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Abstract

Extended dynamic mode decomposition (EDMD) provides a class of
algorithms to identify patterns and effective degrees of freedom in com-
plex dynamical systems. We show that the modes identified by EDMD
correspond to those of compact Perron-Frobenius and Koopman operators
defined on suitable Hardy-Hilbert spaces when the method is applied to
classes of analytic maps. Our findings elucidate the interpretation of the
spectra obtained by EDMD for complex dynamical systems. We illustrate
our results by numerical simulations for analytic maps.

1 Introduction

The quest to identify effective degrees of freedom in a complex dynamical system
is a fundamental topic in almost all branches of science. The archetype and his-
torical origin of this endeavour can be seen in the derivation of thermodynamics
from microscopic equations of motion within a hydrodynamic description. Here,
the relevant macroscopic densities are determined by the classical conservation
laws of physics. In a mathematical setting the problem of identifying effective de-
grees of freedom and reducing the dynamical description to a lower-dimensional
set of equations can be cast in terms of centre manifold reductions [17] or adi-
abatic elimination procedures [19]. In these classical situations the reduction of
the description to effective degrees of freedom has resulted in the derivation of
transport equations for systems far from equilibrium using projection operator
techniques [29, 39], an understanding of how dissipation emerges in many par-
ticle Hamiltonian systems [30], or the Bandtlow-Coveney equation for transport
properties in discrete-time dynamical systems [3], to name but a few. With the
advent of the study of complex and chaotic dynamical behaviour the focus has
shifted and broadened. Nowadays the problem of identifying relevant degrees of
freedom occupies a diverse range of scientific fields ranging from physics and the
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life sciences, to computational studies of pattern recognition or data processing.
Many of the current algorithmic approaches have been inspired by the classical
ideas mentioned above. In a nutshell, these methods are based on identifying an
optimal mode decomposition which can be used to effectively describe the system
of interest.

A recent instalment of these ideas has become known as Dynamic Mode De-
composition, introduced in [34] and extended in [38]; see also [22] for an illus-
tration of this concept in the context of nonlinear stochastic systems. At their
core, these methods condense the dynamical observations into a suitably cho-
sen effective linear evolution matrix. The eigenvalues and eigenvectors of this
matrix then provide information concerning the relevance and structure of the
effective degrees of freedom of the system, and can sometimes be related to spec-
tral data of global evolution operators, known as Perron-Frobenius operators, or
their formal adjoints, known as Koopman operators. Data-driven methods to
approximate Perron-Frobenius and Koopman operators have become prominent
with the work of Dellnitz and Junge [12] and have since been extended in many
ways [11, 14, 27, 16, 21], to mention but a few. For an overview of existing algo-
rithms, see the review articles [23, 9, 16] and references therein, in particular [23]
for comparison of various data-driven algorithms, [9] for an overview of applica-
tions in areas of engineering, and the introductory section of [16] for a historical
overview.

Empirically, these algorithms perform extremely well and are essentially fully
understood for finite-dimensional linear dynamical systems. However, open ques-
tions remain in more complex dynamical setups, regarding, for example, under
which conditions the algorithms converge and whether the limiting quantities are
signatures of the underlying dynamical system in the sense that they approximate
the spectral data of the relevant evolution operator. In this note our aim is to
contribute to this issue, by proving that a certain version of dynamic mode decom-
position, known as Extended Dynamic Mode Decompostion (EDMD), identifies
the correct effective degrees of freedom in an analytic setup when certain classes
of deterministic chaotic dynamical systems are studied. More specifically, we fol-
low [6], where strong spectral results for the Perron-Frobenius operator on the
space of analytic functions in the setting of one-dimensional analytic expanding
maps have been established. We use this machinery to obtain approximation
results for EDMD. We note in passing, that the complementary case of spectral
analysis and approximation of unitary Koopman operators on the space of square
integrable functions, in the data-driven setting, has been the subject of exten-
sive studies, see for example [28, 24], as well as more recent works on spectral
convergence [10, 25].

In order to keep our presentation self-contained we start with a brief sketch of
EDMD in Section 2. In Section 3 we introduce a class of analytic circle maps, for
which rigorous statements about EDMD can be made. For this class of systems
we show that EDMD singles out eigenmodes of the Perron-Frobenius operator
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on a suitably defined space of analytic functions. In this sense EDMD effectively
performs a coarse graining or smoothing of the dynamics. We shall also explain
that, in an appropriate setting, these results translate into strong spectral conver-
gence results for the corresponding Koopman operator. In Section 4 we illustrate
our findings through various numerical examples based on exactly solvable mod-
els. Finally, in Section 5, we put our results in a more general context, including
a discussion of higher-dimensional dynamical systems or the relevance of our rig-
orous approach for general dynamic mode decompositions where no proofs can
be provided.

