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Abstract— Continuous measurement of lactate levels in the
blood is a prerequisite in intensive care patients who are
susceptible to sepsis due to their suppressed immune system and
increased metabolic demand. Currently, there exists no non-
invasive tool for continuous measurement of lactate in clinical
practice. The current mode of measurement is based on arterial
blood gas analyzers which require sampling of arterial blood.
In this work, we propose the use of Near Infra-Red (NIR)
spectroscopy together with multivariate models as a means
to non-invasively predict the concentration of lactate in the
blood. As the first step towards this objective, we examined the
possibility of accurately predicting concentrations of sodium
lactate (NaLac) from the NIR spectra of 37 isotonic phosphate
buffer saline (PBS) samples containing NaLac ranging from
0 to 20 mmol/L. NIR spectra of PBS samples were collected
using the Lambda 1050 dual beam spectrometer over a spectral
range of 800 - 2600 nm with a quartz cell of 1 mm optical
path. Estimates and calibration of the lactate concentration with
the NIR spectra were made using Partial Least-Squares (PLS)
regression analysis and leave-one-out cross-validation on filtered
spectra. The regression analysis showed a correlation coefficient
of 0.977 and a standard error of 0.89 mmol/L between the
predicted and prepared samples. The results suggest that
NIR spectroscopy together with multivariate models can be
a valuable tool for non-invasive assessment of blood lactate
concentrations.

I. INTRODUCTION

Sepsis is the leading cause of acute hospital mortality and
commonly results in multi-organ dysfunction secondary to
culture-positive or negative infection [1]. It is defined as
unrecoverable hypotension despite adequate fluid replace-
ment according to the Surviving Sepsis Campaign (SSC)
Guidelines. The incidence of severe sepsis within the first
24 hours of admission to an intensive care units (ICU) in
the UK is as high as 27.1%, and the mortality associated
with these patients is predicted to be as high as 50% (40,000
deaths/year) [2]. When extrapolated worldwide, sepsis affects
26 million people and claims 6 million lives every year,
making it a bigger killer than stroke, heart attack, or Chronic
Obstructive Pulmonary Disease (COPD) [2], [3]. The fiscal
and economic impact of sepsis on the UK national health
services (NHS) is also significant, with more than £15.6
billion spent every year [4].
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Reducing mortality in patients with sepsis warrants early
diagnosis followed by aggressive therapy. Patients with a
late diagnosis are usually left with long-lasting effects after
treatment such as missing limbs, organ dysfunction like
kidney failure or cognitive impairment. Currently, the diag-
nosis and recognition of sepsis is based on screening tools
such as the quick-Sepsis-Associated Organ Failure (qSOFA),
National Early Warning Score (NEWS) guidelines, and The
National Institute for Health and Care Excellence (NICE)
guidelines (NG51), which check for hypothermia (< 36o C),
hypotension (systolic BP < 90mmHg), tachycardia (> 130
BPM), tachypnoea (> 25 breaths per min), hyperlactatemia
(> 2 mmol/L) and physical appearance of rashes [5], [5].
Nonetheless, with overwhelming clinical evidence available
in recent years, the clinical decision making and patient man-
agement are predominantly based on persistent hypotension
after fluid resuscitation and elevated serum lactate levels.

The relationship between elevated serum lactate levels
and sepsis is marked by hypoperfusion. Inadequate perfusion
with low oxygen delivery to the tissues results in increased
anaerobic glycolysis. Which in turn causes a build-up of its
by-products (i.e., pyruvate, NADH and H+) and ultimately
lactate [6]. Although lactate clearance typically happens in
the liver and kidneys, these organs cannot overcome lactate
overproduction, and this condition usually worsens in septic
shock status. Hence, the measurement of lactate is a critical
criterion for the timely resuscitation of septic shock patients.
Currently, the changes in lactate levels are measured using
blood gas analyzers, where arterial blood is sampled with a
syringe or an arterial catheter usually from the radial artery.
However, these instruments are costly, complex to operate,
have long analysis times, require large volumes of blood
(100–200 µl), and are not portable for bedside application.
Most importantly, they are invasive and provide intermittent
measurements [7].

