
 

 

Jin, Y., Zhou, H., Yang, H., Zhang, S. and Ge, J. (2017) 'An 

approach to locating delayed activities in software 

processes’, International Journal of Automation and 

Computing. doi: 10.1007/s11633-017-1092-9. 

The final publication is available at Springer via http://doi.org/10.1007/s11633-017-1092-9  

 

ResearchSPAce 

http://researchspace.bathspa.ac.uk/ 

This pre-published version is made available in accordance with publisher 

policies.  

Please cite only the published version using the reference above. 

 

Your access and use of this document is based on your acceptance of the 

ResearchSPAce Metadata and Data Policies, as well as applicable law:-

https://researchspace.bathspa.ac.uk/policies.html  

Unless you accept the terms of these Policies in full, you do not have 

permission to download this document. 

This cover sheet may not be removed from the document. 

 

Please scroll down to view the document. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bedfordshire Repository

https://core.ac.uk/display/287782224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://doi.org/10.1007/s11633-017-1092-9
http://researchspace.bathspa.ac.uk/


International Journal of Automation and Computing X(X), X X, X-X

DOI: XXX

An Approach to Locating Delayed Activities

in Software Processes

Yunzhi Jin1 Hua Zhou1,2,3 Hongji Yang4 Sijing Zhang5 Jidong Ge6

1School of Software, Yunnan University, Kunming 650091, China
2Key Laboratory for Software Engineering of Yunnan Province, Kunming 650000, China

3Research Center of Cloud Computing of Yunnan Province, Kunming 650000, China
4Centre for Creative Computing, Bath Spa University, SN130RP, UK

5Department of Computer Science and Technology, University of Bedfordshire, LU1 3JU, UK
6Software Institute, Nanjing University, 210093, China

Abstract: Activity is now playing a vital role in software processes. To ensure the high-level efficiency of software processes, a
key point is to locate those activities that own bigger occupation probabilities of resource in average execution time, called delayed
activities, and then improve them. To this end, we firstly propose an approach to locating delayed activities in software processes.
Furthermore, we present a case study, which exhibits the high-level efficiency of the approach, to concretely illustrate this new solution.
Some beneficial analysis and reasonable modification are developed in the end.

Keywords: Locating of the delayed activities, Software process, Stochastic Petri-nets, Markov chain, Probability transfer matrix.

1 Introduction

In 1987, Osterweil[1] put forward the view that software
processes are software, too. This view has been accepted
by a large number of scholars and tightly attracted their
attention since then. In view of the Standard for Informa-
tion Technology-Software Life Cycle Processes (ISO/IEC
12207 Standard)[2], a software process can be defined as a
set of interrelated activities that transform inputs into out-
puts, and each process is further denoted in terms of its
own constituent activities. These all show that activity is
an indispensable constituent of software process. As stated
in Li[3] that, “software processes denote a set of interre-
lated processes in the software life cycle. A software pro-
cess provides a framework for managing activities that can
very easily get out of control in software development.”, and
Pressman[4] that, “The software development’s work prod-
ucts (programs, documentation and data) are produced as
consequences of the activities defined by the software pro-
cesses”.

As we all know, the key point to success in software pro-
cesses is to ensure that the activities could be finished on
time. Unfortunately, in most of the cases, some activities
that own bigger occupation probabilities of resource in av-
erage execution time always exist. In this paper, we call
them the delayed activities. Informally speaking, to locate
the delayed activities in software process is just as to find
the activities of the critical path in Activity on Edge (AOE)
Network. Similarly, we locate the delayed activities in soft-
ware processes and improve them so that the time cost of
these activities will reduce and as a result, the efficiency of

Research article
Manuscript received date; revised date
This work is supported by the NSF of China (61462091), High-tech

Industrial Development Program of Yunnan Province, China (No.
1956, in 2012), New Academic Researcher Award for Doctoral Can-
didates of Yunnan Province of China (ynu201414), NSYF of Yun-
nan Province of China (2014FD006), and the Postgraduates Science
Foundation of Yunnan University (ynuy201424).
Recommended by Associate Editor xxxx

these software processes will increase. Hence, it is essen-
tial to locate the delayed activities in software processes in
order to improve the software processes.

To locate the delayed activities in a software process, the
Petri-nets will be used as an efficient tool to model the soft-
ware process itself. The Petri-nets were firstly proposed by
Doctor C.A. Petri[5] in Germany in 1962 and have gained
popularity for representation of complex logical interactions
(say synchronisation, sequentiality, concurrency and con-
flict, etc.) among activities. The principles and applications
of Petri-nets have been widely discussed and developed
since then. For example, Van Der Aalst[6] introduced work-
flow management as an application domain for Petri-nets,
proposed state-of-the-art results with respect to the verifi-
cation of workflows, and highlighted some Petri-net-based
workflow tools. Likewise, Van Der Aalst and Ter Hofstede[7]

presented a petri-net-based verification approach of work-
flow task structures and developed a verification tool to il-
lustrate the applicability of the approach. Besides, Hamadi
and Benatallah[8] put forward a Petri net-based algebra,
used to model control flows, as a necessary constituent of
reliable Web service composition process. See also Ge et
al.[9] for the MOPN-SP-net model, which is a multi-view
software process model based on multi-object Petri-nets.
Specifically, on the basis of Petri-nets, Molloy[10] discussed
the isomorphism between the behavior of Petri-nets with
exponentially distributed transition rates and the Markov
processes. What is more, Barbot and Kwiatkowska[11] in-
troduced the Stochastic Petri-nets (SPN) to demonstrate
how DNA walkers can be modelled. By the related SPN
basic theory and description method, Han et al.[12] studied
the SPN model for basic activities of software process and
their relations, and discussed the simulation strategies of
SPN model. On all accounts, it is feasible to use Petri-nets
or SPN to describe software processes.