2 Extended Dynamic Mode Decomposition

In the following, we shall provide a brief, informal account of Extended Dynamic
Mode Decomposition (EDMD). Consider a discrete dynamical system

zn+1 = τ(zn) (1)

given by map a τ : X → X on some phase space X . Assume that the dynamics
is observed through a collection of N scalar functions defined on the phase space
given by ψ(z) = (ψ1(z), . . . , ψN(z))T . We record the dynamics at a sequence of
M phase space points z(1), . . . , z(M). These points can be obtained from a time
series if the approach is used as a data analysis tool, or as a sample from a suitable
distribution of points in phase space if the goal is to investigate the underlying
equations of motion (1). Glossing over details of the underlying theory (see, for
example, [38, 22, 21, 24] and references therein), the fundamental quantity of
EDMD is an N ×N matrix

A = GH−1, (2)

which is constructed from the observations as follows

Gkl =
1

M

M∑
m=1

ψk(τ(z(m)))ψl(z
(m)) , (k, l = 1, . . . , N) , (3)

Hkl =
1

M

M∑
m=1

ψk(z
(m))ψl(z

(m)) , (k, l = 1, . . . , N) . (4)

Given the observations, the matrix A is an optimal representation of the dynamics
in terms of a finite-dimensional linear equation of motion in the following sense:
it is a least squares solution to AX = Y where X = [ψ(z(1)), . . . , ψ(z(M))] and
Y = [ψ(τ(z(1))), . . . , ψ(τ(z(M)))].1 For sufficiently large values of M and N the

1In order to see this, note that a solution to arg minA||AX − Y ||22 is given by A = Y X+,
where X+ is the Moore-Penrose pseudoinverse of X. The matrix A can be written as
A = (Y XH)(XXH)−1 if XXH is invertible, where XH denotes the conjugate transpose of
X. Furthermore, A = (Y XT )(XXT )−1 = GH−1, assuming that for each observable ψi there is

a ψj with ψj(z
(m)) = ψi(z(m)) for all z(m), which holds for the observables used in this paper.
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eigenvalues and eigenvectors of A determine the effective modes of the system.
Eigenmodes with eigenvalues on or close to the complex unit circle are the slow
modes which are relevant for macroscopic behaviour and the long term dynamics.

The matrix A can be linked to the linear operator governing the underlying
dynamics (1), the Perron-Frobenius operator, or its formal adjoint, the Koopman
operator. Previous investigations [24] have shown that in the limit of large N and
M the matrix A is, in a certain sense, a suitable matrix representation, provided
strong technical conditions are met. These conditions, however, may be difficult
to verify in concrete applications.

Numerical results show that EDMD can often be applied successfully as a
practical algorithm and indicate that output data (for example, eigenvalues of
A) exhibit nice convergence properties. We will prove that this is indeed the case
for a suitable class of dynamical systems, which will be introduced in the next
section.

3 EDMD for analytic maps

Let us consider a full branch analytic expanding map2 T : I → I on an interval,
say I = [0, 2π]. Using the canonical mapping ϕ 7→ z = exp(iϕ) this map can be
viewed as a map τ in the complex plane leaving the unit circle T = {z ∈ C :
|z| = 1} invariant. The map τ will be analytic on T, provided that the branches
of the original map T on [0, 2π] satisfy matching conditions at the endpoints, and
will thus have an analytic extension to an open annulus A containing T. This
means that τ admits a Laurent series on A which, on the unit circle, coincides
with the Fourier series expansion of the original interval map T . Moreover, the
Fourier coefficients will decay exponentially (see, for example, [8, Lemma 5.6]).
This last property is one of the crucial ingredients that will allow us to define the
evolution operators on sufficiently nice function spaces, as discussed below. The
second crucial ingredient is the expansivity of the map, by which we mean that
|τ ′(z)| > 1 for all z ∈ T. For the remainder of this and the next section we shall
assume that the map τ : T→ T satisfies the following two conditions:

(i) τ is analytic on T;

(ii) infz∈T|τ ′(z)| > 1.

