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Abstract:	While	artificial	cyclases	hold	great	promise	in	chemical	synthesis,	we	present	here	
the	 first	 example	of	 a	DNA-catalyzed	 inverse	 electron-demand	hetero-Diels-Alder	 (IEDHDA)	
between	 dihydrofuran	 and	 various	 α,β-unsaturated	 acyl	 imidazoles.	 The	 resulting	 fused	
bicyclic	 O,O-acetals	 containing	 three	 contiguous	 stereogenic	 centers	 are	 obtained	 in	 high	
yields	 (up	 to	 99%)	and	 excellent	 diastereo-	 (up	 to	 >99:1	dr)	 and	 enantioselectivities	 (up	 to	
95%	ee)	using	a	low	catalyst	loading.	Most	importantly,	these	results	show	that	the	concept	
of	 DNA-based	 asymmetric	 catalysis	 can	 be	 expanded	 to	 new	 synthetic	 transformations	
offering	 an	 efficient,	 sustainable,	 and	 highly	 selective	 tool	 for	 the	 construction	 of	 chiral	
building	blocks.	
	
The	field	of	bio-hybrid	catalysis	has	evolved	over	the	years	to	become	a	particularly	powerful	
tool	 for	 the	 construction	 of	 carbon−carbon	 and	 carbon−heteroatom	 bonds,	 with	
metalloenzymes	playing	a	key	role.1	The	double	stranded	helix	of	DNA	has	however	recently	
integrated	 the	 bio-hybrid	 catalyst	 arsenal	 emerging	 as	 a	 valuable	 alternative.	 This	 new	
concept,	which	was	first	introduced	by	Roelfes	and	Feringa	in	2005,2	is	based	on	a	transfer	of	
chirality	of	the	DNA	double	helix	to	a	pro-chiral	substrate	and	relies	on	a	subtle	association	
between	 an	 achiral	 transition	metal	 catalyst	 and	 the	 DNA	 through	 either	 a	 covalent	 or	 a	
supramolecular	 interaction.	 Since	 the	 first	 example,	 which	 involved	 a	 Diels-Alder	
cycloaddition	 between	 an	 α,β-unsaturated	 2	 acyl	 pyridine	 and	 cyclopentadiene	 using	 a	
9-aminoacridine-derived	 copper-binding	 diamine	 and	 salmon	 testes	 DNA	 (st-DNA),	 the	
concept	 of	DNA-based	 asymmetric	 catalysis	 has	 been	extended	 to	 various	 other	 synthetic	
transformations3	 by	 a	 number	 of	 groups	 around	 the	 world	 including	 ours.4	 In	 particular,	
many	 efforts	 have	 been	 devoted	 to	 unveil	 new	 biomimetic	 DNA-based	 cycloaddition	
processes	 inspired	by	the	seminal	 [4+2]	Diels-Alder	cycloaddition[2,3a-g]	 (Figure	1,	A).	This	
has	 resulted	 in	 the	 development	 of	 various	 key	 cycloaddition	 reactions	 including	 a	 [2+2]	
photocatalysed	 cycloaddition5	 using	 a	 benzophenone-modified	 DNA	 as	 a	 photosensitizer	
(Figure	1,	B)	and	two	cyclopropanation	reactions	using	either	a	Cu	dmbipy-DNA	complex6	or	
a	heme-DNA	artificial	enzyme7	(Figure	1,	C).	Surprisingly,	despite	all	these	efforts,	there	has	
been	no	example	of	an	asymmetric	DNA-catalyzed	hetero-Diels-Alder	cycloaddition	reported	
in	 the	 literature	so	 far.	As	a	matter	of	 fact,	 the	number	of	natural	or	artificial	biocatalysts	
capable	of	promoting	a	hetero-Diels-Alder	cycloaddition	are	rather	scarce.8,9	We	report	here	
the	results	of	our	endeavor	which	have	 led	to	the	development	of	a	highly	stereoselective	
DNA-catalyzed	 inverse	 electron-demand	 hetero-Diels-Alder	 cycloaddition	 between	
α,β-unsaturated	 acyl	 imidazoles	 and	 dihydrofuran	 leading	 to	 the	 corresponding	 bicyclic	
O,O-acetals	in	high	yields	and	excellent	enantio-	and	diasteroselectivities	(Figure	1,	D).	