The SPN uses time parameter to describe system perfor-
mance indices and is suit for time performance evaluation



2 International Journal of Automation and Computing X(X), X X

of system. For instance, Ajmone Marsan et al.[13] proposed
a class of Generalized Stochastic Petri Nets (GSPNs) for
the performance evaluation of multiprocessor systems. Fur-
thermore, relying on the SPN, Lei et al.[14] analyze the per-
formance of Device-to-Device (D2D) communications with
dynamic interference. Similarly, Dong et al.[15] employed
an approach to predicting the performance of web service
composition, Shan et al.[16] constructed a formalized model
of vehicular 1553B Bus System and then analysed the per-
formance of the vehicular 1553B Bus System through sim-
ulation experiment.

Although there are many studies on Petri-nets or SPN
for performance analysis in numerous fields, few of them
provide any form of support for the locating of delayed ac-
tivities in software processes, whereas these delayed activ-
ities in fact are the major important factor of the project
cycle among all activities.

In software process, many researchers nowadays focus on
improving activities by these measures such as increasing re-
sources, excavating and executing some parallelizable tasks
in activities. However, they hardly take account of the de-
layed activities, which may make us get half the results with
twice the effort once the activities are numerous. To let us
get twice the results with half the effort, it is necessary to
locate the delayed activities before improving them.

Specifically, in the year of 2010, Jiao[17] presented an ex-
ample in economics field based on SPN to locate the core
opinion leader reflected by the values of probabilities of the
places with tokens. Inspired by this, we in this paper locate
delayed activities by its values of probabilities of the places
with tokens. Unfortunately, the principles and frameworks
of locating delayed activities have not been proposed yet,
and few of approaches are devoted to locating of the delayed
activities in software processes.

In view of these, we in this paper introduce a framework
of locating the delayed activities in software processes and
perform an algorithm to calculate the probabilities of the
place with tokens. Concretely, we at first build a Transac-
tion Flow Diagram (TFD) of software process and then con-
structively transfer it to SPN. In addition, by noting that
SPNs are isomorphic to homogeneous Markov processes as
shown in [18], we draw isomorphic Markov chain (MC) and
reachable marking graph of the SPN. Moreover, by calcu-
lating the equations on probability transfer matrix of the
MC, we locate the places containing tokens with the big-
ger values of probabilities, which correspond to the delayed
activities in software processes. Finally, we present a prac-
tical example to show the correctness and rationality of this
algorithm.

The plan of this paper is as follows. In Section 2, we
introduce the background of our research work. In Section
3, we build up a novel approach to locate delayed activi-
ties in software process. A case study example is followed
to illustrate this new approach in Section 4. Finally, the
significance and the further application of this approach is
discussed in Section 5.

2 Background

In this section, we present some background concepts on
SPN, TFD and Markov chain which will be used in our

approach.

2.1 Stochastic Petri-nets

This section reviews some basic theories of Stochastic
Petri-nets (SPN)[19, 20, 21] model.

Assume that Σ = (S, T ;F, M0, λ) is a stochastic Petri-
nets, in which Σ = (S, T ; F, M0) is a prototype Petri-nets
and λ : T → R0 the mapping from T to R0 with R0 the
reachable marking set.

Suppose that T = {t1, t2, ... , tn}, ti ∈ T , λ(ti) = λi

are nonnegative real values, which represent the occurrence
rates of the transition ti (when meet the conditions of an
occurrence). When the transition ti are fired, the corre-
sponding timed delay di are random variables satisfying
di(τ ) = e−λiτ , where τ is the related time. Therefore,
the average timed delay di of transition ti is determined
by di =

∫

∞

0
e−λiτdτ = 1

λi
.

In view of that the memoryless characteristics of the ran-
dom variables obey negative exponential distribution, if Σ
is a bounded stochastic Petri-net, then RG(Σ), the reach-
able marking graph of Σ, is isomorphic to a finite Markov
chain (MC), and the state space of the MC is a reachable
marking set R(M0) of Σ.

Assume that Σ = (S,T ; F, M0, λ) is a Stochastic Petri-
net, λ = [λ1, λ2, ..., λn](n = |T |), R(M0) the reachable
marking set of Σ. Suppose that |R (M0)| = r, then the
r-order matrix

Q = [qij ]r×r (1)

is called a probability transfer matrix of the Σ, where

qij =



















−
∑

Mi[>

λk, if(i = j),

λk, if(i 6= j, ∃tk ∈ T and Mi[tk > Mj),

0, otherwise.