The fine statistical properties of the map τ are captured by the Perron-
Frobenius operator (or transfer operator), which describes the forward evolution

2Let P be a finite partition of a closed interval I, that is, a finite collection of closed intervals
{I1, . . . , IJ} with disjoint interiors such that

⋃J
j=1 Ij = I. A transformation T : I → I is called

an analytic full branch map if Tj = T |int(Ij) is an analytic diffeomorphism and T (Ij) = I for

all j. The map T is called expanding if |T ′(x)| > 1 for all x ∈
⋃J

j=1 int(Ij).
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of densities under the action of the system. For analytic expanding (orientation-
preserving) circle maps, it takes the form

(Lf)(z) =
∑
j

φ′j(z)f(φj(z)), (5)

where φj denotes the j-th inverse branch of the analytic map τ . For instance,
for the simple Bernoulli shift map T (ϕ) = ϕ mod 2π, the corresponding circle
map reads τ(z) = z2 with the two inverse branches given by φ1(z) =

√
z and

φ2(z) = −
√
z.

The operator in (5) is naturally defined on L1(T), the positive elements of
which are interpretable as probability densities, but for convenience it is often
considered as an operator restricted to L2(T) so that Hilbert space methods can
be used. Its adjoint is known as the Koopman operator, which turns out to be
the operator of composition with the map τ . However, the Hilbert space L2(T) is
“fairly large” so that the spectrum of the bounded operator L is the entire closed
complex unit disc, with each point in the open unit disc being an eigenvalue of
infinite multiplicity (see, for example, [20, Remark 4.4]). Intuitively, the function
space L2(T) simply contains too many “non-physical” observables.

In order to capture the behaviour observed in a time series one often restricts
the set of observables, that is, one takes a suitable subspace of L2(T), so that
decay rates show up as isolated spectral points of the Perron-Frobenius operator.
In a sense such a restriction corresponds to the coarse graining used in statistical
mechanics when moving from a conservative microscopic to a dissipative hydro-
dynamic description [30]. An elementary illustration of this aspect can be found
for instance in [32].

Spectral convergence. In order to obtain strong spectral results for our setup of
analytic circle maps, a suitable class of observables is a space of analytic functions.
Following the approach in [6] we restrict observables to be analytic functions on
an open annulus A containing the complex unit circle with an L2-extension to
the boundary of A, the so-called Hardy-Hilbert space H2(A), see Appendix A for
precise definitions. As shown in [6], for any analytic expanding circle map τ the
associated Perron-Frobenius operator given by (5) considered on H2(A) is well-
defined and compact, which implies that it has a discrete spectrum of eigenvalues
which govern the correlation decay and the relaxation of analytic observables3.

In addition, the Perron-Frobenius operator can be effectively approximated
by a sequence of finite rank operators. For this consider an orthogonal basis of
the underlying Hardy-Hilbert space, for instance, the canonical (non-normalised)

3More precisely, every such τ can be analytically extended to an annulus A with inner and
outer radii r < 1 < R sufficiently close to 1. The spectrum of the corresponding Perron-
Frobenius operator is independent of the actual choice of radii r ∈ (r0, 1), R ∈ (1, R0) for some
r0 < 1 < R0.
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orthogonal basis ψm(z) = zm with m ∈ Z. The corresponding matrix elements
of the operator in (5) are then given by

Lkl =
1

2π

∫ 2π

0

ψk(τ(exp(iϕ)))ψl(exp(iϕ)) dϕ . (6)

These matrix elements with k, l = −N̄ , . . . , N̄ yield an N ×N matrix repre-
sentation of a finite rank approximation of the Perron-Frobenius operator, with
N = 2N̄ + 1. This approximation method is often referred to as Galerkin or
finite section method. Moreover, as we shall see below, in the context of EDMD,
expression (6) can be recognized as the limit of (3) for suitable choice of sampling
points. It has been shown in [6] that these approximations converge to the Perron-
Frobenius operator exponentially fast in operator norm. Hence, the eigenvalues of
the matrices of size N ×N approximate the spectrum of the infinite-dimensional
compact operator L as N tends to infinity. Moreover, convergence of the eigenval-
ues occurs at an exponential rate and explicit error bounds can be derived from
the general theory, see, for example [4]. In summary, a finite-dimensional matrix
approximation using (6) provides the spectrum of the compact Perron-Frobenius
operator and that of its adjoint.

More formally, the results can be stated as follows.

Let τ be an analytic expanding circle map, and L the corresponding Perron-
Frobenius operator, given by (5). Denote by {ψm}m∈Z with ψm(z) = zm the
canonical orthogonal basis in H2(A) and let PN be the orthogonal projection op-
erator onto the subspace spanned by ψ−N̄ , . . . , ψN̄ , where N = 2N̄ + 1.

