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ABSTRACT 

 

Single-photon time-of-flight (ToF) light detection and ranging (LiDAR) systems have 

emerged in recent years as a candidate technology for high-resolution depth imaging in 

challenging environments, such as long-range imaging and imaging in scattering media. 

This Thesis investigates the potential of two ToF single-photon depth imaging systems 

based on the time-correlated single-photon (TCSPC) technique for imaging targets in 

highly scattering environments.  The high sensitivity and picosecond timing resolution 

afforded by the TCSPC technique offers high-resolution depth profiling of remote targets 

while maintaining low optical power levels.  Both systems comprised a pulsed picosecond 

laser source with an operating wavelength of 1550 nm, and employed InGaAs/InP SPAD 

detectors.  The main benefits of operating in the shortwave infrared (SWIR) band include 

improved atmospheric transmission, reduced solar background, as well as increased laser 

eye-safety thresholds over visible band sensors.  

Firstly, a monostatic scanning transceiver unit was used in conjunction with a 

single-element Peltier-cooled InGaAs/InP SPAD detector to attain sub-centimetre 

resolution three-dimensional images of long-range targets obscured by camouflage 

netting or in high levels of scattering media.  Secondly, a bistatic system, which employed 

a 32 × 32 pixel format InGaAs/InP SPAD array was used to obtain rapid depth profiles 

of targets which were flood-illuminated by a higher power pulsed laser source. The 

performance of this system was assessed in indoor and outdoor scenarios in the presence 

of obscurants and high ambient background levels.   

Bespoke image processing algorithms were developed to reconstruct both the depth and 

intensity images for data with very low signal returns and short data acquisition times, 

illustrating the practicality of TCSPC-based LiDAR systems for real-time image 

acquisition in the SWIR wavelength region - even in the photon-starved regime. 
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Chapter 1: Introduction 

1.1 Introduction 

In recent years, there has been a rising interest in the use of Light Detection and Ranging 

(LiDAR) systems for the high-resolution imaging of targets in visually degraded 

environments.  Natural and man-made obscurants, such as smoke, dust, fog, and haze are 

an impediment to the acquisition of high-resolution images of targets, as a high level of 

particulate scattering strongly affects image resolution and contrast, eventually degrading 

the image to a point where target identification is not possible [1.1].  This affects the 

performance of many applications including defence operations, where high levels of 

obscurants can prevent effective pilotage, degrade situational awareness, and deny the 

ability to carry out surveillance and reconnaissance [1.2,1.3].  Additionally, the recent 

interest in the integration of LiDAR systems in advanced driver assistance systems and 

fully autonomous vehicles has highlighted the need for real-time depth profiling at 

distances up to hundreds of metres [1.4–1.8].  

Time-of-flight (ToF) LiDAR systems have been around since the 1960s [1.9] and are 

capable of non-invasive, non-contact measurements of remote targets over a high 

dynamic range of target distances.  These systems measure the ToF of a reflected optical 

signal to determine the distance to an object relative the system location.  Today, LiDAR 

continues to be the technique of choice in a variety of remote sensing applications, 

including environmental monitoring [1.10,1.11], surveillance and defence [1.3], and 

terrain mapping [1.12–1.14].  The time-correlated single-photon counting (TCSPC) 

technique has more recently emerged as a candidate technology for LiDAR systems, due 

to its high sensitivity and excellent surface-to-surface resolution [1.15].  The improved 

depth resolution of this approach allows for identification of closely distributed targets, 

and has been successfully demonstrated in a number of LiDAR applications, such as 

long-range imaging [1.16,1.17], multi-spectral imaging [1.18–1.20], and underwater 

depth imaging [1.21].  The TCSPC technique can be used to obtain both depth and 

intensity information of an object, and build a three-dimensional image of the target scene 

by use of single-pixel detectors or multiple detector arrays [1.22]. The use of 

high-sensitivity single-photon detectors means that low average optical power levels can 

be used, even at long distances.  This results in the potential for low-power, eye-safe 

imaging. 
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This Thesis is concerned with the design and evaluation of two reconfigurable 

single-photon systems based on the TCSPC technique. The high-sensitivity and 

picosecond timing resolution of the TCSPC technique were exploited to obtain depth and 

intensity profiles of targets in high levels of scattering media, obscured by camouflage 

netting, and of complex dynamic scenes.  The first system presented is a monostatic 

scanning transceiver system with a single-element indium gallium arsenide/indium 

phosphide (InGaAs/InP) SPAD detector designed for free-space depth imaging over long 

distances.  The second system is a bistatic system based on an InGaAs/InP SPAD detector 

array, which was designed for the rapid acquisition of changing scenes using 

flood-illumination.  Both systems had an operational wavelength of 1550 nm, which was 

selected for its high atmospheric transmission and because the adverse effect of solar 

background at this wavelength is significantly lower compared to operating at 

wavelengths below 1 µm [1.23–1.25].  Moreover, as this wavelength is outside the retinal 

hazard region [1.26] it permits the use of higher average optical powers in comparison to 

wavelengths in the visible region of the spectrum.  

In addition, several reconstruction algorithms, which exploit spatial correlations in 

single-photon data, were used for the reconstruction of single-photon data obtained in 

highly scattering environments [1.27–1.29].  These algorithms were designed to be robust 

when used in the sparse photon regime under high levels of ambient background light. 

1.2 Thesis structure 

Chapter 2 introduces the LiDAR technique and presents several types of LiDAR systems 

designed for imaging targets in challenging environments, such as at long-ranges, in 

clutter, and in highly scattering media.  Although a few examples of LiDAR systems are 

presented, particular attention is given to TCSPC-based systems. The principal 

characteristics of scattering effects from small particles and the benefits of free-space 

imaging using shortwave infrared (SWIR) wavelengths in scattering environments are 

also discussed. 

Chapter 3 provides a brief review of the TCSPC technique, and explains how it can be 

used in applications that require single-photon sensitivity - particularly for applications 

in the sparse photon regime where return optical signals are very low.  Since appropriate 

considerations must be made regarding the choice of single-photon detector in order to 

choose the most suitable detector that meets the requirements of both the optical system 

and the application, this Chapter also gives an overview of several single-photon detector 
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technologies, such as PMTs, SNSPDs, and SPAD detectors.  Specific attention is given 

to InGaAs/InP SPAD detectors, which are the detectors used in the experiments reported 

in this Thesis. 

Chapter 4 presents experimental results of camouflaged targets in challenging outdoor 

environments at a stand-off distance of 230 metres using eye-safe optical power levels 

[1.30].  These results were acquired using a scanning monostatic ToF single-photon 

imaging system, which comprised a pulsed illumination source at an operating 

wavelength of 1550 nm and a single-element InGaAs/InP SPAD detector.  A full system 

description is provided along with a description of an advanced image processing 

algorithm for the reconstruction of multi-surface single-photon data. 

Chapter 5 explores the potential of the scanning monostatic depth imaging system for 

imaging objects in highly scattering environments at a wavelength of 1550 nm using 

eye-safe optical power levels [1.31].  Depth profiles of targets obtained in four different 

types of obscurants in a 26-metre-long indoor obscurant chamber are presented. In 

additional, optical transmission measurements were performed, and compared to visible 

band measurements. The experimental results processed using three image processing 

algorithms of varying sophistication are presented. 

Chapter 6 presents the experimental results of targets in highly scattering media acquired 

with bistatic mode system, using a 32 × 32 InGaAs/InP SPAD detector array.  A full 

system description, along with a characterisation of the detector, is provided, with 

discussion of parameters such as the dark count rate (DCR), the single-photon detection 

efficiency (SPDE), and the timing response of the detector.  An adapted LiDAR model 

for the bistatic active imaging system based on the photon-counting LiDAR equation is 

also provided.  Finally, the performance of the system is evaluated over distances of 50 

and 150 metres in the presence of obscurants, and at a longer range of 1463 metres in 

clear conditions. 

Chapter 7 explores the potential of the InGaAs/InP detector array system for the 

acquisition of full-field, video-rate, three-dimensional data.  Experimental results 

obtained using a state-of-the-art algorithm designed for the ‘real-time’ image 

reconstruction of complex scenes at 320 metres are presented [1.29].  Results obtained 

from a variety of scenes with increasing complexity are investigated and the potential 

limitations of the algorithm are discussed. 
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In Chapter 8, a summary of the conclusions drawn from the work contained within this 

Thesis are presented, as well as a discussion about future work. 
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Chapter 2: Introduction to LiDAR imaging 

2.1 Introduction 

Imaging in highly scattering environments presents several challenges for the photonics 

and image processing communities.  The high levels of particulate scattering when 

imaging through an obscuring media, such as fog or smoke, can greatly diminish image 

contrast, spatial resolution, and optical signal strength [2.1–2.3].  This Chapter aims to 

give an overview of the current state of the field.  A brief introduction to the light detection 

and ranging (LiDAR) technique (otherwise referred to in some literature as the laser 

detection and ranging (LADAR) technique) and a review of several types of LiDAR 

systems is given in Sections 2.2.  The principal characteristics of scattering effects from 

small particles are discussed in Section 2.3.  Finally, the benefits of free-space imaging 

using shortwave infrared (SWIR) wavelengths in scattering environments is given in 

Section 2.4.   

2.2 LiDAR systems for free-space imaging  

Over the years, there has been increasing interest in the development of high-resolution 

remote sensing systems that operate over a wide range of distances.  LiDAR systems 

present a good alternative to conventional detection systems, such as radio detection and 

ranging (RADAR) systems, as they are capable of accurate detection of very small objects 

at long-ranges due to the use of much shorter wavelengths [2.4].  In addition, they can 

attain very high depth resolution that can be at a micrometre level for short-range 

measurements, as reported by Baumann et al. in ref. [2.5] and Massa et al. in ref. [2.6].  

Moreover, many modern LiDAR system designs are relatively modular and compact, 

allowing them to be deployed in a variety of ranging and imaging applications, such as in 

airborne platforms [2.7–2.9], in driverless car navigation systems [2.1,2.9], and for 

underwater depth imaging [2.10,2.11]. 

As the name suggests, the LiDAR technique uses the time-of-flight (ToF) of a reflected 

optical signal to determine the distance to an object relative the system location.  A basic 

active LiDAR system has three main sections: the transmitter, the receiver/detection unit, 

and the system control and data acquisition unit, as shown in Figure 2.1.  
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Figure 2.1: A schematic diagram of a typical LiDAR system. A laser in the 

transmission channel provides the illumination.  The receiver collects the 

backscattered photons and routes them to a detector.  The data is then 

processed, and information relayed to the user. 

The transmitter is comprised of an illumination source and an optical system that directs 

the beam to the target at the appropriate beam size.  The receiver collects backscattered 

light, which is then routed to a detector module.  The detector converts the optical signal 

into an electrical signal, which is then processed by the data acquisition module.  This 

data can then be further analysed to extract the ToF information, and hence, the range 

information.  A variety of illumination sources, such as continuous wave (CW) and 

periodic pulsed laser sources are employed in LIDAR systems, depending on the 

configuration used.  This will be discussed further in the following Sections of this 

Chapter. 

 

Figure 2.2: Schematic of a LiDAR system with (a) a bistatic configuration and 

(b) a monostatic configuration. 

(a) 

(b) 
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In general, there are two main optical configurations for LiDAR systems: the bistatic 

configuration and the monostatic configuration.  These two configurations are shown 

schematically in Figure 2.2.  In a bistatic configuration, the transmitter and the receiver 

are housed in separate locations.  This configuration can be useful in applications, such 

as imaging through high levels of scattering, as the transmitter and receiver can be placed 

such that the beam does not have to travel through the entire length of the scattering 

medium.  Scattering effects (which will be discussed in detail in Section 2.3) comprise 

several contributions, which are shown schematically in Figure 2.3 [2.12]. 

 

Figure 2.3: Schematic representation of light scattering.  From ref. [2.12]. 

By placing the receiver at a different position than the transmitter, the overlap between 

the transmitted light and the field-of-view of the receiver is minimised.  This technique 

can improve the performance of the LiDAR system due to a reduction in light 
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back-scattered through the volume of scattering media.  While this technique has been 

commonly used on small submarines or by underwater robots, as reported in ref. [2.13], 

it is not always practical to separate the transmitter from the receiver as many applications 

require compact system designs with limited space for hardware.  In addition, due to 

optical parallax a bistatic configuration LiDAR system will need to be realigned for 

different target stand-off distances, making it less suitable for applications with multiple 

target ranges. In this case, a parallax-free monostatic configuration (where the 

transmission and receive channel share a coaxial optical path) is advantageous, as the 

optical system does not need to be adjusted for different target stand-off distances.  Use 

of the monostatic configuration can, however, result in back-reflections from optical 

components due to the shared optical path.  This can be a potential issue for single-photon 

based LiDAR systems, as the signal from back-reflections can result in single-photon 

detector saturation and even damage the highly sensitive detectors.  One potential solution 

is to use single-photon detectors with electronic gating - where the detector is inactive for 

a time interval – hence the detector can be de-activated at the return time of the back-

reflection signal. Gated-mode detectors will be discussed in detail in Chapter 3 of this 

Thesis.  A monostatic configuration was used in Chapters 4 and 5 of this Thesis for a 

scanning LiDAR system, and a bistatic configuration was used in Chapters 6 and 7 for an 

arrayed detector LiDAR system. 

Today, LiDAR continues to be the technique of choice in a variety of remote sensing 

applications, including environmental monitoring [2.14–2.16], surveillance and defence 

[2.17], and terrain mapping [2.7,2.8,2.18,2.19]. Many different types of active LiDAR 

systems (i.e., systems which incorporate laser sources as a means of illumination) have 

been developed since the 1960s [2.20]. Some examples of LiDAR systems will be given 

in the following Section. 

2.2.1 ToF LiDAR using amplitude and frequency modulation  

In indirect ToF LIDAR, a continuous wave (CW) laser source is used to measure target 

distance by measuring the phase shift between a modulated outbound signal and the return 

signal from the object of interest.  These systems are generally known as amplitude 

modulation (AM) or frequency modulation (FM) systems. In an AM LiDAR, the 

illumination source intensity is modulated in time and the return signal undergoes a phase 
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shift, ΔΦ, relative to the modulated source, which relates to the round-trip ToF (τToF). If 

the signal is periodic, the phase shift is given by: 

2 ,ToFf                                                      (2.1) 

where f is the frequency of the illumination source. The phase shift can be measured by 

introducing known electronic delays to either the modulation or the detection signal. 

Thus, the distance, d, to the target is given by: 

.
2 2 2

ToFc c
d

 




                                                   (2.2) 

where c is the speed of light in vacuum. If ΔΦ exceeds 2π, the target distance cannot be 

unambiguously identified.  

FM LiDAR ranging systems employ a tunable illumination source that allows for a 

variable frequency, where the frequency of the light beats periodically with a total 

frequency shift of Δf.  This variable frequency signal is then mixed with the transmitted 

optical signal, and the round-trip ToF is determined via observation of the beating signal, 

as shown in Figure 2.4 [2.21].  

 

Figure 2.4: ToF measurement in a FM LiDAR system, which uses a CW 

illumination source. The frequency of the transmitted signal is modulated and 

mixed with the return signal. Beating can be observed that corresponds to the 

phase shift between the transmitted signal and the return signal, and hence, 

relates directly to the round-trip ToF. 
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The first CW FM LiDAR system was first demonstrated by Honeycutt et al. in 1972 

[2.22]. Later that same year, the technique was shown to be capable of operating at target 

distances of up to several kilometres by Hughes et al. [2.23]. 

2.2.2 ToF LiDAR using pulsed illumination sources 

The work presented in this Thesis was performed using direct-detection LiDAR systems, 

which necessarily require pulsed laser sources to provide ToF measurements by 

measuring the time difference, τToF, between an outbound optical pulse and the return 

signal corresponding to that pulse (i.e., the round-trip ToF).  Thus, the photon ToF can be 

calculated simply as: 

2
,ToF

R

c
                                                      (2.3) 

where R is the target range [2.20].  However, this method gives rise to the inherent 

problem of range ambiguity in high-repetition rate ToF systems [2.24].  In a fixed 

repetition rate LiDAR system, range ambiguity occurs when there is more than one 

possible position for a reflecting surface, which occurs when, instantaneously, there is 

more than one optical pulse in transit. This maximum unambiguous distance, drep, is 

dependent on the fixed repetition rate, frep, of the laser as in Equation 2.4: 

.
2

rep

rep

c
d

f
                                                   (2.4) 

For example, for a laser source operated at a repetition rate of 19.5 MHz (as was the case 

in the imaging system described in Chapter 4 of this Thesis), the unambiguous range is 

limited to 7.7 metres.  Range ambiguity can be removed by a reduction in repetition rate 

- which can significantly increase measurement time - or by using techniques such as 

laser pulse trains composed of pseudo-random patterns or by use of multiple sequential 

repetition rates [2.25,2.26].  However, the work performed in this Thesis was 

concentrated on the depth profiling of long-range targets rather than ascertaining their 

absolute range without ambiguity. Consequently, a periodic repetition rate was used for 

all measurements presented in this Thesis.  Some examples of LiDAR designs that 

employ pulsed illumination sources are presented in the following Section. 
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2.2.2.1 Full-waveform LiDAR 

 

Figure 2.5: Full-waveform LiDAR return in an airborne measurement of a 

forest for a system with (a) a small footprint and (b) a large footprint.  From 

ref. [2.27]. 

The first full-waveform LiDAR systems were designed in the 1980s for bathymetry (i.e., 

the study of the underwater depth of lake or ocean floors [2.28]).  More recently, 

commercially available topographic full-waveform LiDAR systems have become 

available, such as the Mapper II from YellowScan [2.29].  Full-waveform LiDAR 

systems record the full temporal shape of a target response to pulsed illumination, and the 

amount of information received is dependent on both the footprint and the pulse energy 

of the system. The return waveform of topographic systems provide a measurement of 

the vertical distribution of the scene.  Most commercial systems have a small footprint 

(e.g., 0.2 – 3 m diameter, depending on flying height and beam divergence), providing an 

accurate altimetric description, as shown in Figure 2.5 [2.27].  However, these systems 

often miss treetops, and are unable to determine whether the ground has been reached 

under dense vegetation, making it is difficult to estimate ground and tree heights.   Large 

footprint systems (e.g., 10 – 70 m diameter) increase the probability of reaching both the 

ground and the canopy top. Over the years, these systems have been widely employed in 

a range of remote sensing applications, such as recording the full-waveform return from 

tree canopies to analyse the structure of forests [2.30,2.31].  

(a) (b) 
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2.2.2.2 Lunar and satellite laser range-finding 

One of the early motivations for increasing the precision of LiDAR ranging systems was 

the study of extra-terrestrial objects, such as the Moon.  For example, in 1973, Bender et 

al. listed a number of incentives to increase laser-ranging distance measurements to the 

Moon, such as the study of lunar orbit and determination of range finder locations by 

means of triangulation [2.32].   

In 1962, Smullin et al. used a high power laser source and a nitrogen-cooled 

photomultiplier tube (PMT) detector to receive optical echoes from the moon [2.33].  

However, these systems used illuminations sources with a pulse energies of 50 J, which 

is well above eye-safety thresholds.  A few years later in 1965, Alley et al. proposed that 

the expected optical return signal could be increased by two orders of magnitude if 

corner-cube retro-reflectors were deployed on the lunar surface [2.34]. Therefore, in 

1969, a fused silica corner-reflector array was deployed by the American endeavour 

Apollo 11 [2.35].  In 1971, Apollo 14 and Apollo 15 installed a second array of the same 

type and an improved array on the lunar surface.  A fourth retro-reflector cube was also 

installed by the Soviet moon lander in 1970 [2.36], and subsequently updated in 1973.  

With current improvements in range-accuracy and resolution of state-of-the-art LiDAR 

systems, these four reference points are still used today for the study of the effects of 

gravitation [2.37,2.38].  

