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Abstract

In this study, numerical simulation is used to investigate a counter-rotating
dual-rotor marine current turbine (MCT) that is aligned for a rectilinear tidal
current. Results of power and thrust coefficients and the mean wake axial ve-
locity are compared with that of the blade element momentum (BEM) method
coupled with the Park wake model. For a single-rotor MCT, small discrepancies
are observed for front rotor, and larger discrepancies for rear rotor when com-
paring the CFD and BEM results. The mean axial wake velocity agrees better
with the higher turbulence intensity (TI). CFD results shows that the power
coefficient (CP ) of rear rotor depends on the ambient turbulence intensity. The
maximum CP of dual-rotor turbine is 5% higher than that of just the front ro-
tor. Streamlines show that a large vortex is formed behind the rear rotor. The
numerical simulations give more credibility to the BEM Park model, but also
points to its sensitivity to the incoming turbulence intensity.
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1. Introduction

The blades of horizontal axis marine current turbine (MCT) are normally
installed at a pitch angle so that the turbine can be operating at the optimal
angle of attack (AOA). For wind application this may require yaw control to
adjust for the varying wind direction, but for marine currents with known and5

steady stream direction, a yaw-free control horizontal axis MCT seems to be
ideally suited [1]. However, the tidal current can alter its velocity direction
opposite during the day, i.e. a rectilinear current. This will leave the horizontal
axis MCT blades pitched at wrong angle for the flow coming from the opposite
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direction, causing possible stall and much reduced power. This can be mitigated10

using the pitch angle control as commonly used in the wind turbine. However,
the pitch controlled turbine increases the manufacturing cost and reduces the
reliability. Due to higher waterproof standard, the electrical pitch system for
tidal turbine is more expensive and vulnerable than that of a wind turbine which
normally operates in a dry environment [2]. Thus, the industrial application of15

the pitch control system is commonly used for very large turbines and not for
small and medium size ones. One possible solution for the bi-directional current
flow is the dual-rotor configuration with fixed pitch as illustrated in Fig. 1a.
Such dual-rotor configuration has two rotors facing towards opposite directions.
Regardless of the current direction, the power output of a dual-rotor should be20

the same. Relative to the flow direction, the upstream blade is named as the
front rotor and the downstream blade is the rear rotor. To maintain higher
efficiency, the front and rear rotors are normally rotating in opposite directions.

In 1983, Newman pursued an analytical study on a dual-disc kinetic turbine
based on the actuator disc theory, and concluded that the maximum power25

coefficient could be 16/25 when both rotors are aligned for a unidirectional flow,
which is 8% higher than Betz limit (16/27) [3]. Three years later, Newman
extended his dual-disc model to multiple actuator-disc model, and concluded
that the optimal CP is 8n(n+1)/[3(2n+1)2] for n disc in tandem. The maximum
CP is 2/3, which is 13% higher than the maximum CP of the single actuator disk30

model[4]. A more recent update of the dual-disc model was done by Sundararaju
[5], who proposed no assumption on the flow pressure between the rotors. Based
on his model, the maximum CP is 0.814 with a rotor spacing of 2.8 times of rotor
diameter. Later, the performance of a counter rotating wind turbine (CRWT)
was evaluated for unidirectional wind using more advanced methods, including35

the blade element momentum (BEM) theory, actuator line model [6, 7], free-
wake vortex lattice method [8] and CFD[7]. The wake velocity behind the
front rotor is evaluated using the experimental wake data [9] or wake models.
Several in-site experiments on CRT prototypes [9, 10, 11] were conducted for
the validation of theoretical and numerical results. Parametric studies including40

pitch angles [12], rotor spacings [5], rotor diameter ratios [9], and rotational
speed control for rotors have been reported. Cho [10] proposed an integrated
control algorithm for a counter-rotating dual rotor/dual generator wind turbine
configuration. For a CRT operating in an isolated environment, the full-scale
prototype tests [9, 10] showed that the maximum CP of a CRWT was close45

to 0.5. For a wind farm, the numerical results from Vaselbehagh [7] showed
that the dual-rotor turbines produced 22.6% more power than the single-rotor
turbines.

