
 

Note on the absence of R2 corrections to Newton’s potential
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We consider Einstein gravity with the addition of R2 and RμνRμν interactions in the context of effective
field theory, and the corresponding scattering amplitudes of gravitons and minimally coupled heavy scalars.
First, we recover the known fact that graviton amplitudes are the same as in Einstein gravity. Then we show
that all amplitudes with two heavy scalars and an arbitrary number of gravitons are also not affected by these
interactions. We prove this by direct computations, using field redefinitions known from earlier applications
in string theory, and with a combination of factorization and power-counting arguments. Combined with
unitarity, these results imply that, in an effective field theory approach, the Newtonian potential receives
neither classical nor quantum corrections from terms quadratic in the curvature.
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I. INTRODUCTION

Much work has been devoted recently to studying the
effects of possible modifications of Einstein-Hilbert (EH)
gravity, see [1,2] for recent reviews. Apart from adding a
cosmological constant, the conceptually simplest modifi-
cations consist in adding terms with higher powers of the
curvature to the EH action. Quadratic and cubic corrections
make an appearance in the effective gravitational action
for closed strings in [3–6], and as counterterms at one loop
in gravity coupled to matter [7] and at two loops in pure
gravity [8,9]. At the quadratic level, the independent
operators can be taken to be R2, RμνRμν and the Gauß-
Bonnet (GB) combination RμνρλRμνρλ − 4RμνRμν þ R2. The
analysis of [3–5] showed that R2 or RμνRμν cannot be
probed by looking at scattering amplitudes, since they can
be removed by field redefinitions without influencing the
S-matrix as a consequence of the S-matrix equivalence
theorem, reviewed later, while the GB term, being topo-
logical in four dimensions, can be discarded.1

A related question is whether and how higher-derivative
corrections affect the Newtonian potential. The setup here
is that of considering the elastic scattering amplitude of two
heavy scalars minimally coupled to the gravitational field,
from which the form of the gravitational potential can then
be extracted [12–17]. The recent works [18,19] addressed
the effect of terms cubic in the curvature on the Newtonian
potential and particle bending angle,2 and in this note we
assess the effect of quadratic terms. The coupling of the
massive scalars to the gravitational field is different than
that of the dilaton in string theory, hence the question
should be reassessed. Some of these results are probably
known but given the renewed interest in the connections
between scattering amplitudes and gravitational physics it
seems timely to collect these insights also in the light of
modern amplitude methods.
We model the two heavy bodies probing the gravitational

potential by massive scalars, and the relevant action is

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
−

2

κ2
Rþ aRμνRμν þ bR2

þ 1

2

X2
i¼1

ð∂μϕi∂μϕi −m2
iϕ

2
i Þ
�
: ð1:1Þ

Note that the scalars are not allowed to propagate in loops,
as their sole purpose is to act as massive sources.
One approach, not followed here, is to treat the higher-

derivative corrections exactly, i.e., to all orders in a and b.
The analysis carried out in [3,6,22–25] shows the presence
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1In D ¼ 4 − 2ϵ dimensions, the latter gives at one loop only
finite (quantum) terms which are local and thus do not contribute
to the gravitational potential. At higher loops the issue should be
reconsidered, see [10,11] for a discussion of the physical (ir)
relevance of evanescent terms.

2See [20,21] for an alternative way to extract the two-body
Hamiltonian from the scattering amplitude.
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of additional poles in the propagator of the linearized
metric tensor field hμν: a massive ghost/tachyon and a
massive scalar appear in the spectrum because of the
addition of the RμνRμν and R2 terms. At tree level,
this leads to the following corrections to the Newtonian
potential [22,23,26,27]:

