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Abstract 

We present a novel set of 200 Western tonal musical stimuli (MUST) to be used in research on 
perception and appreciation of music. It consists of four subsets of 50 stimuli varying in balance, 
contour, symmetry, or complexity. All are 4 s long and designed to be musically appealing and 
experimentally controlled. We assessed them behaviorally and computationally. The behavioral 

assessment (Study 1) aimed to determine whether musically untrained participants could identify 
variations in each attribute. Forty-three participants rated the stimuli in each subset on the 
corresponding attribute. We found that inter-rater reliability was high and that the ratings mirrored 

the design features well. Participants’ ratings also served to create an abridged set of 24 stimuli per 
subset. The computational assessment (Study 2) required the development of a specific battery of 
computational measures describing the structural properties of each stimulus. We distilled 
nonredundant composite measures for each attribute and examined whether they predicted 

participants’ ratings. Our results show that the composite measures indeed predicted participants’ 
ratings. Moreover, the composite complexity measure predicted complexity ratings at least as well 
as existing models of musical complexity. We conclude that the four subsets are suitable for use in 

studies that require presenting participants with short musical motifs varying in balance, contour, 
symmetry, or complexity, and that the stimuli and the computational measures are valuable 
resources for research in music psychology, empirical aesthetics, music information retrieval, and 
musicology. The MUST set and MATLAB toolbox codifying the computational measures are 

freely available at osf.io/bfxz7. 

Keywords: music, aesthetics, MIR, balance, contour, symmetry, complexity 
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Introduction 

Valuing objects is crucial for making decisions, comparing and choosing 

among alternatives, and prioritizing actions (Berridge & Kringelbach, 2013; 

Kringelbach, & Berridge, 2009; Levy & Glimcher, 2012). Music is ideally suited 

for studying evaluative judgments, for three reasons: First, it is a good example of 

a cultural product whose appreciation relies on basic and general valuation 

systems (Mallik, Chandra, & Levitin, 2017; Salimpoor & Zatorre, 2013; Shepard, 

1982; Trehub & Hannon, 2006). Second, music combines many features of sound 

to produce virtually unlimited works that vary across composers, styles, times, 

and cultures (Cross, 2006; Rohrmeier, Zuidema, Wiggins, & Scharff, 2015; 

Trainor & Unrau, 2011). Finally, people place a high personal value on music 

(Nieminen, Istók, Brattico, Tervaniemi, & Huotilainen, 2011): they use it to 

regulate their emotions (Thoma, Ryf, Mohiyeddini, Ehlert, & Nater, 2012) and to 

enhance the cohesion and coordination in groups (Dissanayake, 2008; Savage, 

Brown, Sakai, & Currie, 2015), and they are willing to invest time, effort, and 

money in recorded and live performances (Huron, 2003; Müllensiefen, Gingras, 

Musil, & Stewart, 2014).	

The valuation of music involves the interaction of modality-specific and 

modality-general attributes (Marin, Lampatz, Wandl, & Leder, 2016; Marin & 

Leder, 2013; Purwins et al., 2008). Its aesthetic appreciation depends on many 

factors, including familiarity, perceived complexity, and predictability (Brattico & 

Pearce, 2013; Edmonston, 1969; Heyduk, 1975; Koelsch, Vuust, & Friston, 2018; 

Payne, 1980; Pereira et al., 2011; Van den Bosch, Salimpoor, & Zatorre, 2013),  

which also mediate the valuation of visual stimuli, from architecture to design and 
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art, (De Lange, Heilbron, & Kok, 2018; Forsythe, Mulhern, & Sawey, 2008; 

Forsythe, Nadal, Sheehy, Cela-Conde, & Sawey, 2011; Madison & Schiölde, 

2017; Tinio & Leder, 2009). Aside from the roles of these factors, however, little 

is known about the extent to which the valuation of musical and visual objects 

relies on common attributes. With few exceptions (e.g., complexity in Marin & 

Leder, 2013), a direct examination of their influence on the valuation of music and 

visual stimuli has been prevented by the absence of materials comparable across 

modalities.	

In this paper, our goal was to facilitate research on modality-general 

attributes and domain-general processes in the valuation of music by (1) creating 

a set of musical stimuli (MUST) suitable for studying modality-general attributes 

in the valuation of music; (2) assessing the stimulus set behaviorally and 

computationally; (3) analyzing how both kinds of assessments relate to each other, 

to stimulus design features, and to existing measures of complexity; and (4) 

making the MUST set and computational measures available to other researchers 

through the Open Science Framework (OSF) at osf.io/bfxz7. We designed the set 

and computational measures to be useful in many fields, including empirical 

aesthetics, musicology, music psychology, and music information retrieval. 	

We focused on four attributes: balance, contour, symmetry, and 

complexity. Their influence on the valuation of visual stimuli is well tested 

(Gartus & Leder, 2017; Gómez-Puerto, Munar, & Nadal, 2015; Jakesch & Leder, 

2015; Locher, Gray, & Nodine, 1996; Palumbo & Bertamini, 2016; Tinio & 

Leder, 2009; Van Geert & Wagemans, 2019; Vartanian et al., 2018; Wilson & 

Chatterjee, 2005). For instance, research in empirical aesthetics indicates that 
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people generally prefer objects and designs that are symmetric (Jacobsen & Höfel, 

2002; Gartus & Leder, 2013), complex (Nadal, Munar, Marty, & Cela-Conde, 

2010; Machado et al., 2015), balanced (Wilson & Chatterjee, 2005), and curved  

(Bertamini, Palumbo, Gheorghes, & Galatsidas, 2016; Corradi, Chuquichambi, 

Barrada, Clemente, & Nadal, 2020). Most of these preferences seem to transcend 

boundaries of culture (Che, Sun, Gallardo, & Nadal, 2018) and even species 

(Munar, Gómez-Puerto, Call, & Nadal, 2015). 

The effects of these attributes on evaluative judgments are not confined to 

the visual domain. Evaluative judgments of music are also influenced by contour 

(e.g., Gerardi & Gerken, 1995; Schmuckler, 2015; Thorpe, 1986; Trehub, Bull, & 

Thorpe, 1984), symmetry (e.g., Balch, 1981; Bianchi, Burro, Pezzola, & Savardi, 

2017; Krumhansl, Sandell, & Sergeant, 1987; Mongoven & Carbon, 2017), 

complexity (e.g., Marin & Leder, 2013; Pressing, 1999; Steck & Machotka, 1975; 

Streich, 2007), balance and proportion (Juslin, 2013; Winner, Rosenblatt, 

Windmueller, Davidson, & Gardner, 1986), as accounted for by a large number of 

musicological and music-theoretical studies (e.g., Cook, 1987; Grey, 1988) and 

treatises on form (e.g., Caplin, Hepokoski, & Webster, 2010; Leichtentritt, 1911) 

and composition (e.g., Schoenberg, A., 1967). Could the fact that balance, 

contour, symmetry, and complexity influence evaluative judgments in the visual 

and musical domains owe to cross-modal processes? Testing this intriguing 

possibility requires, however, materials that are directly comparable, analogous in 

specific dimensions in the auditory and visual modalities.	

We intended our stimuli to be both musically appealing and experimentally 

controlled. Excerpts from the existing repertoire (e.g., Marin & Leder, 2013; 
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Egermann, Pearce, Wiggins, & McAdams; 2013; Gingras et al., 2016), have the 

advantage of being naturalistic, but also the drawback that some might be more 

familiar than others, have different duration, and include other sources of 

uncontrolled variability. Conversely, controlled sequences of synthesized sounds 

can minimize extraneous variables (e.g., Shmulevich & Povel, 2000; Steck & 

Machotka, 1975), but they also reduce musical appeal and ecological validity. We 

therefore chose to compose motifs that combine the musical appeal of genuine 

musical excerpts with the experimental control of synthesized sequences. 

Once the stimuli were composed, we subjected them to two assessments. 

First, we conducted a behavioral experiment (Study 1) to determine whether the 

design parameters we manipulated to produce variations in balance, contour, 

symmetry, and complexity translated into perceived variations in each of these 

attributes by musically untrained participants. Based on the results of this 

experiment, we created an abridged set of stimuli to be used more efficiently in 

experimental settings. Second, we developed several computational measures for 

each parameter manipulated to compose the stimuli (Study 2). These 

computational measures served (i) to describe each motif in terms of structural 

properties, (ii) to derive nonredundant composite measures for each attribute 

(balance, contour, symmetry, and complexity), (iii) to ascertain which of the 

composite measures, or combination thereof, explain participants’ assessments of 

the stimuli attributes in the behavioral experiment, and (iv) to compare the 

explanatory adequacy of our composite measures of complexity with other 

objective methods for computing musical complexity.  
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Design of the Musical Stimuli  

The MUST set consists of 200 original musical motifs composed by the 

first author⎯ an accomplished professional musician with broad compositional 

and performing experience⎯using Finale 2012 (MakeMusic Coda Music 

Technologies), and comprising four subsets of 50 stimuli that vary in terms of a 

specific attribute: Balance, Contour, Symmetry, and Complexity. Four additional 

motifs were composed for each subset to be used as examples while giving 

experimental instructions.  