(2)

With the help of the probability transfer matrix, we can
calculate the steady state probability Q of r states (corre-
sponding to r reachable marks of Σ) in the Markov chain. In
generally, Q is a r-dimension vector

∏

= [π1, π2, ..., πr](r =
|R (M0)|), where πi denote the steady probabilities of mark-
ing Mi. Here, the r-dimension vector

∏

satisfy the follow-
ing equations:







∏

Q = 0,
r

∑

i=1

πi = 1,
(3)

where Q is the probability transfer matrix as shown in (1)
and (2). By solving (3), the vector

∏

can be obtained
uniquely.

Using the steady state probability vector
∏

, the actual
system can be simulated by Stochastic Petri-nets for all
kinds of performance evaluation. For example, the proba-
bilities of the state set satisfied some special conditions can
be worked out.

Set B a subset of R(M0). Then a marking M is an el-
ement of the subset, if and only if M meets some special
conditions (representing a certain performance of the sys-
tem). Therefore, we can calculate the probability of mark-



Y.Z. Jin et al. / An Approach to Locating Delayed Activities in Software Processes 3

ing subsets B by
∏

= [ π1, π2, ... , πr ] as follows

ρ(B)=
∑

Mi∈B

πi,

where πi are the steady probabilities of marking Mi.

2.2 Transaction Flow Diagram

The Transaction Flow Diagram (TFD) is a graphic rep-
resentation of the physical route or flow of communication
associated with a business process. Moreover, it is used to
structure and order a complex business system, or to reveal
underlying structure of the business processes and their in-
teraction. Additionally, it describes a completed specific
business process focussed on business processing, and does
not involve data.

It is wealth to mention that designing a TFD is of signifi-
cance. Firstly, as a tool of exchanging ideas between system
analysts and managers, the TFD is the basis for the succes-
sive system analysis of system analyst. Secondly, with the
help of the TFD, the business processes that can be well
processed by computers could be directly mined by system
analysts. What is more, it is very helpful to analyse the
reasonableness of business process by virtue of the TFD.

In what follows, we introduce the fundamental notations
of TFD used in our paper, as shown in Fig.1. Sometimes,
we have not use notations of Begin and End for convenience,
or exceptions-the TFD is cyclic.

Fig. 1 The fundamental notations of TFD

2.3 Markov Chain

The research of a new vital type of chance process, in
which the outcome of a given experiment can affect the
outcome of the next one, was proposed by Markov in 1907.
This type of process is named after Andrey Andreyevich
Markov and called a Markov chain. Generally speaking,
it possesses a property characterized as “memorylessness”,
called the Markov property, that is, the probability distri-
bution of the next state depends only on the current state
and not on the sequence of events that preceded it.

A Markov chain is described as follows[22, 23]: we have a
set of states S = { s1, s2, ... , sr }, the process starts in
one and only one of these states at a given time and moves
successively from one state to another. Each move is a step.
If the chain is currently in state si, then it moves into the
state sj at the next step with a probability denoted by pij .
The probabilities pij are called transition probabilities, and
the probability does not depend on which states the chain
was in before the current state. The process can remain in
the state it is in, and this occurs with probability pii. An
initial probability distribution, defined on S, specifies the
starting state. Usually this can be done by specifying a par-
ticular state as the starting state. We also employ the r×r

transition matrix P with those pij to completely specify the
Markov chain.

R. A. Howard[24] provides us with a vivid description of
a Markov chain as a frog jumping on a set of lily pads. The
frog starts on one of the pads and then jumps from lily pad
to lily pad with the appropriate transition probabilities.

There are several kinds of Markov chains. Particularly,
this paper involves only the finite ergodic chain. Here, an
ergodic chain is one whose states come from a single ergodic
set or equivalently-a chain in which it is possible to go from
every state to every other state. While a finite Markov
chain is a stochastic process which moves through a finite
number of states, and for which the probability of entering
a certain state depends on the last state occupied. What is
more, the finite Markov chain starts in some state and un-
dergoes transitions from one state to another successively
on a state space.

So far, the Markov chains have been extensively applied
in a large number of statistical models and even more areas.
For instance, the Markov chain method has been suggested
as a means of characterizing or summarizing economic data
and of projecting the time path of certain economic vari-
ables by G.G. Judge and E.R. Swanson[25]. Moreover, B.W.
Jiang et al.[26] formulated saliency detection via absorbing
Markov chain on an image graph model.

3 Main Idea

The main goal of this section is to build up an approach
to locate the delayed activities in software process. Firstly,
we introduce the principles of this approach in section 3.1.
Additionally, the framework of locating delayed activities is
proposed in section 3.2. Finally, we perform an algorithm
on calculating probabilities of the places with tokens.

3.1 Principles

In software process, the activities ai consume resources
from State i-start to State i-finish (State i-start denote
the states of activities ai that are not executed, while State
i-finish accomplished), and in 1/λi the average execution
time. For each activity, we calculate their values of occupa-
tion probabilities P(µi=1) of resources in average execution
time. An activity aj is called a delayed activity if it owns
a bigger value of occupation probabilities of resource than
others in software process, which means that the activity
aj does not make the most of resources.