(a) (Compactness of L)
The operator L is a well-defined, compact operator from H2(A) to itself.

(b) (Matrix representation)
A matrix representation of the finite rank operator PNLPN is given by (Mkl)k,l
with k, l = −N̄ , . . . , N̄ and Mkl = L−k,l as in (6).

(c) (Convergence in operator norm)
||L − PNLPN ||H2(A)→H2(A) = O(exp(−aN)) as N →∞, for some a > 0.

(d) (Eigenvalue convergence)
The spectrum σ(L) of L consists of at most countably many non-zero eigen-
values λn of finite multiplicity, with 0 the only possible accumulation point.

(i) If (λ(N))N∈N with λ(N) ∈ σ(PNLPN) is a convergent sequence, that is,
λ(N) → λ, then λ ∈ σ(L).

(ii) For every λ ∈ σ(L) there exists a sequence (λ(N))N∈N with λ(N) ∈
σ(PNLPN), such that λ(N) → λ.
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More precisely, for suitable enumerations λn with n ∈ N0 of the respective
non-zero eigenvalues (taking algebraic multiplicities into account) of PNLPN
and L, we have: for every n

|λn(PNLPN)− λn(L)| = O(exp(−aN)) as N →∞ (7)

for some a > 0.

For the proof, observe that (a) follows from [6, Proposition 3.4] and (c) is
implied by the proof of [6, Lemma 3.3]. Item (b) follows from a calculation
using duality (see, for example, [35, Lemma 2.3]) and the inner product (13) of
H2(A). Items (i) and (ii) of (d) are known as Properties U and L in [1], and
follow from Corollaries 2.7 and 2.13 therein, respectively. Finally, the exponential
convergence of eigenvalues in (7) is an immediate consequence of [1, Theorem
2.18] and the ensuing remarks, combined with (c).

In practical applications, a-priori error bounds for (7) can be computed explic-
itly using [4]. Moreover, it is possible to show that the (generalized) eigenspaces
of PNLPN converge exponentially to the corresponding (generalized) eigenspaces
of L in the so-called gap metric, see [1, Remark 2.16, Theorem 2.18] for precise
statements. Some useful information can be gleaned from the eigenvectors. It
is a standard result (see, for example, [2, Theorem 2.1]) that for the Perron-
Frobenius operator of an analytic expanding circle map τ , the only eigenvalue on
the unit circle is the simple eigenvalue 1, its eigenvector being the density of the
unique absolutely continuous invariant measure of τ . More generally, the uniform
convergence in the statement (c) above implies convergence of various spectral
data such as eigenprojections, singular values and the corresponding orthonormal
singular vectors.

The relation between Perron-Frobenius and Koopman operators. We have cho-
sen to present our results formulated for the Perron-Frobenius operator. A large
part of the literature on data-driven methods such as EDMD is based on the
study of the Koopman operator, given by Kf = f ◦ τ , which is the adjoint of
the Perron-Frobenius operator when viewed on L2(T). In order to obtain the
strong spectral convergence results described above, it was necessary to restrict
the domain of the Perron-Frobenius operator to the “smaller space” H2(A). This
space is densely and continuously embedded in L2(T), via the canonical embed-
ding J : H2(A) → L2(T) given by Jf = f |T. It is thus an example of a test
function space (see, for example, [37]), so that we have

H2(A) ⊂ L2(T) ' L2(T)′ ⊂ H2(A)′, (8)

where H2(A)′ is the topological dual4 of H2(A). The structure (8) is known as a
rigged Hilbert space or Gelfand triple (see, for example, [15] or [7]), which has been

4The topological dual H2(A)′ is the space of continuous linear functionals on H2(A)
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used in the context of dynamical systems to study spectral decompositions for
certain chaotic maps (see, for example, [5] and references therein). The (Banach
space) adjoint of the Perron-Frobenius operator L restricted to a “small space”
H2(A) can be identified with a Koopman operator extended to a “large space”
H2(A)′, on which it is compact.

Moreover, it turns out that in our setting of analytic expanding circle maps,
it is even possible to identify this extended operator on H2(A)′ with certain
Koopman operators acting on spaces of analytic functions. As was shown in [6],
the space H2(A)′ can be identified with the space of functions holomorphic on two
discs comprising the complement of the annulus A, denoted H2(Din)⊕H2

0 (Dout).
Consequently, the expression (6) also yields the matrix representation of the
Koopman operator on this space.

