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Abstract 

Sequential pattern mining is an important task in data mining. Its subproblem, clickstream pattern 

mining, is starting to attract more research due to the growth of the Internet and the need to analyze 

online customer behaviors. To date, only few works are dedicately proposed for the problem of mining 

clickstream patterns. Although one approach is to use the general algorithms for sequential pattern 

mining, those algorithms’ performance may suffer and the resources needed are more than would be 

necessary with a dedicated method for mining clickstreams. In this paper, we present pseudo-IDList, a 

novel data structure that is more suitable for clickstream pattern mining. Based on this structure, a 

vertical format algorithm named CUP (Clickstream pattern mining Using Pseudo-IDList) is proposed. 

Furthermore, we propose a pruning heuristic named DUB (Dynamic intersection Upper Bound) to 

improve our proposed algorithm. Four real-life clickstream databases are used for the experiments 

and the results show that our proposed methods are effective and efficient regarding runtimes and 

memory consumption. 
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1. Introduction 

Pattern mining is a practical problem, as it discovers useful and interesting patterns among chaotic 

data. Sequential pattern mining, first proposed in Agrawal and Srikant [1], is one of the most popular 

variants of pattern mining. Its task is to mine all frequent sequential patterns whose frequencies of 

appearance are equal to or larger than a minimum threshold in sequence databases. Many researchers 

have developed algorithms for this problem or its variants [2-10], and have been applying them to 

various domains, ranging from analyzing and mining patterns such as the purchases of customers [11], 

learner result predictions [12], and learning resource recommendations [13], to analyzing clickstream-

type patterns [14-20] such as DNA sequences, event sequences or clickstream sequences on online 

stores. These algorithms can be categorized into two main groups based on the representative data 

structure they use, which are a horizontal or vertical data format. Some of the basic and well-known 

algorithms in the horizontal format group include GSP [21], FreeSpan [22] and PrefixSpan [23], of which 

PrefixSpan is considered the most effective. For the vertical format group, well-known examples 

include SPADE [24], SPAM [25] and the recently improved version CM-SPADE [26]. According to a 

number of earlier works [24-26], the vertical format group has advantages with regard to calculating 

supports without costly database scans and has very good overall performance. Moreover, CM-SPADE 

was proved [26] to be one of the most efficient of these algorithms regarding runtimes. 

Clickstream analysis is of interest to website owners, as it can help them analyze the browsing 

behaviors of online customers. Although many vertical format algorithms have been proposed for 

pattern mining, most of them focus on mining (general) sequential patterns, in which a sequence 

contains many transactions and each transaction contains many items. However, each transaction in 

a clickstream sequence only contains one item. Hence, using vertical general algorithms (e.g. CM-

SPADE) that are meant for sequential pattern mining to mine clickstream patterns would require more 

resources than necessary with a dedicated approach, and cause a potential decline in performance. 

The reason is that vertical format algorithms tend to repeatedly copy and store duplicate data. For 

example, CM-SPADE uses a bitmap to represent where a pattern appears in the database in a 

sequence. While the algorithm is processing, CM-SPADE tends to copy and store a part or the whole 

of this bitmap multiple times to represent data for other patterns. On small databases, the maximum 

memory consumption can be handled, as the duplicate data usually occur at a low rate. However, on 

large databases the maximum memory requirements to run vertical algorithms can grow out of hand, 

as the duplicate information occurs frequently and can take up a large amount of memory. The reason 

is that the search space is extremely large and the vertical format group uses a generate-candidate-

and-test approach, which requires large numbers of pattern candidates to be generated. Before the 

algorithm can test and determine the candidates to discard, the algorithm first stores all of the 

candidates' information in the memory. The more candidates there are, then the more likely that 

duplicate information will be obtained, and this can greatly increase the memory requirements. 

Additionally, large numbers of the generated candidates do not exist in databases and many of them 

are discarded when the mining algorithms are used. The runtime for creating and storing the 

information needed to test the candidates can be quite long, so reducing the number of candidates 

can significantly reduce this. The challenges here are to find a way to reduce the duplicate information 

to ease the memory problem and to reduce the number of candidates generated to improve the 

runtime for the vertical algorithms that are used for clickstream pattern mining on large databases. 

In this paper, we address the issues outlined above with our proposed data structures and pruning 

heuristic. Our contributions are as follows: 

 



• We propose a novel data structure named pseudo-IDList that is more suitable for mining 

clickstream patterns. This avoids copying repetitive data and instead uses indices to obtain 

data for new patterns from existing data. Based on this data structure, we propose CUP 

(Clickstream pattern mining Using Pseudo-IDList), a vertical format algorithm, for mining 

clickstream patterns. 

• We propose a pruning heuristic named DUB (Dynamic intersection Upper Bound constraint) 

to effectively prune candidates. Following this, we propose an implementation technique that 

uses bitmaps for the heuristic. The implementation dynamically shrinks the bitmaps based on 

the proposed pseudo-IDList. 

• We perform an experimental evaluation of our proposed methods on four real-life clickstream 

databases and prove that CUP and DUB are effective. 

 

The rest of the paper is organized as follows. We present some related works in Section 2. Section 

3 presents some definitions, existing concepts and the problem of clickstream pattern mining. 

Section 4 describes our proposed algorithm, data structures and pruning heuristic in detail. Section 

5 deals with experiments and discussions, while the last section is devoted to our conclusions and 

future work. 

