling group
allows to configure the scaling policies based on different parameters

1Specs: https://aws.amazon.com/ec2/instance-types/
2Specs: https://aws.amazon.com/rds/instance-types/
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such as CPU and memory usage. Additionally, one can configure the
minimum, maximum, and desired number of EC2 instances for the
Auto Scaling group [3].

An Auto scaling group requires an Amazon Machine Image (AMI),
which is be used to create new EC2 instances for scaling out. Thus,
we first deployed our monolithic application on an EC2 instance and
created an AMI. This AMI was configured with our Auto Scaling group.
Finally, we added an Elastic Load Balancer (ELB), which will distribute
the incoming requests among the EC2 instances running inside the
Auto Scaling group. Figure 7.1 shows the arrangement of different
components of experimental setup.

db.t2.small

Elastic Load Balancer

Min size Scale as needed
Max size

Auto Scaling group

Figure 7.1: Experimental setup for the monolithic architecture
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7.1.1 Hypothesis and metrics

We formed the following three hypotheses to evaluate the performance of
microservice-based architecture. These hypothesis were tested in the exper-
iments.

• Hypothesis 1: the microservice-based architecture should recover
from instance failure faster than the monolithic architecture. Accord-
ingly, we decided to measure the average time to recover from the
instance failure.

• Hypothesis 2: the microservice-based architecture should scale faster
than the monolithic architecture. Consequently, we decided to measure
the average time to scale out different no of instances in both of these
schemes.

• Hypothesis 3: even though the microservice-based architecture intro-
duces communication costs between different microservices, the overall
response time of service requests should be comparable to the mono-
lithic architecture. As a result, we decided to measure the average
response of a specific type of service requests, which involves commu-
nication between exactly two microservices.

7.2 Experimental results

7.2.1 Time to recover

In this experiment, we measure the average time to recover from instance
failures for both monolithic and the microservice-based setups. The Auto
Scaling group is configured to have exactly four instances of the monolithic
application. Similarly, the deployment object in the Kubernetes cluster was
configured to have exactly four replicas of the microservice.

We used bash scripts to terminate the EC2 instances and pods. The
variations of the experiment involved termination of one,two, and three in-
stances. We measured the time since the termination command was issued
until the instance was recovered and the application was available to the end
user. For each variation of this experiment, the measurements were taken
five times and the standard deviation was calculated with the precision of
milliseconds.

As shown in Figure 7.2, the average recovery time of microservice-based
architecture is significantly smaller than the monolithic architecture.
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Figure 7.2: Average time to recover from instance failure(s)

7.2.2 Time to scale

In the second experiment, we measured the average time to scale out a given
number of instances for both the monolithic and the microservice-based se-
tups. The Auto Scaling group was configured to have exactly one instance
of the monolithic application. Similarly, the deployment object in the Ku-
bernetes cluster was configured to have exactly one copy of the microservice.

We used bash scripts to update the configuration of the Auto Scaling
group and the Kubernetes deployment object. The variations of the ex-
periment involved concurrently scaling one, three, and five instances. We
measured the time since the scaling command was issued until the all of the
new instances were available to handle the service requests. For each vari-
ation of this experiment, the measurements were taken five times and the
standard deviation was calculated with the precision of milliseconds.

As shown in Figure 7.3, the time to scale for the microservice-based ar-
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chitecture is smaller than the monolithic architecture. However, we noticed
that when more number of replicas are created, the difference of scaling time
between both architectures becomes smaller and smaller. The explanation
for this behavior is the fact that with Auto Scaling group, scaling involves
creating/adding new EC2 instances. In contrast, for the microservice-based
architecture, we did not add new worker nodes in the Kubernetes cluster.
This essentially means that the new replicas were scaled using the resources
of already existing worker nodes.
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Figure 7.3: Average time to scale out given number of instances

7.2.3 Response time for service requests

In this experiment, we measured the average time for the service requests.
We created a service request that created a purchase object in the payment
service and redirects the buyer to the payment service where he/she can add
invoicing details of the particular purchase. In practice, this service request
is initiated by merchants. This request involves processing of approximately
80 string values, saving the values in different tables in database and re-
turning a result containing approximately 20 string values. Furthermore, the
processing of this request involves communication between two microservices
(Connectin Service and Main Service) over REST APIs.