In a word, even though the average execution time re-
flects how long an activity takes, it can not well reveal how
much these activities have been delayed. In fact, while an
activity is delayed or not is justified by its occupation prob-
abilities of resource in average execution time.

3.2 Framework of locating delayed activi-

ties

We propose a framework of locating delayed activities in
software processes, as shown in Fig.2.



4 International Journal of Automation and Computing X(X), X X

Fig. 2 The framework of locating delayed activities

This approach is based on a series of classical methods,
say, Stochastic Petri-nets, Transaction Flow Diagram and

Markov chain. By calculating the probability transfer ma-
trix of the MC, we find that the bigger values of these state
probabilities correspond to the delayed activities in soft-
ware processes. This qualitative approach offers an effec-
tive method for locating the delayed activities in software
processes.

3.3 Algorithm for calculating probabilities

of the places with tokens

In what follows, we perform an algorithm for calculating
probabilities of the places with tokens.

For any marking, the bigger values of steady state prob-
ability of these being µi tokens in each place correspond to
the delayed activities in the software process. Here,

µi =

{

0, if place Pi have none token in every marking,

1, otherwise.

Assume that the Markov chain with r markings (M1,
M2, ... , Mr) and reachable marking graph of SPN with m
places (P1, P2, ... , Pm) have been achieved, then the proba-
bilities of the places with tokens P(µi=1) can be calculated
by the following Algorithm 1, in which P (Mi) denote the
stable probabilities of state marking Mi.

Next, we briefly prove the correctness of the algorithm
by three steps. Here, we just give a general idea of proving.
First, we prove that the balance equations of Continuous
Time Markov Processes (CTMP), whose state spaces are
finite, are equivalent to (3) provided that the sum of the
properties of discrete stochastic valuables is 1. Then, we
show that the solution of the (3) is unique. In the end, we
calculate the steady state probability and order them from
largest to smallest by the classical BubbleSort algorithm.

For the balance equations, one has the following result.
Please see [27] for the details.

Lemma 1 Let P (Mi)= xi (1≤ x ≤r), ∀Mi ∈ [M0 >, for
all Mu, Mv ∈ [M0 > and Mi[tv > Mv , Mu[tu>Mi, then
the balance equations hold:

(
∑

v

λv)xi=(
∑

u

λuxu).

By Lemma 1, one can achieve r homogeneous equations

(
∑

v

λv)xi−(
∑

u

λuxu)= 0 (i= 1, 2, ... , r), (4)

which involves r independent variables (x1, x2, ... , xr).
The equations (4) can be denoted as



















(x1, x2, ..., xr)[qi1]r×1 = 0,

(x1, x2, ..., xr)[qi2]r×1 = 0,

...

(x1, x2, ..., xr)[qir]r×1 = 0,

(5)

where qij are subject to (2).
Noting that the probability distribution of discrete

stochastic valuables satisfies

PX(k) = Prob [X = k] ,
∑

allk

PX(k) = 1,

and that the states of Continuous Time Markov Processes
are discrete, it follows that

r
∑

i=1

xi= 1. (6)

Therefore, the balance equations of CTMP (5) and (6) are
equivalent to (3).

In what follows, we show the uniqueness of the solution
of (3).

For Markov processes which are irreducible, aperiodic,
and recurrent nonnull, the vector of steady state probabili-
ties

∏

= [π1, π2, ..., πr] is the unique solution[28] of (3). So
it is reasonable to solve the state marking probability P(Mi)
by (3) with the help of MATLAB.

Finally, we compute the steady state probability of these
being µi tokens in each place for any marking based on
the unique solution of (3), and order them from largest to
smallest by virtue of the classical BubbleSort algorithm.

Now, we present a case study to concretely illustrate the
high-level efficiency and practicability of this approach.



Y.Z. Jin et al. / An Approach to Locating Delayed Activities in Software Processes 5

4 Case Study

In this section, we use a commercial off-the-shelf (COTS)
purchase processes in an enterprise to demonstrate our ap-
proach. Seven purchase process stages will be considered
in our example, problem definition, the overall require-
ment specifications, the quantity and specification of com-
ponents, seeking suppliers and requesting for proposal, the
choice of suppliers, regular purchase and component perfor-
mance evaluation.

In the following sections, we will give the correspond-
ing TFD, SPN model, isomorphic Markov chain and reach-
able marking graph. The analysis results show that our
approach efficiently helps to locate main factors that affect
purchase processes.

4.1 TFD of COTS purchase process in an

enterprise

In what follows, we use TFD to represent the specific pur-
chase processes of our example. There are seven transac-
tions according to the above definition. In TFD, one of the
transactions (i.e., regular purchase, seeking suppliers and
requesting for proposal) will be chosen to process according
to the importance of review of quantity and specification of
components. The TFD of purchase processes is shown in
Fig.3.

Fig. 3 TFD of COTS purchase process in an Enterprise

4.2 SPN model of COTS purchase process

in an enterprise

According to the definition and modeling rules of SPN,
the different purchase process stages can be viewed as dif-

ferent place elements, and transition denotes the changes
of decision-making information acquisition ability in differ-
ent moments, the value of place is either “0” or “1”, where
“0” denotes that the purchase phase information is com-
pletely unknown at the moment t, while “1” fully grasped.
Different flow structures of purchase process correspond to
different purchase progress situations. Then, we can estab-
lish a SPN model by virtue of the flow structures.