VðrÞ ¼ −
κ2

32π

M
r

�
1 −

4

3
e−m2r þ 1

3
e−m0r

�
; ð1:2Þ

where

m2 ¼
1

κ

ffiffiffiffiffiffiffi
−
2

a

r
; m0 ¼

1

κ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3bþ a

p : ð1:3Þ

However, here we take a different route, first advocated in
[14], and treat the Lagrangian (1.1) as that of an effective
field theory [28–30], with the dimensionless parameters a
and b considered as small. In this case, the masses of the
new particles alluded to earlier would be above the cutoff of
our theory, hence these particles should not be included as
genuinely propagating states.3 The effect of these terms
in our treatment will be that of introducing new vertices,
including two-point vertices, which give rise to local
interaction terms, with the spectrum being unmodified
compared to that of EH gravity. In particular, in the
effective field theory approach the new Yukawa potentials
induced by the quadratic terms are absent at tree level [30].
This is best seen in momentum space, where the massive
propagators are replaced by a polynomial in the momentum
transfer squared, which in turn leads to local terms which
give no contribution to long-range physics.
Importantly, this is not the end of the story since further

classical (and of course quantum) corrections can emerge
from loop diagrams [31]. A great simplification stems
from the fact that we are interested only in effects on
low-energy physics—the classical and quantum corrections
to the potential. These can only arise from terms in the
scattering amplitude that are nonanalytic in the momentum
transfer squared q2 ≔ ðp1 þ p2Þ2 between the two massive

scalars [14,31] and can be efficiently captured using
unitarity-based methods [32,33]. The latter approach was
used efficiently in [16,17] and [34–37] to extract the
classical and quantum corrections at OðG2

NÞ to the
Newton potential and particle bending angle, respectively,
where GN ≔ κ2=ð32πÞ is Newton’s constant. We also
note the recent works [38,39], where the conservative
Hamiltonian for binary systems was extracted at OðG3

NÞ
from two-loop amplitude computations. Therefore we only
need to focus on unitarity cuts in this channel.
At one loop, we have to consider a two-particle cut such

as that in Fig. 1. As the figure shows, at this loop order there
are two building blocks: the tree-level two-scalar/two-
graviton amplitudes in EH, and the same amplitudes with
one insertion of the quadratic corrections to the action,
see Fig. 1.
There are only two Feynman diagrams contributing to

the latter and it turns out that their sum is zero both for
RμνRμν and R2, see Fig. 2. This result implies that the
contribution to the scalar potential to first order in a or b is
also zero at 2PM, since the amplitude with one insertion of
the quadratic corrections vanishes.
This argument can be extended straightforwardly to

higher loops. In practice, the focus will be on cut diagrams
such as the one depicted in Fig. 3. One of the amplitudes in
the cut is in the background of a quadratic correction in the
curvature, while the other is a standard EH amplitude. The
types of amplitudes that will be needed are: amplitudes
with two scalars and an arbitrary number of gravitons, and
amplitudes only made of gravitons.4

The result of this note is that such amplitudes in a four-
derivative background are all zero, hence do not affect
Newton’s potential to any order in GN . We prove this in
three ways:
(1) Using a redefinition of the metric, in conjunction

with the S-matrix equivalence theorem, similarly to
what was done in [3–5]. Results obtained here are
valid up to linear order in the small parameters a,
and b, which is perfectly sufficient from an effective
field theory point of view. This argument is valid in
D dimensions, hence it lends itself to an application
of D-dimensional unitarity;

FIG. 1. The one-loop unitarity cut in the q2-channel contributing to the massive scalar scattering. Here the ∂4 blob denotes the
amplitude with one insertion of either R2 or RμνRμν.

3Even for a and b being ofOð1Þ, these masses would be of the
order of the Planck mass, where a whole tower of higher-
derivative terms would have to be included. 4See Fig. 1 of [38] for sample two-loop cut diagrams.
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(2) Using a combination of dimensional analysis and
little-group scaling. This argument is valid in four
dimensions, as far as the gravitons are concerned;

(3) Using a diagrammatic argument, which turns out to
be valid for any number of insertions of the higher-
derivative couplings.

These three approaches will be discussed in turn in the three
following sections. We also include an Appendix, contain-
ing the Feynman rules needed in the calculations.

