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B. Abstract 

Interactions between the cortex and the thalamus are essential for major brain 
functions such as sensory information processing and integration, sleep and wake 
regulation and cognitive processes. The thalamic reticular nucleus (TRN) is 
strategically positioned within the thalamocortical circuit and has a strong inhibitory 
control over the thalamus. It can act on a global scale, such as suppressing the flow of 
sensory information from the thalamus to the cortex during sleep. The TRN also acts 
locally on the activity of single cells or small cell groups. To reconcile both of these 
global and local aspects of TRN functions, we studied the cellular, synaptic and 
functional heterogeneity of the TRN, with a focus on the comparison between the 
classical sensory TRN and the less well-described limbic TRN. 

In study 1, using anatomical tracing and cellular electrophysiology, we identified the 
dorsal presubiculum (dPreS), the retrosplenial cortex (RSC) and the anterior thalamic 
nuclei (ATN) as part of a novel thalamo-cortical circuit involving the limbic TRN in mice. 
The dPreS, RSC and ATN are three key structures for spatial navigation. dPreS/RSC 
excitatory glutamatergic synapses formed on TRN and ATN are part of a feedforward 
circuit through which TRN-mediated inhibition generates large burst-mediated 
inhibitory synaptic currents. The PreS/RSC afferents to the TRN showed driver-like 
characteristics, which is unprecedented for corticoreticular synapses and expands the 
scope of the TRN heterogeneity to the nature of its synaptic afferents. We further 
investigated the role of the limbic TRN in the control of head-direction neurons that 
were previously described to be located in the anterodorsal thalamus. The width of the 
tuning curve of head-direction neurons in the thalamus was broadened upon 
chemogenetic silencing of the TRN, revealing a novel form of internal sensory gating 
by the TRN. About half of the head-direction neurons showed action potential 
discharge patterns consistent with feedforward inhibitory responses upon light 
activation of dPreS/RSC. These data suggest that the limbic TRN sharpens the tuning 
of thalamic head-direction neurons under dPreS/RSC control. Finally, we investigated 
the potential function of the limbic TRN in the hidden version of the Morris watermaze. 
We discovered that chemogenetic silencing of the limbic TRN biased the search 
patterns towards allocentric strategies and generated perseverance to previously 
learned escape positions, suggesting an impairment of the egocentric system in which 
the head-direction system plays a critical role.  

In study 2, we combined opto-tagging of TRN sectors with in vitro electrophysiological 
recordings and discovered that the limbic TRN neurons produced less repetitive burst 
firing than their sensory counterpart. The burst discharge of sensory TRN neurons is 
known to generate sleep spindles that propagate to the cortex, that are a marker of 
sleep quality and that correlate with memory consolidation. Consistently, local field 
potential recordings in the prefrontal cortex that is related to the less bursty limbic TRN 
revealed smaller amplitude and slower sleep spindles compared to sensory ones, 
making the heterogeneity of the TRN a critical player in local sleep rhythms. 

This thesis summarizes elements supporting the heterogeneity of the TRN, in 
particular between the sensory and the limbic TRN. It also provides a novel function 
for the limbic TRN in the spatial navigation system. 
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C. Résumé 

L’interaction entre le cortex et le thalamus est essentielle aux fonctions majeures du 
cerveau telles que le traitement et l’intégration des informations sensorielles, la 
régulation du sommeil, de l’éveil et la cognition. Le noyau réticulé thalamique (TRN) 
est stratégiquement positionné dans les circuits thalamocorticaux et possède un fort 
control inhibiteur sur le thalamus. Il peut agir à un niveau global, par exemple en 
interrompant le flux d’information sensorielle du thalamus vers le cortex pendant le 
sommeil. Le TRN peut aussi agir de manière localisée sur l’activité d’une seule cellule 
ou d’un petit groupe. Afin de réconcilier ces aspects globaux et locaux du 
fonctionnement du TRN, nous avons étudié l’hétérogénéité du TRN au niveau 
cellulaire, synaptique et fonctionnel, avec une attention particulière à la comparaison 
entre le TRN sensoriel classique et le TRN limbique qui est moins bien décrit.  

Dans l’étude 1, nous avons identifié, à l’aide de méthodes de traçage et 
d’électrophysiologie cellulaire, le présubiculum dorsal (dPreS), le cortex rétrosplénial 
(RSC) et les noyaux thalamiques antérieurs (ATN) comme faisant partie d’un circuit 
thalamocortical impliquant le TRN limbique chez la souris. Le dPreS, le RSC et les 
ATN sont des structures clés dans le système de navigation spatiale. Les synapses 
excitatrices glutamatergiques du dPreS/RSC sur le TRN et les ATN font parties d’un 
circuit dans lequel l’inhibition médiée par le TRN génère de larges courants 
synaptiques inhibiteurs. Les afférences du PreS/RSC vers le TRN ont montré des 
caractéristiques de driver, ce qui est sans précédent pour les synapses entre le cortex 
et le TRN et étend l’hétérogénéité du TRN à la nature de ses afférences synaptiques. 
Nous avons poussé l’investigation du rôle du TRN limbique sur le control des neurones 
d’orientation présent dans le thalamus anterodorsal. Le blocage du TRN induit un 
élargissement de l’arc de cercle pour lequel un neurone d’orientation du thalamus 
s’active, révélant une nouvelle forme de control de l’information sensorielle interne par 
le TRN. Environ la moitié des neurones d’orientation montre une activité électrique 
consistante avec une inhibition disynaptique lors de l’activation du dPreS/RSC. Ces 
données suggèrent que le TRN limbique affine la précision des neurones d’orientation 
du thalamus sous le control du dPreS/RSC. Finalement, nous avons investigué le rôle 
potentiel du TRN limbique dans une tâche d’orientation : le labyrinthe d’eau de Morris. 
Nous avons découvert que le blocage du TRN limbique biaise les schémas de 
navigation des souris en faveur de stratégies allocentriques et génère de la 
persévérance au niveau de la zone d’échappatoire précédemment apprise. Ces 
résultats suggèrent un déficit du système égocentrique dans lequel les neurones 
d’orientation jouent un rôle critique.  

Dans l’étude 2, nous avons combiné le marquage lumineux des différents secteurs du 
TRN avec des enregistrements électrophysiologiques in vitro et découvert que les 
neurones du secteur limbique du TRN produisent moins de salves de potentiel d’action 
que les neurones des secteurs sensoriels. Ces salves des neurones sensoriels du 
TRN génèrent les fuseaux du sommeil qui se propagent au cortex et sont un marqueur 
de la qualité du sommeil et de la consolidation de la mémoire. De manière consistante, 
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les enregistrements des champs de potentiel locaux dans le cortex préfrontal connecté 
au TRN limbique ont révélé que les fuseaux du sommeil dans ce cortex ont une 
amplitude et une vitesse réduites en comparaison des fuseaux dans les cortex 
sensoriels. L’hétérogénéité du TRN semble donc être critique pour la génération locale 
des rythmes du sommeil.  

Cette thèse rassemble les éléments qui supportent l’hétérogénéité du TRN et qui 
peuvent être à la base des spécificités fonctionnelles du TRN limbique en comparaison 
du TRN sensoriel. Cette thèse fournit aussi une nouvelle fonction du TRN limbique 
dans le système de navigation. 
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D. Aim  

The thalamic reticular nucleus (TRN) has been known for decades to act as the 
guardian of the gate that controls the information flow between the thalamus and the 
cortex at two principal levels. On a global scale, the TRN reduces sensory information 
flow to the cortex during non-rapid-eye-movement sleep (NREMS). Locally, the TRN 
controls neuronal activity of single cells or small cell groups in the thalamus that form 
receptive fields for sensory information. The vision of the TRN as a monolithic structure 
that serves as a global switch for vigilance state is not compatible with these local 
aspects of the TRN. Recent technological advances have uncovered many TRN 
subnetworks that differ in cellular identities, efferent and afferent connectivities, and 
activity patterns during sleep and wakefulness. These could hence play distinct roles 
in sensory processing and attention, sleep oscillations, but also in novel cognitive 
processes still to be discovered. Currently, addressing the heterogeneity of the TRN 
has proven highly successful in advancing the functional understanding of a brain area 
historically considered as a uniform element. 

This thesis aimed to provide novel insights into the heterogeneity of TRN function 
through asking two main questions: 

1) What is the origin and function of synaptic afferents to the anterior portion of the 
TRN? How do they help refine and revise the classic definition of this nucleus 
in the gating of information flow? 

2) What is the role of cellular and circuit heterogeneities of TRN for sleep? 

I pursued these aims through anatomical tracing of afferents to the TRN, 
electrophysiological recordings in vitro and in vivo combined with optogenetic and 
chemogenetic approaches to assess synaptic function and tackled the function of the 
TRN through behavioral assessment. Both projects presented in this thesis aimed to 
provide solid cellular and synaptic data that would allow to probe the role of TRN 
heterogeneity in its function as a gating element and as a pacemaker for sleep rhythms. 
I have done so first through identifying a synaptic pathway that controls the limbic 
sector of the TRN and linked it to the spatial navigation system. Second, I have 
contributed to identify a heterogeneity of TRN burst propensity across sensory and 
limbic sectors of the TRN. In this thesis, I discuss how these experimental results 
integrate and expand the current views of the TRN. My thesis emphasizes that the 
brain also needs to gate internal sensory information such as the head-direction signal 
and that the TRN has an important say in the local organization of sleep at the cortical 
level. 
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E. Introduction 

Prelude: the brain as an information-processing machine. 

There is consensus that one of the major driving forces for the evolution of a central 
nervous system was to exert a centralized control over the whole body that allows rapid 
and coordinated responses to the ever-changing environment. Fundamental reflexes 
do not require the cortex to be involved. For examples, the pupil contracts upon 
exposure to intense light and the muscles reposition themselves upon percussion of a 
ligament without the need of cortical processing. However, in order to respond to 
complex sensory inputs, the brain evolved as a very complex structure in which 
sensory information can be enhanced, suppressed, refined, compared to expectations 
and memories and modified according to behavioral needs (hunger, thirst…), internal 
states (motivation, anxiety, sleepiness…) or environmental contexts.  

To bring together all these different requirements for information processing, the brain 
evolved into multiple anatomically distinct structures (Brodmann, 1909). These 
segregated structures are dedicated to single functional modalities (Sporns et al., 
2000). Briefly, the region dedicated to vision is located in the occipital lobe while 
audition and touch are in the temporal lobe. The sensory information flows from the 
external sensory organs in the periphery, to the thalamus and then to the cortex, which 
form a linear hierarchical system onto which different other brain areas can impose 
their “contextual” information. The frontal regions of the cortex are dedicated to motor 
information, as well as executive function, planning and reasoning. The cerebellum is 
dedicated to complex movement, balance and posture. 

Cortico-cortical connections allow the different cortices to communicate and integrate 
multisensory information. However, some phenomena cannot be explained solely 
through cortico-cortical interactions. For example, the cortex is capable of generating 
expectations that alter the perception of the sensory world. Cortical areas processing 
integrated information feedback onto simpler pathways, down the hierarchy of 
complexity. An expected stimulus, such as hearing one’s own voice, generates a much 
lower activity in the auditory cortex than the voice of someone else. Schizophrenic 
patients are believed to have a dysfunction of this so-called efferent copy mechanism, 
which is probably one of the causes for the auditory hallucination from which these 
patients suffer, as they hear their own voice as if it was the voice of someone else.  

The thalamus and the thalamic reticular nucleus (TRN) are two subcortical structures 
that are particularly relevant for fundamental operations of the sensory processing. 

The thalamus is the relay center of the brain, which distributes sensory information to 
the cortex. Most of the sensory inputs perceived by external sensory organs are 
brought to the thalamus via a few synaptic relays within modality-specific spinal and/or 
brainstem nuclei. Conversely, cortical outputs also feedback onto the thalamus. The 
thalamus can thus be considered as the “Gate” to the cortex for sensory information 
(bottom-up relay) and as a hub for sensory processing (using top-down modulation). 
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The interconnections between the thalamus and the cortex are called thalamocortical 
circuits. They form parallel loops mostly dedicated to a single sensory modality. Within 
these loops, the TRN, strategically positioned between the cortex and the thalamus, 
receives afferents from both. The TRN contains inhibitory neurons that project only to 
the thalamus thus controlling the sensory information flow reaching the cortex, 
resulting in the TRN getting the nickname of “Guardian of the Gate” (Crick, 1984). 
Indeed, the TRN can promote or inhibit part of the thalamus through a cellular 
mechanism involving a post-inhibitory rebound (Steriade et al., 1993). Its action can 
extent on a global scale, suppressing sensory inputs overall during sleep, but also on 
a local scale such as the sharpening of sensory receptive field of a single thalamic 
neuron (Crabtree, 2018). Beyond this basic on-off mode, however, the TRN also allows 
the attentional selection of a modality in a complex environment with conflicting 
sensory inputs (Wimmer et al., 2015). This shows that the guardian role of the TRN is 
not limited to that of a neuronal barrier-like element, but it may be relevant to execute 
higher cognitive demands on organizing and selecting the quantity and quality of 
information that reaches the cortex. 

The mechanisms through which TRN acts are still investigated and even some of the 
most elementary questions remain unanswered. The different sensory modalities are 
anatomically segregated in the cortex, thalamus and TRN. Then, how do 
thalamocortical circuits coordinate the different modalities? Are there circuit 
specificities for some modalities compared to others, in particular in the TRN? What 
are the modalities processed by the recently described limbic TRN?  

This thesis aims to contribute to these questions, capitalizing on modern neuroscience 
techniques that allow to characterize and probe heterogeneous cellular and synaptic 
properties of the TRN. Discovering specificities in molecular marker expression, 
cellular function and circuit properties of the TRN will unravel how different TRN sectors 
control the flow of information through the thalamus and maybe reveal insights into the 
underlying mechanisms.  
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Chapter 1. The Thalamic Reticular Nucleus 

Gross anatomical organization and morphology 

The Thalamic Reticular Nucleus (TRN) was identified as a structure between the 
thalamus and the white matter of the interna capsula already in 1889 and received the 
name «nucleus reticularis» in 1902 (Kölliker, 1889; Münzer and Wiener, 1902). 

The TRN is found in most mammals: human, monkey, ferret, cat, rabbit, rat, mouse 
(Scheibel and Scheibel, 1966; Spreafico et al., 1991; Clemence and Mitrofanis, 1992; 
Lübke, 1993; Berezhnaya, 2006; Zikopoulos and Barbas, 2006). TRN-like structures 
have also been described in non-mammalian species such as the caiman crocodilus 
(Pritz, 2018), turtle (Testudo horsfieldi) (Kenigfest et al., 2005) and zebrafish (Mueller, 
2012), suggesting that interposed thalamic gating circuits have evolutionarily 
conserved origin.  

The TRN is a shell-shaped nucleus that surrounds the dorsal and lateral portion of the 
thalamus. It is positioned between the internal capsule laterally, the external medullary 
lamina medially, the zona incerta ventromedially and the ventrolateral geniculate 
nucleus posteriorly (Fig. 1) (Scheibel and Scheibel, 1966).  

The TRN is composed of GABAergic neurons (Houser et al., 1980) and projects 
exclusively to the thalamus (Jones, 1975). The TRN is the main source of thalamic 
inhibition in most mammals as the presence of thalamic interneurons is sparse (Arcelli 
et al., 1997).  

 

Figure 1. Scheme of a coronal mouse brain section at bregma -1.06 mm showing the 
anatomical position of the TRN. Adapted from The Mouse Brain in Stereotaxic 
Coordinates 3rd Edition  Franklin & Paxinos. 
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The TRN in brain circuits: types and organization of afferents and efferents 

Here, I briefly list the origin and characteristics of afferent inputs into the TRN. I pay 
particular attention to describe the organization of these afferents within the TRN. This 
anatomical information provides a first idea of the sectorial organization of TRN and of 
its differential role in treating distinct types of thalamic information. This section also 
serves to define the major structures, electrophysiological properties of neurons and 
functional aspects that form the basis to the next, more specialized chapters. For the 
purpose of avoiding excessive citations, I base my references in this chapter on 
exhaustive reviews of the topic composed by leading scientists in the field. 

Afferents to TRN can be generally subdivided into 1) afferents mediating sensory 
information flow that ultimately engages the cortex 2) modulatory afferents arising 
subcortically that bring in contextual information, such as that related to vigilance states 
3) novel afferents that have been described mostly anatomically. 

1) Afferents related to sensory information flow 

Thalamic afferents. It is classically considered that the TRN receives glutamatergic 
driver inputs from projections neurons of the thalamus called thalamocortical (TC) 
neurons. The thalamocortical neurons are excitatory neurons that project primarily to 
the layer 4 of their related cortex (Fig. 2). On their way to the cortex, they send 
collaterals to the TRN. The thalamus is classically subdivided into three groups of 
nuclei: the principal or relay nuclei that convey the sensory information, the association 
or higher-order nuclei that principally receive cortical afferents and are involved in 
relaying information between cortical areas, and the midline and intralaminar thalamic 
nuclei defined by their anatomical position and their projection to cortical and 
subcortical structures. This organization of the thalamic nuclei can be related to the 
organization of the sectors of the TRN. Indeed, the thalamoreticular circuits are 
organized in a parallel manner, with a single thalamic nucleus projecting to a restricted 
sector of the TRN and the TRN projecting back to the same thalamic nucleus 
(Crabtree, 2018). 

Cortical afferents. The TRN receives glutamatergic modulator inputs from the cortical 
layer 6 neurons called corticothalamic (CT) neurons. These CT neurons project to their 
related thalamic nucleus and send collaterals to the TRN (Fig. 2). The cortical 
innervation of the TRN largely overlaps with the thalamic one, at least in sensory 
sectors, further reinforcing the sectorial organization of the TRN (Desîlets-Roy et al., 
2002). These afferents from CT neurons onto the TRN and TC neurons show that top-
down input from areas at higher levels of processing feedbacks onto lower ones. 
Cortical afferents from layer 5 to the TRN are, for the first time, now described for motor 
cortex, and I participated in the functional characterization of these L5-TRN synapses 
in vitro (Hádinger et al., 2019). 
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Figure 2. Schematic drawing of a thalamocortical network. Thalamic relay cells (green) 
receive sensory inputs and send projections to the cortical layer 4 and collaterals to 
the TRN. The cortex (blue) receives thalamic afferents that project to layer 4 neurons 
and layer 6 neurons project back to the thalamic relay cells and send collaterals to the 
TRN. TRN neurons (red, nRt) receive afferents from both cortex and thalamus and 
send inhibitory projections to the thalamus. Neuromodulatory inputs synapse onto the 
thalamocortical network at all levels, including the TRN. Image by Thierry Bal, 1992. 

 

2) Modulatory afferents 

The TRN receives cholinergic, noradrenergic and serotoninergic afferents. So far, the 
detailed anatomy of their innervation patterns is not known and they seem to reach 
comparatively large portions of the TRN with similar densities (McCormick, 1992). 

Cholinergic afferents. The basal forebrain, pedunculopontine and laterodorsal 
tegmental nuclei send dense cholinergic projections to the TRN. Cholinergic input 
indicates that the TRN receives information related to arousal but also to the autonomic 
nervous system.  

Noradrenergic afferents. The TRN is also densely innervated by noradrenergic inputs 
arising from the locus coeruleus, further showing that arousal-related inputs may 
dictate TRN activity.  
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Serotoninergic afferents. A moderate to dense serotoninergic innervation is found 
throughout the TRN. This innervation is believed to arise from the nucleus raphe pontis 
and the dorsal raphe nucleus and might be a way that internal states influence TRN 
activity. 

3) Novel, mostly anatomically described afferents 

TRN has been shown to receive afferents from the substantia nigra pars reticulata 
(Paré et al., 1990), the Globus Pallidus (Hazrati and Parent, 1991), the lateral 
hypothalamus (Herrera et al., 2016) and the basolateral amygdala (Zikopoulos and 
Barbas, 2012; Clemente-Perez et al., 2017; Aizenberg et al., 2019). 

 

Efferent connections 

The TRN projections to the thalamus. The TRN projects to all the anterior, dorsal, 
intralaminar, posterior and ventral thalamic nuclei, although some differences seem 
present across species, with the cat TRN not projecting to the anterior thalamic nuclei 
(Paré et al., 1987). The majority of TRN neurons send their axons in parallel, following 
a topography with nearest-neighbor relationships that reflect their function as a major 
and systematic inhibitory regulator of the thalamus. TRN neurons with overlapping 
dendritic trees have overlapping axonal arbors whereas neighboring TRN neurons with 
non-overlapping dendritic trees project to adjacent areas (Pinault, 2004). Some TRN 
neurons can show axon collaterals projecting to a second related thalamic nucleus or 
a divergent axonal projection to intralaminar and midline nuclei. This indicates that the 
TRN might be able to combine more than one functional modality and allow the TRN 
to synchronize several thalamic regions during global brain operation or to favor some 
thalamic nucleus over the other during attentional processing. TRN projections to the 
thalamus form feedback inhibitory circuits with the thalamus (TCTRNTC) and 
feedforward inhibitory circuits with both cortex and thalamus (L6 CTTRNTC). The 
feedback inhibitory circuits are mainly forming open loops that result in lateral inhibition 
to thalamic projecting neurons (Fig. 3). It is generally assumed that the TRN projects 
only to the ipsilateral thalamic nuclei. However, there are anatomical reports of 
contralateral projections to thalamic nuclei across species (Paré and Steriade, 1993; 
Raos and Bentivoglio, 1993) and to the contralateral TRN in rat (Battaglia et al., 1994).  
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Figure 3. Illustration of the feedback (left) and feedforward (right) inhibitory circuits in 
the thalamocortical network. 

 

Intra TRN connections. The TRN neurons form cell clusters via gap-junctions. This 
electrical coupling of TRN neurons is present in both rat and mouse and plays an 
important role in the regulation of firing patterns within the TRN (Landisman et al., 
2002). This connection through gap junctions presents a heterogeneous organization 
as it is mostly found along the dorsoventral axis of the TRN (Deleuze and Huguenard, 
2006). The presence of intra-TRN GABAergic synapses has been reported in several 
studies in mice (Deleuze and Huguenard, 2006; Hou et al., 2016; Makinson et al., 
2017), ferrets (Sanchez-Vives et al., 1997; Shu and McCormick, 2002) and rats (de 
Biasi et al., 1986; Csillik et al., 2005a). These intra TRN connections are critical to 
control oscillatory activities generated in the thalamoreticular network during normal 
sleep and they may be relevant for activity-dependent plasticity within TRN (Coulon 
and Landisman, 2017).  

Dual mode of discharge of TRN neurons 

The TRN neurons have two modes of action potential discharge, the tonic and burst 
firing modes. The tonic discharge consists in repetitive action potential firing whereas 
the burst discharge consists in packets of action potentials followed by a period of 
quiescence. The bursting capacity of TRN neurons is linked to their expression of T-
type low-threshold calcium channels, and to their intrinsic cellular properties such as 
resting membrane potential and membrane resistance (Mulle et al., 1986; Avanzini et 
al., 1989; Huguenard and McCormick, 2007). At depolarized state, the TRN neurons 
fire in tonic mode whereas they are generating burst discharge firing from 
hyperpolarized states. The TRN burst discharges are extremely efficient in generating 
postsynaptic inhibition and rebound bursting of TC cells (Rovó et al., 2014) and are 
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hence critical for the generation and maintenance of thalamocortical oscillations. A 
difference in burst discharge propensity of TRN neurons across sectors or cellular 
identity would have a huge impact on the thalamocortical activity. Identifying such a 
cellular heterogeneity is thus critical for the understanding of the TRN functions. 

Major functions 

The strategic position of the TRN between the thalamus and the cortex, its strong 
inhibitory control over thalamic activity and its rhythmic burst firing capability are 
features that in combination provide powerful ways to modulate the flow of information 
through the thalamus and generating changes in thalamic activity during transitions 
between wakefulness and sleep. This is supported by observations showing a great 
variety of action potential discharge patterns in relation to different behaviors, such as 
sleep-wake (Steriade et al., 1986; Gardner et al., 2013), activation by sensory stimuli 
in a receptive-field like organization (Soto-Sanchez et al., 2017), activation by expected 
or unexpected stimuli (Yu et al., 2009) and attention-related mechanisms (Halassa et 
al., 2014). More recent studies have further increased the scope of TRN’s function by 
revealing its role in cognition, emotion (Zikopoulos and Barbas, 2012; Halassa et al., 
2014), sensory induced escape (Dong et al., 2019) and pain regulation (Olivéras and 
Montagne-Clavel, 1994; Liu et al., 2017). Altogether, these functions reveal that the 
TRN acts both on a global scale (e.g. switch in vigilance state) and on very specific 
elements of sensory processing (e.g. receptive field sharpening). How does the 
heterogeneity across the TRN reconcile these two needs for global and local functions? 
I will further develop this question in the chapters 3 and 4 that are dedicated to the 
sensory and the limbic TRN functions respectively and discuss how the TRN 
heterogeneity between sensory and limbic TRN may underlie their different functions 
in the final section of the thesis.  

Dysfunctions 

Dysfunctions of the TRN have been linked to several mental diseases due to the TRN’s 
functions in attentional modulation, sensory gating and sleep rhythm generation. TRN 
dysfunction has been strongly associated with absence epilepsy (Huguenard and 
McCormick, 2007; Makinson et al., 2017). There is also evidence for a TRN 
involvement in schizophrenia (Steullet et al., 2017; Thankachan et al., 2019) and 
bipolar disorder (Steullet et al., 2017). The TRN also expresses abundantly some 
disease-linked genes such as PTCHD1, the neurodevelopmental disorder/autism 
spectrum disorder gene, Cacna1i and Grm3 that are linked to schizophrenia and 
CHD2, a risk gene for autism spectrum disorder (Krol et al., 2018). TRN dysfunctions 
have also been shown in a mouse model of traumatic brain injury where a delayed 
TRN astrocytosis was preceding disruption of sleep-wake pattern (Hazra et al., 2014).  
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Chapter 2. Heterogeneity of the TRN 

The TRN has been viewed as a global inhibitor of the thalamus. However, the TRN is 
far from being a homogeneous structure. Accumulating evidence shows a rich diversity 
of neuronal markers, various cell morphologies, relatively precise and focused 
anatomical organization of TRN sectors and different cellular properties of TRN 
neurons. These heterogeneities are likely essential in the seemingly diverse functions 
of TRN, yet still little is known about which ones are relevant and how they link to these 
functions. In this chapter, I will summarize evidence of the TRN heterogeneity that have 
been observed in the last decades and that may underlie TRN subnetwork specificities 
relevant for local sleep regulation that we demonstrated in our recent paper (Study 2: 
(Fernandez et al., 2018)).    

Sectorial organization: one modality, one sector? 

The TRN can be divided into sectors based on its cortical and subcortical afferents or 
on its target in the thalamus.  

The posterior TRN is heavily connected to thalamic and cortical regions involved in 
sensory perception and integration. There are clear sectors dedicated to specific 
sensory modalities. These sectors are so far defined by their synaptic inputs, whereas 
it is currently unclear how they relate to differences in the cellular properties and 
whether connectivities between or within the sectors vary. The visual TRN is located 
in the posterodorsal sector (Crabtree and Killackey, 1989), the somatosensory TRN 
extends from the intermediate to the posterior sector (Crabtree, 1996) and the auditory 
TRN is in the posterior sector (Shosaku and Sumitomo, 1983; Crabtree, 1998), all three 
of them in close proximity to their respective thalamic targets. A gustatory TRN and a 
visceral TRN were described for the ventroposterior TRN sector (Hayama et al., 1994; 
Stehberg et al., 2001) (Fig. 4). As previously mentioned, the classical vision of the 
sensory TRN sectorial organization is that TRN neurons project to the thalamus as a 
stream of parallel, topographically organized axonal projections (Pinault, 2004). This 
is particularly the case for visual and somatosensory TRN that show retinotopic 
(Montero et al., 1977) and somatotopic (Pollin and Rokyta, 1982; Shosaku et al., 1984) 
organization.  

Some TRN neurons in rat and cat sensory sectors show divergent axonal projections 
(Crabtree, 1996; Pinault and Deschênes, 1998). Only a minority of TRN neurons have 
bifurcating axons that target a first-order and a related higher-order thalamic nucleus. 
However, more recent studies shows that the TRN organization goes beyond these 
parallel sectors dedicated to single modalities. Kimura et al. recorded TRN neurons 
responding to both visual and auditory stimuli (Kimura, 2014). TRN cells did not 
produce spikes in response to the alternate modality but only subthreshold responses. 
However, combination of both stimulations altered TRN response (often reduce TRN 
output compare to the response to the preferred stimulus). This suggests that the TRN 
can mediate interactions between sensory stimuli.  
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A motor TRN, defined by its connection to ventrolateral, ventromedial thalamus and 
motor cortex, is located in the anterior TRN region in rat (Cicirata et al., 1990). A 
topographic representation is present in the motor cortex, the thalamus and the motor 
TRN. 

The anterior sector of the TRN is linked to non-sensory/limbic structures. Retrograde 
tracer studies in rat and monkey show that the anterior TRN receives afferents from 
limbic cortical regions (cingulate, orbital, infralimbic, RSC, frontal cortex), thalamus 
(reuniens, paraventricular, anteromedial, anteroventral, anterodorsal, centromedial, 
mediodorsal), brainstem (substantia nigra pars reticularis, ventral tegmental area, 
periaqueductal grey, superior vestibular and pontine reticular nuclei) and hippocampal 
formation (subiculum) (Cornwall et al., 1990; Shibata, 1992; Lozsádi, 1994; Kultas-
Ilinsky et al., 1995; Zikopoulos and Barbas, 2007; Çavdar et al., 2008). The cortical 
projections show a clear topographical organization within rat TRN, with cingulate, 
orbital and infralimbic cortices projecting to lateral, central and medial sectors of the 
anterior TRN, respectively. Anterior TRN projections to the mediodorsal thalamus 
(organized in discontinuous patches or strips, from lateral to medial, (Cornwall and 
Phillipson, 1988)) and to the anterior thalamic nuclei (ATN) (dorso-ventral axis, 
(Gonzalo-Ruiz and Lieberman, 1995b, a; Lozsádi, 1995)) also show some degree of 
topographical organization, but not to the paraventricular thalamus (Cornwall and 
Phillipson, 1988). It is worth mentioning that species specificities exist as extensive 
studies in cat anterior TRN failed to show any projections to the ATN (Steriade et al., 
1984; Paré et al., 1987; Paré et al., 1991). 

 

Figure 4. Scheme of coronal section through the anterior, intermediate and posterior 
TRN showing the heterogeneity of the connectivity (left), the neuronal morphology 
(middle) and the expression pattern of some major molecular markers (right). Adapted 
from (Vantomme et al., 2019) 
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Neurochemical diversity of TRN neurons 

The TRN neurons express a variety of neurochemical markers that are not necessarily 
homogeneously expressed throughout the nucleus and that may also not be conserved 
across species. Consistent with its inhibitory nature, all TRN neurons described so far 
are GABAergic. They stain homogeneously and across species for the 
neurotransmitter γ aminobutyric acid (GABA), for glutamic acid decarboxylase 
(GAD67) and for vesicular transporter of GABA, such as VGAT2 (see Table 1 for 
detailed reference). Aside from this seemingly uniform expression of GABA-
synthetizing enzymes, there is ample evidence for heterogeneity at the level of a) 
additional possible neurotransmitter functions, notably neuropeptides and b) cellular 
expression of calcium-binding proteins, which reflect type and efficiency of the handling 
of intracellular free calcium levels.  

TRN neurons express many neuropeptides that are known for their role in hormonal 
secretion and metabolism regulation. The expression of these neuropeptides or their 
related genes were mostly studied in rodents. Therefore, whether their expression is 
preserved across species remains to be determined. Somatostatin (Sst)-expressing 
neurons were found in the mouse TRN throughout the nucleus, with the exception of 
the middle tier of the intermediate portion of the TRN. The Sst affects 
neurotransmission and cell proliferation. It is also known as the growth hormone-
inhibiting hormone. The thyrotropin-releasing hormone (TRH) mRNA and peptide were 
found in TRN neurons across all sectors in rat. TRH is known for its function in 
metabolism regulation. The vasoactive intestinal polypeptide (VIP) mRNA and peptide 
were present throughout the TRN of the rat except in the anterior sector. VIP is known 
to play a role in the synchronization and modulation of oscillation within the 
suprachiasmatic nucleus that is involved in circadian rhythm. The prolactin-releasing 
peptide (PRP) mRNA was found only in the ventro-lateral TRN and was studied for its 
role in the release of prolactin. The neuropeptide Y (NPY) mRNA was described in the 
rat TRN without precise intranuclear localization. NPY function has been linked to cell 
neurogenesis and regulation of the release of hypothalamic hormones. Such a 
heterogeneity in the distribution of the neuropeptides throughout the TRN may underlie 
the function of specific subnetworks, however, very little is known about the role of 
these peptides in thalamocortical activity. For example, the expression of VIP, which 
seems relevant for synchronization of neuronal activity, is restricted to posterior TRN 
sectors involved in sensory functions. The heterogeneity of VIP expression could thus 
underlie the differences in oscillatory pattern between anterior and posterior TRN 
sectors (Fig. 4). 

The calcium-binding protein parvalbumin (PV) is also largely expressed throughout the 
TRN and across species whereas some others, such as the Calretinin or the Calbindin 
showed variable expression. The Calretinin is expressed only in the anterodorsal 
portion of the TRN of the rat. Calbindin-expressing neurons are, however, present in 
the posterior sector of the rabbit and cat TRN. This heterogeneity of expression of 
calcium buffer molecules might influence the function of TRN subnetworks (Fig. 4).   
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Species 
 

Markers 

Mouse Rat Rabbit Ferret Cat Non-
human 
primate 

Reference 

GABA X X X X X X 

(Ottersen and Storm-
Mathisen, 1984) 
(Houser et al., 1980) 
(Spreafico et al., 1991) 
(de Biasi et al., 1986) 
(Penny et al., 1984) 
(Clemence and 
Mitrofanis, 1992) 
(Hunt et al., 1991) 

GAD67 NA X X NA X X 

(Houser et al., 1980) 
(Spreafico et al., 1991) 
(Penny et al., 1984) 
(Oertel et al., 1983) 
(Hendrickson et al., 
1983) 

VGAT X NA NA NA NA NA (Halassa et al., 2011) 

Parvalbumin X X NA X X X 

(Clemente-Perez et 
al., 2017)  
(Albéri et al., 2013) 
(Mitrofanis, 1992b) 
(Clemence and 
Mitrofanis, 1992) 
Jones EG 1989 
(Csillik et al., 2005b) 

Calretinin NA X NA NA NA NA (Lizier et al., 1997) 

Calbindin NA NA X NA X NA 
(Contreras-Rodriguez 
et al., 2003) 
(Mitrofanis, 1992a) 

Somatostatin X NA NA NA X X 

(Clemente-Perez et 
al., 2017)  
(Bendotti et al., 1990) 
(Graybiel and Elde, 
1983) 
(Oertel et al., 1983) 
(Molinari et al., 1987) 
(Ahrens et al., 2015) 
(Wells et al., 2016) 

TRH NA X NA NA NA NA 

(Segerson et al., 1987) 
(Burgunder et al., 
1999) (Mitrofanis, 
1992b)  
(Lechan et al., 1987) 
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VIP NA X NA NA NA NA 
(Burgunder et al., 
1999) (Kaneko et al., 
1985) 

PRP NA X NA NA NA NA (Roland et al., 1999) 
NPY NA X NA NA NA 0 (Morris, 1989) 

Table 1. Recapitulation of the expression of neuronal markers in TRN neurons across 
species. X: peptide or mRNA expressed in TRN neurons, 0: absence of peptide and 
mRNA in TRN neurons, NA: no data available.  