 

2. Related works 

The first variant of pattern mining was frequent itemset mining proposed by Agrawal et al. [27]. 

Following this, the authors extended the previous problem to introduce the problem of sequential 

pattern mining [1]. As sequential pattern mining started to gain more attention from researchers, 

many effective algorithms were developed. They can be categorized into two main kinds: the 

horizontal or the vertical data formats. 

 

Table 1 An example of a horizontal clickstream database. 

 

The first group uses a horizontal database (e.g. Table 1) in which each row is assigned information 

about a sequence id as well as a list of positions where the pattern appears in the sequence. The 

most popular algorithms in this family are GSP [21], FreeSpan [22] and PrefixSpan [23]. FreeSpan 

uses a frequent item matrix to keep track of frequent items and reduces the size of the databases 

gradually. With each time the databases are reduced (in what are known as projection processes), 

the frequent patterns grow in size, while the reduced databases become smaller and the database 

scans faster. PrefixSpan is an improved version of FreeSpan that uses a prefix projection method, 

and has been developed into more advanced algorithms. For example, Kessl [28] developed a 

parallel algorithm based on PrefixSpan and probabilistic load balancing. 



The second group uses a vertical database format (e.g. Fig. 1) in which each item or pattern has an 

individual data structure to indicate the sequence in which the item or pattern appears and its 

position in the sequence. In general, this group has a better overall performance than the first 

group [26]. Some of the popular algorithms in this family include SPADE [24], SPAM [25], PRISM 

[29], and more recently CM-SPAM and CM-SPADE [26]. SPADE [24] is one of the early and efficient 

algorithms in the vertical family. It is based on the concept of equivalence class and the 

decomposition of sublattices to divide the entire lattice into separate pieces; each piece can then 

be fitted into computer memory to be calculated. Ayres et al. [25] proposed the SPAM algorithm, 

which introduced a depth-first search strategy to generate pattern candidates by extending a node 

with either an item or a new itemset. Additionally, SPAM uses bitmap data structure to store 

position information of patterns and encode a given vertical database as vertical bitmaps. PRISM 

[29] uses a special version of vertical databases based on primal block encoding. More recently, 

Fournier-Viger et al. [26] proposed a data structure called CMAP (i.e. a co-occurrence map), which 

stores co-occurrence information across a given database to help discard redundant candidates 

more efficiently. CMAP is integrated it into SPAM and SPADE to make two improved algorithms, 

CM-SPADE and CM-SPAM. The improved algorithms have been reported as offering significant 

performance improvements over previous state-of-the-art methods. 

In some cases, some other requirements during mining are needed by users. Hence, researchers 

have begun to find more ways to include or alter the requirements of frequent patterns. One 

interesting approach is to apply multiple constraints or adding weights. For example, the 

approaches in Van, Vo and Le [2], among other works [30-34], include constraints such as inter-

constraints, weight constraints or maximal constraints. Sometimes, users may want to discover a 

certain number of top patterns, thus instead of relying on minimum thresholds researchers 

proposed methods to select the top-k frequent patterns [35,36]. Alternatively, instead of mining 

normal patterns, users may want a more compact patterns, such as closed patterns [37,38], which 

may contain information about more than one normal pattern, or generators [39,40], which are 

the smallest subsequences that characterize groups of sequences in a sequence database. 

Problems that are also considered related to clickstream pattern mining are frequent substring 

mining, n-gram extraction, and skip-gram extraction. Frequent substring mining and n-gram 

extraction can be seen as consecutive clickstream pattern mining, as the patterns do not allow 

skips or gaps, as in the original clickstream mining. For example, considering a genome sequence 

ABDABCABDA, a frequent substring pattern can be one of AB, ABD, or BDA but not ABA nor ADA. 

There are also distinct characteristics between frequent substring mining and n-gram extraction. 

First, the support count of frequent substring patterns is the number of occurrences of the 

patterns, unlike clickstream mining, which has its support calculated by the number of user 

clickstreams that contain the patterns. Similarly, the support of patterns in n-gram extraction is 

the number of documents that contain the n-gram patterns, in which if we consider a document a 

user clickstream then the support count formula is the same as in clickstream mining. 

There are several notable works on substring mining [4147]. In Vilo [41], the author proposed a 

method that constructs suffix tries by scanning the string databases. The suffix tries contain 

information on substrings and their support. In De Raedt et al. [42] and Lee and De Raedt [43], two 

algorithms called VST and FAVST were proposed based on version space trees, which are a special 

version of suffix trees. Those earlier algorithms, however, are theoretically reported as space 

inefficient. Therefore, later works aim to reduce space usage. For example, the work in Fischer, 

Heun, and Kramer [44] used suffix arrays instead of suffix trees or version space trees, while 

Fischer, Makinen, and Valimaki [45] proposed multiple optimizations for suffix arrays to further 



reduce the space use. Additionally, some authors extended the problem of substring mining to suit 

certain needs in real-world problems, such as finding approximate substring patterns instead of 

fully matching [47] or finding substrings in uncertain sequence databases [46]. For n-gram mining, 

there have been works such as Berberich and Bedathur [48], and Utama and Distiawan [49], in 

which the aim is mining n-gram in large databases. In the former [48], the authors proposed 

SUFFIX-s, which is an algorithm that is tuned for MapReduce. In the latter [49], the authors 

proposed Spark-gram, which is an algorithm based on the SUFFIX-s. Spark-gram is adapted to run 

on Spark for faster mining of short n-grams with a lower threshold. 