It might appear counter-intuitive that the spectrum of the Koopman operator
on the “small” space L2(T), being the entire closed unit disc, “shrinks” to the
set of (at most) countably many eigenvalues on a “larger” space H2(A)′, implied
by the compactness of the Koopman operator on H2(A)′. For this, note that
in general, the complement of the point spectrum of an operator can shrink as
its domain is extended. Moreover, while the spectra of adjoint operators have
to coincide, their eigenvalues need not. In particular, each λ in the open unit
disc (an eigenvalue of the Perron-Frobenius operator on L2(T)) is in the residual
spectrum of the Koopman operator K on L2(T), i.e. λI −K fails to be surjective.
By “enlarging” the domain, surjectivity can be restored, so that on the “large”
space H2(A)′, the residual spectrum vanishes. The eigenvalues of the Koopman
operator on L2(T), which in the case of expanding maps is just the simple eigen-
value 1, do of course persist on H2(A)′.

Spectral convergence for EDMD. The results above imply that for analytic
circle maps, EDMD has strong convergence properties and captures the spec-
trum of the associated Perron-Frobenius and Koopman operators. For a suitable
choice of sampling points z(m) the expression (3) estimates the matrix elements
(6), as established in [38] (see also [22] or [24]). For instance, when choosing
equidistant points on the unit circle, z(m) = exp(2πim/M), the expression (3)
converges exponentially in M to the integral (6), which follows immediately from
the exponential decay of Fourier coefficients. The matrix H in (4) takes account
of the orthonormalisation of the observables which was used in writing down the
matrix elements (6). Hence, EDMD with equidistant sample points applied to
analytic circle maps with analytic observables gives precisely the spectrum of
the corresponding compact Perron-Frobenius and Koopman operators. In other
words, as seen from (d) above, any eigenvalue of these operators is detected by

equipped with the topology of uniform convergence. Whereas H2(A) consists of analytic func-
tions with exponentially decaying Fourier coefficients, the space H2(A)′ is “fairly large”, that
is, on top of every function in L2(T) it also contains distributions or generalized functions, with
Fourier coefficients allowed to grow exponentially.

8



the EDMD algorithm, that is, it is approximated by a sequence of eigenvalues
obtained from the sequence of matrices A in (2). Conversely, the limit of a
convergent sequence of eigenvalues obtained from these growing matrices is an
eigenvalue of the Perron-Frobenius and Koopman operators. Lastly, the rate of
convergence is exponential.

Thus, EDMD singles out the physically observable decay rates and the cor-
responding dissipative modes. We will illustrate this result in the next section
by analytically solvable examples and extend some of the results for the use of
actual time series analysis.

4 Exactly solvable models

In order to illustrate the convergence properties of EDMD, analytic maps with
accessible point spectrum are needed. Although the Perron-Frobenius operator
and its adjoint are compact on Hardy-Hilbert spaces, computing their eigenvalues
remains a challenging task. The first nontrivial family of analytic maps with
explicitly computable spectrum has been identified in [35]. The family comprises
circle maps τ which analytically extend to a neighbourhood of the entire unit
disc (not just an annulus), that is, maps arising from Blaschke products. For
these maps, the entire spectrum of the Perron-Frobenius operator is determined
by fixed point properties of τ inside the unit disc [6].

To be more explicit consider a Blaschke product of degree two, given by

τ(z) =
z − µ
1− µ̄z

z − ρ
1− ρ̄z

, |µ|, |ρ| < 1, (9)

with two complex-valued parameters µ = |µ| exp(iα) and ρ = |ρ| exp(iβ), where µ̄
and ρ̄ denote the complex conjugates of µ and ρ, respectively. This map preserves
the unit circle, where (considered in angular coordinates) it induces a two-branch
interval map

ϕ 7→ 2ϕ+ 2arctan

(
|µ| sin(ϕ− α)

1− |µ| cos(ϕ− α)

)
+ 2arctan

(
|ρ| sin(ϕ− β)

1− |ρ| cos(ϕ− β)

)
(mod 2π) . (10)

The map (10) can be considered as an analytic deformation of the Bernoulli
shift map which is obtained for the choice µ = ρ = 0. The map τ is eventually
expanding5 on the unit circle if and only if [31, Propositions 2.1, 3.1] it has a
unique (attracting) fixed point z∗ = τ(z∗) in the unit disc, that is, |z∗| < 1. As
shown6 in [6], the powers of the multiplier τ ′(z∗) and their complex conjugates