In the field of a counter rotating MCT that operates in a unidirectional
current, Charke [13] and Huang [14] pursued numerical and experimental tests50

for rotors with a small rotor spacing (X/D < 0.5, X is the rotor spacing, and
D is the rotor diameter). Charke used a modified BEM theory to evaluate
the performance of the turbine, and conducted a towing tank test, resulting
a peak CP of 0.39. Huang designed a counter rotating turbine composed of
NACA0015 and MEL002 hydrofoil with rotor spacing of 0.1D . However, a poor55
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agreement on CP was observed between the numerical and experimental results.
Meanwhile, a scattered CP was observed in the experimental results.

The above research provides valuable guideline for our design of a counter
rotating dual-rotor MCT, where the front rotor is pitched towards upstream
and the rear rotor is pitched towards downstream for a rectilinear tidal current.60

This configuration is different from that of counter-rotating turbines mentioned
above, where both rotors are pitched towards the same direction. Huang [15]
designed a dual-rotor counter rotating horizontal axis MCT pitched in opposite
direction with a close rotor spacing (X/D < 0.5). However, the overall CP of
the dual-rotor turbine was still below 0.4.65

In our previous study [16], the dual-rotor MCT was analyzed using the
BEM-Park model. Numerical results showed that the CP of dual-rotor MCT
could be as high as 0.41 at Rec = 135k with the NACA0012 blade profile,
and 0.55 if Rec = 1M with the NACA0018 blade profile. However, the Park
wake model is a simplified model with several assumptions. More advanced70

models are needed to better predict the performance of the rear rotor blade.
The aim of the current study is to study the dual-rotor performance using the
CFD method. The rotor configuration and numerical methodology are outlined
in the next section, followed by comparison between the BEM-Park model and
CFD results. A brief summary is presented at the end.75

2. Turbine geometry

The three-blade horizontal axis MCT of Luznik [17] was used as the base
geometric configuration. The original E387 blade profile was replaced by the
symmetric NACA0012 profile. This is because as was found in [16] using the
BEM-Park model there was no benefit operating a rear rotor composed of the80

E387 profile due to the highly negative power in the rear rotor. This means the
rear rotor consumes power instead of producing power because of its very high
negative angle of attack caused by the negative camber. To achieve optimal
performance in terms of CP for high TSR , the blades were twisted at angles
varying with respect to the local radius, i.e. θ = θT /(r/R) [18]. Here, θT85

represents the blade pitch angle at the tip, r is the radial distance from the hub,
and R is the rotor’s radius. This is because the tangential velocity at the tip is
much higher than in the hub. To keep the local angle of attack below stall, the
pitch angle at the tip is much lower than in the hub. Fig. 2 (a) illustrates the
pitch angle of the NACA0012 blades investigated in the current work, with the90

tip pitched at 2, 0 and -2 degrees respectively. Different from the pitch angle, the
chord length distribution follows a linear variation along the spanwise direction
as presented in Fig. 2 (b).

For performance and load analysis of a horizontal axis MCT, the three basic
terms are tip speed ratio, power coefficient, and thrust coefficient, which are
defined as;

TSR =
ΩR

U∞
(1)
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Figure 1: Schematic description of the dual-rotor turbine (a) [16] and blade profile at different
stations (b)
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Figure 2: The local pitch angle (a) and chord length (b) distribution of the NACA0012 blades
( θT stands for the pitch angle at the blade tip)

CP =
2P

ρAU3
∞

(2)

CT =
2T

ρAU2
∞

(3)

where, Ω is the rotational speed of rotor, R is the radius of rotor, U∞ is the
free stream velocity, P is the power generated by rotor(s), ρ is the density of95

water, A is the rotational area of rotor, which equals to πR2, and T stands for
the thrust of fluid on rotor.