The motifs in the MUST Balance subset capture and translate into music 

the variation in balance among the visual stimuli in Wilson and Chatterjee’s 

(2005) set. This set consists of diverse arrangements of seven hexagons or circles 

of distinct sizes. These stimuli were created to vary in balance, measured as the 

average of eight symmetry components over the axes of the stimuli (Figure 1, first 

column). The motifs in the Contour subset reflect the kind of variation between 

the curved and sharp contours of Bertamini et al.’s (2016) visual stimuli. These 

stimuli were designed as closed black figures based on circles, ovals, or lobed 

ovals, and matched in the number of vertices. Half of them had curved contours, 

and the other half had sharp-angled contours (Figure 1, second column). The 

musical motifs in the Symmetry and Complexity MUST subsets were composed 

to capture the variation in symmetry and complexity in Jacobsen and Höfel’s 

(2002) set of visual designs. This set consists of a series of images of solid black 

circles with a centered white square containing triangles that are combined to 

form designs of varying complexity and symmetry. Half of the configurations are 

symmetric, and the other half, asymmetric, and the stimuli in both halves match 
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for different degrees of complexity, corresponding to the number of constituent 

elements (Figure 1, third and fourth columns). Unlike Jacobsen and Höfel (2002), 

who developed visual designs varying in both symmetry and complexity, we 

present a subset varying in complexity and a separate one varying in symmetry. 	

 

Figure 1. Examples of visual stimuli designed by Wilson & Chatterjee (2005) for 
balance; Bertamini, Palumbo, Gheorghes, & Galatsidas (2016) for contour; and Jacobsen 
& Höfel (2002) for symmetry and complexity.  

The composer used her musical and artistic expertise to manipulate 

specific musical parameters to generate variation within each target attribute: 

balance, contour, symmetry, and complexity (Table 1). The compositional process 

also aimed to make the set coherent, and the stimuli comparable across sensory 

modalities and equivalent in musical attributes. 
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Table 1. Summary of Parameters used to Design the Musical Stimuli in each Subset 

Mirroring the sets of visual images described above, the motifs in the 

Complexity subset vary along a continuum (from simpler to more complex). In 

contrast, those in the other three sets belong to one of two poles: balanced vs. 

unbalanced (Balance), smooth vs. jagged (Contour), and symmetric vs. 

asymmetric (Symmetry) (see Figure 2 for examples of the scores, and Table 1 for 

the parameters used to design the stimuli). For the Balance, Contour, and 

Symmetry subsets, the stimuli were designed to achieve high between-pole and 

low within-pole variation in the target parameters, while minimizing variation in 

the other parameters. Because timbre and intensity are constant across all stimuli, 

variations in the four attributes were created using pitch, rhythm, and harmonic 

implication.	

Attribute Parameter Feature

Balance

Balanced Unbalanced

Distribution of elements/
events Regular Irregular

Climax position Centered Skewed

Tension Progressive Unprepared

Contour

Smooth Jagged

Intervals Only small (≤ fourths) Large (> fourths) & 
small

Durations Progressive, small 
changes Sudden, large changes

Symmetry
Symmetric Asymmetric

Vertical mirror structure Yes No

Complexity

Simpler More complex

Number of elements/events Few Many

Variety of elements/events Low High

Predictability High Low
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Balance subset. Stimuli vary in their equilibrium, as applied both to the 

distribution of notes throughout the motif and to the distance of the tensional peak 

from the central time point. Melodic and harmonic tension contribute to the 

climax and consequently to balance, but for such brief and constrained stimuli, it 

stands to reason that they play a weaker role than the distribution of notes in time. 

A motif is balanced if its notes are uniformly distributed with relation to a central 

climax (or center of mass, in analogy to physical gravity). A motif is unbalanced 

if most notes accumulate at either the beginning or ending.	

Contour subset. Stimuli differ in terms of interval size and rhythmic change, 

leading to differences in the profile of their melodic line. Although contour may 

also refer to the direction of melodic movement (i.e., rising, falling, or constant 

pitch intervals regardless of their size), we define it as melodic shape or 

configuration, thus determined by interval size and duration (or onset) ratios. 

Therefore, for the smooth motifs, we used only small intervals (≤ fourths, 

predominantly seconds) and rhythms in which successive note durations change 

very little, while jagged motifs included large intervals (> 4ths) and sudden 

rhythmic shifts. 

Symmetry subset. Stimuli differ to the extent they are symmetrical around a 

central vertical axis. In symmetric motifs, the second half is a literal retrograde 

repetition of the first half. They thus have a mirror reflection structure—e.g., 

A(B)A, ABC(C)BA. The only exception to strict symmetry is that the duration of 

the first and last notes may not be equal because of notational constraints. In 

asymmetric motifs, there is no such retrograde repetition.  	
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Complexity subset. Stimuli vary in the number, variety, and predictability of their 

elements or events. More complex motifs have many notes varying widely in 

duration, pitch interval size, and register. Conversely, simpler motifs are 

characterized by a small number of highly predictable notes with repeated 

uncomplicated patterns. 

Figure 2. Musical stimuli sample scores in each subset, all to be played in q = 120 (i.e., 

quarter note at 120 bpm).  

We strove to minimize variation in all attributes other than the intended 

one, even though we expected some inter-correlations between the parameters 

defining different attributes. For instance, all other parameters being equal, 

symmetric patterns will be judged as simpler than asymmetric designs, both in the 

visual and the auditory modalities, as they imply redundancy by definition. This is 

why all stimuli in the Complexity subset are symmetric, all included in Contour 

	

Balanced	
	

Balance	

Unbalanced	
	

Smooth	
	

Contour	

Jagged	
	

	 	 	 Symmetric	
	

Symmetry	

Asymmetric	
	

Simple	
	

Complexity	

	 	 	 Complex	
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and Balance are asymmetric, and all stimuli in the Symmetry subset have medium 

to low complexity (as complexity hampers the perception of symmetry; 

Mongoven & Carbon, 2017). We obtained estimates of the file sizes of the 

musical motifs using lossless compression format FLAC (Free Lossless Audio 

Codec) to uncompressed WAV (Waveform Audio File Format) files, for it appears 

to be a good approximation of complexity ratings of musical stimuli (Marin & 

Leder, 2013). This enabled us to ensure that the asymmetric and symmetric poles 

of the Symmetry subset did not differ significantly in terms of complexity (t(48) = 

1.595, p = .117) as assessed by FLAC compression. Just like visual curves imply 

more information than polygons, the pitch entropy is higher by definition in the 

jagged than in the smooth stimuli. However, the t-tests revealed no significant 

differences between the poles of the Contour subset (t(48) = 2.007, p = .050). In 

contrast, the FLAC compression sizes of the unbalanced motifs were, overall, 

significantly larger than those of the balanced ones (t(48) = 6.555, p < .001), 

probably because self-similarity may be higher in balanced designs. Furthermore, 

symmetry in the visual and music domains can be regarded as an extreme form of 

balance. Therefore, all motifs except the unbalanced were composed with a high 

degree of balance. Finally, all except those in the Contour subset possessed 

medium contours (not too jagged, not too smooth). 	

Short monophonic melodies are the musical analogues to the abstract 

visual patterns in the visual sets. Although musical pieces are often polyphonic, 

we retained the underlying harmony in our motifs, together with the factors 

related to the stimulus that may define the attributes in both short monophonic and 

long polyphonic music. To avoid harmony being unduly affected by the 
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manipulations, we carefully used simple harmonic sequences and rhythmic 

figures, thereby maintaining the musical structure and style similar for both poles 

in the Balance, Contour, and Symmetry subsets. Finally, tessiture and tempi were 

compensated within subsets and never extreme. The fastest tempo is 180 bpm, and 

the pitch range spans from C2 to C6 (provided A4 = 440 Hz), approximately the 

human vocal range. 

All stimuli were composed using the same musical idiom, including 

language and style (Western tonal-functional), key (C-Major), texture 

(monophonic), timbre (piano-like; Garritan Sound Library for Finale, 

MakeMusic), duration (4 s), overall and instantaneous loudness (no changes in 

musical dynamics or spatial cues), and other acoustical properties (i.e., expressive 

performance and recording inconsistencies and variability are nonexistent). A 

length of 4 s seems optimal for experimental settings where visual correspondence 

is of relevance because it does not imply an excessive working memory load and 

approximates presentation times of images in studies of visual aesthetics, allowing 

comparisons between auditory and visual research findings. Moreover, 

nonmusicians’ short-term memory for music is thought to span about 3-5 s 

(Schaal, Banissy, & Lange, 2015; Snyder & Snyder, 2000), and the perception of 

musical symmetry is optimal within this duration (Mongoven & Carbon, 2017; 

Petrović, Ačić, & Milanković, 2017).  
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Study 1: Behavioral Assessment of Musical Stimuli 

Method 

Participants. 