The	 reaction	 between	α,β-unsaturated	 2	 acyl	 imidazole10	1a	 and	 dihydrofuran	2	 in	
the	 presence	 of	 [Cu(dmbipy)(NO3)2]	 and	 st-DNA	 was	 chosen	 as	 the	 benchmark	 reaction	
(Table	1).	 A	 thorough	 optimization	 study	 (see	 SI	 for	 the	 complete	 study)	 revealed	 that	 a	
1:250	 ratio	 between	 1a	 and	 the	 heterodienophile	2,	 3	mol%	 of	 the	 Cu(II)	 complex	 and	 a	
1	mM	bp	concentration	of	st-DNA	in	a	MOPS	buffer	(pH	6.5)	at	4	°C	for	3	days	afforded	the	
best	results	with	the	desired	bicyclic	cycloadduct	3a	obtained	in	83%	ee	and	a	94:6	endo/exo	
ratio.	 Control	 experiments	 confirmed	 that	 the	 combination	 of	 the	 metallic	 cofactor	
[Cu(dmbipy)(NO3)2]	 and	 DNA	 was	 necessary	 to	 achieve	 both	 high	 conversions	 and	 high	
enantioselectivities.	 A	 higher	 concentration	 of	 the	 biohybrid	 catalyst	 did	 not	 improve	 the	
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result	 while	 reducing	 the	 DNA	 concentration	 to	 0.5	 mM	 affected	 mainly	 the	 conversion.	
Interestingly,	the	addition	of	a	co-solvent	(2%	v/v)	such	as	DMSO,	DMF,	THF,	ACN,	DCM,	and	
dioxane	 increased	 the	 substrate	 solubility	 as	well	 as	 the	 conversion	without	 affecting	 the	
stereoselectivity,	 with	 THF	 standing	 out	 as	 the	 optimum	 co-solvent	 (94:6	 endo/exo	 ratio,	
83%	ee)	 (Scheme	1).	A	systematic	circular	dichroism	(CD)	study	confirmed	that	 the	double	
helical	 structure	 of	 DNA	 was	 maintained	 in	 the	 presence	 of	 all	 the	 aforementioned	 co	
solvents,11	which	is	consistent	with	previous	studies	reported	in	the	literature.12	Moreover,	
varying	 the	 nature	 of	 the	 copper(II)	 complex	 by	 replacing	 4,4’-dimethyl-2,2’-bipyridine	
(dmbpy),	which	binds	to	st-DNA	through	groove	binding,	by	phenantroline	(phen),	which	is	a	
good	 DNA	 intercalator,	 or	 either	 2,2’:6’,2”-terpyridine	 (terpy)	 or	 dipyrido[3,2-a:2’,3’-
c]phenazine	(dppz),		which	are	known	to	bind	to	DNA	through	a	mix	of	minor	groove	binding	
and	 intercalation,13	 had	 a	 detrimental	 effect	 on	 both	 the	 conversion	 and	 the	 selectivity.	
These	results	are	in	agreement	with	the	ones	obtained	for	the	Diels-Alder	reaction;	groove	
binding	interactions	allow	more	flexibility	of	the	complex	while	maintaining	the	substrate	in	
the	second	coordination	sphere	of	the	DNA	helix.14	