Skip-grams are a special type of n-gram that allow skip elements, but these must be defined. Van 

Gompel and van den Bosch [50] used the term skip-gram for fixed-length n-grams with skip 

elements and flex-gram for dynamic length ones. For example, the pattern A*D*B is a skip-gram 

with two skip positions that are denoted by “*’’. If * is strictly a single element, then it is called a 

skip-gram, otherwise, if * denotes a group of elements, then the skip-gram is a flex-gram. Skip-

grams and flex-grams are important for skip-gram modeling, which is a form of machine learning 

for natural language processing. However, to the best of our knowledge, there has never been a 

real method to extract frequent skip-grams and flex-grams. The reason is that the models often do 

subsampling of the text for the skip-grams and cannot really take the frequency of the patterns 

into account due to the large size of training data and the iterative process of model training. 

However, if we somehow can extract those frequent skip-grams along with their frequencies and 

integrate them into the model training process, perhaps they can improve the models’ 

performance. 

Clickstream pattern mining has become important because of its wide range of real-life 

applications (e.g. web log analysis, intrusion detection); however, most previous works apply 

existing general sequential pattern algorithms to mine such patterns. For example, Cooley, 

Mobasher, and Srivastava [14], and Demiriz [15] used general sequential pattern algorithms to 

discover interesting clickstream patterns in user browsing behaviors, while Ting et al. [16] analyzed 

the unexpected clickstream patterns of users to support and improve website design. Setiawan 

and Yahya [51] sequential rules mined from event logs and used them to analyze human behaviors 

during the production process of software factories. Law et al. [52] incorporate sequential pattern 

mining in their proposed methods for recursive event sequence, which is a type of clickstream 

sequence, to support query analysis. In healthcare and clinic, there are some works such as [53] or 

[54] that used clickstream mining as a part of their proposed visual analytic techniques. Their 

propose methods enabled on-demand analytics, interactive visualization, and exploratory analysis 

of clinical events to help patients’ medical conditions. In the security domain, Pramono [18], and 

Lee and Stolfo [55] built a detection classifier based on the association rules generated from 

frequent clickstream patterns in system calls . However, there are a few works that proposed 

algorithms targeting clickstream patterns. For example, Dalmas [17] proposed TWINCLE to mine 

patterns in rich event log databases to help optimize organizational processes. More recently, Van, 

Yoshitaka, and Le [19] proposed the MWAPC and EMWAPC algorithms to specifically mine web 

access patterns with a super-pattern constraint. In the current paper, we thus put more focus on 

exclusive approaches for mining clickstream patterns with the proposed data structures and 

pruning heuristics. 

3. Problem definitions 

In this section, we define the problem of clickstream pattern mining and present some related 

definitions. 



Let I = {i1, i2,..., in} be a set of integer values and each value represents an event (e.g. a click on a 

website’s URL), a clickstream (sequence) X = <x1, x2,..., xm) is a sequence of events, where xi ∈ I. An 

event can appear more than once in the same sequence at various positions. The event’s location 

denotes the order in which the event happens. The number of events in a clickstream denotes the 

length of the clickstream, and the clickstream with a length k is called a k-clickstream. 

Let X = <x1, x2,..., xk-1, xk) and Y = <y1 y2,..., yj—1, yj) be two clickstream, X ⊑ Y indicates that Y is a 

super clickstream of X or X is a sub-clickstream of Y if there exists integers 1 ≤ t1 < t2 < • • • < tj ≤ j 

such that x1 = yt1, x2 = yt2,...,xj = yti. A clickstream Z = <z1, z2,..., zk—1) is called a (k — 1)-prefix of X if 

x1 = z1, x2 = z2,..., xj—1 = zj—1. In other words, Z is also a sub-clickstream of X and X = <Z, xk). 

A user clickstream is a clickstream generated by a user via various actions such as browsing the 

internet or navigating folders on a computer. A clickstream database CDB is a collection of user 

clickstreams, each of which is assigned with a UCID (user clickstream id) (Table 1). A (clickstream) 

pattern is a subclickstream of one or more user clickstreams. In other words, we can say that ‘‘the 

pattern appears in one or more user clickstreams’’, or ‘‘one or more user clickstreams contain the 

pattern’’. The support (count) of a pattern X, denoted by supcount(X), is the number of user 

clickstreams that are the pattern’s super clickstreams, i.e. supcount(X) = |{Y|∀Y ∈ CDB : X ⊑ Y}|. 

Given a minimum support threshold ϒ, a pattern X is frequent if its support is equal to or larger 

than ϒ, i.e. supcount(X) ≥ ϒ . A pattern candidate is a clickstream that is formed from two patterns 

that may or may not appear in the database that is being examined. 

The downward closure property states that all of the subsequences of a frequent sequence are 
also frequent. A clickstream is one kind of sequence, and thus this property can be used. This 
property also implies that: (1) All sub-clickstream patterns of a frequent clickstream pattern have 
their supports equal to or higher than the frequent pattern’s support. (2) Let X be a clickstream 
pattern and Y is an X’s super clickstream pattern. If SX and SY are two sets of user clickstreams that 
are super clickstreams of X and Y  respectively, Sy is a subset of SX (denoted by Sy ⊆ SX ). In other 
words, Y only appears in user clickstreams that contain X. The downward closure property is a well-
known heuristic for pruning candidates in previously existing algorithms. 
 