For a dual-rotor MCT, the power and thrust coefficients are;

Cdual
P =

2(P1 + P2)

ρAU3
∞

(4)

and

Cdual
T =

2(T1 + T2)

ρAU2
∞

(5)
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where the subscript 1 and 2 denotes the front and rear rotors, respectively. The
rotational speed of front rotor is denoted as Ω1, and the rotational speed of rear
rotor is denoted as Ω2. Then, the TSR of front rotor is defined as;

TSRfront
U∞

=
Ω1R

U∞
(6)

For the rear rotor, its TSR is defined as:

TSRrear
U

=
Ω2R

U
(7)

where, U is the velocity seen by the rear rotor. It can also be defined with
respect to the free stream velocity as;

TSRrear
U∞

=
Ω2R

U∞
(8)

3. Numerical methods

The BEM-Park model is a combination of the BEM theory and Park wake
model [19], where the BEM is used to calculate the steady hydrodynamic per-100

formance and thrust loading, and the Park wake model is used to determine the
mean axial velocity in the wake region. For the detail of the BEM-Park model,
please refer to [16]. Here, only the axial velocity deficit, ∆U , is presented as
follow:

∆U = U∞(1 −
√

1 − Cfront
T )(

D

D + 2kX
)2 (9)

where Cfront
T is the thrust coefficient of the front rotor, D is the diameter of105

the rotor, X is the rotor spacing, and k is an empirical factor accounting for the
spread of the wake and is taken as 0.04 [20].

The ANSYS Fluent software was used for the Reynolds Averaged Navier-
Stokes (RANS) calculations. To reduce the computational cost, only a 120
degree domain as illustrated in Fig. 3 was considered due to the periodicity in110

the azimuthal direction for the time averaged flow field [21]. The inlet is located
three diameters (D) upstream of the front rotor, the outlet is 10D downstream
of the rear rotor, and the radial extent of the computational domain is 2.5D.
A hybrid mesh was used in this study, with tetrahedron mesh used near the
blade and hexahedral mesh used further away from the blade surface. The115

hexahedral mesh was used to reduce the mesh size and improve the mesh in
the wake region behind the turbine blade. Fig. 3 shows the mesh in different
regions within the computational domain. The inlet velocity is 0.6m/s for all
cases, and the TSR was obtained by changing the rotational speed of the rotor.
The Reynolds number was 1.35 ×105 for blade chord length at 0.7R with TSR120

= 5. The atmosphere pressure condition was specified at the outlet boundary.
A free slip wall was specified at the radial edge of the domain, and periodic
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boundaries were specified at the azimuthal sides. The RANS-based SST K −ω
model was used for the fully geometry-resolved steady simulation. References
[22, 23, 24] show that SST K − ω model can better predict flows with adverse125

pressure gradient, such as airfoils, wings and rotating blades. Although it is
based on the Boussinesq assumption as other two-equation turbulence models,
Leroux et al. [25] has demonstrated its accuracy for marine turbines of similar
geometry. The Multiple reference frame model was used to account for the
rotating of blades. Mesh interfaces were used to transfer the flow data between130

the stationary frame and the rotation frame. Two turbulence intensity levels
(1% and 15%) in the free-stream were investigated in the current study.

(a) (b)

(c) (d)

Figure 3: Mesh details for the turbine

4. Results and discussion

4.1. Grid Convergence

Fig. 4 presents the pressure coefficient along the blade profile for a single-135

rotor (θT = 2◦) at 0.9R and TSR=5. The pressure coefficient is defined as
p = 2(p− p∞)/ρU2

∞. Three different sizes of mesh are used to analysis the grid
convergence. Pressure coefficients from 5.4 and 7.1 million meshes have almost
identical distribution along the chord length with very mild differences around
0.1-0.2(x/c) region at the suction surface. The Y + value is below 2 for a mesh140

size of 7.1 million. Thus, for the mesh size of 7.1 million is used for a single-rotor
turbine, and 13 million mesh for a dual-rotor turbine.
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Figure 4: Pressure coefficient of blade profile at 0.9R, single-rotor, TSR=5 θT = 2◦