5A map τ : T→ T is called eventually expanding if it has an iterate that is expanding.
6The results are stated for expanding Blaschke products, but can be extended to the even-

tually expanding case.
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are precisely the eigenvalues λn of the Perron-Frobenius operator

λ0 = 1, λ2n−1 = (τ ′(z∗))
n, λ2n = (τ ′(z∗))

n, n ∈ N . (11)

We use the map (9) to illustrate EDMD with a set of analytic observables.
An obvious choice is the set of the first N̄ Fourier modes, that is, {ψk(z) = zk :
−N̄ ≤ k ≤ N̄} using complex notation z = exp(iϕ). Furthermore, as mentioned
in the previous section we evaluate (3) and (4) for equidistant nodes on the unit
circle z(m) = exp(2πim/M) with m = 0, . . . ,M − 1. It is straightforward to
show that our observables are orthogonal in the sense that Hk` = δk,−` in (4), if
the number of nodes exceeds the number of observables, M ≥ N = 2N̄ + 1. It
remains to evaluate (3), for which we will consider maps of the form (9).

Let us first comment on the trivial parameter choice µ = ρ = 0, that is,
on the Bernoulli shift map. Clearly τ(z) = z2 has fixed point z∗ = 0 with
multiplier τ ′(z∗) = 0, so all eigenvalues of the Perron-Frobenius operator in (11)
apart from λ0 vanish. For the application of EDMD, equation (3) can be easily
evaluated to yield Gk` = δ−2k,`, as long as the number of nodes is sufficiently large,
that is, M ≥ 3N/2. Then the matrix A = GH−1 is given by Ak` = δ2k,` with
k, l = −N̄ , . . . , N̄ . Its eigenvalues are 1 (of multiplicity 1) and 0 (of multiplicity
2N̄). Thus, the eigenvalues of A coincide in fact with the leading part of the
exact spectrum given by (11), consisting only of the eigenvalue λ0 = 1.

For any non-trivial Blaschke map, the sums in (3) and the related finite-
dimensional eigenvalue problem need to be evaluated numerically. For that pur-
pose we set µ = ρ = 0.33 · exp(iπ/25), which results in a spectrum with a fairly
rich structure, so it can serve as a test for the efficiency of EDMD. Figure 1
shows the eigenvalues of A for M = 100 equidistant nodes, N = 11 and N = 21
observables compared with the exact expression (11). A set of N = 11 modes
are just sufficient to approximate the subleading complex eigenvalue pair (λ1 and
λ2 = λ̄1) while all the other values are spurious results. For a higher number of
modes, N = 21, about a quarter of the eigenvalues of A give reasonable estimates
of the correct spectrum. In particular, EDMD reproduces the leading part of the
spectrum of the compact Perron-Frobenius operator as asserted in Section 3.

The dependence of the numerical error on the order N of the eigenvalue
approximation is shown in Figure 2. As we want to disentangle the effect of
the two parameters, M and N , we take M large enough, M = 1000, so that
all matrix elements of the finite rank approximation PNLPN are estimated by
the sums (3) sufficiently accurately (see the discussion of spectral convergence of
EDMD at the end of Section 3). Hence any visible error is due to the finite mode
approximation. An exponential decay (in N) of the eigenvalue approximation
error is clearly observable.
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Figure 1: Complex plane with exact eigenvalues (open symbols) and approxi-
mation by EDMD with M = 100 equidistant nodes (full symbols) or by EDMD
applied to time series of length M = 5 · 104 (crosses) for the Blaschke product in
(9), with µ = ρ = 0.33 · exp(iπ/25) for N = 11 modes (left) or N = 21 modes
(right).
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Figure 2: Absolute error of the first five subleading complex-conjugate eigenvalue
pairs (λ2n−1, λ2n) computed by EDMD (with M = 1000 nodes) for a Blaschke
product (9), with µ = ρ = 0.33 · exp(iπ/25), as a function of the number of
observables N .

5 Discussion

We have shown that EDMD singles out eigenvalues of compact Perron-Frobenius
or Koopman operators arising in an analytic setting. Moreover, the algorithm
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converges at an exponential rate in the number of observables used for a suitable
choice of sampling points, as detailed below.