The Auto Scaling group was configured to have exactly two instances of
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the monolithic application. Similarly, the deployment object in the Kuber-
netes cluster was configured to have exactly two replicas of each microservice.

We used bash scripts to send concurrent service requests. The variations
of the experiment involved sending 100, 200, 500, and 1000 concurrent service
requests. We measured the time since the script was executed until all of
the service requests were processed. For each variation of this experiment,
the measurements were taken five times and the standard deviation was
calculated with the precision of milliseconds.

As shown in Figure 7.4, the average response time of both architecture is
comparable. The communication between the two microservices has resulted
in a small delay in the response. We noticed that the response time increases
with the increase in the concurrent service requests. The explanation for
this behavior is the dependency on the database. The database used for this
experiments allows a maximum of 150 connections.
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Figure 7.4: Average response time for concurrent service requests

7.3 Considerations on flexibility

The second most prominent challenge faced by Enterpay’s payment service is
their tight coupling with the current technology stack. The monolithic appli-
cation was built using Scala, AngularJS, and a specific version of Java. How-
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ever, some of the new features require a newer version of Java and software
such as Python and ReactJS. With the introduction of microservice-based
architecture, these technologies can easily be added in the current technol-
ogy stack. The design of the microservice-based architecture described in
this thesis has allowed the realization3 of new or improved features for B2B
payments.

• PinCode generation - This microservice is developed in Java through
the Spring framework. It is responsible to create pin codes for authen-
ticating the buyer. It is important to note that this microservice uses a
different version of Java than the other Java based microservices run-
ning in the payment service.

• Risk evaluation - This is a REST API written in Python. The moti-
vation of choosing the Python is the availability of libraries for machine
learning algorithms. Prior to microservice-based architecture, this API
was deployed to a separate EC2 instance.

The author of this thesis created separate Docker images for these mi-
croservices and deployed them in Kubernetes cluster in AWS along with the
others. Thus we can conclude that microservice-based architecture is not
dependent on the old technology stack and has gained the required flexibility
in choice of technologies.

3These features were not realized by the author of this thesis. Nevertheless, we leverage
them to assess the flexibility of the microservice-based architecture.
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Conclusions

Conventional payment methods such as Checks and Debit/Credit cards are
inefficient for Business-to-Business (B2B) trade. Paying with these methods
is not only cumbersome, but also inconvenient when it comes to keeping fi-
nancial records up-to-date. For instance, in case of Debit/Credit cards, busi-
nesses have to acquire a separate Debit/Credit card for every employee who
has the privilege to make a purchase on behalf of the company. Moreover,
the buyer has to obtain a separate receipt with the detailed tax information
of the purchased items from the seller. This tax information needs to be
added manually in the financial/book-keeping system. On the other hand,
paying by invoice is an optimal choice for businesses, because it solves the
problems posed by the conventional payment methods.

Enterpay Oy provides an invoice-based B2B payment method, which en-
ables buyers to make purchases on credit and takes the credit risk away from
the sellers. From the perspective of banks and financial companies, Enter-
pay provides an online credit decision engine that helps them expand their
business and offer a reliable payment service in the B2B market.

In this thesis, we identified that Enterpay’s payment service is currently
facing two major challenges, i.e., efficient scaling and the need to be flexible
in the choice of technology stack for different components of the application.
We observed that the current monolithic architecture of the application is
rigid and is an obstacle for efficient scalability. Consequently, we proposed
the migration to a microservice-based architecture as a solution.

We identified some of the modules from the original monolithic applica-
tion that have different scalability criteria. We extracted out these modules
and built them as independent microservices. We introduced Docker in the
Enterpay’s technology stack, so that each microservice can be built as a
separate Docker image and can have a independent development and de-
ployment life-cycle. Additionally, we selected Kubernetes as the container
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orchestration environment for the microservice-based architecture. We cre-
ated separate Kubernetes deployment and service resources, allowing each
microservice to have its own replication strategy and load balancing capa-
bilities. Next, we created an ingress resource which acts as a single entry
point for the payment service. This component receives all user traffic and
distributes the user requests to the relevant microservice.