LiDAR systems can also be used in satellite laser ranging (SLR), for low Earth orbit 

satellites. This was first successfully demonstrated by NASA Goddard Space Flight 

Center in 1964, when the round-trip time of an optical pulse transmitted from Earth to a 

passive retro-reflector mounted on an orbiting satellite was measured [2.39].  This system 

used a pulsed illumination source at an operating wavelength of 1064 nm.  The repetition 

rate of the laser source was 20 Hz with picosecond duration pulses with a pulse energy of 

100 mJ.  The optical signal reflected from the retro-reflector was collected by a ground-

based telescope and then detected by a single-photon counting PMT.  The ToF of the 

optical signal was measured using a time interval analyser with 70 ps resolution [2.40].  

It was reported that 2 – 3 m resolution could be achieved using SLR compared to the 50 m 

or more provided by radar systems at that time [2.39]. 

The most precise SLR systems achieve sub-cm accuracy [2.38,2.39], with exact figures 

depending on numerous factors such as target reflectivity and weather conditions during 
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the time of measurement.  There are currently approximately 23 available SLR systems 

with satellite-mounted retro-reflectors orbiting the Earth at ranges between 

960 – 20,000 km. They are mainly used for facilitating orbit calibration and for 

measurements of the Earth’s gravity and rotation characteristics [2.40].  

2.2.2.3 Range-gated LiDAR systems 

Ranged-gated LiDAR systems, also known as Burst illumination (BIL) LiDAR systems, 

acquire ToF measurements based on the incidence time of photon events.  A pulsed laser 

source provides a dispersed burst of light to flood-illuminate the scene, and a camera 

detects the reflected light. Instead of measuring the arrival time of back-scattered photons, 

the detector takes a two-dimensional image with an extremely short exposure time after 

a pre-defined time interval following the illumination pulse.  In this image, only back-

scattered photons at a particular range (or ‘time-slice’) within this exposure time are 

collected, as shown in Figure 2.6 [2.41].  Thus, the image contains only reflections of 

objects within that range.  A three-dimensional intensity image of the scene can be 

constructed by repeating this process for different the delay times. 

 

Figure 2.6: Schematic of range-gated LiDAR depth imaging.  (a) A laser 

illuminates the target scene with a dispersed burst of light.  (b) A highly 

sensitive detector with a short exposure time collects light after a controlled 

time delay relative to the illumination pulse. Only target returns 

corresponding to this ‘time slice’ are collected, and a range can be assigned 

to the returns. From ref. [2.41]. 

The principle of range-gated LiDAR was first described and demonstrated by Busck et 

al. in 2004 [2.41].  The authors used a CCD camera alongside a microchannel plate, which 

was used to amplify the return signal.  Gate times as low as 200 ps with controlled time 

delay steps down to 100 ps were used at frame-rates of 32 kHz.  This system was used to 

(a) (b) 
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obtain 582 × 752 pixel images at stand-off distances of 14 m for acquisition times of less 

than 1 second.  For these measurements, the authors reported a range accuracy of 1 mm.  

However, due to the short exposure times, a non-eye safe average optical power of 

140 mW at the operating wavelength of 532 nm was required to obtain satisfactory 

images. 

In 2006, a range-gated LiDAR system design to work outdoors at long-ranges was 

described and demonstrated by Andersson in ref. [2.42].  Depth images of a T72 battle 

tank were obtained at stand-off distances between 0.8 – 2.7 km using the more eye-safe 

illumination wavelength of 1550 nm, as shown in Figure 2.7.  The authors did not report 

the typical illumination powers used in these measurements; however, they were 

described as extremely high compared to those used in other depth profiling methods. 

 

Figure 2.7: Range-gated LiDAR depth profile of a T72 battle tank at a 

stand-off distance of 830 m.  (a) shows a point cloud representation of the 

target.  The enlarged area shows a contrast-optimised section of the scene.  

(b) Two-dimensional intensity images of the scene taken at four different time 

delays of width 40 ns (i.e., a ~ 6 m range-slice).  From ref. [2.42]. 

(a) 

(b) 
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More recently, in 2018,  Ren et al. demonstrated a ranged-gated depth imaging system 

that employed a CMOS SPAD detector with a single-photon detection efficiency (SPDE) 

of 18% [2.43].  The system used an illumination wavelength of 685 nm with an average 

optical power of 420 µW to obtain 256 × 256 pixel depth images of a mannequin head at 

a stand-off distance of 2 m.  The gate duration was set to 10 ns and the delay applied to 

the sensor gate was iteratively increased in 10 ps increments for frame-rates of 100 kHz.  

The authors reported depth images with millimetre scale depth uncertainty for sparse 

photon data with total exposure times of 75 ms or less. 

2.2.3 TCSPC-based LiDAR systems for depth profiling in challenging environments  

In recent years, the TCSPC technique has emerged as a candidate technology for LiDAR, 

due to its high sensitivity and excellent surface-to-surface resolution [2.44].  The TCSPC 

approach has been successfully demonstrated in a number of LiDAR applications such as 

long-range depth imaging [2.45–2.48], underwater depth imaging [2.10,2.49] and multi-

spectral depth imaging [2.50–2.53].  The use of high-sensitivity single-photon detectors, 

such as InGaAs/InP and Si single-photon avalanche diode (SPAD) detectors 

[2.48,2.54,2.55] and superconducting nanowire single-photon detectors (SNSPDs) 

[2.56,2.57], means that low average optical power levels can be used even at long 

distances, resulting in the potential for low-power eye-safe imaging.  The operating 

principles of these detectors will be discussed in detail later in Chapter 3. 

2.2.3.1 TCSPC-based LiDAR systems for long-range depth profiling 

In 1997, a TCSPC-based imaging LiDAR system was demonstrated by Massa et al. from 

the Single-Photon Group at Heriot-Watt University [2.58].  This system used a 

short-pulse laser diode and a Si-based single-photon detector to obtain distance 

measurements up to a range of 1.5 metres in laboratory conditions.  The authors reported 

a timing accuracy in the range of 0.2 – 10 ps for up to 106 photon counts, with a 

measurement precision down to approximately 30 µm.  Later in 2009, the same group 

demonstrated a single-pixel scanning system based on the TCSPC approach for the depth 

profiling of long-range targets in outdoor environments [2.46].  This system used a 90 ps 

full-width at half-maximum (FWHM) pulse-width laser diode with an illumination 

wavelength of 842 nm and a thick-junction Si-SPAD detector to obtain depth profiles of 

targets at stand-off distances up to 330 metres, as shown in Figure 2.8.  The authors 

reported a 20 mm depth uncertainty for these measurements.  
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Figure 2.8: (a) Close-up photograph of the target (in this case a car).  (b) The 

reconstructed 200 × 60 pixel depth profile of the car at 330 m obtained using 

the TCSPC-based scanning system from ref. [2.46]. 

In 2007, Warburton et al. reported depth-ranging studies carried out using a 100 nm wide 

niobium nitride (NbN) SNSPD at an operating wavelength of 1550 nm [2.59].  The 

SNSPD detector had a low SPDE of 1% and a timing jitter of approximately 70 ps, at an 

operating temperature of 3 K.  This system was used to obtain depth profiles with a depth 

resolution of 1 cm at stand-off distances of 330 m in outdoor conditions.  Moreover, the 

SPDE of the detector was relatively low compared that of many commercially available 

SPAD detectors.  In 2013, McCarthy et al. reported a ToF scanning depth imager that 

incorporated a niobium titanium nitride (NbTiN) SNSPD with an improved SPDE of 18% 

and a dark count rate of 1 kHz at the operating temperature of 3 K and an illumination 

wavelength of 1560 nm [2.60].  Using a pulsed illumination source with an average 

optical power level of 250 µW, the authors reported millimetre-scale depth resolution of 

targets at ranges up to 910 m – far beyond the capabilities of other single-photon 

approaches at such ranges.  Despite the high temporal resolution provided by SNSPDs, 

the cryogenic systems required for cooling can be bulky and expensive, limiting the 

practicality of this system for some applications that require compact, portable solutions.  

However, miniaturised closed cycle cryogenic systems have been recently demonstrated 

by Gemmell et al.[2.61].  

(a) 

(b) 
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In 2013, McCarthy et al. demonstrated an updated ToF scanning depth imager capable of 

measuring depth profiles at long distances at SWIR wavelengths that using a gated-mode 

InGaAs/InP SPAD detector [2.55].  This detector had a timing jitter of 140 ps FWHM, a 

SPDE of approximately 26% at an operating temperature of 230 K.  A 50 ps pulse-width 

laser source was used to provide a pulsed illumination at a wavelength of 1550 nm.  The 

average optical power was reported to be 600 µW.  This system was used to obtain depth 

profiles of targets with sub-centimetre resolution at ranges of up to 4.5 km. More recently, 

the distance range of ToF single-photon depth imagers using single-pixel InGaAs/InP 

SPAD detectors has been extended up to 10s of kilometres.  Depth profiles at ranges up 

to 10 km obtained by a ToF imaging system using a InGaAs/InP SPAD detector with a 

210 mm aperture telescope receiver were reported in 2017 by Pawlikowska et al. [2.47].  

This study used a fibre laser with an operating wavelength of 1550 nm with an average 

optical power level of 10 mW to obtain 32 × 32 pixel scans of a hillside terrain (shown 

in Figure 2.9) with a per pixel acquisition time of 0.3 s (i.e., a total measurement time of 

approximately 5 minutes).  

 

Figure 2.9: (a) Reference images of the scene acquired with a visible band 

camera.  The stand-off distance was 10.5 km and the depth and intensity 

profiles were recorded with 32 × 32 scan points with an acquisition time of 

0.3 ms per scan point. (b) presents a front-side view of the reconstructed depth 

and intensity point cloud and (c) shows a side view. From ref. [2.47]. 

(a) 

(b) 
(c) 
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In 2019, Li et al. reported a depth imager based on the TCSPC approach capable of 

acquiring depth profiles of objects at stand-off distances up to 21.6 km [2.62].  The group 

presented 256 × 256 pixel scans of a building using a per-pixel acquisition time of 22 ms 

and with a laser power of 100 mW.   

More recently, ToF single-photon depth imagers using InGaAs/InP SPAD detector arrays 

have been developed, which allow for much shorter acquisition times.  In 2017, Hiskett 

et al. reported a ToF depth imaging system that employed a Princeton Lightwave 

InGaAs/InP arrayed detector with a pixel format of 32 × 32 [2.63] for distributed targets 

at stand-off distances up to 9 km [2.64].  The system used a fibre laser source operating 

at an average pulse repetition rate of 125 kHz with a pulse energy of 2.4 μJ.  A point cloud 

reconstruction for a representative result is shown in Figure 2.10.  The authors reported a 

depth resolution of below 4 cm. 

 

Figure 2.10: Depth profiling of a distributed target (in this case a tree) at a 

stand-off distance of 9 km obtained using a 32 × 32 InGaAs/InP SPAD array.  

(a) An RGB photograph of the target at 9 km.  (b) The reconstructed depth 

profile of the target.  From ref. [2.64]. 

2.2.3.2 Multi-spectral imaging using TCSPC-based LiDAR systems  

Most LiDAR system use a single illumination wavelength, which is typically chosen 

based on the application of the system. This choice is generally a trade-off between factors 

such as eye-safety, detector responsivity, and atmospheric attenuation.  Multi-spectral 

LiDAR systems use multiple illumination wavelengths to ensure satisfactory 

performance for a wider range of applications or to obtain the spectral response 

information of a target object. An example of several photon-counting histograms for 

different illumination wavelengths acquired by a multi-spectral LiDAR system is shown 

(a) (b) 
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in Figure 2.11 [2.65].   The spectral response, also known as a spectral ‘fingerprint’, of 

an object is dependent mainly on the relative scatter and specular reflection of the target 

object.  

 

Figure 2.11: Example of a sensor response for a multi-spectral LiDAR system 

with six discrete wavelength channels.  From ref. [2.65]. 

In 2005, Buller et al. presented a multi-spectral ToF LiDAR system based on the TCSPC 

approach with six wavelength channels ranging from 630 – 975 nm [2.65]. This system 

simultaneously used six pulsed laser diodes to provide an average optical power level of 

100 µW to ensure eye-safety. A commercially available 200 mm diameter aperture 
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telescope was used to collect photon returns from the six wavelengths. An optical grating 

was used to spectrally de-multiplex the return signal and relay each corresponding 

wavelength to its own SPAD detector.  In ref. [2.65], these different spectral signatures 

were used to identify a variety of different targets. 

Multi-spectral LiDAR systems can be used for several applications, such as the recovery 

of arboreal parameters [2.51,2.66]. There are two typical vegetation indices: (i) the 

normalised differential vegetation index (NDVI) which is related to canopy biomass and 

light absorption [2.67]; and (ii) the photochemical reflectance index (PRI), which is 

indicative of photosynthetic light use efficiency [2.68].  The chlorophyll reflectance in 

plants changes sharply on the spectral edge from red wavelengths (e.g., 670 nm) to NIR 

wavelengths (e.g., 780 nm) and also have a strong peak in the reflectance at green 

wavelengths [2.66]. Thus, the physiological state of a plant can be determined via the 

NDVI, which is given as: 
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
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where RNIR is the reflectance in the near-infrared (NIR) wavelength band and RVIS is the 

reflectance within the visible wavelength band [2.67].  Since healthy vegetation reflects 

more in the NIR, a high NDVI indicates a healthy plant.  The PRI can be obtained by 

examining the reflectance peak at a wavelength of 531 nm at green wavebands, and 

comparing that with a nearby reference wavelength (e.g., λ = 570 nm), and is given as: 
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where Rλ=570nm and Rλ=531nm are the reflectance at λ=531 nm and 570 nm, respectively. 

Multispectral LiDAR systems can exploit this to perform analysis of vegetation and 

foliage.  For example, in 2014 Wallace et al. reported the design and evaluation of a 

multi-spectral TCSPC LiDAR system that was used to recover structure and 

physiological parameters of arboreal samples (i.e., plants) [2.51].   Four pulsed 

illumination wavelengths of 531, 570, 670, and 780 nm with < 200 µW average optical 

power were used alongside four appropriate Si-SPAD detectors to scan a small Nordmann 

fir sample.  From this data, the NDVI and PRI were examined, and the health of the 

vegetation determined.  A full-waveform multi-spectral LiDAR measurement for a single 
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pixel from this system, which shows the responses through the canopy and differences in 

spectral ratios, is shown in Figure 2.12. 

 

Figure 2.12: The full-waveform LiDAR data for a single pixel using a 

multi-spectral TCSPC LiDAR system, which shows the responses through the 

canopy and differences in spectral ratios.  From ref. [2.51]. 

2.2.3.3 TCSPC-based LiDAR systems for imaging complex scenes 

The identification of targets that have been obscured by clutter is a subject of significant 

relevance for long-range field applications.  Several experiments involving ‘seeing’ 

behind or through various obscuring media have been performed previously using LiDAR 

systems [2.69–2.73]. 

For example, in 2010, Wallace et al. reported depth profiling of distributed targets at 

stand-off distances up to 325 m using a ToF LiDAR system based on the TCSPC 

technique [2.74].  The system comprised a single pixel Si-SPAD detector and a pulsed 

illumination source, which was operated at an illumination wavelength of 842 nm and a 

pulse energy of < 30 pJ.  An example of a timing histogram representing a scene with 

distributed targets in the field-of-view of a single pixel acquired using this system is 

shown in Figure 2.13 [2.74], where each peak corresponds to a specific target depth. 
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Figure 2.13: An example of a timing histogram of distributed targets in the 

field of view of a single pixel. The horizontal axis is equivalent to the 

round-trip distance. From ref. [2.74]. 

In 2016, Henriksson et al. presented a scanning TCSPC system that was successful in 

imaging targets through foliage at a distance of approximately 300 metres using an 

illumination wavelength of 1550 nm with average optical power levels of 19 mW [2.71]. 

This system incorporated a single pixel InGaAs/InP SPAD detector with a 25 µm 

diameter active area.  An example result taken from ref. [2.71] is shown in Figure 2.14.  

However, the slow scan speed of the system meant that the acquisition time was 30 

minutes for a 5 × 1 degree scene with many of the pixels providing no depth information 

due to a lack of returned photons. 

 

Figure 2.14: The reconstructed 3D point cloud representation of a human 

standing behind foliage.  The dashed lines show the outline of the person and 

the solid line shows the outline of the foliage.  From ref. [2.71]. 
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Later, Henriksson et al. reported similar measurements of cluttered scenes that cut down 

data acquisition time to approximately 4 seconds.  This was achieved by using a ToF 

depth imager that employed a Princeton Lightwave 32 ×128 pixel format InGaAs/InP 

SPAD array [2.75] and an illumination wavelength of 1550 nm.  This system was able to 

obtain panoramic 3D depth profiles of scenes at stand-off distances of up to 340 metres 

[2.76].  A  representative result from ref. [2.76] is shown in Figure 2.15. 

 

Figure 2.15: A point cloud representation of a cluttered scene with dense 

foliage at 340 m obtained using a 128 × 32 pixel format InGaAs/InP SPAD 

array.  From ref. [2.76]. 

High-resolution measurements of targets obscured by camouflage obtained using a 

scanning TCSPC based LiDAR system at an operating wavelength of 1550 nm are 

presented in Chapter 4 of this Thesis [2.48].  Real-time measurements of dynamic targets 

obscured by camouflage obtained using a 32 × 32 pixel format InGaAs/InP SPAD array 

are presented in Chapter 7 [2.77]. 

2.2.3.4 TCSPC-based LiDAR systems for imaging in highly scattering environments 

Another challenge for free-space LiDAR imaging is the depth profiling of targets in 

highly scattering environments.  The presence of a scattering media between a LiDAR 

system and a target of interest reduces the number of return photons received by the 

system, limiting the system performance.  The optical signal is attenuated over the full 
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round-trip distance of propagation through the scattering medium, resulting in a low 

target return signal and an increased background level, and hence, a poor image 

reconstruction. 

The use of the TCSPC approach in LiDAR systems for free-space imaging through 

obscuring media is a relatively new field.  In 2018, Satat et al. reported an investigation 

of the effects of water-based fog on the reconstructed depth profile of a target placed 

inside a 0.5 × 0.5 × 1 m3 indoor enclosure using an illumination wavelength of 850 nm 

[2.3].  The detector used was a PhotonForce PF32 SPAD camera with a pixel format of 

32 × 32 pixels with a timing bin size of 56 ps and an exposure time of 100 µs.  The laser 

source had a pulse width of 5 ps and an average power level of 0.15 W at a repetition rate 

of 80 MHz, which is well under the eye-safety threshold for 850 nm light.  The 

reconstructed depth profiles for the ground truth and for increasing fog densities are 

shown in Figure 2.16 [2.3].  The authors report the fog density in terms of optical 

thickness (OT), which is defined as the natural logarithm of the ratio of incident to 

transmitted spectral radiant power through a material. Here, a high OT (i.e., 𝑂𝑇 > 2.0 or 

an optical transmission of approximately 14%) corresponds to very dense fog.  For low 

densities of fog, the depth profile was successfully reconstructed, while in high densities 

of fog, reconstruction falls apart.  

 

Figure 2.16: Results for imaging through fog with a TCSPC SPAD array as 

reported in ref. [2.3].  As the OT increases (i.e., for higher densities of fog), 

the quality of the reconstructed depth profiles decreases. 

These results were obtained using a silicon-based SPAD detector, which is sensitive in 

the wavelength range of 400 – 1100 nm.  Several studies have suggested that scattering 

effects from small particles have a wavelength dependence, with SWIR wavelengths 
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suffering less attenuation than visible wavelengths [2.78–2.82].  Thus, extending the 

operating wavelength of TCSPC based LiDAR systems into the SWIR spectral band 

through use of InGaAs/InP SPAD detectors, may be advantageous for imaging through 

large volumes of scattering media.  Scattering effects will be discussed in detail in the 

following Section of this Chapter.  The depth profiling of long-range targets through high 

levels of scattering media using InGaAs/InP SPAD detectors is presented in Chapter 5 

and Chapter 6 of this Thesis.  