Let λi be the firing rate parameters of each transition.
We say that the transition was fired in the average execu-
tion time 1/λi, it means that, after the average execution
time 1/λi, the import place indicates that the enterprise
obtains or masters the purchase phase information, while
the export place indicates that the enterprise losses or un-
able to grasp the purchase phase information. In this way,
each state marking of the SPN indicates that the purchase
processes of the enterprise changes over time, and the state
of overall activities corresponds to a state marking. More-
over, we can calculate the state marking probability in each
place. Furthermore, by particularly applying the marking
probabilities and the number of tokens in each place in a
particular marking, for any marking, one can deduce the
steady state probability of these being µi tokens in each
place. Consequently, the values of these steady state prob-
abilities can be used to reflect the ability of concrete in-
formation processing in the purchase phase, in which the
bigger values correspond to the delayed activities.

Take the COTS purchase process in the enterprise as an
example. Fig.4 shows the SPN model.

Fig. 4 The SPN model of COTS Purchase Process

in an Enterprise

Table 1 The concrete meaning corresponding to each variable in Fig.4

Place Meaning Transition Meaning

P1 Problem information set T1 To measure the problem information

P2 Requirement specification information set T2 To measure related requirements

P3 The number and specification of components information set T3 To measure components in need of purchasing

P4 List of suppliers and proposal information set T4 To filter namelist of suppliers

P5 Supplier evaluation information set T5 To evaluate for the suppliers

P6 Regular purchase information set T6 To measure the used component

P7 Component evaluation information set T7 To remember the evaluation information

T8 To retrieve records of purchase information set

4.3 Isomorphic Markov chain and the

reachable marking graph

In Fig.4, the firing rate of transitions (T1, T2, T3, T4,

T5, T6, T7, T8) obey negative exponential distribution.
Just in order to reduce the complexity of locating the de-
layed activities in software processes, in this paper, we as-

sume that, without loss of generality, the average execu-
tion time parameters have the values: 1/λ1=1, 1/λ2=1/2,
1/λ3=1/2, 1/λ4=1/3, 1/λ5=1, 1/λ6=1/3, 1/λ7=1/2,
1/λ8=1, which may be judged from the previous experience
by software process domain experts. The Markov chain
is shown in Fig.5, and the isomorphic reachable marking



6 International Journal of Automation and Computing X(X), X X

graph is shown in Table 2.

Fig. 5 Isomorphic Markov chain

Assuming an initial marking of one token in place P1

and no tokens in the remaining places, then solving for the
reachability set, we find seven states:

Table 2 The reachable marking graph corresponding to Fig.4

P1 P2 P3 P4 P5 P6 P7

M1 1 0 0 0 0 0 0

M2 0 1 0 0 0 0 0

M3 0 0 1 0 0 0 0

M4 0 0 0 1 0 0 0

M5 0 0 0 0 1 0 0

M6 0 0 0 0 0 1 0

M7 0 0 0 0 0 0 1

4.4 Calculating the steady probability

According to the SPN theory in section 2.1, we calculate
the probability transfer matrix Q as























−λ1 λ1 0 0 0

0 −λ2 λ2 0 0

0 0 −λ3 − λ8 λ3 0

0 0 0 −λ4 λ4

0

0

λ7

0

0

0

0

0

0

0

0

0

−λ5

0

0

0 0

0 0

λ8 0

0 0

λ5 0

−λ6 λ6

0 −λ7























,

which satisfies

H ·Q = 0, (7)

where H =
(

P (M1), P (M2), ... , P (M7)
)

, and

7
∑

i=1

P (Mi) = 1.

We plug λ1=1, λ2=2, λ3=2, λ4=3, λ5=1, λ6=3, λ7=2,
λ8=1 back into (7), then the steady probability of each
state marking can be computed by the simultaneous linear
equations























P(M1)

P(M2)

P(M3)

P(M4)

P(M5)

P(M6)

P(M7)























T 





















−1 1 0 0 0 0 0 1

0 −2 2 0 0 0 0 1

0 0 −3 2 0 1 0 1

0 0 0 −3 3 0 0 1

0 0 0 0 −1 1 0 1

0 0 0 0 0 −3 3 1

2 0 0 0 0 0 −2 1























=





























0

0

0

0

0

0

0

1





























T

. (8)

By solving (8), we achieve the following steady-state marking probabilities:

Table 3 The steady-state marking probabilities

M1 M2 M3 M4 M5 M6 M7

0.2813 0.1406 0.0938 0.0625 0.1875 0.0938 0.1406

Furthermore, making the most of the marking probabilities and the number of tokens in each place in a particular
marking, one can easily deduce the steady state probability of these being µi tokens in each place for any marking. The
precise token probability density functions are calculated as follows:

Table 4(a) The token probability density functions

P (µ1=0) P (µ2=0) P (µ3=0) P (µ4=0) P (µ5=0) P (µ6=0) P (µ7=0)

0.7187 0.8594 0.9062 0.9375 0.8125 0.9062 0.8594

Table 4(b) The token probability density functions

P (µ1=1) P (µ2=1) P (µ3=1) P (µ4=1) P (µ5=1) P (µ6=1) P (µ7=1)

0.2813 0.1406 0.0938 0.0625 0.1875 0.0938 0.1406



Y.Z. Jin et al. / An Approach to Locating Delayed Activities in Software Processes 7

4.5 Results analysis

The results in section 4.4 show that:
(1) The value P (µ4 = 1) is minimum, it means that the

suppliers have strong information collection abilities in the
process stage, and the work of purchase bidding is highly
efficient.