Cell morphology 

Many studies have classified TRN neurons based on the morphology of their somas, 
dendritic arbors and axons across several species. These aspects are relevant for 
heterogeneity because they affect the passive properties of neurons and in turn cellular 
excitability and integrative properties. A small axonal arbor has a greater chance to 
contact single to few postsynaptic targets and rather participates in closed circuit than 
a large axonal arbor that can contact multiple postsynaptic targets and may rather 
serve a synchronization purpose. A large dendritic arbor that spans radially is capable 
of integrating and sampling a synaptic input from a larger, possibly more diverse set of 
sources than a small one oriented in space. A small soma size is usually correlating 
with high membrane resistance and thus possibility high excitability because smaller 
currents will be required to bring this soma to threshold for action potential generation. 
Studies of the morphology of TRN neurons found a heterogeneity in their axonal 
arborization, soma size and orientation of their dendritic trees. I will summarize these 
findings and illustrate some of the functional impact these morphological differences 
can have.  

Axonal arbors 

TRN neurons show variable axonal arborization patterns that were particularly well-
described for the sensory sectors of the thalamus (Pinault, 2004). The best described 
case are rodents, where TRN neurons have compact axon terminals into the first-order 
somatosensory thalamus and more diffuse axon terminals into the higher-order 
somatosensory thalamus. In contrast, projections to both first- and higher-order visual 
thalamus have compact axon terminals (Pinault et al., 1995b, a). These morphological 
differences of TRN axonal projections correlates with distinct inhibitory responses of 
thalamic neurons. TRN neurons with diffuse axonal projections have weaker unitary 
inhibitory currents compared to the ones with more compact axonal arbors (Cox et al., 
1997). This suggests that a heterogeneity of the inhibitory control of the thalamic nuclei 
by the TRN may underlie different functions.  

Cell morphology and dendritic arborization 

Already in 1966, Scheibel and Scheibel described strong variation in the size of 
neurons in the different sectors of the TRN. The dendritic arbors are parallel to the 
border of the TRN, in particular in the thinner sensory sector, whereas the dendrites in 
the anterior sector seems to leave their soma at all angles (Scheibel and Scheibel, 
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1966). Similarly, Spreafico described three types of neurons in the TRN. R-type have 
a round soma and a multipolar dendritic arbor. f-type have a small fusiform soma shape 
and two main proximal polar dendrites. F-type have a large fusiform soma shape with 
a flat dendritic domain where the dendrites emerge from the two pole of the soma. R-
type neurons were found mostly in the anterior pole of the TRN, whereas f-type were 
mostly ventral and posterior and F-type where found throughout the TRN (Spreafico et 
al., 1991). Other studies revealed similar cellular morphological differences across 
species ((Requena et al., 1991; Clemence and Mitrofanis, 1992; Lübke, 1993) but see 
(Ohara and Lieberman, 1985; Ohara and Havton, 1996)). This heterogeneity of 
dendritic arbors orientation is of interest as it can have functional consequences. For 
example, afferents to the posterior sensory TRN are known to be arranged in slabs 
(Crabtree and Killackey, 1989). One barrel in the primary somatosensory cortex in 
rodent is connected to a single barreloids in the thalamus and forms one slab in the 
TRN. TRN neurons with a flatten dendritic arbor parallel to the main axis of the TRN 
would be contacted only by a single slab, whereas TRN neurons with multipolar 
dendrites would reach several slabs and serve as integrators (Fig. 4).  

Functional cellular properties 

The capacity of TRN neurons to switch between tonic and burst firing is essential for 
many TRN functions such as sleep rhythm generation. There is accumulating evidence 
that not all TRN neurons have the same propensity for repetitive burst discharge. 
Differences in burst discharge propensity might underlie distinct sensory processing 
and attention gating functions in TRN subnetworks. Indeed, tonic firing of TRN neurons 
recruit mostly synaptic receptors whereas burst firing is capable of recruiting also 
extrasynaptic receptors and generating major thalamocortical oscillations (Herd et al., 
2014; Rovó et al., 2014).  

In 1992, Contreras found two functional types of TRN neuron in the anesthetized cat. 
The type 1 was able to discharge burst of action potential from hyperpolarized state 
whereas the type 2 did not (Contreras et al., 1992). Similarly, TRN neurons in rat also 
showed distinct propensity for burst discharge (Brunton and Charpak, 1997). Lee et al. 
further demonstrated that the proportion of bursting neurons in the dorsal TRN of rat 
was much lower than in the ventral TRN, suggesting a dorsoventral heterogeneity in 
burst capacity. Lee et al. defined three functional categories of TRN neurons: non-
burst, atypical burst and typical burst TRN neurons (Lee et al., 2007). These functional 
differences were, however, not linked to different morphological subtypes as previously 
described (Spreafico et al., 1991) and it was not known at the time whether this variable 
bursting propensity correlated with the expression of neuronal markers. 

Beyond this functional heterogeneity across the dorsoventral axis, Kimura et al. also 
showed that visual TRN neurons projecting to the dorsolateral geniculate had a higher 
burst propensity, increased spike per burst with shorter interspike interval than those 
projecting to the lateroposterior thalamus (Kimura et al., 2012). This suggested a 
differential inhibitory control over first and higher order thalamic nucleus within the 
same modality and further increased the complexity of the TRN heterogeneity.  
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Clemente-Perez et al. compared the bursting capability of TRN neurons based on their 
expression of PV or Sst. They showed that PV-expressing TRN neurons showed 
strong repetitive burst discharge whereas the Sst neurons had single to no burst 
discharge. Activation of PV but not Sst neurons in vitro generated oscillations in the 
TRN-thalamus circuit (Clemente-Perez et al., 2017). This heterogeneity of neuronal 
markers and burst capacity was further embedded into distinct circuits. The PV+ 
neurons of the TRN were mainly connected to thalamic principal nuclei whereas Sst+ 
neurons were connected mostly to intralaminar, parafascicular and anterior thalamic 
nuclei. Altogether, this suggests a complex organization of TRN subnetworks, which 
combines neuronal markers, cellular activity and distinct innervation patterns, to 
support global and local functions of the TRN.  

In study 2, we further investigated the impact of the TRN heterogeneity in cellular burst 
discharge on cortical activity. We showed that the repetitive bursting of TRN neurons 
is higher in somatosensory TRN and auditory TRN compared to mediodorsal 
thalamus-connected limbic TRN in mice. This variability in TRN repetitive bursting was 
correlated with the proportion of cortical sleep spindles and manipulation of TRN 
bursting capacity affected the cortical oscillation content.  

Altogether, these studies show that the view of the TRN as a monolithic structure needs 
to be abandoned. It is only through dissecting the heterogeneity of the TRN at cellular, 
functional and anatomical level that we will reveal the mechanisms of action and the 
local functions of the TRN. 
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Chapter 3. What is the sensory TRN and its function? 

The sensory TRN is connected to the sensory thalamic nuclei and has been implicated 
in the control of the flow of sensory information between the thalamus and the cortex 
for decades. The mechanisms by which the TRN modulates the thalamocortical activity 
are numerous and often act in concert. This control of the flow of sensory information 
has two major functions: the gain control and attentional selection of sensory 
information and the reduction of sensory stimulation during sleep. In this chapter, I will 
briefly describe some of the mechanisms of sensory processing involving the TRN and 
focus on the selective sensory attention and the sleep rhythm generation.  

Sensory processing 

The sensory processing by the TRN has been linked to the sharpening of thalamic 
receptive field, sensory gating, sensory gain control and suppression of responses.  

The receptive field of a sensory neuron is the portion of the “sensory space” that can 
elicit neuronal activity once stimulated. For example, the “sensory space” for a 
somatosensory neuron is the surface of the skin that will trigger the neuronal activity 
of this neuron. The same applies for the visual field and the sound frequency field. 
Thalamic neurons in the lateral geniculate nucleus (vision), the medial geniculate 
nucleus (audition) and the ventrobasal nucleus (somatosensation) have in general a 
receptive field with a discrete region in the sensory space and a larger suppressive 
surrounding (Alitto and Usrey, 2003). The properties of the receptive field of sensory 
thalamic neurons is established by their sensory afferents (Sherman and Guillery, 
1998). However, the cortical feedback sharpens the tuning of these sensory thalamic 
neurons by acting on both the activation of the receptive field and the suppressive 
surroundings (Alitto and Usrey, 2003). Several studies have demonstrated that lesion 
(Lee et al., 1994) and pharmacological inhibition (Ergenzinger et al., 1998; Cotillon-
Williams et al., 2008) of the different sectors of the sensory TRN mediate enlargement 
of the connected thalamic neuron receptive field. This enlargement of the thalamic 
receptive field most probably result from the loss of lateral inhibition by the TRN. TRN 
neurons also display topographically organized and relatively sharp receptive field to 
sensory inputs (Shosaku, 1985; Soto-Sanchez et al., 2017). The feedback inhibitory 
control of the TRN over the thalamus seems to act via lateral inhibition of the thalamic 
receptive field properties, at least in the visual system (Osaki et al., 2018).  

The sensory gain control and sensory suppression is the manipulation of the signal-to-
noise ratio for a particular stimulus, particularly important in selective sensory attention. 
The majority of TRN neurons form open-loop connections with the thalamic neurons 
(Pinault, 2004), providing the anatomical basis for lateral inhibition. This sensory TRN 
lateral inhibition of TC cells inhibits the passage of distracting sensory inputs to the 
cortex while favoring the attended relevant stimuli (Ahrens et al., 2015).  

The sensory gating is the process of filtering out repetitive stimuli in the brain. 
Classically, the auditory gating has been tested by presenting two similar clicks given 
at short time interval while recording the brain responses. In control subject, the 
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amplitude of the response to the second stimulus is reduced. Patient suffering from 
schizophrenia have an impaired auditory gating evident by the lack of reduction of the 
amplitude of the evoked response to the second stimulus. Sensory gating occurs at 
many different levels in the brain including thalamus. Krause et al showed the first 
evidence of auditory gating in the TRN. The TRN responded to the condition stimulus 
with bursts of action potentials whereas the number of spikes was greatly reduced for 
the test stimulus. Administration of D-amphetamine into the TRN disrupted the auditory 
gating (Krause et al., 2003; Yu et al., 2009). 

Selective sensory attention 

The selective attention is the capacity of the brain to select appropriate sensory inputs 
and to suppress distractors. Among all sensory information perceived, stimuli 
conveying danger or opportunities must have the priority. These sensory inputs have 
to be filtered according to behaviorally relevant information to capture limited 
attentional resources (McAlonan and Brown, 2002). 

The TRN strategic position and strong inhibitory control other the thalamus make it a 
good candidate for selective attention. Indeed, Crick suggested that the TRN might be 
a key structure that directs internal spotlight of attention to the relevant active 
thalamocortical circuit, proposing the TRN searchlight hypothesis (Crick, 1984). 

Sherman and Guillery described that any brain region that would be dedicated to 
selective attention has to be topographically organized. Indeed, neurons have to be 
orderly arranged to allow spatially accurate maps of the environment. This organization 
in maps allows specific points in the system to be enhanced relative to the others 
(Sherman and Guillery, 1996). The TRN as well as the thalamocortical and 
corticothalamic circuits are topographically organized along sensory modalities as I 
previously described. 

To test the implication of TRN in attention, Weese used a covert attention task. Rats 
were exposed to visual stimulations that indicated the position of a reward. Prior to 
these visual stimulations, an other visual cue was presented. This cue was either 
directing the attention to the target or misdirect the attention towards the non-baited 
area. Valid cues slightly increased the performance of the rats in getting the reward 
compared to invalid cues. This phenomenon is called the priming effect. Unilateral 
lesion of the TRN did not impair visual detection nor the ability to perform the task but 
abolished the priming effect on the contralateral region, suggesting a role of the TRN 
in monomodal sensory attention (Weese et al., 1999). 

In a series of studies, Montero observed the neuronal activation of TRN neurons of rat 
during exploration of a complex environment (Montero, 1997, 1999, 2000). The rat 
attended to either visual or somatosensory cues during the exploration. The TRN 
sector related to the attended stimulus showed neuronal activation (visible as an 
increase in c-fos staining) whereas TRN sector related to the non-attended stimulus 
did not express c-fos despite strong labeling in connected thalamus and cortex. This 
strongly suggest a role of attentional gating of the TRN instead of sensory relay. 
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McAlonan used the phenomenon of blocking in classical conditioning to test whether 
the activation of TRN neurons would vary between attended and non-attended stimuli 
(McAlonan et al., 2000). They showed that c-fos staining was more intense in the TRN 
sector related to the attended stimulus compare to the non-attended one. 

With the development of optogenetic tools, more recent studies are testing the role of 
the TRN in selective attention. For example, Wimmer et al (Wimmer et al., 2015) 
manipulated the corticothalamic circuit involving the prefrontal cortex, the visual sector 
of the TRN and the lateral geniculate nucleus during a cross-modal divided-attention 
task in mice. The performance of mice to choose correctly between conflicting auditory 
and visual stimulus was modulated by the activity of the visual TRN. In spontaneously 
behaving mice, the visual TRN reduced its firing rate when the mouse attended the 
visual inputs. On the contrary, the visual TRN increased its firing when the mouse 
attended the auditory inputs, thus inhibiting the “distractor” input. Optogenetically 
provoked increases of visual TRN firing rate reduced the performance of mice when 
they had to attend the visual inputs, suggesting a reduction of the visual thalamic gain. 
Decreasing visual TRN activity diminished the performance when auditory inputs had 
to be attended to, suggesting an impairment of “distractor removal” (Wimmer et al., 
2015). Perturbation of the prefrontal cortex during the anticipation period (prior to the 
delivering of the cue) also reduced attentional modulation of visual TRN neurons and 
the performance of mice in this discrimination task. This would suggest a direct input 
from the prefrontal cortex to the visual TRN. However, direct projection from prefrontal 
cortex to the visual TRN are scarce (Crabtree, 2018) and recent work suggests that 
attentional selection is mediated via basal ganglia (Halassa and Kastner, 2017). 

An other evidence of the role of the TRN in attention comes from a mouse model for 
attention deficit and hyperactivity disorder (ADHD). Wells et al revealed that the 
PTCHD1 gene is exclusively expressed in the TRN in mice. PTCHD1 is a gene 
mutated in some psychiatric disorders in which attention deficits, hyperactivity and 
sleep abnormalities are frequent co-morbidities. KO mice for PTCHD1 showed ADHD-
like behavior such as attention deficit and the phenotype could be rescued by 
pharmacological intervention onto the TRN biophysical dysfunction (Wells et al., 2016).  

Over the last 20 years, behavioral testing of attention in rodents were combined with 
lesions of the TRN, measurement of TRN neuronal activity through c-fos staining and 
unit recording, optogenetic manipulation of TRN activity and genetic manipulation. 
Altogether, these studies brought a lot of evidence for the importance of the TRN in 
selective attention, yet the mechanism through which the TRN acts remain elusive.  

Guillery et al suggested that the TRN is likely crucial for corticoreticular control of relay 
cells through promoting a switch from tonic to burst firing, which may change according 
to changes of the attentional focus across and within cortical areas (Guillery et al., 
1998). Classically, burst firing in thalamic relay cells is visible during quiescent state, 
sleep and anesthesia. Tonic firing in thalamic relay cells is present during alert behavior 
(Steriade and Llinas, 1988). However, burst responses in visual relays cells have been 
seen in alert animals, in particular at the beginning of the visual stimulation. This 
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phenomenon might be a way to increase the intensity of the signal send to the cortex 
for a novel visual information that might be of importance (Guido and Weyand, 1995; 
Sherman, 1996; Ramcharan et al., 2000). Similarly, burst firing in somatosensory 
thalamic nucleus in awake rabbits was shown to be a powerful way to transfer sensory 
information to the cortex (Swadlow and Gusev, 2001). This burst firing in thalamic relay 
cells during alert behavior probably depends on TRN inhibition to deinactivate low-
threshold t-type calcium channel in the thalamus and allow burst firing.  

To summarize, there is ample anatomical, functional and behavioral evidence of the 
role of the TRN in selective sensory attention. The TRN can act across modalities and 
within modalities to favor the relevant sensory input and suppress distractors. The 
heterogeneity of TRN innervation of thalamic nuclei may create subnetworks of TRN 
neurons dedicated to the removal of distractors and others to increase the gain of the 
relevant stimulus. The heterogeneity in burst capacity may also influence the 
mechanism of selective attention, as TRN-burst-dependent burst discharge in thalamic 
neurons seems to be a powerful way to transfer novel relevant information to the 
cortex.  

Sleep rhythm generation and arousal 

TRN’s activity changes dramatically between sleep and wake periods, adopting burst 
firing during sleep and tonic action potential activity during wakefulness.  

The strong interconnectivity between the thalamus and the cortex allows the thalamus 
to participate in the generation and modulation of the cortical oscillations detected by 
electroencephalogram (Fogerson and Huguenard, 2016). The predominant view is that 
thalamus, by virtue of its interconnectivity with TRN, generates two major types of 
synchronized network activity that appear predominantly during sleep: delta and 
spindle. The TC neurons are spontaneously capable of firing bursts of action potential 
at 1 to 4 Hz during sleep, which is within the frequency range of the EEG delta waves. 
The synchronous discharge of thalamocortical neurons at this frequency range may 
underlie the appearance of delta waves in cortex (McCormick and Pape, 1990; Soltesz 
et al., 1991; Nuñez et al., 1992). The spindle rhythm is generated by the reciprocal 
connectivity between the thalamus and the TRN and allows the thalamus to generate 
10 to 15 Hz oscillations. These sleep spindles are indeed generated in the thalamic 
networks, as evident by the presence of spontaneous oscillations at the spindle 
frequencies in thalamic network disconnected from the cortex (Steriade et al., 1993; 
Huguenard and McCormick, 2007). The TRN is considered as the “sleep spindle 
pacemaker” (Steriade, 2006). The inhibition generated by the bursting TRN neurons 
onto the thalamocortical cells is powerful and often coincide with the onset of sleep 
spindles. The bursting of the TRN is phase-locked to the spindle cycles, intensifies as 
the spindle evolves (Steriade et al., 1986; Buzsáki, 1991; Gardner et al., 2013) and 
TRN lesions induce an abolishment of spindles (Fuentealba and Steriade, 2005). A 
further evidence of the critical role of the TRN in generating sleep spindles comes from 
one of our recent paper (Study 2: (Fernandez et al., 2018)). We demonstrated that 
differences in spindle content between cortical areas were tightly linked to differences 
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in TRN neuron burst discharge across the TRN sectors connected to these cortical 
areas.  

The molecular basis of TRN burst discharge relies on the low-threshold t-type calcium 
channel (CaV3.3) (Perez-Reyes, 2003) and the calcium-dependent potassium channel 
(SK2). Briefly, once a TRN cell has a hyperpolarized membrane potential, typically 
during sleep when the adrenergic tone is low, the low-threshold calcium channels are 
deinactivated. An incoming excitation from the cortex of the thalamus becomes then 
sufficient to activate these low-threshold calcium channels. The entry of calcium 
generates a depolarizing calcium spike, often carrying action potentials, and activates 
calcium-dependent potassium channels. These potassium channels induce an after-
burst hyperpolarization that, if strong enough, deinactivate the low-threshold calcium 
channel again, allowing the next cycle of burst to occur (Avanzini et al., 1989; Cueni et 
al., 2008). The thalamic neurons possess a similar set of low-threshold calcium 
channels, allowing burst discharge. However, the membrane potential for 
deinactivation of these calcium channels is more hyperpolarized than in the TRN 
neurons. Single inhibitory postsynaptic current generated by the TRN in a thalamic 
neuron may be sufficiently large in amplitude and duration to generate a low-threshold 
rebound burst in the thalamus (Bal et al., 1995). However, simultaneous discharge of 
several TRN neurons can activate GABAB receptor in thalamic neurons. This long 
lasting GABAB receptors mediated hyperpolarization facilitate the deinactivation of low-
threshold calcium channels and the burst propensity in the thalamus (Sanchez-Vives 
et al., 1997). 

During wakefulness, a set of neurotransmitters such as noradrenalin, serotonin, 
histamine and glutamate, is released from the brainstem, hypothalamus, basal 
forebrain and cerebral cortex (McCormick, 1992). These neurotransmitters induce a 
slow and global depolarization of thalamic and reticular thalamic neurons (Hirsch et al., 
1983; Steriade et al., 1986) that results in an abolition of rhythmic rebound burst and 
the promotion of single-spike firing. This depolarized state of thalamic and reticular 
neurons thus suppresses the generation of sleep rhythm and promotes sensory-motor 
processing and cognition that I described before (McCormick and Bal, 1997). Whether 
the TRN plays an essential role in the arousal systems or whether the TRN is a passive 
downstream target remains to be determined. 
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Chapter 4. What is the limbic TRN and its function? 

The limbic TRN sector is located in its anterior portion and is connected to non-sensory 
thalamic nuclei and cortices, as described in the Chapter 2. Beyond its anatomical 
connections, very little is known about its function and role in limbic thalamocortical 
loops. In this chapter, I will focus mostly on the few studies recording or manipulating 
limbic TRN’s neuronal activity and their supportive anatomical evidence.  

Cognition, emotion and memory 

Cortical and thalamic limbic structures have been linked to cognition, emotion and 
memory (Vertes et al., 2015). It is then reasonable to assume that the TRN sectors 
connected to these structures will assume similar brain functions. However, the 
morphology of the TRN and in particular the overlap of cortical and thalamic afferents 
in the anterior sector make it complicated to record and manipulate neuronal activity of 
the limbic TRN.  

By combining implantation of electrodes with 16 independently adjustable microdrives 
and retrograde opto-tagging of TRN neurons projecting to either anterior thalamic 
complex or visual thalamus, Halassa et al successfully recorded and manipulated 
activity of both limbic and sensory TRN neurons of mice (Halassa et al., 2014). 
Recording of TRN in freely behaving conditions revealed two distinct population of 
neurons that had opposite modulation by sleep and active waking. Limbic TRN neurons 
had little activity during sleep and quiescent states, thus disinhibiting limbic thalamus, 
probably enhancing offline limbic processing such as hippocampal reactivation. The 
neuronal activity of limbic TRN was increased during waking. However, optogenetic 
activation and inhibition of these neurons did not show any impact on visual-detection 
task performance. On the contrary, sensory TRN neurons displayed a pattern of activity 
consistent with a reduction of sensory processing during sleep and an increase during 
wake. More precisely, these sensory TRN neurons showed a strong activity time-
locked to the cortical spindles during sleep and reduced their activity during attentional 
sensory detection task. 

Further indications of the role of the limbic TRN in cognition, emotion and memory 
come from extensive anatomical studies of the TRN in non-human primate. 
Dorsolateral prefrontal cortex, posterior orbitofrontal cortex, mediodorsal thalamus 
send strong projections to the limbic sector of the TRN that can extend to motor and 
sensory sectors (Zikopoulos and Barbas, 2012). The amygdala, a key structure for 
processing signal with emotional importance, was recently shown to send projections 
to the TRN. About 70% of amygdalar axons projected to the anterior sectors, 
overlapping with mediodorsal thalamus and posterior orbitofrontal cortex afferents 
(Zikopoulos and Barbas, 2012). This anatomical observation suggests that amygdala 
may act in concert with mediodorsal thalamus and posterior orbitofrontal cortex to favor 
rapid transfer of emotionally relevant information while blocking distractors. John et al 
explored this hypothesis using a computational model of the amygdala-TRN pathway 
(John et al., 2016). Their model also supported the hypothesis that the amygdala-TRN 
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pathway selects emotion-guided signals before sending them to the cortex for further 
processing and that the amygdala can act as a relevance detection system for the 
limbic thalamocortical circuit.  

Sensory induced escape  

Dong et al. expanded the scope of functions of the anterior/limbic TRN by describing 
a corticothalamic circuit involving the cingulate cortex and the intermediodorsal 
thalamic nucleus. This circuit controls the flight or freeze behavior in mice. The limbic 
TRN receives glutamatergic inputs from the cingulate cortex and projects to the 
intermediodorsal thalamic nucleus. Activation of the limbic TRN induced inhibition of 
the intermediodorsal thalamic nucleus and increased the flight behavior of mice, 
whereas inhibition of the limbic TRN increased the freezing behavior. Manipulation of 
the sensory TRN did not affected the flight or freeze behavior (Dong et al., 2019). 

Pain regulation  

A recent study showed that activation of TRN PV neurons in the anterodorsal sector in 
mice increased pain sensitivity. This increase in pain sensitivity seems to be mediated 
by changes in inhibitory control over the anterodorsal and/or the paratenial thalamic 
nucleus, revealing the neuroanatomical basis of TRN’s involvement in pain regulation 
(Liu et al., 2017). This is further supported by evidence of “pain-like” behavior in rat 
upon blockade of GABAA receptor in the TRN (Olivéras and Montagne-Clavel, 1994) 
and the presence of thalamic firing alteration in resting-state functional magnetic 
resonance imaging of patient suffering from neuropathic pain (Walton and Llinas, 
2010). 

 

Altogether these studies expanded the scope of the TRN beyond sensory processing, 
arousal and sleep rhythm generation. Due to its strong connections with cortical and 
thalamic structures involved in emotion, memory and attention, the limbic TRN seems 
to be important for high cognitive processes. Further studies manipulating limbic TRN 
neuronal activity in behaving animals will certainly unraveled novel functions of the 
TRN. 

  



30 
 

Chapter 5. The head-direction system 

In this chapter I will briefly introduce some of the key concepts of the head-direction 
system as my main project on the limbic sector of the TRN revealed anatomical and 
functional connections between the TRN and the navigational system. This chapter 
presents generalities on the head-direction system that do not appear in the 
introduction of Study 1 and that are meant to complement it. 

Classes of neurons involved in the navigation system 

Orienting oneself in the environment is a fundamental cognitive process that relies on 
brain-wide neuronal circuits. These circuits are constituted of neurons that have distinct 
functional properties, each of them dedicated to a specific aspect of spatial processing, 
such as direction, speed and location. For example, the navigation system includes 
the hippocampal place cells that fire as a function of the animal’s position in the 
environment (O'Keefe and Dostrovsky, 1971), the entorhinal grid cells that fire in 
multiple place fields that are arranged hexagonally (Hafting et al., 2005) and the border 
cells that fire when the animal is close to the border of the environment (Hartley et al., 
2000) (Fig. 5). The focus of this chapter will be on the head-direction cells. These cells 
increase their firing when the animal faces a specific direction in space (Taube, 1995). 

The head-direction neuronal circuit 

Head-direction cells are found throughout the brain, mostly in the lateral mammillary 
nucleus, the anterodorsal thalamus, the dorsal presubiculum, the retrosplenial cortex 
and the medial entorhinal cortex (Dillingham and Vann, 2019). The head-direction 
signal is generated at the level of the circuit between the dorsal tegmental nucleus and 
the lateral mammillary nucleus, which receives its main input from the vestibular 
system when angular velocity of the head changes. The HD signal is additionally 
updated by landmark, motor and proprioceptive information (Yoder and Taube, 2014). 
Indeed, the head-direction signal needs to be stable relative to the environment and is 
thus influenced by sensory inputs. The head-direction signal in the mammillary nucleus 
is relayed to the anterodorsal thalamus, the dorsal presubiculum (also called 
postsubiculum) and retrosplenial cortex. The presubiculum and retrosplenial cortex 
also receive inputs from the visual cortex and feedback on the anterodorsal thalamus, 
forming a thalamocortical loop in which the head-direction signal and the visual signal 
are integrated (Fig. 6).  

The retrosplenial cortex is connected to the hippocampal and parahippocampal 
formation, the limbic thalamus and the parietal cortex. It is constituted by a granular 
and a dysgranular region. The granular region of the retrosplenial cortex has strong 
reciprocal connections with the anterodorsal thalamus and the dorsal presubiculum, 
pointing towards its function in the head-direction system and in internally directed 
navigation. The dysgranular region of the retrosplenial cortex seems to be more 
connected to visual areas and thus is supposed to be important for visually guided 
spatial memory and navigation. The retrosplenial cortex has been consistently shown 
to play a role in navigation and learning in rodents and studies of patients with unilateral 
or bilateral lesions of the retrosplenial cortex confirmed impairment of the navigation 
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system as well as memory loss. It is also hypothesized that the retrosplenial cortex 
plays a role in the transition between the use of egocentric (self-centered) and 
allocentric (world-centered) reference frames during navigation (Vann et al., 2009). 

 

 

Figure 5. Representations of the firing pattern of different classes of neurons involved 
in the navigation system. (A) Heat maps of the firing rate of a place cell (left), grid cell 
(middle) and border cell (right). Warmer colors correspond to higher frequency of firing. 
(B) Plot of the firing rate of head direction units from dorsal presubiculum (PoS, blue), 
the anterodorsal thalamus (ADN, red) and the lateral mammillary nucleus (LMN, 
green). Figure from (Clark and Taube, 2012). 
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Figure 6. Scheme of the overall neuronal circuit for spatial navigation. HD: head-
direction. AHV: angular head velocity. Figure from (Winter and Taube, 2014). 

 

The presubiculum is also connected to the hippocampal and parahippocampal 
formation, the limbic thalamus and entorhinal cortex. The presubiculum is thought to 
be an entry point for visual information to the head-direction system as well. It receives 
direct visual inputs from primary and secondary visual cortex and indirect inputs from 
the retrosplenial cortex. The presubiculum is thus a key relay for the integrated 
visual/head-direction information to the entorhinal-hippocampal network where grid 
cells and place cells are located. Lesions of the presubiculum impair spatial learning 
and memory (Simonnet and Fricker, 2018).  
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A role of the limbic TRN in the head-direction system? 

The head-direction signal is processed in the thalamus at least in the anterodorsal 
nucleus in mice. However, it is not clear what the TRN does to this anterodorsal 
nucleus in terms of the inhibitory feedback or cortical feedforward inhibition, which I 
described for classical thalamocortical sensory systems in the chapter 1. 

An intriguing observation is that the TRN has never been implicated in these 
thalamocortical circuits between presubiculum/retrosplenial cortex and the 
anterodorsal thalamus (Grieves and Jeffery, 2017; Simonnet and Fricker, 2018; 
Dillingham and Vann, 2019). The anatomical tracing studies described in the chapter 
2 suggest that the anterior/limbic portion of the TRN could be connected to thalamic 
and cortical areas involved in the head-direction signal processing. The hypothesis that 
the TRN projects to head-direction cells in the thalamus was also very recently 
proposed by Peyrache et al. (Peyrache et al., 2019) but has never been functionally 
investigated. Whether the limbic TRN gates the thalamic head-direction signal remains 
to be explored. 

The limbic TRN could be implied in a feedback inhibitory circuit with the anterodorsal 
thalamus where lateral inhibition would help sharpening the receptive field of thalamic 
head-direction neurons with an organization similar to the classical sensory 
thalamoreticular circuit (Osaki et al., 2018). The limbic TRN could also participate in a 
feedforward inhibitory circuit with the retrosplenial cortex and/or the presubiculum that 
project back to the anterodorsal thalamus, further sharpening the receptive field of 
thalamic head-direction cells or anchoring the thalamic head-direction signal to visual 
landmarks.  

My main project (study 1) explored some of these hypotheses through anatomical and 
functional investigation of the dPreS/RSC projections to the limbic TRN and through 
recordings of thalamic head-direction neurons with manipulation of the limbic TRN 
activity.  
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F. Results 

Study 1: A thalamic reticular circuit for head direction cell tuning and 
spatial navigation 

Gil Vantomme, Zita Rovó, Romain Cardis, Elidie Béard, Georgia Katsioudi, Angelo 
Guadagno, Virginie Perrenoud, Laura MJ Fernandez, Anita Lüthi, in revision Cell 
Reports 

The ability to detect and localize environmental cues is central for navigation in space. 
Although cortex is the ultimate site for contextual processing of stimuli and decision 
making processes, sensory elaboration also takes place at subcortical levels, probably 
to meet rapid and unexpected behavioral challenges surging on the way. A major site 
for subcortical gating of sensory stimuli is the TRN thanks to its unique anatomical 
positioning at the interface between thalamus and cortex. However, the role of the TRN 
in spatial navigation has never been explored. 

The anterodorsal TRN has been shown to project to the anterodorsal thalamic nucleus 
and to receive afferents from the RSC and the parahippocampal formation across 
several species (Shibata, 1992; Kultas-Ilinsky et al., 1995; Zikopoulos and Barbas, 
2007; Çavdar et al., 2008). These structures are particularly important for the spatial 
navigation system. Indeed, the head direction signal, generated at the level of the 
vestibular system, is relayed by the anterodorsal thalamus to the PreS and then to 
RSC and entorhinal cortices and the hippocampus where place cells and grid cells are 
generated (Simonnet and Fricker, 2018). The limbic TRN is at the interface between 
the anterodorsal thalamus that relays the head-direction signal and the 
parahippocampal formation where the head-direction signal is integrated with 
multisensory information (Simonnet and Fricker, 2018). Thus the TRN is in a strategic 
position for regulating the thalamic head-direction firing under the control of the 
parahippocampal formation.  However, a functional connectivity between the limbic 
TRN and the thalamic nuclei involved in the head-direction/spatial navigation system 
has never been demonstrated. 