Although not widely used in clinical practice, amperom-
etry and photometry (which sample blood, saliva or tears)
based devices are also available in the market for measuring
lactate. These devices require a smaller sample volume and
offer quick response time and portability. However, they
suffer from single-point measurements and do not provide
data on lactate level fluctuations during the period of in-
terest. Other attempts to monitor blood lactate continuously
such as the subcutaneous needle-based sensors and wearable
bioelectronic devices have been confined to research as their
reproducibility and accuracy are poor and are still being
investigated [7]. Hence, there exists an unmet clinical need
for a reliable, simple-to-use, reproducible, and cost-effective



technique that can measure blood lactate levels continuously
and non-invasively.

We propose the use of optical spectroscopy combined
with multivariate spectroscopic analysis as a means to non-
invasively predict the concentration of lactate. The hypoth-
esis behind this method is that the absorbance of light
in the visible, near and mid-infrared regions is indirectly
sensitive to variations in blood lactate levels and would hence
show a variation in the absorption spectrum. However, these
absorption peaks may be masked by the absorption of other
absorbents such as tissue, hemoglobin, water etc. Hence
multivariate models such as Principal component analysis
(PCA), Partial Least Squares regression (PLS), and Pattern
recognition are proposed to effectively analyze and quan-
tify the (linear) systematic changes in the electromagnetic
spectrum that are caused by changes in lactate levels. A
similar approach, previously undertaken by Lafrance et al
has resulted in promising yet inconclusive results, and the
light interaction with lactate molecules remains unexplored
[8], [9].

Hence to achieve the above objective, the first step of the
approach proposed is to investigate the optical properties of
lactate in a simple blood analogs with fewer absorbents and
in a large physiological range (0 to 20mmol/L). The inves-
tigation involved acquiring absorption spectra in visible/UV,
NIR and mid-IR regions of the electromagnetic spectra.
However, this current paper focuses on the acquisition and
quantification of changes in the lactate concentration in the
NIR region.

II. MATERIALS AND METHODS

A. Sample preparation

Thirty seven equivolume (30 mL) samples of isotonic
Phosphate Buffer Saline (PBS) with varying concentration of
sodium lactate (NaLac) ranging between 0 and 20 mmol/L
were prepared for this investigation. Isotonic PBS was used
as the osmolarity and ion concentrations of PBS correspond
to that of the human body. Analytical grade Sodium L-
lactate (C3H5NaO3 – 98 + %) (L14500, Alfa Aesar, Lan-
cashire, UK) and isotonic PBS (Thermo Fisher Scientific,
Massachusetts, USA) were first acquired in powder form
and stock solutions were prepared. Stock NaLac solution
of 600 mmol/L was prepared by dissolving 67.236 g of
NaLac powder in a liter of deionized water (Deionised Water
Company, UK). A liter of aqueous PBS (1X) was made by
dissolving 9.89 g of PBS 10x powder in a liter of deionized
water. The NaLac stock solution was then serially diluted
with PBS to produce thirty seven 30mL samples. The NaLac
concentration in the first 21 samples was varied from 0 - 5
mmol/L with 0.25 mmol/L interval, and in the rest of samples
the concentration was varied from 5 - 20 mmol/L with steps
of 1 mmol/L. The concentration of each sample solution
was verified before obtaining optical spectra using the LM5
lactate analyzer (Analox Instruments Limited, Stourbridge,
UK). All the test solutions were maintained at a pH of 7.4 (±
0.2) and 24oC, measured by Orion Star A211 Advanced pH

Benchtop Meter (Thermo Fisher Scientific, Massachusetts,
USA).

B. Acquisition of Spectra

NIR spectral acquisition of NaLac samples was performed
using the Lambda 1050 dual beam UV/Vis/NIR spectropho-
tometer (Perkin Elmer Corp, Massachusetts, USA). The
spectrophotometer was configured as follows:

• The light source used for NIR light transmission was a
halogen tungsten lamp

• Two photodetectors, namely indium gallium arsenide
detector (InGaAs) and lead sulfide detector (PbS) were
used to detect the transmitted light photons in the
regions between 800 – 1800 nm and 1800 – 2600 nm
respectively

• The spectral resolution of the acquired spectra was set
to 1 nm

• The slit setting for the InGaAs and PbS detectors were
set on “servo mode”, whereby the system monitors the
reference beam energy and adjusts the slits accordingly
to avoid over saturation of the detectors

• The gain of the InGaAs and PbS detector were set to 5
and 1 respectively, while the response time of both the
detectors was set to 0.2 seconds

• The attenuation in the sample and reference beam
were set to 100% and 1% respectively. This was to
ensure stable spectral acquisition with high signal-to-
noise (SNR) of high absorbance samples

• Prior to the acquisition of NaLac spectra, baseline
correction was performed on the spectrophotometer at
100% Transmission / 0% absorbance to remove back-
ground noise.