Problem definition. The problem of clickstream pattern mining is to find an entire set of frequent 
clickstream patterns that exist in a given clickstream database CDL and satisfy a minimum support 
threshold y . 
 

Example 1. Given the CDB in Table 1 and a minimum support threshold ϒ = 3, the user clickstream 

(with UCID = 200) is (b, e, f, f, c, f, b>. Clickstreams (b, c, b> and (e, c, f) are both subclickstreams 

of user clickstream 200 and are 3-patterns, whereas (f, e, f) is not. Pattern (b, c, b) appears in user 

clickstreams 100, 200 and 400, thus its supcount((b, c, b>) = 3. Pattern (e, c, f) only appears in user 

clickstream 200, thus its supcount((e, c, f>) = 1. (b, c, b) is a frequent clickstream pattern as its 

support = ϒ = 3, whereas (e, c, f) is infrequent because its support = 1 < ϒ = 3. 

 

4. The CUP algorithm 

In this section, we describe our proposed algorithm named CUP (Clickstream pattern mining Using 

Pseudo-IDList) and its components. Like most of the general sequential mining algorithms, CUP 

also uses the idea of traversing a sequence lattice in a depth-first search manner to enumerate the 

entire set of frequent patterns. However, most of the general sequential mining algorithms must 

copy repetitive data multiple times during execution, while our algorithm avoids this issue. 



Additionally, they only use a single type of IDList while we use two types of IDList, including the 

(semi-vertical) data IDList and pseudo-IDList. The former (whose variants are also used in CM-

SPAM and CM-SPADE) directly stores the position information of a pattern while the latter stores 

indexed data of the former and indirectly express the data of the pattern. In other words, pseudo-

IDList retrieves the actual data of a pattern via the data IDList. We also propose a tighter upper 

bound heuristic for pruning candidate patterns. Generally, the key mining processes of CUP 

(illustrated in pseudocode in Algorithm 2 in Section 4.5) contain the following main steps. 

 

- Step 1. Identifying frequent 1-patterns in a given horizontal database and transforming 

the horizontal database to a set of data IDLists (i.e. a vertical database as illustrated in Fig. 

1). Each data IDList holds the information necessary for frequent 1-patterns (more details 

of this are given in Section 4.1). 

- Step 2. Generating pattern candidates with length (k + 1) from two given frequent k-

patterns that share the same (k — 1)-prefix. Frequent 1-patterns are considered as sharing 

the 0-prefix (or an empty prefix). The proposed pruning heuristic (Section 4.3) is used right 

after this to discard redundant candidates. 

- Step 3. Creating data for the generated candidates and checking support values. Any 

candidate that does not satisfy the minimum support threshold y is discarded. We obtain 

their support via the proposed pseudo-IDList (Section 4.2) instead of scanning through the 

horizontal database. Each candidate is assigned with one pseudo-IDList and the pseudo-

IDList is created by joining data from two IDLists of its parents. Producing IDLists generally 

requires most of the processing time in the algorithm. The process then loops back at the 

generating candidate step (step 2) until no candidates can be found. 

 

4.1. (Semi-vertical) data IDList 

A (semi-vertical) data IDList is a data structure that records where a pattern appears in the horizontal 

database (i.e. which user clickstreams contain the pattern and in which positions the pattern appears). 

Following [24], the positions where the pattern appeared in a user clickstream are only recorded as 

the positions of the last item of the pattern. For example, given user clickstream 400 = (a, e, f, c, b, c, 

b) in Table 1 and a pattern (e, f, c), its position list would be (4, 6). A set of data IDLists is called a vertical 

database (Fig. 1). A data IDList contains the following elements: 

- P: a pattern which the data IDList records the position information in a database. 

- M: a lookup matrix with three columns {Data id, UCID, Position list}. UCID is its corresponding 

user clickstream id in the horizontal database. The position list contains positions where the 

last item of the pattern occurs in the user clickstream and it is ordered in ascending order. A 

data id is a locally assigned id for the corresponding (user) clickstream in the IDList. Different 

IDLists may assign different data ids for the same user clickstream in the database. The use of 

data ids is explained in Section 4.3. 

- The support supcount(P) is the number of row elements in M. 

 

If X is a super clickstream pattern of Y and the last event. in X is equal to the last event in Y, then for 
every clickstream that contains both X and Y, the position list of X, if it exists, is always a sub-list of the 
position list of Y. Additionally, the first element in X’s position list is always equal to or larger than the 
first element’s value in Y’s position list. For example, with two patterns X = ⟨c, b, c⟩, Y = ⟨b, c⟩ and using 



the example database in Table 1, we can see that the position list of X, which is ⟨6, 9⟩, is a sub-list of Y, 
which is ⟨2, 6, 9⟩. This property is thus exploited by our proposed pseudo-IDList in the next section. 
 

4.2. Pseudo-IDList 

A pseudo-IDList holds an index matrix. While the pseudo-IDList holds no actual position information of 

a pattern, it retrieves (actual) data and indirectly represents a data IDList for the pattern through a 

different data IDList with its index matrix. It includes the following elements. 