In this project, we demonstrated a strong projection from the PreS and RSC to the 
most anterodorsal sector of the TRN using retrograde and anterograde tracer 
injections in mice. We further assessed the functional connectivity of these projections 
using whole-cell patch-clamp recording in acute brain slices in combination with opto 
and chemogenetic tools. Remarkably, these excitatory projections to the TRN had 
driver characteristics unlike classical sensory corticoreticular synapses. We further 
demonstrated both in vitro and in freely behaving mice the recruitment of feedforward 
inhibition by the PreS and RSC cortex to the anterior thalamus via the TRN. 
Chemogenetic silencing of the anterodorsal TRN reduced the tuning of anterodorsal 
head-direction neurons and biased the search strategies towards allocentric 
orientation in the Morris Watermaze. Together these data unraveled a novel function 
of the TRN in the spatial navigation, expanding our knowledge of the limbic TRN. 
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This publication represents the core of my work during the doctoral thesis. I designed 
the in vivo and behavioral experiments and carried out most of the experiments and 
analyses of the anatomical tracing, in vitro patch-clamp and in vivo single unit recording 
and Morris Watermaze.  

 

Study 2: Thalamic reticular control of local sleep in mouse sensory 
cortex, eLife 

Laura MJ Fernandez, Gil Vantomme, Alejandro Osorio-Forero, Romain Cardis, Elidie 
Béard, Anita Lüthi, eLife 2018;7:e39111, DOI: 10.7554/eLife.39111, 25.12.2018 

Sleep is a global vigilance state characterized by a reduction of responsiveness to 
external stimuli and altered consciousness. However, major electrical sleep rhythms 
occur at different times in different brain regions. This suggest that on top of a global 
regulator, some brain structures can generate local oscillatory patterns in the cortex. 
This local sleep may enable sleep-dependent plasticity in specific neuronal network.  

In this paper, we showed that the primary auditory cortex and the primary and 
secondary somatosensory cortices of mice have larger amplitude and faster sleep 
spindles than the prefrontal cortex. We investigated whether differences in neuronal 
activity across TRN sectors may underlie distinct spindle characteristics across the 
cortex. We demonstrated that TRN neurons in the sensory sector had a strong 
repetitive bursting capability whereas neurons in the limbic TRN had little to no 
repetitive burst discharge. This mode of discharge of TRN neurons is dependent on 
the CaV3.3 low-threshold T type calcium channel. Blocking TRN repetitive burst 
discharge via genetic deletion of the CaV3.3 channels or chemogenetic silencing of 
TRN neurons induced a switch from spindle to delta enriched sleep and abolished 
differences in spindle characteristics across the cortex. Altogether, these data 
identified a novel mechanism underlying local cortical correlates of sleep, showing the 
critical role of the TRN neuronal activity in shaping the content of cortical oscillations.  

In this publication, I carried out and analyzed the results of the anatomical tracing and 
in vitro whole-cell patch clamp recording of TRN neurons. 
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G. Discussion 

In both studies I aimed to investigate the heterogeneity of the TRN at the cellular, 
synaptic and functional level, with my principal focus on the so far poorly explored 
anterior limbic TRN. 

In study 1, I characterized a novel thalamocortical circuit that integrates the most 
anterodorsal part of the limbic TRN. This circuit includes brain structures relevant for 
the spatial navigation: the presubiculum (PreS), the retrosplenial cortex (RSC) and the 
anterior thalamic nuclei (ATN). Afferents from PreS and RSC are topographically 
organized, target a restricted portion of the anterodorsal TRN and recruit feedforward 
disynaptic inhibition onto the ATN. These properties are quite similar to classical 
sensory thalamocortical circuits. However, we discovered that Pres/RSC afferents 
have functional driver characteristics with strong unitary connection and a strong burst 
coupling onto the TRN, and that limbic TRN neurons have less repetitive bursting than 
the sensory TRN cells. Functionally, this limbic TRN sharpens the tuning of head-
direction thalamic neurons and seems to be relevant in the switch between 
orientational strategies during spatial navigation.  

In study 2, I demonstrated how heterogeneous the TRN is in term of its repetitive 
bursting capacity. The sensory sectors connected to auditory and somatosensory 
cortex have strong repetitive burst discharge unlike the limbic, MD-connected TRN 
neurons. This functional heterogeneity of the TRN correlates with the amplitude and 
speed of sleep spindles in the related cortices. By ablating the TRN repetitive bursting 
capacity, we removed this functional heterogeneity at the TRN level but also in sleep 
spindle characteristics. 

In this discussion, I will first develop technical considerations on both studies, then 
discuss how my results advance the view of the TRN as a heterogeneous nucleus and 
finally present some of the perspectives arising from my studies.  

 

Technical considerations 

Tracing 

Injections of retrobead into the limbic TRN allowed to target a restricted portion of the 
anterodorsal TRN that we were interested in. However, the control of the injection 
volume with a picospritzer was poor and it was almost unavoidable that the retrobead 
also reached the nearby anteroventral thalamus. By comparing a large number of 
injected mice, we managed to identify commonalities between large and small injection 
areas and successfully reproduced prior anatomical studies on the anterior TRN and 
thalamus. Cortical afferents to the limbic TRN from PreS, RSC, cingulate, prelimbic 
and infralimbic cortices seemed to arise from the deep layers, according to the position 
of the beads. Targeting restricted retrobead injections into different region of the limbic 
TRN or combining retrobead with different fluorescent properties would help to address 
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the question of whether the limbic TRN is topographically organized around its 
cortical/thalamic afferents in a similar manner than the sensory TRN or whether it is 
organized as an integrator in which the afferents from many different regions are 
colocalized.  

We confirmed the projection from the Pres and RSC to the TRN by using Phaseolus 
Vulgaris leucoagglutinin anterograde tracer (PHAL-L) injections. The PHAL-L was 
electroporated to permit very restricted injection areas into PreS and RSC. By again 
comparing a large number of injections, we identified a pattern of projections to the 
thalamic nuclei and in all cases the projecting fibers crossed the limbic TRN while being 
closely apposed to somas and dendrites. In spite of a high level of precision we 
achieved through the PHAL-L injection, we did not manage to tackle the question of 
the layer specificities of the projection nor to observe a topographic organization in the 
limbic TRN. For this, many more even smaller injections would be required. 
Alternatively, driver mouse lines allowing to target specific layers would be a next step 
to take. 

We used viral injections into the PreS/RSC to express the ChR2 in the neurons of 
these regions. The viral injections were much broader than the PHAL-L injections and 
it was difficult to distinguished between the site of injection and projections to nearby 
cortical targets in this heavily interconnected parahippocampal area. The development 
of mouse Cre lines would help to restrict injection site and to target specific layers or 
neuronal subtypes. In some initial unpublished observations, we saw that the 
Neurotensin receptor 1 (NTSR1)-Cre mouse line, widely used to target layer 6 
corticothalamic neurons, was absent or much weaker in the PreS, suggesting some 
level of heterogeneity of the corticothalamic neurons projecting to the sensory or limbic 
TRN.  

In vitro cellular electrophysiology 

The whole-cell patch-clamp recording of acute brain slices in combination with 
optogenetic and chemogenetic tools allowed the identification of functional synapses 
between the PreS/RSC and the TRN and the elegant demonstration of a feedforward 
inhibitory circuit with the ATN+ in study 1. In study 2, these in vitro recordings allowed 
the identification of TRN subnetworks, the characterization of their functional 
heterogeneity in term of bursting and to measure the impact of the activation of 
inhibitory DREADD receptors on TRN neurons. These in vitro recordings also allowed 
to identify relevant thalamocortical circuits that we could then precisely target in vivo.  

The combination of in vitro recordings with optogenetic stimulation allowed to study 
specific projections to the TRN to a level that electrical stimulations would not permit. 
It raises some concerns on the potential effect of viral serotype (used for the expression 
of the ChR2) and of direct light illumination of synaptic boutons on the synaptic activity. 
However, cortical afferents to the TRN are intermingled and thus does not allow to use 
electrical stimulation to control for the side effect of viral transfection. To address this 
concern, we could deliver the ChR2 with different serotypes of adeno-associated virus 
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and reproduce the recording. We can also restrict the light stimulation over the interna 
capsula rather than directly above the TRN for activation of cortical afferents, for 
example through using a scanning system that would allow us to target with subcellular 
precision the site of light delivery. Similarly, the use of a faster version of the ChR2, 
such as ChETA, would be useful to further confirm that the functional driver 
characteristics of the PreS/RSC-TRN synapses are due to intrinsic properties and not 
an unexpected limitation of the ChR2 specifically at these synapses.  

The minimal stimulation protocol using optogenetic activation of the presynaptic 
afferents allows to study the unitary properties of specific synapses (Gjoni et al., 2018). 
However, this procedure showed some limitations compared to classical electrical 
stimulation. Indeed, the precision of the light intensity control was poor and did not 
permit to reach the condition of minimal stimulation in most of the cells. Still, in the 
experiments that fulfilled the criteria for minimal stimulation, differences in unitary 
currents between afferents to TRN vs ATN came out convincingly. 

In vivo electrophysiology 

In study 1, the identification of a novel thalamocortical circuit involving the limbic TRN 
raised the question of its function. PreS, RSC and ATN are known structures in the 
spatial navigation system, however the role of the limbic TRN on their activity has never 
been tested. In vivo single unit recordings of the thalamic neurons allow to monitor their 
activity will manipulating their cortical or limbic TRN afferents. I initially used home-
made multi-wire electrodes to record from the ATN+. These bundles allowed to sample 
a large volume of the thalamus but thus lacked spatial precision. These multi-wire 
electrodes revealed that optogenetic activation of the PreS/RSC induced a reduction 
of firing of ATN+ units in a time window consistent with disynaptic feedforward 
inhibition. Furthermore, some of these ATN+ units were tuned to the head-direction, 
suggesting a role of this cortical feedback to the thalamus in the head-direction 
signaling. In order to increase the proportion of head-direction neurons recorded, I 
used linear silicone probes targeted to the anterodorsal thalamus. About 50% of the 
recorded units in this configuration showed a strong tuning to the head-direction.  

In study 2, local recordings of specific cortical regions with local field potential 
electrodes followed the identification of a heterogeneity of the TRN neuronal activity in 
vitro between the sensory and the limbic sector. Primary auditory (A1), primary and 
secondary somatosensory (S1, S2) cortices were targeted as they project to the 
sensory TRN sector and the PFC as it is interconnected to the limbic TRN. The parallel 
recording of electroencephalogram, electromyogram and four local field potentials 
allowed the evaluation of the global vigilance state of the mice and the identification of 
local cortical activity at the same time. This recoding configuration combined with 
modulation of TRN activity is a powerful tool to tackle both global and local effects of 
the TRN.  
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Morris Watermaze 

In study 1, we investigated the role of the limbic TRN in spatial navigation. Specifically, 
we used VGAT-Ires-Cre mice expressing the inhibitory DREADD in the anterior portion 
of the TRN. These mice received intraperitoneal injection of Clozapine N-oxide (CNO) 
to silence the TRN 40 min prior to the recording session in the hidden version of the 
Morris watermaze. During the 10 days of learning and 10 days of reversal learning, 
mice entered the watermaze from randomized quadrant, reinforcing the use of 
allocentric strategies. Every odd day, the four training sessions were preceded by a 
probe session where the platform was removed, in order to test the progression in 
spatial learning. 

We showed in study 2 that these injection parameters we used in vivo induced changes 
in brain activity up to 6 h post injection, with a peak effect 30 min post injection. In vitro, 
we confirmed that the inhibitory DREADD activation in sensory TRN neurons induced 
a strong (~15 mV) hyperpolarization, bringing the cells out of range of firing action 
potentials. Our results suggest that significant proportion of TRN neurons are silenced 
by the injection of the CNO and that this inhibition lasts for several hours. 

In study 1, the limbic portion of the TRN was silenced during all recording sessions and 
the post recording resting period. We chose this approach as it permits to tackle the 
role of the limbic TRN in acute orienting as well as in learning and memory formation. 
This approach revealed a role of the TRN in biasing search patterns in the Morris 
watermaze towards egocentric strategy and in reducing perseverance, which points 
towards acute roles of the limbic TRN in spatial navigation. These results are in 
accordance with previous studies on the role of prefrontal cortex to limbic thalamus 
corticothalamic circuit, showing the importance of these structures in the switch 
between search strategies.  

The circuit involving the limbic thalamus, hippocampus and prefrontal cortex is also 
known to be important for spatial memory formation. We thus hypothesized a decrease 
in the performance of mice with a silenced limbic TRN in the Morris watermaze. 
However, there were no significant differences in the performance to find the platform.  

Many parameters of the Morris watermaze experiment can be adapted in order to 
modify the task demands. In the next paragraphs, I would like to speculate on the effect 
of some of these parameters on our results in study 1.  

Chemogenetic silencing of the limbic TRN increased overall the use of allocentric 
strategies during the learning and reversal learning of the Morris watermaze. Thus, we 
can hypothesize that the activity of the limbic TRN is required for proper egocentric 
navigation and that mice with a blockade of the limbic TRN activity switch to more 
allocentric strategy as a compensatory mechanism. A version of the Morris watermaze 
promoting egocentric navigation, for example by releasing the mice from a unique entry 
position all along the experiment, may reveal an impairment of the egocentric 
navigation system in mice with silencing of the limbic TRN.  
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The chronic CNO injection protocol we used may result in compensating mechanisms 
for the impairment of the thalamocortical circuits through other pathways. For example, 
the head-direction system feeds back information from cortical to subcortical structures 
through parallel route, one being a PreS to lateral mammillary body, completely 
bypassing the limbic TRN. An interesting perspective for our study would be to inject 
CNO only at challenging moments, for example prior to a probe session, where the 
platform is removed, or at the beginning of the reversal learning. This approach might 
exacerbate the acute effect of limbic TRN inhibition we observed on the perseverance, 

Similarly, we could also reduce the number of probe sessions from one every odd day 
to only two probe sessions (day 5 and day 11 for learning, day 15 and day 21 for 
reversal learning) to improve the performance of mice in finding the platform. This may 
also reinforce the effect we observed on acute orientation and perseverance.  

In order to address more specifically the role of the limbic TRN in spatial memory 
formation and replay, the CNO can be injected right after the recording session in the 
Morris watermaze. This would allow mice to navigate and orient themselves with a 
functional thalamocortical circuit. The effect of silencing of the limbic TRN would be 
restricted to the post recording resting period during which sleep is known to be critical 
for memory consolidation.  

 

Heterogeneity of the TRN 

My studies revealed novel synaptic and cellular heterogeneities of the TRN. The 
cortical afferents from PreS and RSC showed functional driver characteristics, which 
is unprecedented for a corticoreticular synapse. The presence of such a driver cortical 
input to the limbic TRN that is absent from the cortical afferents to sensory TRN further 
supports strong functional differences between these circuits. Whether this driver 
characteristic is recurrent across circuit involving the limbic TRN or a specificity of the 
corticothalamic circuits between Pres/RSC and ATN+ remains to be determined. At 
the cellular level, we identified a strong difference in repetitive burst discharge between 
TRN neurons in the limbic sector compared to the sensory one. This heterogeneity 
seems to underly the heterogeneity of local cortical oscillations and might be relevant 
for local sleep regulation. In this section I will develop further how these major findings 
advance the understanding of the TRN as a heterogeneous structure.  

 

Cortical modulators vs drivers of the TRN 

Glutamatergic synapses have classically been divided into two classes: drivers and 
modulators. This classification relies on both morphological and functional 
characteristics. Driver inputs activate only ionotropic glutamatergic receptors, show 
paired-pulse depression and large evoked postsynaptic potentials. There are very few 
inputs with poor convergence, thick axons and large terminals on proximal dendrites. 
On the contrary, modulator inputs activate both ionotropic and metabotropic receptors, 
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show paired-pulse facilitation and small evoked postsynaptic potentials. Modulator 
inputs represent the majority of the inputs with a lot of convergence onto the target 
neurons, with thin axons and small terminals on distal dendrites (Sherman, 2017).  

Classical sensory and motor cortices have projections to the TRN with small boutons 
only (Guillery et al., 1998) and show paired-pulse facilitation (Castro-Alamancos and 
Calcagnotto, 1999; Astori and Luthi, 2013; Crandall et al., 2015; Fernandez et al., 
2018), classifying these layer 6 afferents as modulators. On the contrary, thalamic 
projections to the sensory TRN have shown driver characteristics (Gentet and Ulrich, 
2003). 

There is anatomical evidence that the prefrontal cortex projections to the limbic TRN 
(connected to MD, AV, AM) have both small and large boutons, suggesting a dual 
origin from layer 5 and 6 (Zikopoulos and Barbas, 2006). These driver-like synapses 
with large boutons might undergo multivesicular release and could be more efficient in 
activating the limbic TRN than classical layer 6 modulatory projections. Combined with 
the presence of gap-junction between TRN neurons (Landisman et al., 2002), few large 
boutons might be sufficient to trigger widespread activity in subnetworks of the limbic 
TRN. Until now, only thalamoreticular synapses were described as drivers. Modulator 
layer 6 afferents were expected to activate TRN neurons only during highly 
synchronous activity such as during sleep (Crabtree, 2018). Few driver-like 
connections to the TRN might be able to induce inhibition and disinhibition of subsets 
of thalamic neurons, allowing discrimination of upcoming information.  

The identification of cortical afferents to the limbic TRN showing functional driver 
characteristics in our study suggests that the limbic TRN conveys direct system-
relevant information that is faithfully transmitted to its projection targets. The strong 
coupling between PreS/RSC presynaptic action potential and bursts in the limbic TRN 
neurons and the moderate entrainment of firing during repeated stimulation further 
support this view of a strong feedforward inhibition from the PreS/RSC to their thalamic 
targets. 

Heterogeneity of TRN: novel insights into neurochemically distinct cell types 

The identification of neurochemically distinct cell types, notably the PV+ and Sst+ 
subtypes, has been a major impetus for considering TRN as a heterogeneous 
structure. Although it has been proposed that these cellular subtypes form 
subnetworks, still little is known about their function. In particular, there has been no 
study so far that links neurochemical identity to cellular properties to a joint function. 

A recent study by Clemente-Perez et al. dissected the role of PV+ and Sst+ neurons 
of the sensory TRN in thalamocortical oscillations (Clemente-Perez et al., 2017). PV+ 
neurons in the sensory TRN showed the classical repetitive burst firing upon release 
from hyperpolarizing current injection. Sst+ neurons in the same sector showed little 
repetitive burst firing, reminiscent of our observation in the limbic TRN where neurons 
displayed similar weak repetitive burst capability (Fernandez et al., 2018; Vantomme 
et al., 2019). However, this weak capability of repetitive burst in the limbic TRN did not 
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correlate with an increase proportion of Sst+ neurons compared to PV+ neurons 
(Clemente-Perez et al., 2017). Furthermore, we could not establish a difference in the 
bursting capacity of limbic TRN neurons between PV+ and PV- neurons recovered 
after patch-clamp recording (unpublished observation). The mechanism underlying the 
differences in repetitive burst discharge between the limbic and sensory TRN is still 
unknown. Our data did not find differences in passive and active membrane properties. 
Differences in T-type calcium currents and small conductance calcium-activated 
potassium currents, key players in TRN repetitive burst discharge, might be good 
candidates for further investigation.  

Clemente-Perez et al. also observed that PV+ and Sst+ TRN neurons in the sensory 
sector project to distinct thalamic targets. PV+ neurons targeted mostly VPM, VPL and 
PO, three thalamic nuclei involved in sensorimotor signaling. Sst+ neurons projected 
to the intralaminar thalamic nuclei, the VPL and VM (Clemente-Perez et al., 2017). 
Looking at projection patterns of PV+ and Sst+ TRN neurons to the ATN and the 
laterodorsal (LD) thalamus in study 1, we could not observe such specific pattern of 
projections. Limbic PV+ and Sst+ neurons targeted the anterodorsal (AD), 
anteroventral (AV) and laterodorsal (LD) thalamic nuclei in a similar manner, 
suggesting a similar contribution of PV+ and Sst+ neurons to anterior thalamic 
inhibition. However, we did not investigated whether the PreS and or RSC afferents 
contacted preferentially PV+ or Sst+ TRN neurons. 

Altogether, these data suggest that the TRN inhibition of thalamic nuclei involved in 
limbic thalamocortical circuits does not serve as an oscillation generator as much as 
the TRN inhibition of sensory thalamic nuclei. The precise, strong and weakly 
oscillatory TRN inhibition over limbic thalamus probably reflects distinct needs of limbic 
thalamocortical networks for their function. 

Possible mechanisms by which TRN can help sharpen the tuning of HD cells – a 
novel form of gating within the brain. 

The interaction between the inhibitory limbic TRN and anterodorsal head-direction cells 
has been recently suggested (Peyrache et al., 2019). One of the major elements 
suggesting that anterodorsal head-direction neurons receive inhibition to suppress 
spiking activity outside their preferred direction was their narrower angular directional 
firing range compare to lateral mammillary head-direction neurons that are the main 
drive for the anterodorsal neurons.  

The limbic TRN is a good candidate to explain this difference in angular directional 
firing range between neurons of the anterodorsal thalamus and the lateral mammillary 
body. In classical sensory systems that we described in the chapter 3 of the 
introduction, the TRN is thought to participate in the inhibitory surroundings of thalamic 
receptive field through lateral inhibition. Thalamo-reticulo-thalamic circuits form open 
loops allowing lateral inhibition from the TRN neurons to sharpen the sensory receptive 
field of thalamic cells by inhibiting their activity outside their sensory space. Cortical 
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afferents also participate to the precision of the sensory receptive field through direct 
activation and indirect feedforward inhibition (via the TRN) of thalamic neurons.  

In the study 1, we found a similar feedforward corticothalamic circuit to AD that recruits 
inhibition from the limbic TRN. Anatomically, the portion of the limbic TRN that receives 
PreS/RSC afferents is relatively small in comparison to its thalamic target, suggesting 
a divergent output from the limbic TRN to AD and that single TRN neurons might 
project to multiple thalamic ones. Functionally, the responses of ATN+ neurons upon 
the activation of this feedforward circuit were constituted of compound inhibitory 
postsynaptic currents of high amplitude, further suggesting that single TRN neurons 
might contact multiple thalamic targets. Confirming this hypothesis, our data showed 
an increase in the angular directional firing range of anterodorsal head-direction cells 
upon chemogenetic inhibition of the limbic TRN. This strongly suggests that the 
suppression of spiking activity outside the preferred direction of anterodorsal thalamic 
neurons is mediated, at least partially, by lateral inhibition from the limbic TRN.  

 

Heterogeneity of TRN’s cellular and synaptic properties: Implications for sleep 

In study 2, we correlated the functional heterogeneity of TRN neurons in their repetitive 
burst discharge to the heterogeneity of sleep spindles in the related cortices. By locally 
modulating the somatosensory sector of the TRN we could induce changes in the local 
sleep of somatosensory cortex, establishing causality. Impairment of TRN bursting 
capacity through deletion of the calcium channel required for such bursting discharge 
did not impact all TRN sectors and related cortices similarly. Somatosensory and 
auditory cortex showed a change in their sleep oscillation content, notably a switch 
from a fast sleep spindles enriched sleep to a delta enriched sleep, whereas there was 
no differences in the prefrontal cortex. Several factors might underlie this 
heterogeneity: 1) limbic TRN neurons are not as active as sensory TRN neurons during 
sleep, 2) the synaptic connectivity of the limbic thalamocortical circuits is different from 
the sensory circuits, 3) the weaker repetitive bursting capacity of the limbic TRN is 
indeed relevant for the changes in oscillatory content of the limbic cortex.  

Halassa et al. showed that ATN-connected limbic TRN neurons are negatively 
correlated to the spindle power, are broadly distributed along delta waves, and overall 
reduce their firing during sleep (Halassa et al., 2014), consistent with the idea that the 
limbic TRN has a weak spindle-related activity. In this study, the ATN-connected limbic 
TRN neurons have an increased firing rate during active waking compared to quiescent 
state and sleep. This suggests that a reduction of activity of the limbic TRN during 
sleep favors disinhibition of its thalamic targets, perhaps enabling offline processing of 
the ATN with other limbic structures. On the contrary, sensory connected TRN neurons 
increase their firing rate overall during sleep and are phase-locked to the sleep 
spindles, supporting the idea that sensory TRN neurons are more active during sleep 
than limbic TRN neurons. We found in studies 1 and 2 that limbic TRN neurons 
involved in thalamocortical loop with the ATN and the mediodorsal thalamus have a 
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poor repetitive bursting capacity compared to the classical sensory TRN neurons. 
Blocking burst discharge in the TRN is thus likely to have a stronger impact on brain 
structures connected to the sensory TRN such as somatosensory cortex than to the 
limbic TRN such as the PFC.  

 

Perspectives 

Sleep as a local phenomenon – a result of TRN heterogeneity. 

Sleep serves many biological functions, from memory consolidation (Vorster and Born, 
2015), to energy balance and metabolic function (Benington and Heller, 1995; Xie et 
al., 2013), immune protection (Irwin, 2015), macromolecule biosynthesis (Mackiewicz 
et al., 2007). All the processes required for these functions occur simultaneously and 
may seem unrelated to each other. Considering sleep only as a global phenomenon 
thus fails to grab all the local aspects of sleep functions. Considering the local aspects 
of sleep makes one wonders how sleep is locally regulated. In this section, I will discuss 
two processes that are known to affect sleep, the homeostatic regulation and learning, 
and how the TRN might play a role in the local regulation of these processes.  

The homeostatic process can be considered as the sleep drive. The longer an 
individual is awake, the stronger the need to sleep becomes. In terms of brain activity, 
the delta power (1-4 Hz) was shown to increase with the sleep need. Sleep deprivation 
protocols revealed a strong increase of the delta power in the subsequent sleep on a 
global electroencephalogram scale. The delta power can also be upregulated or 
downregulated locally in the cortex depending on the recent use or absence of use of 
the related modality (Kattler et al., 1994; Huber et al., 2006). We showed in study 2 
that blocking the TRN increases the delta content of sleep. The TRN is thus a potential 
candidate implicated in the homeostatic mechanisms of delta sleep regulation. 
Furthermore, the parallel wiring of the TRN in thalamocortical circuits makes it possible 
to regulate sleep homeostasis locally. A way to investigate the role of the TRN in this 
local regulation of homeostasis can take advantage of the local increase in sleep delta 
power induced by excessive sensory stimulation in the preceding wake period. For 
example, whisker stimulations induce an increase in delta power in the primary 
somatosensory cortex in rodents (Vyazovskiy et al., 2000). Local depolarization of the 
somatosensory TRN during the post stimulation sleep can be applied to see whether 
the use-dependent increase in delta power can be prevented. This approach of local 
manipulation of the TRN activity and single modality overstimulation circumvents the 
non-specific effects of sleep deprivation and may unravel the fundamental circuits 
underlying sleep homeostasis (Vantomme et al., 2019). 

The learning process requires specific patterns of synaptic activity that can result in 
synaptic strengthening or downscaling. The post training sleep is critical for learning 
and memory as it permits such patterns of synaptic activity to occur and thus synaptic 
plasticity. In particular, the density of sleep spindles is increased in cortical regions that 
have been required for learning. Because the TRN is the main generator of sleep 
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spindles, it suggests that the activity of the TRN might also be relevant to influence the 
cortical oscillatory content and to promote synaptic plasticity. This hypothesis could be 
tested through local manipulation of TRN activity in the post training sleep after a 
learning paradigm. Boosting thalamic bursts firing and cortical spindles through local 
optogenetic activation of the TRN (Halassa et al., 2011) may enhance learning 
performance while silencing the TRN locally (Fernandez et al., 2018) may reduce 
learning performance.  

To summarize, the TRN and its heterogeneous connectivity in thalamocortical circuits 
may underlie local mechanisms of sleep regulation such as the homeostatic and 
learning processes. Such hypotheses can now be investigated through local 
manipulation of sleep via interference of the TRN sectors ‘activity.  

TRN as part of the head direction system.  

In study 1, we showed that blocking the activity of the limbic TRN increases the tuning 
width of AD head-direction neurons. We can thus think of the TRN as a constitutive 
sharpener of the tuning of thalamic head-direction neurons, with AD neurons activating 
TRN cells that feedback in an open loop circuit and promote lateral inhibition.  

We also demonstrated that PreS/RSC has a strong feedforward inhibition onto 
anterodorsal cells. These cortical inputs, with the contribution of the limbic TRN, might 
play a role in the re-tuning of anterodorsal thalamic neurons. The PreS and RSC may 
play an important role in the updating of the head-direction signal with external 
landmarks. For example, the PreS is an entry point for visual information into the head-
direction system. Its strong projections to AD are essential for visual landmark control 
of the head-direction signal in this nucleus. The limbic TRN is thus in a strategic 
position to re-tune thalamic head-direction signals under the control of the PreS/RSC. 
To test whether the TRN plays a role in the visual landmark control of a thalamic cell’s 
preferred direction, we could record thalamic head-direction neurons and combine 
chemogenetic silencing of the limbic TRN with visual cue rotation. If the limbic TRN 
plays a role in the visual landmark control of the thalamic head-direction neurons, the 
precision of the shift in preferred direction induced by the rotation of the visual cues 
should be lower in mice with chemogenetic silencing of the TRN than in controls.  

Head-direction neurons have a persistent high frequency firing when the animal faces 
the preferred direction. The mechanisms for persistence of directional firing could arise 
from intrinsic cellular properties of head-direction neurons, network properties that 
allow strong excitation between neurons with similar tuning, or high recurrent inhibition 
in combination with direct excitation (Simonnet and Fricker, 2018). The excitatory-
excitatory connections between thalamic neurons are rare but very few of them 
between neurons with similar preferred direction might be sufficient for recurrent 
excitation. As for the inhibition, the thalamus contains also very few interneurons and 
we did not find any PV+ cells within the anterodorsal thalamus in our anatomical study. 
Beyond their role in lateral inhibition, TRN neurons may also help to sustain the firing 
rate of recurrently connected thalamic neurons similarly to the inhibitory Martinotti cells 
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with PreS head-direction cells (Simonnet et al., 2017). However, when silencing the 
limbic TRN, we observed only an increase of the angular directional firing range of 
thalamic head-direction neurons and no change in maximal firing rate, suggesting a 
role of the TRN in lateral inhibition but not in recurrent entrainment. 

Finally, TRN neurons connected to the ATN correlated very little with sleep spindles 
and presented overall a reduction of firing during sleep (Halassa et al., 2014). This 
reduction of activity and lack of synchronization compared to classical sensory TRN 
may underlie a different function of the limbic TRN in sleep. Thalamic head-direction 
neurons are active during sleep. The reduction of limbic TRN activity within the head-
direction circuit might be necessary for replay and memory formation related to spatial 
navigation.  

 

Novel considerations of the limbic TRN 

Abbreviations of the thalamic nuclei: 

AD: anterodorsal 

AV: anteroventral 

AM: anteromedial 

LGN: lateral geniculate  

MGN: medial geniculate  

VPM: 
ventroposteromedial  

VPL: 
ventroposterolateral  

PO: posterior  

VL: ventrolateral  

VA: ventral anterior  

VM: ventromedial  

MD: mediodorsal  

AD: anterodorsal  

AV: anteroventral  

AM: anteromedial 

SMT: submedial 

LD: laterodorsal 

LP: lateroposterior 

CM: centromedial 

PC: paracentral 

CL: centrolateral  

PF: parafascicular 

SPF: subparafascicular 

PT: paratenial 

PVn: paraventricular  

RH: rhomboid  

RE: reuniens  

IMD: intermediodorsal  

IAM: interanteromedial  

 

In this section, I would like to investigate further the potential functions of the limbic 
TRN. To do so, I will look at the TRN from the perspective of the limbic thalamus. The 
limbic thalamus was defined as being constituted of the ATN, RE, RH, PV, PT, medial 
MD, CM, IAM and IMD. This classification is based on functional studies of thalamic 
nuclei and is different from the original classification that considered three thalamic 
groups: the principal nuclei (LGN, MGN, VPM, VPL, PO, VL, VA and VM), the 
associative nuclei (MD, AD, AV, AM, SMT, LD, and LP) and the intralaminar (CM, PC, 
CL, PF and SPF) and midline (PT, PV, RH, RE and IMD) group.  

One can speculate that limbic TRN functions are tightly linked to its thalamic target 
functions. In the next paragraphs, I will consider some of these limbic thalamic nuclei 
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that were studied functionally and describe anatomical evidence of TRN projections to 
these nuclei in an attempt to propose more potential roles of the TRN in limbic 
functions. The function of these thalamic nuclei were mostly studied using combination 
of lesion/inactivation of the thalamus with behavioral tasks in rodents.  

The ATN is composed of the AD, AV and AM. The ATN is part of the Papez’s circuit 
that forms a loop from the hippocampus to mammillary bodies, ATN, cingulate cortex, 
parahippocampal formation and back to the hippocampus. The Papez’s circuit is 
critical for mnemonic functions and lesions of the ATN (as well as other structure of the 
Papez’s circuit) disrupt memory (Aggleton and Brown, 1999) and cause severe 
anterograde amnesia in humans (von Cramon et al., 1985). A particularity of the 
Papez’s circuit is the presence of a theta (5 – 12 Hz) oscillation that propagates in its 
structures and has been involved in mnemonic function of the hippocampus (Vertes et 
al., 2001). All subdivisions of the ATN contain neurons that increase their firing rate 
upon hippocampal theta rhythm. In particular, the AV neurons fired rhythmically in 
bursts synchronous to this theta. As we already described in study 1, the ATN contains 
head-direction neurons. The head-direction neurons in the ATN are critical for spatial 
navigation learning. Indeed, lesion of the ATN disrupted spatial learning and 
hippocampal place cell activity (Taube et al., 1992; Mizumori et al., 1994; Aggleton and 
Brown, 1999). ATN lesions were also shown to disrupt conditioned avoidance learning, 
expanding the role of the ATN beyond spatial navigation (Gabriel et al., 1983; Gabriel 
et al., 1995). We demonstrated that inhibitory projection from the limbic TRN to the AD 
and AV are powerful and reliable and that limbic TRN’s activity sharpens the tuning of 
head-direction neurons in the AD. However, we do not know whether ATN-connected 
TRN neurons play a role in spatial memory formation.  