Once configured, 300 µl of each NaLac sample was trans-
ferred into a macro quartz cuvette (λ : 200 nm – 3500 nm)
(Hellma GmbH & Co.KG, Jena, Germany) with a light path
length of 1 mm, and placed in the sample compartment of the
spectrophotometer. An identical blank cuvette was inserted
into the reference compartment. Three spectra of each sample
was acquired in the desired NIR range. The three spectra
were then averaged and the resulting spectrum from each
sample was considered for further analysis. The test samples
were chosen at random during spectral collection, to prevent
bias.

C. Analysis of spectra

Once all the raw spectra was acquired using the UVWinlab
software (Perkin Elmer Corp, Massachusetts, USA) that
accompanies the Lambda 1050 spectrophotometer, it was
pre-processed and analyzed in MATLAB R2018a (The Math
Works Inc., Massachusetts, USA). The first step in pre-
processing was to perform a baseline spectral subtraction.
Whereby, the spectra of the sample with base NaLac con-
centration (0 mmol/L) was subtracted from all the other
spectra. This allows for the suppression of spectral features
that are not pertinent to NaLac samples and highlights the
change in the magnitude of spectral peaks among the spectra.
Following this, the spectra was filtered and smoothed to



remove instrumental high frequency noise and enhance signal
properties using Savitzky-Golay (SG) filter. The polynomial
order and the window length of the filter were 2 and 51
respectively.

Partial Least Squares (PLS) regression analysis was then
used to selectively extract lactate information from NIR
spectra in the presence of other chemical interferents such as
water, sodium and potassium chloride. PLS regression is a
multivariate method used to determine correlations between
concentrations of analytes and spectral responses, assuming
a linear relationship between the two. The method extracts
orthogonal factors or latent variables (LV) to model the
spectral features that correlate with the analyte concentra-
tions [10]. Each LV describes the proportion of co-variance
in a descending order between the calibration spectrum
and the concentrations of the analyte. The LVs reduce the
dimensionality of the independent variables (wavelengths
with no relevance to lactate absorption) space by projecting
them onto lower dimensional spaces. The optimal number of
LVs required for accurate estimation of lactate concentrations
was determined using the Prediction Error Sum of Squares
(PRESS) . The PLS model developed was validated by
leave-one-out cross-validation method, where a spectrum
of unknown concentration is set as test subject and the
remaining spectra are used to develop a model. The model
was then used to predict the lactate concentration of the
unknown test spectrum. This process was repeated 37 times,
until every spectra has been used as a test subject and
its concentration was estimated. The prediction accuracy
of the calibration model was then described by coefficient
of determination (R2) between the estimated and actual
lactate concentration, and by the estimated measurement
error, which was calculated as the root mean squared error
of prediction (RMSEP).

III. RESULTS AND DISCUSSION

The raw NIR absorption spectra of thirty-seven PBS
samples with varying lactate concentrations between 0 – 20
mmol/L is presented in Fig. 1. Good quality raw spectra
with clear spectral features were acquired from the Lambda
1050 spectrometer. As with most NIR spectra, the absorption
in the region was dominated by the hydrogen atoms. Two
prominent peaks in the spectra can be observed at the 1450
nm and 1920 nm, which can be associated with the O-
H stretching fundamental (1st overtone of water) and the
combination band of O–H stretch with O–H bend respec-
tively [11]. However, it is also important to realize that
these broad absorptions are caused by multiple narrow, over-
lapping absorptions. Hence to visibly see changes in other
regions more relevant to lactate molecules, the baseline water
absorption (NaLac = 0 mmol/L) was subtracted from the rest
of the spectra. Before the base spectral subtraction, the high
frequency noise peaks in the regions between 1900 – 1960
nm and 2350 – 2600 nm (Fig. 1) were removed manually
from the spectra to reduce the estimated errors in further
analysis. This noise is due to detector saturation resulting
from high absorption of water.
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Fig. 1. Raw Near Infra-red (NIR) spectra of thirty-seven Phosphate Buffer
Saline (PBS) samples with varying concentration of sodium-lactate ranging
between 0–20 mmol/L