- P: a pattern which the pseudo-IDList records the location information in a database. 

- DIP (data IDList pointer): a pointer to a data IDList where it can retrieve the position data of P. 

The data IDList is always of that frequent 1-pattern whose value is equal to the last item in P. 

For example, if the pattern is (a, b, c) then DIP would point to the data IDList of 1-pattern (c). 

We only used frequent 1-patterns' data IDLists because every pseudo-IDList of k-pattern (k > 

1) can use the data from frequent 1-patterns' data IDLists. 

- M: an index matrix contains indices of the data IDList in three columns {Local id, Data id, Start 

index}. In a similar way to IDList, a local id is a locally assigned user clickstream id for the 

corresponding (user) sequence in this pseudo-IDList. A data id is a value that matches a 

corresponding data id in the data IDList. Given a position list PL corresponding to the local id 

in data IDList and a start index that is a location in the position list, the position list for the 

pattern P is a sub-list of PL that starts at the start index to the end of PL. 

- The support supcount(P) is the number of row elements in M. 

 

Fig. 1. Data IDLists of frequent 1-patterns (i.e. the vertical format database). 

 

While data IDLists are only created once for frequent 1-patterns at the start of the algorithm, the 

pseudo-IDLists are created for all possible pattern candidates throughout the mining process. This also 

means 1-patterns have both data IDLists and pseudo-IDLists while k-patterns (k ≥ 2) only have pseudo-

IDLists. The pseudo-IDList of frequent 1-patterns are created to unify the process of creating pseudo-

IDLists for k-patterns (k ≥ 2), as Algorithm 1 requires an input of two pseudo-IDLists of two frequent 

patterns. All pseudo-IDLists (Fig. 4) of frequent 1-patterns have a start index value equal to one, the 

value of local id matches the value of data id in the same row, and they both increase by one starting 

from one. Fig. 2 illustrates the pseudo-IDLists of two patterns and their corresponding data IDLists in 



Fig. 3. Fig. 5 illustrates how a pseudo-IDList retrieves data and represents the data IDList for pattern 

(a, c). 

Pseudo-IDList creation. In the vertical format group, e.g. (CM-)SPADE, producing the data IDList can 

repeatedly copy a part of a position list from the parent data IDList. Our proposed pseudo-IDList avoids 

this by using the data of existing data IDLists. To do this, the pseudo-IDList contains start indices of the 

position list in an existing data IDList. The procedure for creating a pseudo-IDList is also faster, because 

it does not repeatedly copy redundant information to the new candidate IDList. It therefore also 

reduces the runtime and memory footprint. The creation of a pseudo-IDList is described in Algorithm 

1. 

Example of creating a pseudo-IDList. Assume that we have the patterns X = (a, a and Y = (a, c), their 

respective index matrices in pseudo-IDLists are denoted as MX and MY (Fig. 3) and the matrices of data 

IDLists that DIP in X and Y’s pseudo-IDLists points to are denoted as DIP_MX and DIP_MY. DIP_MX and 

DIP_My are in fact the matrix M in data IDLists of patterns (a) and (c) in Fig. 1. In order to obtain the 

pseudo-IDList for pattern Z = (a, a, c), we do the following steps, as in Algorithm 1. 

- We initialize the local id counter local_idZ for MZ to 1 then we start to iterate both matrix MX 

and MY. The first row in MX is {local_idX, data_idX, start_indexX} = {1,1, 2} and in MY is {local_idY, 

data_idY, start_indexY} = {1, 1, 2}. 

- As data_idX = 1 and data_idY = 1, we look for the row in DIP_MX that has data id = 1, which is 

{Data id = 1, UCID = 100, Position list = (3, 4,11)}, and get the UCID = 100 value in that row to 

assign to UCIDX. Similarly, for DIP_MY, we have UCIDY = 100 as the row {Data id = 1, UCID = 

100, Position list = (2, 6, 9)} has data id = 1. 

- Because UCIDX = UCIDY = 100, the rows contain duplicate information. We start searching for 

the start index of duplicate information. 

- We have pos_listX = (3, 4,11) and pos_listY = (2, 6, 9) as both of them are the position lists in 

the rows with data id = 1 in DIP_MX and DIP_MY respectively. Because start_indexX = 2, we 

start at the second element in pos_listX, which is eX = 4. We then go through pos_listY to see 

which element has values greater than eX . Starting with the second element in pos_listY 

(because we have start_indexY = 2), we have eY = 6. Because eY = 6 > eX = 4, the second element 

in pos_listY is the start index of the duplicate information of the first row in MZ in the pseudo-

IDList of Z. Thus, we have start_indexZ = 2. We add a row {local_idZ, data_idY, start_indexZ} = 

{1,1, 2} to MZ and increase local_idZ to 2. 

- We move to the second row in both MX and MY. Repeating the previous steps, we have UCIDX 

= 300 and UCIDY = 400. Because UCIDX = 300 < UCIDY = 400, we move to the third row in MX 

while we are still in the second row in MY . We now have UCIDX = 500 and UCIDY = 400, but 

UCIDX = 500 > UCIDY = 400 and thus we should move to the third row in MY. However, there 

are no rows left in MY so the loop searching for duplicate information stops. 

- After this, we have a pseudo-IDList of Z consisting of the following elements: DIP points to data 

IDList of (c) and Mz = ({1, 1, 2}. 