RE and RH will be considered together as their close proximity renders difficult to 
separate their effect on behavior in lesion studies. RE/RH target mostly the 
hippocampus and limbic cortices (Vertes et al., 2015). Rats with RE/RH lesion showed 
a similar performance in acquisition and retention of a watermaze reference memory 
task than control rats. During probe session following acquisition, rats with RE/RH 
lesions swam directly to the escape location and, upon realization that the platform 
was absent, rapidly extended their search to the rest of the watermaze (Dolleman-van 
der Weel et al., 2009). This observation that a thalamic lesion of RE/RH reduces 
perseverance in probe session is in accordance with our observation that blockade of 
the limbic TRN, and thus potentially disinhibiting the RE/RH, promotes perseverance 
in probe sessions after acquisition. This suggests that shift between strategies can be 
achieve through changes of thalamic neuronal activity and that the limbic TRN might 
be a key player in this modulation. Further lesion/inactivation studies of RE/RH 
revealed the importance of these thalamic nuclei in the medial prefrontal cortex 
function and in the interaction between the hippocampus and the medial prefrontal 
cortex, for example in long-term spatial memory formation (Hembrook et al., 2012; 
Loureiro et al., 2012). Cholvin et al proposed that the RE/RH coordinate the activity of 
the hippocampus for spatial memory formation and the medial prefrontal cortex for 
strategy shifting (Cholvin et al., 2013). The dense projections from the medial prefrontal 
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cortex to the limbic TRN (Zikopoulos and Barbas, 2007) and the evidence of limbic 
TRN projections to RE (McKenna and Vertes, 2004) further emphasized the potential 
role of the limbic TRN in modulating the strategy shift in navigation task.  

The PVn is known to project mostly to limbic subcortical structures such as the 
amygdala and nucleus accumbens and thus has been associated with affective 
functions (Vertes et al., 2015). The PVn has been linked to detection of novel stressors 
and to adaptation to chronic stress. More precisely, c-fos expression in PVn neurons 
is increased after exposure to a novel stressor and lesion of the PVn blocked the 
habituation to repeated restraint stress (Bhatnagar and Dallman, 1998; Bhatnagar et 
al., 2002). This phenomenon of heightening novel stressor and reduce/suppress 
already known stressor is reminiscent of the TRN gating function of sensory 
information. The PVn has also been associated with food consumption and drug 
seeking behavior, showing increase c-fos staining in PVn neurons is enhanced in 
anticipation of feeding during food deprivation and after reinstatement of drug seeking 
behavior. Lesion and/or inactivation of PVn reduce the locomotor activity that precedes 
feeding and suppress drug-seeking behavior (Nakahara et al., 2004; Angeles-
Castellanos et al., 2007; James et al., 2011). As the limbic TRN has been shown to 
project to the PVn (Cornwall and Phillipson, 1988), we can speculate that TRN 
inhibitory control over PVn activity may be important in reducing drug seeking behavior 
and food overconsumption in particular in the context of stress and anxiety.  

The medial portion of the MD is strongly connected to the prefrontal cortex and they 
thus share many functions. In particular, the medial MD is important in behavioral 
flexibility. Lesion studies have shown that rats with medial MD lesion maintained 
strategies previously rewarded or showed perseverance despite a change in reward 
condition (Block et al., 2007). A striking example comes from watermaze experiments 
where rats stick to thigmotaxis strategy (perseverant swimming in close proximity to 
the wall), thus delaying their learning of the position of the escape platform. Once the 
platform location was learned, rats showed perseverant behavior to the former platform 
position even if the new platform was visible (Dolleman-van der Weel et al., 2009). 
Beyond this role in behavioral flexibility, the medial MD has been linked to recognition 
memory. In particular, lesions of medial MD can disrupt associative recognition 
memory such as place/object association and temporal order of object presentation 
(Cross et al., 2012). Limbic TRN inhibitory projections to the medial MD (Cornwall and 
Phillipson, 1988) are then also in a good position to influence flexibility in strategy used 
in spatial task and maybe even influence memory formation.  

Unlike other intralaminar nuclei, the CM projections target mostly limbic structures 
suggesting that CM’s function might be closer to midline thalamic nuclei than 
intralaminar thalamic nuclei (Van der Werf et al., 2002; Vertes et al., 2012). However, 
the functions of the CM have not be studied separately from the intralaminar nuclei, 
probably due to the poor accessibility of the CM for behavioral studies, and this will not 
be developed further. 
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Next steps and conclusion 

In the last years, the application of modern neuroscience techniques allowed to link to 
some extent molecular, cellular, electrical and synaptic heterogeneities of the TRN to 
its functions. In particular, opto- and chemogenetic manipulation of TRN neuronal 
activity in combination with electrical recordings of the related circuits or behavioral 
experimentations allowed to confirm and expand our understanding of the guardian of 
the gate. 

The limbic TRN has barely revealed all its functions as suggested by the strong and 
numerous afferents from the limbic cortex and thalamus. Before the development of 
techniques that permit manipulation of specific afferents, it was impossible to 
disentangle functionally these projections to the limbic TRN. The latest studies 
revealed the involvement of the limbic TRN into selective attention (Zikopoulos and 
Barbas, 2006; Halassa et al., 2014), pain regulation (Liu et al., 2017), escape behavior 
(Dong et al., 2019), navigation (study 1) and how different the limbic TRN participates 
to sleep spindle generation compared to the sensory TRN (Fernandez et al., 2018; 
Vantomme et al., 2019).  I would expect that the next steps of TRN research would 
focus on the limbic TRN and how it participates to memory formation and consolidation, 
emotion and higher cognitive processes.  

In particular, I would consider using the thalamocortical circuit of the head-direction 
system as it offers an interesting framework to further study the function of the limbic 
TRN in sleep and memory. Unlike cortical structures that process signals from multiple 
sources, the thalamic head-direction system processes a one-dimensional signal that 
is the head-angle. This renders the representation of the head-direction system very 
persistent across brain states. Indeed, parallel recording of the anterodorsal thalamus 
and dPreS across brain states revealed that the neuronal activity in this thalamocortical 
network preserved functional organization, inter-area interaction from thalamus to 
cortex and show similar drifting speed during exploration and REM sleep (Peyrache et 
al., 2015; Peyrache et al., 2019). This supports the idea that the head-direction system 
relies mostly on intrinsic wiring and dynamics than on sensory stimuli. Furthermore, 
the high level of organization of the spatial navigation system and in particular of the 
head-direction thalamocortical circuit during sleep may play a key role in hippocampal 
replay and memory consolidation (Peyrache et al., 2019). Whether the limbic TRN 
plays a role in spatial memory consolidation is still an open question that is being 
investigated in the context of the head-direction system (Viejo and Peyrache, 2019). 
The limbic portion of the TRN involved in the head-direction system seems thus to be 
a good candidate to study the role of the limbic TRN in sleep and memory as the head 
angle signal offers a simple and reliable readout of the thalamocortical circuit.  

 

In this thesis and in my research projects, I investigated the heterogeneity of the TRN 
at the cellular, synaptic and functional level, emphasizing the less well-described limbic 
TRN. I demonstrated how the heterogeneity of the TRN underlies many of its functions 



50 
 

and described how future works will gain from taking into account this heterogeneity. 
This thesis can serve as a collection of the TRN heterogeneous elements that influence 
functions of the multifaceted Guardian of the Gate and also provides current 
hypotheses and ways to address them.  
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Summary 11 

To navigate in space, an animal must reference external sensory landmarks to the spatial 12 

orientation of its body and head. Circuit and synaptic mechanisms that integrate external cues 13 

with internal head-direction (HD) signals to drive navigational behavior remain, however, poorly 14 

described. We identify an excitatory synaptic projection from the presubiculum and retrosplenial 15 

cortex to the anterodorsalmost sector of the thalamic reticular nucleus (TRN), so far classically 16 

implied in gating sensory information flow. Projections to TRN showed driver characteristics and 17 

involved AMPA/NMDA-type glutamate receptors that initiated TRN cell burst discharge and 18 

feedforward inhibition of anterior thalamic nuclei, where HD-tuned cells relevant for egocentric 19 

navigation reside. Chemogenetic anterodorsal TRN inhibition broadened the tuning of thalamic 20 

HD cells and compromised egocentric search strategies in the Morris water maze. Besides 21 

sensory gating, TRN-dependent thalamic inhibition is an integral part of limbic navigational circuits 22 

to recruit HD-cell-dependent search strategies during spatial navigation. 23 

Keywords: Anterior thalamus; Retrosplenial cortex; Presubiculum; Allocentric; Egocentric; 24 

Synaptic inhibition; Burst discharge; Perseverance; Optogenetics; Chemogenetics  25 
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Introduction 26 

Spatial navigation requires the ability to notice environmental landmarks, detect their sensory 27 

characteristics, and set these in relation to one’s self-perceived direction, speed, and location. 28 

Cortex is a major site for spatial sensory processing and for creating internal representations of 29 

space based on one’s own movement, location and body orientation to guide navigation. 30 

However, in the interest of survival, environmental cues may need to be detected rapidly to adapt 31 

navigational strategies without potentially time-consuming cortical elaboration. A major site for 32 

subcortical gating of sensory stimuli is the inhibitory thalamic reticular nucleus (TRN) that shows 33 

a unique anatomical positioning at the interface between sensory thalamic nuclei and cortex 34 

(Scheibel and Scheibel, 1966; Pinault, 2004; Crabtree, 2018). The significance of TRN in 35 

controlling sensory flow is now documented for the gain control of incoming sensory inputs (Le 36 

Masson et al., 2002), the sharpening of receptive fields (Lee et al., 1994; Soto-Sánchez et al., 37 

2017), attentional modulation of monomodal (Halassa et al., 2014) or multimodal conflicting 38 

sensory inputs (Ahrens et al., 2015; Wimmer et al., 2015), and sensory induced escape (Dong et 39 

al., 2019).  40 

In contrast to its role in sensory gating, the TRN has not been implied in the gating of internal 41 

signals that underlie one’s sense of orientation in space. Lesion studies, however, suggest that 42 

TRN contributes to covertly directing a rat’s self-orientation to the target stimulus, such that 43 

orienting movements can be rapidly executed (Weese et al., 1999). Moreover, anterior thalamic 44 

nuclei (ATN) are part of the brain’s navigational system (Dumont and Taube, 2015), and there is 45 

anatomical evidence in rodent that anterodorsal TRN innervates ATN (Scheibel and Scheibel, 46 

1966; Gonzalo-Ruiz and Lieberman, 1995b, a; Lozsádi, 1995; Pinault and Deschênes, 1998), 47 

although this has been questioned in cat (Paré et al., 1987). The anterodorsal (AD) thalamic 48 

nucleus, part of the ATN, contains a large proportion of HD cells tuned to the direction of the 49 

rodent’s head in space (Taube, 1995), which serve as an egocentric, self-centered compass 50 

during navigation (van der Meer et al., 2010; Butler et al., 2017). Although the TRN has been 51 

proposed to be part of HD circuits (Peyrache et al., 2019), the underlying functional anatomy 52 

remains elusive. Possible equivalences and differences to the canonical sensory TRN-53 

thalamocortical circuits thus remain speculative and possible roles for TRN in the gating of HD 54 

and spatial navigation signals have not been clarified. Here, we hypothesized that if the TRN is 55 

to mediate subcortical sensory gating effectively, it should serve as an entry point for information 56 

flow to ATN to control the processing of HD signals. 57 

The anterior thalamic HD representation is controlled by external visual landmarks through input 58 

from the dorsal presubiculum (dPreS) (Goodridge and Taube, 1997) and the retrosplenial cortex 59 



P a g e  | 3 
 

(RSC) (Clark et al., 2010). Both areas are reciprocally connected (van Groen and Wyss, 1990) 60 

and receive afferents from ATN, primary and secondary visual cortex, integrating information 61 

relevant for egocentric and allocentric, external cue-guided, navigation (Dumont and Taube, 2015; 62 

Clark et al., 2018; Mitchell et al., 2018; Simonnet and Fricker, 2018). Behaviorally, lesion of dPreS 63 

compromises rapid orienting behaviors based on landmarks (Yoder et al., 2019), whereas RSC 64 

lesions lead to multiple deficits in spatial navigation and memory formation (Clark et al., 2018; 65 

Mitchell et al., 2018). Although there is evidence for a topographically organized cortical feedback 66 

from RSC to rat and monkey anterodorsal TRN (Cornwall et al., 1990; Lozsádi, 1994; Zikopoulos 67 

and Barbas, 2007), the nature of this cortico-thalamic communication has never been 68 

characterized.  Indeed, current models of HD circuits involving ATN, dPreS and RSC (Dumont 69 

and Taube, 2015; Peyrache et al., 2017; Simonnet and Fricker, 2018; Perry and Mitchell, 2019) 70 

and of the brain’s ‘limbic’ navigational system (Bubb et al., 2017) largely disregard a functionally 71 

integrated TRN. In spite of this gap of knowledge, the notion of a limbic anterior TRN has been 72 

proposed recently (Zikopoulos and Barbas, 2012; Halassa et al., 2014). 73 

In this study, we combined tracing techniques, in vitro and in vivo electrophysiological recordings 74 

together with a spatial navigation task to probe the synaptic integration and the function of TRN 75 

in the communication between PreS, RSC and ATN.  76 

 77 

Results 78 

RSC and PreS send topographically organized projections to ATN and TRN 79 

To determine afferent projection to the anterodorsal portion of the TRN, we injected small volumes 80 

(50-100 nl) of red retrobeads into anterodorsal TRN of C57BL6/J mice (4-8-week-old) and 81 

identified sites of red punctate fluorescent labeling 5 – 7 days later.  Five out of 19 injections were 82 

restricted to the anterior TRN in its dorsalmost portion, as verified by parvalbumin (PV)-83 

immunostaining of the TRN (Fig. 1A1). Punctate labeling clearly separated from the injection site 84 

was found in the adjacent anterodorsal (AD), laterodorsal (LD) and in the centrolateral (CL) nuclei 85 

(Fig. 1A2, Suppl. Fig. 1), consistent with prior tracing studies (Gonzalo-Ruiz and Lieberman, 86 

1995b, a; Lozsádi, 1995; Pinault and Deschênes, 1998). Labeling was also found in deep layers 87 

of prelimbic cortex that extended into infralimbic and cingulate, and, in two cases, into motor 88 

cortical areas, consistent again with a previous study in rat (Lozsádi, 1994). Our attention was 89 

drawn to a distinct stretch of puncta extending from parahippocampal regions into RSC (Fig. 1A2). 90 

Labeling included in particular the deep layers of the PreS that is interposed between the 91 

subiculum, the parasubiculum and the RSC (Ding, 2013; Simonnet and Fricker, 2018). 92 
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We next used the anterograde tracer, Phaseolus vulgaris-leucoagglutinin (PHAL-L), to confirm 93 

projections from RSC and PreS to anterior TRN. Through a panel of injections (n = 20) that 94 

targeted restricted portions of RSC, dPreS and ventral PreS (vPreS) (Fig. 1B1), we noted a 95 

nucleus-specific labelling pattern in the LD, AD, and anteroventral (AV) thalamus, which is also 96 

part of ATN (Fig. 1B2). Injections centered within the RSC labeled large portions of AD and LD, 97 

while sparing AV, whereas PreS-centered injections covered more restricted portions of LD, AD 98 

and AV. vPreS injections labeled the most lateral portion of LD and AV. All labeled fibers arborized 99 

within the most anterodorsal portions of TRN (Fig. 1B3), with fibers surrounding TRN cell bodies, 100 

pointing towards putative synaptic connections.  101 

The PreS/RSC establishes functional excitatory synapses onto TRN 102 

We used whole-cell patch-clamp recordings to address the presence of functional connections 103 

between PreS/RSC, anterodorsal TRN and ATN in acute coronal slices from brains of mice 104 

injected with AAV1-CaMKIIa-ChR2-EYFP into PreS/RSC 3 – 5 weeks earlier (Fig. 2A). Cells 105 

patched within anterodorsal TRN showed rebound burst behavior, as recognizable by repetitive 106 

high-frequency bursts of action potentials after brief hyperpolarization, similar to posterior sensory 107 

TRN cells (Fig. 2B) (Fernandez et al., 2018). Electrical properties were also similar to those of 108 

their posterior counterparts (Fig. 2A-C), although cells produced less repetitive bursts (Fernandez 109 

et al., 2018; Vantomme et al., 2019). Cells in AD, AV and LD showed properties typical for dorsal 110 

thalamocortical neurons, notably the presence of only a single rebound burst discharge 111 

(Huguenard, 1996) (Suppl. Fig. 2). 112 

Optogenetic stimulation of PreS/RSC fibers was applied while recording from voltage-clamped 113 

neurons of the anterodorsal TRN and of AD, AV and LD (Fig. 2D,E). The location of cells within 114 

the different thalamic nuclei was evident while guiding the patch pipette to the target region and 115 

was confirmed in a subgroup of cells through perfusion with neurobiotin and post-hoc recovery 116 

(n=33/106) (Fig. 2D1). Rapid synaptic inward currents were elicited in all responsive cells (Fig. 117 

2D2). The connectivity, quantified based on the presence of such synaptic currents in the 118 

complete set of recorded cells, was > 80 % for all areas (Fig. 2D3). Synaptic currents were time-119 

locked to the stimulus, with a fixed and short latency to response onset and sub-millisecond jitter 120 

(Fig. 2D4,D5). Response latency was inversely proportional to light intensity (Suppl. Fig. 2), which 121 

is consistent with an action potential-dependent mode of synaptic transmission (Gjoni et al., 122 

2018). There is thus a direct, monosynaptic connection from PreS/RSC to anterodorsal TRN and 123 

to AD, AV and LD. 124 
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Figure 1. The RSC and the PreS send topographically organized projections to the anterior 127 
thalamus and TRN. 128 

(A1) Epifluorescent micrographs of mouse coronal brain sections showing a retrobead (red) 129 
injection site (*) into the anterior portion of the TRN, which spread ~300 μm along the 130 
anteroposterior extent of the TRN (immunostained for PV, green). Bg, Bregma. (A2) 131 
Epifluorescent micrographs showing retrogradely labeled brain regions. Anterodorsal thalamus 132 
(AD) – Laterodorsal thalamus (LD) – Centrolateral thalamus (CL) – Cingulate cortex (Cg) – 133 
Prelimbic/Infralimbic cortex (PreL/IL) – dorsal Presubiculum (dPreS) – Retrosplenial cortex (RSC) 134 
– Visual cortex (V1/V2) – Motor cortex (M1/M2). (B1) Epifluorescent micrographs of 4 different 135 
injection sites of PHAL-L (red) into (from left to right) RSC, PreS, dPreS and ventral PreS (vPreS). 136 
Green, PV+ neurons. (B2) Epifluorescent micrographs of coronal sections in ATN at Bg -1.3 mm 137 
(top) and -0.7 mm (middle). Note labeled fibers visible in the anterodorsal TRN (dotted squares). 138 
(B3) Expanded confocal microscopy views of areas indicated by dotted squares in B2, AV, 139 
anteroventral thalamus.  140 

 141 

Light-evoked postsynaptic currents (EPSCs) were mediated by glutamatergic synaptic receptors, 142 

as verified in a subset of 5 TRN and 5 neurons of AD, AV or LD (jointly referred to here as ATN+) 143 

(Fig. 2E1). Thus, the AMPA receptor antagonist 6,7-Dinitroquinoxaline-2,3(1H,4H)-dione (DNQX, 144 

40 μM, bath-application) reduced responses by > 90 % at -60 mV (Fig. 2E1,E2). The block was 145 

not complete, suggesting activation of non-AMPA receptors. Indeed, a current component 146 

sensitive to the NMDA receptor antagonist DL-2-Amino-5-phosphonovaleric acid (APV) was 147 

detectable at +40 mV (Fig. 2E1, E2). NMDA/AMPA ratios were comparable to previous studies in 148 

sensory TRN and thalamus (Fernandez et al., 2017). Moreover, the TRN-EPSCs had a twice-149 

shorter half-width than ATN+-EPSCs (Fig. 2E3) and a faster decay time (Fig. 2E4). PreS/RSC 150 

inputs thus convey a phasic excitatory input onto anterodorsal TRN cells. 151 

PreS/RSC establishes strong unitary connections with driver characteristics onto 152 

anterodorsal TRN 153 

TRN and ATN+ neurons were robustly innervated by PreS/RSC afferents, with compound EPSC 154 

amplitudes ranging from -25 pA to -1157 pA at high light intensities, although there were nucleus-155 

specific differences (Fig. 3A). Both large and small EPSCs were obtained in slices from the same 156 

animals, excluding variable viral transduction as a major reason for this variability. To assess how 157 

variability was based on strength and connectivity of PreS/RSC afferents, we used minimal 158 

optogenetic stimulation through reducing light intensity to variably evoke failures and successful 159 

responses at comparable rates (mean failure rate 47±3 %) (Fig. 3B1). Unitary PreS/RSC EPSCs 160 

of TRN cells were 4- to 5-fold larger than the ones established onto AD and AV cells (Fig. 3B2). 161 

Dividing the maximally evoked EPSC amplitude by the unitary one, we calculated ranges of 1 –  162 
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 163 

Figure 2. The PreS/RSC establishes functional excitatory synapses onto TRN 164 

(A) Scheme of viral injections (AAV1-CamKIIa-ChR2-EYFP) into PreS/RSC or primary 165 
somatosensory cortex (S1) followed by whole-cell patch-clamp recordings. (B) Responses of a 166 
PreS/RSC-connected TRN neuron (green) and a S1-connected TRN neuron (grey) to a 10 mV 167 
hyperpolarizing step in voltage-clamp (Left) and to negative current injection in current-clamp 168 
(Right). (C) Box-and-whisker plots of cellular properties of PreS/RSC-connected (n = 16) and S1-169 
connected TRN neurons (n = 11). From left to right: Membrane resistance (Rm), membrane 170 
capacitance (Cm), resting membrane potential (RMP), action potential (AP) half-width (H-W), 171 
burst number. Mann-Whitney U tests were used for comparing Rm, RMP and AP H-W, Student’s 172 
t tests for Cm and Burst number. Data from S1-connected TRN neurons re-used from a previous 173 
study (Fernandez et al., 2018) (D1) Confocal micrographs of 300 μm-thick mouse brain sections 174 
showing the whole-cell recorded TRN (top) and AV (bottom) neurons filled with neurobiotin (red). 175 
Green, ChR2-EYFP-expressing PreS/RSC afferents, magenta, PV+ TRN cells.  (D2) Current 176 
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responses of TRN (top) and AV (bottom) neurons to optogenetic activation (blue bars, 1 ms, 3.5 177 
mW power, 455 nm) of PreS/RSC afferents, recorded at -60 mV. (D3) Connectivity histogram, 178 
calculated as the fraction (in %) of neurons responding to optogenetic stimulation. (D4) Box-and-179 
whisker plot of response latencies (calculated from LED onset, ‘from LED’) in the TRN (n = 12), 180 
AD (n = 16), AV (n = 16) and LD (n = 6). Mann-Whitney U tests and Bonferroni correction: α = 181 
0.0083.  (D5) Jitter of response latencies (deviation from mean) in one cell from TRN, AD, AV and 182 
LD across all stimulation trials. (E1) Pharmacological analysis of typical evoked excitatory 183 
postsynaptic currents (EPSCs) in TRN and ATN+, showing AMPA- and NMDA-EPSCs and their 184 
suppression by DNQX (40 µM) and APV (100 µM), respectively (superimposed grey traces).  (E2) 185 
Box-and-whisker plots of DNQX effects (left, in % of original response amplitude, n = 5 for both 186 
TRN and ATN+) and of NMDA/AMPA ratios (right). Values of p from Student’s t tests. (E3) Box-187 
and-whisker plot of EPSC half-widths for TRN (n = 7), AD (n = 8), AV (n = 14) and LD (n = 5). 188 
Mann-Whitney U tests and Bonferroni correction: α = 0.0083. Statistically significant p values are 189 
indicated. (E4) Box-and-whisker plot of the EPSC weighted decay time constant in TRN (n = 7), 190 
AD (n = 8), AV (n = 14) and LD (n = 5). Same statistical analysis as E3. 191 

 192 

19 fibers for TRN, 2 – 32 fibers for AD and 8 – 86 fibers for AV. Therefore, although variable, TRN 193 

cells are, on average, targeted by a comparatively small number of fibers, but each with greater 194 

unitary strength. A large unitary response size has also been described for cortical projections 195 

onto sensory TRN (Golshani et al., 2001; Gentet and Ulrich, 2004; Cruikshank et al., 2010). To 196 

determine how many of these fibers were necessary to bring TRN cells to threshold for action 197 

potential firing, we performed cell-attached patch-clamp recording to preserve cellular integrity 198 

during PreS/RSC synaptic stimulation (Fig. 3C1). Action current numbers showed a steep 199 

sigmoidal light dependence with half-maximal values reached at 0.63 mW (Fig. 3C2,C3). 200 

Subsequent whole-cell mode recording in 5 out of 6 cells confirmed that these were bursts of 201 

action potentials riding on a low-threshold calcium spike, which showed similar light dependence 202 

(half-maximal number of action potentials at 0.92 mW) (Fig. 3C1,C3). In particular, at a light 203 

intensity corresponding to the one used for minimal stimulation (0.19±0.02 mW), single spikes 204 

were riding on triangularly shaped calcium spikes. Single or few active synaptic inputs from 205 

PreS/RSC appear thus sufficient to bring TRN cells to threshold through reliable EPSP-low 206 

threshold burst coupling.  207 

Excitatory afferents into thalamus have been divided into 2 major groups, drivers and modulators 208 

(Sherman, 2017). To determine the nature of PreS/RSC afferents, we determined paired-pulse 209 

ratios (PPRs) of TRN-and ATN+-EPSCs. Under our ionic conditions, PPRs remained close to 1 210 

until at least 10 Hz (Fig. 3D1,D2, Suppl. Fig. 3). When plotting results from individual experiments, 211 

all data points clustered around 1 for 1-10 Hz, supporting a homogeneity of fibers. This short-term 212 

plasticity profile is characteristic for a driver input onto anterodorsal TRN, which is contrary to the  213 
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Figure 3. The TRN receives strong unitary connections with driver characteristics from the 215 
PreS/RSC. 216 

(A) Box-and-whisker plot of maximally evoked compound EPSC amplitudes in TRN (n = 12), AD 217 
(n = 16), AV (n = 16), LD (n = 6). The intensity of the LED was reduced to ~20 % of the maximum 218 
in 4/16 AV and 4/6 LD cells to prevent escape currents. 1-factor ANOVA, p = 1.25x10-3, post hoc 219 
Student’s t tests with Bonferroni correction: α=0.0083. (B1) Minimal stimulation experiment. Left, 220 
overlay of successes and failures for a TRN and an AV neuron in one experiment. Right: Time 221 
course of the same experiment. Blue trace: intensity of the light stimulation. At minimal stimulation 222 
(0.15-0.16 mW for the TRN cell and 0.09-0.1 mW for the AV cell), the failure rate was ~50 % 223 
(22/39 failures for the TRN neuron, 20/39 failures for the AV neuron). Increasing the light intensity 224 
brought the failure rate to 0 % (right part of the graph). (B2) Box-and-whisker plot of the amplitude 225 
of successfully evoked unitary EPSCs in TRN (n = 5), AD (n = 3) and AV (n = 4). Repeated Mann-226 
Whitney U tests with Bonferroni correction: α=0.017. (C1) Top: representative responses of a cell-227 
attached TRN neuron recording exposed to maximal (left), intermediate (middle) and low (right) 228 
light intensities. Bottom: Same experiment in whole-cell current-clamp mode. (C2) Graph of action 229 
current number for the TRN neuron shown in C1. (C3) Same as in C2 for the average of all TRN 230 
neurons (cell-attached n = 6, whole-cell n = 5). Data were binned in 0.25 mW light steps. Action 231 
current number normalized to the maximum evoked in each neuron. (D1) RepresentativeTRN 232 
EPSCs at -60 mV upon paired-pulse stimulation at 1, 2, 5, 10 and 20 Hz. Grey dotted lines: 233 
amplitude of the first EPSC. (D2) Box-and-whisker plot of paired-pulse ratios (TRN: n = 16). Paired 234 
Student’s t tests or Wilcoxon signed rank-test and Bonferroni correction: α = 0.013. (E1) Top: 235 
typical membrane voltage response of a TRN neuron to a 10 Hz-light stimulation train. Bottom: 236 
Histogram of means (n = 7). Wilcoxon signed rank-tests and Bonferroni correction: α = 0.017. 237 
(E2) Top: same as in E1 for neurons responding with a subthreshold response at train onset. 238 
Bottom: Histogram of means (n = 6). Wilcoxon signed rank-test (at 2 Hz) and Paired Student’s t 239 
tests (at 5, 8, 10 Hz). (E3) Top: same as in E1 for subthreshold responses in a TRN neuron held 240 
at -60 mV. Bottom: Histogram of the mean persistent depolarization (n = 5). The persistent 241 
depolarization measured on the last 3 stimulations. 1-factor RM ANOVA, p = 0.033, post hoc 242 
paired Student’s t tests and Bonferroni correction: α = 0.017. 243 

 244 

modulatory profile of cortical input onto sensory TRN, showing paired-pulse facilitation (PPF) 245 

(Fernandez et al., 2018). 246 

At depolarized potentials, where tonic discharge is prevalent, PreS/RSC afferents reliably 247 

sustained TRN discharge during stimulation trains (Fig. 3E1). Furthermore, initially subthreshold 248 

responses could become suprathreshold in the course of a train (Fig. 3E2), most likely due to 249 

temporal summation that gave rise to a persistent depolarization on top of the phasic events (Fig. 250 

3E3). Similar results were found at PreS/RSC-ATN+ synapses (Suppl. Fig. 3). 251 

PreS/RSC afferents mediate feedforward inhibition onto ATN+ through recruiting burst 252 

discharge in PV- and somatostatin (Sst)-expressing TRN cells 253 

How does TRN recruitment by PreS/RSC afferents regulate ATN+ activity? We first tested in vitro 254 

for Pres/RSC-triggered feedforward inhibition onto ATN+ (Fig. 4A). ATN+ cells were held at 255 
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voltages to separately monitor EPSC and IPSC components (-60 mV and +15 mV) (see Methods 256 

for further details). Out of 22 ATN+ neurons innervated by PreS/RSC, 19 (9 AD, 5 AV, 5 LD) 257 

presented with a strong outward current at +15 mV, consistent with an evoked inhibitory 258 

postsynaptic current (IPSC) (Fig. 4B). The IPSC latency was higher than the EPSC latency (Fig. 259 

4C), consistent with a disynaptic feedforward inhibition. IPSCs were mediated through GABAA 260 

receptors (Fig. 4D1,D2). To demonstrate that these IPSCs were indeed mediated by anterodorsal 261 

TRN, we combined opto- and chemogenetics in VGAT-Ires-Cre mice expressing the inhibitory 262 

Designer Receptor Exclusively Activated by Designer Drugs (DREADD) specifically in the 263 

GABAergic cells of anterodorsal TRN and ChR2 in PreS/RSC. Chemogenetic silencing of 264 

anterodorsal TRN  through bath-application of the DREADD ligand clozapine N-oxide (CNO) while 265 

optogenetically activating PreS/RSC afferents indeed reduced the amplitude of the evoked IPSC 266 

(Fig. 4E1,E2). 267 

The TRN contains subnetworks of PV- or Sst-expressing cells with possibly different functions 268 

(Clemente-Perez et al., 2017). We determined the contribution of these subnetworks to ATN+ 269 

inhibition using PV-Cre and Sst-Cre mice expressing ChR2 in anterodorsal TRN. ChR2-positive 270 

fibers were visible throughout the AD, AV and LD in both mouse lines (Fig. 4F), and rapid IPSCs 271 

were elicited by activation of both PV- and Sst-expressing TRN cells in all thalamic nuclei (Fig. 272 

4G1,G2), suggesting a contribution of both subnetworks to ATN+ inhibition. 273 

Anterodorsal TRN activation regulates action potential firing in ATN+ and sharpens the 274 

tuning of HD cells 275 

We next addressed the consequences of PreS/RSC activity on unit activity of ATN+ through in 276 

vivo single unit recordings in freely behaving mice while optogenetically activating PreS/RSC 277 

bilaterally (Fig. 5A-C). Firing patterns of single units in the ATN+ (n=28/42 responsive units from 278 

3 mice), analyzed through raster plots, peri-event histograms and z-score analysis, fell into 4 279 

distinct classes. The first group (n=5) diminished firing rate within a time window of 15 – 40 ms 280 

that persisted for up to 65 ms (Fig. 5D1). The second group (n=7) showed a late increase in firing, 281 

with an onset from the LED stimulation ranging from 25 – 140 ms and persisting for up to 45 ms 282 

(Fig. 5D2), reminiscent of a rebound burst discharge. The third group, containing 1 unit only, 283 

showed an increase in firing rate only within the first 15 ms after light offset (Fig. 5D3). The last 284 

group (n=15) contained units with mixed responses that combined features of the first three 285 

groups (Fig. 5D4). In 12 of the mixed cases (Fig. 5D5), inhibition preceded delayed excitation 286 

(inhibition onset: 28±2 ms, rebound onset: 70±10 ms, Wilcoxon signed rank-test p = 3.90x10-5). 287 

Similarly, late increases in firing rate were clearly distinct in latency compared to the rapidly 288 
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responding units (early: 9±1 ms, late: 65±7 ms, Mann-Whitney U test p = 4.18x10-5). Five out of 289 

42 ATN+ units were tuned to the mouse’s HD, as quantified by the length of the Rayleigh vector 290 

(r) (r = 0.43±0.01, n=5) (Fig. 5E1) (see Methods, (Yoder and Taube, 2009)). PreS/RSC activation 291 

induced a rebound firing in 2 of these (Fig. 5E2,E3). These results are consistent with a 292 

feedforward inhibitory circuit recruited by PreS/RSC that is present throughout ATN+ and that 293 

also targets HD cells.  294 

 295 
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Figure 4. PreS/RSC afferents mediate feedforward inhibition onto anterior thalamus 296 
through recruiting burst discharge in PV- and Sst-expressing TRN cells. 297 

(A) Scheme of the hypothesized circuit studied in vitro. (B) Typical current responses of an ATN+ 298 
neuron held successively at -60 and +15 mV to record EPSC and IPSC. Portion indicated by 299 
dotted rectangle is expanded on the right. Response latencies were measured from LED onset 300 
(grey vertical lines). (C) Top: Box-and-Whisker plot of EPSC and IPSC latencies in ATN+ neurons 301 
(n = 24). Bottom: Delays between the onset of the IPSC and the EPSC for all experiments. 302 
Wilcoxon signed rank-test. (D1) A typical ATN+ IPSC before (black) and after (red) bath-303 
application of the GABAA receptor antagonist gabazine. (D2) Time course of gabazine action (n 304 
= 6). Inset: Box-and-Whisker plot of steady-state IPSC amplitude in ACSF and gabazine (paired 305 
Student’s t test). (E1) IPSC evoked in an ATN+ neuron of a VGAT-Ires-Cre mouse expressing 306 
the inhibitory DREADD in anterodorsal TRN. IPSCs measured before (grey) and after (blue) 10 307 
μM CNO bath-application. (E2) Representation of the charge transfer of IPSCs in ATN+ neurons 308 
(n = 10). Wilcoxon signed rank-test. (F) Confocal micrographs of ChR2-expressing PV-Cre (left) 309 
and Sst-Cre (right) coronal brain sections of ATN+. (G1) Representative IPSCs elicited in ATN+ 310 
neurons held at +15 mV. (G2) Histogram of IPSC amplitudes in AD (n = 6 for both PV- and Sst-311 
Cre mice), AV (n = 6 for both) and LD (n = 6 for both). 2-factors ANOVA with factors ‘nucleus’ and 312 
‘cell type’, p = 0.036 for ‘nucleus’, p > 0.05 for ‘cell type’, post hoc Student’s t test with Bonferroni 313 
correction: α = 0.017 for IPSC amplitude between nuclei regardless of cell type.  314 