With	 these	 results	 in	 hand,	we	next	 evaluated	 the	 substrate	 scope	by	 subjecting	 a	
variety	of	α,β-unsaturated	2-acyl	 imidazoles	(1b-o)	to	our	optimized	conditions;	the	results	
are	depicted	in	Scheme	1.	As	a	general	trend,	the	corresponding	bicyclic	adducts	3b-o	were	
obtained	 in	 moderate	 to	 high	 conversions	 ranging	 from	 35%	 to	 >99%,	 excellent	
diastereoselectivities	 (endo/exo	up	to	>99:1)	and	high	enantioselectivities	 (ees	up	to	95%).	
Hence,	 the	 introduction	 of	 electron-donating	 substituents	 at	 the	 para	 position	 of	 the	
aromatic	 ring	 such	 as	 a	 methyl	 (3b,	 89%	 ee,	 endo/exo>17:1),	 a	 methoxy	 (3c,	 90%	 ee,	
endo/exo>9:1)	 or	 a	 thiomethyl	 (3e,	 90%	 ee,	 endo/exo>99:1),	 did	 not	 alter	 the	 selectivity,	
however	 it	 is	 worth	 pointing	 out	 the	 decrease	 in	 reactivity	 observed	 in	 the	 case	 of	 the	
thioanisole	derivative	most	probably	due	to	the	ability	of	the	sulfur	atom	to	chelate	copper	
ions.15	 The	 introduction	 of	 a	 slightly	 electron-withdrawing	 substituent	 such	 as	 a	 fluorine	
atom16	 (3f,	 88%	ee,	endo/exo>12:1)	was	not	detrimental	however	more	electron-deficient	
aromatic	 rings	 such	 as	 the	 p-bromo-	 and	 the	 p-nitrobenzene	 derivatives	 led	 to	 very	 low	
conversions	(data	not	shown).	β-Heteroaromatic	acyl	imidazoles	(1g-i)	were	also	found	to	be	
excellent	 substrates	as	 showcased	by	 the	high	yields	and	 remarkable	diastereo-	 (endo/exo	
up	to	>99:1)	and	enantioselectivities	(ees	ranging	between	76%	and	85%)	obtained	for	the	
resulting	 bicyclic	O,O-acetals	 3g-i.	 Finally,	 in	 contrast	 to	 the	 β-aryl-	 and	 the	 β-heteroaryl-
substituted	 substrates	 (1a-i),	 complete	 conversions	were	 observed	with	 practically	 all	 the	
β-alkyl-substituted	 derivatives	 (1j-n)	 tested.	 Moreover,	 the	 endo/exo	 ratios	 appeared	 to	
decrease	 and	 the	 ees	 increase	 as	 the	 size	 of	 the	 alkyl	 chain	 became	 more	 bulky.	 The	
prevalence	of	the	2-acyl-methylimidazole	motif	in	bio-hydrid	catalysis	was	further	confirmed	
by	 the	 results	 obtained	 with	 the	 analogous	 2-acyl-isopropylimidazole	 precursor,	 which	
afforded	 the	 corresponding	 cycloadduct	3o	 in	90%	conversion	albeit	only	61%	ee,	or	with	
the	related	α,β-unsaturated	2	acylpyridine,	the	1,3-diphenyl-2-propenone	and	the	2-methyl-
1-(thiazol-2-yl)prop-2-en-1-one,	which	failed	to	produce	any	product	(data	not	shown).	

The	nature	of	the	heterodienophile	was	also	evaluated	using	a	selection	of	electron-
rich	 alkenes,	 including	 3,4-dihydro-2H-pyran,	 ethyl	 vinyl	 ether,	 2-vinyloxirane	 or	 para-
methoxystyrene,	 but	 none	 of	 them	 afforded	 the	 desired	 IEDDA	 product.	 Considering	 that	
these	reactions	are	assumed	to	proceed	through	a	concerted,	but	asynchronous	transition	
state,	 we	 associate	 this	 lack	 of	 reactivity	 with	 the	 lower	 nucleophilicity	 of	 these	
heterodienophiles.17	