II. TAMING QUADRATIC TERMS WITH
FIELD REDEFINITIONS

In this section we show that n-point gravitons and
two-scalar/n-graviton amplitudes in the background of a
term quadratic in the curvature are zero. A key ingredient in
our proof is the S-matrix equivalence theorem.5 According
to this theorem, fairly generic field redefinitions do not alter
the S-matrix. In the context of the effective action of string
theory, this has been used to show that terms quadratic in R
or Rμν [3–5] or containing any power of R or Rμν (apart
from the EH term) [6] do not affect the S-matrix—they can
be redefined away. With a similar logic, we introduce the
following local field redefinition of the metric:

gμν → gμν þ α1gμνRþ α2Rμν þ
X2
i¼1

βðiÞ1 ∂μϕi∂νϕi

þ βðiÞ2 gμν∂σϕi∂σϕi þ βðiÞ3 gμνϕ2
i : ð2:1Þ

The main point here is that we can fix the α parameters by
requiring the vanishing of the coefficients of the R2 and
RμνRμν interactions, while the β parameters can be fixed in
such a way that no nonminimal coupling between gravity
and the scalar fields are generated. To first order in the
parameters a and b these nonminimal interactions have the

form R∂μϕi∂μϕi, Rμν∂μϕi∂νϕi and Rϕ2
i . To first order in a

and b, the solution is

α1 ¼
aþ 2b
2ðD − 2Þ κ

2; α2 ¼ −
aκ2

2
; ð2:2Þ

and

βðiÞ1 ¼ −
aκ4

8
; βðiÞ2 ¼ aþ 2b

8ðD − 2Þ κ
4;

βðiÞ3 ¼ −
aþDb
2ðD − 2Þ2m

2
i κ

4: ð2:3Þ

Under the field redefinitions specified above, the original

action (1.1) becomes

S0 ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
−

2

κ2
Rþ 1

2

X2
i¼1

ð∂μϕi∂μϕi −m2
iϕ

2
i Þ

þ κ4
DðaþDbÞ
4ðD − 2Þ2

�X2
i¼1

m2
iϕ

2
i

�
2

− κ4
aþDb
4ðD − 2Þ

�X2
i¼1

m2
iϕ

2
i

��X2
i¼1

∂μϕi∂μϕi

�

þ κ4
aþ b
16

�X2
i¼1

∂μϕi∂μϕi

�
2

þOða2; b2; abÞ
�
:

ð2:4Þ

By the equivalence theorem, S and S0 lead to the same

S-matrix. From the new action (2.4) it is now manifest that

no corrections to the EH (two-scalar) n-graviton amplitudes

are generated.
It is also interesting to note that the field redefinition

introduces contact terms for the four-scalar amplitude. One
can easily check that the result for this quantity from (1.1)
matches exactly the new four-point vertex:

FIG. 3. An example of higher-loop cut diagram contributing to
the Newtonian potential. The ∂4 symbol denotes an insertion of
either R2 or RμνRμν.

FIG. 2. The sum of the two diagrams contributing to the two-
scalar two-graviton amplitudes to first order in R2. The same
result holds for RμνRμν. All external on-shell states are in D
dimensions, the legs labeled by Lorentz indices are off-shell. The
relevant Feynman rules can be found in the Appendix.

5This beautiful theorem has a long-winded history that we will
not attempt to retrace here. An incomplete list of relevant works
include [7,40–46].
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ð2:5Þ

where the dot and the cross denote the insertion of R2 and
RμνRμν, respectively.
We truncated the action S0 to linear order in a and b.

Keeping higher orders in these parameters would imply that
higher-derivative terms such as R□R, R3 and RRμνRμν

appear in the new action. These could in turn be eliminated
by adding further terms (involving more derivatives) to the
field redefinition. Note that the above-mentioned contact
terms of the scalar fields (which do not affect the compu-
tation of corrections to the Newton potential), and con-
tractions of three or more Riemann tensors (which lead to
genuine modifications of the Newtonian potential [18,19]),
cannot be eliminated in this way. Finally, we note that the
field-redefinition argument we discussed can in principle
be applied to a wider class of terms including nonminimal
couplings of the scalars to gravity. In particular, one can
show that terms of the form ðRμνρσÞnðRμνÞmRl∂ϕ∂ϕ can be
removed by field redefinition, unlike nonminimal cou-
plings involving only a combination of Riemann tensors of
the form ðRμνρσÞn∂ϕ∂ϕ.