4.2. Power and thrust coefficients

4.2.1. Single rotor case
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Figure 5: Isolated front rotor’s power (a) and thrust (b) coefficients variations with TSR,
(E387 data is from [17, 26]) (TI=1% in RANS)
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Figure 6: Isolated front rotor’s power (a) and thrust (b) coefficients at different turbulence
intensity levels (NACA0012, θT = 2◦, RANS)
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Figure 7: Single-rotor’s coefficient of power (a) and thrust (b) variations with TSR for
NACA0012 blades tip-pitched at θT = −2◦ and θT = 0◦ (TI =1% in RANS)

The main results for marine current turbines are the coefficients of power145

and thrust as a function of TSR. Fig. 5 compares the power and thrust vari-
ations with TSR for single-rotor composed of the NACA0012 (θT = 2◦) and
E387 profiles. The BEM data of a single-rotor NACA0012 turbine is from our
previous work [16]. For the E387 single-rotor turbine, only the CP variations
with TSR was provided in experimental tests conducted by Luznik. [17], where150

the RANS results are from our previous work [26]. A low free-stream turbulence
intensity (1%) was used in the numerical simulation, which is consistent with
water flume tests [27, 28]. In general, the CP and CT from the BEM results
match their RANS counterparts, though larger discrepancies are observed when
the rotors operate at high TSRs. It is seen that the maximum CP produced by155

the NACA0012 (θT = 2◦) is pretty close to that of the E387 rotor [29]. Mean-
while, the optimum TSR of the NACA0012 rotor (θT = 2◦) is about 4.75, which
is higher than that of the E387 turbine (TSR=4.25) [29].

Fig. 6 shows the effects of free-stream turbulence intensity levels on the
power performance and thrust loading of a single-rotor tip-pitched at θT = 2◦.160

A slightly lower CP and CT was observed when the rotor operates in a relatively
high turbulence intensity (15%). A maximum 3% drop in CP and 1.5% drop in
CT for an increase in TI from 1% to 15%. This is consistent with the numerical
results of Mcnaughton [22], in which a maximum reduction of 4% in CP and 1%
in CT for for an increase in TI from 1% to 20%. A larger difference was observed165

in water flume tests. Mycek’s experimental work [27] showed that a maximum
reduction of 13% in CP was observed when the ambient turbulence intensity
increased from a low value of 3% to a high value of 15%. A 10% reduction in
CP was observed for an increase in TI from 6.8% to 14.3% in [30].

Fig. 7 presents the CP and CT variations with TSR for a NACA0012 single-170

rotor tip-pitched at θT = (−2◦, 0◦). For convenience, the power coefficient of

a single-rotor tip-pitch at θT = (2◦, 0◦,−2◦) are denoted as Cfront
p,single, C

untwist
p,single ,

and Crear
p,single respectively. The rotor of NACA0012 (θT = −2◦) has a low

positive CP at TSR = (3−5.5) and becomes negative at higher TSR. This is as
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expected, since the rear rotor operates in unfavorable pitch angle as illustrated175

in Fig. 1 (b). The Crear
p,single obtained from RANS is lower than the BEM’s

value. The maximum positive Crear
p,single gained from BEM is close 0.09, while its

RANS’s result is only close to 0.05. The power coefficient of the E387 rear rotor
was found to be highly negative, less than - 0.5 for TSR = 4 when using RANS
or BEM, hence justifying again the use of the symmetric profile NACA0012 for180

the dual rotor configuration. The negative pitch angle and high TSR also yields
a CT much larger than one as seen in Fig. 7b, which implies a turbulent wake
behind the rear rotor. It should be noted that at turbulent wake the conventional
momentum thrust expression should be empirically corrected as done in the
current BEM code as well as expressions for post stall hydrodynamics of blade185

profiles [16, 31]. This could have contributed to the difference between the
BEM and CFD-RANS, where RANS may under-predict post stall hydrodynamic
performance.