Forty-three self-reported nonmusicians (none of whom had ever received 

higher education in music or was a professional musician; see full questionnaire 

in Appendix A, Supplementary Materials) aged 18–55 years (M = 29.31, SD = 

10.56, 24 female, 18 male, one not reported) took part in the study. All gave 

informed consent before participating and reported normal or corrected-to-normal 

vision and hearing, and no cognitive impairments. Participants were unaware of 

the purpose of the study, and all procedures followed local ethical guidelines and 

the Declaration of Helsinki.	

Materials. 

The stimuli were the 200 motifs described above, and the four example 

stimuli for each subset, presented in WAV format using Open Sesame (Mathôt, 

Schreij, & Theeuwes, 2012). 

Procedure. 

The study was conducted at the Laboratory of Psychology of the 

University of the Balearic Islands. Each of the 43 participants rated each of the 50 

musical motifs in each subset presented as a different experimental block 

consisting of instructions (available in Appendix A), four examples (two for each 

pole) to illustrate the instructions, five practice trials, and the experimental task 

itself. The five stimuli for the practice trials were selected from the 50 in each 

subset, counterbalanced across participants. Thus, although participants rated 45 
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stimuli in each subset, all 50 stimuli received ratings. The order of the blocks was 

also counterbalanced. The order of the 45 stimuli used in the experimental task 

was randomized individually. All stimuli were presented in sound-attenuated 

cabins through headphones.	

At the beginning of each block, a text introduced and defined the attribute 

according to its design parameters, and four illustrative examples were played. 

During the first examples, the participants adjusted headsets and volume to 

personal comfort levels, which remained unmodified throughout the experiment. 

They then rated the five practice stimuli under the experimenter’s supervision and 

assistance. After the experimenter had made sure that participants understood the 

task and all doubts had been resolved, the participants rated the 45 remaining 

stimuli alone using Likert scales ranging from 1 to 5 and anchored by very 

balanced (1) and very unbalanced (5) for Balance, very smooth (1) and very 

jagged (5) for Contour, very symmetric (1) and very asymmetric (5) for Symmetry, 

and very simple (1) and very complex (5) for Complexity. The rating scale 

appeared after each musical motif had ended, and served as a cue for response. 

The rating was self-paced, and the participants could play each stimulus as many 

times as they wished before rating it. The procedure was the same for all blocks. 

After finishing each block, the participants could rest for a moment before going 

on to the next. A brief questionnaire followed the last block, recording 

information on demographics, musical education, and general feedback (included 

in Appendix A). The whole experimental session lasted about 40 minutes, after 

which the participants were debriefed and thanked. 
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Data analysis. 

This behavioral assessment had two objectives. The first was to determine 

whether untrained participants perceived variations in the defining attribute for 

each subset, that is to say, whether stimuli designed to be more complex, for 

instance, would indeed be perceived and rated by nonmusicians as more complex. 

To this end, we first assessed inter-rater reliability for each subset using intraclass 

correlation coefficients (ICC3,k; Shrout & Fleiss, 1979). We then conducted 

Wilcoxon signed-rank tests (given that the Shapiro–Wilk test of normality 

revealed that several of the distributions were not normal) to determine whether 

mean ratings for stimuli in each pole in the dichotomous subsets (Balance, 

Contour, and Symmetry) differed significantly. For the continuous subset 

(Complexity), we calculated the Spearman correlation between the FLAC file size 

of each musical motif and its mean rating. 	

The second aim was to select part of the musical motifs in each subset to 

assemble an abridged set that could be applied in future studies in a shorter 

session. We wished to include motifs that participants agreed belonged to the 

different poles in each subset. Following Nadal et al.’s (2010) method, we 

calculated the mean and standard deviation of each stimulus’ ratings. For each 

subset, we selected the 12 stimuli with the highest mean rating and the 12 stimuli 

with the lowest mean rating (those perceived as most balanced, smooth, 

symmetric, and simple, and those perceived as the most unbalanced, jagged, 

asymmetric, and complex), provided the standard deviation of participants’ ratings 

was below the 75th percentile, and that the mean rating placed the motif in the 

pole it was designed to be in. We thus assembled four subsets containing 24 
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stimuli each, 12 in each pole, maximizing the difference between and minimizing 

the difference within levels. This ensured that stimuli represented extreme poles 

of each dimension and that participants did not disagree on their allocation. 

Finally, to verify whether the motifs in each pole of each subset of the abridged 

set actually corresponded to different levels, we compared their mean ratings 

using Wilcoxon nonparametric tests. 	

Results  

Inter-rater reliability. 

The average fixed raters’ ICC was high for all subsets: for Balance, ICC3,k 

= .94, 95% CI [.92, .96]; for Contour, ICC3,k = .97 [.96, .98]; for Symmetry, ICC3,k 

= .84 [.77, .90]; for Complexity, ICC3,k = .99 [.98, .99]. These values show that 

participants understood the task and judged the stimuli in very similar ways.  

Ratings of attributes. 

According to the Shapiro–Wilk tests, the mean ratings of each motif were 

not normally distributed for the Balance (W = 0.842, p < .001, skew = -0.092, 

kurtosis = -1.788), Contour (W = 0.843, p < .001, skew = 0.052, kurtosis = 

-1.790), and Complexity (W = 0.85147, p < .001, skew = -0.713, kurtosis = 

-1.040) subsets, whereas the distribution of Symmetry ratings did not differ 

significantly from normality (W = 0.982, p = 0.628).	

Participants’ ratings corresponded well to the design features of musical 

motifs in each subset (Figure 3). Wilcoxon tests showed significant differences 

between the mean ratings of balanced (M = 2.2, SD = 0.3) and unbalanced (M = 

3.82, SD = 0.18) motifs in the Balance subset (W = 0, p < .001), between jagged 
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(M = 3.99, SD = 0.32) and smooth (M = 2.06, SD = 0.25) motifs in the Contour 

subset (W = 625, p < .001), and between asymmetric (M = 3.09, SD = 0.54) and 

symmetric (M = 2.47, SD = 0.41) motifs in the Symmetry subset (W = 513, p < 

.001). Spearman correlation analysis indicated a strong relation between the 

FLAC file size and mean rating for the motifs in the Complexity subset (rs = .78, 

p < .001). In sum, reflecting the design features of the stimuli, participants gave 

higher unbalance scores to the unbalanced stimuli than to the balanced stimuli, 

higher jaggedness scores to jagged than to smooth stimuli, higher asymmetry 

scores to asymmetric than to symmetric stimuli, and higher complexity scores to 

complex than to simple stimuli.	

	

Figure 3. Correspondence between the behavioral assessment and the design of the 
motifs. Boxplots are used for the discrete subsets of Balance (A), Contour (B), Symmetry 
(C), and a scatterplot illustrates the continuous subset: Complexity (D). The boxes 
represent the median, first and third quartiles; whiskers span Q1-1.5 x IQR (interquartile 
range) to Q3 + 1.5 x IQR. For the Complexity subset (D), the regression line is depicted 
with its 95% CI (gray ribbon). kB refers to kilobytes. The figure includes rug plots of 
mean ratings (left), and FLAC file size for the Complexity subset (bottom). 
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Creation of the abridged set. 

Following the procedure described above, we selected the 12 stimuli that 

received the most extreme ratings of balance and unbalance, smoothness and 

jaggedness, symmetry and asymmetry, and simplicity and complexity, provided 

there was no strong disagreement among the raters (Balance SD75th = 1.40; 

Contour SD75th = 1.26; Symmetry SD75th = 1.57; Complexity SD75th = 1.01). We 

also selected two additional stimuli from each pole of each subset (the next two 

most extreme items) to be used as practice trials when employing the abridged set. 

The whole abridged set therefore includes 96 musical motifs representing the 

extreme poles of balance, contour, symmetry, and complexity, plus 16 practice 

stimuli. The list is available in Appendix C in the Supplementary Materials. 	

Figure 4 graphically represents the relation between the mean and the 

standard deviation of the ratings for each stimulus. The general trend, at least in 

the Symmetry and Complexity subsets, is for participants to agree more in their 

ratings of stimuli close to the extreme of the poles, and less in their rating of 

stimuli far from the poles. Wilcoxon tests indicated that for each of the abridged 

subsets, the selected stimuli in each pole (filled dots in Figure 4) received 

significantly different ratings (for each of the four abridged subsets separately, W 

= 0, p < .001). Thus, in the abridged subsets, the rated unbalance for unbalanced 

stimuli (M = 3.92, SD = 0.1) was higher than for balanced stimuli (M = 2.01, SD 

= 0.17), the rated jaggedness for jagged stimuli (M = 4.16, SD = 0.22) was higher 

than for smooth stimuli (M = 1.93, SD = 0.15), the rated asymmetry for 

asymmetric stimuli (M = 3.49, SD = 0.27) was higher than for symmetric stimuli 
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(M = 2.2, SD = 0.33), and the rated complexity was higher for complex stimuli (M 

= 4.51, SD = 0.16) than for simple stimuli (M = 1.49, SD = 0.36).	