III. TAMING QUADRATIC TERMS WITH
AMPLITUDE TECHNIQUES

In this section we address the question of the absence of
two-scalar/n-graviton and n-graviton amplitudes induced
by terms quadratic in R or Rμν from a modern amplitude
perspective. This viewpoint allows to address this question
to higher orders in the four-derivative couplings, and
furthermore has the advantage of treating all four-derivative
interactions in (1.1) in one go. For this reason, in this
section we will refer in general to any of the four-derivative
interactions as R2 and to any of the two associated
couplings as b̃.
The argument is two-fold. First, we show the absence

of possible factorizations for an amplitude with two scalars
and two gravitons. Next, we show that no two-scalar/
n-graviton contact terms, unseen by factorization, are
present. Together, these imply the absence of two-scalar/
n-graviton amplitudes with one insertion of R2. We address
these two parts in turn.

A. Absence of factorization channels

A two-scalar/two-graviton amplitude in an R2 back-
ground could factorize onto an EH three-point scalar-
scalar-graviton amplitude and a three-graviton amplitude

produced by an R2 interaction. However it is elementary to
show that in four dimensions R2 couplings cannot modify
the three-graviton amplitude, and all three-point amplitudes
arise from either EH gravity or a six-derivative modifica-
tion involving Rαβ

μνRμν
ρσRρσ

αβ.
Little-group scaling, combined with considerations

of the mass-dimension of the couplings, constrains the
most general form of the three-graviton amplitudes. We
begin by considering the three-graviton amplitude
A3ð1þþ; 2þþ; 3−−Þ. It is well known that there are only
two possible helicity structures for this amplitude,

A3ð1þþ; 2þþ; 3−−Þ ∼ ½1 2�6
½2 3�2½3 1�2 or

Ã3ð1þþ; 2þþ; 3−−Þ ∼ h2 3i2h3 1i2
h1 2i6 : ð3:1Þ

Purely on dimensional grounds, the first amplitude arises
from a two-derivative interaction, such as EH gravity,
while the latter would require a nonlocal interaction in
the theory and should be discarded. Next consider the
all-plus helicity configuration A3ð1þþ; 2þþ; 3þþÞ. Here
one has two possibilities,

A3ð1þþ; 2þþ; 3þþÞ ∼ ½1 2�2½2 3�2½3 1�2 or

Ã3ð1þþ; 2þþ; 3þþÞ ∼ 1

h1 2i2h2 3i2h3 1i2 : ð3:2Þ

We can immediately discard the second one from the
request of locality. As for the first, it arises from six-
derivative interaction terms such as Rαβ

μνRμν
ρσRρσ

αβ or
Rα

μ
β
νR

μ
ρ
ν
σR

ρ
α
σ
β, but not from those terms which can be

eliminated by a field redefinition, e.g., R□R or RRμνRμν.
As a consequence, the addition of a four-derivative inter-
actions to the action with mass-dimension zero coupling b̃
cannot generate a three-point amplitude in four dimensions.
Hence, any two-scalar/two-graviton amplitude in the R2

background can only be a contact term.

B. Absence of contact terms

We still have the possibility of a two-scalar/two-graviton
contact term, which via factorization would give rise to
nontrivial higher-point amplitudes. In the following we will
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show that such contact terms are absent for amplitudes with
any number of gravitons and up to two scalars.
First we consider pure graviton amplitudes at tree level,

starting from four external particles. We showed that the
three-graviton amplitude is unaffected by any R2 insertion,
hence no factorization channel for the four-point amplitude
is available. The remaining task is to exclude potential
contact terms. The latter can in general be written sche-
matically at a given multiplicity n and order B in b̃ as