4.2.2. Dual rotor case

The power coefficients of front and rear rotor of a dual-rotor turbine are190

denoted as Cfront
p,dual and Crear

p,dual, respectively. The challenging part is to specify

the rotational speed for the rear rotor (Ω2) as U is unknown before calculation.
Although our previous work [16] can be used to derive the variation of Ω2/Ω1

as a function of TSRfront
∞ (TSR of the front rotor) using the Park model, trial

and error method is needed to specify the Ω2 for a fixed Ω1 to account for195

inaccuracy in the Park model as discussed later. Here, we present the results of
the dual-rotor turbine operating with a axial distance of 4D. In the dual-rotor
RANS simulation, we let the front rotor operate with a fixed Ω1 and a variable
Ω2 for the rear rotor.

The power and thrust coefficients of the rear rotor of a dual-rotor MCT200

are presented in Fig. 8. Two free-stream turbulence intensities are considered
because the rear rotor of a dual-rotor turbine operates in the wake region of the
front rotor, where velocity recovery rate is strongly influenced by the turbulence
levels. The first obvious observation is that the power and thrust coefficients of
the rear rotor operating in the wake region of the front rotor are much lower than205

an isolated rotor’s counterparts. The Crear
P,dual is lower than Crear

P,single is mainly
due to the reduced velocity in the wake region of front rotor. The RANS results
show that the maximum Crear

P,dual is close to zero at TSR = 2.5 with TI = 1% ,
which increases to 0.02 at TSR=3.2 with TI = 15%. However, the maximum
Crear

P,dual obtained from BEM-Park model is 0.04, which is higher than its RANS210

counterparts [16]. The optimum TSR of the rear rotor with TI = 15% is around
3, while it is mildly high at about 3.6 in the BEM result [16]. For the same
TSRs, the rear rotor always extracts more power at the high turbulence level
(TI = 15%) than the low turbulence level (TI = 1%). Similar trend is observed
for the thrust coefficient of the rear rotor, as presented in Fig. 8 (b).215

Fig. 9 shows the total power performance of the dual-rotor MCT, with the
single-rotor results for comparison. When the front rotor operates at TSR = 5,
and rear rotor operates at TSR = 3.2 with TI = 15%, the CP obtained from
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Figure 8: Power (a) and thrust (b) coefficients of the rear rotor of a dual-rotor (X=4D) with

variable TSRrear
U∞

and a fixed TSRfront
U∞

= 5

RANS results matches that of the BEM-Park model. The overall CP of the
dual-rotor MCT is 5% higher than its single-rotor counterpart based on the220

RANS and BEM-Park model results. The RANS results show that the difference
between Cfront

p,single and Cfront
p,dual is within 0.5% when the front rotor operates at

fixed TSR, and the rear rotor operates at variable TSRs. This means the rear
rotor has little effect on the front rotor for a dual-rotor MCT with a distance
X = 4D. This numerical observation is consistent with similar experimental225

work done by Mycek [32], who studied the single-rotor MCT arrays in tandem
distribution, and the rotors were pitched in the same direction.
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4.3. Park wake model evaluation

The previous section has shown good agreement between RANS and BEM
for the single rotor pitched at θT = 2◦ and also good agreement for the dual-230

rotor at the high TI=15%, but not 1%. Obviously, the Park model may have
difficulties predicting the velocity deficit in the wake for low turbulence intensity
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and deserves further investigation. The mean axial velocity behind the front
rotor is a key factor for the power performance of the rear rotor. The mean
axial velocity in the wake region obtained from RANS is area averaged and235

compared to the velocity deficit derived from the Park wake model. In the
RANS calculation, the area averaged axial mean velocity in the wake region,U ,
is defined as:

U =

∫∫
A(r)

U(x, y, z)dydz

A(r)
(10)

where U is the mean axial velocity, A(r) is a sectional area of wake region at a
given axial distance (X/D), and the sectional area is parallel to the rotational240

plane. Fig. 10a illustrates a sectional wake area after a single-rotor at an axial
distance X.
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Figure 10: Schematic sectional wake region at axial distance X (a), and normalized mean
axial velocity downstream of a single-rotor tip-pitched at θT = 2◦, TSR=5 (b)