	

Figure 4. Distribution of means and standard deviations of ratings for each musical motif 
in each subset: Balance (A), Contour (B), Symmetry (C), and Complexity (D). Filled dots 
correspond to motifs selected for the abridged set. The figure includes rug plots of the 
mean (bottom) and the standard deviation (SD) of the ratings (left). Curved lines depict 
local polynomial regression fitting (SD ratings ~ M ratings), for which the gray ribbon 
represents the 95% CI. 

Discussion 

The overarching goal of our research was to facilitate the investigation of 

modality-general attributes and domain-general processes in the valuation of 

music (see also Margulis, 2016). To this end, we created four subsets of 50 brief 

musical motifs varying along a single dimension (balance, contour, symmetry, or 

complexity) for use in empirical aesthetics, musicology, music psychology, and 



21Running head: THE MUST SET AND TOOLBOX

other fields. We conducted a behavioral assessment of the stimuli with two aims: 

First, we wished to determine whether musically untrained participants noticed 

the variations in each subset, that is whether they could distinguish between the 

balanced and unbalanced, smooth and jagged, symmetric and asymmetric, and 

simpler and more complex motifs. Second, we wished to assemble an abridged 

version of our four subsets that could be applied in future studies in a shorter 

session. 

The results of the behavioral assessment show that participants were 

clearly able to distinguish the stimuli with respect to their defining attribute. This 

means, first, that variations in each of the attributes were readily perceptible to 

participants, and second, that participants’ ratings concurred with the design of the 

stimuli. The results also revealed a very high inter-rater reliability, suggesting that 

participants understood the task in a similar way and judged the musical motifs 

using common criteria. This holds for all subsets, although the differentiation 

between symmetric and asymmetric motifs of the Symmetric subset seems to be 

less apparent than the distinction between the poles of other dichotomous subsets. 

A plausible explanation is that musical symmetry may require higher memory 

load and levels of attention than other attributes: one would have to memorize and 

compare events of the motif several seconds apart and in reversed order with high 

accuracy to discern whether it is symmetric (Krumhansl et al., 1987; Mongoven & 

Carbon, 2017). Nevertheless, even though slightly lower, the inter-rater reliability 

was still high, and while the standard deviations were slightly higher for the 

Symmetry subset, these values were not excessive, and the mean ratings for each 

pole were significantly different. Participants’ ratings, in sum, reliably mirrored 
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the design parameters of the musical motifs. We conclude, therefore, that the four 

subsets are suitable for use in future studies that require presenting participants 

with short musical motifs varying in balance, contour, symmetry, or complexity.	

The presentation of 50 stimuli in each subset might be too long in some 

studies. We therefore used the ratings provided by our participants to derive an 

abridged version of each subset, selecting the 24 stimuli that represented the most 

extreme poles of each attribute, and for which there was no substantial 

disagreement among raters. As a general trend, the agreement among participants 

was highest for stimuli close to the extremes. We also selected training stimuli for 

each attribute. Thus, the complete abridged set contains 96 short musical motifs to 

be used in future studies, in addition to 16 equivalent training motifs (2 for each 

pole of each of the 4 attributes): the abridged Balance subset includes 12 clearly 

balanced and 12 clearly unbalanced musical motifs, the abridged Contour subset 

includes 12 clearly smooth and 12 clearly jagged musical motifs, the abridged 

Symmetry subset includes 12 clearly symmetric and 12 clearly asymmetric 

musical motifs, and the abridged Complexity subset includes 12 clearly simple 

and 12 clearly complex musical motifs.  

Study 2: Computational Assessment of Musical 
Stimuli 

This study had four main goals: (1) to develop a series of specific 

computational measures that provide a suitable description of each of the 200 

musical motifs in terms of structural properties, (2) to derive nonredundant 

composite measures for each attribute, (3) to determine which of the composite 

measures, or combination thereof, explained participants’ ratings of each attribute 
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in Study 1, and (4) to compare the explanatory adequacy of our composite 

measures of complexity with existing methods. Our aim was, therefore, to find the 

most complete model integrating the contributions of all parameters manipulated 

in the design of the stimuli. 	

Method  

Computational measures of musical attributes. 

We implemented several basic, conceptually irreducible, compact, and 

quantitative computational measures of the design parameters of each of the four 

attributes. Appendix B in the Supplementary Materials describes the measures in 

detail, and Appendix C presents the values of the computational measures for each 

stimulus in each corresponding subset.  

Higher values correspond to more unbalance, jaggedness, asymmetry, and 

complexity. The measures were devised to assess each of the attributes in our 

MUST set, but we expect them to generalize to other stimuli, experimental 

paradigms, and researchers. A comprehensive description and formulation of the 

computational measures, together with a rationale for their selection, is presented 

as Appendix B in the Supplementary Materials. The corresponding functions for 

MATLAB integrate the MUST toolbox, available at osf.io/bfxz7 and https://

github.com/compaes. 	

Balance. As conceived here, balance is related to the distribution of events and 

the position of the climax in the course of a tensional process. We implemented 

three measures that capture three different aspects of the global perception of 

balance based on the distribution of events and the relative positions of each 

motifs’ center of mass and geometric center (Table 2). 
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Contour. Contour perception is related to the magnitude of changes in pitch and 

duration. Small changes are perceived as smooth, whereas large changes are 

perceived as abrupt or jagged. We implemented three measures of intervallic and 

melodic abruptness, and one measure of rhythmic abruptness (Table 2).  

Symmetry. The only form of symmetry considered is vertical mirror reflection: 

the strict retrogradation of all sounds (pitch and duration) from a central axis. Due 

to notation restrictions, an adjustment of the last note duration was sometimes 

needed (to equalize it to the first one). We implemented two measures of this kind 

of musical symmetry (Table 2). 

Complexity. The complexity of the motifs was manipulated by varying the 

quantity and variety of elements in pitch and duration, resulting in variations in 

predictability. We implemented one measure of the number of elements, and seven 

measures that capture different aspects related to the variety of elements and their 

predictability (Table 2). 
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Table 2. Computational Measures of the Parameters Used to Compose Musical Motifs 
Varying in Balance, Contour, Symmetry, and Complexity 

Our battery of measures takes advantage of the state of the art in music 

information research, music cognition, and related fields, while going further in 

designing new measures. For instance, event density and pitch entropy are 

common in existing models of perceived complexity, such as Eerola et al.’s 

Attribute Parameter Computational measure

Balance

Distribution of 
elements/events            

Climax position 

Tension

Bisect unbalance:  Equilibrium between the two halves of a 
stimulus 

Center of mass offset: Distance between center of mass and 
geometric center  

Event heterogeneity:  Heterogeneity in the temporal 
distribution of events

Contour
Intervals

Average absolute interval: Average absolute pitch interval 
size 

Melodic abruptness: Average interval size of changes of 
direction per note 

Durational abruptness: Proportion of the stimulus with 
changes of direction 

Durations Rhythmic abruptness: Average ratio of consecutive durations

Symmetry Vertical mirror 
structure

Total asymmetry: Direct–retrograde accumulated pitch 
difference  

Asymmetry index:  Proportion of the stimulus with 
asymmetries

Complexity

Number of 
elements/events Event density: Number of note events per time unit

Variety of 
elements/events 

Predictability

Average local pitch entropy:  Average pitch entropy of .25-s 
sliding windows  

Pitch entropy: Entropy of pitch distribution 

2-tuple pitch entropy: Entropy of 2-tuple pitch distribution 

3-tuple pitch entropy: Entropy of 3-tuple pitch distribution 

2-tuple interval entropy: Entropy of 2-tuple interval 
distribution 

3-tuple duration entropy: Entropy of 3-tuple duration 
distribution 

Weighted permutation entropy: Permutation entropy 
considering the SD of the pitch distribution of each 3-note 
sequence
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Expectancy-Violation model (EV; Eerola, 2016). However, Eerola and colleagues 

based their analysis on pitch classes, whereas we consider absolute pitch, and our 

measures of entropy of pitches go beyond pitch entropy in considering, for 

example, the entropy of tuples and intervals (see Appendix B). Some measures 

include an application of established principles and algorithms correspondingly 

cited (e.g., Shannon entropy, Parncutt’s model), while other measures are entirely 

original (e.g., Symmetry measures). 

To determine whether variation in the parameters pertaining to each 

attribute actually contribute to variation in that attribute and not—or not 

significantly—to variation in the other three attributes, we also applied the full 

battery of measures detailed in Table 2 to the 200 musical motifs. The results 

indicate that the manipulations of parameters pertaining to any given attribute did 

not result in notable effects on other attributes. This analysis is reported in 

Appendix D. 	

Composite nonredundant measures. 