2.3 Principal characteristics of scattering effects from small particles 

Light scattering is the process by which small particles deviate the path of propagating 

light, due to a difference in the refractive index of the particles from that of the 

surrounding medium.  The level of scattering is dependent on both the particle size and 

the concentration of particles, where a larger particle size and a higher concentration 

correspond to an increase in scattering.  In the atmosphere, the size distribution of 

particles responsible for scattering ranges from small air molecules with particle radii of 

10-4 µm to raindrops with particle radii of up to 104 µm.  The typical concentrations of 

these particles can be as high as 1019 cm-3 for small air molecules and as low as 

10-5 – 10-2 cm-3 for raindrops [2.83].  Table 2.1 shows typical radii and concentrations for 

several types of particles found in the atmosphere that contribute to light scattering. 

Table 2.1: Several types of particles responsible for atmospheric scattering.  

From ref. [2.83]. 

Type Radius (µm) Concentration (cm-3) 

Air molecules 10-4 1019 

Haze particle 10-2 – 1 103 – 10 

Fog droplet 1-10 10 – 100 

Cloud droplet 1-10 10 – 300 

Raindrop 102 - 104 10-5 – 10-2 

 

Upon interaction with a particle, a characteristic three-dimensional (3D) pattern in the 

scattered light is formed in space.  If the particle is isotropic, this pattern is typically 

symmetric about the direction of the incident light.  The shape of this pattern is strongly 

dependent on the ratio of the particle radii to the wavelength of the incident light, as 

illustrated in Figure 2.17 [2.84].  The relative size of a scattering particle with respect to 

the incident light is defined using the size parameter, χ, and is given as: 
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where rparticle is the radius of the scattering particle and λ is the wavelength of the incident 

light [2.85].  

 

Figure 2.17: Angular patterns of scattered intensity from (a) particles with a 

size of less than one-tenth of the wavelength of incident light, (b) particles with 

a size comparable to that of wavelength of the incident light, and (c) particles 

with a size larger than the wavelength of the incident light.  Adapted from ref. 

[2.84]. 

2.3.1 Rayleigh and Mie scattering 

Measurements by optical imaging systems in adverse weather conditions, such as those 

presented in this Thesis, are affected by two main scattering processes: Rayleigh and Mie 

scattering [2.86].  J. W. S. Rayleigh first proposed Rayleigh scattering in 1871 as an 

explanation for sky phenomena, such as rainbows and sky colours [2.87].  Rayleigh 

scattering occurs when the scattering particle size is smaller than one-tenth of the 

wavelength of the incident light, as shown in Figure 2.17 (a) [2.87].  When light interacts 

with a dielectric scattering particle, it creates an oscillating electric dipole moment, which 

results in the reemission of the light with the same wavelength and frequency, but with a 

scattering angle, Ɵ, as shown in Figure 2.18. 

(a) (b) 

(c) 
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Figure 2.18: Incident light interacts with the dielectric particle causing the 

light to scatter with the same wavelength and frequency, but at a different 

scattering angle, Ɵ.  

For this type of scattering, the pattern of the scattered light is typically symmetric, as the 

particle tends to scatter the light equally in both the forward and backwards direction (as 

shown in Figure 2.19 [2.84].  

 

Figure 2.19: Schematic of symmetric Rayleigh scattering, which is strongly 

wavelength dependent. 

For Rayleigh scattering, the intensity, I, of light scattered by a particle of diameter, d, and 

refractive index, n, is given by: 
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where R is the distance to the particle, λ is the wavelength of the incident light, I0 is the 

initial intensity of the light, and Ɵ is the angle of scattering [2.88].  The term 1 + 𝑐𝑜𝑠2𝜃 

in Equation 2.8 contains the angular dependence of scattering and suggests that Rayleigh 

scattering is one-half in the forward and backwards direction at 𝜃 = 90°, which explains 

the symmetrical scatter pattern.  The most important point to note here is that the scattered 

intensity, I, is inversely proportional to the fourth power of wavelength of the incident 

light, λ, as given in Equation 2.9: 
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This indicates that Rayleigh scattering has a strong dependence on the wavelength of the 

incident light, where scattering at shorter wavelengths is greater than at longer 

wavelengths.  For example, using Equation 2.9, the scattering at 700 nm is approximately 

24 times greater than at 1550 nm for an equal incident intensity.  This wavelength 

dependence is the explanation as to why the sky appears to be blue in colour, as the blue 

wavelengths of broadband solar radiation experience greater scattering by atmospheric 

molecules than the longer wavelengths [2.87].  However, as previously stated, this type 

of scattering only applies when the particle size is much smaller than the wavelength of 

the incident light, and so typically applies only to air molecules and very light haze with 

small water particles. 

For particles that are comparable to the wavelength of the incident light, scattering 

increases and tends to be concentrated in a forward direction, as shown in Figure 2.20.  

This type of scattering, first proposed by G. Mie in 1908, is now known as Mie scattering 

[2.89]. 

 

Figure 2.20: Schematic of Mie scattering.  A forward lobe forms due to the 

increased particle size. 

When the particle size is larger than the wavelength of the incident light, the overall 

scattering is increased and is mostly concentrated in the forward direction, with secondary 

minima and maxima emerging at various angles.  This pattern will further increase in 

complexity for increasing particle sizes [2.84].  The complexity of this scattering pattern 

is dependent on the relative refractive index of the particle to that of the surrounding 

media due to contributions from both surface and diffuse scattering.  Surface scattering 

takes place at the interface between the medium and the particle surface, and is 

responsible for creating the directional forward lobe.  Diffuse scattering occurs when light 
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penetrates the surface-medium interface, undergoes subsurface scattering inside the 

particle, and subsequently re-emerges into the medium in a specific scatter pattern, 

creating the secondary maxima and minima [2.90].  

Most imaging applications are concerned with large volumes of scattering media with 

large concentrations of particles, such as in fog or smoke [2.3,2.91–2.93].  When particles 

in a given volume of space are separated by a distance that is several times the particle 

radius, each particle is considered to scatter light independently.  This means that each 

scatter pattern is unaffected by scattering from neighbouring particles.  This is known as 

independent scattering.  Independent scattering is the primary source of scattering in the 

atmosphere, as this separation criterion is met by most meteorological conditions arising 

from the presence of the particles listed in Table 2.1.  If this separation criterion is not 

met, multiple scattering may occur.   For example, in a closely packed atomic structure, 

such as a crystal lattice, the scattered light may interact with multiple particles.  This can 

result in the production of maxima and minima in the scatter pattern, as was shown in 

Figure 2.17 (c) [2.83,2.94].  

2.3.2 Attenuation of light in scattering media 

The total attenuation of light in a scattering media, αtot, is dependent on both the 

attenuation due to scattering and the attenuation due to absorption [2.83].  As mentioned 

in the previous Section, the level of scattering is dependent on both the wavelength of the 

incident light and the size of the scattering particles. Absorption includes all 

thermodynamically irreversible processes within the material that result in the 

transformation of photon energy into thermal kinetic energy or chemical energy [2.95].  

The level of absorption is strongly dependent on both the wavelength of the incident light 

and particle properties such as material and size [2.96].  In free-space imaging, scattering 

tends to dominate, and absorption effects are typically very low [2.97].  However, 

contributions from absorption cannot be entirely ignored.  In order to attain the total 

attenuation coefficient in a scattering media, both the absorption coefficient, αab, and 

scattering coefficient, αsc, must both be considered.  The total attenuation coefficient is 

given as: 

.tot sc ab                                                       (2.10) 
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Although the attenuation is a combination of both scattering and absorption effects, for 

simplicity, this will simply be referred to as ‘scattering’ or ‘particulate scattering’ in this 

Thesis as the operational wavelengths used in these studies is at a wavelength of 1550 nm, 

which is a low-loss atmospheric window.  The relationship between total scattering and 

the attenuation of the spectral irradiance of a propagating beam is relatively 

straightforward.  The amount of flux removed from a propagating beam in a scattering 

media over a differential distance, dx, is given as: 

,tot

dE
dx

E





                                                    (2.11) 

where Eλ is the spectral irradiance of the beam at dx and αtot is the attenuation coefficient 

per unit length that includes both scattering and absorption effects.  The attenuation 

coefficient is assumed to be negative to represent the loss of optical signal.  A unit cross-

section of an incident beam travelling over a distance of x through a scattering medium is 

shown schematically in Figure 2.21. 

 

Figure 2.21: Schematic of the attenuation of light due to a scattering medium.  

The particles scatter a fraction of the light in all directions, resulting in a loss 

in optical signal.  Adapted from ref. [2.83]. 
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The spectral irradiance of the propagating light at a distance of x into the scattering media 

can be found by integrating Equation 2.11 between the limits of zero and x and is given 

as [2.98]:  

( )

0 e ,tot x

xE E


                                                 (2.12) 

where E0 is the beam irradiance at 𝑥 = 0.  It can be useful to apply a quantitative metric 

to the level of scattering in an environment to allow for comparisons of measurements 

taken in different obscurants.  When the distance 𝑥 = 1 𝛼𝑡𝑜𝑡⁄ , Equation 2.12 becomes: 

1

0 e ,xE E                                                    (2.13) 

and the beam irradiance is reduced to 36.8% (i.e., 1 𝑒⁄ ) of its original value.  The value 

of x that causes this is known as the ‘mean free path’ of the light.  For distances under 

this value, the beam will travel without being scattered.  From this principle, a 

dimensionless value corresponding to the number of attenuation lengths, NAL, between 

the target and the imaging system can be obtained, where x is the stand-off distance to the 

target.  This value is given by: 

 .AL totN x                                                     (2.14) 

This metric will be used in Chapters 5 and 6 of this Thesis to evaluate the level of 

attenuation in measurements performed in a variety of scattering media. In some cases it 

can be useful to express the optical attenuation in terms of decibels per kilometre, where 

a decibel is defined as: 

10

0

10log ,
E

dB
E

                                               (2.15) 

where E is the attenuated power of the optical signal and E0 is the original power. From 

Equation 2.12, the ratio of emergent to incident optical signal for a 1 km path is simply: 

( )

0 e .tot

xE E


                                                 (2.16) 

Combining these two expressions gives: 

1 14.343 .dBkm km                                         (2.17) 

Atmospheric scattering can often be characterised in terms of visibility, V, and is given 

by: 
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C
V

C

 
  

 
                                                  (2.18) 

where C0 is the contrast of the target against the background and Cth is the minimum 

threshold contrast of the observer [2.99,2.100].  The minimal threshold contrast for the 

human eye is typically given as 0.05, as defined by the CIE (International Commission 

on Illumination) [2.101].  Example visibility ranges for a variety of weather conditions, 

as defined by Hulbert et. al, are listed in Table 2.2. 

Table 2.2: Examples of visible ranges for a variety of weather conditions.  

From ref. [2.102] 

Weather condition Visible range  

Dense fog < 50 m 

Thick fog 50 – 200 m 

Moderate fog 200 – 500 m 

Light fog 500 – 1000 m 

Thin fog 1 – 2 km 

Haze 2 – 4 km 

Light haze 4 – 10 km 

Clear 10 – 20 km 

Very clear 20 – 50 km 

Exceptionally clear > 50 km 

Pure air 277 km 

 

2.4 The advantages of shortwave infrared wavelengths for imaging in highly 

scattering environments   

This Section presents an overview of the main advantages of using SWIR wavelengths in 

free-space imaging in highly scattering environments when compared to the visible band.  

The SWIR band is immediately adjacent to the near infrared (NIR) band in the 

electromagnetic spectrum and refers to non-visible light in the wavelength range of 

1400 – 3000 nm.  The measurements reported in this Thesis were all performed using an 

illumination wavelength of 1550 nm.  These advantages of this wavelength band include: 

high atmospheric transmission [2.103,2.104], low solar background [2.105], increased 

eye-safety [2.106], and compatibility with the optical fibre low-loss telecommunications 

window [2.107]. 

Section 2.3 introduced the two main types of scattering for small particles, and presented 

the idea that, depending on the size of the particle, scattering may have a strong 

dependence on the wavelength of the propagating light.  



Chapter 2: Introduction to LiDAR imaging 

35 

 

 

Several studies have investigated the propagation of light through the atmosphere and 

various types of atmospheric obscurants [2.78–2.81,2.93,2.99,2.108].  These studies, 

which included both theoretical modelling and experimental measurements, clearly 

illustrate the detrimental effects of obscurants on laser beam propagation and image 

quality.  Most studies suggest that SWIR wavelengths have lower levels of attenuation 

through fog than shorter wavelengths, such as those in the visible region of the spectrum 

[2.78–2.82].   However, there is ongoing debate regarding the wavelength dependence of 

optical propagation through high densities of water-based fog.  Some studies suggest that, 

at very high densities of fog, there are no clear benefits to using longer wavelengths 

[2.109,2.110]. 

For example, in 2010, Nadeem et al. conducted an investigation of the influences of 

continental fog on free-space optical systems [2.79].  In this work, the authors proposed 

a new model to predict optical attenuation for different measurement ranges, and 

compared it to three well-established models, which predict fog specific attenuation using 

target visibility [2.81,2.109,2.111].  In order to validate this model, the authors used 

measurements in fog performed at wavelengths of 830 nm and 1550 nm.  These 

measurements were obtained concurrently for a parallel path over a range of 100 m.  The 

authors reported that the attenuation of the 1550 nm wavelength light was relatively low 

in comparison with that of the 830 nm light [2.79].  For example, for fog with visibilities 

of between 200 – 400 m, the 1550 nm wavelength experienced an attenuation of up to 

approximately 110 dB/km while the 830 nm wavelength experienced increased 

attenuations of up to approximately 150 dB/km.  These results were supported by 

investigations performed by Ijaz et al. in 2012 [2.80].  In these measurements, an enclosed 

5.5 m long chamber was filled with a controlled volume of fog, which was allowed to 

disperse from the chamber over a period of approximately 12 minutes.  Two laser diodes 

were used to provide illumination wavelengths of 830 nm and 1550 nm. Two appropriate 

power meters were placed at the far end of the chamber to measure the transmission of 

the beams, as shown in Figure 2.22 (a). These measurements were performed 

concurrently so that a valid comparison between both wavelengths could be made.  A plot 

of the optical attenuation in dB as a function of measurement time for an unspecified 

density of fog is shown in Figure 2.22 (b) for both illumination wavelengths. 
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Figure 2.22: (a) A schematic of the experimental set-up to measure optical 

attenuation due to the fog.  (b) A comparison of the measured signal loss in 

dB at wavelengths of 830 nm and 1550 nm.   From ref. [2.80].  

The authors reported that, at the start of the measurements when the fog was most dense, 

the light was attenuated by approximately 27 dB and 7 dB for wavelengths of 830 nm and 

1550 nm, respectively.  As the fog dispersed, the loss was reduced for both wavelengths. 

It is important to note that the authors did not state the type of fog used in the 

measurements, only that they used a ‘fog machine’ to generate the obscurant.  Thus, the 

assumption must be made that the obscurant in this study was an artificial fog that is more 

comparable in terms of particle size to smoke than to water-based fog.  This difference in 

the optical attenuation in visible and SWIR wavelengths is consistent with results reported 

earlier by Grabner et al. in 2010 [2.112] and also with measurements presented in Chapter 

5 of this Thesis, which were performed in an artificial fog (i.e., glycol vapour) [2.100].  

While is it generally accepted that light propagation for SWIR wavelengths may suffer 

from less attenuation than shorter wavelengths in haze and light fog, Kim et al. have 

suggested that this may not be the case for dense fog [2.109].  This conclusion was based 

on further modelling of the effects of particulate scattering after conducting a 

meta-analysis of available literature.  They report that for moderate to very dense 

water-based fog (i.e., visibilities of less than 500 m), there is no advantage to the use of 

(a) 

(b) 
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1550 nm illumination over 785 nm illumination when considering the effects of 

atmospheric attenuation.  Table 2.3 presents the optical losses due to scattering calculated 

by Kim et al. using this new model for 785 nm and 1550 nm light propagation.  The 

results indicate no benefit to the use of longer wavelengths in moderate to dense fog.  

Table 2.3: A table of optical loss in dB/km as a function of visibility for 

wavelengths of 785 nm and 1550 nm.  The results were obtained using an 

updated model of atmospheric scattering and indicate there is no benefit to 

the use of SWIR wavelengths in moderate to dense fog.  From ref. [2.109] 

 

While these results were obtained from theoretical modelling, they are supported by the 

results presented in Chapter 5 of this Thesis, where the use of 1550 nm illumination 

indicated only a small benefit over visible band sensors in high densities of water-based 

fog [2.100].  Despite this caveat, there are a number of other advantages to the use of 

SWIR wavelengths for imaging in highly scattering environments. 

In many free-space applications, such as LiDAR imaging, the eye-safety threshold of the 

laser source places limits on the maximum optical power of the system [2.113].  However, 

the use of SWIR wavelengths can increase this threshold significantly when compared to 

visible band wavelengths.  The retinal hazard region is defined as the wave band between 

400 – 1400 nm, which can cause clinical damage to the retina [2.114].  For example, this 

eye-safety threshold increases by a factor of approximately 20 or more when the 

illumination wavelength is increased from 850 nm to 1550 nm [2.106].  This maintains 

eye-safety requirements in active imaging systems while permitting the use of increased 

optical power levels.  An increase in the maximum optical power level results in an 

increase in the maximum attainable range and/or improvements in achievable depth 

resolution of the system.  
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One of the main limitations in single-photon based LiDAR systems is the level of 

background relative to the target signal.  Background can be defined as the level of signal 

collected by the detector that does not originate from the laser transmitter. In 

single-photon systems, the background level is dependent on two main factors: dark 

counts from the detector and solar radiation, with solar radiation being the main 

contributor [2.55].  An increased background level lowers the signal-to-background ratio 

(SBR), which results in reduced system performance [2.115].  This will be discussed in 

more detail in Chapter 3 of this Thesis.  Typically, single-photon LiDAR systems use 

high-performance spectral filters to decrease the level of ambient background detected by 

the receiver [2.47,2.48,2.55].  However, due to the very high sensitivity of single-photon 

detectors, this does not solve the problem entirely.  One way to minimise this is through 

the use of SWIR illumination, as solar radiation decreases considerably in this spectral 

band compared to the visible band, as shown in Figure 2.23 [2.103,2.105,2.116,2.117]. 

 

Figure 2.23: Solar spectrum of irradiation from the Sun after passing through 

the atmosphere.  The emission curve for a blackbody radiator (i.e., the sun) 

and prominent absorption bands and their causes are also shown.  The 

spectral data is from ref. [2.116] and the absorption data from ref. [2.117]. 

Finally, it is a fundamental advantage in most fibre-based applications to have 

compatibility with the optical fibre low-loss telecommunications window.  Fibre-optic 

based communication is mainly conducted in the wavelength range of 1260 nm to 

1625 nm where optical fibres have small transmission loss [2.118,2.119].  An example of 

the attenuation of a typical commercially available G.652 optical fibre as a function of 
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wavelength is shown in Figure 2.24.  Thus, fibre-based LiDAR systems operating at 

SWIR wavelengths benefit from both the low-loss of optical fibres and the high level of 

commercial availability of components. 

 

Figure 2.24: The attenuation of a typical commercially available G.652 

optical fibre as a function of wavelength. The optical bands of the 

telecommunications window are also shown.  From ref. [2.119]. 

2.5 Conclusions 

This Chapter has given a brief review of LiDAR imaging, and explained how it can be 

used to obtain high-resolution depth profiles of remote targets. An overview of several 

types of LiDAR systems was presented, with particular attention given to LiDAR systems 

based on the TCSPC approach were presented for imaging in extreme scenarios, such as 

for long-range targets [2.47,2.55], targets in cluttered environments [2.48,2.71,2.76], and 

targets in high levels of scattering media [2.3,2.100].  The excellent surface-to-surface 

resolution and picosecond temporal resolution provided by the TCSPC technique make it 

the ideal candidate technology for ToF measurements of long-range targets.  A full 

description of the TCSPC technique will be provided in Chapter 3. 