Fig. 10b shows the mean axial velocity as a function of the non-dimensional
axial distance after a single-rotor (θT = 2◦) which operates at TSR 5. Two
turbulence intensity levels are available from the CFD results, namely 1% and245

15%. One should note, these turbulent intensities correspond to the low and high
levels of turbulence intensity commonly used in a water tank tests and field sites
of tidal turbines [27]. The recommended value of k is 0.04 as used in our previous
work [16]. For RANS results, the axial mean velocity grows as the axial distance
increases except in the very near wake of 1-2D, where a decrease of U is observed.250

However, a monotonic increase of U is observed in the Park model. There is a
better agreement between BEM-Park model and RANS at the high turbulence
intensity level (TI=15%) than the low turbulence level(TI=1%). In the near
wake region (X/D < 4), the normalized axial mean velocity obtained from
BEM-Park Model is mildly higher than its RANS’s counterpart at TI=15%.255

However, In the far wake region (X/D > 4), the normalized axial mean velocity

11



obtained from BEM-Park Model is mildly lower than its RANS’s counterpart at
TI=15%. However, at TI=1%, the RANS model predicts a much lower velocity
than the Park model, explaining the much better agreement between the RANS
and BEM-Park predicts for the dual-rotor with TI=15%.260

The value of the empirical wake expansion rate, k, is an important parameter
for the velocity deficit calculation in the Park model. The value of k = 0.04 is
recommended in the wind farm, while this value may not appropriate for the
MCT. For the marine environment, a relation of k = 0.4TI was recommended
by Pena [33] and Goccmen [34] to account for the turbulence intensity effect.265

However, this relationship is not accurate for our cases. Pyakurel [35] proposed
a calibaration of k using the mean velocity along the center line. The calibrated
k values are 0.0325 (TI=3%), 0.0477 (TI=6%), and 0.0679(TI=9%). However,
this correction is less accurate because the wake shape behind an isolated marine
current turbine normally forms a Gaussian shape distribution, and the axial270

mean velocity is minimum at the center line. Calibration based on area-averaged
axial mean velocity will result in better approximation. Based on the CT of front
rotor and area-averaged axial mean velocity from RANS results, the calibrated
value of k is 0.017( TI=15%) using the least square fitting [36].

4.4. Fluid visualization275

4.4.1. Streamlines

The streamline is a useful tool for locating flow separation and vortex region.
A sectional streamline around the blade station gives more insight on local flow
conditions. Fig. 11 shows the side view of streamlines of both single and dual-
rotors at TSR 5. The inconsistency of streamline at the mesh interface is due to280

different meshing types used in the outer cell zone and inner cell zone. The first
striking observation is the existence of a vortex in the wake region in all three
cases. The vortex size is about 0.5D for a single-rotor tip-pitched at θT = 2◦,
while a much larger size of vortex (6D) is observed for a single-rotor tip-pitched
at θT = −2◦. For a dual-rotor with front rotor tip-pitched at θT = 2◦, the size of285

the vortex downstream of the front and rear rotors are almost the same as that
of the single-rotor cases, although the shape of the vortex downstream of rear
rotor (Fig. 11 (c) ) is much more squeezed compared to that of a single-rotor
tip-pitched at θT = −2◦. An interesting observation is that a new vortex is
formulated in front of the rear rotor.290

Fig. 12 shows sectional streamlines of single-rotor turbines tip-pitched at
θT = (2◦,−2◦) operating at TSR=5. A laminar separation bubble (LSB) is
observed near the leading edge of the profile when r/R is below 0.5, and the
LSB moves towards the leading edge as r/R decreases. The LSB is near the
inner board of blade and thickens the boundary layer, thus contributes to the295

decrease of profile hydrodynamic efficiency, CL/CD. It should bear in mind that
the angle of attack is relative to incoming free velocity vector seen by the blade
profile and not the local slope of the streamline just in front of the blade profile,
although they are not far from each other. To provide better estimate of the
AOA from the CFD, several methods were allowed in the literature [37, 38, 39].300
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(a)(a)

(b)(b)

(c)(c)

(b)(b)

(c)(c)

Figure 11: Side view streamline of single and dual-rotors at TSR 5, TI=1% (RANS)

This can be important for a coupled CFD-BEM method. For this study, we just
note the good resemblance between the CFD and BEM’s results.