Finally, we created a Kubernetes cluster on Amazon Web Service (AWS)
and deployed the microservices. We formulated three different hypotheses
to evaluate the performance of the microservice-based architecture. Accord-
ingly, we conducted experiments to analyze the performance of microservice-
based architecture in terms of scaling and recovering from instance failures.
Moreover, we realized that microservice-based architecture introduces inter-
service communication cost. Thus, we conducted an experiment to examine
the impact of this added cost. For this experiment, We selected an appli-
cation scenario, where 2 microservices need to communicate and collaborate
with each other on a given task. We collected the measurements with dif-
ferent variations and calculated the standard deviation. After analyzing the
measurements, we concluded the following

• The mircoservice-based architecture scales efficiently and recovers from
instance failures faster than the old monolithic architecture.

• The average response time of service requests is comparable with the
original monolithic architecture. The inter-service communication did
not add a significant delay in the average response time of service re-
quests.

• The microservice-based architecture allowed Enterpay to be flexible in
the choice of technology for different new features it wants to build. We
noticed that not only Enterpay was able to build one of the new features
with different technology stack, but an existing API which originally
needed a separate EC2 instance for its deployment, was successfully
deployed in the same Kubernetes cluster.

8.1 Future work

At the end of this thesis, the new microservice-based architecture is de-
ployed in the test environment. In near future, Enterpay will replace the old
architecture by the new microservice-based architecture in production envi-
ronment. With this adaptation of microservice-based architecture, Enterpay
will adjust its internal practices of development, testing and deployment
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accordingly. For instance, Enterpay will continue to benefit from software
containers and each microservice will be built as a Docker container. Further-
more, the development team of Enterpay will extract more modules based on
their scalability criteria and deploy them as independent microservices. New
features will be developed with the best suited programming language and
frameworks. These features will be deployed as microservices in the same
kubernetes cluster on AWS.
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2014. https://www.youtube.com/watch?v=wgdBVIX9ifA. Accessed 29
Mar 2019.

[43] microservices.io. Monolithic Architecture. https://microservices.

io/patterns/monolithic.html. Accessed 29 Mar 2019.

[44] Microsoft. Resize virtual machines. https://azure.microsoft.com/

en-us/blog/resize-virtual-machines/. Accessed 26 Oct 2019.

[45] mongodb.com. Containers and Orchestration Explained. https://

www.mongodb.com/containers-and-orchestration-explained. Accessed
29 Oct 2019.
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Appendix A

Implementation - Intermediate
steps

A.1 docker-compose

After introducing Docker, we used docker compose, which is a tool suitable for
running multi-container applications [14]. Docker compose comes with the
Docker desktop package and can be used to run/stop multiple containers with
a single command. It allows us to defines the configurations of application
services in a YAML or JSON file. This file specifies all services which should
be built and run within the application. Additionally, it contains instructions
on how the containers should be built and run. Docker compose builds an
image only if it is not already built. Consequently, We created a file named
docker-compose.yaml as shown in File 3.

Once the docker-compose file is ready, we ran the following command,
which sequentially builds the specified Docker images and finally runs the
containers simultaneously.

# reads the docker -compose.yaml and starts

# all the containers together.

$ docker -compose up

In case, the user wants to stop all of the containers, he/she needs to run
the following command and all of containers will be terminated together.

# shuts down all containers

$ docker -compose down

67
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version: 3.0

services:

httpd:

build:

context: .

args:

- NODE_ENV=local

dockerfile: Dockerfile_httpd

ports:

- 80:80/tcp

main:

build:

context: .

args:

- NODE_ENV=local

dockerfile: Dockerfile_main

ports:

- <main_port>:<main_port>/tcp

connectin-main:

build:

context: .

args:

- NODE_ENV=local

dockerfile: Dockerfile_connectin

ports:

- <connectin_port>:<connectin_port>/tcp

ui:

build:

context: .

args:

- NODE_ENV=local

dockerfile: Dockerfile_ui

image: enterpayoy/thesis_ui

ports:

- <ui_port>:<ui_port>/tcp

actors:

build:

context: .

args:

- NODE_ENV=local

dockerfile: Dockerfile_actors

ports:

- <actor_port>:<actor_port>/tcp

File 3: docker-compose.yaml specifying different microservices.