 315 

Combining chemogenetic inhibition of anterodorsal TRN with silicone probe recordings targeted 316 

stereotaxically to the AD, the site of HD cells (Taube, 1995), we probed the role of anterodorsal 317 

TRN in further detail (Fig. 5F). Out of 22 sorted units, 11 were HD-tuned (Rayleigh r ≥ 0.4), 3 318 

were head-modulated (0.2 ≤ r < 0.4) and 8 were untuned, similar to previously observed 319 

proportions (Taube, 1995; Yoder and Taube, 2009). We compared the tuning, tuning width, 320 

preferred direction and firing rate at the preferred direction of the HD units during a baseline 321 

session and 40 min after i.p. injection of CNO (1 – 2 mg/kg) (n=11) (Fig. 5G1,G2) or NaCl (n=10) 322 

(Suppl. Fig. 4). There was a trend for decreased tuning and a significant increase in the tuning 323 

width after CNO injection compare to baseline. NaCl injection did not induce changes in any of 324 

these parameters. There were no significant changes in preferred direction nor in firing rate with 325 

CNO nor NaCl. Therefore, the tuning curve of HD cells in AD in freely moving conditions 326 

deteriorates upon loss of TRN activity.  327 
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Figure 5. Anterodorsal TRN activation regulates action potential firing in anterior thalamus 329 
and sharpens the tuning of head direction cells. 330 

(A) Scheme of the in vivo freely moving recording configuration. (B, C) Example of unit sorting 331 
based on principal component analysis (B) and autocorrelation (C). Autocorrelograms of the 332 
sorted units from panel B showing the typical refractory period around 0. (D1-D4) Raster plot, 333 
cumulative histogram and z-score analysis for four characteristic unit responses. (D5) Pie charts 334 
showing the proportion of the four characteristic responses in all putative thalamic units. (E1) 335 
Graph showing the mouse HD (blue trace) in combination with detected spikes of a putative 336 
thalamic HD unit (vertical green lines) tuned around 150°. Insets: mean unit waveform and a polar 337 
plot of the tuning curve. (E2) Example of a HD unit response to light activation of PreS/RSC 338 
afferents. (E3) Pie chart of the proportion of head-direction units responsive to light activation of 339 
PreS/RSC. (F) Sections for the anatomical verification of silicone probe implantation in VGAT-340 
Ires-Cre mice expressing the chemogenetic silencer hM4D-mCherry (red) in anterior TRN. (G1) 341 
Polar plot of a HD unit’s tuning curve during baseline (grey) and after injection of CNO (blue). 342 
(G2) Quantification of the changes in tuning parameters by CNO (n = 11 HD units). Far left: 343 
Rayleigh vector length size. Middle left: width of the tuning curve (measure at half the maximum 344 
firing rate). Middle right: preferred direction. Right: the firing rate at the preferred direction. Grey 345 
lines: single units. Red line: example unit from G1. Black line: average. Paired Student’s t tests to 346 
compare data during baseline and 40 min after CNO injection.  347 

 348 

Anterodorsal TRN inhibition biases navigational search strategies in the Morris water maze  349 

We chose the hidden platform version of the Morris water maze (MWM) to probe the role of 350 

anterodorsal TRN in spatial navigation. In this maze, both ATN-dependent egocentric and visual 351 

cue-dependent allocentric navigational strategies were reported (Stackman et al., 2012; Garthe 352 

and Kempermann, 2013). Mice were trained over 10 days to learn the hidden platform in a maze 353 

surrounded by visual landmarks, followed by a 10-day reversal learning during which the platform 354 

was located in the opposite quadrant (Suppl. Fig. 5A). We hypothesized that chemogenetic 355 

suppression of anterodorsal TRN activity, and reduction of PreS/RSC-mediated ATN+ inhibition, 356 

would alter navigational behavior once the animal had to rely on HD-dependent, egocentric 357 

strategies. We also asked whether there was a bias in search strategies already in the course of 358 

spatial learning. 359 

We used two groups of mice: “control” VGAT-Ires-Cre and “DREADD” VGAT-Ires-Cre mice that 360 

expressed non-DREADD related proteins or the inhibitory DREADD specifically in the 361 

anterodorsal TRN, respectively (Fig. 6A). In each of the four daily test sessions, entry points into 362 

the maze were randomized across the quadrants to enforce the use of allocentric strategies. Both 363 

groups became faster swimmers in the course of the task and showed no significant difference in 364 

their mean swimming velocity during the 60-s probe sessions (with platform removed), although 365 

there was a light trend for control mice to be faster (Fig. 6B). We thus analyzed the proximity to 366 
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the platform instead of the latency to platform to account for possible effects of differences in swim 367 

speed (Awasthi et al., 2019). Based on this measure, both groups performed similarly, as 368 

indicated by a comparable decrease of the mean proximity to the platform during test sessions 369 

(Fig. 6C). Moreover, from days 5 – 7 of training, the percentage of time spent in the target 370 

quadrant was above chance level for both groups during probe sessions (Fig. 6D) These results 371 

show an overall comparable, if not slightly better performance of DREADD mice, but they do not 372 

provide information about the navigational strategies used. We hence classified swim trajectories 373 

on a trial-by-trial basis for all test sessions according to previously described criteria for allo- and 374 

egocentric strategies (Suppl. Fig. 6B-D) (Garthe and Kempermann, 2013; Rogers et al., 2017). 375 

Figure 6E shows that mice use a mix of trajectories reflecting the use of both ego- and allocentric 376 

strategies (Fig. 6E,I,K). Focusing first on early phases of reversal learning (day 11), DREADD 377 

mice showed perseverance around the previous platform location, while control animals reverted 378 

to trajectories consistent with egocentric strategies (Fig. 6F). If perseverance was indeed 379 

reflecting a decreased ability to change navigational strategy once the correct platform location 380 

was learned, signs of perseverance should also be seen in the course of learning. Indeed, when 381 

inspecting time-binned occupancy plots during probe sessions, DREADD mice persevered 382 

searching at the platform position for the whole 60 s-probe session, whereas control mice shifted 383 

to a dispersed search pattern of other regions of the pool during the last 20 s of the session. This 384 

was particularly the case during the last 2 probe sessions of the learning (beginning of day 9 and 385 

11) (Fig. 6 G,H).  386 

Inspired by the finding on the DREADD mice’s possibly compromised ability to deploy egocentric 387 

strategies during reversal learning, we asked whether evidence for biased strategy selection could 388 

also be found during initial platform learning. As is characteristic for the MWM, there was an 389 

increase in the proportion of allocentric strategies from day 1-2 to day 9-10 in both control and 390 

DREADD mice (Fig. 6 I,J) (Garthe and Kempermann, 2013). However, DREADD mice did so in 391 

temporal anticipation, showing significantly more scanning and less random search on day 3, and 392 

more direct swimming and less thigmotaxis on day 4 (Fig. 6J). DREADD mice also used an overall 393 

greater proportion of allocentric strategies across both learning and reversal learning than control 394 

mice (Fig. 6K). Together, suppression of anterodorsal TRN activity 1) alters navigational behavior 395 

at reversal learning and 2) biases the search patterns towards allocentric strategies during initial 396 

learning.  397 
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Figure 6. Anterodorsal TRN inhibition biases navigational search strategies in the Morris 400 
water maze. 401 

(A) Epifluorescent micrographs of VGAT-Ires-Cre mouse coronal brain sections at Bg -0.8 mm 402 
for a control mouse (top) and a test mouse (bottom). Color codes indicate expression products. 403 
(B) Mean swim velocities of control (n = 13) and DREADD (n = 11) mice during probe sessions. 404 
2-factors RM ANOVA with factor ‘day’ and ‘condition’, p < 2x10-16 for ‘day’ and p = 0.04 for 405 
‘condition’. Post hoc Student’s t tests with Bonferroni correction: α = 0.005 for ‘condition’: not 406 
significant. (C) Graph of the mean proximity to the platform during training sessions. 2-factors RM 407 
ANOVA with factor ‘day’ and ‘condition’, p < 2x10-16 for ‘day’ and p = 0.04 for ‘condition’. Post hoc 408 
Student’s t tests and Mann-Whitney U tests with Bonferroni correction: α = 0.003 for ‘condition’: 409 
not significant. (D) Graph of the percentage of time spent in the target quadrant during probe 410 
sessions. Chi-square test against 25% chance, significant at days 1, 7, 9, 11 for Control and days 411 
5, 9, 11, 19, 21 for DREADD. (E) Stacked area graphs of search strategies used by control (left) 412 
and DREADD (right) mice during trial sessions. (F) Proportion of overall strategies at day 11 for 413 
control (C) and DREADD (D) mice. Chi-square tests for ‘allocentric strategy’ and for 414 
‘Perseverance’, p < 0.05 for both. (G) Time-binned (20 s bins) and overall average occupancy 415 
plots during the last probe session of the learning phase. Hot colors indicate greater occupancy 416 
and are equally calibrated in all plots. (H) Histogram of the mean proximity to the platform of 417 
control and DREADD mice during binned-probe sessions. Student’s t test for Control vs DREADD 418 
at late time bin (40 – 60 s). (I) Averaged proportion of egocentric, allocentric and unclassified 419 
strategies used during the early (E, days 1 and 2) and late (L, days 9 and 10) learning phase. 420 
Wilcoxon signed rank-tests, p = 0.02 for allocentric strategies in control mice, p = 0.008 and p = 421 
0.03 for allocentric and unclassified strategies in DREADD mice, respectively. (J) Proportion of 422 
overall strategies at day 2, 3 and 4 for control (C) and DREADD (D) mice. Chi-squared tests for 423 
‘Scanning’ and for ‘Random Search’ at day 3, p < 0.001 for both. Chi-square tests for ‘Direct 424 
Swimming’ and for ‘Thigmotaxis’ at day 4, p < 0.01 for both. (K) Averaged proportion of egocentric, 425 
allocentric and unclassified strategies used during the whole experiment. Student’s t test 426 
comparing Control (C) vs DREADD (D). 427 

 428 

Discussion 429 

Anatomical and physiological identification of synaptic inputs to TRN has repeatedly opened a 430 

novel point of view for the TRN’s active role in gating sensory information flow to and from the 431 

cortex (for review, see (Crabtree, 2018)). We uncover here a previously undescribed excitatory 432 

input to TRN from the parahippocampal dPreS and the RSC that shows high connectivity, 433 

mediates robust feedforward inhibition to ATN and shapes HD tuning in AD. These findings offer 434 

a possible synaptic mechanism contributing to the flexible use of navigational strategies during 435 

spatial learning and orientation. We thus identify here a novel thalamocortical loop that integrates 436 

TRN and that expands its gating function to the domain of self-orientation and navigation. More 437 

generally, we favor a view of the TRN as a multi-modal saliency selector that interfaces between 438 

acute cognitive demands, such as attentional switching or spatial re-orientation, and the 439 

recruitment of the appropriate sensory and self-orientational HD signals. 440 
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Retrograde tracing from the anterodorsal portion of the TRN identified several previously 441 

described prefrontal cortical afferents (Cornwall et al., 1990; Lozsádi, 1994; Dong et al., 2019). 442 

We now additionally demonstrate that there is a continuous band of afferent projections along the 443 

presubicular-retrosplenial axis that starts at the border from subiculum to the PreS, thus at the 444 

onset of the six-layered presubicular complex. These projections arise in deep layers of PreS and 445 

RSC, to where projections to ATN were previously retrogradely traced (Wright et al., 2010). The 446 

anterodorsal TRN seems thus to integrate visuospatial and HD input in combination with saliency 447 

signals from prefrontal areas. The CL nucleus, a target of the superior colliculus, may convey 448 

orienting-movement related signals into TRN (Krout et al., 2001). Moreover, central amygdalar 449 

and hypothalamic inputs were recently described (Herrera et al., 2016; Dong et al., 2019). 450 

Together, this adds to a complex web of afferents that contrasts with the predominantly 451 

monomodal connectional characteristics of posterior sensory sectors of mouse TRN. 452 

More work is required to elucidate the detailed organization of the anterodorsal synaptic 453 

connectivity from PreS/RSC to anterodorsal TRN and from there to ATN. We note here that both 454 

RSC and dPreS target LD and AD preferentially, while projections to AV are minor.  AD and LD 455 

are thought to functionally cooperate within the HD system (Simonnet and Fricker, 2018; Perry 456 

and Mitchell, 2019), possibly acting as first- and higher-order nucleus, respectively (Peyrache et 457 

al., 2019). The AV, together with the anteromedial nucleus, has been so far associated with a 458 

theta-generating system innervated by vPreS (Perry and Mitchell, 2019). The limited spatial 459 

resolution of our tracing methods does not currently allow to verify whether anterodorsal TRN is 460 

also subdivided into sectors corresponding to this functional subdivision of ATN+. Interestingly, 461 

single-cell labeling identified rat anterodorsal TRN cells with axons bifurcating to innervate both 462 

AD and LD (Pinault and Deschênes, 1998). AM-projecting TRN cells were located more ventrally. 463 

Anterodorsal TRN may thus contain cells jointly innervating AD and LD, further substantiating a 464 

shared function. 465 

Our characterization of a cortical excitatory innervation of TRN by PreS/RSC-excitatory input 466 

reveals a combination of commonalities but also notable differences to the canonical form of 467 

cortical input to sensory TRN that arises from layer 6 corticothalamic neurons of corresponding 468 

primary cortex (Usrey and Sherman, 2019). Layer 6 synapses on TRN cells show a high 469 

glutamate receptor content (Golshani et al., 2001), high unitary amplitude (Golshani et al., 2001), 470 

faster rise and decay times (Gentet and Ulrich, 2004), smaller NMDA/AMPA ratios (Astori and 471 

Lüthi, 2013) and marked PPF (Castro-Alamancos and Calcagnotto, 1999; Astori and Lüthi, 2013; 472 

Crandall et al., 2015) compared to their thalamocortical counterparts. The presence of PPF 473 
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classifies layer 6 corticothalamic afferents as modulators rather than drivers (Sherman and 474 

Guillery, 1998). While dPreS/RSC-TRN synapses are comparable in terms of unitary amplitude, 475 

NMDA/AMPA ratio and EPSC waveform, there is a prominent lack of PPF at dPreS/RSC afferents 476 

and a moderate entrainment of firing during repeated stimulation. Rather than being modulators, 477 

the PreS/RSC inputs thus shares a short-term plasticity profile reminiscent of the driver inputs 478 

that count as the principal information-bearing synapses.  Top-down driver input is so far known 479 

for corticothalamic layer 5 projections to higher-order thalamic nuclei that show a number of 480 

morphological hallmarks (Usrey and Sherman, 2019). A driver profile that we suggest here for the 481 

first time for TRN implies that anterodorsal TRN conveys direct system-relevant information that 482 

is faithfully transmitted to its projection targets. We cannot exclude, however, that PreS and RSC 483 

afferents, if stimulated separately, would show different short-term plasticity including PPF. A 484 

further noteworthy point is that both PV+ and Sst+ TRN neurons innervate the AD, AV and LD 485 

with comparable strength, pointing to functional differences compared to sensory first-order 486 

thalamic nuclei (Clemente-Perez et al., 2017). 487 

About 65% of ATN+ units showed a suppression of activity upon PreS/RSC stimulation that was 488 

occasionally followed by a rapid increase in discharge. The timing of the inhibition-rebound events 489 

is typical for a feedforward inhibitory mechanism (Crandall et al., 2015). Moreover, chemogenetic 490 

TRN inhibition degrades HD cell tuning. The rather small effect size may be explained by the only 491 

partial reduction of feedforward inhibition by CNO (see Fig. 4E). The anterodorsal TRN is thus 492 

part of the top-down circuit so far thought to innervate the ATN+ only monosynaptically (Dumont 493 

and Taube, 2015; Peyrache et al., 2017; Simonnet and Fricker, 2018; Perry and Mitchell, 2019). 494 

This result advances the mechanistic understanding of the proposed update of thalamic HD cell 495 

tuning by visual landmarks (Dumont and Taube, 2015). TRN-dependent inhibition may regulate 496 

single AD cells, for example through promoting bursting, which we also observe in vitro, although 497 

their existence in vivo has been questioned (Sheroziya and Timofeev, 2014). Bursting would 498 

increase their impact in upstream navigational circuits, in particular in the dPreS circuits 499 

(Peyrache et al., 2015), similar to what has been described for sensory thalamocortical circuits 500 

(Sherman, 2001). TRN-mediated burst promotion in some AD neurons coupled with inhibition of 501 

others could underlie the proposed increase in the precision of HD coding (Peyrache et al., 2015). 502 

TRN-driven ATN bursting might also be an important component in oscillatory patterns observed 503 

within ATN+, such as the one proposed to occur in AD (Peyrache et al., 2015; Peyrache et al., 504 

2019) or in AV (Tsanov et al., 2011), which are probably relevant for linking spatial information to 505 

hippocampal memory processing.  506 
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To date, behavioral evidence for a role of the HD system in behavioral navigation is limited (Taube 507 

et al., 1992; van der Meer et al., 2010; Valerio and Taube, 2012; Butler et al., 2017) and the role 508 

of specific HD circuits, including dPreS and RSC, just starts to be behaviorally explored. 509 

Experimental effort typically targets egocentric strategies, for example by moving the MWM 510 

relative to landmarks between trials (Stackman et al., 2012), by studying navigation in darkness 511 

(Yoder et al., 2019) or by putting rats upside down (Calton and Taube, 2005). In contrast, the idea 512 

that spatial navigation requires an on-going switching between a range of possible strategies has 513 

not been much pursued, although it is known for human studies (Miniaci and De Leonibus, 2018). 514 

For example, a recent study using a hippocampus-specific synaptic knockout animal interpreted 515 

perseverant behavior at the platform location as a lack of forgetting (Awasthi et al., 2019), but the 516 

question of possible bias in navigational strategies was not addressed. Trajectory analysis in the 517 

MWM thus offers itself as an interesting approach to follow on the evolution of navigational 518 

behavior under well-controlled landmark conditions while simultaneously allowing egocentric 519 

strategies (Dolleman-van der Weel et al., 2009; Garthe and Kempermann, 2013). We found a 520 

preferential use of allocentric strategies when anterodorsal TRN was suppressed, suggesting that 521 

egocentric navigation was less efficient. This is reminiscent of an ATN lesion study (Stackman et 522 

al., 2012), although we cannot currently exclude that TRN-dependent inhibitory effects on nuclei 523 

other than ATN, such as on intralaminar nuclei (Dong et al., 2019), contribute. Anterodorsal TRN 524 

activity is required for qualitatively high HD signals in AD and/or for a robust activation of these 525 

by feedforward inhibition. Anterodorsal TRN activity seems to be critically required at moments 526 

when there is a mismatch between allocentric cues and new platform location, such that novel 527 

relations between external landmarks and self-perceived orientational strategies, which depend 528 

on HD cells, have to be built. Interestingly, the RSC has been proposed as an area involved in 529 

allocentric navigation and memory formation, but also in the switching between allo- and 530 

egocentric strategies to optimize navigational goals (Mitchell et al., 2018). In particular, its strong 531 

connections to limbic thalamus have been implied in the solving of spatial problems (Clark et al., 532 

2018). Similar more complex roles in spatial navigation have recently been proposed for dPreS 533 

(Yoder et al., 2019), which has been primarily analyzed as part of the hierarchy of the egocentric 534 

coding system (Taube et al., 1990; Dumont and Taube, 2015; Peyrache et al., 2017). Our work 535 

does not currently disentangle between the distinct roles of these two brain areas. However, it 536 

has managed to pinpoint to the existence of a possibly fine switching mechanism at the interface 537 

between major allocentric and egocentric brain areas that, when perturbed, preserved overt 538 

navigational performance but compromised it at challenging moments that could pose existential 539 

threats. 540 
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This work integrates TRN function into the brain’s balanced control of sensory-guided spatial 541 

navigation. The anterodorsal sector of TRN, located at the limbus, the ‘edge’ of the TRN, is a site 542 

of complex integration where navigational, attentional, motor and emotional information may be 543 

combined for precise activation of egocentric navigation systems. As a perspective arising from 544 

this work, we suggest that neuropsychological screening for egocentric navigation deficits may 545 

be useful in the diagnosis of disorders linked to TRN dysfunction, such as in neurodevelopmental 546 

disorders linked to attentional deficits (Krol et al., 2018) and in schizophrenia (Wilkins et al., 2017). 547 

Acknowledgements 548 

We thank Andreas Lüthi for providing training for the multiwire recordings, Adrien Peyrache for 549 

providing training for the silicone probes, Cyril Herry for helping with single unit sorting and 550 

analysis, Leonardo Restivo for helping with the design of the Morris water maze experiment and 551 

careful reading of the manuscript, Christian Lüscher for providing the VGAT-Ires-Cre mouse line, 552 

Desdemona Fricker, John Huguenard, Ralf Schneggenburger for constructive discussions, 553 

Simone Astori for critical reading of the manuscript, all lab members for constructive input for the 554 

manuscript and discussions in the course of the project. 555 

Funding: GV received Travel Grants from the Jean Falk Vairant Foundation, Life Sciences 556 

Switzerland and Swiss Society for Neuroscience, ZR was supported by the Marie Heim Vögtlin 557 

Foundation, AG received an Erasmus Mobility Grant, AL was supported by Swiss National 558 

Science Foundation (Grant No. 31003A-166318 and 310030-184759) and Etat de Vaud. 559 

Author contributions 560 

GV carried out and analyzed all experimental tracing, in vitro, in vivo and behavioral data, and 561 

also contributed to the design of the in vivo and behavioral experiments. ZR gained first evidence 562 

for the anatomical connectivity between dPreS/RSC and anterodorsal TRN and initiated the in 563 

vivo unit recordings. RC wrote the Matlab code for the analysis of head-direction data and MWM 564 

Strategy. EB contributed to viral injections and the MWM experiments, GK to the antero- and 565 

retrograde tracing data. AG carried out the in vitro recordings in PV- and Sst-Cre mice. VP 566 

assisted with anatomical analysis. LMJF contributed to the surgery and analysis for in vivo 567 

experiments. AL supervised the project and wrote the manuscript with contribution of GV. 568 

Declaration of interests 569 

The authors declare no competing interests. 570 



P a g e  | 23 
 

STAR Methods 571 

Animal husbandry and ethical approval 572 

We used mice of either sex from the C57BL6/J line and from the Slc32a1tm2(cre)Lowl line, commonly 573 

referred to as VGAT-Ires-Cre line (Jackson Labs, generated by Dr. B. Lowell, Beth Israel 574 

Deaconess Medical Center, Harvard) (Vong et al., 2011), male 575 

C57Bl/6J;129P2_Pvalbtm1(cre)Arbr/J mice, referred to here as PV-Cre mice, and male B6N.Cg-576 

Sst<tm2.1(cre)Zjh>/J mice, referred to here as Sst-Cre mice. These three transgenic lines 577 

express the Cre-recombinase either in VGAT-, PV- or Sst-positive neurons, respectively. All 578 

animals were housed in a temperature and humidity-controlled animal house with a 12/12 h light-579 

dark cycle (lights on at 9 a.m.) and water and food available ad libitum. The VGAT-Ires-Cre line 580 

was originally generated on a mixed C57BL/6;FVB;129S6 genetic background and backcrossed 581 

to C57BL6 ever since. PV-Cre and Sst-Cre lines were maintained on a C57BL6 background. 582 

VGAT-Ires-Cre and PV-Cre were used as homozygous, whereas the Sst-Cre mice were 583 

heterozygous. For anatomical tracing (retrograde and anterograde), mice (n = 24) were 584 

transferred into a housing room with similar conditions on the day prior to injection. They remained 585 

there for 7 days after injection before perfusion and tissue processing. For viral injections, mice 586 

were transferred into a P2 safety level housing with similar conditions on the day prior to the 587 

injection. They remained there 3 – 5 weeks before being used for in vitro electrophysiology (n = 588 

57), 2 – 3 weeks before surgical implantation for in vivo electrophysiology (n = 5), and 2 – 3 weeks 589 

before behavioral experiments (n = 24, only males). All experimental procedures complied with 590 

the Swiss National Institutional Guidelines on Animal Experimentation and were approved by the 591 

Swiss Cantonal Veterinary Office Committee for Animal Experimentation. 592 

 593 

Anatomical tracing and verification of recording and injection sites 594 

Retrograde tracing 595 

C57BL6/J mice, 4- 8-week-old, were anesthetized with 5 % isoflurane and fixed onto the 596 

stereotaxic frame. During the surgery, the anesthesia level was reduced to 1- 3 % and N2O was 597 

added if the surgery lasted > 1 h. Analgesia was ensured through Carprofen (5 mg/kg i.p.). 598 

Craniotomies were performed above the sites of injection at (anteroposterior (AP), mediolateral 599 

(ML), depth from cortical surface (DV), in stereotaxic coordinates from Bregma): -0.7, ±1.5, -3.1 600 

to target the anterodorsal TRN. Glass pipettes (5-000-1001-X, Drummond Scientific, Broomall, 601 
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PA) were pulled on a vertical puller (Narishige PP-830, Tokyo, Japan) and backfilled by capillarity 602 

with fluorescent latex microspheres (Red Retrobead™, Lumafluor). Using a Picospritzer III, 603 

pressurized air pulses (15 psi, 10 ms) were applied every 10 s for 10 min to inject the retrobeads. 604 

After 4 – 7 days, mice were perfused and their brains collected for immunostainings. 605 

Anterograde tracing 606 

The anesthetic and surgical procedures were the same as the ones used for retrograde tracing. 607 

The coordinates of injection were (AP, ML, DV):  -3.8, ±1.6, -1.0 for RSC, -3.8, ±2.3, -1.6 for PreS. 608 

Glass pipettes were backfilled by capillarity with the plant lectin anterograde tracer Phaseolus 609 

vulgaris-leucoagglutinin (PHAL-L, Vector Laboratories, Cat. No. L-1110). PHAL-L was chosen as 610 

it permits focal labeling with little spread, which seemed appropriate to target PreS and RSC as 611 

specifically as possible. A chlorinated silver wire was inserted into the pipette and a reference 612 

electrode attached to the mouse tail. The PHAL-L was electroporated with a 5-μA current, 7 s 613 

on/off loop for 20 min, applied with a home-made current isolator and a Master-8 (Master-8 Pulse 614 

Stimulator, A.M.P.I., Jerusalem, Israel). After 5 – 7 days, mice were perfused and their brains 615 

collected for immunostainings.  616 

Perfusion and tissue processing 617 

Mice were injected i.p. with a lethal dose of pentobarbital. Intracardial injection of ~45 ml of 618 

paraformaldehyde (PFA) 4 % was done at a rate of ~2.5 ml/min. Brains were post-fixed in PFA 4 619 

% for at least 24 h at 4°C. Brains were sliced with a Vibratome® (Microtome Leica VT1000 S, 620 

section thickness: 100 μm, speed: 0.25-0.5 mm/s and knife sectioning frequency: 65 Hz) in 0.1 M 621 

phosphate buffer (PB). Brain sections were either directly mounted on slides or disposed in 622 

twelve-well plates filled with 0.1 M PB for immunohistochemistry.  623 

Immunofluorescent labeling 624 

100 μm-thick brain sections were washed 3 times in 0.1 M PB and transferred to a blocking 625 

solution containing 0.1 M PB, 0.3 % Triton, 2 % normal goat serum (NGS) for 30 min. The first 626 

antibody solutions also contained 0.1 M PB, 0.3 % Triton, 2 % NGS. For PHAL-L injected mice, 627 

we added 1:8000x of rabbit anti-PHAL-L (Vector Laboratories, AS-2300, RRID: AB_2313686) and 628 

1:4000x of mouse anti-PV (Swant, PV235, RRID: AB_10000343). For retrobead-injected and 629 

virally injected PV-Cre and Sst-Cre mice, we added 1:4000x of mouse anti-PV (Swant, PV235, 630 

RRID: AB_10000343). Sections were kept at 4°C for 48 h on a shaking platform. After 3 washings 631 

in 0.1 M PB, we added a secondary antibody solution containing 0.1 M PB, 0.3 % Triton, 2 % 632 
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NGS and, when appropriate, 1:500x of goat anti-rabbit Cyanine Cy3TM (Jackson Immunoresearch, 633 

111-165-003, RRID: AB_2338000), 1:500x of goat anti-mouse Cy5TM Jackson Immunoresearch, 634 

115-175-146, RRID: AB_2338713) and/or 1:500x of goat anti-mouse Alexa Fluor® 488 (Jackson 635 

Immunoresearch, 115-545-003, RRID: AB_2338840). Sections were mounted on slides and 636 

covered with a mounting medium (Vectashield). 637 

300 μm-thick brain sections obtained from patch-clamp recording sessions were post-fixed in 4 638 

% PFA for at least 24 h. Brain sections were washed 3x in 0.1 M PB and then pretreated with a 639 

solution containing 0.1 M PB and 1 % Triton for 30 min. The blocking solution was 0.1 M PB, 1 % 640 

Triton, 2 % NGS and was applied for 30 min. The first antibody solution contained 0.1 M PB, 1 % 641 

Triton, 2 % NGS, 1:4000x mouse anti-PV (Swant, PV235, RRID: AB_10000343) and was applied 642 

for 5 days at 4°C. The secondary antibody solution contained 0.1 M PB, 0.3 % Triton, 2 % NGS, 643 

1:500x goat anti-mouse CY5, (Jackson ImmunoResearch, 115-175-146, RRID: AB_2338713), 644 

1:8000x Streptavidin ALEXA594 (Jackson ImmunoResearch, 016-580-084, RRID: AB_2337250) 645 

and was applied for 24 h at 4°C. Sections were mounted on slides and covered with a mounting 646 

medium (Vectashield). 647 

Microscopy 648 

Electromicrographs of brain slices were taken with a fluorescent stereomicroscope (Nikon SMZ 649 

25) or a confocal microscope (Zeiss LSM 780 Quasar Confocal Microscope). NIS-Elements 4.5 650 

(Nikon), Adobe Photoshop CS5 and Zen lite 2012 were used to merge images from different 651 

channels.  652 

 653 

Viral injections 654 

Mice 3- 5-week-old were anesthetized using Ketamine-Xylazine (83 and 3.5 mg/kg, respectively) 655 

and placed on a heating blanket to maintain the body temperature at 37°C. An initial dose of 656 

analgesic was administrated i.p. at the beginning of the surgery (Carprofen 5 mg/kg). The animal 657 

was head-fixed on a stereotactic apparatus equipped with an ear and mouth adaptor for young 658 

animals (Stoelting 51925, Wood Dale, IL). The bone was exposed at the desired injection site 659 

through a small skin incision. Viruses were injected with a thin glass pipette (5-000-1001-X, 660 

Drummond Scientific, Broomall, PA) pulled on a vertical puller (Narishige PP-830, Tokyo, Japan). 661 

C57BL6/J mice were injected bilaterally with a virus encoding ChR2 (500 nl of AAV1-hSyn-662 

ChR2(H134R)_eYFP-WPRE-hGH, 1012 GC, ~100–200 nl/min) into the PreS (AP, ML, DV): -3.8, 663 

+/-2.5, -1.7. VGAT-Ires-Cre mice were injected bilaterally with 500 nl of AAV1-hSyn-664 
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ChR2(H134R)_eYFP-WPRE-hGH (1x1012 GC, ~100–200 nl/min) into the PreS and/or unilaterally 665 

or bilaterally with a virus encoding DREADD-mCherry (500 nl of AAV8-hSyn-DIO-666 

hM4D(Gi)_mCherry, 6.4x1012 GC), or DREADD-IRES-mCitrine (500 nl of ssAAV8/2-hSyn1-dlox-667 

A_hM4D(Gi)_IRES_mCitrine-dlox-WPRE-hGHp(A), 3.1x1012 GC) or a control AAV8 encoding a 668 

DREADD-unrelated construct (500 nl of AAV8-hSyn-FLEX-Jaws_KGC_GFP_ER2, 3.2x1012 GC) 669 

in the anterior sector of the TRN (AP, ML, DV: -0.8, ±1.35, -3.1). PV-Cre and Sst-Cre mice were 670 

injected into the anterior TRN (AP, ML, DV: -0.8, ±1.35, -3.1) with AAV1-EF1a-DIO-671 

ChR2(H134R)_eYFP-WPRE-hGH (1x1012 GC, 500 nl, ~100–200 nl/min). 672 

 673 

In vitro electrophysiological recordings 674 

Slice preparation, solutions and recordings. 675 

Brain slice preparation, storage and recordings were performed essentially as described 676 

(Fernandez et al., 2018). Adult 8- 10-week-old C57BL6/J and VGAT-Ires-Cre mice (3 – 4 weeks 677 

post viral injection) were briefly anesthetized with isoflurane and their brains quickly extracted. 678 

Acute 300-μm-thick coronal brain slices were prepared in ice-cold oxygenated sucrose solution 679 

(which contained in mM: 66 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 105 D(+)-saccharose, 27 680 

D(+)-glucose, 1.7 L(+)-ascorbic acid, 0.5 CaCl2 and 7 MgCl2), using a sliding vibratome (Histocom, 681 

Zug, Switzerland). Slices were kept for 30 min in a recovery solution at 35°C (in mM: 131 NaCl, 682 

2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 20 D(+)-glucose, 1.7 L(+)-ascorbic acid, 2 CaCl2, 1.2 MgCl2, 683 

3 myo-inositol, 2 pyruvate) before being transferred to room temperature for at least 30 min before 684 

starting the recording. Slices were placed in the recording chamber of an upright microscope 685 