Fig. 13 presents the local streamlines of rear rotor of a dual-rotor with fixed
TSR of front rotor and variable TSRU of rear rotor. Here, U is the area averaged
mean axial velocity after a single-rotor tip-pitched at θT = 2◦ at X=4D. At low305

TSRU (2.91, 3.75), there are large flow separation from the rear surface of the
blade, while no flow separation is observed at high TSRU , such as TSRU = 6.

Fig. 14 presents the 3D streamline of single and dual-rotors. A nice screw-
like vortex is seen behind the single-rotor at θT = 2◦ in Fig. 14 (a), pointing
to its high hydrodynamic efficiency. A large separated wake is seen behind the310

single-rotor of θT = −2◦, showing its low hydrodynamic efficiency. Illustration
of the vortical wake behind the front rotor and how it affects the wake behind
the rear rotor is shown in Figs.14(c) & (d). The vortical wake shedded by the
front rotor is seen to reduce the wake behind the rear rotor compared to the
single-rotor wake and thus has the potential actually to mildly increase the rear315

rotor hydrodynamic efficiency, explaining the high CP seen in Fig. 9 (b).

4.4.2. Velocity contour and turbulence intensity

The evolution of the axial mean velocity in the wake region was presented in
Fig. 10. For better fluid visualization, velocity contours are illustrated in order
to enable better understanding of the potential in the dual-rotor configuration.320

Figs. 15, 16, 17, and 18 present velocity contours of a single-rotor tip-pitched at
θT = 2◦, θT = −2◦ and a dual-rotor with rotor spacing of 4D. The wake regions
are slightly larger than the rotor diameter in the radial direction. Meanwhile,
a much longer low velocity region is observed for a single-rotor tip-pitched at
θT = −2◦ compared with its θT = 2◦ counterpart. This is expected by the low325

hydrodynamic performance of the rotor at θT = −2◦ that also yielded a high
CT which is an indicator to a turbulent wake. For a single-rotor tip-pitched
at θT = 2◦, the wake shape is axisymmetric, while a non-axisymmetric wake is
observed for a single-rotor tip-pitched at θT = −2◦ and a dual-rotor with rotor
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(a) 0.2R (b) 0.2R

(c) 0.5R (d) 0.5R

(e) 0.9R (f) 0.9R

Figure 12: Local streamlines of single-rotor turbines at TSR 5, TI=1%, θT = 2◦ (left) and
θT = −2◦ (right)

spacing of 4D.330

Fig. 19 presents side view of the turbulence intensity of a single and dual-
rotors operating at TSR 5 with ambient turbulence intensity of 1%. Although
our model is a two-equation turbulence model, the k − ω SST RANS model
was seen to produce reasonably accurate wake description behind the MCT,
including the turbulence intensity [25].335

Similarly as the side view of velocity contour, for a single-rotor tip-pitched at
θT = −2◦, the area of high turbulence intensity is much larger than its θT = 2◦

counterpart. For a single-rotor tip-pitched at θT = −2◦, a high turbulence
intensity region (such as TI > 0.28) extends to 5D downstream after the rotor
and 0.6D in radial direction, while the high turbulence intensity region is mainly340

constrained near the hub for a single-rotor tip-pitched at θT = 2◦. For a dual-
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(a) 0.2R, TSRU = 2.91 (b) 0.5R, TSRU = 2.91 (c) 0.9R, TSRU = 2.91