(2) The values P (µ3 = 1), P (µ6 = 1) are quite small,
which indicates that the enterprise has more ability in
measuring components needed to be purchased, retrieving
records of purchase information set and measuring the used
component.

(3) The value P (µ1 = 1) is maximum, which indicates
that the occurrence probability of the enterprise is maxi-
mum. Hence, the measuring problem information stages
are delayed activities.

The probability values place P (µ1 = 1) and P (µ5 = 1)
are larger than others, it implies that the enterprise has
less ability in measuring the problem information and eval-
uating for the suppliers. The enterprise should intervene
actively in these two activities such that the ability will
be enhanced in collecting and analyzing to improve these
activities.

The result also shows that measuring the problem infor-
mation and evaluating for the suppliers are the main factors
that affect COTS purchase process in this enterprise, and
that improving some activities can be more conducive for
the enterprise. For example, it is of significance to train-
up the staffs so as to improve their abilities of measuring
problems information and analyzing assessment informa-
tion. Besides, hiring some experts to analyze the problems
and mine parallel activities is helpful as well.

The above discussion indicates that, only when proba-
bilities of the places with tokens, which correspond to the
delayed activities with bigger occupation probabilities of re-
source in average execution time, are efficiently calculated
can we take some useful measures to improve those activ-
ities by the approach proposed. In a word, it is practical
and rational to use our approach in software processes.

5 Conclusions

Activity is a core element in software process. In order
to improve software process effectively, this paper proposes
a new approach to explain how to locate the delayed ac-
tivities in software processes relied on the related theory of
SPN, TFD and Markov chain. The principles of this ap-
proach are firstly introduced and the framework of locating
delayed activities is proposed. Then, we perform an algo-
rithm on calculating probabilities of the places with tokens
and prove it briefly. Finally, a case study is provided to
show the high-level efficiency of the approach.

This approach might be helpful for software developers
to locate the delayed activities in software development pro-
cess so that some effective measures could be taken to im-
prove these delayed activities as far as possible. Moreover,
it might be also beneficial for project managers to locate de-
layed activities in manufacturing phase in order to shorten
the project cycle.

In the future work, on the one hand, this approach can be
applied to more fields, such as economics, biology, agricul-

ture, social science and so on, for locating the delayed ac-
tivities. On the other hand, we will try our best to perform
some high-efficiency algorithms to calculate those values of
the average execution time of activities precisely, instead of
judging from the previous experience. Furthermore, we will
make efforts to propose some more effective approaches to
locate the delayed activities in software processes.

References

[1] L.J. Osterweil. Software Processes are Software Too. In
Proceedings of IEEE 9th Software Engineering, IEEE CS,
Monterey, USA, pp. 2–13, 1987.

[2] R. Singh. International Standard ISO/IEC 12207 software
life cycle processes. Software Process Improvement and
Practice, vol. 2, no. 1, pp. 35–50, 1996.

[3] T. Li. An Approach to Modelling Software Evolution
Processes, Berlin, Germany: Springer-Verlag, pp. 9, 2008.

[4] R.S. Pressman. Software engineering: a practitioner’s
approach, New York, America: McGraw Hill, 2000.

[5] C.A. Petri. Kommunikation mit Automaten, Ph.D. dis-
sertation, Darmstadt University of Technology, Germany,
1962; translation: C.F. Greene. Supplement I to Tech.
Report RADC-TR-65-337, Vol.1, Rome Air Development
Center; Grifiss Air Force Base, New York, 1965.

[6] W.M. Van der Aalst. The application of Petri nets to
workflow management. Journal of circuits, systems, and
computers, vol. 8, no. 1, pp. 21–66, 1998.

[7] W.M. Van Der Aalst and A.H. Ter Hofstede. Verification
of workflow task structures: A petri-net-baset approach.
Information systems, vol. 25, no. 1, pp.43–69, 2000.

[8] R. Hamadi and B. Benatallah. A Petri net-based model
for web service composition. In Proceedings of ACS 14th

Australasian database conference, Australian Computer
Society Incorporated, Darlinghurst, Australia, pp. 191–200,
2003.

[9] J.D. Ge, H. Hu, Q. Gu, and J. Lü. Modelling Multi-View
Software Process with Object Petri Nets. In Proceedings
of IEEE 6th Software Engineering Advances, IEEE, Tahiti,
French, pp. 41–46, 2006.

[10] M.K. Molloy. Performance analysis using stochastic Petri
nets. IEEE Transactions on Computers, vol. 100, no. 9,
pp. 913–917, 1982.