 

4.3. Dynamic Intersection Upper Bound Constraint Pruning Heuristic (DUB) 

Let X and Y be two frequent clickstream patterns, and P1 = (X, lastY) and P2 = (Y, lastX) be two candidates 

generated from X and Y. Let SX and SY be sets of user clickstreams that contain X and Y, respectively, 

and let S∩ = SX n SY. 

Theorem 1 (Dynamic Intersection Upper Bound Constraint (DUB)). The number of sequences in the 

intersection set S∩, denoted as supcount(S∩), is greater or equal to the support count of either P1 or P2; 



i.e. supcount(S∩) ≥ supcount(P1) and supcount(S∩) ≥  supcount(P2). This is considered a tighter upper 

bound than the downward closure property where supcount(X) ≥  supcount(S∩) ≥  supcount(P1) and 

supcount(Y) ≥  supcount(S∩) ≥  supcount(P2). 

Proof. Let Z be a (k — 1)-prefix that is shared by both X and Y. We can formulate that P1 = (Z, lastX, lastY) 

and P2 = (Z, lastY, lastX), X = (Z, lastX) and Y = (Z, lastY). If a user clickstream contains P1 or P2, consequently 

X = (Z, lastX) and Y = (Z, lastY) must obviously be included in the same user clickstream. 

Fig. 2. Supposed-to-be data IDLists of some frequent 2-patterns that share prefix (a). 

 

Fig. 3. The respective pseudo-IDLists of frequent 2-patterns in Fig. 2. 



 

Fig. 4. Pseudo-IDLists of respectively frequent 1-patterns in Fig. 1 

Fig. 5. Data retrieval of a pseudo-IDList of pattern (a, c). The first row of the pseudo-IDList of (a, c) will search in the first row 

of data IDList of pattern (a). The start index in the first row is 2, so it retrieves the position (6, 9) of the full list (2, 6, 9). 

Similarly, the second row in the pseudo-IDList has start index of 1, so it retrieves the full position list (4, 6). 



Algorithm 1. Pseudo-IDList creation. 

 

 

 



 

A user clickstream in S∩ must contain both X and Y but it does not state whether lastX appears after or 

before lastY. In a case VC e S∩, lastX always appears before lastY (which means C always contains the 

candidate X), then supcount(S∩) = supcount(X). However, C may not always contain X because it does 

not guarantee that lastX would always appear before lastY for every C. Thus, supcount(S∩) > supcount(X) 

and similarly, supcount(S∩) ≥ supcount(Y). 

 

Fig. 6. An example of DUB, where we join DUB bitmaps of (a, a) and (a, b) to create an intersection bitmap. From this, we 

can find the supcount(Sn) for DUB. 

 

Implementation. The basic idea here is to use a bitmap to represent a set of user clickstream ids in 

which a frequent pattern appears. Each user clickstream id corresponds to a true bit in the bitmap. As 

such, the intersection set S∩ = SX n SY can be quickly obtained by the doing operator AND on two 

bitmaps representing SX and SY. 

Naturally, we can use bitmaps with fixed sizes that are proportionate to database sizes. However, while 

this may work well on small and normal size database, it would cause bad performance and a high 

memory footprint on large databases. For example, given a database with one million user 

clickstreams, every bitmap used for DUB must contain one million bits although only a part of the 

bitmap contains true bits, which is the pseudo-IDList for DUB. As mentioned in the downward closure 

property, a pattern appears in sequences that also contain the pattern’s subsequences. Since prefixes 

are a special type of subsequence, patterns with the same prefix must also appear in the same 

sequences containing the prefix. With this assumption, we can use the bitmaps to represent the sets 

of sequence ids based on the local (user clickstream) ids of their parents (instead of using UCID). 

Because pseudo-IDLists shrink over time, those bitmaps also shrink over time, thus reducing the 

memory needed and improving the heuristic performance. The bitmaps are created during the pseudo-

IDList creation. For optimization, the local sequence id column of each data or pseudo-IDList can be 

removed when all the necessary bitmaps are created, thus saving memory. 

Using DUB. We can use check if new candidates violate DUB and discard them during the candidate 

generation step. If the new candidates do not satisfy DUB, then they are not frequent patterns and 

thus the later steps (i.e. creating pseudo-IDLists and checking support) are unnecessary. (Fig. 6) 

 

4.4. Candidate generation 

To generate candidates, we use a similar method to that of (CM-)SPADE. Specifically, given two 

frequent k-patterns X and Y that share the same (k — 1)-prefix, let lastX and lastY be the two events of 

X and Y respectively. If lastX is not the same as lastY then a set of two candidates are generated, which 



is {(X, lastY), (Y, lastX)}. Otherwise, the set only contains one candidate {(X, lastY)}. This step also includes 

the pruning heuristic that we introduced earlier. 

 

4.5. The CUP algorithm 

In this section, we describe CUP in pseudocode in Algorithm 2 and give a running example using the 

database CDB in Table 1 and a minimum support threshold y = 3. The entire lattice of patterns is 

illustrated in Fig. 7. 

Step 1. We scan the horizontal database once to identify the frequent 1-pattern set, which is {(a), (b), 

(c)} with the respective support {4, 5, 3}. Data IDLists and pseudo-IDLists of these are also created 

during the database scan. 

 

Table 2 Summary of databases for experiments. 