The	endo	selectivity	was	confirmed	by	1H	NMR	analysis	of	compounds	3a,	3j	and	3l,	
all	 obtained	 in	 high	 yields	 at	 reaction	 scales	 ranging	 from	 0.5	 to	 1.2	 mmol,	 which	 also	
demonstrates	the	robustness	of	the	method	(Table	2).	Hence,	all	three	compounds	adopt	a	



bicyclic	 cis	 junction	 characterized	 by	 a	 low	 coupling	 constant	 between	 H7a	 and	 H3a	
(3J	H7a-H3a	∼	4.0	Hz)	and	a	W	coupling	between	H5	and	H3a	(4J	H5-H3a	∼	1.2	Hz).	In	addition,	
the	relatively	 low	coupling	constant	between	H4	and	H3a	indicates	that	these	two	protons	
are	facing	each	other.	Finally,	a	NOESY	experiment	established	a	correlation	between	H4	and	
H7a	 consistent	with	an	endo	 selective	 cycloaddition.	As	 for	 the	absolute	 configuration,	 the	
latter	was	ascertained	by	comparing	the	specific	optical	rotation	value	of	the	endo	product	
3j	(3aR,	4R,	7aS),	which	was	obtained	in	quasi-quantitative	yield	on	a	105	mg	scale,	with	the	
one	 reported	 in	 the	 literature,18	 while	 all	 other	 products	 were	 assigned	 by	 analogy.	
Compound	 3l	 was	 also	 engaged	 in	 a	 hydrogenation	 reaction	 to	 further	 support	 our	
assignment	 (Table	2).	 The	 reduction	 of	 the	 enol	 double	 bond	 proceeded	 smoothly	 and	
preserved	the	integrity	of	the	O,O-acetal	affording	compound	4	as	a	single	diastereoisomer	
in	quantitative	yield	and	with	no	erosion	of	the	selectivity.19	

In	 conclusion,	 we	 present	 here	 the	 first	 example	 of	 an	 asymmetric	 DNA-catalyzed	
inverse	electron-demand	hetero-Diels-Alder	 reaction.	The	reaction	allows	 the	 formation	of	
fused	 bicyclic	 O,O-acetals	 in	 high	 yields	 (up	 to	 99%)	 and	 excellent	 diastereo-	 and	
enantioselectivities	(up	to	>99:1	dr,	up	to	95%	ee).	The	method	was	applied	to	a	variety	of	
α,β-unsaturated	 2-acyl-imidazoles	 and	 could	 be	 easily	 scaled	 up.	 Most	 importantly,	 this	
reaction,	which	has	no	equivalent	in	the	metalloenzyme	arsenal	obtained	through	directed	
evolution,	emphasizes	furthermore	the	versatility	of	DNA-based	asymmetric	catalysis	and	its	
efficacy	in	mimicking	nature’s	hetero-Diels-Alderases	in	water.	Ultimately,	we	hope	this	will	
trigger	new	developments	 in	 the	 field	and	 inspire	 the	development	of	other	 cycloaddition	
reactions.	
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Figure	1.	DNA-based	asymmetric	cycloadditions 
 
 

 
	

	
	
	

Table	1.	Systematic	study.[a]	

	

[a] Reactions conditions: 1a (1 mM), 2 (250 equiv), in a 20 mM MOPS buffer solution 

pH 6.5 for 3 d at 4 °C. Conversions, des and ees were determined by High Pressure Liquid 

Chromatography (HPLC) analysis.
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Scheme	 1.	 Reaction	 scope.	 [a]	All	 reactions	 were	 carried	 out	 with	 st-DNA	 (1	 mM	 bp	 concentration),	 1a-o	
(1	mM),	2	(250	equiv),	 and	 [Cu(dmbipy)(NO3)2]	 (0.03	mM)	 in	 a	 20	 mM	 MOPS	 buffer	 solution	 pH	 6.5	 with	 2%	 THF	 as	
co-solvent	for	3	d	at	4	°C.	[b]	Conversions	and	ees	were	determined	by	High	Pressure	Liquid	Chromatography	(HPLC)	analysis.	
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Table	2.	Scale-up	of	the	hetero	Diels-Alder	reaction	and	structural	determination	by	NMR.	

Compound Isolated Yield  
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