[11] B. Barbot and M. Kwiatkowska. On Quantitative Mod-
elling and Verification of DNA Walker Circuits Using
Stochastic Petri Nets. Application and Theory of Petri
Nets and Concurrency, Springer International Publishing,
pp. 1–32, 2015.

[12] Y.M. Han, X.L. Wu, C.Y. Yue. Model of software process
and Monte-Carlo simulation analysis based on SPN.
Journal of Huazhong University of Science and Technol-
ogy(Nature Science Edition), vol. 31, no. 7, pp. 37–39, 2003.
(in Chinese with English Abstract)

[13] M. Ajmone Marsan, G. Conte and G. Balbo. A class
of generalized stochastic Petri nets for the performance
evaluation of multiprocessor systems. ACM Transactions
on Computer Systems, vol. 2, no. 2, pp. 93–122, 1984.



8 International Journal of Automation and Computing X(X), X X

[14] L. Lei, Y. Zhang, X. Shen, C. Lin and Z. Zhong. Perfor-
mance analysis of device-to-device communications with
dynamic interference using stochastic Petri nets. IEEE
Transactions on Wireless Communications, vol. 12, no. 12,
pp. 6121–6141, 2013.

[15] Y.X. Dong, Y.N. Xia, Q.S. Zhu and Y. Huang. A stochastic
approach to predict performance of web service composi-
tion. In Proceedings of IEEE 2nd Symposium on Electronic
Commerce and Security, IEEE CS, Nanchang, China,
pp. 460–464, 2009.

[16] G.J. Shan, G.J. Wang, Y.Q. Dai and Y.Z. Wang. Per-
formance Analysis of The Vehicular 1553B Bus System
Using Stochastic Petri Net. In Proceedings of IEEE 3rd

International Conference on Quality, Reliability, Risk,
Maintenance, and Safety Engineering, IEEE, Emeishan,
China, pp. 405–408, 2013.

[17] L. Jiao. The Research Based on the Transfer in Organiza-
tional Buying Process to Seeking for Core Opinion Leader.
Economic Research Guide, no. 95, pp. 178–181, 2010. (in
Chinese with English Abstract)

[18] M. Molloy. On the integration of delay and throughput
measures in distributed processing models, Ph. D. disserta-
tion, University of California, USA, 1981.

[19] C. Lin. Introduction to stochastic Petri-nets and system
performance, Beijing, China: Tsinghua University Press,
2005. (in Chinese)

[20] Z.H. Wu. An introduction to Petri-nets, Beijing, China:
China Machine Press, 2006. (in Chinese)

[21] C.Y. Yuan. The principle and application of Petri-nets,
Beijing, China: Publishing House of Electronics Industry,
2005. (in Chinese)

[22] J.G. Kemeny, H. Mirkill, J.L. Snell, and G.L. Thompson.
Finite mathematical structures. Journal of Symbolic
Logic (Review), Prentice-Hall, New York, vol. 24, no. 3,
pp. 221–222, 1959.

[23] C.M. Grinstead and J.L. Snell. Introduction to probability,
New York, America: American Mathematical Society, 2012.

[24] R.A. Howard. Dynamic Probabilistic Systems, New York,
America: John Wiley and Sons, 1971.

[25] G.G. Judge and E.R. Swanson. Markov chains: basic
concepts and suggested uses in agricultural economics.
Australian Journal of Agricultural Economics, vol. 6, no. 2,
pp. 49–61, 1962.

[26] B.W. Jiang, L.H. Zhang, H.C. Lu, C. Yang and M.H.
Yang. Saliency detection via absorbing Markov chain. In
Proceedings of IEEE 14th International Conference on
Computer Vision, IEEE CS, Sydney, Australia, pp. 1665-
1672, 2013.

[27] F.P. Kelly. Reversibility and stochastic networks, New
York, America: Wiley Press, 1979.

[28] P.J.B. King and I. Mitrani. Numerical methods for infinite
Markov processes. In Proceedings of ACM SIGMETRICS
Performance Evaluation Review, ACM, pp. 277–282, 1980.



Y.Z. Jin et al. / An Approach to Locating Delayed Activities in Software Processes 9

Algorithm 1 Calculating for probabilities of the places with tokens

Input: The average execution time parameters (1/λ1, 1/λ2, ... , 1/λn)
Output: The values of steady state probability of these being µi tokens

in each place for any marking
1: Begin
2: Dim Q = [qij ]r×r← 0,

∏

= [π1, π2, ... , πr]← 0, P (Mi)← 0,
P (µi = 1)← 0, s← 0, i← 0, j ← 0, r ← 0, m← 0

⊲ Establish Probability Transfer Matrix Q = [qij ]r×r as shown in (1), (2)
3: For i from 1 to r
4: For j from 1 to r
5: If i 6= j and Mi[tk > Mj (∃tk ∈ T ) then
6: qij ← λk

7: Else i = j then
8: For h from 1 to r
9: If Mi[tk > Mh(∃tk ∈ T ) then

10: s← s-λk

11: End if
12: End for
13: qij ← s

14: Else
15: qij ← 0
16: End if
17: End for
18: End for
19: Read λ1, λ2, ... , λn ⊲ Input values of parameters λ1, λ2, ... , λn