 

Step 2. We generate a pattern candidate set {(a, a), (a, b), (a, c)} that shares the 1-prefix (a) by 

combining (a) with (a), (a) with (b) and (a) with (c). Partial candidate sets {(b, a)} and {(c, a)} that 

respectively share 1-prefix (b), (c) are also created simultaneously during the combination. Those sets 

are completely built after we backtrack from traversing (a) and its children. After this, we apply DUB 

to filter the candidate set of (a). The intersection supports are respectively {3, 4, 2}. We discard 

candidate (a, c) of (a) because its intersection support = 2 < y = 3. Consequently, we also discard 

candidate (c, a) of (c) because it shares the same intersection support = 2 as (a,c). 

Step 3. As the candidate set of (a), which is {(a, a), (a, b)} is passed to this step, we construct pseudo-

IDLists for these candidates based on the pseudo-IDList of (a) and (b). After constructing this, the 

supports of the two candidates are identified as {3, 4}, both of which > y .As CUP operates in a depth-

first search manner, we repeat back to step 2 and use those two frequent 2-patterns to generate 3-

candidates. However, those 3-candidates are infrequent, and thus no more candidates can be 

generated on this branch. We backtrack to step 2 and complete the full candidate set of (b) then (c). 

The algorithm stops after no more candidates can be found in the (c) branch. 

 

5. Experimental results 

In this section, we describe the setups and environments for running experiments as well as report on 

the results of a performance comparison. The algorithms are CUP (our baseline proposed algorithm 

with pseudo-IDList and data IDList), CUP+DUB (in which we integrate our pruning heuristic DUB to CUP) 

and two existing algorithms, PrefixSpan [23], CM-SPADE [26] and SPAM [25]. Based on Fournier-Viger 

et al. [26], PrefixSpan and CM-SPADE are very effective for sequential pattern mining. We would like 

to use PrefixSpan to represent the horizontal format group and CM-SPADE to represent the vertical 



format group, as they are the most effective algorithms among their groups. Additionally, CM-SPADE 

is the state-of-the-art algorithm and uses a similar concept to IDList, which can be used to compare 

with ours. Besides runtime (Fig. 8) and memory consumption (Fig. 9), we also report the effectiveness 

of our DUB heuristic based on the number of candidates it discards for each database (Table 3). 

We implement the algorithms in Java language, and the tests are carried out on Windows 10 64 bit 

edition and JDK 8. The hardware specification includes 2.2 GHz Intel I7 8750H (with the Turbo Boost 

function deactivated for more stable runtimes) and 16 GB RAM. CM-SPADE and PrefixSpan are 

obtained via the SPMF package [56]. We use a version of PrefixSpan which was implemented in 2016 

in the SPMF package, as it was optimized to be better than the previous version 2008 in the same 

package. We also collect four real-life clickstream databases via SPMF site for our performance 

benchmark. The description of each database is given in Table 2. For optimization reasons, we also 

integrate the CMAP data structure [26] to prune candidates in the baseline CUP algorithm. The way 

we execute the experiments is to run all algorithms on all test databases while decreasing the minimum 

support threshold y until one of the algorithms takes too long to execute. 

 

Fig. 7. The lattice of patterns corresponding to the example database. 

 

Performance comparison. On all test databases, CUP(+DUB) outperform SPAM, PrefixSpan and CM-

SPADE in terms of execution time, while CM-SPADE runs faster than PrefixSpan on FIFA, Kosarak, and 

MSNBC. SPAM has the highest runtime among the four algorithms, and it cannot run on Kosarak due 

to exceeding the allowed memory. On large databases (Kosarak and MSNBC), CUP(+DUB) runs 

noticeably faster than the other two. When minimum support thresholds are high, not many frequent 

patterns are produced; the differences in runtime among the four algorithms are small. However, as 

the minimum support threshold gets smaller, the gaps in runtimes get bigger. The runtimes of 

PrefixSpan and CM-SPADE also increase dramatically at a faster rate. The reason why CUP(+DUB) works 



well is that pseudo-IDLists do not have to do copy operators for redundant data, and it instead this 

method only produces indices on existing data IDLists. Regarding the memory consumption, CM-

SPADE has the highest because it stores repetitive data. CUP(+DUB) uses less memory than PrefixSpan 

on two databases, FIFA and Kosarak, and roughly the same amount on BMS2. On MSNBC, CUP(+DUB) 

uses more memory than PrefixSpan at high minimum support thresholds, but it gradually comes close 

to PrefixSpan at lower minimum support thresholds. This indicates the effectiveness and efficiency of 

memory consumption and runtime of pseudo-IDLists. CUP(+DUB) manages to achieve good runtimes 

while still being able to maintain low memory consumption. 

Even though the mining process of CM-SPADE and CUP have several similar steps, different IDList data 

structures make CUP perform much better than CM-SPADE. For CM-SPADE, their IDLists are hashtables 

that containing tuples of {UCID, Bitmap}. The hash key is UCID and its value is a bitmap. The bitmap is 

an array of bits, in which each true bit represents a location of the pattern in the user clickstream. The 

required space is m + nbl for a single IDList in a perfect condition and with a perfect hash function, 

where m is the number of sequences and nbl is the sum of all the 32 bit blocks used in all the bitmaps. 