This Chapter has also provided an introduction to the principal characteristics of 

scattering effects from small particles, such as Rayleigh scattering and Mie scattering 

[2.86], and their effects on optical propagation through scattering media.  Particular 

attention was given to the wavelength dependency of particulate scattering and the 

indication that SWIR wavelengths are less affected than visible band wavelengths.  
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Finally, the advantages of SWIR wavelengths for imaging in highly scattering 

environments were discussed in Section 2.4. These advantages include higher 

atmospheric transmission, low background from solar radiation, an increased eye-safety 

threshold for equivalent optical power levels, and compatibility with the optical fibre 

low-loss telecommunications window. 
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Chapter 3: Time-correlated single-photon counting and single-photon 

detection in the short-wave infrared  

3.1 Introduction 

At the most fundamental level, a photon can be described as the elementary particle of 

light that carries a small, quantised amount of electromagnetic radiation known as the 

photon energy (Ephoton) [3.1].  This energy is dependent on the frequency (ν), and hence 

the wavelength (λ), of the photon as follows: 

,photon

hc
E hv


                                                (3.1) 

where c is the speed of light in a vacuum and h is Planck’s constant (6.63 × 10-34 m2kgs-1).  

In recent years, the development of highly sensitive detectors capable of single-photon 

detection and rapid data acquisition hardware has allowed for the implementation of the 

time-correlated single-photon counting (TCSPC) technique in a wide range of 

applications.  

This Chapter presents a review of the main principles of the TCSPC technique.  In 

addition, a brief introduction to the operation and key characteristics of modern 

single-photon detectors designed to operate in the shortwave infrared (SWIR) wavelength 

range is given.  Specific attention is given to indium gallium arsenide/indium-phosphide 

(InGaAs/InP) single-photon avalanche diode (SPAD) detectors, as they were the 

detectors chosen for the single-photon measurements performed in this Thesis. 

3.2 Time-correlated single-photon counting  

The TCSPC technique is now a well-established candidate technology used in a wide 

range of applications, such as fluorescence lifetime imaging [3.2–3.4], quantum 

communications [3.5,3.6], and laser-based distance measurements [3.7–3.10].  Due to the 

high temporal resolution offered by modern TCSPC detectors and data acquisition 

modules, the technique achieves excellent surface-to-surface resolution for 

three-dimensional imaging, even at kilometre ranges [3.11–3.13]. This Section gives an 

overview of TCSPC principles and hardware.  

3.2.1 TCSPC principles 

The TCSPC technique relies on a basic start-stop principle where the photon 

time-of-flight (ToF) is measured as the time difference between an optical input and a 
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photon detection event recorded by a single-photon detector [3.14].  In a forward 

start-stop configuration, the start trigger signal is typically provided to the TCSPC data 

acquisition module by a pulsed laser source operated at high repetition rates.  For 

example, kHz – MHz repetition rate sources were used for the measurements presented 

in this Thesis. This signal acts as a master clock for the system. When a detection event 

occurs, the single-photon detector provides an electrical stop trigger signal to the TCSPC 

module, which is configured to output time-tagged data, as shown in Figure 3.1.  Thus, 

the time difference, and hence, ToF information can be extracted from this data.  These 

detection events can originate from either a photon arrival or a dark event from the SPAD 

detector itself.   In a reverse start-stop configuration, the start trigger signal is provided 

by the detector, while the stop trigger signal is given by the next master clock signal 

[3.14].  A schematic of a basic TCSPC set-up in a forward start-stop configuration is 

shown in Figure 3.2. 

 

Figure 3.1: Timing diagram illustrating the basic principles of operation of a 

TCSPC measurement in a forward start-stop configuration.  In this case, a 

forward mode configuration is used where a master clock provides the start 

signal and the detector provides the stop signal.  The start-stop time 

differences (Δtx) are measured for each independent photon event. 

The TCSPC approach can also be used with non-repetitive illumination sources.  As 

discussed in Chapter 2, direct ToF measurements have the inherent problem of range 

ambiguity and aliasing.  Pseudorandom illumination sources can be used to avoid this 

issue and provide an absolute target range [3.15,3.16]. 
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Figure 3.2: Schematic of a typical TCSPC configuration.  The start trigger 

signal is provided by the pulsed laser source while the detector provides the 

stop trigger signal. 

Measurements are typically recorded over many laser pulses to acquire highly accurate 

ToF information, and hence a high-resolution depth estimate of the target.  Although 

contributions from detector dark counts, ambient light background, and other stray light 

contributions place a lower limit on the dynamic range of the system.  The data are 

compiled into a timing histogram, which represents the number of detection events 

recorded for each timing bin over the duration of the measurement.  Histogram timing 

bins have a discrete width, which are pre-determined before ToF measurements 

commence.  Modern TCSPC data acquisition modules, such as the HydraHarp 400 

(PicoQuant, Germany), offer timing resolution as low as 1 ps for up to 65536 histogram 

bins per input channel [3.17].  An example of a TCSPC timing histogram is shown in 

Figure 3.3. 

 

Figure 3.3: Example of a timing histogram acquired from a TCSPC 

measurement. The value for each timing bin represents the number of 

detection events within that time range. 
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It should be noted that TCSPC timing histograms are typically asymmetric with narrow 

peaks followed by long exponential tails, as shown in Figure 3.3.  The narrow peak 

corresponds to charge carriers generated in the junction depletion layer of the detector, 

which are accelerated immediately by the electric field.  The exponential tail is due to 

charge carriers generated outside the depletion region, which slowly diffuse towards the 

junction, where they are finally accelerated by the electric field, potentially leading to the 

initiation of a self-sustaining avalanche [3.18].  This will be discussed in more detail in 

Section 3.3 of this Chapter. 

Single-photon counting follows Poissonian statistics, where each individual detection can 

be considered as an independent event. For single-photon counting, laser pulses are 

typically attenuated so that the mean number of photons per pulse, µ, is smaller than one.  

The probability, P(N, µ), of a pulse attenuated to a particular value of µ containing N 

photons is given by [3.19]: 

( , ) .
!

Ne
P N

N






                                               (3.2) 

Figure 3.4 illustrates the probability distribution of a Poissonian process for different 

values of µ. 

 

Figure 3.4: The Poisson probability distribution for different values of the 

expected number of photon detections. 

Figure 3.4 indicates that, for higher values of µ, both the shape of the distribution is 

altered, and the centroid position is shifted.  A shift in the centroid position of a TCSPC 

timing histogram will result in an inaccurate depth estimation. Thus, to obtain statistical 

integrity in ToF measurements, it is imperative to maintain a low probability of multiple 
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photon detection events in each laser pulse cycle.  This is required in order to maintain a 

sufficiently uniform probability of detection across the timing range.  Too high a count 

rate will increase the probability of detection towards the beginning of the timing window, 

distorting the expected timing profile.  A high count rate can lead to this effect, which is 

known as ‘pulse pile-up’, where waveform becomes distorted due to a shift in centroid 

position.  In order to satisfy this condition, the overall count rate typically must not exceed 

5% of the pulse repetition rate of the laser source [3.19].   

Usually, the first photon arrival in a signal cycle is registered, skewing the measurement 

towards shorter arrival times, and hence, causing this waveform distortion.  This occurs 

because after a detection event is registered, the system enters a period of detector 

insensitivity – or ‘dead-time’ - where no more photon arrivals can be recorded in that 

laser pulse cycle, as shown schematically in Figure 3.5.  

 

Figure 3.5: Photon arrivals go unrecorded if they arrive during the system 

dead time.  The dead time starts when the first photon arrival is detected.  A 

high probability of multiple photon arrivals in one period of operation can 

result in pulse pile-up. 

The uncertainty associated with the Poisson distribution of single-photon measurements 

can be estimated as the standard deviation in the number of recorded counts, given by: 

.N                                                          (3.3) 

This places a lower limit on the overall achievable depth resolution of the TCSPC  system 

that is entirely dependent on the number of photons detected [3.10], where a higher 

number of counts provides a better resolution.  This means that in order to improve system 

performance, the number of counts associated with target returns must be recorded at the 
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highest count rate possible, while still considering the aforementioned limitations to the 

overall count rate.  In addition, the return signal must be much higher than the recorded 

background level.  Background counts in single-photon measurements generally arise 

from two main sources: uncorrelated counts arising from ambient background 

illumination and dark counts originating from within the single-photon detector.  This is 

discussed in more detail in Section 3 of this Chapter.  The signal-to-background ratio 

(SBR) can be defined as: 

,
p

b

n
SBR

n
                                                      (3.4) 

where np is the number of photon returns in the bin containing the highest peak in the 

timing histogram, and nb is the average number of background photons per bin.  A good 

SBR can generally be achieved with the use of high optical power levels, outside the 

expected limits of pulse pile-up.  It is also important to consider the signal-to-noise ratio 

(SNR). The SNR is given as: 

 .
1

p

p

p b

n SBR
SNR n

SBRn n
 


                                  (3.5) 

This indicates that the value of the actual SNR is close to ideal only as long as the SBR 

is very high.  An example of two TCSPC timing histograms acquired using the same 

acquisition time, but with vastly different levels of return signal is shown in Figure 3.6.  

In Figure 3.6 (a), the SBR was 1.64 and the SNR was approximately 10.9.  In Figure 

3.6 (b), the SBR was much higher at 10.5, which resulted in a SNR of approximately 35.2. 

 

Figure 3.6: Example TCSPC timing histograms acquired using the same 

acquisition time, but (a) a relatively low SBR and (b) a relatively high SBR.  

In both cases the SNR is also shown. 

(a) (b) 
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3.2.2 TCSPC hardware 

A block diagram depicting a conventional TCSPC data acquisition module is shown in 

Figure 3.7. 

 

Figure 3.7: Block diagram of a conventional TCSPC system. 

In a conventional TCSPC design, the start signal must meet a certain trigger level in order 

to be accepted by the data acquisition module.  A level trigger within the module adapts 

the signal until the triggering criteria is met.  The stop signal from the SPAD may vary in 

width and shape due to the stochastic nature of avalanche multiplication in the 

semiconducting material of the detector.  Thus, if the TCSPC module set a constant voltage 

threshold, the arrival time would differ for each detector pulse, introducing additional jitter 

to the timing histogram.  Therefore, to counteract this, a constant fraction discriminator 

(CFD) [3.20] is implemented, which effectively ‘cleans up’ the stop signal by creating a 

constant timing point for all detector pulses.  The operating principle of a CFD is shown 

in Figure 3.8.  Firstly, the detector signal is split into two identical signals.  One signal is 

inverted and delayed by a timing factor, δ, as shown in Figure 3.8 (a), and the 

discriminator set at a constant factor, f, of the pulse amplitude Va.  The second signal is 

attenuated to a maximum level of fVa (shown in Figure 3.8(b)).  Finally, these two signals 

are multiplied, and the sum provides the zero-crossing signal, as shown in Figure 3.8 (c).   

 

Figure 3.8: Operating principle of a CFD. From ref. [3.20]. 

(a) 

(b) 

(c) 
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The signals from the level trigger and the CFD are then passed to a time-to-amplitude 

convertor (TAC), which generates a voltage ramp.  The operating principle of a TAC is 

shown in Figure 3.9.  The recorded voltage is proportional to the elapsed start-stop time 

of the measurement, and hence, provides the photon ToF.  This voltage is then passed to 

an analogue-to-digital convertor (ADC), which converts the signal amplitude to a digital 

value that assigns the detection event to a corresponding bin in the timing histogram.  

 

Figure 3.9: Operating principle of a time-to-amplitude convertor (TAC). 

Although the combination of the TAC and the ADC provides high-resolution ToF 

measurements, there is a significant limitation to this design.  When high repetition rate 

laser sources are used (as is typical in many TCSPC applications), the dead time caused 

by the TAC must be considered.  The operating cycle of the TAC is initialised for each 

start signal, even if no detection event is then recorded.  In addition, this operating cycle 

must be completed for each detection event before it can be reset.  Moreover, if the dead 

time of the TAC is longer than the repetition rate of the source, the next start signal would 

be missed, resulting in many wasted laser pulses.  This problem can be solved by 

operating in a reverse stop-start configuration, where the detector provides the start trigger 

signal and the next master clock pulse provides the stop trigger signal.  This means that 

only registered detection events will initiate the TAC, reducing system dead time. 

Many modern TCSPC data acquisition modules have moved away from the use of the 

TAC/ADC combination [3.17].  Instead, the implementation of a time-to-digital 

convertor (TDC) in both the start and the stop channel of the module can perform the 

same function.  A block diagram of a modern TCSPC design is shown in Figure 3.10. 
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Figure 3.10: Block diagram of a modern TCSPC system. 

A TDC measures the time difference between signals using logic gates, offering 

high-speed, timing resolution on the order of picoseconds.  The most commonly used 

TDC is based on crystal clock digital counter technology.  More details on this technology 

can be found in ref. [3.21] and ref. [3.22].  This configuration is used in many modern 

TCSPC modules as it permits the acquisition of Time-Tagged Time-Resolved (TTTR) 

data, which provides temporal information about detection events with respect to the 

master clock signal [3.14,3.17].  This will be discussed in more detail in Chapter 4 of this 

Thesis. 

3.3 Single-photon detection in the short-wave infrared  

In the most basic of terms, a single-photon detector produces one electrical output signal 

for each individual input photon.  The ideal single-photon detector would do this with 

100% efficiency, with negligible timing jitter and a very low dead time.  However, in 

reality, the choice of detector typically involves a number of trade-offs between 

performance characteristics, which will depend on application requirements.  Several 

characteristics will be briefly defined in this Section, and then discussed later in more 

detail for several types of single-photon detectors. 

The most important characteristic of single-photon detectors is the single-photon 

detection efficiency (SPDE).  The SPDE is a measure of the probability that a photon 

incident on the active area of the detector will generate an electrical pulse [3.19,3.23].  

The overall SPDE is dependent on a number of factors including the coupling efficiency, 

the absorption efficiency and triggering probability (the probability of a carrier in the 

multiplication region triggering an avalanche) and other factors dependent on the detector 

geometry and microstructure.   

The timing jitter is defined as the measure of the pulse-to-pulse variation between the 

input and output pulses of the detector [3.23].  For TCSPC applications, the timing jitter 

is typically determined by characterising the instrumental response function (IRF) of the 

detector by performing a highly accurate measurement under controlled conditions, using 
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a long integration time [3.24].  The IRF will contain timing jitter contributions from 

several sources including the illumination source and the TCSPC timing electronics, 

however, the main contribution typically comes from the detector itself.  The timing jitter 

is typically defined using the full-width at half-maximum (FWHM) of the IRF. 

Another useful metric for characterising and comparing single-photon detectors is the 

dark count rate (DCR).  These so called ‘dark counts’ occur when the detector registers a 

count in the absence of illumination.  Sources of dark counts include thermally generated 

carriers, carrier tunnelling, and afterpulsing effects caused by defects within the 

semiconducting material of the detector [3.25–3.28].  DCR is strongly dependent on the 

operating temperature of the device, and therefore, many detector technologies require 

additional cooling mechanisms - such as inbuilt thermo-electric cooling (TEC) systems. 

Since single-photon detectors operate over a variety of wavelength ranges, it is useful to 

develop figures of merit for comparison.  One such metric is the noise equivalent power 

(NEP), which is defined as the signal power required to attain a unity SNR within a one 

second integration time [3.19,3.29].  The NEP is given as: 

2
,

hc DCR
NEP

SPDE
                                            (3.6) 

where h is Planck’s constant, c is the speed of light in vacuum, and λ is the wavelength 

of the incident photon.  A lower NEP corresponds to a higher detector sensitivity.  Note 

that NEP contains no information about the detector jitter performance.  

3.3.1 Photomultiplier tubes 

One of the first widely available single-photon detectors was the photomultiplier tube 

(PMT), which has been used in a wide range of photon counting applications [3.30–3.32].  

A schematic diagram of the operating principle of a PMT is shown in Figure 3.11. 

 

Figure 3.11: Schematic of a photomultiplier tube. From ref. [3.33]. 
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In a PMT, a series of positively charged dynodes are arranged inside a vacuum tube 

between a photocathode and an anode.  The photocathode absorbs incoming photons and 

then emits one electron per incident photon due to the photoelectric effect.  These 

electrons are then accelerated towards the first dynode where, upon collision, further 

electrons are emitted.  Each successive dynode in the PMT is charged with a higher 

positive potential than the last, resulting in a multiplication of the number of electron 

emissions.  The multiplication factor, M, for Ndynodes number of dynodes is given as: 

,dynodesN
M                                                      (3.7) 

where α is the secondary electron coefficient.  Finally, the electron cascade collides with 

an anode, which creates an easily detectable current pulse typically comprised of  > 106 

electrons [3.19]. While most PMTs operate in the visible region of the spectrum, 

Hamamatsu has manufactured devices containing indium gallium arsenide (InGaAs) 

photocathodes, which extend this range in to the SWIR band (i.e., up to 1700 nm) [3.34].  

While these detectors offer high gain and a large active area, they typically have low 

SPDEs of up to 2% and DCRs of up to 105 counts per second when cooled to 200 K.   

Moreover, the timing jitter of PMTs is typically in the region of 1 ns [3.35], making these 

detectors unsuitable for some ToF ranging applications where high temporal resolution 

and high detection efficiency are required [3.10]. 

3.3.2 Superconducting nanowire single-photon detectors  

Superconducting nanowire single-photon detectors (SNSPDs) are a relatively new class 

of single-photon detectors that offer very low timing jitter, low dark counts, and very 

wide spectral range. These detectors take advantage of the phenomenon of 

superconductivity where, at low temperatures, the resistance of some metals is zero below 

a temperature known as the critical temperature, Tc.  The operating principle of SNSPDs 

[3.36–3.39] is shown in Figure 3.12. 
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Figure 3.12: The operating principle of a SNSPD.  The diagram is described 

in detail in the main text.  The time constants τ1 and τ2 represent the rise time 

and the decay time of the voltage pulse.  From ref. [3.36]. 

(i) First, the nanowire (kept at a temperature that is below the critical temperature of the 

metal) is biased just below the critical current.  (ii) When the nanowire absorbs a photon 

with an energy much greater than the superconducting energy gap, a small resistive 

hotspot is created.  (iii) The hotspot forces the current to flow around the resistive region.  

(iv) Due to the narrowness of the nanowires, the local current density around the hotspot 

increases until the superconducting critical current density is exceeded.  This results in 

the formation of a resistive region across the width of the nanowire.  (v) The resistive 

barrier expands along the nanowire until the current flow stops.  Here the voltage pulse 

can be recorded.  (vi) Finally, an external circuit is used to shunt the bias to allow the 

resistive region to subside.  Once the nanowire is fully superconductive, the detector is 

once again biased to just below the critical current and is ready to absorb the next photon 

(i). 

The nanowires must be very narrow so that the resistive region can form across the width 

of the wire and prevent the current from flowing.  However, this narrowness represents a 

very small area for photon absorption.  Therefore, to maximise the detection efficiency, 

many SNSPDS are designed so that the nanowires are arranged in a meander pattern.  A 

scanning electron microscope (SEM) image of an SNSPD and a schematic of this 

meander design is shown in Figure 3.13 (a) and Figure 3.13 (b), respectively. 
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Figure 3.13: (a) An SEM image of an SNSPD with 100 nm wires at a 100 nm 

pitch arranged in a 10 × 10 µm meander line design.  Taken from ref. [3.40].  

(b) A schematic representation of a meander design. From ref. [3.19]. 

The first niobium nitride (NbN) SNSPD was demonstrated in 2001 by Gol’tsman et al. 

[3.41].  This detector was sensitive in both the visible and SWIR wavelength regions.  