(Olympus BX50WI, Volketswil, Switzerland) and continuously perfused at room temperature with 686 

oxygenated ACSF containing (in mM): 131 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 20 D(+)-687 

glucose, 1.7 L(+)-ascorbic acid, 2 CaCl2 and 1.2 MgCl2. This solution was supplemented in all 688 

experiments with 0.1 picrotoxin, 0.01 glycine, with picrotoxin removed for the recordings testing 689 

for feedforward inhibition (see Fig. 4). Borders of anterior TRN and ATN+ were visually identified 690 

in transillumination using a 10x water-immersion objective. Within a selected nucleus, cells were 691 

visualized through differential interference contrast optics a 40x water-immersion objective. 692 

Infrared images were acquired with an iXon Camera X2481 (Andor, Belfast, Northern Ireland). 693 

Cells were patched using borosilicate glass pipettes (TW150F-4) (World Precision Instruments, 694 

Sarasota, FL) pulled with a DMZ horizontal puller (Zeitz Instruments, Martinsried, Germany) to a 695 

final resistance of 2.5-5 MΩ. A K+-based intracellular solution that contained (in mM) 140 696 
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KGluconate, 10 Hepes, 10 KCl, 0.1 EGTA, 10 phosphocreatine, 4 Mg-ATP, 0.4 Na-GTP, pH 7.3, 697 

290–305 mOsm, supplemented with ~2 mg/ml of neurobiotin (Vector Labs, Servion, Switzerland) 698 

was used for comparative measurements of the passive cellular properties (Fig. 2B,2C), for the 699 

cell-attached recordings (Fig. 3C) and for all current-clamp recordings (Fig. 3E). A Cs+-based 700 

intracellular solution containing (in mM) 127 CsGluconate, 10 Hepes, 2 CsBAPTA, 6 MgCl2, 10 701 

phosphocreatine, 2 Mg-ATP, 0.4 Na-GTP, 2 QX314-Cl, supplemented with ~2 mg/ml of 702 

neurobiotin, pH 7.3, 290–305 mOsm) was used with all the other voltage-clamp protocols. For 703 

these solutions, a liquid junction potential of -10 mV was taken into account for the current-clamp 704 

data. Signals were amplified using a Multiclamp 700B amplifier, digitized via a Digidata1322A and 705 

sampled at 10 kHz with Clampex10.2 (Molecular Devices, San José, CA). 706 

Recording protocols, optogenetic stimulation and analysis. 707 

Immediately after gaining whole-cell access, cell resistance (Rm) and cell capacitance (Cm) were 708 

measured in voltage-clamp at -60 mV through applying 500 ms-long, 10-20 mV hyperpolarizing 709 

steps (5 steps/cell). Then the recording was switched to current-clamp to measure the resting 710 

membrane potential (RMP). Squared somatic current injections (-50 to -300 pA for 500 ms, 4 711 

injections/cell) hyperpolarized neurons below -100 mV from membrane potentials between -50 to 712 

-60 mV and induced repetitive burst discharge in TRN neurons and single burst discharge in 713 

thalamic neurons (Fig. 2B, 2C). Squared current injections of  increasing amplitude (step size, 50 714 

pA, 500 ms) were used to depolarize the neurons and generate tonic firing. Action potential 715 

properties were measured at the rheobase.  716 

Whole-field blue LED (Cairn Res, Faversham, UK) stimulation (455 nm, duration: 0.1 to 1 ms, 717 

maximal light intensity 3.5 mW, 0.16 mW/mm2) in voltage-clamp (-60 mV) was used to assess the 718 

connectivity of TRN and ATN+ neurons through fibers arising from the PreS/RSC. EPSCs were 719 

elicited through single light pulses every 20 s, with a 5 mV hyperpolarizing step to control for the 720 

access resistance. After a stable baseline of > 2 min, drugs were applied in the bath (40 μM 721 

DNQX, 100 μM D,L-APV). To measure NMDA-components, the holding membrane potential was 722 

slowly brought to +40 mV where NMDAR-mediated currents were recorded for 2 min before bath-723 

application of D,L-APV. Single light pulses were used in protocols to measure EPSC kinetics and 724 

pharmacological properties (Fig. 2D, 2E). The latency from LED onset, EPSC half-width and 725 

EPSC weighted decay time constant were measured with Clampfit 10.2. The effect of bath-726 

application of 40 μM DNQX was measured once the reduction of EPSC amplitude reached a 727 

steady state. The NMDA/AMPA ratio was measured by dividing the amplitude of the EPSC at +40 728 
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mV in DNQX by the amplitude of the EPSC at -60 mV during the baseline and was expressed in 729 

percentage.  730 

Minimal stimulation was achieved by progressively reducing the intensity of a single light pulse 731 

from its maximum (3.5 mW) to a level where only ~50 % of the stimuli induced a successful EPSC. 732 

The light intensity potentiometer allowing a limited graduation of light intensities, we could include 733 

only a few cells (n=12/50) in which this condition was achieved at 0.28±0.05 mW. In the case of 734 

LD neurons, which showed very high amplitude EPSCs with frequent escape currents, none of 735 

them reached the criterion to be included. Minimal stimulation was observed for light intensities 736 

averaging 0.28±0.05 mW, less than 10 % of the maximum. In a subset of cells (n=8), we slightly 737 

increased light intensity to 0.40±0.08 mW to verify whether failure rate decreased but the 738 

amplitude of successful responses was maintained. This was achieved in 5 cells in which failure 739 

rate decreased to 0 % but the amplitude of successes was 109±4 % of that found during minimal 740 

stimulation, whereas it increased to > 140 % in the remaining 3 cases. All successful EPSCs at 741 

minimal light stimulation were visually identified and measured in Clampfit10.2.  742 

Cell-attached recordings of TRN cells (Fig. 3C) were achieved with recording pipettes of ~5 MΩ 743 

resistance, voltage-clamped at 0 mV and ~0 pA of holding current, while applying single light 744 

stimuli at varying light intensity (~100 stimuli/cell, one every 10 s). Whole-cell access was then 745 

established and cells held in current-clamp at their resting membrane potential. Single light 746 

stimulations with similar light intensities were given ~30 times for each cell every 10 s. The number 747 

of action currents/action potentials and the interspike interval (ISI) were manually measured on 748 

Clampfit10.2. The number of spikes was normalized to the maximum number evoked by the light 749 

stimulation. Data were grouped in bins of 0.25 mW of light (Fig. 3C3) and a sigmoidal fit was 750 

applied using Igor Pro 7 (WaveMetrics Inc., Lake Oswego, OR). The sigmoidal fit for cell-attached 751 

evoked spikes was = −78+160

1+𝑒𝑒−(x−0.18)
0.32

 . The sigmoid fit for whole-cell evoked spikes was = −142+232

1+𝑒𝑒−(x−0.2)
0.73

 . 752 

Paired light stimulations at 1, 2, 5, 10 and 20 Hz were used to assess the short-term plasticity of 753 

PreS/RSC-TRN and PreS/RSC-ATN+ synapses. The paired pulse ration (PPR) was expressed 754 

as the ratio between the second and the first EPSC amplitude (Fig. 3D). Four responses were 755 

elicited for each frequency, with an interval of 20 s between each protocol. The amplitude of 756 

EPSCs was measured on the average trace in Clampfit10.2, and traces were not included if 757 

spontaneous currents appeared in between the paired stimuli.  758 

For train stimulation, PreS-RSC afferents to TRN and ATN+ neurons were stimulated with 10 light 759 

pulses delivered 1/30 s at 2, 5, 8 and 10 Hz while cells were held at -50 to -60 mV in current-760 
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clamp (Fig. 3E). Per stimulation frequency and cell, 5 responses were recorded and averaged. 761 

Responses were subdivided into sustained (Fig. 3E1) or entrained (Fig. 3E2) responses based 762 

on whether or not the first light pulse elicited an action potential. The number of action potentials 763 

generated by the train of stimulation was counted on Clampfit10.2. To quantify sustained and 764 

entrained responses, the number of action potentials during the 5 first stimulations was compared 765 

to the number of action potentials during the 5 last stimulations. In subthreshold responses, the 766 

amplitudes of the phasic responses were calculated from the point of positive inflection after a 767 

light stimulation to the next positive peak for each of the 10 subthreshold responses. The 768 

persistent depolarization was measured as the difference between the baseline value before the 769 

train of stimulation and the point of positive inflexion after each light stimulation. The mean 770 

persistent depolarization for the last 3 stimulations was used to quantify the steady state 771 

response.  772 

To record feedforward inhibitory currents, using the Cs-based intracellular solution defined above, 773 

we studied single light-evoked EPSCs recorded in ATN+ cells at -60 mV (uncorrected for a 10 774 

mV junction potential). Then the membrane potential of the cell was slowly brought to +15 mV 775 

(uncorrected for a 10 mV junction potential). In 6 ATN+ cells, IPSCs were recorded for 4 min (12 776 

protocols, once every 20 s) for a baseline, then 10 μM gabazine were bath-applied. The amplitude 777 

of the IPSCs in gabazine was measured at the steady state. A similar protocol was applied for 10 778 

ATN+ cells recorded in VGAT-Ires-Cre mice expressing the inhibitory DREADD in TRN cells. 779 

Instead of gabazine, 10 μM CNO were bath-applied after the baseline recording of IPSCs. 780 

Measures of charge transfer were used to take into account the variable waveform of the IPSCs 781 

that were composed of multiple superimposed burst-like synaptic events. 782 

To determine the connectivity of PV- and Sst-expressing TRN cells, brain slices were prepared 783 

from PV-Cre and Sst-Cre lines previously injected with ChR2-expressing virus (see above). Using 784 

identical recording and light stimulation conditions, evoked IPSCs were quantified in neurons 785 

recorded in the different thalamic nuclei AD, AV and LD. 786 

In vivo single-unit recordings and head-direction monitoring 787 

Electrode and fiber preparation. 788 

Two types of recording configurations were used. Multi-wire electrodes were implanted for 789 

studying response properties of ATN+ to PreS/RSC stimulation. Silicon probes were used for 790 

identification and recording of HD-tuned units in combination with chemogenetic silencing of the 791 

anterodorsal TRN. 792 
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The multi-wire electrodes consisted of 16 individually insulated nichrome wires (13-μm inner 793 

diameter, impedance 1 – 3 MΩ; California Fine Wire) contained in a 26-gauge stainless steel 794 

guide canula. The wires were attached to a 16-pin connector (CON/16m-V-t, Omnetics) (Courtin 795 

et al., 2014), cut at a length of ~2 mm from the edge of the metal guiding tube and gold-plated 796 

using a nanoZTM device (White Matter LLC, provided by Plexon Inc., Dallas, TX) to a final 797 

impedance of 50 – 100 kΩ. A silver wire (Warner Instr.) was soldered to the ground pin of the 798 

connector. Two animals were implanted with a single shank linear silicone probe (Neuronexus 799 

A1x16-5mm-50-703-Z16).  800 

The optic fibers were built from a standard hard cladding multimode fiber (225 μm outer diameter, 801 

Thorlabs, BFL37-2000/FT200EMT), inserted and glued (Heat-curable epoxy, Precision Fiber 802 

Products, ET-353ND-16OZ) to a multimode ceramic zirconia ferrule (Precision Fiber Products, 803 

MM-FER2007C-2300). The penetrating end was cut at the desired length (~2 mm) with a Carbide-804 

tip fiber optic scribe (Precision Fiber Products, M1-46124). The other end was polished with fiber-805 

polishing films (Thorlabs). The optic fibers were connected to a PlexBright Optogenetic 806 

Stimulation System (Plexon) via home-made patch chord. The connection to the PlexBright Table-807 

top LED Module (Wavelength 465 nm) was achieved through a Mini MM FC 900μm Connector 808 

(Precision Fiber Products, MM-CON2004-2300-14-BLK). The other end of the patch chord was 809 

inserted into a ceramic zirconia ferrule, fixed with glue and heat-shrinking tube (Allied Electronics, 810 

689-0267) and polished. Before the recording, the patch chord was attached to the implanted 811 

optic fiber via a ceramic split sleeve (Precision Fiber Products, SM-CS125S).  812 

Surgery. 813 

Virally injected C57BL6/J and VGAT-Ires-Cre mice were anesthetized with 5 % isoflurane, fixed 814 

on a stereotaxic frame and kept on a feedback-controlled heating pad (Phymep). The level of 815 

isoflurane was reduced along the surgery until 1 % and mixed with N2O. Craniotomies were 816 

opened above the PreS (AP, ML, DV: -3.8, +/-2.5, -1.7), the left ATN (AP, ML, DV: -0.8, +0.75, -817 

2.8) and the lateral cerebellum with a microdrill (1/005 drill-size). The conjunctive tissue on the 818 

skull was removed with a scalpel and the skull was cleaned with iodine-based disinfectant. The 819 

skull was then scratched with the tip of the scalpel in a grid-like meshwork of grooves to improve 820 

the attachment of the glue (Loctite 401, Koening). Multi-wire electrodes and linear silicone probes 821 

were lowered vertically, at approximately 10 μm/s initially and then 1 μm/s when reaching the ATN 822 

and glued to the skull. Optic fibers were lowered vertically above the PreS at similar rates. For 823 

the multi-wire electrodes, the ground silver wire was implanted at the surface of the lateral 824 

cerebellum. For silicone probes, the reference and ground wires were twisted together and 825 
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implanted at the surface of the lateral cerebellum. Carprofen (5 mg/kg, i.p.) and paracetamol (2 826 

mg/mL, drinking water) were provided during the peri-operative period. The mice were left in their 827 

home cage for a week to recover from the surgery and their weight, behavior and all aspects were 828 

monitored in score sheets established with the veterinary protocols. During this period, mice were 829 

also habituated to the handling and the recording cables.  830 

Unit recordings and HD monitoring.  831 

Mice were placed into a large cylindrical Plexiglas cage (diameter: 50 cm, height: 40 cm) where 832 

they could freely behave all along the recording sessions. The cage was positioned below a vision 833 

color camera inside a Faraday cage. Implanted animals were connected to the pre-amplifier PZ5-834 

32 (Tucker-Davis Technologies (TDT)) via a ZIF-Clip Headstage adaptor (TDT, ZCA-OMN16) for 835 

the multi-wire electrodes and a ZIF-Clip Headstage (TDT) for the silicone probes. The camera 836 

was connected to a RV2 collection device (TDT) capable of tracking red and green LEDs mounted 837 

on the ZIF-Clip Headstage. The preamplifier was connected to a main amplifier RZ5D (TDT). The 838 

main computer (WS8, TDT) used the Real-time Processor Visual Design Studio (RPvdsEx) tool 839 

to design the recording sessions, activate light stimulation from the PlexBright Optogenetic 840 

Stimulation System (Plexon), and acquire the electrophysiological data from the headstage and 841 

tracking data from the camera.  842 

For C57Bl6/J mice implanted with a multi-wire electrode, a recording session consisted in a 10 – 843 

20 min baseline recording followed by a 10 – 20 min recording with optogenetic activation of the 844 

PreS/RSC. The stimulation consisted in 300 – 600 light stimulations of 10 ms duration, one 845 

stimulation every 2 s. The intensity of the light ranged from 2 – 6 mW depending on the quality of 846 

the homemade optic fibers. For VGAT-Ires-Cre mice implanted with a silicone probe, a recording 847 

session consisted in a 10 – 20 min baseline recording, i.p. injection of CNO (1 – 2 mg/kg) or NaCl, 848 

40 min resting in homecage and 10 – 20 min test recording. The timing of the CNO injection is 849 

based on previous in vivo work using the same mouse line and CNO products, showing that the 850 

CNO effect peaked ~30 min post i.p. injection (Fernandez et al., 2018). 851 

Spike sorting. 852 

The Offline Sorter software (Plexon), Neuroexplorer (Nex Technologies) and MATLAB 853 

(MathWorks) were used to sort and analyze single-unit spikes. The waveforms were manually 854 

delineated in the two-dimensional space of principal components using their voltage features. 855 

Single units were defined as discrete clusters of waveforms in the principal component space, 856 

and did not contain spikes with a refractory period less than 1 ms. The quantification of the clusters 857 
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separation was further measured with multivariate ANOVA and J3 statistics. Cross-correlation 858 

analyses were used to control that a single unit was not recorded on multiple channels. Target 859 

units that had a peak of spike discharge when the reference unit fired were considered as 860 

duplicates and only one of the copy was used for analysis (Adapted from (Rozeske et al., 2018)). 861 

To compare the recordings during baseline and after injection of CNO, units were sorted with two 862 

different methods. At first, both recording sessions were manually sorted as described above 863 

while the experimenter was blind to the baseline/CNO condition. In a second step, the baseline 864 

sorting template was used for the CNO recording. Both methods gave similar results and only the 865 

manual sorted data are shown.  866 

Unit analysis.  867 

The discharge pattern of well-defined single units in the ATN+ was aligned to the optogenetic 868 

stimulation using peri-event raster plots and cumulative histogram (5 ms bins, starting 50 ms 869 

before LED onset and lasting 200 ms after LED onset, Neuroexplorer). The firing rate 50 ms 870 

before the LED onset was used as a baseline to calculate the Z-score of each bin as follow: =871 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 . Z-scores were considered significant when > 1.96 and < -1.96. 872 

Significant changes in the firing rate fell into 4 distinct classes depending on the direction of the 873 

change (increase or decrease firing) and the timing of the change. 874 

Using a custom-made Matlab routine, the discharge patterns of ATN+ units were binned to the 875 

HD of the mice. The angles of direction were binned in 6°. The firing rate was averaged for each 876 

of the 60 portions of the circle. The length of the Rayleigh vector (r) was calculated and units were 877 

considered as HD if r ≥ 0.4, as head-modulated if 0.2 ≤ r < 0.4 and as not tuned if r < 0.2 (Yoder 878 

and Taube, 2009). The maximal firing rate, the width and the preferred direction were calculated 879 

for HD units. The width of the tuning curve was measured as the span of the angle between the 880 

two directions for which the firing rate was equal to 50 % of the maximal firing rate at the preferred 881 

direction (Blair and Sharp, 1995). 882 

  883 
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Behavioral experiment 884 

Recording.  885 

One week before the beginning of the behavioral task, VGAT-Ires-Cre mice expressing either an 886 

inhibitory DREADD (DREADD mice) or a non DREADD-related (control mice) construct into the 887 

anterodorsal TRN were habituated to the handling and i.p. injection. Naïve VGAT-Ires-Cre male 888 

mice were trained to find a 12 cm wide circular platform submerged 0.5 – 0.8 cm below the surface 889 

in a 150 cm diameter circular pool filled with white opaque water at 23±1°C. Mice were trained in 890 

daily sessions composed of 4 consecutive trials, with a 60 s probe session without the platform 891 

preceding the first trial session every odd days. A trial ended when the mice spent 5 s onto the 892 

platform. Mice were left 10 s more before being placed below a heating lamp before the next trial, 893 

10 – 15 s later. Four shapes around the pool (cross, horizontal stripes, vertical stripes, coffee 894 

grain) served as visual cues and were placed in the SW, NW, NE, SE corner of the room 895 

respectively. If the mouse failed to find the platform after 60 s, the experimenter guided it to the 896 

platform where it was left for 15 s. Mice were placed in the pool facing the wall. The position of 897 

pool entry was randomly shuffled every day between NE, SE, NW and NE. During a 60 s probe 898 

session, the platform was removed and mice were released from the wall of the quadrant opposite 899 

to the target one. The experimenter was blind to the condition of the mice (control or DREADD). 900 

The session duration (between the first and the last animal) was ~2 hours, the first trial starting at 901 

Zeitgeber time 0 + 1.5 h. Daily i.p. injection of CNO (1 – 2 mg/kg) were performed 40 min before 902 

the beginning of the session. The timing of the CNO injection is based on previous in vivo work 903 

using the same mouse line and CNO products, showing that the CNO effect peaked ~30 min post 904 

i.p. injection (Fernandez et al., 2018). 905 

Analysis and automatic strategy detection.  906 

The video tracking data were analyzed using EthoVisionXT14 (Noldus) to quantify the average 907 

swimming speed, escape latency, proximity (mean distance of all the tracked points of the path 908 

to the platform center), percentage time spent in target quadrant and platform crossings. 909 

Heatmaps were generated by superimposing all the path points of every mouse in a group. 910 

Heatmaps were linearly scaled using the global minimum and maximum for both groups to allow 911 

comparison between the two. To attribute a specific strategy to each MWM trial, we used a 912 

homemade matlab algorithm based on (Garthe et al., 2009). For each trial, the animal path in the 913 

MWM was extracted as timed-tagged x and y coordinates from which specific variables were 914 

computed in order to take a decision. The 8 strategies are described in Suppl. Fig. 5 and the 915 
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decision was made in the following sequential order with the 4 allocentric strategies first followed 916 

by the 4 egocentric strategies: 1-Direct swimming; if 95 % of the time-points are spent in the goal 917 

cone (isosceles triangle with its height going from starting point to goal platform with an origin 918 

angle of 40°). 2-Focal search; if the mean distance of the path to its centroid (MDTC) was inferior 919 

to 35 % standard unit (STDU) corresponding to the radius of the MWM, and the mean distance 920 

to the edge of the goal platform was inferior to 30% STDU. 3-directed search; if total time spent 921 

in the goal cone was superior to 80 %. 4-perseverance; if the MDTC was inferior to 45 % STDU 922 

and the mean distance to the previous platform edge was inferior to 40 % STDU. In our case, the 923 

perseverance strategy was only possible after day 10, during the reversal learning period. 5-924 

chaining; if the time spent in the annulus zone (spanning from 33 to 70 % STDU) was superior to 925 

80 %. 6-scanning; if the total coverage of the MWM (the pool was divided in 15 cm squares and 926 

the coverage was obtained as the ratio of crossed squares over the total number of squares) was 927 

superior to 10% and inferior to 60 %, and the mean distance of the path to the center of the MWM 928 

was inferior to 70% STDU. 7-thigmotaxis; if the time spent in the closer wall zone (spanning from 929 

87 % STDU to the edge of the MWM) was superior to 35 % and the time spend in the wider wall 930 

zone (spanning from 70 % STDU to the edge of the MWM) was superior to 65 %. 8-random 931 

search; if the total coverage of the MWM was superior to 60 %. If none the conditions could be 932 

met in this order, no strategy were attributed. 933 

Statistics 934 

All tests were done using R programming software (2.15.0, R Core Team, The R Foundation for 935 

Statistical Computing (www.rproject.org/foundation), 2007]. The normality of the data sets was 936 

assessed using Shapiro-Wilk normality test. Comparison of two data sets were done using 937 

Student’s t test and paired Student’s t test, for non-repeated and repeated measures respectively, 938 

or their non-parametric equivalent, Mann-Whitney U test and Wilcoxon signed rank-test. Chi-939 

square tests were used to assess whether the swimming region of mice during probe sessions of 940 

the MWM were different from the expected frequencies and the proportion of strategies used 941 

between mouse groups. 1-way/2-way (non-)repeated measure ANOVAs followed by post hoc t 942 

tests were used when necessary on normally distributed data sets whereas non-normally 943 

distributed data were analyzed directly with the post hoc tests. A Bonferroni correction was 944 

applied when more than two comparisons were done on the same data set and the new alpha 945 

threshold is indicated. All statistical tests are specifically indicated in the figure legends if they are 946 

not given in the main text. 947 

  948 
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Supplementary Figure 1. The anterior TRN receives afferents from ATN+, RSC, PreS, 
cingulate, visual and motor cortices. 

(A-D) Five Epifluorescent micrographs of mouse coronal brain sections showing the full extent 
of a retrobead (red) injection into the anterior portion of the TRN (top) and brain regions where 
retrobeads were retrogradely transported, thus indicating afferent origin (bottom). (A-C) 
immunostaining for PV (green). (D) Immunostaining for NTSR1+ L6 cortical neurons and their 
projection to the thalamus (blue). Anterodorsal thalamus (AD) – Anteroventral thalamus (AV) 
– Laterodorsal thalamus (LD) – Mediodorsal thalamus (MD) – Lateral habenula (LHb) –
Centrolateral thalamus (CL) – Centromedial thalamus (CM) – Cingulate cortex (Cg) – 
prelimbic/infralimbic cortex (PreL/IL) – Dorsal presubiculum (dPreS) – Retrosplenial cortex 
(RSC) – Visual cortex (V1/V2) – Motor cortex (M1/M2) – Prelimbic cortex (PrL) – Infralimbic 
cortex (IL). 



 

  



Supplementary Figure 2. The PreS/RSC establish functional excitatory synapses onto 
AD, AV and LD. 

(A) Confocal micrographs of 300 μm-thick mouse brain sections showing the whole-cell 
recorded AD (left), AV (middle) and LD (right) neurons filled with neurobiotin (red). Green, 
ChR2-EYFP-expressing PreS/RSC afferents, magenta, PV+ TRN cells. (B) Voltage responses 
of neurons shown in A to a negative current injection. (C) Box-and-whisker plots of passive 
and active cellular properties of PreS/RSC-connected AD (green, n=9), AV (orange, n=15) and 
LD (blue, n=5) neurons. From left to right: Membrane resistance (Rm), membrane capacitance 
(Cm), resting membrane potential (RMP), action potential (AP) half-width (H-W), burst number. 
Student’s t tests were used to compare Vm, Rm and Cm. A Mann-Whitney U test was used for 
comparing HW. (D) Current responses of AD (left), AV (middle) and LD (right) neurons to 
optogenetic activation (blue bars, 1 ms, 3.5 mW power, 455 nm) of PreS/RSC afferents, 
recorded at -60 mV. (E) Current responses of a thalamic neuron to optogenetic stimulation of 
PreS/RSC afferents at different intensities. (F) Graph showing the increasing latency of the 
EPSC latency when reducing light stimulation intensity in 5 ATN+ neurons. 

 

  



 

Supplementary Figure 3. The ATN+ receives strong unitary connections with ‘driver’ 
characteristics from the PreS/RSC. 

(A) Representative current responses of AD, AV and LD neurons held at -60 mV upon paired-
pulse stimulation at 1 and 20 Hz. Grey dotted lines correspond to the amplitude of the first 
EPSC. (B) Graph of the paired-pulse ratios. Paired Student’s t tests with Bonferroni correction 
for multiple comparisons for PPR at 1 Hz vs PPR at other frequencies (α = 0.013). (C) Top: 
typical membrane voltage response of an ATN+ neuron to a train of 10 light stimulations at 10 
Hz. Action potentials are elicited from the first light stimulation, classifying it as a sustained 
response. Bottom: Histogram of action potential numbers during such train stimulations in 
ATN+ neurons (n = 10) showing sustained response patterns. Wilcoxon signed rank-tests were 
used to compare between the 2 Hz and the other frequencies of stimulation, with Bonferroni 
correction for multiple comparison (α = 0.017). (D) Top: same as in C when neurons responded 
with a subthreshold response at train onset, classifying them as an entrained response. 
Bottom: Histogram of action potential numbers during the first half (5 first light stimulation) and 
the second half of the train of 10 light stimulations in ATN+ neurons (n = 6). A Wilcoxon signed 
rank-test (at 2 Hz) and Paired Student’s t tests (at 5, 8, 10 Hz) were used to compare the 
number of action potentials elicited during the first half vs the second half of the train of 
stimulation. (E) Top: same as in C for subthreshold responses in an ATN+ neuron held at -60 
mV. Bottom: Histogram of the persistent depolarization induced by trains in TRN neurons (n = 
5). The persistent depolarization was measured on the last 3 stimulations of the train, see 
methods for the details. Paired Student’s t tests with Bonferroni correction for multiple 
comparison (α = 0.017) were used to compare the persistent depolarization at 2 Hz with the 
persistent depolarization at other frequencies. 



 
Supplementary Figure 4. Effect of chemogenetic silencing of anterodorsal TRN neurons 
onto the tuning of thalamic head-direction neurons. 

Polar plots of all HD units recorded before (grey) and after CNO (blue) or NaCl (black) injection. 



 
 

Supplementary Figure 5. Design of Morris Water tasks and algorithm-based 
classification of search strategies.  

(A) Scheme of the experimental design. For further details, see methods. (B) Representation 
of the variables used for the classification process. The pool was divided into several areas to 
calculate the respective amount of time spent into these specifics areas (left). The average 
distance of all the data points constituting the search path to its centroid, the present platform 
and the former platform was used for the classification. Search patterns based on a directional 
preference for the actual platform were identified using a triangular shaped corridor expanding 
from the entry point of the mice with its bisecting line towards the platform (right). (C) Strategies 
were identified by one or two parameters representing their major properties. (D) The algorithm 
excluded strategies from the more to the less specific search patterns. Search patterns not 
recognized were grouped as unclassified strategies. 
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Thalamic reticular control of local sleep in
mouse sensory cortex
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Abstract Sleep affects brain activity globally, but many cortical sleep waves are spatially

confined. Local rhythms serve cortical area-specific sleep needs and functions; however,

mechanisms controlling locality are unclear. We identify the thalamic reticular nucleus (TRN) as a

source for local, sensory-cortex-specific non-rapid-eye-movement sleep (NREMS) in mouse.

Neurons in optogenetically identified sensory TRN sectors showed stronger repetitive burst

discharge compared to non-sensory TRN cells due to higher activity of the low-threshold Ca2+

channel CaV3.3. Major NREMS rhythms in sensory but not non-sensory cortical areas were

regulated in a CaV3.3-dependent manner. In particular, NREMS in somatosensory cortex was

enriched in fast spindles, but switched to delta wave-dominated sleep when CaV3.3 channels were

genetically eliminated or somatosensory TRN cells chemogenetically hyperpolarized. Our data

indicate a previously unrecognized heterogeneity in a powerful forebrain oscillator that contributes

to sensory-cortex-specific and dually regulated NREMS, enabling local sleep regulation according

to use- and experience-dependence.

DOI: https://doi.org/10.7554/eLife.39111.001

Introduction
Sleep is a global vigilance state with well-known behavioral, electroencephalographic and neuromo-

dulatory attributes. However, cerebral correlates of non-rapid-eye-movement sleep (NREMS) and

REMS, notably several major EEG sleep rhythms, occur variably at different times in different brain

regions (Massimini et al., 2004; Nir et al., 2011; Siclari and Tononi, 2017). This suggests that, on

top of a global regulation, forebrain pacemakers with regionally specific oscillatory properties shape

sleep across the cortex (Krueger et al., 2013). Such local aspects probably underlie the sleeping

brain’s decreased capacity to integrate external information and enable plasticity in specific neural

circuits (Siclari and Tononi, 2017; Crunelli et al., 2018). For example, sleep-dependent memory

consolidation is linked to spatially confined regulation of NREMS rhythms in the brain areas involved

in recent learning (Rasch and Born, 2013). Furthermore, sleep disorders may arise from a patholog-

ically altered spatial heterogeneity that negatively impacts sleep as a global state (Krueger et al.,

2013; Siclari and Tononi, 2017).

Prototype cellular pacemakers for NREMS rhythms, notably for the slow-oscillation (SO) (<1 Hz),

delta waves (1–4 Hz) and sleep spindles (10–15 Hz) have been known for decades (for review, see

(Steriade et al., 1993; Astori et al., 2013; Sanchez-Vives et al., 2017)). However, the spatiotempo-

ral variability of cortical rhythms challenges the idea that these are homogeneous sources across the

cortical surface (Piantoni et al., 2016; Siclari and Tononi, 2017). For example, ‘fast’ and ‘slow’

human sleep spindles distribute variably and correlate differentially with memory consolidation,

which has prompted a search for at least two, if not several, separately active spindle generators

(Schabus et al., 2007; Frauscher et al., 2015). Interestingly, anatomical and functional boundaries

of cortical areas go in parallel with variations of sleep rhythms (Fernandez et al., 2017;
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Piantoni et al., 2017). Moreover, sleep rhythms can show local singularities within a single cortical

area according to developmental stage, or as a result of experience and learning during the day

(Huber et al., 2004; Kurth et al., 2010; Johnson et al., 2012; Laventure et al., 2016). There is also

evidence for the localized appearance of sleep-related patterns in individual cortical columns

(Pigarev et al., 1997; Rector et al., 2005). Therefore, modality-specific thalamocortical loops could

account for diversity in local NREMS. Moreover, there should be powerful local tuning mechanisms

to locally switch between different NREMS rhythms. The current view is dominated by cortical focal

influences as essential to shape local rhythms (Contreras et al., 1996; Piantoni et al., 2017;

Siclari and Tononi, 2017). In contrast, thalamic oscillators are seen as broad and relatively homoge-

neous sources of oscillatory power that can spread focally or globally to cortex (Bonjean et al.,

2012), but that have little bearing on their ultimate cortical correlates.

This view is becoming revised as novel observations on heterogeneous thalamic pacemaker

mechanisms are reported. Of interest is the thalamic reticular nucleus (TRN), typically referred to as

an inhibitory shell of highly oscillatory, burst-prone cells surrounding the dorsal thalamus

(Pinault, 2004; Fogerson and Huguenard, 2016). Burst discharge generates large inhibitory synap-

tic potentials (Herd et al., 2013; Rovó et al., 2014) that entrain thalamocortical neurons into rhyth-

micity. Bursting is based on the CaV3.3 channel that is crucial for sleep spindle generation

(Astori et al., 2011; Pellegrini et al., 2016), but many studies indicate that not all TRN cells burst

equally (Contreras et al., 1992; Brunton and Charpak, 1997; Lee et al., 2007; Kimura et al.,

2012; Clemente-Perez et al., 2017; Higashikubo and Moore, 2018). Then, the TRN is parcellated

into at least five modality-specific sectors, sensory, motor or limbic ones, according to their innerva-

tion by a particular dorsal thalamic nucleus and the reciprocally connected cortical area (Crab-

tree, 1999; Pinault, 2004). Moreover, optogenetic activation of TRN promotes cortical spindles or

delta waves (Halassa et al., 2011; Lewis et al., 2015), suggesting that the exact patterns of TRN

cell activity may determine the contribution of these two rhythms at the cortical surface. Most

recently, various discharge propensity in TRN cells was linked to the differential expression of parval-

bumin (PV) or somatostatin (Clemente-Perez et al., 2017). The number of PV-expressing cells is

eLife digest Falling asleep affects our behavior immediately and profoundly. During sleep, large

electrical waves appear across the brain in areas responsible for consciousness, sensation and

movement. In the cortex – the outer layer of the brain – sleep waves arise from networks that

connect to the thalamus, a deeper structure within the brain. However, not all areas of the brain

sleep equally. We know this intuitively because sensory stimuli, such as an alarm clock or a baby’s

cry, can still wake us up. By contrast, we typically do not move much or take major decisions while

we sleep. Therefore, the brain areas involved in sensation should not be expected to sleep in the

same way as areas involved in movement or reasoning.

Neighboring brain areas generally show very different sleep waves. The brain regions that we use

during the day can also affect how sleep varies from one area to the next. It is not well understood

what determines these ‘local’ sleep properties.