However, in practice, more than m + nbl space is required when we use the available hashtable data 

structure in Java. Additionally, collisions can occur when inserting new tuples into the CM-SPADE's 

IDLists, and when the hashtables (i.e. IDLists) are full they need to expand and rehash. When this 

happens, the runtime can increase. Using the bitmap representation of position lists also has its 

disadvantages. To represent a single position, we sometimes must use a whole bitmap with 

unnecessary empty bits. For example, considering a position list with a single position (122), we need 

a bitmap with 128 bits to represent that position, which is four times the amount of space of a single 

integer value. It also means that the bitmap iteration for the mentioned case may also take up four 

times longer to carry out. SPAM also suffers from this issue. 

 

Table 3 Amount of candidate reduction and runtime reduction when DUB is integrated into CUP. 

 

 

Regarding CUP, given that there are two frequent patterns P1 and P2, of which the respective pseudo-

IDList Plist1 and Plist2 contain m and n numbers of rows. In the algorithm, each row holds a start index 

to a position list of data IDList. Based on this start index, we can retrieve a part of the position list from 

the start index to the end of the list. Assume that the numbers of position elements that Plist1 and 

Plist2 retrieve are M and N, and let P3 be a candidate pattern that is formed from P1 and P2. Creating a 

new pseudo-IDList Plist3 for P3 requires O(M + N) in runtime at most. For space complexity, each 

pseudo-IDList only takes 2 * k numbers of memory blocks constantly, where k is the number of rows 

in the pseudo-IDList and each block is assumed to be 32 bits. Whereas, if we use a data-IDList instead 

of pseudo-IDList, the space requirements would be higher than or at most equal to 2 * k. The reason 

is that each row in a data IDList stores every position of the patterns in a user clickstream and the UCID, 

while the pseudo-IDList only stores the start index to the data-IDLists of frequent 1-patterns and the 

UCID. 



DUB effectiveness. The experimental results also indicate the effectiveness of our proposed pruning 

heuristic. CUP+DUB runs even faster than CUP as DUB reduces the workload by reducing the number 

of candidates generated. The details of candidate reduction and runtime improvement are provided 

in Table 3. The numbers of candidates generated are roughly cut down by 40% to 50% on three 

databases, FIFA, Kosarak, and MSNBC, depending on the minimum threshold values. The highest 

reduction is on BMS2, where it goes up to 70%. The runtime reduction using DUB varies, but it tends 

to increase as the minimum support threshold approaches lower values and becomes stable after 

certain support thresholds. 

 

Algorithm 2. The CUP algorithm 



Specifically, it reduces from a minimum of 13% on Kosarak (at the highest value of minimum support 

threshold for the database) to a maximum of 39% on FIFA (at the lowest value of minimum support 

threshold for the database). The memory consumption does not really increase when adding DUB into 

CUP. On FIFA, it even reduces memory consumption. The reason is that even DUB requires a little extra 

memory allocation for bitmaps to execute DUB. The extra required memory is marginal, and it also 

gets smaller as the algorithm progresses due to the characteristics of DUB and shrinkable size of 

bitmaps. Meanwhile, DUB also discards many pseudo-IDLists of infrequent candidates from being 

created, and thus the memory saved from the discarded pseudo-IDLists makes up for the memory used 

for bitmap allocation. 

Scalability. To date, there is no synthetic clickstream database generator for our problem. Thus, in 

order to study the algorithms' scalability (i.e. the way the algorithms react to changes in database size), 

we reuse two large databases from previous experiments, which are MSNBC and Kosarak. Specifically, 

we start with subsets of MSNBC and Kosarak with the size of 200,000 user clickstreams, then we 

increase the subset size to 400,000 and so on. During this process, we fix the minimum support 

threshold at 0.09% for Kosarak and 0.02% for MSNBC. The scalability experiments are presented in 

Figs. 10 and 11. The results show that our proposed algorithms together with CM-SPADE and 

PrefixSpan have steeper linear growth rates in runtimes when databases are slightly small (from a 

database size of 200,000 to 600,000). After that, the runtimes’ growth rates get smaller. In terms of 

memory consumption, on Kosarak, our proposed algorithms have smaller and smoother growth rates, 

while PrefixSpan and CM-SPADE’s growth rates are steeper at early changes of database sizes. On 

MSNBC, the memory consumptions of all algorithms have a small growth rate. 

 

Fig. 8. Runtime for four databases. 

  



Fig. 9. Memory consumption for four databases. 

 

Fig. 10. Runtime when the size of the database changes. 

Fig. 11. Memory consumption when the size of the databases changes.  



6. Conclusions and future work 

Clickstream pattern mining has various potential applications, but there has been a lack of studies 

focusing exclusively on this issue. In this paper, we proposed an algorithm called CUP which uses 

pseudo-IDLists that exploit some properties of clickstreams to tackle this problem. Additionally, we 

also proposed a pruning heuristic named DUB to improve the performance of the CUP algorithm. Our 

experiments prove that CUP is generally faster than PrefixSpan and CM-SPADE, and is memory 

effective on large databases as it does not need to copy redundant data over to pseudo-IDLists of 

generated candidates. Furthermore, DUB improves the runtime further from 13 to 45% depending on 

the databases and minimum support thresholds used. In future work, we plan to parallelize CUP(+DUB) 

and adapt them to general sequential patterns as well as quantitative and incremental databases. We 

will also expand our work for mining closed sequential patterns and maximal sequential patterns. 
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