However, this device was not a meander line design, and therefore suffered from a low 

detection efficiency due to a poor fill factor.  Although many early SNSPDs demonstrated 

low SPDEs of less than 3% at a wavelength of 1550 nm [3.42–3.44], they provided very 

low timing jitters.  For example, in 2002, Verevkin et al. reported a 10 × 10 µm meander 

SNSPD with a timing jitter of 68 ps [3.43].  Later in 2005, Pearlman et al. reported a 

timing jitter of 18 ps using a similar structure [3.44]. 

More recently, Korzh et al. reported a device with a timing jitter as low as 4.6 ps at a 

wavelength of 1550 nm and 2.7 ps at a wavelength of 400 nm [3.45]. This detector is a 

short nanowire device optimised to achieve record low jitter.  Unfortunately, the authors 

did not report the SPDE for these detectors, however, the active area is low and so 

efficiency is expected to be poor.  In recent years, SNSPDS with very high SPDEs have 

also been reported.  For example, in 2013 Marsili et al. reported a tungsten silicide (WSi) 

meander SNSPD in an optical cavity that demonstrated an SPDE greater than 90% and a 

timing jitter of 150 ps at a wavelength of 1550 nm [3.46].  In 2019, Taylor et al. reported 

a niobium titanium nitride (NbTiN) SNSPD that extended detection sensitivity to 2.3 µm 

[3.47].  These devices were reported to have relatively large timing jitter of 280 ps and a 

low SPDE of 0.1% at a wavelength of 2.3 µm.  However, the development of SNSPDs 

(a) (b) 
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that operate in this longer wavelength region is of great interest due to advantages over 

shorter wavelength bands, such as lower solar background and less atmospheric 

absorption [3.48]. 

While SNSPD detectors typically demonstrate better performance than alternative 

semiconductor-based single-photon detectors in terms of both timing jitter and SPDE, 

they have a distinct disadvantage in that they require bulky cryogenic systems to achieve 

operating temperatures below 3 K [3.49].  This can make them expensive and impractical 

for applications that require compact and low-power configurations, such as deployment 

on mobile platforms. 

3.3.3 Single-photon avalanche diode detectors  

The past few decades have seen a rise in the use of semiconductor-based detectors, such 

as avalanche photodiodes (APDs).  These devices exploit the impact ionisation properties 

of semiconductor materials to convert incident photons into a measurable electrical 

signal.  This Section will briefly introduce the principles of operation of these detectors 

and discuss how they can be used in applications that require single-photon sensitivity. 

3.3.3.1 P-N and P-I-N junctions 

In a semiconducting material, an electron is excited from the valence band to the 

conduction band when a photon with an energy equal to or higher than the band-gap is 

absorbed, meaning that each material has specific wavelength detection range. Examples 

of various semiconducting materials along with their band-gap energies and equivalent 

cut-off wavelengths at a temperature of 300 K are listed in Table 3.1 [3.50].  This results 

in a ‘hole’ in the valence band that acts as a positive charge [3.51].  In an intrinsic 

semiconductor, there is an equal ratio of electrons to holes, and so its Fermi level lies in 

the middle of the band-gap.  An intrinsic semiconductor material becomes an ‘n-type’ or 

‘p-type’ extrinsic semiconductor when it is doped with donor or acceptor impurities, 

respectively.  In an n-type semiconductor, there is a greater concentration of electrons, 

and so the Fermi level is shifted closer to the valence band of the material; in a p-type 

semiconductor, there is a greater concentration of holes, shifting the Fermi level towards 

the conduction band.  
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Table 3.1: Examples of semiconducting materials, along with their respective 

band-gap energy and equivalent cut-off wavelengths at a temperature of 

300 K [3.50]. 

Symbol Material name 
Band-gap 

energy at 300 K 

Equivalent cut-off 

wavelength 

Si Silicon 1.12 eV ~1107 nm 

Ge Germanium 0.66 eV ~1879 nm 

GeAs Gallium Arsenide 1.42 eV ~873 nm 

InAs Indium Arsenide 0.35 eV ~3.5 µm 

InP Indium Phosphide 1.34 eV ~925 nm 

InSb Indium Antimonide 0.17 eV ~7.3 µm 

HgCdTe Mercury cadmium telluride 0 – 1.5 eV ~827 nm 

InGaAs Indium Gallium Arsenide 0.74 eV ~1675 nm 

 

The most basic detectors use a p-n junction, which is an interface between an ‘n-type’ 

and ‘p-type’ semiconductor.  Under equilibrium conditions (i.e., when with no external 

voltage is applied), the charge carriers from each side of the p-n junction begin to diffuse 

across the interface.  As a result, the dispersion of the negative carriers creates positive 

ion donors in the n-type material and the dispersion of the positive carriers creates 

negative ion acceptors in the p-type material.  Thus, the interface loses its neutrality and 

gives rise to an electric field as shown in Figure 3.14 [3.52].  

 

Figure 3.14: P-n junction in equilibrium conditions.  In equilibrium, the 

charge carriers diffuse across the depletion region creating a charged region, 

which gives rise to an electric field.  
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The region where the electric field is formed is known as the depletion region.  It has an 

in-built potential (𝑉𝑏i), which is given as: 

    
2

ln( ),b a d
bi

i

k T N N
V

q n
                                              (3.8) 

where 𝑘𝑏 is Boltzmann’s constant, 𝑇 is temperature, 𝑞 is the electron charge, 𝑛𝑖 is the 

intrinsic carrier concentration, and 𝑁𝑎 and 𝑁𝑑 are donor and acceptor concentrations, 

respectively.  In equilibrium, the drift current created by the electric field will be negated 

due to the components of the positive and negative carriers cancelling each other out.  

However, if an external voltage is applied to the junction, the built in potential can be 

lowered (forward bias) or increased (reverse bias), as shown in Figure 3.15 [3.53].  In 

forward bias, a positive voltage is applied to the device, resulting in a narrowing of the 

depletion region.  This allows carriers to flow into the junction region, where free charge 

carriers can recombine, resulting in a current flow.  In reverse bias, a negative voltage is 

applied to the p-type side of the diode, attracting the positive carriers and pulling them 

away from the depletion region, and likewise the positive carriers in the n-type material 

move towards the negative terminal.  This results in a widening of the depletion region, 

increasing the voltage barrier and restricting the flow of charge carriers, prohibiting the 

current flow across the p-n junction.  An I-V characteristic curve for a p-n photodiode is 

shown in Figure 3.15 (c).  When forward biased, the current will increase as a larger 

external voltage is applied.  When reversed biased only leakage current flows until a high 

enough voltage, known as the breakdown voltage, Vb, is applied.  This will be discussed 

in more detail later in this Section. 
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Figure 3.15: A p-n junction diode operated in forward bias (a) and in reverse 

bias (b).  In forward bias, charge carriers diffuse across the depletion region, 

resulting in a current.  In reverse bias, no current flows as charge carriers 

are prohibited from moving.  (c) An I-V characteristic curve for a photodiode.  

From ref. [3.53]. 

While p-n junction technology is quite effective in forming a basic photodiode that is 

capable of converting light into current, they are not without their disadvantages.  The 

current flow (known as the photocurrent) in a p-n junction is dependent on the creation 

of electron-hole pairs caused by the absorption of a photon in the depletion region, which 

is relatively narrow.  If a photon is absorbed outside the depletion region of the p-n 

junction, this diffusion process can take a relatively long time, slowing the operation of 

the device.  Another drawback of p-n junctions is that the responsivity of the junction can 

be dependent on carrier diffusion lengths.  In order for a p-n junction to function 

effectively, carriers must reach the high field region of the junction.  However, if the 

carrier diffusion length is large, electron-hole pairs may recombine outside this region, 

reducing the detection efficiency.  Therefore, it is desirable to have a wide depletion 

region so that the probability of photon absorption in this region is increased. 

This can be achieved through use of a p-i-n photodiode configuration.  In this 

configuration, an intrinsic layer of semiconducting material is grown between the n-type 

(a) (b) 

(c) 
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and p-type interface of the p-n junction.  When operated in reverse bias mode, the intrinsic 

region of a p-i-n photodiode is depleted due to its low dopant level and high resistivity 

[3.54].  This creates a wide depletion region with a high electric field, resulting in 

significantly more electron-hole pairs contributing to the photocurrent.  A reverse bias 

p-n photodiode configuration and a p-i-n photodiode configuration are shown in Figure 

3.16. 

 

Figure 3.16: Diagrams and electric field plots of (a) a reversed biased p-n 

junction and (b) a reversed biased p-i-n junction. From ref. [3.55]. 

Therefore, p-i-n photodiodes provide increased detection efficiency and a higher carrier 

mobility, which allows for faster carrier transport.  

3.3.3.2 Avalanche photodiodes  

Avalanche photodiode (APD) detectors exploit impact ionisation effects in 

semiconducting materials to achieve a high internal gain, which can be in the region of 

1000s [3.56,3.57].  The phenomenon of impact ionisation occurs when the electric field 

in the depletion region becomes so high that free electrons can gain sufficient kinetic 

energy to knock an electron out of its bound state in the lattice and promote it to the 

conduction band.  This may also happen for the positively charge holes.  These secondary 

charge carriers are then accelerated by the electric field and may result in further impact 

ionisations.  Therefore, this process is strongly dependent on the strength of the electric 

field, with a higher field strength resulting in an increase in the average number of 

(a) (b) 
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electron-hole pairs.  The process of impact ionisation is shown schematically in Figure 

3.17. 

 

Figure 3.17: (a) When a photon with energy equal to or greater than the 

bandgap of the material is absorbed in the depletion region, an electron is 

promoted from the valence band to the conduction band, leaving a positively 

charged hole in the valence band.  (b) If the electric field in the junction is 

very high, the charge carriers can gain sufficient kinetic energy to initiate the 

impact ionisation process. The initial electron (in this case) and resulting 

secondary electrons and holes can then undergo further impact ionisation 

events, resulting in an avalanche effect. Electrons are shown in blue and holes 

in white. 

APDs are typically operated just below their breakdown voltage, Vbi, where the current 

flow of a reverse biased junction increases dramatically (see Figure 3.15 (c)) as the 

number of charge carriers rapidly grows due to the multiplication process.  The 

multiplication factor of an APD, M, can be expressed as [3.58]: 

, ,

,
photo dark

primary photo primary dark

I I
M

I I





                                          (3.9) 

where I𝑑𝑎𝑟𝑘 and I𝑝ℎ𝑜𝑡𝑜 are the dark current and the multiplied photocurrent respectively, 

when impact ionisation is observed.  I𝑝𝑟𝑖𝑚𝑎𝑟𝑦, dark and I𝑝𝑟𝑖𝑚𝑎𝑟𝑦, 𝑝ℎ𝑜𝑡𝑜 are the dark current and 

the photocurrent before the multiplication process has started. 

This mode of operation is called ‘linear-mode’, where the photocurrent is linearly 

proportional to the incident light level.  Whilst the internal amplification of signal can 

mean that APDs have an advantage over p-i-n photodiodes for detecting weak optical 

signals, they do not have single-photon sensitivity when operated in this mode. 

(a) (b) 
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3.3.3.3 Single-photon avalanche diode detectors 

APDs that are biased above their breakdown voltage, Vb, (as shown in Figure 3.18) are 

known as Geiger-mode APDs or single-photon avalanche diode (SPAD) detectors [3.59].  

While APDs operated in Geiger-mode were first observed at the Shockley laboratory in 

the 1960s [3.60], the first custom-made device was demonstrated by Cova et al. in 1981 

[3.61]. 

 

Figure 3.18: Operating modes of photodiodes.  Ordinary photodiodes do not 

exhibit impact ionisation and so have a gain of unity.  Linear-mode APDs do 

exhibit impact ionisation and therefore have an internal amplification 

proportional to the detected optical signal.  In a Geiger-mode APD, a single 

charge carrier is capable of initiating a self-sustaining avalanche current, 

resulting in infinite gain.   

When an APD is biased above the breakdown voltage, a single charge carrier can initiate 

a self-sustaining avalanche process that is readily detectable, resulting in a device with 

single-photon sensitivity.  As the avalanche current is self-sustaining, current will flow 

through the junction until an external stimulus quenches it.  The process of quenching 

reduces the bias voltage back down to below breakdown level until the original operating 

voltage is restored [3.59,3.62,3.63].  One quenching method is the use of a resistor in 

series with the SPAD – this is known as passive quenching. After the onset of the 

avalanche current, a higher proportion of the detector bias will be dropped across the 

quenching resistor as the SPAD moves to a conducting mode. This will mean that the 

SPAD bias will reduce below breakdown, quenching the avalanche current.  During the 

quenching process, the detector is insensitive and unable to register further detection 

events for a period of time known as detector dead time.  For detectors that use passive 

quenching circuits, dead times are typically of the order of 1 µs [3.59].  These times can 
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be reduced to the order of a few nanoseconds through the use of active quenching circuits 

[3.61].  Long dead times result in significant loss of detection events and therefore are a 

significant disadvantage [3.24].  

In a SPAD detector, the SPDE increases with increasing bias voltage above the 

breakdown voltage level, primarily due to an increase in avalanche triggering probability.   

However, an increase in the bias voltage also results in an increase in the DCR of the 

detector.  As mentioned previously in Section 3, the DCR gives a measure of the internal 

noise of a detector and can place limitations on the performance of the device.  In a SPAD, 

three mechanisms contribute the overall DCR: thermal noise, charge carriers generated 

by tunnelling, and afterpulsing effects [3.25,3.26].  Charge carriers that are thermally 

generated in the active volume of the detector can cause a self-sustaining avalanche, even 

in the absence of an incident photon.  However, the occurrence of these carriers can be 

significantly reduced by lowering the operating temperature of the device by using an 

in-built cooling device such as a TEC [3.64].  The probability of charge carriers generated 

by tunnelling processes is dependent on the strength of the electric field across the 

junction, with an increase in electric field strength resulting in an increase in charge 

carriers.  Therefore, this places a lower limit on the DCR as a high field strength is 

imperative to the initiation of a self-sustaining avalanche, and hence, to the operation of 

the SPAD itself.  Afterpulsing effects can greatly contribute to the overall DCR of a 

SPAD detector.  Afterpulsing is caused by local defects with deep energy levels between 

the mid-gap and band-edge in the depletion layer of the semiconducting material [3.65–

3.67]. Charge carriers can be trapped by these states, and then subsequently released, 

triggering spurious avalanches.  In order to counteract afterpulsing effects, an electronic 

gating circuit can be implemented in the SPAD detector.  In this operating mode, a 

hold-off time can be used to deactivate the detector for a predetermined duration after a 

recorded event, in order to allow the traps to empty without triggering further avalanches.  

While a long hold-off time can allow traps to depopulate, it places a limit on the 

achievable maximum count rate of the system, as the detector is active only for a short 

time interval known as the gate width.  Hold-off times in InGaAs/InP SPADs are typically 

in the region of microseconds while gate widths are typically in the region of 

nanoseconds.  More details on gated-mode SPADs are given in ref. [3.68]. 

3.3.3.4 InGaAs/InP SPAD detectors 

While silicon (Si) based SPADs offer very high multiplication at room temperatures, they 

are only sensitive in the wavelength range of 400 – 1100 nm [3.69]. Currently, 
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InGaAs/InP based SPADs are the most promising candidate for single-photon counting 

at SWIR wavelengths [3.27,3.70].  These detectors operate at near room temperatures 

over a wavelength range of approximately 1000 – 1700 nm, making them an ideal 

candidate for many applications where thermo-electric cooling is required.  Figure 3.19 

shows a cross-section through a planar geometry InGaAs/InP SPAD for λ = 1550 nm 

photon detection [3.71]. 

 

Figure 3.19: Schematic of a typical InGaAs/InP SPAD structure. The electric 

field along the centre of the active area is also shown. From ref. [3.71]. 

In this structure, photons are absorbed in a narrow band-gap InGaAs layer causing holes 

to drift into the higher field indium phosphide (InP) multiplication layer.  InGaAs and InP 

have band-gap energies of 0.75 eV and 1.35 eV at a temperature of 300 K, respectively 

[3.51].  This mismatch in band-gap energies results in a valence band discontinuity, that 

creates a barrier for holes to drift into the multiplication region.  This can lead to a reduced 

detection efficiency as hole recombination can then occur at the interface instead of the 

multiplication region.  This mismatch can be addressed by the growth of an indium 

gallium arsenide phosphide (InGaAsP) layer between the two materials as it has an 

intermediate band-gap energy that smooths the gradient in the valence band energies 

[3.72].  This allows the charge carriers to reach the multiplication region.  Figure 3.20 

shows a diagram of the energy band structure of an InGaAs/InP SPAD detector. 
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Figure 3.20: Energy band structure of an InGaAs/InP SPAD detector From 

ref. [3.73]. 

Commercial InGaAs/InP APDs used as SPADs were first demonstrated by Zappa et al. 

in 1994 [3.73].  These detectors had a diameter of 50 µm and were operated at an excess 

bias of 6 V and a temperature of 150 K.  A minimum NEP of 1 × 10-14 WHz-1/2, a 

maximum SPDE of 1%, and a timing jitter of approximately 1 ns using an illumination 

wavelength of 1310 nm was reported.  In addition, during this investigation, an 

exponential dependence of the DCR with the operating temperature of the detector was 

found.  In 2000, Hiskett et al. reported a NEP of 4 × 10-17 WHz-1/2 using an 80 µm 

diameter commercially available Fujitsu InGaAs/InP SPAD that was cryogenically 

cooled to 77 K and biased at 3 V.  The maximum SPDE for this device was found to be 

approximately 16% at a temperature of 140 K. The first custom-design SPADs were 

demonstrated by Pellegrini et al. in 2006 [3.74].  These devices had a SPDE of 10%, a 

DCR of 2 × 105 Hz, and a NEP of 6 × 10-16 WHz-1/2 at 200 K.  Shortly after this, 

InGaAs/InP SPADs very quickly became a popular candidate technology with many 

groups developing high performance detectors [3.75–3.77].  For example, in 2007 Itzler 

et al. demonstrated a detector with a maximum SPDE of 45% at a wavelength of 1550 nm, 

a minimum timing jitter of 30 ps, and a minimum DCR of 3 × 103 counts per second 

[3.77].  

Although these InGaAs/InP SPAD detectors demonstrated low timing jitter, high SPDE, 

and near room temperature operation, the deleterious effects of afterpulsing (as discussed 

previously in Section 3.3.3) was still a major drawback.  Therefore, a significant amount 

of research was conducted to find a way to limit these effects.  One proposed solution is 

an electrically gated-mode configuration, as discussed in Section 3.3.3.  In 2012, Tosi et 

al. presented a gated-mode InGaAs/InP SPAD detector, which operated at a temperature 

of 225 K at high count rates of up to 1 MHz [3.77].  This detector had a low DCR below 
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100 × 103 counts per second, a timing jitter of 90 ps, and a SPDE of 25% at the 

illumination wavelength of 1550 nm and a 5 V excess bias.  Later in 2014, Tosi et al. 

reported improved devices, which exhibited a reduced DCR of 1 × 103 counts per second, 

a timing jitter of 90 ps, and a higher SPDE of 30% at the same illumination wavelength 

and excess bias [3.78].  This improvement was made by operating the device at a lower 

count rate of 10 kHz. 

Many applications, such as ToF measurements, can benefit greatly from arrayed SPAD 

detectors, as they allow for rapid data acquisition using high average optical power level 

sources [3.80,3.81].  In an arrayed system, every pixel has an individual SPAD detector, 

each with their own timing electronics (typically a TAC is used in these systems) that 

provide the start trigger signal for timing measurements.  A global master clock provides 

the stop trigger signal for the whole array.  In recent years, Geiger-mode camera systems 

incorporating InGaAs/InP SPAD arrays flip-chip bonded to Si complementary 

metal-oxide-semiconductor (CMOS) integrated readout circuits (as shown in Figure 3.21)  

have been developed.  