A.2 Deployment on local Kubernetes cluster

First we deployed the microservices to a local Kubernetes cluster. Docker
version 2.1.0.3 comes with built-in support for Kubernetes. We installed a
tool named minikube, which is a handy tool to get started with Kubernetes on
a developer’s machine. Minikube installs the Kubernetes locally and creates a
single node cluster. This cluster runs inside a virtual machine on developer’s
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computer. The installation instructions are available on Kubernetes official
website [27].

We used the following commands to create the local Kubernetes cluster
and deploy the deployment and service resources.

# creates the single node local Kubernetes cluster

$ minikube start

# deploys the configurations defined in main -service.yaml file

$ kubectl create -f main -service.yaml

# enlists the running pods

$ kubectl get pod

# prints the url for the specified service on console

$ minikube service main -service --url

# deletes specified service

$ kubectl delete services main -service

# stops the local Kubernetes cluster

$ minikube stop

# deletes the local Kubernetes cluster

$ minikube delete

Additionally, we used the Web UI for Kubernetes, which is convenient
interface for deploying/managing the Kubernetes services and resources. For
example, this tool can be used to create, modify or scale the deployments1.

# runs the Web UI for the local cluster

$ minikube dashboard

A.3 Deployment on AWS Kubernetes cluster

We used a tool called Kubernetes Operations (kops) to create the kubernetes
cluster on AWS. The detailed instructions on how to setup kubernetes cluster
on AWS are available on the official git repository of kops2. As a prerequisite,
we installed AWS Command Line Interface (CLI) tools.

By default, kops creates a three node cluster, where one server is master
with the instance type of m3.medium and the rest of the two nodes are worker
nodes with the instance type of t2.medium. The details of these server can
be found on AWS’s website 3.

Following is the list of commands that we used to to create the kubernetes
cluster on AWS:

# installs AWS CLI

$ brew update && brew install kops

# create a bucket on Amazon ’s Simple Storage Service (S3). This bucket will contain

# the cluster state metadata

1https://kubernetes.io/docs/tasks/access-application-cluster/
web-ui-dashboard/

2https://github.com/kubernetes/kops/blob/master/docs/getting_
started/aws.md

3https://aws.amazon.com/ec2/instance-types/

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://github.com/kubernetes/kops/blob/master/docs/getting_started/aws.md
https://github.com/kubernetes/kops/blob/master/docs/getting_started/aws.md
https://aws.amazon.com/ec2/instance-types/
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$ aws s3api create -bucket --bucket <bucket_name > --region <desired_region >

# creates the required configuration for the cluster

$ kops create cluster --zones eu-central -1a <cluster_name >

# builds the cluster , installs kubernetes components on all nodes

$ kops update cluster <cluster_name > --yes

# deletes the cluster and all its components

kops delete cluster --name <cluster_name >

A.4 Kubernetes cluster resources

apiVersion: apps/v1

kind: Deployment

metadata:

labels:

app: main

name: main-deployment

spec:

replicas: 2

selector:

matchLabels:

app: main

strategy: {}

template:

metadata:

labels:

app: main

spec:

containers:

- image: <remote_image_name>

name: main

ports:

- containerPort: <contianer_port>

resources: {}

restartPolicy: Always

imagePullSecrets:

- name: regcred

status: {}

----------------

apiVersion: v1

kind: Service

metadata:

name: main-service

spec:

type: NodePort

ports:

- name: <target_port_name>

port: <target_port>

targetPort: <target_port>

protocol: TCP

nodePort: <node_port>

selector:

app: main

File 4: main-service.yaml: Deployment and Service resource for Main Service
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