Given that the measures described above capture different aspects (e.g., 

melodic abruptness and durational abruptness) of the same attribute (e.g., 

contour), we expected multiple regression models to contain some redundancy 

and multicollinearity. Therefore, we conducted four principal components 

analyses (PCA), one for each attribute, in order to extract nonredundant 

components for each attribute. We then used these components as predictors of 

participants’ ratings. 

Before running the PCA, several tests were conducted to evaluate the 

adequacy of the data for factor analysis. Bartlett’s test of sphericity quantifies the 
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overall significance of all correlations within the correlation matrix (p < .050). 

The Kaiser-Meyer-Olkin (KMO > .50) assesses the sampling adequacy and the 

strength of the relationships among variables. Values of the determinant of the 

correlation matrix over 10-5 indicate an acceptable amount of multicollinearity in 

the data set.  

Factors were retained following Jolliffe’s (eigenvalues > 0.70; Jolliffe, 

1972) criterion and inspecting the cumulative proportion explained. When 

extracting more than one factor, oblimin rotation was performed, given that 

factors relating to the same attribute were not entirely orthogonal. We calculated 

the component scores for each stimulus and treated these as composite 

computational measures of balance, contour, symmetry, and complexity in the 

subsequent analyses.	

Explaining participants’ ratings of musical attributes. 

We	used	linear mixed-effects models (Hox, Moerbeek, & van de Schoot, 

2010; Snijders & Bosker, 2012) to analyze the effects of the predictors (the 

composite computational measures obtained in the PCA) on participants’ 

responses for each subset. They account simultaneously for the between-subject 

and within-subject effects (Baayen, Davidson, & Bates, 2008), and are thus 

especially suitable for responses that may vary between individuals and stimuli 

(Silvia, 2007; Brieber, Nadal, Leder, & Rosenberg, 2014; Cattaneo et al., 2015; 

Vartanian et al., 2018). We created a model for each subset to assess the predictive 

power of the components with respect to participants’ responses. The structure of 

all models was the same. We modeled the behavioral ratings of balance, contour, 

symmetry, and complexity considering the corresponding composite measures, 
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and their interactions when more than one, as fixed effects. We included random 

intercepts and slopes for the composite measures, and their interaction when more 

than one, within participants, following Barr, Levy, Scheepers, and Tily’s (2013) 

recommendation to model the maximal random-effect structure. In addition to 

avoiding loss of power and reducing type I error, this enhances the possibility of 

generalizing results to other participants.  

Following Aguinis, Gottfredson, and Joo (2013), and considering the 

nature of our study, we looked for highly influential observations among 

participants’ ratings by inspecting Cook’s distance (Cook, 1979). The threshold 

was set at 4/(N-k-1), where N is the number of observations (N = 43) and k is the 

number of explanatory variables.	

All analyses were carried out within the R environment for statistical 

computing, R version 3.5.1. (R Core Team, 2018). We used the principal( ) 

function in the ‘psych’ package (Revelle, 2018), the lmer() function of the ‘lme4’ 

package (Bates, Maechler, Bolker, & Walker, 2015) and the ‘lmerTest’ package 

(Kuznetsova, Brockho, & Christensen, 2012) to estimate the p-values for the t-

tests based on the Satterthwaite approximation for degrees of freedom, and the 

‘influence.ME’ package (Nieuwenhuis, te Grotenhuis, & Pelzer, 2012). Effect 

sizes were calculated following Judd, Westfall, and Kenny’s (2017) indications.	

Comparison with other objective measures of complexity. 

We are unaware of other computational measures or models of perceived 

balance, contour, and symmetry that we could compare with our own. There are, 

however, several general models of perceived musical complexity, and we 

compared the performance of these models with the ability of our composite 
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models to predict participants’ complexity ratings. Order is thought to influence 

the perception of complexity in both domains, as discussed in Nadal et al. (2010) 

and Van Geert and Wagemans (2019). Besides the number and variety of events, 

the computational measures within the MUST complexity model (MUSTK) 

quantify various forms of entropy of sequences of pitches, intervals, and 

durations, thus accounting for diverse kinds of order and predictability, 

characteristic of the musical language. These qualities make the MUSTK model 

suitable for comparison with models such as the expectancy-violation model or 

the IDyOM. For fair comparison, we only considered complete models developed 

at the same explanatory level and addressing the same dimension (cf., Marin & 

Leder, 2013). We selected three models that are suitable for short stimuli, that 

have been demonstrated to be the best in their respective categories, and that have 

been validated with Western tonal music: 	

FLAC compression. Free Lossless Audio Codec (FLAC) is a compression format 

specific for audio files (Coalson, 2008) that incorporates a linear autoregressive 

predictor and has been proven a good indicator of perceived musical complexity 

based on data redundancy (Marin & Leder, 2013). In contrast to generic systems 

such as ZIP, special attention is placed on the temporal organization of structures 

(Robinson, 1994). We employed the default settings at an online FLAC converter 

(https://audio.online-convert.com/). Since all WAV files had similar size (1.6 

MB), we simplified computations by using compressed file size as the predictor.	

Expectancy-Violation model. Eerola et al.’s expectancy-based model (EBM; 

Eerola & North, 2000; Eerola, Himberg, Toiviainen, & Louhivuori 2006), later 

renamed Expectancy-Violation model (EV; Eerola, 2016), is a feature-based 

https://audio.online-convert.com/
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model. Concretely, we used the EV4 model (Eerola, 2016) with predictors: tonal 

ambiguity, pitch proximity, entropy of duration distribution, and entropy of pitch-

class distribution. This validated instrument is in line with our design, including 

some of the parameters we manipulated to characterize the Complexity subset, 

and is thus preferred over other models such as Streich’s (2007). As pointed out 

by Albrecht (2016), Eerola’s (2016) study convincingly indicated that just a few 

low-level parameters could predict a relatively large portion of the variance in 

judgments of perceived melodic complexity. Eerola’s model has been used to 

assess melodic complexity in several studies, such as Fiveash, McArthur, and 

Thompson (2018), and, more generally, musical features in Albrecht (2018).	

Information Dynamics of Music model. The IDyOM (Pearce, 2005; Pearce, 

2018) is a variable-order Markov model (Begleiter, El-Yaniv, & Yona, 2004; 

Bunton, 1997) that uses a multiple-viewpoint framework (Conklin & Witten, 

1995), allowing it to combine models of different representations of the musical 

surface. IDyOM has been shown to accurately predict Western listeners’ pitch 

expectations in behavioral, physiological, and EEG studies (e.g., Egermann et al., 

2013; Hansen & Pearce, 2014; Omigie, Pearce, & Stewart, 2012; Omigie, Pearce, 

Williamson, & Stewart, 2013; Pearce, 2005; Pearce, Ruiz, Kapasi, Wiggins, & 

Bhattacharya, 2010), even better than static rule-based models (e.g., Narmour, 

1991; Schellenberg, 1997). It has also been proved to account for expectations of 

the timing of melodic events (Sauvé, Sayed, Dean, & Pearce, 2018) and harmonic 

movement (Sears, Pearce, Spitzer, Caplin, & McAdams, 2018; Harrison & Pearce, 

2018), and to simulate other psychological processes in music perception, 

including similarity perception (Pearce & Müllensiefen, 2017), recognition 
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memory (Agres, Abdallah, & Pearce, 2018), phrase boundary perception (Pearce, 

Müllensiefen, & Wiggins, 2010), and aspects of emotional experience (Egermann 

et al., 2013; Gingras et al., 2016; Sauvé et al., 2018). We used the IDyOM in two 

configurations: first, the short-term model (STM) that learns incrementally on 

each stimulus independently; second, adding to the STM a long-term model 

(LTM) trained on a large corpus of Western tonal music (903 folk songs and 

chorales; datasets 1, 2, and 9 from Table 4.1 in Pearce, 2005, comprising 50,867 

notes): the BOTH configuration. This incorporates a learned model of schematic 

musical syntax, providing a measure of complexity relative to the norms of the 

Western tonal musical style. Both configurations predict the pitch and onset of 

every note using a combined representation of melodic pitch interval and tonal 

scale degree (for pitch), and inter-onset interval ratio (in the case of onset).	

To compare our composite computational measure of perceived 

complexity with the models described above (FLAC, EV4, and IDyOM in its two 

configurations), we first conducted four linear mixed-effects models. Participants’ 

ratings were modeled using each motif’s complexity estimate produced by FLAC, 

EV4, and IDyOM in its two configurations, as the independent variable. The 

design was similar to the complexity model described above. We compared the 

results of these models to the results of our MUSTK model using likelihood ratio 

tests. For statistically significant differences (p < .050), lower Bayesian 

information criterion (BIC) and Akaike information criterion (AIC) indicate a 

better fit of one model over another.	
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Results 

Computational measures of musical attributes. 

Appendix C in the Supplementary Materials collects the values of each of 

the computational measures and components for each of the 200 stimuli. 

Composite nonredundant measures. 