 

Figure 3.21: A 32 × 32 SPAD detector array camera. (a) A photograph of the 

32 × 32 focal plane array.  (b) This array is then bonded on to a Si CMOS 

readout circuit for the sensor chip assembly.  (c) The sensor chip assembly is 

then integrated into a camera package.  Adapted from ref. [3.81]. 

The camera assembly demonstrated in 2010 by Yuan et al. (shown in Figure 3.21) was 

optimised for applications requiring a wavelength of 1060 nm, and incorporates a 32 × 32 

format SPAD array [3.81].  This camera is capable of operating at frame rates of up to 

30 kHz.  At the illumination wavelength of 1060 nm, the camera was reported to have an 

SPDE of 40%, a timing jitter of 0.5 ns, and a DCR of 20 kHz, and an NEP of 

6.6 × 10-17 WHz-1/2 when operated at a temperature of 240 K and an excess bias of 4 V.   

In 2012, Entwistle et al. demonstrated a 32 × 32 format SPAD array designed to operate 

in the wavelength range of 920 – 1620 nm (optimised for λ = 1550 nm) [3.80].  This 

(a) (b) (c) 
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detector provides a minimum timing jitter of 250 ps and is capable of operating at frame 

rates up to 186 kHz.  A mean SPDE of approximately 18%, typical DCR of 20 kHz, and 

a NEP of 1.16 × 10-16 WHz-1/2 using a wavelength of 1550 nm were reported for this 

detector.  A 128 × 32 format version of this camera is also available. 

One of the main drawbacks of SPAD arrays is optical coupling, otherwise known as 

optical crosstalk.  When biased above the breakdown voltage, ‘hot’ carriers in one SPAD 

may lead to intense emission of secondary photons, which may escape from the chip 

[3.82].  While some of these photons are reabsorbed back into the pixel of origin, others 

are absorbed by a neighbouring pixel.  If this reabsorption occurs in the active area of the 

neighbouring pixel, it can trigger a spurious avalanche process, resulting in an increase in 

the DCR of that pixel.  The crosstalk probability in SPADs increases with increasing 

excess voltage (see Figure 3.22), due to a higher average number of free charge carriers.  

 

Figure 3.22: Optical crosstalk between SPAD detectors occurs when the 

avalanche current in one pixel triggers an avalanche in surrounding pixels, 

due to escaped photon emissions.  Example of the crosstalk probability for 

different excess biases in an InGaAs/InP SPAD detector as a function of the 

spacing between pixels [3.83]. 

Crosstalk probability can be reduced by increasing the spacing between pixels, at the 

expense of reduced array fill-factor, where the fill-factor is the ratio of the active area of 

the detector to the pixel area [3.65,3.83].  As the pixel spacing is increased, fewer escaped 

photons reach the active area of the neighbouring pixels. Figure 3.22 shows a plot of 

crosstalk probability as a function of the spacing between two InGaAs/InP SPAD 

detectors [3.83].  Another method of reducing crosstalk probability is to mill trenches in 
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the spacing between pixels.  Figure 3.23 (a) shows an SEM image of a trench, which was 

milled between two SPAD detectors in an array using a focused ion beam [3.83].  The 

active area of the SPAD was 25 µm and the trench was milled to be 40 µm in length and 

5 µm in width.  The milled depth was 6 µm so that it travelled through to the InGaAs 

layer of the device structure, creating a barrier between the pixels.  This process can be 

further enhanced by coating the trench in a thin layer of metal, which acts as a mirror that 

shields neighbouring pixels from photons travelling along a direct path between the two 

pixels.  In 2016, Tosi et al. reported that crosstalk probability decreased from 88% to 47% 

for empty trenches and to 37% for trenches filled with platinum for an InGaAs/InP device 

operated at a 3 V excess bias, as shown in Figure 3.23 (b) [3.79]. The initial crosstalk 

event in a pixel is known as first order crosstalk. Each instance of first order crosstalk has 

a probability of initiating further events known as second order (or higher) crosstalk. The 

crosstalk probability that includes all secondary crosstalk events is known as the 

cumulative crosstalk.  As an example, the total cumulative crosstalk probability of the 

Princeton Lightwave 32 × 32 camera used in Chapters 6 and 7 is typically 35% 

(calculated from a 9 × 9 pixel neighbourhood) at an SPDE of 18%, using an illumination 

wavelength of 1550 nm, as stated by the manufacturer. 

 

Figure 3.23: (a) An SEM image of a trench, which has been milled between 

two SPADs.  (b) A plot of the crosstalk probability as a function of the excess 

voltage for: no trench, an empty trench, and a trench that has been metallised 

with platinum.  Both figures were taken from ref. [3.83]. 

Currently, InGaAs/InP SPAD detectors represent the state-of-the-art for single-photon 

detection in the SWIR wavelength region, due to their low timing jitter and compatibility 

with compact Peltier cooling systems.  The work presented in Chapters 4-7 of this Thesis 

was performed using both single-pixel and arrayed InGaAs/InP detectors.  However, even 

(a) (b) 
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when operated in an electronically gated configuration, the SPDE of commercial 

InGaAs/InP devices is limited to approximately 45% due to their relatively high 

afterpulsing when compared with other SPAD technologies, such as Si-based SPADs.  

These detectors are typically operated at near-room temperatures, which greatly reduces 

afterpulsing, allowing for an increased SPDE.   

3.3.3.5 Ge-on-Si SPAD detectors 

Due to the good absorption properties exhibited by germanium (Ge) at room temperatures 

for wavelengths up to 1600 nm and the excellent multiplication properties of Si [3.85], 

Ge-on-Si SPAD detectors have become potential candidates for SWIR single-photon 

detection. These devices have the potential for reduced afterpulsing and increased 

single-photon sensitivity over InGaAs/InP SPADs as they use silicon as a multiplication 

layer and have potential to be operated at near-room temperatures.  An example cross-

section of a Ge-on-Si SPAD is shown in Figure 3.24 (a) [3.86].  In this structure, photons 

are absorbed in the Ge layer, creating an electron-hole pair.  The negative charge carriers 

are then accelerated towards the Ge/Si interface, before entering the high charge Si 

multiplication layer.  Here, the process of impact ionisation takes place and, if the electric 

field is above the avalanche breakdown level, a self-sustaining avalanche is triggered, 

resulting in a measurable photocurrent. 

 

Figure 3.24: (a) A cross-section of a Ge-on-Si SPAD. (b) Plot of the 

afterpulsing probability as a function of gate delay time for both a Ge-on-Si 

SPAD and an InGaAs/InP SPAD.  Both figures were taken from ref. [3.86]. 

In 2002, Loudon et al. demonstrated early versions of Ge-on-Si SPADs [3.87].  At an 

illumination wavelength of 1210 nm these devices were reported to have a maximum 

SPDE of approximately 0.002%, a timing jitter of 300 ps, and a NEP of 5 × 10-12 WHz-1/2 

(a) (b) 
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using an operating temperature of 200 K and an excess bias of 1 V [3.87].  Later, in 2013, 

Warburton et al. demonstrated devices that incorporated a thicker layer of Ge to allow for 

a higher probability of photon absorption [3.88].  These detectors were reported to have 

an improved SPDE of 4%, a timing jitter of 300 ps, and a NEP of 1 × 10-14 WHz-1/2 using 

an operating temperature of 100 K and an illumination wavelength of 1310 nm.  This 

study also reported measurements made at an illumination wavelength of 1550 nm.  

However, when cooled to 125 K, the band-gap of Ge increases to 0.84 eV, meaning that 

λ = 1550 nm photons (Ephoton ≈ 0.80 eV) lie just outside the absorption edge [3.85].  Thus, 

the authors reported a reduced SPDE of approximately 0.15%, a NEP of 

5 × 10- 12 WHz-1/2, and an increased timing jitter of 420 ps.  More recently, in 2019, Vines 

et al. demonstrated a new generation of planar Ge-on-Si SPAD detectors with much 

improved SPDE and NEP, when compared to previous devices [3.86].  The authors 

reported an SPDE of 38% at an operating temperature of 125 K at an illumination 

wavelength of 1310 nm.  The timing jitter and NEP were measured at 78 K and reported 

as 310 ps and 1.9 × 10-16 WHz-1/2, respectively.  This represented a 50-fold improvement 

in NEP compared to previously reported Ge-on-Si SPADs.  The authors also investigated 

the afterpulsing probability of these detectors when compared to state-of-the-art 

InGaAs/InP detectors.  A plot of the afterpulsing probability as a function of gate delay 

time for both a Ge-on-Si SPAD and an InGaAs/InP SPAD is shown in Figure 3.24 (b) 

[3.86].  The afterpulsing probability was found to be much lower in the Ge-on-Si detector 

than in the InGaAs/InP detector.  Moreover, a 50 to 75% reduction in detector dead time 

was reported compared to commercial InGaAs/InP SPADs under the same operating 

conditions.   These results point to Ge-on-Si detectors being capable of SWIR operation 

at, or near, room temperature, with low DCR, low afterpulsing, and high count rate 

operation.  An increased operating temperature will also allow these detectors to operate 

with high efficiency at a wavelength of 1550 nm, making them good candidates for ToF 

ranging applications, such as those presented in this Thesis. 

3.3.3.6 Frequency up-conversion 

An emerging technology in infrared detection is the use of frequency up-conversion. This 

technique aims to convert SWIR wavelength photons to shorter wavelength photons that 

can be detected by commercially available visible region single-photon detectors, which 

typically have improved performance over infrared detectors in terms of DCR and timing 

jitter [3.49,3.89].  This is typically achieved through sum-frequency generation in 

nonlinear optical crystals, where a weak signal with frequency ωin is combined with a 
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strong pump signal with frequency ωpump to give an output signal with a summation 

frequency, ωout, given as:  

.out in pump                                                 (3.10) 

Filters can then be used to allow transmission of the appropriate wavelength to the 

detector.  This conversion can be performed with a very high efficiency. For example, 

Albota et al. demonstrate that 1550 nm photons can be converted to 630 nm photons with 

approximately 90% efficiency using a 1064 nm pump signal [3.90].  Frequency up-

conversion has been demonstrated in quantum key distribution experiments using both 

thick-junction and shallow-junction Si SPAD detectors [3.91, 3.92].  In 2005, Takesue et 

al. demonstrated an up-conversion scheme using a thick-junction Si SPAD with a SPDE 

of 46%, a timing jitter of 400 ps, and a DCR of 800 kHz for 1550 nm wavelength photons 

[3.91].  Later in 2006, Thew et al. demonstrated a set-up with implemented a shallow-

junction Si SPAD with an improved timing jitter of 40 ps and a DCR of 20 kHz but a 

reduced SPDE of 2% for 1550 nm photons [3.92].  However, there are drawbacks of this 

technique which include difficulty in stabilizing the nonlinear crystal required for up-

conversion and potential output coupling losses from the optical waveguides that are used 

to concentrate the pump signal [3.49]. 

3.4 Conclusions 

This Chapter has given a brief review of the TCSPC technique, and explained how it can 

be used in applications that require single-photon sensitivity, such as fluorescence 

lifetime imaging [3.2–3.4], quantum communications [3.5,3.6], and laser-based distance 

measurements [3.7–3.10]. The high sensitivity and picosecond temporal resolution 

provided by the TCSPC technique make it the ideal candidate technology for ToF 

measurements of long-range targets - particularly in the sparse photon regime where 

return optical signals are very low. The use of this technique for the three-dimensional 

profiling of targets in degraded visual environments will be presented in Chapters 4 – 7 

of this Thesis. 

Appropriate considerations must be made regarding the choice of single-photon detector 

in order to choose the most suitable detector that meets the requirements of both the 

optical system and the application.  Hence, this Chapter has also presented a brief review 

of several types of single-photon detectors (such as PMTs, SNSPDs, and SPAD 

detectors), which are sensitive in the SWIR region of the spectrum, with particular 

attention given to both their advantages and their limitations.  
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Currently, InGaAs/InP SPAD detectors are the best candidate technology for 

single-photon counting applications in the SWIR due to their compatibility with compact 

Peltier cooling systems.  These detectors are commercially available in both single-pixel 

formats [3.67] and as SPAD arrays [3.79,3.80], and offer relatively low DCRs, low timing 

jitters and SPDEs of up to a maximum of 45% at a detection wavelength of 1550 nm.  

Therefore, InGaAs/InP SPADs were selected in this work as the most appropriate choice 

of detector for imaging in highly scattering environments where optical signals are greatly 

attenuated. 
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Chapter 4: Long-range imaging of camouflaged objects using 

single-photon counting  

4.1 Introduction 

A time-of-flight (ToF) single-photon imaging system based on the time-correlated 

single-photon counting (TCSPC) technique was used to obtain images of camouflaged 

targets in challenging outdoor environments [4.1].  The detection system comprised of a 

single-pixel InGaAs/InP single-photon avalanche diode (SPAD), and an operating 

wavelength of 1550 nm with an average optical power level of less than 1 mW was used 

for all measurements.  This was the maximum available output power available using this 

system configuration.  This optical power level provided eye-safe imaging at the target 

range of 230 metres.  The identification of targets, which have been obscured by clutter, 

is a subject of significant relevance for long-range field applications for both military and 

scientific applications. Several investigations involving ‘seeing’ behind or through 

various obscuring media (such as foliage or camouflage) have been performed previously 

using light detection and ranging  (LiDAR) systems based on a range-gated approach 

[4.2,4.3]. While this approach achieves high-resolution gated imaging using very few 

laser pulses, it typically requires high-energy laser pulses (typically µJ).  The use of the 

single-photon approach alongside high-sensitivity single-photon detectors allows 

relatively covert and eye-safe depth and intensity profiling.  Other studies of obstructed 

targets have been performed using single-photon depth imaging [4.4].  While the results 

of this study were successful at acquiring depth and intensity profiles from single-photon 

data, the acquisition times of these measurements were prohibitively slow. 

Firstly, this Chapter will present an overview of the λ = 1550 nm system components, 

alignment, and configuration.  Then, two algorithms designed to reconstruct depth and 

intensity profiles from single photon data will be described in Section 4.3. The 

experimental set-up and key system parameters used during NATO SET 205 field trials 

will be described in Section 4.4.  Finally, the results of these field trials and a discussion 

of the system performance will be presented in Section 4.5. Conclusions and future work 

are presented in Section 4.6. 

4.2 Overview of the system configuration and key experimental parameters 

The depth imaging system used to obtain the results presented in both this Chapter and 

Chapter 5 of this Thesis was comprised of a monostatic scanning transceiver unit, a 
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single-pixel InGaAs/InP SPAD detector, a pulsed supercontinuum laser source, and a 

TCSPC module.  A schematic of the depth imaging system used for the measurements 

presented in this Chapter is shown in Figure 4.1.  This Section will give details about the 

system components, alignment, and key experimental parameters. 

 

Figure 4.1: Schematic of the single-pixel depth imaging system that was 

operated at a wavelength of 1550 nm.  This system was used for all 

measurements in Chapter 4 and Chapter 5 of this Thesis.  It comprised a 

custom-built transceiver unit, a supercontinuum laser source, a TCSPC 

module, and an InGaAs/InP SPAD detector.  Optical components include: 

polarising beam splitter (PBS); fibre collimation packages (FC1, FC2, FCR, 

FCT); scanning galvanometer mirrors (GM1, GM2); relay lenses (R1, R2, 

R3); objective lens (OBJ); longpass filters (LP1, LP2); shortpass filter (SP); 

bandpass filters (BP1, BP2). 

A summary of the key system components, parameters, and optical components used for 

all measurements is given in Table 4.1.  All optical components used were optimised for 

the λ = 1550 nm operating wavelength of the system. 
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Table 4.1: Summary of key system parameters and optical components. 

Parameter Value/comment 

Illumination source 
NKT Photonics supercontinuum  

(SuperK EXTREME EXW-12) 

Illumination wavelength 1550 nm (10 nm) FWHM 

Laser repetition rate 19.5 MHz 

Laser pulse duration < 100 ps 

Average optical power < 1 mW 

Detector 

Fibre-coupled, electrically gated-mode 

InGaAs/InP SPAD 

(www.micro-photon-devices.com) 

Detector single-photon detection efficiency ~35% at λ = 1550 nm 

Detector excess bias 5 V 

Detector gate width 14 ns  

Detector hold-off time 40 µs 

Data acquisition hardware 
HydraHarp 400, PicoQuant 

(www.picoquant.com) 

Histogram timing bin size 2 ps timing bin width 

System timing jitter ~ 220 ps 

Objective Lens 500 mm focal length; 80 mm aperture diameter 

Spectral filters in transmit channel 

Longpass: Cut-on 1500 nm, transmission >98% 

(ThorLabs, FELH1500) 

Shortpass: Cut-off 1845 nm, transmission >90%  

(Spectrogon, SP-1845) 

Bandpass: 10 nm wide, 1550 nm central 

wavelength, transmission >95%  (Edmund Optics, 

#86-091) 

Spectral filters in receive channel 

Longpass: Cut-on 1500 nm, transmission >98% 

(ThorLabs, FELH1500) 

Bandpass: 10 nm wide, 1550 nm central 

wavelength, transmission >95%  (Edmund Optics, 

#86-091) 

 

4.2.1 Monostatic scanning transceiver unit 

The scanning transceiver unit was designed for long-range, free-space depth imaging and 

was custom-built by the Single-Photon group at Heriot-Watt University.  Due to the 

modular design of the system, it has been reconfigured for use at a variety of operating 

wavelengths (475 – 1550 nm), and used in a range of LiDAR applications such as 

long-range depth imaging [4.1,4.5,4.6], underwater depth imaging [4.7,4.8], and 

multispectral imaging [4.9–4.12].  

The transceiver unit has dimensions of 275 × 275 × 170 mm and is made of black 

anodised aluminium to minimise ambient background light and reduce stray light inside 

the transceiver. The optical components were installed within the unit using a 

semi-kinetic mounting system comprised of a slotted baseplate and magnetic fasteners.  

This set-up reduces the degrees of freedom of the optical components allowing for 

straightforward optical alignment and helping to maintain long-term stability.  This high 
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level of modularity and stability allows the system to be aligned and reconfigured in the 

field, outside of controlled laboratory conditions. A schematic of the monostatic 

transceiver unit depicting the key optical components is shown in Figure 4.2 and a 

schematic of the optical path inside the transceiver unit is shown in Figure 4.3. 

 

Figure 4.2: Schematic of the monostatic scanning transceiver unit.  Optical 

components include: a polarising beam splitter (PBS); fibre collimation 

packages (FCR, FCT); scanning galvanometer mirrors (GM1, GM2); relay 

lenses (RL1, RL2, RL3); and an objective lens (OBJ). 

 

Figure 4.3: (a) Schematic of the optical path inside the transceiver unit. The 

red path shows the transmit channel, which was fibre-coupled to the 

illumination source.  The blue path shows the receive channel, which was 

fibre-coupled to an InGaAs/InP SPAD detector.  The coaxial channel 

(common to both the transmit and receive channels) is shown in purple. (b) A 

photograph of the monostatic scanning transceiver unit. 

Within the transceiver unit, a fibre collimation package (FCT in Figure 4.2) was used in 

the transmit channel (Tx) to de-couple the laser pulses into a collimated optical beam with 

(a) 

(b) 
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a beam diameter of approximately 2.7 mm.  The light was then routed to a polarising 

beam splitter (PBS) via alignment mirrors M1 and M2 where the Tx channel and the 

receive channel (Rx) were subsequently overlapped to create a coaxial common channel.  