(d) 0.2R, TSRU = 3.75 (e) 0.5R, TSRU = 3.75 (f) 0.9R, TSRU = 3.75

(g) 0.2R, TSRU = 6 (h) 0.5R, TSRU = 6 (i) 0.9R, TSRU = 6

Figure 13: Local streamline of the rear rotor of dual-rotor (X=4D) with TSRfront = 5 and
variable TSRrear (TI=1%, RANS, U is the mean axial velocity downstream a single-rotor
tip-pitched θT = 2◦ )

rotor with X=4D, an interesting observation is that a turbulence intensity region
is developed in front of rear rotor.
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(a)                                                                       (b)      

(c)                                                                       (d)      

Figure 14: 3D streamlines behind single and dual-rotors (X=4D) at TSR 5, (a) single-rotor
θT = 2◦, (b) single-rotor θT = −2◦, (c) dual-rotor, streamline starts from front rotor, (d)
dual-rotor, streamline starts from rear rotor

a)                                                                               a)                                                                               

c)                                                                         d)      c)                                                                         d)      

(a)

(b)

(c)

(a)

(b)

(c)

Figure 15: Side view velocity contour of single and dual-rotors, (a)θT = 2◦,(b)θT = −2◦, and
(c)dual rotor with X=4D (TSRfront = 5, TSRrear = 3.5) (inlet at right side)
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(a) (b) (c)

(d) (e) (f)

Figure 16: Front view of the velocity contours behind isolated front rotor (θT = 2◦) at TSR
5, (a) 1D, (b) 3D, (c) 4D, (d) 5D, (e) 7D, (f) 10D

(a) (b)

(d)

(b) (c)

(f)(e)

Figure 17: Front view of the velocity contours behind isolated rear rotor (θT = −2◦) at TSR
5, (a) 1D, (b) 3D, (c) 4D, (d) 5D, (e) 7D, (f) 10D
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(a)                   (b)                 (c)                   (d)   

(e)                    (f)                      (g)  

Figure 18: Front view of the velocity contour of dual-rotor with X=4D at TSR 5,(a) 1D, (b)
3D, (c) 4D, (d) 5D, (e) 7D, (f) 10D, (g) 14D ( front rotor, θT = 2◦, origin is located at the
axis center of front rotor )

(a)(a)

(b)(b)

(c)(c)

Figure 19: Side view turbulence intensity of single and dual-rotors at TSR 5, (a) isolated front
rotor, (b) isolated rear rotor, (c) dual rotor at X=4D (TI=1%)
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5. Conclusion

This paper has looked at the hydrodynamics of a dual-rotor MCT with345

a rotational speed control but with no pitch and yaw controls. The turbine
is aligned for a rectilinear tidal current, thus the rotors are oppositely pitched.
The RANS-based SST k−ω turbulence model was used to simulate both single-
rotor and dual-rotor MCTs. Power and thrust coefficients, mean axial velocities
in the wake region obtained from the RANS were compared to the BEM-Park350

model. The CFD results provided more details, such as velocity contours, and
streamlines.

For a single-rotor MCT, there was a good agreement for CP between BEM
and CFD results, except when the rotor operated at high TSRs or having a
turbulent wake state with negatively pitched blades. For a dual-rotor MCT,355

larger discrepancies were observed compared with single-rotor cases. The CP

of rear rotor obtained from BEM-Park model was higher than its CFD RANS
counterpart. Nevertheless, the CFD results shows that the BEM-Park model
provides reasonable accuracy for the total performance of the dual-rotor MCT
when in presence of high turbulence intensity. A gain of 5% and 4% in the360

overall CP was recorded as relative to the CP of single-rotor NACA0012 and
E387, respectively. The free-stream TI is a key parameter for the CP of rear
rotor. A higher TI is preferred for a faster recovery of velocity in the wake
region.

This analysis shows that there is ground to improve low-order models to365

better account the incoming TI. It also assumes the rotational plane of rotor is
orthogonal to the incoming tidal current. Hence, this study did not account for
negative effects from yawed inflow, free surface waves and sea bed. The unsteady
RANS simulation can also be used to improve the prediction of performance and
load on rear rotor which operates in turbulent windmill state and experiences370

larger fluctuations during one periodic cycle. Experimental work on dual-rotor
case is also recommended for further investigation.
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