EDMD as a data analysis tool. So far we have focussed on equidistant points
in phase space to evaluate EDMD. In applications one normally resorts to an
actual time series. If we reconsider the setup used for Figure 1 but now take
nodes generated from a time series, that is, z(m) = zm = τ(zm−1), we still obtain
an accurate approximation of the spectrum of the Perron-Frobenius operator (see
crosses in Figure 1), as long as we minimise statistical fluctuations in the sums (3)
and (4) by taking a time series of sufficient length. In fact, a slight modification
of the arguments presented in Section 3 allows one to base the matrix elements
(6) on integrals with respect to the analytic invariant density instead of the
Lebesgue measure. Whereas the matrix entries in (6) change, the convergence
results remain unaffected7. In particular, EDMD exhibits the same convergence
in N , when used as a time series analysis tool.

As far as convergence in M is concerned, we recall that for equidistant nodes,
the sum in (3) converges exponentially to the integral in (6). The question of
convergence rate is more subtle when nodes are generated from a time series.
Establishing concrete error bounds is undoubtedly a difficult task; see however
an extensive survey [18], in particular its Theorem 16, which asserts algebraic
convergence in M for almost any initial condition.

One of the well-known limitations of EDMD is that it requires an a priori
good set of observables. In our experiments we have chosen the most natural
analytic observables on the circle, the Fourier basis. This is not the only possible
choice. An alternative could be a set of (suitable) radial basis functions, analytic
on a neighbourhood of the unit circle, which can be written as trigonometric
polynomials. Here again, the matrix entries in (6) change, while the convergence
results remain unaffected. However, a poorly chosen dictionary of observables
(for instance one not preserving the analytic structure) is likely to affect conver-
gence results and impact on the perfomance of the algorithm.

Convergence in M and N . Our approach is based on finite rank operators
represented by (6) converging in operator norm to a compact transfer operator.
The nodes used in EDMD, in (3) and (4), can naturally be considered as a sam-
pling of the corresponding integral. However, a rigorous estimate which involves
both quantities, M and N , appears to require taking the limit of large M first.
This may in fact not be necessary. While the approach so far was based on us-
ing orthogonal projectors, one can in fact directly link the matrix representation
involving sums with a compact transfer operator by employing non-orthogonal

7For a suitable density ρ, the appropriate Perron-Frobenius operator (with identical spec-
trum) is given by L̂f = ρ−1L(fρ), defined on a Hardy-Hilbert space with adapted inner prod-
uct. The results in Section 3 then hold for L̂, with appropriately chosen basis and projection
operators. In EDMD this change of basis is accounted for by the matrix H−1 in (2).
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projectors arising from collocation methods. It may thus be possible to show
convergence for the case of M and N of the same order. Some discussion for the
case M = N in a different setting can be found in [24].

Higher-dimensional extensions and multifractal properties. So far one may
object that we have enforced an analytic setting and that the results are not
really surprising as the maps do not allow for any complex multifractal behaviour.
This is in fact not correct as analyticity is only required for the actual equation
of motion, whereas the relevant invariant measure itself could be singular with
respect to the phase space volume. In order to demonstrate this phenomenon,
we resort to analytical solutions of two-dimensional hyperbolic diffeomorphisms
which allow for fractal invariant measures if the Jacobian is not constant. The
presence of contracting and expanding directions requires using more involved
function spaces, that is, a particular class of anisotropic Hilbert spaces, for which
rigorous statements on spectral data of evolution operators are possible (see, for
example, [36] for technical details). We illustrate our point by considering an
analytic deformation of the cat map given by (ϕ1, ϕ2) 7→ (ϕ′1, ϕ

′
2) with

ϕ′1 =2ϕ1 + ϕ2 + 2arctan

(
|µ| sin(ϕ1 + ϕ2 − α)

1− |µ| cos(ϕ1 + ϕ2 − α)

)
,

ϕ′2 = ϕ1 + ϕ2 + 2arctan

(
|µ| sin(ϕ1 + ϕ2 − α)

1− |µ| cos(ϕ1 + ϕ2 − α)

)
,

(12)

where µ = |µ|eiα is a complex parameter with |µ| < 1 and α ∈ [0, 2π). This map
is an analytic hyperbolic diffeomorphism of the torus, which for µ = 0 reduces to
the cat map (ϕ1, ϕ2) 7→ (2ϕ1 +ϕ2, ϕ1 +ϕ2). For non-vanishing µ, the physical in-
variant measure is singular with respect to phase volume with the corresponding
invariant density exhibiting fractal properties, see Figure 3 (right). Employ-
ing more elaborate machinery one can show that the corresponding Koopman
operator is compact on a suitable anisotropic Hilbert space (see [36] for simi-
lar results). Moreover, the eigenvalues are determined by quantities associated
with the fixed points of the map (12) in complex polydiscs, and are of the form

λ1 = 0, λ2n−1 = (−µ)n, λ2n = (−µ)
n
, n ∈ N. Applying EDMD in this setting

reproduces the leading part of the exact spectrum, see Figure 3 (left). Rigorous
proofs of these statements will be presented elsewhere.