By studying the brains of mice, Fernandez et al. now show that the networks between the cortex

and thalamus are much more varied than previously thought, in particular regarding a thalamic

nucleus that is relevant for sleep wave generation. These previously unrecognized differences deep

within the brain are part of the origin of local sleep in the outer layer of the brain. Sleep wave

activity differed depending on whether the networks were involved in sensory or non-sensory roles.

The networks allow sensory areas to switch efficiently between different forms of local sleep. This

might underlie how the brain’s sensory activity during the day can influence local sleep at night.

There is growing evidence that major sleep disorders are due to disturbances to local sleep.

Techniques to modify or restore specific sleep waves locally in the brain could help to develop new

sleep therapies. For example, having a detailed map of electrical waves within the sleep-disordered

brain could help researchers to apply transcranial stimulation techniques in ways that might help to

treat these debilitating disorders.

DOI: https://doi.org/10.7554/eLife.39111.002
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smaller in TRN of schizophrenic patients and mouse models (Steullet et al., 2018) in which reduced

sleep spindle density is a common observation (Manoach et al., 2016). Together, there is accruing

evidence for marked molecular and functional TRN cell heterogeneity. However, whether TRN het-

erogeneity is relevant for brain correlates of NREMS has so far not been tested.

This study shows that the heterogeneous cellular properties of optogenetically identified TRN

sectors are a major source of local NREMS rhythms in sensory cortices. We identify the ionic mecha-

nisms underlying this heterogeneity and study its impact on major NREMS correlates in sensory and

non-sensory cortices using genetic and chemogenetic approaches. We thereby unravel novel orga-

nizing principles of NREMS topography in mouse and show that heterogeneity in TRN sectors

accounts for a previously unrecognized enrichment of fast and large sleep spindles in somatosensory

cortices that are coupled to the SO. We also find that TRN heterogeneity enables rapid switching

between different forms of NREMS rhythms, suggesting that this could underlie the regulation of

local NREMS by use and experience.

Results

TRN cell burst discharge propensity in acute slices varies across sensory
and non-sensory sectors
To identify TRN cells belonging to a sensory sector, we used stereotaxic injections of AAV-

ChR2_EYFP into somatosensory (S1, barrel field) or auditory cortex (AC) of 3- to 4-week-old mice.

Non-sensory TRN sectors related to associative areas, such as the medial prefrontal cortex (PFC),

were instead targeted through injections into the mediodorsal (MD) thalamic nucleus that is the

input structure forming reciprocal loops with several areas of the PFC (Mátyás et al., 2014;

Delevich et al., 2015; Collins et al., 2018) and that forms reciprocal circuits with the TRN (Mitch-

ell, 2015). Enhanced yellow fluorescent protein (EYFP) fluorescence was present at injection sites

and in restricted portions of TRN 3–4 weeks after injection, as verified on coronal sections stained
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Figure 1. Identification of TRN sectors through anterograde tracing. (A) Scheme illustrating injection of AAV-

ChR2_EYFP into S1 (top), AC (middle) and MD (bottom). (B) Epifluorescent micrographs of coronal sections at 2.5x

magnification, anteroposterior position indicated with respect to bregma (Bg). ChR2-EYFP (green) expression in

infected S1 neurons and their projection to TRN and VPM (top), in AC neurons and their projection to medial

geniculate nucleus (MG) (middle) and in MD neurons (bottom), with immunostaining for PV-positive (PV+,

magenta) TRN neurons. The VPM appears in light magenta due to its innervation by TRN. (C) Expanded view of

the target TRN sector at 5x magnification. White arrowheads indicate sites of projection into TRN.
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immunohistochemically for PV to delineate the dorso-ventral extent of the TRN (Figure 1). The

observed sectorial portions coincided with the ones established previously (Pinault and Deschênes,

1998; Pinault, 2004). Thus, injections into S1 revealed fibers navigating through the postero-dorsal

portion of the TRN that terminated in elongated fluorescent spots in the thalamic ventral posterior

medial nucleus corresponding to thalamic barreloids (Bourassa et al., 1995). AC injections resulted

in fluorescent labeling of postero-central regions of the TRN that are anterior to the medial genicu-

late nucleus. Finally, MD injections labeled antero-ventral portions of the TRN, overlapping with TRN

areas innervating motor and intralaminar nuclei (Pinault and Deschênes, 1998; Pinault, 2004).

In acute coronal slices prepared from injected animals, TRN cells recorded in the green fluores-

cent areas through whole-cell patch clamp recordings reliably (> 85 % of the cells across sectors)

responded to optogenetic stimulation (470 nm light, pulse duration �1 ms, 0.16 mW/mm2) with

rapid excitatory postsynaptic currents ranging between -42 to -938 pA (Figure 2A). Paired stimuli

(interstimulus interval: 100 ms) yielded paired-pulse facilitation for cortical afferents (S1-innervated

TRN cells: 203 ± 12%, n = 12, Wilcoxon signed rank-test, p=4.9x10�4 for 2nd vs 1st stimulus; for AC-

innervated TRN cells: 175 ± 21%, n = 6, p=0.03), as described previously (Astori and Lüthi, 2013),

whereas paired responses to MD stimulation showed comparable size (105 ± 4 %, n = 13, p=0.27).

Cells showed values for resting membrane potential and capacitance consistent with previous data

(Figure 2B; Astori et al., 2011). Rebound action potential discharge was elicited in response to

square somatic current injections (negative current injections of -50 to -300 pA for 500 ms to hyper-

polarize the somatic membrane potential < -100 mV, yielding cell input resistance values of 344 ± 18

MW for all three sectors). Rebound oscillatory bursting hallmarks the capacity of TRN cells to engage

in rhythm generation (Astori et al., 2011; Wimmer et al., 2012; Clemente-Perez et al., 2017). S1-

and AC-innervated TRN cells showed the rhythmic, repetitive burst discharge described previously

(Figure 2C; Cueni et al., 2008; Astori et al., 2011), evident as several groups of high-frequency

action potentials each riding on a triangular-shaped membrane depolarization and followed by a

pronounced afterhyperpolarization. Repetitive burst discharge strongly depended on the membrane

voltage, showing an inverted U-shaped voltage dependence that peaked at -65 to -60 mV for S1-

innervated cells (Figure 2D1,E). Only 1/12 S1-innervated TRN cells was a non-repetitive bursting cell

(Figure 2F). Similar burst propensity was found for TRN cells innervated from AC (Figure 2E), but 4/

13 cells were non-repetitive bursters (Figure 2F). In TRN cells responding to MD inputs, repetitive

bursting was weak (Figure 2C,D1) and 9/14 cells discharged maximally one burst (Figure 2F). These

results show that repetitive burst propensity is stronger in sensory compared to non-sensory TRN

sectors. Within sensory sectors, the somatosensory sector displayed the highest density of strongly

bursting cells, whereas the auditory sector had a smaller proportion of cells with rhythmic bursting.

To test whether the heterogeneity of burst discharge across TRN sectors depended on CaV3.3

channels, the optogenetic strategy described above was applied to animals with a genetic deletion

of the Cacna1i (CaV3.3, a1I) gene (Astori et al., 2011). This channel is primarily responsible for burst

discharge in TRN cells, while co-expressed CaV3.2 channels play a minor role (Pellegrini et al.,

2016). Accordingly, TRN cells of these animals are unable to burst repetitively, whereas tonic action

potential discharge is preserved. Cells patched in acute slices from Cacna1i-/- (CaV3.3 KO) animals

showed passive properties comparable to those in C57BL/6J (WT) cells of the corresponding sectors

(Figure 2B), although S1-innervated cells had a smaller capacitance indicative of reduced cell size,

perhaps resulting from morphological alterations in these constitutive knock-outs. Light-evoked syn-

aptic responses showed a similar range of amplitudes (�10 to �1076 pA) and a short-term plasticity

that was comparable to the one found for WT cells (S1-innervated TRN cells: 188 ± 32%, n = 7,

p=0.016; for AC-innervated TRN cells: 203 ± 13%, n = 8, p=0.008; for MD-innervated TRN cells:

87 ± 8, n = 10, p=0.31; two-way ANOVA with factors ‘genotype’ and ‘sector’, p=0.28 for interac-

tion). However, the vigorous bursting in somatosensory and auditory TRN cells was suppressed, thus

abolishing the dependence of repetitive burst discharge propensity on TRN sector type (Kruskal-

Wallis with factor ‘sector’, p=3�10�4 for WT, p=0.14 for CaV3.3 KO) (Figure 2D2, E). Together,

these data indicate that the CaV3.3 channel endows superior bursting capacity to sensory over non-

sensory TRN cells.

It has been shown that TRN bursting capacities are sensitive to cortical lesions (Paz et al., 2010).

To exclude the possibility that the viral injections compromised TRN discharge, we also recorded

from TRN cells in slices prepared from uninjected animals and identified putative sensory and non-
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Figure 2. Oscillatory burst firing varies across TRN sectors and depends on CaV3.3 Ca2+ channels. (A)

Representative traces of paired EPSCs in whole-cell voltage-clamped TRN neurons at �60 mV of WT and CaV3.3

KO mice upon light activation of S1 (top), AC (middle) and MD (bottom) afferents. Afferent-specific forms of short-

term plasticity are preserved across genotypes (see Results for averaged data). (B) Box-and-whisker-plots of the

mean capacitance (Cm) and the resting membrane potential (VRMP) of the recorded TRN neurons (WT: n = 12 for

S1, n = 13 for AC, n = 14 for MD; CaV3.3 KO: n = 12 for S1, n = 13 for AC, n = 11 for MD). It can be noted that the

Cm of S1-innervated TRN neurons in CaV3.3 KO showed a reduction compared to WT, suggesting smaller cell size

(Mann-Whitney test, p=0.007). (C) Representative current-clamp recordings of oscillatory bursting responses of

TRN neurons across sectors, induced through hyperpolarizing current injections (�50 to �300 pA for 500 ms).

Horizontal lines denote �60 mV. Note the strong repetitive burst firing in sensory sectors that is impaired in the

CaV3.3 KO cells, whereas MD-innervated cells mostly discharge a single burst. (D) Graph of the number of

repetitive bursts as a function of the membrane potential prior to the hyperpolarizing pulse (Cueni et al., 2008).

This yields a U-shaped curve reaching a peak at �65 and �60 mV in all sectors of WT mice (D1) that was abolished

in CaV3.3 KO mice (D2). Dashed horizontal lines at ordinate value one indicate the border between repetitive and

not-repetitive bursting conditions. (E) Mean number of repetitive bursts of TRN neurons (between �60 and �65

mV) across sectors and genotype. Mann-Whitney tests were used for comparison between genotypes, and

p-values are given above the bars. (F) Histogram of the proportion of repetitive (colored rectangles) and non-

repetitive bursting (grey rectangles with color surroundings) TRN neurons in the different sectors. Chi-square test

followed by pairwise proportion test with Holm’s p-value adjustment was used for statistical evaluation, with

significant value given above the bars.

DOI: https://doi.org/10.7554/eLife.39111.004

The following source data and figure supplement are available for figure 2:

Source data 1. Numerical data values and statistics underlying Figure 2.

Figure 2 continued on next page
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sensory sectors in horizontal slices along the anteroposterior axis. These experiments confirmed the

different burst propensity in sensory vs non-sensory sectors (Figure 2—figure supplement 1).

Mouse NREMS shows spectral features that are specific to functional
cortical areas
We next monitored local NREMS in cortical areas connected to the TRN sectors studied in vitro.

Under stereotaxic guidance, animals were implanted for in vivo multi-site recordings of local field

potentials (LFPs) in the same cortical areas that were previously targeted for the anterograde viral

tracing of TRN sectors, along with electroencephalography/electromyography (EEG/EMG)

(Figure 3A,B). For S1 and AC, electrodes were positioned in deep layers (layers 5 and 6), whereas

infra-/prelimbic cortical areas (collectively referred to as PFC) were implanted in middle layers (layers

3 and 5, see Materials and methods for exact stereotaxic coordinates), according to the majority of

thalamocortical input received in the respective areas. Additionally, the secondary somatosensory

cortex (S2) was implanted (layers 2/3 and 4) to monitor NREMS in an associative sensory cortical

area with strong reciprocal connections to S1 (Zingg et al., 2014). We chose high-impedance elec-

trodes (~10–12 MW) for LFP recordings to maximize detection of local signals. Simultaneous EEG/

EMG recordings on the contralateral hemisphere were used for vigilance state scoring (Figure 3A,

B).

Animals were recorded in head-restrained mode, which yields a sleep profile comparable to that

in freely moving conditions, as previously shown (Fernandez et al., 2017; Lecci et al., 2017). Each

mouse was recorded for 2–3 hr/day and spontaneously switched between periods of wakefulness,

NREMS and REMS with power spectra typical for each vigilance state (Figure 3—figure supplement

1A).

NREMS was accompanied by distinct LFP waveforms across cortical areas of WT animals

(Figure 3C). In S1 and S2, prominent activity in the SO (0.5–1.5 Hz, frequency band chosen based on

visual inspection of the power spectrum) and the sleep spindle (sigma, 10–15 Hz) frequency ranges

was visible (Figure 3—figure supplement 1B). Activity in the delta (1.5–4 Hz) frequency range was

evident as large positive deflections (Figure 3—figure supplement 1B). Similar, yet weaker rhythmic

activity was observed in AC and PFC. The PFC showed signals dominated by slow events, as

reported (Fernandez et al., 2017), which included a component around 4 Hz resembling a respira-

tory-related rhythm in frontal brain areas (Figure 3C,D; Zhong et al., 2017). Power spectral analyses

over total NREMS times of 2200–6100 s per animal (average 4487 ± 603 s, concatenated from

NREMS bouts across recording days) showed that NREMS in all recorded areas had broadly ele-

vated power in the low-frequency range covering both the SO and the delta range (0.5–4 Hz),

whereas a ‘shoulder’ in the sigma band was present only in somatosensory areas (n = 9 for S1 and

n = 8 for S2) but not in AC (n = 6) and PFC (n = 6) (Figure 3D).

NREMS in animals lacking CaV3.3 channels showed several marked changes that were apparent

in both the raw traces and in characteristic alterations of the power spectra (NREMS recording times

of 1800–7000 s per animal, average 3459 ± 421 s). First, there was a striking lack of visually recogniz-

able sleep spindle activity in S1 and S2, and a sigma power shoulder was not present in the power

spectrum (Figure 3C,D, bottom panel showing enlarged portions of the power spectrum and Fig-

ure 3—figure supplement 1B). Second, activity in the delta range was augmented, whereas the SO

was less prominent in LFP traces from S1, S2 and AC. These visual observations manifested as a

rightward shift of the low-frequency activity in the power spectrum, with a clear power peak present

in the delta band that dominated over power values < 1.5 Hz. The power spectra for WT and CaV3.3

KO animals intersected in the slow frequencies around 1.6–1.8 Hz for S1, S2 and AC, suggesting a

consistent spectral border between the SO and the delta bands. Separate quantification of total

power in the SO, the delta and the sigma frequency band confirmed these observations (Figure 3E).

After Bonferroni correction, the sigma power reduction in S1 appeared as a trend. However, this is

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.39111.006

Figure supplement 1. Oscillatory burst firing varies across the anteroposterior extent of TRN and depends on

CaV3.3 Ca2+ channels.

DOI: https://doi.org/10.7554/eLife.39111.005
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Figure 3. Cortical-area specific NREMS features depend on CaV3.3 Ca2+ channels. (A) Schematic illustrating

implantation sites for LFP, EEG (fEEG and pEEG; frontal and parietal EEG) and EMG electrodes. S1, S2; primary

and secondary somatosensory areas; AC, auditory cortex; PFC, medial prefrontal cortex. (B) Histological sections

of representative cases confirming the location of the recording sites. Arrowheads mark site of lesion caused by

electrocoagulation. Anteroposterior stereotaxic coordinates are given relative to Bregma (Bg). (C) Representative

raw traces of NREMS for WT (left) and CaV3.3 KO (right) animals, showing (from top to bottom) the EMG, EEG and

LFP signals for S1, S2, AC and PFC (infra-/prelimbic area). The heart beat is visible on the EMG trace. (D) Power

spectra corresponding to the LFP recordings, plotted in a linear-log plot to emphasize the three frequency bands

of interest: the SO (0.5–1.5 Hz), the delta (1.5–4 Hz) and the sigma band (10–15 Hz). The sigma band is colored and
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an underestimation because the difference between the two curves extends up to ~18 Hz. In PFC, in

contrast, no alterations in the power spectrum were observed, with in particular no significant

change in the sigma power and in the SO peak. The delta band was not analyzed in this area due to

the superposition of the respiratory rhythm on top of the delta waves.

Together, the lack of CaV3.3 channels altered the spectral mix of NREMS in sensory circuits,

whereby power in the delta frequency band became overrepresented compared to the SO. This shift

was greatest in S1 and S2, where in addition sigma power activity was suppressed. In contrast, the

PFC did not show these alterations in two of the three major frequency bands, suggesting a minor

dependence on CaV3.3 channels.

Chemogenetic inhibition of TRN cells reproduces the switch from
spindle- to delta-enriched sleep
The results from CaV3.3 KO animals suggest that strong CaV3.3-dependent burst discharge is

required for spindle-enriched NREMS. Therefore, acute reduction of TRN excitability to suppress

bursting should also deplete spindles and lead to a NREMS enriched in delta waves. To test this, we

hyperpolarized TRN cells with a chemogenetic approach, whereby we expressed the inhibitory

DREADD receptor hM4Di in VGAT-Ires-Cre animals (Vong et al., 2011) through bilateral injection of

AAV-hM4D(Gi)_mCherry or AAV-hM4D(Gi)_IRES_mCitrine in the region of the somatosensory TRN

sector (Figure 4—figure supplement 1A). In acute slices prepared 3 weeks after injection, bath

application of the DREADD-ligand Clozapine N-oxide (CNO, 10 mM) induced a marked membrane

hyperpolarization (DV = �13.9 ± 1.5 mV, n = 10, paired t-test, p=6�10�6) of fluorescent cells held in

whole-cell current-clamp at resting membrane potentials ranging from �50 to �70 mV (Figure 4A,

B). Cellular input resistance was reduced and rebound burst discharge suppressed in the continuous

presence of CNO. Bursting could be recovered upon direct current (d.c.) injection to restore the

original membrane potential (d.c. injection tested in n = 3 cells, Figure 4A). Non-fluorescent cells in

the vicinity of the injected area did not respond to CNO (Figure 4B). This result is consistent with

CNO-induced activation of K+ conductances and shows that TRN neurons become silenced without

impairing rebound bursting and action potential firing. Treatment with CNO thus overall reduces

TRN excitability, and in particular specifically reproduces the decreased burst propensity of TRN

cells found in the CaV3.3-KO animals that is relevant for the altered NREMS spectral properties.

Similarly injected animals were also implanted in vivo for S1 LFP and EEG/EMG freely moving

recordings and treated with CNO (i.p. 1 mg/kg) or NaCl at 2 hr into the light phase (ZT2). The laten-

cies to fall asleep were comparable after drug or NaCl injections (31.4 ± 3.7 min for CNO, 24.8 ± 2.1

min for NaCl; n = 5, paired t-test, p=0.16). NREMS analysis was done for the time period of 20–65

min after drug injection, which is the period where drug effects peak (Figure 4—figure supplement

1B). Total time spent in NREMS was not different between CNO and NaCl injections in the analysis

period (24.1 ± 1.7 min for CNO, 27.7 ± 1.9 min for NaCl injections, Wilcoxon signed rank-test,

Figure 3 continued

shown in expanded log-log plots at the bottom. Normalized mean ±S.E.M. values of power spectral density are

shown for S1, S2, AC and PFC for both genotypes (WT: n = 9 for S1, n = 8 for S2, n = 6 for AC, n = 6 for PFC;

CaV3.3 KO: n = 13 for S1, n = 13 for S2, n = 8 for AC, n = 7 for PFC). (E) Mean total power for the three frequency

bands across S1, S2, AC and PFC, with values for individual animals shown in points (dark gray for WT, light gray

for CaV3.3 KO animals), and mean values ± S.E.M. in color diamonds. Statistical significance was tested for each

area separately, comparing WT and CaV3.3 KO. Mann-Whitney non-parametric test for WT vs CaV3.3 KO, for S1,

p=0.003 for the SO, p=0.007 for delta, p=0.021 for sigma; for S2, p=0.008 for the SO, p=0.005 for delta,

p=6.9�10�5 for sigma; for AC, p=0.02 for the SO, p>0.05 for delta and sigma; for PFC, all p-values>0.05.

Bonferroni-corrected a-threshold for the three frequency bands was 0.017.

DOI: https://doi.org/10.7554/eLife.39111.007

The following source data and figure supplement are available for figure 3:

Source data 1. Numerical data values and statistics underlying Figure 3.

DOI: https://doi.org/10.7554/eLife.39111.009

Figure supplement 1. Head-fixed animals present spectra typical for each vigilance state accompanied by distinct

LFP waveforms across cortical areas in WT and CaV3.3 KO animals.

DOI: https://doi.org/10.7554/eLife.39111.008
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Figure 4. Chemogenetic hyperpolarization of TRN cells mimics the NREMS phenotype of the CaV3.3 KO mice. (A)

Representative membrane voltage recording of a whole-cell patch-clamped TRN cell in vitro exposed to CNO (10

mM, bath application indicated by horizontal bar) recorded in a slice from a mouse injected with AAV8-hM4D(Gi)

_IRES_mCitrine. The cell was injected every 10 s with brief negative current pulses to elicit rebound discharge. The

application of CNO hyperpolarized the membrane potential, suppressed rebound bursting and decreased

membrane input resistance, as evident by the smaller voltage deflection in response to the negative current step

(�80 pA). Current step size was increased to �120 pA to compensate for the decreased membrane resistance.

Subsequent injection of direct current (d.c.) to counteract membrane hyperpolarization then reinstated burst

discharge. Numbers indicate portions of the trace shown expanded below. Horizontal dotted lines indicate mean

membrane potential before and during CNO application. (B) Box-and-whisker plot of membrane hyperpolarization

in vitro (DV, calculated as the difference before and during CNO) for fluorescent (hM4+, n = 10, DV = �13.9 ± 1.5

mV, paired t-test, p=6�10�6) and non-fluorescent cells (hM4-, n = 4, DV = 0.0 ± 0.9 mV, paired t-test, p=0.97). The

CNO-effects between the two-cell groups differed significantly (unpaired t-test, p=1.1�10�4). (C) Representative

traces in vivo during NREMS 30 min after the injection of NaCl (left) or CNO (right) in the same animal, showing

(from top to bottom) the EMG, EEG and S1-LFP (ipsilateral and contralateral to EEG) signals. (D) Mean ±S.E.M.

power spectra of the S1-LFPs for NaCl and CNO injections in vivo during the NREMS periods 20 to 65 min after

injection. Expanded portion is shown below in log-log scale to emphasize the sigma band (10–15 Hz). (E) Mean

total power for the three frequency bands of interest. Diamonds and error bars show the Mean ±S.E.M. across

subjects. Gray lines represent individual animals. Repeated-measures ANOVA for factors ‘frequency’ and

‘treatment’, p=7.7�10�5 was followed by paired t-tests for individual frequency bands, with values given above the

bars. Bonferroni-corrected, a threshold was 0.017.

DOI: https://doi.org/10.7554/eLife.39111.010

The following source data and figure supplement are available for figure 4:

Source data 1. Numerical data values and statistics underlying Figure 4.

DOI: https://doi.org/10.7554/eLife.39111.012

Figure 4 continued on next page
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p=0.22) and mean NREMS bout durations were comparable (93.3 ± 12.3 s for CNO, 91.2 ± 32.5 s for

NaCl, Wilcoxon signed rank-test, p=0.31). Following CNO injections, S1 LFP signals during NREMS

showed reduced spindle activity and instead became enriched in activity in the delta frequency

range (Figure 4C,D, repeated-measures ANOVA with factors ‘frequency’ and ‘treatment’,

p=7.7�10�5). Compared to NaCl injections, total power in the delta frequency range was increased,

whereas the SO and spindle activity were suppressed (Figure 4D,E). Control animals injected with

AAV8 carrying a DREADD-unrelated optogenetic construct (see Materials and methods) did not

respond to CNO (Figure 4—figure supplement 1C–F). The CNO-induced acute membrane hyper-

polarization thus reproduced the major power spectral changes observed in NREMS of the CaV3.3

KO mouse: the suppression of the SO and sleep spindle power, and the enhancement of delta

power. As CNO-induced hyperpolarization suppressed burst discharge (see also Figure 2D1), the

joint results from the genetic and the chemogenetic manipulations identify decreased TRN bursting

as the primary factor relevant for the enrichment of delta power at the expense of sigma and SO

power in NREMS.

CaV3.3 channels amplify and accelerate spindles in the somatosensory
areas
Given the importance of CaV3.3-dependent TRN burst discharge for NREMS in sensory cortices, the

question remains open of how this discharge pattern controls the properties of local, discrete spin-

dle events. The exact sources of regional spindle properties have recently received considerable

attention (Schabus et al., 2007; Frauscher et al., 2015; Piantoni et al., 2017). Therefore, we devel-

oped an algorithm to isolate discrete spindle events in NREMS of WT and CaV3.3 KO mice. We fol-

lowed a previously established thresholding approach in rat that successfully characterized spindles

in both rodent and human (Mölle et al., 2009) complemented with additional criteria, as detailed in

the Materials and methods (Figure 5—figure supplement 1). For the band-pass filtering, we were

guided by the observation that in both S1 and S2 of the CaV3.3 KO animals, power was attenuated

beyond the widely used sigma band of 10–15 Hz. Therefore, we chose 9–16 Hz to allow for the pos-

sible inclusion of comparatively slow and fast spindles.

We isolated 727–2289 events per WT mouse and area that showed the typical spindle-shaped,

waxing-waning waveform (Figure 5A). Spindles in S1 and S2 showed large amplitudes that were

comparable to that of the SO, whereas those in AC and PFC were less prominent (Figure 5A). In the

CaV3.3 KO animals, the large spindle events were reduced in S1 and S2, but remained comparable

in AC. There was also a reduction of event amplitude in PFC (Figure 5B1). Cumulative probability

density curves showed a marked leftward shift of the amplitude distribution in S1 and S2, but not in

AC and PFC (Figure 5B2). We also analyzed the intra-spindle frequencies, one of the major markers

of spindle heterogeneity (Figure 5C). The frequency of detected events was distributed according

to a Gaussian between 9 and 16 Hz, with a maximum around 10–12 Hz, yielding means of

11.6 ± 0.09 Hz for S1; 11.7 ± 0.05 Hz for S2; 11.2 ± 0.05 Hz for AC; 11.5 ± 0.03 Hz for PFC

(Figure 5C1). All distributions showed a tail indicating a small proportion of events with a fre-

quency >14 Hz (Figure 5C2). In the CaV3.3 KO animals, frequencies were specifically attenuated in

S1 and S2, but remained comparable in AC and PFC. The greater activity of CaV3.3 channels in the

sensory sectors of TRN thus correlated strongly with higher amplitudes and frequencies of individual

spindles in S1 and S2.

CaV3.3 channels ensure the temporal coordination of sleep spindles
with the active state of the SO
Sleep spindles are temporally grouped by the active state of the SO, which reflects the strong role

of corticothalamic volleys in recruiting thalamic circuits (Contreras et al., 1996). This grouping is key

for the promotion of sleep-dependent memory consolidation (Mölle et al., 2009) and it may be

Figure 4 continued

Figure supplement 1. Chemogenetic inhibition of TRN cells acutely increases delta activity in a DREADD-

dependent expression.

DOI: https://doi.org/10.7554/eLife.39111.011
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disrupted in some cases of schizophrenia (Manoach et al., 2016). We determined the onset times of

detected spindles with respect to the phase of the SO (Figure 6A) and confirmed such time-locking

throughout all areas, with ~60% and 40% of detected spindles initiating during the cortical active

and silent states (also named UP and DOWN states), respectively (Figure 6B,C). Remarkably, the

same analysis in the CaV3.3 KO animals showed that the time-locking of sleep spindles to the SO
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Figure 5. Discrete spindle events are amplified and accelerated in somatosensory areas by CaV3.3 channels. (A)

Representative traces during NREMS for WT and CaV3.3 KO for S1, S2, AC and PFC, showing examples of

algorithm-detected discrete spindle events (9–16 Hz, colored and bordered by arrowheads). (B) Mean amplitude

of detected spindles quantified as mean power of the band-pass filtered signal (9–16 Hz). (B1) Mean spindle

power levels across animals, values for individual animals shown by dots (dark gray for WT, light gray for CaV3.3

KO animals) and mean values ± S.E.M. by colored diamonds. Statistical significance was tested for each area

separately using Mann-Whitney test, comparing WT (S1, n = 7; S2, n = 6; AC, n = 6; PFC, n = 6) and CaV3.3 KO

(S1, n = 13; S2, n = 13; AC, n = 8; PFC, n = 7). p-values obtained were: for S1, p=0.002; for S2, p=0.006; for AC,

p>0.05; for PFC, p=0.032. (B2) Cumulative probability distributions. (C) Same for intra-spindle frequencies. (C1)

p-values obtained were: for S1, p=0.029; for S2, p=0.005; for AC and PFC, p>0.05. (C2) Probability distribution of

spindle events according to their intra-spindle frequency.

DOI: https://doi.org/10.7554/eLife.39111.013

The following source data and figure supplement are available for figure 5:

Source data 1. Numerical data values and statistics underlying Figure 5.

DOI: https://doi.org/10.7554/eLife.39111.015

Figure supplement 1. Illustration of procedure for automated spindle detection Representative traces for the four

areas, S1, S2, AC and PFC in a WT animal, showing for each (from top to bottom): raw trace, band-pass filtered 9–

16 Hz, power of the filtered trace.

DOI: https://doi.org/10.7554/eLife.39111.014

Fernandez et al. eLife 2018;7:e39111. DOI: https://doi.org/10.7554/eLife.39111 11 of 25

Research article Neuroscience

https://doi.org/10.7554/eLife.39111.013
https://doi.org/10.7554/eLife.39111.015
https://doi.org/10.7554/eLife.39111.014
https://doi.org/10.7554/eLife.39111


was altered for S1 and S2 (Figure 6B,C), but not for AC and PFC. In both S1 and S2, the presence of

spindles on the active state was diminished in favor of spindles in the silent state. In S1 from CaV3.3

KO animals, the occurrence of spindles was comparable between active and silent states, whereas

events occurred preferentially in the silent state in S2. This difference in the coupling was not due to

a less faithful detection of the smaller spindles in the CaV3.3 KO animals, because the analysis pro-

duced similar results when it was limited to WT spindles with amplitudes corresponding to those of
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Figure 6. Phase-locking of spindles to the active state of the SO depends on CaV3.3 channels in somatosensory

cortices. (A) Illustration of the method to determine the phase value of the SO at which a detected spindle event

starts (yellow shaded rectangles). SO periods were determined based on (Mölle et al., 2009) and indicated as

dashed rectangle. Spindles that did not coincide with detected SO were not included in this analysis (gray shaded

rectangles). (B) Graphs presenting sleep spindle occurrence as a function of SO phase. Colored lines represent

individual animals, black lines the mean ±S.E.M. (gray-shaded curve). Same animal numbers as in Figure 5. (C)

Mean occurrence of spindle onsets for the active (AS, �180˚, 0˚) and the silent (SS, 0˚, 180˚) state of the SO.

Statistical significance was tested for each area separately with respect to spindle occurrence as a function of AS

and SS. All tests were paired t-test, except for S2 for which we used Wilcoxon signed rank-test. For WT, p-values

obtained were: for S1, p=2�10�5; for S2, p=0.031; for AC, p=3�10�4; for PFC, p=0.001. For CaV3.3 KO, p-values

obtained were: for S1, p=0.543; for S2, p=0.033; for AC, p=0.001; for PFC, p=0.003. Comparison between

genotypes was done for the active state (AS) using unpaired t-test, except for S2 for which we used Mann-Whitney

test. p-values obtained were: for S1, p=8.3�10�6; for S2, p=5�10�4; for AC, p=0.06; for PFC, p=0.59.

DOI: https://doi.org/10.7554/eLife.39111.016

The following source data is available for figure 6:

Source data 1. Numerical data values and statistics underlying Figure 6.

DOI: https://doi.org/10.7554/eLife.39111.017
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the CaV3.3 KO animals. Therefore, the presence of CaV3.3 ensures the timely occurrence of sleep

spindles with respect to the cortical active state.

Discussion
We identify a novel mechanism underlying local cortical correlates of NREMS. It arises through het-

erogeneity in thalamic circuits and correlates with variable oscillatory bursting propensity across TRN

sectors. Strong CaV3.3-dependent bursting in the somatosensory TRN sector led to local NREMS

with fast and large spindles coupled to the SO, whereas this was not the case for cortical areas cor-

responding to TRN sectors with weakly bursting cells. Intriguingly, high burst propensity was also

coupled to a dual regulation of local NREMS, such that the SO and spindles could be suppressed in

favor of delta waves. Sectorial attributes of TRN circuits thus emerge as a powerful source for local

NREMS correlates. They additionally facilitate a tuning of NREMS between major spectral correlates,

offering a candidate mechanism for local sleep modulation, possibly in response to use, experience

and learning. A sectorial heterogeneity of TRN will also advance insight into a proposed common

vulnerability of TRN circuitry for both sleep as well as wakefulness-driven selective attention in neu-

ropsychiatric disorders (Krol et al., 2018).

The TRN has been traditionally regarded as a homogeneous sleep rhythm pacemaker

(Fuentealba and Steriade, 2005; Fogerson and Huguenard, 2016) that underlies global thalamic

inhibition (Halassa and Acsády, 2016). Although its molecular and functional heterogeneity is

increasingly recognized, consequences for NREMS are so far poorly explored and the role of sector-

specific TRN cell characteristics is unknown. Thus, it is not clear whether heterogeneous cellular dis-

charge properties (Contreras et al., 1992; Brunton and Charpak, 1997; Lee et al., 2007;

Kimura et al., 2012; Higashikubo and Moore, 2018) or variable expression of PV and somatostatin

are important for local sleep (Clemente-Perez et al., 2017). Furthermore, sensory but not limbic

TRN cells preferentially engage in sleep-related activity (Halassa et al., 2014), but it is not known

whether they are cellularly distinct. Therefore, this study is the first to bring together TRN heteroge-

neities at both the in vitro and the in vivo levels using optogenetically assisted mapping of TRN sec-

tors. We show that cellular heterogeneities align with identified TRN sectors, and TRN sectors with

area-specific NREMS, thus establishing the TRN sector-specific cellular properties as a source for

local and tunable NREMS. Based on a previous study demonstrating that PV-positive cells are stron-

ger bursters than cells enriched in somatostatin (Clemente-Perez et al., 2017), we propose that PV-

positive TRN cells are primary determinants of the unique sleep spindle properties in somatosensory

cortex.