Fig. 2 shows the filtered spectra (SG filter) of five ran-
domly selected samples of NaLac after the base spectra
subtraction. In Fig. 2, an absorption with a magnitude greater
than zero should theoretically reflect NaLac absorption,
while absorption with magnitude below zero represents water
(hydrogen atoms) absorption. Although, this is not entirely
true in this case due the small concentration of NaLac (< 20
mmol/L). Nonetheless, distinguishable peaks can now be
observed in regions other than the water absorption peaks.
These absorption peaks are in between 2200 – 2400 nm (cen-
tered at 2187, 2266 and 2299), 1660 – 1780 nm (centering
at 1640 and 1743), and 1050 – 1220 nm (centering at 1147).
Absorption in these NIR regions is linked to the combination
of C–H stretch with C–H bend (2200 – 2400 nm) and C-H
stretching (1660 – 1780 nm is the 1st C-H overtone and
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Fig. 2. NIR spectra of six randomly selected samples after base lactate
correction and Savitzky-Golay (SG) filtering. Absorption peaks pertinent to
NaLac can be seen in the regions between 2200 – 2400 nm, 1660 – 1780
nm, and 1100 – 1220 nm.
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Fig. 3. PRESS versus number of latent variables (LV). Optimal number
of LVs used for building the PLS model was eight.

1100 – 1220 nm is the 2nd C-H overtone) respectively [11],
[12]. These results are in agreement with the previous work
conducted by Lafrance et al, where they reported NaLac
absorption peaks between 2100 – 2400 nm [9].

To examine the underlying relationship between the de-
tected absorption peaks and NaLac concentrations and to
explore the possibility of accurately predicting NaLac con-
centrations, a PLS calibration model was created using all the
spectra. As mentioned earlier, PRESS was used to determine
the simplest model, i.e. the model with the minimum number
of LVs. This criterion, helps avoid over-fitting. Fig. 3 shows
the graph of predicted residual sum of squares (PRESS)
vs the number of latent variables. From Fig. 3, it can be
observed that the first few factors contribute the most to the
PLS model. After the 8th LV, it is unlikely that addition

0 5 10 15 20
Observed value of NaLac (mmol/L)

-5

0

5

10

15

20

Pr
ed

ic
te

d 
va

lu
e 

of
 N

aL
ac

 (m
m

ol
/L

)

Observed vs predicted (cross validation set) R2:0.977

Fig. 4. Predicted NaLac concentration vs the NaLac concentration of thirty-
seven PBS samples prepared in the laboratory. The correlation coefficient
(R2) and the root mean square error of prediction (RMSEP) was 0.984 and
0.89 mmol/L respectively.

of more LVs will significantly improve the PLS prediction.
Hence, eight LVs were used to build the PLS model.

The dot product of the calibration coefficient vector and
each spectrum of the data set was then used to estimate
NaLac levels in PBS samples using PLS. Fig. 4 shows the
plot of reference NaLac concentrations and predicted NaLac
concentrations in the leave-one-out routine, using eight PLS
factors. The diagonal line in the figure represents a great
match between the measured and predicted NaLac values.
The high correlation between the predicted values and the
reference values resulted in a coefficient of determination,
R2, of 0.976. The root mean square error of prediction
(RMSEP) on the linear regression was 0.89 mmol/L. This
indicates that although the tight correlation of the data at low
lactate concentrations is not apparent, it is easy to distinguish
the large change in NaLac concentrations in PBS solution.

IV. CONCLUSIONS
In summary, we have demonstrated that NaLac concen-

trations in buffered solutions can be successfully estimated
from NIR spectra using the PLS method. The results from the
study provide the necessary confidence to carry out further
investigations in complex solutions with more absorbents
such as serum and whole blood. Future work will focus
on improving the prediction algorithms used in this study
to quantitatively predict the NaLac concentrations from NIR
spectra of blood.
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