Mcontact ∝ b̃Bκn−2þ2B
Yn
i¼1

λ⊗ai
i λ̃⊗si

i : ð3:3Þ

The κ2B comes from the additional powers in κ carried by
each of the R2 insertions (with respect to EH) along with a
single power of b̃.6 Dimensional analysis implies that

cþ 1

2

Xn
i¼1

ðai þ siÞ ¼ 4 − n; ð3:4Þ

where c ¼ 2 − n − 2B is the overall dimension of the
couplings. This can be rewritten as

Xn
i¼1

ðai þ siÞ ¼ 4þ 4B: ð3:5Þ

A further constraint comes from little-group scaling, which
requires

−ai þ si ¼ 2hi; ð3:6Þ

where hi is the helicity of particle i. From (3.6) we also
have the constraint that either ai ≥ 4 or si ≥ 4, correspond-
ing to the helicity of graviton i being minus or plus two,
respectively.
Specializing now to n ¼ 4 we see that the latter con-

straint cannot be satisfied along with (3.5) for B < 3, thus it
is not possible to build contact terms with B ¼ 1, 2. This
means that up to second order in b̃ it is impossible to write
down any contact term contribution to the four-graviton
amplitude coming from an R2 interaction. At B ¼ 3 the
argument breaks down because three insertions of R2 terms
can be mimicked by one insertion of the Riemann tensor
to the fourth power, which gives rise to a nonvanishing
amplitude.
The final step is to recursively extend the argument to

n > 4. We only need to exclude a contact term. It is
immediate to realize that the combined constraints (3.5)
and (3.6) cannot be satisfied for B < n − 1, hence contact
terms up to order n − 2 in b̃ are ruled out. Since the

recursive argument starts from three- and four-graviton
amplitudes, we conclude that all n-graviton amplitudes are
unaffected by R2 contributions up to order 2 in b̃.
Dimensional analysis was sufficient to show that up to

Oðb̃2Þ there are no R2 corrections to n-graviton amplitudes.
In order to push our considerations to even higher orders in
b̃2 we need to invoke additional diagrammatic arguments,
which will be detailed in the next section.
The discussion presented so far can be generalized with

ease to two-scalar/n-graviton amplitudes. Once again the
three-point minimal interaction involving a single graviton
and two scalars is unaffected by the R2 couplings, which
rules out factorization channels in the four-point amplitude.
The general form of the contact term now becomes

Mcontact ∼ b̃Bκn−2þ2BMðqiÞ
Yn
i¼3

λ⊗ai
i λ̃⊗si

i ; ð3:7Þ

where M is a quadratic combination of the momenta qi of
the scalars, labeled by i ¼ 1, 2, arising from their minimal
coupling to gravity. Then ½M� ¼ 2, and repeating the same
dimensional analysis as before we find

Xn−2
i¼1

ðai þ siÞ ¼ 4B: ð3:8Þ

For B ¼ 1 the constraints (3.8) and (3.6) cannot be satisfied
simultaneously, for any number of gravitons. As a side
remark, note that this argument does not prevent the
appearance of amplitudes with four scalars, because these
amplitudes require a double insertion of MðqiÞ with
i ¼ 1;…; 4. This is also in complete agreement with our
approach based on field redefinitions—indeed (2.4) does
generate a four-scalar amplitude.
In summary, we have shown the absence of R2 correc-

tions at linear order in the coupling b̃ for all tree amplitudes
with n gravitons and up to two scalars. As argued in the
Introduction, this implies via unitarity the absence of all R2

corrections to the Newtonian potential, both at the classical
and quantum level.

IV. BEYOND LINEAR ORDER IN a AND b
VIA DIAGRAMMATICS

As discussed earlier, from an on-shell perspective it is
not possible to push our general considerations further than
the first and second order in the R2 and RμνRμν couplings
for two-scalar/n-graviton or n-graviton amplitudes, respec-
tively (again collectively denoted as ∂4 in the figures
below). In this section we show how, combining on-shell
arguments with diagrammatic insights, we can refine
our earlier discussion to include higher-order corrections
in a and b. We consider first the two-scalar two-graviton
amplitude at order b̃:

6Recall that we are interested in the effect of the four-derivative
interactions on the amplitude, hence B > 0.
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ð4:1Þ

and the four-graviton amplitude at order b̃2

ð4:2Þ

where the sum runs over all possible permutations of the
external legs and appropriate symmetry factors have been
associated to each diagram. The vanishing of these ampli-
tudes is ensured by the on-shell argument given in Sec. III.
To simultaneously satisfy (4.1) and (4.2), one needs

ð4:3Þ

where the line carrying the Lorentz indices is off shell,
whereas the other two lines are on shell. Here we recovered
the diagrammatic identity originally found by direct com-
putation which is displayed in Fig. 2, from a purely on-shell
argument.

We can use this identity as a replacement rule to turn
insertions of R2-type vertices into propagator insertions, or
the other way around. Such replacements lead to great
simplifications and are in some cases sufficient to prove the
vanishing of entire classes of amplitudes. Examples of this
situation are the four-graviton amplitude for B > 2 and the
five-graviton amplitude for B > 3, whose vanishing is not
guaranteed by the on-shell argument presented earlier; by
drawing all possible diagrams one can immediately see that
the identity (4.3) implies the vanishing of these amplitudes
to all orders in b̃.
As an example of how to obtain further diagrammatic

relations from (4.3) and the known vanishing amplitudes,
consider the four-graviton amplitude at Oðb̃Þ. We know
that

ð4:4Þ

Using (4.3), we obtain a further identity:

ð4:5Þ

where all external legs are on-shell.
To find a new off-shell identity one has to look at the two-scalar/three-graviton amplitude at Oðb̃Þ or the six-graviton

amplitude atOðb̃2Þ. After applying (4.3) to cancel as many terms as possible, we are left with a sum of four diagrams, which
we know must vanish, i.e.,

ð4:6Þ
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where the permutations are over the on-shell legs. As a
consistency check, notice that this identity reduces to (4.5)
once we put the fourth leg on-shell.
The identity (4.6) combined with (4.3) is sufficient to

prove that the corrections to the six-graviton and two-
scalar/three-graviton amplitudes induced by the four-
derivative couplings vanish to all orders in b̃. Iterating
this procedure at higher multiplicity and power of the
coupling b̃, one will find additional identities involving a
higher and higher number of particles. We expect the
combination of all of these identities to be sufficient to
guarantee the vanishing of the R2 modified n-graviton and
two-scalar/n-graviton amplitudes for any n and any power
of b̃.

V. CONCLUSIONS

In summary we have shown from different but comple-
mentary angles that amplitudes contributing to the compu-
tation of the Newtonian potential receive no corrections
from curvature squared terms in four dimensions. As we
have seen in the previous section, this statement not only
applies to linear order in the couplings a and b, as
appropriate for an effective field theory treatment, but also
continues to hold to higher orders in the couplings. It would
be very interesting to settle this question for arbitrarily high

orders, and we expect that amplitude techniques may
provide an alternative, more efficient method than field
redefinitions, which become quickly very cumbersome at
high orders in the parameters. Similarly it would be
interesting to revisit the case of terms cubic (or higher)
in the curvature, and test whether there exist appropriate
field redefinitions that remove terms involving the Ricci
scalar and tensor while preserving the minimal coupling
of the heavy scalars (up to contact terms involving four or
more scalars). Also for this case the amplitudes/on-shell
techniques employed in Sec. III may prove useful. Given
the results of [6], we expect a positive answer to this
question, which would leave the cubic corrections com-
puted in [18,19] as the first higher-derivative corrections to
EH gravity that can modify the Newtonian potential.
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APPENDIX: FEYNMAN RULES

We collect in this Appendix the relevant Feynman rules used in the text. The three-point graviton vertex in EH with two
on-shell legs is

ðA1Þ

The Feynman rules for insertions of R2 (denoted by a bullet) and RμνRμν (denoted by a cross) are:

ðA2Þ

ðA3Þ
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ðA4Þ

ðA5Þ

where the symmetrization is both over the indices μ ↔ ν, α ↔ β and ðμ; νÞ ↔ ðα; βÞ.
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