The PBS was aligned through tilt adjustment and rotation in the transverse plane.  The 

light transmitted by the PBS was maximised by adjusting the Tx channel fibre collimation 

package (FCT).  A pair of galvanometer mirrors were placed at conjugate planes within 

the transceiver in order to scan the beam in the x- and y- directions (GM1 controls y- and 

GM2 for x-).  The two scanning galvanometer mirrors were controlled by an electrical 

driver system.  A schematic diagram of this system is shown in Figure 4.4. A 

digital-to-analogue convertor (DAC) was used to deliver control voltages to drive the 

x-axis and y-axis motors in a raster scan pattern.  The amplitude of the voltages (set by 

custom software) determined the magnitude of the motor movement and thus, the size of 

the area scanned by the system.  The number of pixels within the scan area (i.e., the 

instantaneous field-of-view (FoV) of the system) is also set via this custom software, and 

the DAC provides a trigger signal to the TCSPC data acquisition module, which in turn 

generates a marker for each position change (i.e., marks each new pixel).  

 

Figure 4.4: Schematic of the scanning galvanometer mirror system. A DAC is 

used to generate a voltage, which controls the x-axis and y-axis galvanometer 

mirrors.  This voltage is set such that a raster scan, with a pixel size that is 

dependent on the magnitude of the voltage, is performed.  The DAC also 

provides a corresponding electrical signal to the data acquisition module that 

subsequently marks the movement of the beam to each subsequent pixel. 
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Two relay lenses (RL1 and RL2) were placed between GM1 and GM2 at one focal length 

away from each respective scanning mirror.  These lenses were used in a telecentric 

configuration as shown in Figure 4.5. 

 

Figure 4.5: Telecentric configuration of relay lenses RL1 and RL2. The focal 

length of each lens is denoted as f1 and f2, respectively. 

Achromatic lenses were chosen to minimise the effects of chromatic and spherical 

aberrations.  This is particularly useful if the operating wavelength of the system has to 

be changed during measurements (e.g., for multispectral measurements).  The use of a 

telecentric configuration allows the highest possible accuracy in the optical alignment to 

be obtained and guarantees that the return signal is always on axis.  After passing through 

the telecentric pair, the light was then reflected off of GM2 and through a third relay lens 

(RL3), which then formed an image at the image plane of the objective lens (OBJ).  The 

field-of-view (FoV) of the image at the image plane of the objective lens was the primary 

limiting factor on the maximum field-of-regard (FoR) of the system (i.e., the maximum 

achievable scanned area).  The light was subsequently passed through the objective lens, 

which was used to both focus the transmitted light on the target scene and collect 

back-scattered photon returns from the target.  The received photons were then routed 

back through the relay lens system via the same optical path, and de-coupled from the 

common channel by the polarising beam splitter.  This signal was then coupled to a 10 µm 

optical fibre using alignment mirrors M3, M4, and a second collimation package (FCR in 

Figure 4.2).  This signal was subsequently sent on to an InGaAs/InP SPAD detector. 

In order to achieve the maximum performance of the imaging system, the proper 

alignment of the coaxial channel and corresponding optical components is imperative.  

Thus, a series of alignment checks were performed using a concave mirror to focus the 

illumination beam on to an infrared CCD camera, allowing the beam spot to be monitored 

(as shown in Figure 4.6).  The first alignment check was performed on RL3 by inserting 

a temporary alignment lens after GM1 to focus the light on to GM2 (see Figure 4.6 (a)). 

GM2 was set to perform a sinusoidal oscillation in x-, which was then minimised by 

adjusting the position of RL3.  Then, the temporary lens was removed and the telecentric 
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pair RL1 and RL2 were placed between GM1 and GM2. A temporary lens was then 

inserted after the PBS in order to focus the light on GM1.  GM1 was set to perform a 

sinusoidal oscillation in y-, which was then minimised by the appropriate adjustment of 

RL1 and RL2.  Finally, the temporary lens was then removed from the optical path. 

 

Figure 4.6: Optical set-up for the alignment of relay lenses RL1, RL2, and 

RL3 with galvanometer mirrors GM1 and GM2.  A concave mirror focused 

the optical path on to a CCD camera, which was used to check the alignment.  

Temporary lenses were used in each set-up to adjust the focus. (a) shows the 

configuration for RL3 alignment and (b) for the achromatic pair (RL1 and 

RL2) alignment. 

Finally, alignment of the coaxial channel was performed using the concave mirror and 

CCD camera.  A fibre splitter was used to deliver λ = 1550 nm light from a pulsed laser 

source through both the Tx and Rx channels simultaneously, and the two beams were 

imaged at the focus position on the CCD camera as shown in Figure 4.7.   

In order to achieve a precise alignment of the two channels, a microscope objective lens 

was mounted to the CCD camera interface in order to magnify the image - allowing for 

very fine adjustments.  The proper alignment of these two channels is imperative for the 

use of the system in long-range imaging applications.  Thus, the overlap of the Tx and Rx 

channels was checked in both the near and far fields by moving the camera back and forth 

between the focus position and de-focus position denoted in Figure 4.7 while small 

adjustments to the optics within the transceiver were performed.  

(a) (b) 
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Figure 4.7: Schematic of the coaxial channel alignment.   A CCD camera was 

used to image the beam spots, and the two channels (Tx and Rx) were aligned 

such that the imaged spots overlapped in both the near and far-field (focus 

and de-focus) positions. 

4.2.2 Illumination source 

The illumination source used for all measurements in this Chapter and Chapter 5 of this 

Thesis was a pulsed supercontinuum laser source.  Supercontinuum laser sources have 

the capability of providing broadband illumination over a wide wavelength range, making 

them ideal for applications that require the use of different operating wavelengths.  

Supercontinuum generation is the result of a severe spectral broadening of a master seed 

pumped laser beam, and is achieved in many commercial supercontinuum sources by 

means of nonlinear processes in photonic crystal fibres [4.13,4.14].  Two supercontinuum 

laser sources were available for these measures: the SuperK EXTREME EXW-6 and 

EXW-12 by NKT Photonics, Germany [4.15].  Both of these sources had a diode-pumped 

Nd:YAG master seed laser source at λ = 1064 nm, resulting in an operating wavelength 

range of approximately 460 – 2400 nm, as shown in Figure 4.8.  However, the EXW-12 

was selected for all measurements as it provided a higher optical output power at 

λ = 1550 nm.   
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Figure 4.8: Spectra of the NKT Photonics EXW-12 and EXW-6 

supercontinuum laser sources available for the measurements presented in 

Chapter 4 and Chapter 5 of this Thesis.  The EXW-12 (pictured) was chosen 

for all measurements in this Thesis due to a higher available power output at 

λ = 1550 nm. Taken from ref. [4.15]. 

This laser has a pulse duration of < 100 ps and a variable repetition rate in the MHz 

regime.  In order to select an operating wavelength of 1550 nm, a filter rig containing a 

series of high-performance optical filters was used.  A fibre collimation package (FC1 in 

Figure 4.9) was used to de-couple the light from the supercontinuum laser source, which 

was then passed through three optical filters.  These filters included a longpass filter with 

a cut-on wavelength of 1500 nm (LP1), a bandpass filter centred on 1550 nm with a 

full-width half-max (FWHM) of 10 nm (BP1), and a shortpass filter with a cut-off 

wavelength of 1800 nm (SP).  A second fibre collimation package (FC2) was then used 

to couple the transmitted light back into the Tx channel via a 10 µm optical fibre.  

 

Figure 4.9: A schematic diagram of the filter rig set-up that was used to select 

an operating wavelength of λ = 1550 nm.   Optical components include two 

fibre-collimation packages (FC1 and FC2), and a set of high-performance 

filters comprising a longpass filter (LP1), a bandpass filter (BP1), and a 

shortpass filter (SP). 
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4.2.3 Single-photon detector and TCSPC data acquisition module 

An electrically gated InGaAs/InP SPAD detector (Micro Photon Devices, Italy [4.16]) 

was used for all measurements in this Chapter and Chapter 5 of this Thesis. This 

single-pixel detector (shown in Figure 4.10 (a)) has an operating wavelength range of 

900 – 1700 nm and an active-area of 25 µm.  This detector was thermoelectrically cooled 

meaning that the initiation process is relatively fast, allowing the detector to be used in 

the field quickly and efficiently.  A plot of the single-photon detection efficiency (SPDE) 

as a function of wavelength is shown in Figure 4.10 (b).  An excess bias of 5 V was 

selected during measurements to provide a SPDE of approximately 35% at the operating 

wavelength of 1550 nm.  The jitter of the detector at a 5 V excess bias was < 200 ps, as 

stated by the manufacturer. 

  

Figure 4.10: (a) A photograph of the single-pixel InGaAs/InP SPAD detector 

(Micro Photon Devices, Italy).  (b) A plot of the SPDE over the operational 

wavelength range of the detector for excess biases of 3 V and 5 V. Both taken 

from ref. [4.16].  (c) A photograph of the TCSPC data acquisition module 

used in these measurements. Taken from ref. [4.17]. 

Due to the monostatic configuration of the system, the presence of back-reflections from 

optical components within the transceiver unit could result in the saturation of the 

sensitive detector, and potentially create false peaks in the resultant histograms during 

measurements.  To avoid this, the detector was operated in an electrically gated-mode, 

with the detector gate positioned to avoid potential spurious back-reflections.  A detailed 

description of the electronic gating approach for this detector is provided in ref. [4.18].    

For the measurements presented in this Chapter, a relatively short gate duration of 14 ns 

was used to limit increased background levels resulting from detector afterpulsing effects. 

As discussed in detail in Chapter 3, afterpulsing is caused by charge carriers being trapped 

(b) (a) 

(c) 
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in defects, which are subsequently released causing spurious avalanches [4.19–4.21].  In 

order to further reduce the deleterious effects of detector afterpulsing, a hold-off time of 

40 µs was used to deactivate the detector after a recorded event, in order to allow the traps 

to empty without triggering further avalanches.  The dark count rate of the detector was 

measured to be approximately 33 kcs-1 for a 40 µs hold-off time.  This hold-off time was 

selected as a compromise between reducing the effects of afterpulsing and restricting the 

maximum count rate possible.   

When a detection event occurred, the detector module provided an electrical stop signal 

to a TCSPC data acquisition module, which was configured to output time-tagged 

detection events.  The TCSPC technique was described in detail in Chapter 3 of this 

Thesis.  A HydraHarp 400 (PicoQuant, Germany [4.17]), as shown in Figure 4.10 (c), 

was used for all measurements presented in this Chapter and in Chapter 5 of this Thesis.  

The HydraHarp 400 boasts four independent input channels with a photon count rate up 

to 12.5 million counts/sec per channel. This module offered two 

time-tagged-time-resolved (TTTR) modes denoted T2 and T3 mode.  The main difference 

between these two modes is the format in which the timing information is recorded.  In 

T2 mode, there is no channel dedicated to the synchronisation of an input signal from a 

laser source, hence all detection events are recorded relative to the start time of the 

measurement (i.e., the macro-time of the measurement).  In T3 mode, a channel is 

dedicated to this laser input signal so the detection events are recorded relative to the last 

synchronisation signal from the pulsed laser source (i.e., the micro-time of the 

measurement) [4.17].  In all measurements using the HydraHarp 400, T3 mode was 

selected as it is specifically designed to be used with high-repetition rate pulsed laser 

sources (up to 150 MHz), and can precisely determine which synchronised laser pulse a 

photon event belongs to - resulting in highly precise timing measurements with up to 1 ps 

timing resolution.  A trade-off when using T3 mode is that it can increase the overall 

system jitter due to a contribution from the synchronisation signal, and the dead time of 

the module is slightly longer (up to 80 ns) in T3 mode.  

The HydraHarp 400 identified each pixel in the scan through an electrical signal provided 

by the galvanometer mirror system to the ‘Marker’ input of the module and stored this 

information alongside the time-tagged data in a single data file.  This data file was 

transferred to the control computer via a USB 3.0 connection.  This information was then 

used to construct timing histograms via a custom software, designed to deal with the T3 

mode data structure. 
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4.3 Computational methods 

In recent years, there has been much interest in the implementation of algorithms designed 

to reconstruct sparse photon data obtained from outdoor, long-range targets [4.22–4.24].  

This Chapter presents results obtained using two algorithms, (i) a simple cross-correlation 

algorithm and (ii) the Restoration of Depth and Intensity using the Total Variation 

(RDI-TV) algorithm, which exploits spatial correlations in single-photon data.   

4.3.1 Pixel-wise cross-correlation 

Pixel-wise cross-correlation is a simple and computationally inexpensive method 

commonly used in single-photon three-dimensional image reconstruction  

[4.5–4.7,4.22,4.25].  This algorithm provides an estimate of depth and intensity for each 

pixel by calculating the cross-correlation, C, between an acquired timing histogram, y, 

and the known instrumental response of the system, R, such that: 

1
,

T

t t i ii
C y R

                                                  (4.1)                                                     

where yt is the timing histogram value at the tth bin and T is the total number of timing 

bins.  Using this method, a time position corresponding to the highest cross-correlation 

can be found for each pixel, which represents the target’s position and is related to the 

depth measurement Z.  Once the relevant time positions (or bin location) are picked up 

for each pixel, through combining the spatial (i.e. X and Y) information and 

time-correlated depth measurement (i.e. Z), a depth profile of the scanned scene can be 

reconstructed.  For these measurements, the instrumental response function, R, was 

obtained by performing a single-point measurement of a uniform, flat surface (i.e., a 

wooden board painted white) placed in the same nominal plane as the target position at a 

range of 230 metres.   An example of the instrumental response function, obtained using 

a 100 second integration time and a 14 ns gate duration, is shown in Figure 4.11. 
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Figure 4.11: The timing histogram of the instrumental response taken from a 

uniform surface located in the same nominal plane as the target.  The system 

had an overall timing jitter of 226 ps at FWHM.  The detector was operated 

in electrically gated-mode with a 14 ns gate duration.  An arbitrary zero was 

chosen for the displayed time-scale. 

The overall timing jitter of the system was found to be approximately 226 ps at FWHM 

with contributions from the detector response, laser pulse duration and other electronic 

components such as the TCSPC module, with the largest contribution being the detector 

jitter.  Typically, targets with a single reflecting surface will result in one peak per 

histogram, corresponding to the target position (not including any peaks arising from 

back-reflections as previously discussed in Section 4.2.3).  This means that pixel-wise 

cross-correlation can give satisfactory results when there is only one distinct target return.  

However, for targets behind camouflage netting, such as those examined in this Chapter, 

the timing histograms may include multiple peaks with the largest peak not necessarily 

corresponding to the target position.  In this case, the cross-correlation will assign a single 

depth estimate based only on the largest return peak.  This can result in an inaccurate 

depth estimation if this peak corresponds to the camouflage netting instead of the target. 

4.3.2 RDI-TV algorithm 

Imaging scenes in cluttered environments with very low acquisition times can lead to a 

large proportion of pixels where either no data were obtained due to low photon returns 

or containing information on only irrelevant surfaces.  The image processing community 

has already studied this problem in detail, and several algorithms have been developed 

based on the Poissonian statistics of single-photon data [4.4,4.25–4.27].  Therefore, a 

more sophisticated reconstruction algorithm of this variety, developed by Dr Abderrahim 
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Halimi, was applied to the results presented in this Chapter.  A brief explanation of this 

algorithm will be given here, however, a detailed description of this algorithm can be 

found in ref. [4.28].  The Restoration of Depth and Intensity using the Total Variation 

(RDI-TV) algorithm was selected because it has been previously shown to be a good 

candidate algorithm for the reconstruction of single-photon data that contains a single 

depth plane but multiple surfaces [4.22,4.29].  The algorithm aims to reduce the effects 

of Poisson noise found in single-photon data, and reconstruct depth (Dinit) and intensity 

(Iinit) profiles in pixels containing target information.  The RDI-TV algorithm achieves 

this by using several approximations based on prior knowledge of the target scene.  The 

main approximations are: (i) a single depth layer per pixel is present, (ii) there is an 

absence of background counts, (iii) the system has an approximately Gaussian 

instrumental response, (iv) the positions of corrupted pixels are known, and (v) the target 

position is sufficiently far from the edges of the timing histogram.  To start, a 

cross-correlation is performed using a known instrumental response (as described in the 

previous Section), and then a total variation denoising approach is performed [4.30].  This 

approach is a common denoising algorithm used in image processing and is implemented 

by optimising the cost function (Cf) associated with the restored depth (D) and intensity 

(I) estimates through means of a convex algorithm.  In this case the convex algorithm 

used is the alternating direction method of multipliers (ADMM) algorithm described in 

ref. [4.31].  The cost function in this case is given by: 

 ( , ) ( , ) ( ) ( ),f INIT INITC D I L D I TV D TV I                              (4.2) 

where L(Dinit, Iinit) is the log-likelihood of the Poisson distributed data and TV(D) and 

TV(I) are the total variation regularisation terms.  This process makes RDI-TV algorithm 

a computationally fast and robust way to analyse single-photon data that contains only a 

single-depth surface.  However, the data of the target obstructed by camouflage netting 

presented in this Chapter contained two distinct depth surfaces (i.e., the camouflage 

netting and the target).  Therefore, an additional data-gating step was performed where 

only data from the 1900 timing bins centred on the target was selected.  This corresponds 

to a 0.6 m depth range around the target, eliminating the histogram bins containing photon 

returns originating from the camouflage netting.  

4.4 Experimental layout 

An evaluation of the long-range performance of the single-pixel depth imaging system 

was performed as part of the NATO SET-205 “Active Electro-optic Sensing for Target 
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Identification and Tactical Applications” field trials in Virginia, USA.  These field trials 

comprised a series of outdoor measurements in daylight conditions at a target range of 

230 metres from the system position.  The aim of these measurements was the successful 

imaging and identification of targets in challenging outdoor scenarios with a high level 

of ambient background.  The system was housed in an enclosed building to shield the 

sensitive components from adverse weather, such as rain and wind.  Large retractable 

doors, which faced out on to a 5 km long laser range, were opened to allow for 

measurements.  Photographs of the system position, the target location, and the depth 

imaging system in-situ at the field trials are shown in Figure 4.12.  

 

Figure 4.12: (a) A photograph of the system position taken from the target 

location.  (b) The target location at 230 m as seen from the system position.  

(c) A photograph of the single-pixel depth imaging system in-situ in Virginia, 

USA. 

The stand-off distance of the target was approximately 230 metres from the system 

position.  The illumination beam exiting the system had an average optical power level 

of less than 1 mW at a repetition rate of 19.5 MHz for all measurements, and an operating 

wavelength of 1550 nm.  This wavelength and power level selection resulted in  eye-safe 

imaging.  However, it should be noted that actors wore laser safety googles as a further 

precaution.  This wavelength was also selected for its high atmospheric transmission, and 

because the adverse effect of solar background at this wavelength is significantly lower 

compared to operating at wavelengths below 1 µm [4.32–4.34].  In order to further reduce 

the effects of solar background during outdoor measurements, the Rx channel of the 

transceiver unit was spectrally filtered using a longpass filter with a cut-on wavelength of 

1500 nm (LP2 in Figure 4.1), and a bandpass filter centred on 1550 nm with a FWHM of 

(a) 

(b) 

(c) 
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10 nm (BP2).  An objective lens with a 500 mm focal length and an aperture size of 

80 mm provided a scanned FoR (i.e., the area scanned at the target position) of 

approximately 1 × 2 metres.  The scanned FoR was mapped by 80 × 160 pixels (X × Y), 

equivalent to an instantaneous FoV (i.e., a pixel-to-pixel pitch) of approximately 12.5 mm 

in both X and Y at the target location.  The focused beam diameter at the target was 

approximately 1 cm, meaning that there was little or no overlap between adjacent pixels 

for each scan position.  A per-pixel acquisition time of 3.2 ms was used for all 

measurements, resulting in a total scan time of approximately 41 seconds.  This long 

acquisition time was chosen to provide a large amount of photon returns in all pixels 

containing target information. 

The target scene comprised of several actors holding a variety of target items in different 

poses.  Target items included both non-hazardous objects such as umbrellas, wooden 

boards, and backpacks, and hazardous items such as several types of weapons and other 

lethal objects (e.g., a suicide vest and belt).  A selection of these targets along with images 

of the actors posing during measurements is shown in Figure 4.13. 