Altogether we have compelling evidence that convergence of EDMD points
towards an underlying compact operator structure which determines the effective
degrees of freedom in a complex dynamical setting.
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Figure 3: Complex plane (left plot) with exact eigenvalues (open symbols) and
approximation by EDMD (full symbols) applied to an analytic deformation of the
cat map (12) with µ = −0.6−0.55i. Data obtained from EDMD with N = 11×11
Fourier modes and M = 201×201 nodes on a square lattice. Density plot (right)
illustrating the invariant measure for the map (12) for the same parameter values.

Appendix

A Hardy-Hilbert spaces on annuli

In this section, we review basic definitions and facts about Hardy-Hilbert spaces
on annuli, for more details see [33]. For 0 < r < 1 < R < ∞ let A be the open
annulus

A = Ar,R = {z ∈ C : r < |z| < R}
and write Hol(A) for the space of holomorphic functions on A. The Hardy-Hilbert
space on A is defined as

H2(A) = {f ∈ Hol(A) : sup
ρ↘r

Sρ(f) + sup
ρ↗R

Sρ(f) <∞},

where Sρ(f) = (2π)−1
∫ 2π

0
|f(ρeiϕ)|2dϕ is the integral mean on the circle of radius

ρ, i.e. on Tρ = {z ∈ C : |z| = ρ}. Any function in H2(A) can be extended to the
boundary in the following sense: there are f ∗1 ∈ L2(Tr) and f ∗2 ∈ L2(TR) with
limρ↘r f(ρeiϕ) = f ∗1 (reiϕ) and limρ↗r f(ρeiϕ) = f ∗2 (Reiϕ) for a.e. angle ϕ. The
space H2(A) is a Hilbert space with inner product

(f, g)H2(A) =

∫ 2π

0

f ∗1 (reiϕ)g∗1(reiϕ)
dϕ

2π
+

∫ 2π

0

f ∗2 (Reiϕ)g∗2(Reiϕ)
dϕ

2π
. (13)

For instance, for a simple choice of f(z) = zk and g(z) = zl the inner product
(13) easily evaluates as

(f, g)H2(A) = (r2k +R2k)(f, g)L2(T).

14



This relation shows how the inner products on H2(A) and L2(T) are related, with
the scaling factor just contributing to a trivial similarity transformation.
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[30] I. Prigogine, F. Mayné, C. George and M. De Haan, Microscopic theory of
irreversible processes, Proc. Nat. Acad. Sci. USA 74 (1977) 4152–4156.

[31] E. Pujals and M. Shub, Dynamics of two-dimensional Blaschke products,
Ergod. Th. & Dyn. Sys. 20 (2008) 575–585.

[32] W.C. Saphir and H.H. Hasegawa, Spectral representation of the Bernoulli
map, Phys. Lett. A 171 (1992) 317–322.

[33] D. Sarason, The Hp spaces of an annulus, Mem. Am. Math. Soc 56 (1965).

[34] P.J. Schmid, Dynamic mode decomposition of numerical and experimental
data, J. Fluid Mech. 656 (2010) 5–28.

[35] J. Slipantschuk, O.F. Bandtlow and W. Just, Analytic expanding circle maps
with explicit spectra, Nonlinearity 26 (2013) 3231–3245.

[36] J. Slipantschuk, O.F. Bandtlow and W. Just, Complete spectral data for
analytic Anosov maps of the torus, Nonlinearity 30 (2017) 2667–2686.

[37] Z. Suchanecki, I. Antoniou, S. Tasaki, and O. F. Bandtlow, Rigged Hilbert
spaces for chaotic dynamical systems, J. Math. Phys. 37 (1996) 5837–5847.

[38] M.O. Williams, I.G. Kevrekidis, C.W. Rowley, A data-driven approximation
of the Koopman operator: extending dynamic mode decomposition, J. Nonl.
Sci. 25 (2015) 1307–1346.

[39] R. Zwanzig, Ensemble method in the theory of irreversibility, J. Chem. Phys.
33 (1960) 1338–1341.

17


