Fiber Type Profile and its Relation to Wilks Coefficient in Both Male and Female Powerlifters

STEVEN B. MACHEK, PAUL S. HWANG, THOMAS D. CARDACI, DYLAN T. WILBURN, ANDREW J. GALPIN, JAMES R. BAGLEY, & DARRYN S. WILLOUGHBY

¹Exercise & Biochemical Nutrition Laboratory; Department of Health, Human Performance and Recreation; Baylor University; Waco, TX ²Biochemical and Molecular Exercise Physiology Laboratory; Department of Kinesiology; California State University, Fullerton; Fullerton, CA ³Muscle Physiology Laboratory; Department of Kinesiology; San Francisco State University; San Francisco, CA

Category: Doctoral

Willoughby, Darryn (Darryn_willoughby@baylor.edu)

ABSTRACT

While powerlifters tend to display higher fast-twitch fiber content, it is unknown if this content predicts competitive performance via Wilks coefficient. Purpose: to 1) compare the myosin heavy chain (MHC) fiber type (FT) profiles between powerlifters and sedentary controls of both sexes, and 2) determine if fasttwitch fiber content predicts Wilks coefficient. **Methods:** Twelve actively competing powerlifters (PL; n=6M/6F; age=21±1.0y; 3.0±1.8y competing; 7.3±6.6 meets attended) and ten sedentary controls (CON; n=5M/5F; age=19.4±2.0y) underwent vastus lateralis muscle biopsies, with samples analyzed for MHC isoform content via mixed homogenate SDS-PAGE. Individual MHC isoform differences between group and sex were analyzed using a 3x2x2 (FT [MHC I, IIa, & IIx] x group [PL & CON] x sex [male & female]) ANOVA and MHC IIa content was compared to Wilks coefficient using Pearson correlation coefficient at p < 0.05. Results: Male PL MHC isoform distribution was $50\pm6\%$ I, $45\pm6\%$ IIa, and $5\pm11\%$ IIx, vs $46\pm6\%$ I, 53±6 IIa, and 0% IIx in PL females. Conversely, male CON MHC distribution was 33±5% I, 38±7% IIa, and 30±8% IIx, vs 35±9% I, 44±8% IIa, and 21±17% IIx in CON females. Analysis revealed a significant FT main effect (p<.001; n2=.773), as well as significant FT x group (p<.001; n2=.552) and FT x sex (p=.025; n2=.127) interaction effects with no other significant main or interaction effects. When sex-collapsed, pairwise comparisons indicated MHC I and IIa content did not significantly differ within PL, while MHC IIx proportion was significantly lower than either isoform (p<.001). Within CON, MHC I proportion did not differ from MHC IIa nor IIx isoforms; however, MHC IIa content was significantly greater than MHC IIx (p<.001). The proportions of both MHC I (p<.001) and IIa (p=.021) were significantly higher between PL groups, while MHC IIx content was significantly greater in CON (p<.001). When group-collapsed, pairwise comparisons revealed in either sex that MHC I and IIa content did not significantly differ, while MHC IIx content was significantly lower (p<.001). Interestingly, females had significantly greater MHC IIa content vs males (p=.04). Pearson correlation analysis revealed a non-significant, low negative correlation between MHC IIa content and Wilks coefficient (r =-.288; p=.364). Conclusions: These results illustrate powerlifters have higher MHC I and IIa proportions, as well as lower MHC IIx content compared to sedentary controls. While overall limited by sample size, MHC IIa content does not appear to be a significant predictor of powerlifting Wilks coefficient, suggesting this characteristic alone does not define powerlifter skill variations.