The focus on NREMS in specific cortical areas using LFP recordings, combined with genetic and

chemogenetic manipulation and cellular analysis, reveals novel and surprising topographical aspects

of mouse NREMS (Terrier and Gottesmann, 1978; Kim et al., 2015; Fernandez et al., 2017). One

remarkable observation is that somatosensory cortices showed a clear sigma power ‘shoulder’ and

strong, fast, CaV3.3-dependent spindle events. The widespread idea from EEG recordings that sleep

spindle generation in mouse NREMS is weak (Astori et al., 2011) should thus be revised as we now

show that full-fledged spindle activity is generated in local regions of the mouse brain. The highly

focal synaptic organization of the barrel system, where TRN-thalamic, thalamocortical and cortico-

thalamic projections between barreloid and barrel topographically match on a cell-to-cell basis

(Desı̂lets-Roy et al., 2002; Wimmer et al., 2010), together with a high density of PV-positive, bursty

cells in the TRN somatosensory sector (Clemente-Perez et al., 2017), are likely important anatomi-

cal substrates enabling strong local spindles. The tight alignment of thalamic unit and S1 LFP activity

recorded simultaneously during spindles in urethane anaesthesia (Rovó et al., 2014) supports this

interpretation. We also observed prominent sigma power and high-amplitude spindles in S2 that

exceeded levels in S1. High reciprocal cortical connectivity between S1 and S2 (Feldmeyer et al.,

2013), and a differential recruitment of first- and higher order thalamic nuclei in these two areas,

could be some of the reasons behind this difference. In contrast to S1 and S2, no discernable sigma

power shoulder was present in AC, and detected spindles showed no dependence on the CaV3.3

channel. We found a tendency for a decreased density of highly burst-prone cells in mouse, which

possibly reduces the strength of spindle generation in auditory sectors. It also remains to be seen

whether there exist functional and anatomical differences in the overall connectivity of each sensory

TRN sector (Crabtree, 1999). Similarly, the spectral composition of NREMS in pre- and infralimbic
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portions of the PFC showed no prominent sigma power and no overall dependence on CaV3.3 chan-

nels, consistent with a minor expression of CaV3.3 channels in the MD-innervated sector and with

the presence of a majority of somatostatin-positive, weakly bursting cells in these areas of the TRN

(Clemente-Perez et al., 2017). However, discrete spindles could be detected in mouse and they are

well-described for rat PFC (Siapas and Wilson, 1998; Peyrache et al., 2011; Maingret et al.,

2016). Discrete spindle events were accompanied by a phase entrainment of TRN discharge in

sleeping rats, although mean firing rates seemed low (Gardner et al., 2013). There could thus be a

spindle-generating circuitry independent of the powerful CaV3.3-dependent mechanisms in sensory

TC loops, in which anterior and midline thalamic nuclei and hippocampus are involved. Such ideas

remain to be tested also regarding the notion of distinct frontal spindles in both human

(Schabus et al., 2007) and mouse (Kim et al., 2015).

Power in the SO band was consistently co-modulated with sleep spindle activity in both the

CaV3.3 KO mouse and during chemogenetic TRN inhibition. This could be evidence in favor of a role

of TRN in the generation of the SO (Crunelli et al., 2015). Our chemogenetic results generally sup-

port the idea that the TRN sustains low-frequency activity in cortico-thalamocortical loops, an effect

which could possibly also result secondarily from its phasic recruitment by cortex to generate sleep

spindles. Also, the increase of delta power could have de-emphasized the relative presence of SOs.

Additionally, possible roles of CaV3.3 channels in cortically generated rhythms could arise from a

subgroup of cortical interneurons (Liu et al., 2011).

The genetic removal of the CaV3.3 channel enhanced delta power in S1 and S2 at the expense of

sleep spindles. Chemogenetic hyperpolarization reproduced this observation closely. Although the

chemogenetic approach suppresses excitability in a manner that is not limited to bursting, the close

correspondence with the observations in the CaV3.3-KO animals, in which only bursting but not tonic

firing is impaired (Astori et al., 2011), strongly suggests that suppressed bursting, which is the com-

mon denominator of both experimental approaches, is the principal mechanism involved in the

effects at the level of NREMS. While the reduction in sleep spindle activity under these conditions is

expected (Astori et al., 2011), an enhancement and/or unmasking of delta wave-generating activity

in thalamocortical circuits has now become apparent thanks to the locality of our recordings. It is

reminiscent of previous observations of an opposite regulation of slow wave/delta and spindle

power during NREMS (Dijk et al., 1993; Steriade et al., 1993; Franken et al., 1998), which has

been explained based on the different membrane potential polarizations of TC cells involved in spin-

dle or delta rhythm generation (Nuñez et al., 1992). Here, we identify TRN cell membrane

potential polarization as a determinant for such regulation in somatosensory thalamocortical circuits

during NREMS. Remarkably, the capability of TRN in generating either spindles or delta waves was

also evident based on whether brief or prolonged optogenetic stimulation was applied

(Halassa et al., 2011; Lewis et al., 2015). This underscores the power of TRN-dependent inhibition

in controlling thalamocortical synchrony according to discharge patterns. We add to this the capabil-

ity of a local, switchable tuning of NREMS spectral properties in somatosensory cortex. In agreement

with pioneering work on delta waves, we propose that TRN hyperpolarization liberates TC cells from

phasic hyperpolarization to engage in a clock-like rhythm at delta frequencies (Steriade et al.,

1993). Results consistent with this interpretation were also obtained in animals doubly deficient in

CaV3 channels (Pellegrini et al., 2016). Recently, it was also shown that optogenetic inhibition of

anterior TRN cells may suppress rather than strengthen low-frequency EEG activity (Herrera et al.,

2016), yet this effect occurred with a 10-s-long delay after acute inhibition of TRN cell discharge.

The powerful control of delta power by TRN-dependent mechanism could be relevant for the role

of delta waves in the homeostatic regulation of NREMS. The increase in low-frequency power of

NREMS over the 0.75–4 Hz power band, referred to as slow-wave activity, is the most widely used

marker to quantify homeostatic sleep pressure (Borbély and Tobler, 2011). We find here that slow-

wave activity contains a thalamically controlled component that can be rapidly and bidirectionally

modulated through TRN membrane polarization. Such mechanisms could contribute to sleep-depri-

vation induced boosting of the high- but not the low-frequency component of slow-wave activity

(Achermann and Borbély, 1997; Huber et al., 2000). Bidirectional regulation of slow-wave activity

in local brain areas according to use dependence has also been described (Kattler et al., 1994;

Pigarev et al., 1997; Vyazovskiy et al., 2000; Miyamoto and Hensch, 2003; Huber et al., 2006).

More complex localized alterations in NREMS are observed following exposure to learning tasks

that involve enhanced power in both the low-frequency range (SO and delta waves in the slow wave
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activity frequency range of 0.5–4 Hz) and in the fast sleep spindle range (Huber et al., 2004). Learn-

ing tasks involving motor cortex increase the density of individual spindle events in a manner specifi-

cally restricted to motor cortex (Johnson et al., 2012) or augmented both slow wave and sleep

spindle power in supplementary motor cortex (Tamaki et al., 2013). Therefore, cortical modules are

capable of generating qualitatively different forms of local NREMS spontaneously and according to

recent use and experience. Membrane potential polarization within TRN sectors could represent a

powerful addition to previously proposed mechanisms that primarily imply changes in cortical synap-

tic strength (Tononi and Cirelli, 2014). Both ascending brainstem and basal forebrain

(McCormick and Bal, 1997; Beierlein, 2014) as well as descending cortical inputs (McCormick and

von Krosigk, 1992; Zhang et al., 2012) regulate TRN membrane potential and burst propensity.

Whether differential neuromodulation of TRN sectors contributes to use- and experience-dependent

sleep regulation remains an intriguing topic for further study.

Compromised sleep spindle generation is a promising read-out for neuropsychiatric disorders

involving aberrant sensory percepts and attentional deficits, such as schizophrenia (Manoach et al.,

2016). In large-scale genome-wide association studies, the gene encoding CaV3.3 channels ranks in

the top list of candidate risk genes in schizophrenia, together with several genes that are highly

enriched in TRN and implied in repetitive burst discharge (Krol et al., 2018). Based on our data, we

propose that wake-related deficits in some of these patients may show a specificity for certain sen-

sory modalities that co-vary with local deficits in sleep spindles and their coupling to the SO. This

could help to further refine the classification and diagnosis of these complex disorders.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
(M. musculus)

CaV3.3 KO PMID: 21808016 MGI:5637591 generated by
Dr. H. Prosser,
then at GSK

Genetic reagent
(M. musculus)

VGAT-Ires-Cre PMID: 21745644 MGI:5141270 generated by
Dr. B. Lowell,
Harvard

Recombinant
DNA reagent

AAV1-hSyn-
ChR2(H134R)_
eYFP-WPRE-hGH

Penn Vector Core 26973P

Recombinant
DNA reagent

AAV8-hSyn-DIO-
hM4D(Gi)_mCherry

UNC Vector Core N/A

Recombinant
DNA reagent

ssAAV8/2-hSyn1-dlox-
HA_hM4D(Gi)_IRES_
mCitrine-dlox-WPRE-
hGHp(A)

Zurich viral
vector repository

v93-8

Antibody mouse anti-PV
RRID:AB_10000343

Swant PV 235 Dilution 1/4000

Antibody goat anti-mouse CY5
RRID:AB_2338713

Jackson
ImmunoResearch

115-175-146 Dilution 1/500

Peptide,
recombinant
protein

streptavidin coupled
with Alexa Fluor 594
RRID:AB_2337250

Jackson
ImmunoResearch

016-580-084 Dilution 1/8000

Chemical
compound,
drug

CNO Tocris 6329

Software,
algorithm

Neuroexplorer Plexon

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

Intan RHD2000
recording
system with Matlab
toolbox 1.2.2

IntanTeck

Software,
algorithm

PClamp10.2 Molecular
Devices

Software,
algorithm

Igor Pro 7 WaveMetrics

Software,
algorithm

Matlab 2018 a MathWorks

Software,
algorithm

R 3.5.1 R Core Team

Animal handling
Mice from the C57BL/6J line (also referred to as wild-type, WT), the CaV3.3 KO line and the VGAT-

Ires-Cre line (Jackson Labs, generated by Dr. B. Lowell, Beth Israel Deaconess Medical Center, Har-

vard) (Vong et al., 2011) were bred on a C57BL/6J background and housed in a temperature- and

humidity-controlled animal house with a 12 hr/12 hr light-dark cycle (lights on at 9 am). Food and

water were available ad libitum. For viral injections, 3- to 4-week-old mice of either sex were trans-

ferred to a P2 safety level housing room with identical conditions 1 day prior to injection. Then, for

in vitro experimentation, animals were transferred 3 to 4 weeks later to a housing room with identi-

cal conditions, 3–5 days prior to sacrifice. For in vivo experimentation, animals were brought to the

recording room at least one week prior to experimentation. All experimental procedures complied

with the Swiss National Institutional Guidelines on Animal Experimentation and were approved by

the Swiss Cantonal Veterinary Office Committee for Animal Experimentation.

Viral injections
Mice 3- to 4-week-old were anaesthetized using Ketamine-Xylazine (83 and 3.5 mg/kg, respectively).

Mice were placed on a heating blanket to maintain the body temperature at 37˚C. An initial dose of

analgesic was administrated at the beginning of the surgery (Carprofen i.p. 5 mg/kg). The animal

was head-fixed on a stereotactic apparatus equipped with a head adaptor for young animals (Stoelt-

ing 51925, Wood Dale, IL). A small incision was made on the skin and the bone exposed at the

desired injection site. Viruses were injected with a thin glass pipette (5-000-1001-X, Drummond Sci-

entific, Broomall, PA) pulled on a vertical puller (Narishige, Tokyo, Japan). WT and CaV3.3 KO mice

were injected bilaterally with a virus encoding ChR2-EYFP (500 nl of AAV1-hSyn-ChR2(H134R)_eYFP-

WPRE-hGH, 1012 GC, ~100–200 nl/min) for one of the following sites (in stereotaxic coordinates, rel-

ative to bregma: anteroposterior, lateral, depth from surface): S1 (-1.7, ±3.1, -0.8), AC (-2.5, ±4, -

1.1), MD (-1.7, ±0.4, -3.2). VGAT-Ires-Cre mice were injected bilaterally with a virus encoding

DREADD-mCherry (500 nl of AAV8-hSyn-DIO-hM4D(Gi)_mCherry, 6.4x1012 GC), or DREADD-IRES-

mCitrine (500 nl of ssAAV8/2-hSyn1-dlox-HA_hM4D(Gi)_IRES_mCitrine-dlox-WPRE-hGHp(A),

3.1x1012 GC) or a control AAV8 encoding a DREADD-unrelated construct (500 nl of AAV8-hSyn-

FLEX-Jaws_KGC_GFP_ER2, 3.2x1012 GC) in the sensory sector of the TRN (-1.7, ±2.25, -2.9).

In vitro electrophysiological recordings
Adult WT, CaV3.3 KO and VGAT-Ires-Cre mice (3–4 weeks post viral injection), 7- to 9-week-old,

were briefly anaesthetized with isoflurane and their brains quickly extracted. Acute 300-mm-thick cor-

onal brain slices were prepared in ice-cold oxygenated sucrose solution (which contained in mM:

NaCl 66, KCl 2.5, NaH2PO4 1.25, NaHCO3 26, D-saccharose 105, D-glucose 27, L(+)-ascorbic acid

1.7, CaCl2 0.5 and MgCl2 7), using a sliding vibratome (Histocom, Zug, Switzerland). Slices were

kept for 30 min in a recovery solution at 35˚C (in mM: NaCl 131, KCl 2.5, NaH2PO4 1.25, NaHCO3

26, D-glucose 20, L(+)-ascorbic acid 1.7, CaCl2 2, MgCl2 1.2, myo-inositol 3, pyruvate 2) before

being transferred to room temperature for at least 30 more min before starting the recording.
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Recording glass pipettes were pulled from borosilicate glass (TW150F-4) (World Precision Instru-

ments, Sarasota, FL) with a DMZ horizontal puller (Zeitz Instruments, Martinsried, Germany) to a final

resistance of 2–4 MW. Pipettes were filled with a K+-based intracellular solution that contained in

mM: KGluconate 140, Hepes 10, KCl 10, EGTA 0.1, phosphocreatine 10, Mg-ATP 4, Na-GTP 0.4, pH

7.3, 290–305 mOsm, supplemented with ~2 mg/ml of neurobiotin (Vector Labs, Servion, Switzer-

land). Slices were placed in the recording chamber of an upright microscope (Olympus BX50WI, Vol-

ketswil, Switzerland) and continuously superfused at room temperature with oxygenated ACSF

containing in mM: NaCl 131, KCl 2.5, NaH2PO4 1.25, NaHCO3 26, D-glucose 20, L(+)-ascorbic acid

1.7, CaCl2 2 and MgCl2 1.2, picrotoxin 0.1, glycine 0.01. Cells were visualized with differential inter-

ference contrast optics and 10X and 40X immersion objectives. Infrared images were acquired with

an iXon Camera X2481 (Andor, Belfast, Northern Ireland). Signals were amplified using a Multiclamp

700B amplifier, digitized via a Digidata1322A and sampled at 10 kHz with Clampex10.2 (Molecular

Devices, San José, CA). Immediately after gaining whole-cell access, cell capacitance Cm was mea-

sured in voltage-clamp at �60 mV through applying 500 ms-long, 20 mV hyperpolarizing steps

(5 steps/cell). Whole-field blue LED (Cairn Res, Faversham, UK) stimulation (455 nm, duration: 0.1 to

1 ms, maximal light intensity 0.16 mW/mm2) in voltage-clamp (�60 mV) was used to assess the con-

nectivity of TRN neurons through fibers arising from the previously injected area (S1, AC or MD).

Once identified, squared somatic current injections (�50 to �300 pA for 500 ms, 4 injections/cell

and membrane potential) hyperpolarized neurons below �100 mV from membrane potentials

between �90 and �50 mV (corrected for a liquid junction potential of 10 mV) and induced repetitive

burst discharge in TRN neurons. For comparison between neurons from different TRN sectors, the

response to this current injection was also used to assess cellular input resistance Ri. For CNO appli-

cation, a stable baseline of at least 2 min was recorded before bath application of water-soluble

CNO (10 mM, Tocris, Bristol, UK) for at least 2 min until its hyperpolarizing effect reached a plateau.

Washout of CNO did not reverse the hyperpolarizing effect for up to 10 min of washout. Two VPM

and two TRN neurons outside the visually identified fluorescent site of injection were used as control

for CNO’s effect on membrane potential.

Cell parameters were calculated on Clampfit v.10.2. and IgorPro Wavemetrics (Lake Oswego,

OR). Input and access resistances were evaluated all along the recordings. Neurons presenting a var-

iation of the access resistance >20% or a holding current at �60 mV < �150 pA were excluded from

analysis. Light-evoked excitatory postsynaptic current (EPSC) amplitudes were measured in traces

presenting monophasic synaptic events that occurred at fixed latency after LED onset and that were

not contaminated by asynchronous release. In the subset of neurons that underwent paired-pulse

stimulation, traces containing spontaneous activity between the two LED stimulations were dis-

carded. Paired-pulse ratios are expressed as percentage of the second over the first EPSC amplitude

(6 paired-stimuli/cell). The bursting of TRN neurons was assessed by counting the number of Ca2+

spikes following a 500 ms hyperpolarization below �100 mV. Ca2+ spikes were counted as bursts if

they generated triangular-shaped membrane depolarizations followed by a clear afterhyperpolariza-

tion, regardless of the presence of high-frequency action potentials on top of the Ca2+ spikes.

In vivo multi-site electrophysiological recordings
Surgery was performed as recently described (Lecci et al., 2017). Briefly, animals were subjected to

gas anaesthesia (isoflurane supplemented with a mixture O2 and N2O) and small craniotomies (0.3–

0.5 mm) were performed at the location for implantation of high-impedance fine tungsten LFP

microelectrodes (10–12 MW, 75 mm shaft diameter, FHC, Bowdoin, ME) at the following sites (in ste-

reotaxic coordinates, relative to bregma: anteroposterior, lateral, depth from surface): sensory

regions S1 (�1.7, 3.0, -1.0), S2 (�0.7, 4.2, -1.1), and AC (�2.5, 4.0, -1.1), limbic areas of PFC (+1.8,

0.3, -1.85). Implantations were guided through calculating the corresponding interaural coordinates.

As a neutral reference for LFP electrodes, a silver wire (Harvard Apparatus, Holliston, MA) was

inserted in the bone over lateral portions of the cerebellum. On the contralateral skull site, two con-

ventional gold-coated low-impedance electrodes were implanted over the dura mater through fron-

tal and parietal bones for differential surface EEG recordings. Two gold pellets inserted into the

muscles of the neck served as EMG electrodes. Multi-site recordings were carried out in head-

restrained conditions, for which a light-weight metal head-post (Bourgeois Mécanique SAS, Lyon,

France) was glued and cemented onto the midline skull in order to perform painless head-fixed

recording sessions (Fernandez et al., 2017; Lecci et al., 2017). Carprofen (5 mg/kg, i.p.) and
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paracetamol (2 mg/mL, drinking water) were provided during the pre- and post-operative periods.

Mice were gently and gradually habituated to a custom-made head-fixation system (Bourgeois

Mécanique SAS, Lyon, France) by increasing the amount of time spent in head fixation daily from 10

to 30 min to 2–3 hr/day. Mice sat within a cardboard roll such that only the head protruded. Occa-

sionally, a heating pad was placed underneath the cardboard. After each head-restrained period,

mice were rewarded with ad libitum drops of sweetened water. Mice typically started sleeping spon-

taneously after 7–14 d of habituation, generating periods of both NREMS and REMS. LFP and EEG/

EMG signals were amplified 1000x through a 16-channel Multiple Acquisition Processor System

(Plexon Inc., Dallas, TX), high- and low-pass filtered at 0.8 and 300 Hz, respectively, and digitized at

1 kHz. For multi-site recordings, 5 WT and 6 CaV3.3 KO animals had all four recording sites histologi-

cally confirmed, 1 WT (S1, S2, PFC) and 3 CaV3.3 KO (2x S1, S2, AC; 1x S1, S2, PFC) animals had

three confirmed recording sites, 3 WT (1x S1, AC; 2x S1, S2) and 4 CaV3.3 KO (S1, S2) animals had

two confirmed sites. Four animals were excluded because recording sites could not be identified or

because brain appearance was not satisfying (ventricle dilatation or damaged brain slice).

In vivo chemogenetics
After 1 week of recovery from viral injection, bilateral S1 LFP electrodes, and EEG/EMG electrodes

were implanted as described above, followed by a week of recovery. After 4 days of habituation to

the tethering cable, baseline activity was recorded in freely moving conditions during 3 to 4 days. 3

weeks after viral injections, intra-peritoneal injection of CNO (water-soluble diluted in NaCl 0.9%,

dosis 1 mg/kg, Ref. 6329, Tocris, Bristol, UK) or NaCl 0.9% was performed at Zeitgeber time ZT2 in

a random cross-over design, with the experimenter blind to the injection. Recordings under each

condition took place on 4–5 successive days, with 2–3 CNO and 1–2 NaCl injections per animal. Sig-

nals were acquired at 1 kHz with an Intan digital RHD2132 amplifier board and a RHD2000 USB

Interface board, with a high-pass filter set at 0.8 Hz (Intan Technologies, Los Angeles, CA). Data

were acquired in Matlab using the RHD2000 Matlab toolbox and customized display software in

Matlab. To assess the time course of CNO action, 3 DREADD-mCherry and 3 AAV8-control animals

were recorded starting at ZT0. Based on these dynamics, we chose a window of 45 min (starting 20

min after the injection) for comparison of CNO and NaCl effects (Figure 4—figure supplement 1B,

D). The average power spectrum per animal was calculated as mean between recording sites and

repetition-days for the two conditions (CNO or NaCl). Spectral analysis of the signals was performed

as described in the data analysis section. For chemogenetic recordings, a total of 3 DREADD-

mCherry and 2 control AAV8 mice had bilateral S1 recording sites histologically confirmed, 2

DREADD-mCherry and 1 control AAV8 had one confirmed S1 recording sites.

Histology and immunofluorescent labeling
After completion of patch-clamp recordings in vitro, slices were post-fixed in paraformaldehyde (4%)

for >24 hr. An immunostaining on free-floating sections was used to outline PV-positive (PV+) neu-

rons in the TRN and to recover neurobiotin-filled neurons. To ensure proper staining of PV+ neurons,

a 5-day incubation at 4˚C of the primary antibody (mouse anti-PV, 1/4000, Swant Inc., Marly, Swit-

zerland) in 1% Triton was required. The secondary antibody (goat anti-mouse CY5, 1/500, Jackson

ImmunoResearch, Ely, Nevada) and Streptavidin (coupled with Alexa Fluor 594, 1/8000, Jackson

ImmunoResearch) were incubated at 4˚C for 24 hr. Sections were observed with an Axiovision

Imager Z1 (Carl Zeiss) microscope equipped with an AxioCam MRc5 camera. Objectives were EC-

Plan Neofluar 2.5x/0.075 ¥/0.17, 5x/0.16 ¥/0.17. The AxioVision Rel. 4.7 and Adobe Photoshop CS5

software were used to merge micrographs from the different channels. The nomenclature of the

location of TRN sectors in Figure 1 follows the descriptions established by Pinault and Deschênes

(1998).

After completion of in vivo recordings (multi-site or chemogenetics recordings), recording sites

were marked through electro-coagulation (50 mA, 8–10 s) during deep pentobarbital anaesthesia (80

mg/kg) before transcardiac perfusion (4% paraformaldehyde in 0.1 M phosphate buffer). After >24

hr post-fixation, 100 mm coronal brain sections were cut and imaged to confirm electrocoagulation

sites of LFP implantation or fluorescent expression of viral injection site.
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In vivo data analysis
Data were analyzed using IgorPro (Wavemetrics, v7, Lake Oswego, OR), MatLab (MathWorks) and

Excel (Microsoft).

Scoring of vigilance states
Sleep and wake episodes were detected manually according to standard scoring procedures

(Fernandez et al., 2017). Briefly, wakefulness was accompanied by large or tonic EMG signal (active

and quiet wakefulness), EEG of low-voltage and exhibiting fast oscillatory components, such as theta

and gamma oscillations. Drowsiness period between wakefulness and NREMS were discarded, as

well as intermediate sleep periods between NREMS and REMS. Only consolidated clear episodes of

NREMS were selected for the analysis: high amplitude voltage and slow EEG components, such as

periods of slow oscillation (<1.5 Hz), delta waves (1.5–4 Hz) and spindles (10–15 Hz). REMS was

clearly distinguishable with reduced EMG activity (atonia) and predominant theta (~6–10 Hz) on the

low-amplitude EEG. For the chemogenetic data analysis, NREMS was scored in 4 s epochs with the

same criteria and only consolidated NREMS (>20 s) were included in further analysis. All scorings

were done with custom-made software prepared in Igor and Matlab.

Spectral analysis of the signals
Power spectra were computed on raw signals using a squared Fast Fourier Transform (FFT) on 4 s

windows after offset correction (mean substracted for each window). Each mean power spectrum

per mouse and per channel was normalized by its sum between 0 and 35 Hz and expressed in per-

centage to compare between animals. The total power per frequency band of interest, SO 0.5–1.5

Hz, delta 1.5–4 Hz and sigma 10–15 Hz, was measured using the integral of the normalized power

spectrum in-between frequency band borders.

Dynamics of delta time course (Chemogenetics)
The dynamics of delta activity were extracted from the area under the power spectrum in the delta

band (1.5–4 Hz) for each 4 s epoch of consolidated NREMS (>20 s continuous bouts). The time-series

were calculated in quantiles of identical amounts of NREMS (12 for baseline and 36 for post-injec-

tions) and normalized by the mean of the first two baseline bins.

Spindle event detection
The square-power of the filtered enlarged sigma band (9–16 Hz, Finite Impulse Response) calculated

separately for the recordings from each brain area was used to detect onset and offset of spindles.

We applied a threshold of [1.5 x the S.D. + 1 x the mean] of the sigma power, and detected all

events above this threshold that lasted at least 3 cycles (Figure 5—figure supplement 1A). The

onset and offset times of a spindle event were extended to the closest cycle at 0 crossing before

and after the threshold. Events that were overlapping or that were separated by <10 ms were fused.

Events that were at the beginning time point or last time point of a NREMS bout were discarded.

Amplitudes of spindles were computed from the average amplitude of the sigma power between

onset and offset time and averaged per mouse. Frequency of spindles were determined by extract-

ing the peak frequency from the magnitude FFT on each spindle event (86.3% of events had a distin-

guishable frequency peak and were included), followed by calculating the mean intra-frequency per

mouse. Two WT mice with S1 and S2 recording sites were omitted due to an unusually reduced sig-

nal amplitude that prevented comparison to other mice (note that no normalization was applied for

spindle detection).

Slow oscillation detection
Periods of clear and visible SOs were detected based on (Mölle et al., 2009). Briefly, each signal

was 2 Hz low-pass filtered, minimum (y1) and maximum (y2) were detected, as well as the corre-

sponding time point (x1 and x2). The mean minima (Y1) and the mean maxima (Y2) as well as their

difference (Y2-Y1) were calculated. Constraints for selecting periods of SOs were: (1) times between

x1 and x2 were comprised between 0.5 s and 2 s, (2) if y1 was lower than 2/3 of the mean Y1, (3) y2-

y1 was at least 2/3 of Y2-Y1. These constraints allowed to select the largest SOs periods. Only events
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that had a time overlap �95% to a SO were selected for the phase-locking analysis. Angle phase val-

ues of the SO at each spindle event onset time detected were extracted using a Hilbert transform.

Statistics
In vitro. Statistical analysis was done using R programming language (2.15.0, R Core Team) [The R

Development Core Team, The R Foundation for Statistical Computing (www.r-project.org/founda-

tion), 2007]. The normality of the data sets was assessed using Shapiro-Wilk normality test. Compari-

sons between paired conditions (amplitude of 1st versus 2nd EPSCs during paired-stimulation and

effect of CNO on membrane potential) were done using Wilcoxon signed rank-test and paired Stu-

dent’s t-test, respectively. Comparisons between unpaired conditions in non-normally distributed

datasets (passive cellular properties, sector effect on repetitive bursting in WT, sector effect on

repetitive bursting in CaV3.3 KO, genotype effect on repetitive bursting) were done using Mann-

Whitney or Kruskal-Wallis H tests. Comparisons between unpaired conditions in normally distributed

datasets (sector and genotype effect onto PPR and CNO effect onto WT vs CaV3.3 KO) were done

using unpaired Student’s t-tests or two-way ANOVAs. Bonferroni correction was applied whenever

more than two comparisons were done for the same data set. The proportion of repetitive bursting

neurons in the different TRN sectors was compared using Chi-square test for independence followed

by a pairwise proportion test with Holm’s adjustment method. Exact significant p-values are

indicated.

In vivo. Statistical analysis was done using IgorPro, R programming language and Matlab. The

normality of the data sets was assessed using Shapiro-Wilk normality test. Comparisons between

genotypes per site of recording were done using Student’s t-test (parametric data set) or Mann-

Whitney (non-parametric unpaired data set). Comparisons between paired conditions (CNO versus

NaCl, or SO Active state versus Silent state) were done using paired Student’s t-test (parametric

data set) or Wilcoxon signed-rank test (non-parametric paired data). Bonferroni correction was

applied when more than two comparisons were done for the same data set.
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Fernandez et al. eLife 2018;7:e39111. DOI: https://doi.org/10.7554/eLife.39111 20 of 25

Research article Neuroscience

http://www.r-project.org/foundation
http://www.r-project.org/foundation
https://doi.org/10.7554/eLife.39111


FBM Poste de soutien à un
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spontaneous oscillations in the supplementary motor area are associated with sleep-dependent offline learning

Fernandez et al. eLife 2018;7:e39111. DOI: https://doi.org/10.7554/eLife.39111 24 of 25

Research article Neuroscience

https://doi.org/10.1111/ejn.12610
http://www.ncbi.nlm.nih.gov/pubmed/24819022
https://doi.org/10.1146/annurev.neuro.20.1.185
http://www.ncbi.nlm.nih.gov/pubmed/9056712
https://doi.org/10.1073/pnas.89.7.2774
http://www.ncbi.nlm.nih.gov/pubmed/1313567
https://doi.org/10.1016/j.neubiorev.2015.03.001
https://doi.org/10.1016/j.neubiorev.2015.03.001
http://www.ncbi.nlm.nih.gov/pubmed/25757689
https://doi.org/10.1124/mi.3.7.404
http://www.ncbi.nlm.nih.gov/pubmed/14993461
https://doi.org/10.1111/j.1460-9568.2009.06654.x
http://www.ncbi.nlm.nih.gov/pubmed/19245368
https://doi.org/10.1016/j.neuron.2011.02.043
http://www.ncbi.nlm.nih.gov/pubmed/21482364
https://doi.org/10.1016/0306-4522(92)90339-4
https://doi.org/10.1016/0306-4522(92)90339-4
http://www.ncbi.nlm.nih.gov/pubmed/1584427
https://doi.org/10.1523/JNEUROSCI.5083-09.2010
https://doi.org/10.1523/JNEUROSCI.5083-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20392967
https://doi.org/10.5665/sleep.5646
http://www.ncbi.nlm.nih.gov/pubmed/26612388
https://doi.org/10.1073/pnas.1103612108
http://www.ncbi.nlm.nih.gov/pubmed/21949372
https://doi.org/10.1155/2016/3024342
http://www.ncbi.nlm.nih.gov/pubmed/27144033
https://doi.org/10.1016/j.neuroimage.2016.11.010
http://www.ncbi.nlm.nih.gov/pubmed/27840241
https://doi.org/10.1097/00001756-199707280-00027
http://www.ncbi.nlm.nih.gov/pubmed/9261826
https://doi.org/10.1002/(SICI)1096-9861(19980209)391:2%3C180::AID-CNE3%3E3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1096-9861(19980209)391:2%3C180::AID-CNE3%3E3.0.CO;2-Z
http://www.ncbi.nlm.nih.gov/pubmed/9518268
https://doi.org/10.1016/j.brainresrev.2004.04.008
http://www.ncbi.nlm.nih.gov/pubmed/15297152
https://doi.org/10.1152/physrev.00032.2012
https://doi.org/10.1152/physrev.00032.2012
http://www.ncbi.nlm.nih.gov/pubmed/23589831
https://doi.org/10.1016/j.brainres.2005.04.002
http://www.ncbi.nlm.nih.gov/pubmed/15882842
https://doi.org/10.1523/JNEUROSCI.4386-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24849349
https://doi.org/10.1016/j.neuron.2017.05.015
http://www.ncbi.nlm.nih.gov/pubmed/28595056
https://doi.org/10.1073/pnas.0703084104
https://doi.org/10.1016/S0896-6273(00)80629-7
http://www.ncbi.nlm.nih.gov/pubmed/9856467
https://doi.org/10.1016/j.conb.2017.05.008
http://www.ncbi.nlm.nih.gov/pubmed/28575720
https://doi.org/10.1126/science.8235588
http://www.ncbi.nlm.nih.gov/pubmed/8235588
https://doi.org/10.1038/mp.2017.230
https://doi.org/10.1038/mp.2017.230
http://www.ncbi.nlm.nih.gov/pubmed/29180672
https://doi.org/10.7554/eLife.39111


of finger-tapping motor-sequence task. Journal of Neuroscience 33:13894–13902. DOI: https://doi.org/10.
1523/JNEUROSCI.1198-13.2013, PMID: 23966709

Terrier G, Gottesmann CL. 1978. Study of cortical spindles during sleep in the rat. Brain Research Bulletin 3:701–
706. DOI: https://doi.org/10.1016/0361-9230(78)90021-7, PMID: 162576

Tononi G, Cirelli C. 2014. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory
consolidation and integration. Neuron 81:12–34. DOI: https://doi.org/10.1016/j.neuron.2013.12.025,
PMID: 24411729

Vong L, Ye C, Yang Z, Choi B, Chua S, Lowell BB. 2011. Leptin action on GABAergic neurons prevents obesity
and reduces inhibitory tone to POMC neurons. Neuron 71:142–154. DOI: https://doi.org/10.1016/j.neuron.
2011.05.028, PMID: 21745644
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