20: Solve the equations







∏

Q = 0,
r

∑

i=1

πi=1,
(3)with the help of MATLAB to obtain πi, namely, the state marking probability

P(Mi), and then output them.
⊲ Deduce the steady state probability of these being µi tokens in each place for any marking

21: For i from 1 to r
22: P (Mi)← πi

23: Print P (Mi)
24: End for
25: For i from 1 to m ⊲ the loop of place Pm

26: For j from 1 to r ⊲ the loop of marking Mr

27: If place Pi have one token in marking Mj then
28: P (µi = 1)← P (µi = 1) + P (Mj)
29: End if
30: End for
31: End for
32: Dim a[m + 1]← 0, b[m + 1]← 0, c← 0, d← 0
33: For i from 1 to m
34: a[i]← P (µi = 1) ⊲ save values of probabilities
35: b[i]← i ⊲ save numerical order
36: End for

⊲ Order the values of steady state probability of these being µi tokens in each place for any marking from largest to
smallest

37: For j from 1 to m
38: For i from m to j
39: IF a[i] > a[i− 1] then
40: c← a[i− 1]
41: d← (i− 1)
42: a[i− 1]← a[i]
43: b[i− 1]← b[i]
44: a[i]← c

45: b[i]← d

46: End if
47: End for
48: End for

⊲ Output the values of steady state probability of these being µi tokens in each place for any marking from largest to
smallest

49: For i from 1 to m
50: Print P (µb[i] = 1): a[i]
51: End for
52: End.



10 International Journal of Automation and Computing X(X), X X

Yunzhi Jin received his M. Sc. degree
in System Analysis and Integration of Yun-
nan University in 2013. Currently, he is a
Ph. D. candidate in the Research Center of
Cloud Computing of Yunnan Province, Yun-
nan University. His research interests in-
clude Software Engineering, System Analysis
and Integration, Web and Distributed Com-
puting.

E-mail: jyzynu@163.com
ORCID iD: 0000-0001-7355-1629

Hua Zhou received his B. Sc. and M. Sc.
degrees in computer from the Jilin University,
China, in 1987 and 1990, respectively, and the
Ph. D. degree in software engineering from De
Montfort University, UK in 2004. In 1984, he
was a faculty member at Yunnan University,
China. Currently, he is a professor in School
Of Software at Yunnan University, China. He
has published about 60 refereed journal and
conference papers.

His research interest covers Software Engineering, System
Analysis and Integration, Web and Distributed Computing.

E-mail: hzhou@ynu.edu.cn (Corresponding author)

Hongji Yang received his B. Sc. and
M. Sc. degrees in computer from the Jilin
University, China, in 1982 and 1985, respec-
tively, and the Ph. D. degree in computing
from Durham University, UK in 1994. In
1985, he was a faculty member at Jilin Uni-
versity, China, in 1989 at Durham Univer-
sity, UK, in 1993 at De Montfort University,
UK and in 2013 at Bath Spa University, UK.
Currently, he is a professor in School Of Hu-

manities And Cultural Industries at Bath Spa University, UK.
He has published about 400 refereed journal and conference

papers. His research interest covers Software Engineering, Cre-
ative Computing, Web and Distributed Computing.

Prof. Yang has become IEEE Computer Society Golden Core
Member since 2010, also, he is a member of EPSRC Peer Review

College since 2003. He is the Editor in Chief of International
Journal of Creative Computing, InderScience.

E-mail: h.yang@bathspa.ac.uk

Sijing Zhang obtained his B. Sc. and
M. Sc. degrees, both in Computer Science,
from Jilin University, Changchun, China in
1982 and 1988, respectively. He earned a
Ph.D degree in Computer Science from the
University of York, UK in 1996. He then
joined the Network Technology Research
Centre (NTRC) of Nanyang Technological
University, Singapore as a post-doctoral fel-
low. In 1998, he returned to the UK to work

as a research fellow with the Centre for Communications Systems
Research (CCSR) of the University of Cambridge. He joined the
School of Computing and Technology, University of Derby, UK,
as a senior lecturer in 2000. Since October 2004, he has been
working as a senior lecturer in the Department of Computer Sci-
ence and Technology, University of Bedfordshire, UK.

His research interests include wireless networking, data com-
munications, schedulability tests for hard real-time traffic, per-
formance analysis and evaluation of real-time communication
protocols, QoS provision, vehicular ad hoc networks, and wireless
networks for real-time industrial applications.

E-mail: Sijing.Zhang@beds.ac.uk

Jidong Ge obtained his Ph.D degree in
Computer Science from Institute of Com-
puter Software at CS Department of Nan-
jing University, China in 2007. Currently,
he is an Associate Professor in Software In-
stitute, Nanjing University.

His research interests include Software
Engineering, Workflow, Process Mining,

Petri nets, Distributed Computing, Cloud Computing, Big data,
Services Computing, Software Architecture, Inheritance of Be-
havior, Formal Methods, Software Process, Formal Verification,
Model Checking, UML, Mobile Agents, etc.

E-mail: gjd@nju.edu.cn


	Article coversheet Springer
	An approach