Balance. The computational measures in the Balance subset were adequate for 

PCA (Bartlett's: χ2(3) = 173.822, p < .001; Overall MSA = .75, MSA Bisect unbalance = 

.86; MSA Center of mass offset = .68; MSA Event heterogeneity = .74; Determinant of the 

correlation matrix = .025). The PCA with oblimin rotation indicated that the three 

initial Balance measures could be subsumed into a single component explaining 

95% of the variance. The three measures contributed with similar high loadings 

(bisect unbalance: .95; center of mass offset: .98; event heterogeneity: .97). We 

calculated the component scores for each stimulus (BC1) and regarded these as 

their Balance scores (Table C1, Appendix C).  

Contour. The computational measures in the Contour subset were suitable for 

PCA (Bartlett’s: χ2(6) = 135.974, p < .001); Overall MSA = .70; MSA Average absolute 

interval = .66; KMO Melodic abruptness = .65; KMO Durational abruptness = .85; KMO Rhythmic 

abruptness = .64; Determinant of the correlation matrix = .055). The PCA indicated 

that we should extract two components according to Jolliffe's criterion (eigenvalue 

PC1 = 2.79; eigenvalue PC2 = 0.87), explaining 91% of the variance. After oblimin 

rotation, CC1 represented 71% of the explained variance and received loadings 

from average absolute interval (.99), melodic abruptness (.95), and durational 

abruptness (.81). Rhythmic abruptness corresponded to CC2 with a loading of .99. 
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The component scores for each of the stimuli constituted their Contour (CC1 and 

CC2) scores (Table C2, Appendix C). 

Symmetry. The computational measures in the Symmetry subset were suitable for 

PCA (Bartlett’s: χ2(1) = 92.403, p < .001; Overall MSA = .50; MSA Total asymmetry = 

.50; MSA Asymmetry index = .50; Determinant of the correlation matrix = .143). The 

PCA resulted in a single component with eigenvalue 1.93, explaining 96% of 

variance, and comprising total asymmetry and asymmetry index with equal 

contributions of .98. The component score for each stimulus (SC1) represented its 

Symmetry score (Table C3, Appendix C). 

Complexity. We first checked whether the data set was adequate for PCA. The 

determinant of the correlation matrix was lower than 10-5, meaning that there was 

too much redundancy in the data. Due to excessive multicollinearity, we removed 

variables with high correlations with other variables: pitch entropy, 2-tuple pitch 

entropy, and 3-tuple pitch entropy. The remaining computational measures in the 

Complexity subset were suitable for PCA (Bartlett’s: χ2(10) = 246.082, p < .001; 

Overall MSA = .73; MSA Event density = .78; MSA Average local pitch entropy = .75; MSA 2-

tuple interval entropy = .71; MSA 3-tuple duration entropy = .65; MSA Weighted permutation entropy = 

.68; Determinant of the correlation matrix = .005). The PCA indicated that two 

components should be extracted according to Jolliffe’s criterion (eigenvalue PC1 = 

3.47; eigenvalue PC2 = 1.00), explaining 89% of the variance. After oblimin 

rotation, KC1 comprised event density (1.00), average local pitch entropy (.96), 2-

tuple interval entropy (.94), and weighted permutation entropy (.60). These 

measures quantified the number of elements and pitch entropies, and accounted 

for 72% of the explained variance. KC2 corresponded to 3-tuple duration entropy 
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(.96). The component scores for each stimulus became their Complexity (KC1 

and KC2) scores (Table C4, Appendix C). 

Explaining participants’ ratings of musical attributes. 

The results with the outliers included in the analysis described here are 

reported in Appendix E in the Supplementary Materials. 

Balance. After removing three participants whose ratings were highly influential 

according to Cook’s distances, and rerunning the model, the linear mixed-effects 

model showed that the component calculated in the PCA reported above (BC1) 

was a strong predictor of participants’ balance ratings (ß = 0.925, t(38.952) = 7.992, 

p < .001). The effect of BC1 was medium to large (d = 0.72).	

Contour. The only participant whose Cook’s distances were above the threshold 

was removed from the model, which was then run again. The new linear mixed-

effects model of contour showed that both components resulting from the PCA 

were strong predictors of participants’ ratings of contour (CC1: ß = 0.774, t(41.053) 

= 8.474, p < .001; CC2: ß = 0.370, t (48.123) = 6.813, p < .001). The interaction 

effect was also significant (ß = -0.221, t(57.200) = -6.298, p < .001), meaning that 

the stronger the influence of one component on participants’ ratings, the weaker 

the influence of the other component. CC1 had a medium to large effect (d = 

0.61), CC2 had a small to medium effect (d = 0.29), and the CC1*CC2 interaction 

had a small effect (d = 0.17).	

Symmetry. When the highly influential participant had been removed, the linear 

mixed-effects model revealed that the Symmetry component (SC1) produced by 

the PCA was a strong predictor of participants’ ratings of symmetry (ß = 0.380, 

t(40.934) = 5.410, p < .001). The effect of SC1 was small (d = 0.24).	
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Complexity. One participant highly influenced the model, and was therefore 

removed. The resulting linear mixed-effects model revealed that both components 

resulting from the PCA were strong predictors of participants’ complexity ratings, 

KC1 (ß = 1.183, t(41.409) = 30.729, p < .001) and KC2 (ß = 0.140, t(45.394) = 5.322, p 

< .001). In addition, a mutually enhancing interaction between components was 

also significant (ß = 0.139, t(116.995) = 5.991, p < .001). KC1 had a very large effect 

(d = 1.26), KC2 had a small effect (d = 0.15), and so did the KC1*KC2 

interaction (d = 0.15).	

Comparison with existing models of perceived complexity. 

The four new linear mixed-effects models showed that other existing 

models of musical complexity were also good predictors of participants’ 

complexity ratings (Table 3). However, the ANOVA mixed model likelihood ratio 

tests showed that our model provided a better fit to the data than all but one of the 

extant complexity models. Although the IDyOM STM provided a better fit to the 

data than our MUSTK  model according to AIC and BIC, the difference was not 

statistically significant (Table 4).	
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Table 3. Linear Mixed-effects Models of Complexity for the Complexity Subset 

Note. The models of perceived complexity compared here are the MUSTK model, FLAC 
compression size, the Expectancy-Violation model with four predictors (EV4), and the 
Information Dynamics of Music model (IDyOM) in the short-term (STM) and BOTH 
configurations. ß refers to the estimated slope, df to the degrees of freedom, and d to the 
effect size. 

Model Component ß df t-value p-value d

MUSTK

KC1 1.18 41.41 30.729 < .001 1.26

KC2 0.14 45.39 5.322 < .001 0.15

KC1*KC2 0.139 116.995 5.991 < .001 0.15

FLAC 0.999 40.391 39.41 < .001 0.94

EV4 1.106 41.179 37.81 < .001 1.16

IDyOM (STM) 1.146 40.828 39.71 < .001 1.27

IDyOM (BOTH) 1.074 40.691 37.25 < .001 1.09
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Table 4. ANOVA Mixed Model Likelihood Ratio Tests of Comparisons with the MUSTK 
Model 

Note. The models of perceived complexity compared here are the MUSTK model, FLAC 
compression size, the Expectancy-Violation model with four predictors (EV4), and the 
Information Dynamics of Music model (IDyOM) in the short-term (STM) and BOTH 
configurations. The table shows the degrees of freedom (df), the Akaike information 
criterion (AIC), the Bayesian information criterion (BIC), the log likelihood (logLik), and 
the p-value for each model comparison. The chi-squared value (χ2) for each particular 
model involved 9 degrees of freedom for all models compared. 

Discussion 

This second study focused on the structural features of the 200 musical 

motifs we created. We had four main goals. The first was to devise a series of 

computational measures providing objective descriptions of the parameters 

manipulated in the composition of the motifs. This led us to develop three 

measures of balance, four measures of contour, three measures of symmetry, and 

eight measures of complexity. They can be used for diverse purposes in 

conjunction with our stimulus set or applied to other musical motifs. 

The computational measures were designed to capture aspects of the same 

attribute, so they were bound to include a certain degree of redundancy and 

multicollinearity. Our second goal was thus to derive nonredundant composite 

measures for each of the four attributes using principal component analyses 

Model df AIC BIC logLik χ2(9) p

MUSTK 15 4986.5 5069.7 -2478.2

FLAC 6 5526.3 5559.5 -2757.1 557.76 < .001

EV4 6 5058.6 5091.9 -2523.3 90.127 < .001

IDyOM (STM) 6 4829.3 4862.5 -2408.6 0 1

IDyOM (BOTH) 6 5214.0 5247.3 -2601.0 245.53 < .001
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(PCA). The results of the PCA for balance revealed that the three measures loaded 

highly on a single component (BC1), indicating that, in our Balance subset, the 

three parameters (distribution of elements/events, climax position, tension) work 

together to create different degrees of balance and unbalance. The composite of 

the three measures, calculated as the component score, constitutes each of the 

musical motifs’ Balance score. The PCA for contour revealed two components 

underlying the computational measures (CC1 and CC2). The three measures of 

intervallic and melodic abruptness loaded onto one component (CC1), and the 

measure of rhythmic abruptness loaded onto another (CC2), thus mirroring the 

two parameters used to compose the motifs in the Contour subset, and provide the 

musical motifs’ Contour scores. The PCA for symmetry subsumed both 

computational measures into a single component (SC1), in accordance with our 

manipulation of a single aspect of symmetry: vertical mirror structure. The 

composite of both measures, calculated as the component score, is each motif’s 

Symmetry score. Finally, the PCA for complexity revealed two components 

underlying the computational measures (KC1 and KC2): The first was related to 

the number of elements, and variety and predictability of pitches, whereas the 

second was related to the variety and predictability of durations, thus reflecting 

the aspects underlying variations in the complexity of the motifs in the 

Complexity subset, and constitute the motifs’ Complexity scores. 

 Our third goal was to examine the extent to which the composite 

measures, or combination thereof, explained participants’ ratings in Study 1. The 

linear mixed-effects models for each attribute showed that the composite 

measures were strong predictors of perceived balance (BC1), contour (CC1 and 
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CC2), symmetry (SC1), and complexity (KC1 and KC2). The results also revealed 

an interaction between the Contour components (CC1 and CC2) meaning that, 

while both individually serve as predictors of perceived musical smoothness or 

jaggedness, when one component (e.g., intervallic and melodic abruptness) exerts 

a higher influence on participants’ ratings, the effect of the other (e.g., rhythmic 

abruptness) becomes smaller. There was also an interaction between the 

Complexity components (KC1 and KC2). In this case, there was a mutual 

enhancement: when one component (e.g., number and variety of events) exerts a 

stronger influence on participants’ ratings, so does the other (e.g., number and 

variety of durations), contributing to musical complexity in complementarily 

reinforcing ways. 

A closer look at the relations between the design and the assessments may 

help to understand the processes involved in the perception of these attributes in 

music, enabling comparison with other sensory modalities. The results suggest 

that our balance measures indeed captured the tensional processes and temporal 

discourse of the motifs, which in turn seem largely responsible for the perception 

of musical balance. Likewise, both pitch and rhythm correspondences between the 

halves of the motif appear equally relevant for the perception of musical 

symmetry. A different pattern emerged for perceived contour: The results suggest 

that an enhanced salience of either pitch (CC1) or rhythm (CC2) relations due to a 

pronounced abruptness reduces the prominence of the other dimension. In 

contrast, for complexity, the quantity and variety of elements together with pitch-

related order or structure (KC1), and rhythm-related order or structure (KC2) 

reinforce each other in their impact on perceived musical complexity. As the most 
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salient dimension in Western tonal music, pitch relations define harmony and 

structure rhythm, which reciprocally modulates pitch relations (Prince, 2011; 

Prince, Thomson, & Schmuckler 2009). 	

Two inversely related factors mainly account for perceived visual 

complexity: quantity and variety of elements, and order or structure (e.g., Gartus 

& Leder, 2017; Nadal et al., 2010). They also constitute the core of perceived 

complexity in music, and their interrelations in the temporal and spatial 

dimensions deserve close attention. The various measures of entropy assessed 

order and structure in music, inevitably integrating variety of elements and 

predictability. These factors are interdependent, and the investigation of their 

relative contributions would require controlling for one while manipulating the 

other within a common idiom.  

Pitch-related entropies naturally correlated with quantity of elements, the 

best individual predictor also in visual studies: Maximal pitch-related entropies 

increase with the number of elements (equivalent to event density, in our case)—

although this relationship saturates at a certain point, as event density is restricted 

by the musical idiom: the variety of sounds is constrained, as the notes are 

discrete and we established a vocal pitch range. Therefore, even though there is no 

theoretical boundary for maximal entropy, it is, in practice, limited by the musical 

style. To discern the particular contributions of pitch-related entropies, controlling 

for event density would be required. In contrast, duration entropy (order and 

structure in time) is always constrained by event density (number of elements). 

The different contributions of pitch and rhythm to perceived musical complexity 

also respond to the combination of several factors: First, the number of different 
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rhythmic figures is lower than that of pitches in this particular musical idiom. 

Second, ratios are better recognized and remembered than absolute values 

(Pressing, 1999; Trehub, 1985), and pattern transformation techniques are 

standard compositional techniques (e.g., augmentation, retrogradation), all of 

which limit the number of combinations appraised as different.	

Testing our computational models with other musical stimuli would either 

strengthen or question the validity of our approach and throw light on the way 

humans perceive such attributes in music. This was only possible for complexity, 

because no comparable computational assessments of perceived musical balance, 

contour, and symmetry, as defined in the stimulus design, are available. The fourth 

goal of this study was to compare the explanatory performance of our MUSTK 

model with other approaches to perceived musical complexity. The four extant 

models we used for comparison proved to be good predictors of participants’ 

ratings. This suggests that they all tap into the same phenomenon. However, 

according to the model likelihood ratio tests and under the AIC and BIC criteria, 

they do so to different extents. Our model predicted participants’ ratings more 

accurately than FLAC compression, EV4, and the BOTH configuration of the 

IDyOM. The STM configuration, which generates predictions after learning 

directly from each specific stimulus, provided the best fit to participants’ 

complexity ratings, though not significantly better than the MUSTK model 

developed here.	

The better fit provided by our model might not be surprising, taking into 

account that it addresses precisely the design features of the musical motifs in the 

Complexity subset. Nevertheless, it is worth noting some differences between the 
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parameters included in these models. The superiority over the EV4 model can be 

explained by the motifs’ common idiom that might have lessened the effect of 

EV4’s first component (tonal ambiguity), but also by a more comprehensive 

design and better performance of our measures—e.g., EV4 considers pitch-class 

instead of absolute pitch, which ignores the contribution of pitch height across 

different octaves to perceived complexity. Investigating whether this applies to 

other musical stimuli would shed light on the factors underlying perceived 

musical complexity.  

The comparisons with the FLAC and IDyOM models are especially 

noteworthy. A higher predictive capacity over the FLAC general-purpose audio 

compression algorithm may be due to the encoding of high-level symbolic 

features that are specific to the musical language in our model compared with the 

raw audio input for FLAC (sampled at 44,100 Hz with a bit depth of 16). 

Elucidating whether our model’s superiority generalizes to other musical stimuli 

would shed some light on the processing of musical complexity: If our model 

surpassed FLAC’s prediction power with other music beyond the present stimulus 

set, the perception of musical complexity would be driven by the combination of 

irreducible, basic musical features. If this were not the case, the implication would 

be that musical complexity is holistically appraised using general-purpose 

perceptual processes.  

Regarding the IDyOM models, the fact that the simulation of participants’ 

musical background worsens the short-term model may seem striking. However, it 

is perhaps not surprising that the BOTH model does less well than the STM and 

the MUSTK model, because the stimuli are stylistically coherent, and complexity 
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does not vary as a function of distance from Western tonal stylistic norms. This 

means that the BOTH configuration addresses the issue of context or previous 

experience not as a framework in which to discriminate degrees of complexity, 

but as a form of averaged reference from which to detect deviations. On the other 

hand, the MUSTK model employs features crafted with knowledge of the stimulus 

design and was fitted to the perceptual responses to the stimuli, whereas the 

IDyOM complexity measures were generated entirely without prior knowledge of 

either the stimulus set itself or the perceptual complexity ratings for these stimuli. 

However, the STM learns directly from the stimulus, and thus the adaptation to 

the stimulus set may be similar. But more importantly, the MUSTK model is based 

on low-level musical parameters, less computationally demanding than the STM, 

and thus more parsimonious. Therefore, the lack of significant differences in 

predictive power between these two models supports the validity of our approach 

and suggests that the processing of musical complexity relies on isolable basic 

features as those captured by the MUSTK model. Further research with other 

stimuli will elucidate whether the present results generalize to the perceived 

complexity of any music.	

General Discussion 

Choosing among alternative options and courses of action is one of the 

most basic functions of cognition. Understanding cognition, therefore, requires 

understanding the processes involved in the valuation and comparison of 

alternatives. There are several reasons why music constitutes a rich domain for 

studying general mechanisms of valuation: Music provides a rich and virtually 

unlimited set of materials and is highly valued among people. But it also affords 
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an investigation of the interaction between domain-specific and domain-general 

processes in valuation. The overarching goal of the research presented in this 

paper was to stimulate research on modality-general attributes and domain-

general processes in the appreciation of music. We set out (1) to create a set of 

musical stimuli suitable for studying the role of modality-general attributes in 

music, (2) to assess the stimuli behaviorally and computationally, (3) to analyze 

how both kinds of assessments relate to each other, the stimulus design features, 

and other available measures, and (4) to make the MUST set and computational 

measures in the form of a MATLAB toolbox freely available to other researchers. 

 The design of the four subsets responds to a modality-general 

characterization of balance, contour, symmetry, and complexity: We distilled the 

essence of three sets of visual stimuli (Wilson & Chatterjee, 2005, for balance; 

Bertamini et al., 2016, for contour; and Jacobsen & Höfel, 2002, for symmetry 

and complexity) and formulated analogous musical definitions for each attribute. 

We restricted the design to a common idiom that makes the motifs comparable to 

the emulated visual stimuli and allows contrasting the target attributes across 

different musical examples. 	

 Our stimuli and computational measures contribute to the investigation of 

perceived musical balance, contour, and symmetry in music, and further explore 

perceived musical complexity. Whereas the existing literature on musical 

complexity is comparable to that in the visual domain, a small number of studies 

address musical symmetry (e.g., Balch, 1981; Bianchi et al., 2017; Krumhansl et 

al., 1987; Mongoven & Carbon, 2017), while others investigate musical contour 

(e.g., Gerardi & Gerken, 1995; Schmuckler, 2015; Thorpe, 1986; Trehub et al., 
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1984). To the best of our knowledge, our research pioneers the study of musical 

balance as conceived here, and our modality-general characterization of these four 

attributes within a coherent set and toolbox is a unique contribution.	

 The MUST set combines ecological validity and experimental control, a 

delicate and desirable balance between two core virtues of any set of stimuli. The 

results demonstrated that the set is sensitive to nonmusicians’ abilities to detect 

degrees of musical balance, complexity, contour, and symmetry (cf., Petrović, et 

al., 2017), accurately captured by the computational measures: Participants’ 

consistent judgments matched the stimulus design and were largely explained by 

our composite models. Furthermore, the comparisons with extant models of 

musical complexity support ours as an outstanding approach. The coherence 

between design and assessments strengthens the value of the set and the 

computational measures as reliable open resources for research. First, its virtues 

make the set highly useful in empirical aesthetics and other fields, especially in its 

abridged form and when the interest is musical–visual correspondence. Second, 

the measures contribute new tools to music information research because they 

may easily be applied to other stimuli. Ultimately, investigating the relations 

between the stimulus design, their behavioral appraisal, and the computational 

measures may contribute to further understanding of musical and psychological 

processes.  	

The MUST stimuli and computational measures may be useful in multiple 

settings and fields, together or separately: First, the subsets may be used together 

addressing several attributes or individually focusing on one of them, and the 

motifs can be assessed in other ways. Indeed, the design of other assessments is 
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feasible and desirable, especially regarding the less studied attributes. Second, 

while the measures perfectly complement the stimuli, their general character and 

reliable performance in predicting participants’ judgments make them suitable for 

other purposes and musical stimuli as well, even if small adaptations were needed. 

Monophonic melodies would be particularly appropriate, especially if short, for 

which no specific adjustment would be required. However, testing them with 

longer, more varied, and naturalistic musical stimuli would be of great interest in 

assessing how the measures and fitted models generalize as models of music 

perception. To facilitate the use of the methods and materials presented here by 

other researchers, we have made the full and abridged stimulus set, together with 

the open-source package of functions as a toolbox for MATLAB, freely available 

for use by the scientific community at osf.io/bfxz7. The detailed description and 

formulation of the measures constitute Appendix B, and the values for each 

stimulus in each of the corresponding measures and components constitute 

Appendix C of the Supplementary Materials.	
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Table 1. Summary of Parameters used to Design the Musical Stimuli in each Subset 

Attribute Parameter Feature

Balance

Balanced Unbalanced

Distribution of elements/
events Regular Irregular

Climax position Centered Skewed

Tension Progressive Unprepared

Contour

Smooth Jagged

Intervals Only small (≤ 4ths) Large (> 4ths) & 
small

Durations Progressive, small 
changes Sudden, large changes

Symmetry
Symmetric Asymmetric

Vertical mirror structure Yes No

Complexity

Simpler More complex

Number of elements/events Few Many

Variety of elements/events Low High

Predictability High Low
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Table 2. Computational Measures of the Parameters Used to Compose Musical Motifs 
Varying in Balance, Contour, Symmetry, and Complexity 

Attribute Parameter Computational measure

Balance

Distribution of 
elements/events            

Climax position 

Tension

Bisect unbalance:  Equilibrium between the two halves of a 
stimulus 

Center of mass offset: Distance between center of mass and 
geometric center  

Event heterogeneity:  Heterogeneity in the temporal 
distribution of events

Contour
Intervals

Average absolute interval: Average absolute pitch interval 
size 

Melodic abruptness: Average interval size of changes of 
direction per note 

Durational abruptness: Proportion of the stimulus with 
changes of direction 

Durations Rhythmic abruptness: Average ratio of consecutive durations

Symmetry Vertical mirror 
structure

Total asymmetry: Direct–retrograde accumulated pitch 
difference  

Asymmetry index:  Proportion of the stimulus with 
asymmetries

Complexity

Number of 
elements/events Event density: Number of note events per time unit

Variety of 
elements/events 

Predictability

Average local pitch entropy:  Average pitch entropy of .25-s 
sliding windows  

Pitch entropy: Entropy of pitch distribution 

2-tuple pitch entropy: Entropy of 2-tuple pitch distribution 

3-tuple pitch entropy: Entropy of 3-tuple pitch distribution 

2-tuple interval entropy: Entropy of 2-tuple interval 
distribution 

3-tuple duration entropy: Entropy of 3-tuple duration 
distribution 

Weighted permutation entropy: Permutation entropy 
considering the SD of the pitch distribution of each 3-note 
sequence
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Table 3. Linear Mixed-effects Models of Complexity for the Complexity Subset 

Note. The models of perceived complexity here compared are the MUSTK model, FLAC 
compression size, the Expectancy-Violation model with four predictors (EV4), and the 
Information Dynamics of Music model (IDyOM) in the short-term (STM) and BOTH 
configurations. ß refers to the estimated slope, df to the degrees of freedom, and d to the 
effect size. 

Model Component ß df t-value p-value d

MUSTK

KC1 1.18 41.41 30.729 < .001 1.26

KC2 0.14 45.39 5.322 < .001 0.15

KC1*KC2 0.139 116.995 5.991 < .001 0.15

FLAC 0.999 40.391 39.41 < .001 0.94

EV4 1.106 41.179 37.81 < .001 1.16

IDyOM (STM) 1.146 40.828 39.71 < .001 1.27

IDyOM (BOTH) 1.074 40.691 37.25 < .001 1.09



59Running head: THE MUST SET AND TOOLBOX

Table 4. ANOVA Mixed Model Likelihood Ratio Tests of Comparisons with the MUSTK 
Model 

Note. The models of perceived complexity here compared are the MUSTK model, FLAC 
compression size, the Expectancy-Violation model with four predictors (EV4), and the 
Information Dynamics of Music model (IDyOM) in the short-term (STM) and BOTH 
configurations. The table informs on the degrees of freedom (df), the Akaike Information 
Criterion (AIC), the Bayesian Information Criterion (BIC), the log likelihood (logLik), 
and the p-value for each model comparison. The chi-squared value (χ2) for each particular 
model involved 9 degrees of freedom for all compared models. 

Model df AIC BIC logLik χ2(9) p

MUSTK 15 4986.5 5069.7 -2478.2

FLAC 6 5526.3 5559.5 -2757.1 557.76 < .001

EV4 6 5058.6 5091.9 -2523.3 90.127 < .001

IDyOM (STM) 6 4829.3 4862.5 -2408.6 0 1

IDyOM (BOTH) 6 5214.0 5247.3 -2601.0 245.53 < .001
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Figure 2 
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Figure 3 
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Figure 1. Examples of visual stimuli designed by Wilson & Chatterjee (2005) for 
balance; Bertamini, Palumbo, Gheorghes, & Galatsidas (2016) for contour; and Jacobsen 
& Höfel (2002) for symmetry and complexity. 

Figure 2. Musical stimuli sample scores in each subset, all to be played in q = 120 (i.e., 

quarter note at 120 bpm).  

Figure 3. Correspondence between the behavioral assessment and the design of the 
motifs. Boxplots are used for the discrete subsets of Balance (A), Contour (B), Symmetry 
(C), and a scatterplot illustrates the continuous subset: Complexity (D). The boxes 
represent the median, first and third quartiles; whiskers span Q1-1.5 x IQR (interquartile 
range) to Q3 + 1.5 x IQR. For the Complexity subset (D), the regression line is depicted 
with its 95% CI (gray ribbon). kB refers to kilobytes. The figure includes rug plots of 
mean ratings (left), and FLAC file size for the Complexity subset (bottom). 

Figure 4. Distribution of means and standard deviations of ratings for each musical motif 
in each subset: Balance (A), Contour (B), Symmetry (C), and Complexity (D). Filled dots 
correspond to motifs selected for the abridged set. The figure includes rug plots of the 
mean (bottom) and the standard deviation (SD) of the ratings (left). Curved lines depict 
local polynomial regression fitting (SD ratings ~ M ratings), for which the gray ribbon 
represents the 95% CI. 