 

Figure 4.13: Photographs of the actors holding hazardous and non-hazardous 

target items (left) and a selection of the target items imaged during these field 

trials (right).  The faces of the two actors have been blurred for anonymity. 

Two different target scenarios were investigated during the field trials.  The first set of 

measurements comprised of an unobstructed actor holding a target item as shown in 

Figure 4.13.  In the second set of measurements, the target scene comprised of the actor 

holding the target items behind a double layer of commercially available camouflage 

netting.  The camouflage netting was placed approximately 1 metre in front of the target 
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position perpendicular to the laser beam propagation, and a second single layer was 

erected approximately 2 metres behind the target position.  A photograph of the 

camouflaged target set-up is shown in Figure 4.14. 

 

Figure 4.14: Photograph of the camouflaged target set-up at 230 metres from 

the system position.  A double layer camouflage net was placed approximately 

1 metre in front of the target position, and a single layer of camouflage net 

approximately 2 metres behind. 

A summary of the experimental set-up, key parameters, and a list of the target items is 

given in Table 4.2. 

Table 4.2: Summary of the experimental set-up used in these field trials. 

Parameter Value/comment 

Environment 

Outdoors. Dry and bright (but overcast), with 

atmospheric conditions remaining relatively 

constant for the duration of the measurement set. 

Target stand-off distance ~ 230 metres 

Target items 

AK-47, AT-4, backpack, Dragunov, M-4, RPG, 

suicide belt, suicide vest, tripod, wooden plank, 

umbrella, sledgehammer  

Illumination beam diameter at target ~ 1 cm 

Pixel format 80 × 160 

Scan Area 1000 × 2000 mm (X × Y) 

Pixel pitch ~12.5 mm in X and Y 

Acquisition time  ~3.2 ms per-pixel (~41 seconds total scan time) 

 

4.5 Experimental results and discussion 

A full set of measurements were taken in order to image and identify each of the target 

items.   This Section presents results from a select number of these measurements for both 
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the unobstructed and camouflaged scenarios. Results obtained via pixel-wise 

cross-correlation for unobstructed measurements and also using the RDI-TV algorithm 

for camouflaged measurements are presented. 

4.5.1 Non-camouflaged targets 

The first series of images of the target items were taken at a distance of 230 metres, 

unobstructed by camouflage netting.  An example of an aggregated timing histogram 

from one such scenario is shown in Figure 4.15.  

 

Figure 4.15: Example of an aggregated timing histogram obtained from a 

measurement of an unobstructed target at 230 metres from the system 

position. The zero point in the depth axis was chosen arbitrarily. 

In this aggregated histogram, data from all 12,800 pixels in the image is summed and 

displayed in this single histogram.  A detector gate duration of 14 ns was used, equivalent 

to a one-way distance of approximately 2.1 metres.  Two separate bumps in the peak were 

observed.  The first bump in the peak corresponded to the location of the target object 

held across the chest by the actor and the second larger peak corresponded to the actor.  

The target depth was found to be approximately 30 cm (corresponding to 1000 timing 

bins at a 2 ps resolution) from the front surface of the target object to the rear surface of 

the actor.  The total number of photon counts in this peak was found to be approximately 

179,000, giving an average number of photons per timing bin of approximately 179 

 – with 308 photon returns the highest bin in the peak.  Depth profiles depicting three 

target objects (i.e., an AT-4, a sledgehammer, and a suicide vest) reconstructed using the 

pixel-wise cross-correlation algorithm are shown in Figure 4.16. 
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Figure 4.16: Depth profiles of actors holding (or wearing) various target 

items (AT-4, sledgehammer, and a suicide vest) at a range of 230 metres with 

no camouflage netting present.  These profiles were all obtained using pixel-

wise cross-correlation.  

The results show that the profile of each item was easily identifiable, and hence the items 

could be distinguished from one another.  For example, the strap of the AT-4 and the head 

of the sledgehammer were readily discernible in the depth profiles.  However, many 

return photons were also collected from foliage located far behind the target location due 

to the inherent problem of range ambiguity in high repetition rate ToF systems.  In a fixed 

repetition rate LiDAR system, range ambiguity occurs when there is more than one 

possible position for a reflecting surface.  This occurs when, instantaneously, there is 

more than one optical pulse in transit.  This means that surfaces far behind the target 

position can appear as though they are in the same plane as the target due to earlier laser 

pulses.  This can result in noisy images as seen in the results presented in Figure 4.16. 

This maximum unambiguous distance (drep) is dependent on the fixed repetition rate (frep) 

of the laser and is given by:  

,
2

rep

rep

c
d

f
                                                         (4.3) 

where c is the speed of light in a vacuum.  Given that a laser repetition rate of 19.5 MHz 

was used in these measurements, the maximum range for unambiguous determination of 

target distance was approximately 7.7 metres.  Range ambiguity can be removed by a 

reduction in repetition rate (which can significantly increase measurement time), by use 

of multiple sequential repetition rates, or by using techniques such as laser pulse trains 

composed of pseudo-random patterns [4.35,4.36].  Photon returns from the foliage behind 

the target did not contain data of any interest for these measurements.  Therefore, a gating 

threshold of approximately 0.6 metres centred on the target location was applied during 
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processing to the timing histogram in order to remove some of this data and improve the 

image of the target.  Figure 4.17 shows RGB photographs, intensity profiles, and depth 

profiles obtained using the pixel-wise cross-correlation algorithm from two measurement 

scenarios.  The first scenario comprised of an actor holding a rocket-propelled grenade 

(RPG) across his chest, while the second scenario comprised of a different actor holding 

a wooden plank in the same position.  Both the aforementioned gating threshold and 

intensity threshold were applied to the data.  The intensity threshold excluded pixels with 

very low levels of photon returns, since they were unlikely to originate from target 

returns.  The corresponding pixels in the depth profile were subsequently excluded. 

 

Figure 4.17: Depth and intensity profiles of two unobstructed targets: an actor 

holding an RPG across his chest and an actor with a wooden plank in the 

same position.  Images (a) and (b) show photographs of the two actors holding 

the RPG and a wooden plank, respectively.  In the photographs, the faces of 

the two actors were blurred for anonymity.  Images (c) and (d) show the 

intensity maps of both target scenes.  Images (e) and (f) show the depth 

profiles of both target scenes.  These results were obtained using the pixel-

wise cross-correlation algorithm. 

The depth resolution of both of the depth profiles appeared to be sub-centimetre for most 

features of the target, and differences in the material reflectivity and dimensions of both 

the RPG and the wooden plank are evident in the intensity and depth profiles, making the 

two objects easily discernible in this example.  The number of photon returns is dependent 

on a variety of factors such as the optical power level used, the acquisition time of the 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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scan, and the reflectivity of the target material at the illumination wavelength 

[4.5,4.35,4.37].  It is evident from these images that the clothes of the actors yielded a 

significant quantity of photon returns, whereas the gun handle and the actors’ dark 

eye-wear yielded few photon returns at the operating wavelength of 1550 nm.  In addition, 

the low reflectivity of human skin at λ = 1550 nm [4.38] is evident due to a low number 

of photon returns from the face and hands in the intensity profiles.  However, most target 

pixels yielded more photon returns than required to construct a satisfactory depth profile 

due to the long acquisition time (41 seconds) of the scan.  Due to the time-tagged nature 

of the data as discussed in Section 4.2.3, per-pixel acquisition times that were shorter than 

the full measurement time were investigated by using shorter duration sections of each 

pixel’s entire measurement data for the scenario with the wooden plank (seen in Figure 

4.17).  The resulting depth profiles, for the scenario with the wooden plank shown in 

Figure 4.17, for per-pixel acquisition times of  τacq = 3.2, 1, 0.5, and 0.1 ms, which 

correspond to image acquisition times of 41.0, 12.8, 6.4, and 1.3 seconds, respectively 

are shown in Figure 4.18.  The average photons per pixel (PPP) in the target and the 

number of pixels with relevant target data (denoted ‘sampled pixels’) are given for each 

acquisition time. 

 

Figure 4.18: Depth profiles of an unobstructed target (an actor with a wooden 

plank held across the chest) at a range of 230 metres obtained using pixel-wise 

cross-correlation.  The depth profiles were reconstructed from the full data 

with an acquisition time of τacq = 3.2 ms per-pixel, and reduced acquisition 

times of τacq = 1.0, 0.5, and 0.1 ms per-pixel. 

Figure 4.18 shows that the number of photons collected by the system is approximately 

linear to the acquisition time of the scan with 11 average PPP for the 41 second scan and 

0.3 average PPP for the 1.3 second scan.  In addition, as the number of photons arriving 

back from the target decreased, the quality of the depth profile degraded, as fewer pixels 
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with relevant target data were successfully reconstructed.  However, this degradation was 

not significant until the acquisition time was very low (i.e., 0.1 ms per pixel), meaning 

that much shorter measurement times are viable in these conditions.  In addition, these 

results were obtained using only the pixel-wise cross-correlation algorithm and the use of 

the RDI-TV algorithm could result in a much better reconstruction.  This demonstrates 

the potential of the single-pixel system for the rapid imaging and identification of 

hazardous objects in military scenarios. 

4.5.2 Camouflaged targets 

Using the same experimental parameters as used for the unobstructed scenarios, a series 

of measurements were performed with the target object and actor obscured by camouflage 

netting at 230 metres, as described in Section 4.4.  The target scene consisted of an actor 

holding the object of interest (in this case a wooden plank held across the chest) 

approximately 1 metre behind two layers of commercially available camouflage netting.  

An example aggregated timing histogram from all 12,800 pixels from this measurement 

is shown in Figure 4.19.   

 

Figure 4.19: The aggregated timing histogram of a measurement of a target 

placed approximately one metre behind camouflage netting at a range of 

230 metres from the system position.  The larger peak represents the returns 

from the camouflage netting and the smaller peak represents the returns from 

the target.  The zero point in the depth axis was chosen arbitrarily. 

In comparison to the unobstructed measurements, two peaks were obtained in the 

aggregated timing histogram, one from the camouflage netting, and the other from the 

target behind the camouflage.  The number of photon returns in the peaks arising from 

the camouflage netting and the target was found to be 401,612 and 52,348, respectively.  

This means that approximately 87% of the return photons were reflected by the 
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camouflage netting, and only 13% was reflected by the target.  Figure 4.20 shows the 

resultant depth and intensity profiles obtained using pixel-wise cross-correlation.  

 

Figure 4.20: Analysis of a scene with an actor holding a wooden plank across 

his chest and standing one metre behind camouflage netting at an overall 

range of approximately 230 metres from the system position.  Image (a) shows 

a photograph of the actor holding the wooden plank behind the camouflage 

net.  (b) and (c) show the intensity and depth profiles of the target scene using 

the entire collected single-photon data. (d) and (e) show the intensity and 

depth profiles after time gating to exclude all data except those within a 0.6 

metre range around the target location.  These results were obtained using 

pixel-wise cross-correlation. 

Figure 4.20 (b) and (c) show the intensity and depth profiles reconstructed using data 

from the full timing histogram.  The depth profile in (c) shows a limited amount of detail 

from the obscured target where the photons propagated through gaps in the camouflage 

net.  The camouflage netting is shown to be at a distance of 0.5 metres from the zero-depth 

reference point, whilst small regions of the target can be seen at a depth of approximately 

1.5 m - a distance of 1 metre behind.  Therefore, in order to more fully profile the target 

behind the camouflage, data gating was performed where only data selected from the 

1900 timing bins (corresponding to a 0.6 m depth range centred around the target) were 

used in the depth and intensity reconstruction shown in Figure 4.20 (d) and (e).  Using 

this gating approach, a good representation of the target profile was reconstructed, and 

both the actor and the wooden plank were easily identified.  However, there were still 

many ‘missing’ pixels in the image where there was insufficient photon returns to provide 

a depth estimate.  Therefore, in order to improve the quality of the depth and intensity 

profiles, the data was processed using the RDI-TV algorithm described in Section 4.3.2.  

Figure 4.21 and Figure 4.22 show the resultant depth and intensity profiles obtained using 

the cross-correlation and RDI-TV algorithms, for acquisition times of τacq = 3.2, 1.0, 0.5, 

(a) (b) (c) (d) (e) 
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and 0.1 ms per pixel.  The results present down-sampled images of 40 × 80 pixels from 

the full 80 × 160 pixel scan.  

 

Figure 4.21: Depth profiles of the target (actor holding a wooden plank) 

standing one metre behind camouflage netting for acquisition times of 

τacq = 3.2, 1.0, 0.5, and 0.1 ms pier-pixel reconstructed using (a) the pixel-

wise cross-correlation algorithm and (b) the RDI-TV algorithm.  This figure 

shows down-sampled images of 40 × 80 pixels. 

 

Figure 4.22: Intensity profiles of the target (actor holding a wooden plank) 

standing one metre behind camouflage netting for acquisition times of 

τacq = 3.2, 1.0, 0.5, and 0.1 ms pier-pixel reconstructed using (a) the pixel-

wise cross-correlation algorithm and (b) the RDI-TV algorithm.  This figure 

shows down-sampled images of 40 × 80 pixels. 

(a) 

(b) 

(a) 

(b) 
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An analysis of the average PPP and number of sampled pixels for both algorithms is 

shown in Table 4.3.  

Table 4.3: Analysis of the average PPP and number of sampled pixels for both 

cross-correlation and the RDI-TV algorithms. 

 

As expected, a decrease in the quality of the reconstructed images in Figure 4.21 and 

Figure 4.22 was observed in the depth and intensity profiles for both algorithms as the 

acquisition time was reduced.  This was due to the photon returns being correspondingly 

lower (shown in Table 4.3). However, the depth estimates obtained using 

cross-correlation exhibit a much higher level of noise than the RDI-TV estimates at low 

acquisition times.  In fact, the number of sampled pixels (indicated in Table 4.3) increases 

for the results obtained using cross-correlation due to the presence of noise.  This can be 

linked to the limitation in the cross-correlation algorithm discussed previously in Section 

4.3.1, where only the highest peak in the timing histogram is considered.  Overall, the 

RDI-TV algorithm offers better restoration results where both the noise surrounding the 

target is reduced, and many of the ‘missing’ pixels of the target of interest are restored.  

This performance was achieved as a result of considering the spatial correlation between 

pixels, and the use of collaborative sparsity to limit the number of active depths.  

Moreover, the intensity profiles obtained using the RDI-TV algorithm were smoother and 

less noisy, especially at τacq = 0.1 ms per pixel, where the average photon return from the 

human target is well below one photon per pixel.  These results demonstrate that even 

behind a double layer of camouflage netting, the TCSPC approach alongside the 

appropriate reconstruction algorithm can provide fast depth and intensity imaging with 

approximately centimetre resolution – even in the sparse photon regime. 

4.6 Conclusions and future work 

A monostatic depth imaging system based on the TCSPC approach was used to obtain 

three-dimensional depth profiles of targets at a stand-off distance of 230 metres.  The 

system was based on a single-pixel InGaAs/InP SPAD detector with a wavelength range 

 
Average photons per pixel 

(PPP) 
Sampled pixels 

Acquisition  

time per pixel (ms) 
Cross-correlation RDI-TV Cross-correlation RDI-TV 

τacq = 3.2 9.0 10.0 2594 2649 

τacq = 1.0 2.3 2.3 2918 2609 

τacq = 0.5 0.6 1.5 7250 2258 

τacq = 0.1 0.2 0.5 9567 1421 
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of 900 – 1700 nm and a single-photon detection efficiency of approximately 35% at the 

operating wavelength of 1550 nm.  A pulsed supercontinuum laser source alongside a 

series of high-performance filters was used to deliver a fibre-coupled illumination of 

λ = 1550 nm with an average optical power level of < 1 mW at a repetition rate of 

19.5 MHz.  

Two different target scenarios were investigated: (i) unobstructed targets and (ii) targets 

hidden behind a double-layer of commercially available camouflage netting.  Field trials 

were performed as part of NATO SET 205 to evaluate the long-range imaging 

performance of the λ = 1550 nm depth imaging system.  This investigation was successful 

in both the imaging and identification of a range of hazardous and non-hazardous targets 

in challenging outdoor scenarios with a high level of ambient background.  

The first set of measurements were performed on unobstructed targets. The results 

showed that depth and intensity profiles of the targets could be reconstructed using a 

simple cross-correlation algorithm from data with acquisition times as low as 1 second. 

The target objects of interest were easily identifiable in the depth profiles with 

sub-centimetre depth resolution.  The second set of measurements were performed using 

the same target set behind camouflage netting.  The results showed that, by gating the 

timing histogram, the target profile could be successfully reconstructed with the target 

items easily identifiable.  However, in this case, many missing pixels where no data was 

acquired were present in both the depth and intensity estimates.  Therefore, the results 

obtained of targets behind camouflage netting were processed using the more 

sophisticated RDI-TV algorithm, which was designed to exploit spatial correlations in 

single-photon data.  The RDI-TV algorithm provided good reconstruction results, with 

accurate depth and intensity estimates obtained with well below one photon per pixel. 

This Chapter has demonstrated the use of TCSPC for obtaining high-resolution images 

for the identification of hidden objects at long-ranges in challenging outdoor conditions. 

The results presented in this Chapter demonstrate the excellent surface-to-surface 

resolution afforded by the TCSPC approach.  Such high surface-to-surface resolution 

allows for much better reconstructions of targets in clutter than can be achieved by 

conventional depth imaging approaches such as non-single-photon depth imaging or 

range-gated LiDAR systems.  This shows that the TCSPC approach is ideal for 

applications where the target scene is complex with multiple surfaces, such as imaging 

through foliage and vegetation.  Improved background filtering, a larger aperture 

objective lens, and a higher optical power level would further enhance system 
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performance.  Thus, future work will investigate the performance of the system at even 

longer stand-off distances, at kilometre ranges.  The use of bespoke image processing 

algorithms such as the one presented in this Chapter will contribute to a more complete 

depth imaging model to inform next generation single-photon transceiver design and test 

the performance limits in terms of maximum stand-off distance, optical power 

requirements, and system frame rate.  The use of this system for imaging targets in high 

levels of attenuating media will be discussed in the next Chapter of this Thesis. 
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Chapter 5: Imaging through obscurants at λ = 1550 nm with a 

single-pixel depth imaging system 

5.1 Introduction 

In this Chapter, a scanning single-photon depth imager in the presence of atmospheric 

obscurants was investigated [5.1]. The time-of-flight (ToF) imager was based on the 

time-correlated single-photon counting (TCSPC) technique and used an individual 

InGaAs/InP single-photon avalanche diode (SPAD) detector operating at a wavelength 

of 1550 nm.  The system was used to obtain high-resolution depth and intensity profiles 

of targets through a variety of obscurants in a 26-metre-long obscurant chamber using 

low optical power levels.  This system has previously been successful in acquiring depth 

images for long ranges [5.2,5.3], in turbid water [5.4], and for multi-spectral imaging 

[5.5–5.8].  

Several studies have shown that short-wave infrared (SWIR) wavelengths have lower 

levels of attenuation through water-based fog than wavelengths in the visible band 

because of the wavelength dependence of optical propagation due to the effects of 

particulate scattering [5.9,5.10].  However, others studies suggest that depending on the 

nature of the fog (for example, if the fog is extremely dense), there are no clear benefits 

to using longer wavelengths [5.11,5.12].  Studies have also shown that λ = 1550 nm light 

also has extremely high propagation (up to 10 times better than visible light) through 

different types of smoke with particle size distributions up to 1 µm [5.13]. 

Firstly, this Chapter will present an overview of the system configuration and key 

experimental parameters used in these field trials.  Then, the computational methods used 

to obtain the depth and intensity profiles from single-photon data are described in 

Section 5.4.  Finally, the performance of the system was evaluated in Section 5.5 for four 

types of obscuring media over a range of target stand-off distances.  In addition, 

attenuation coefficient measurements comparing visible band and SWIR (λ = 1550 nm) 

light propagation in highly scattering media are also provided.  Conclusions and future 

work are presented in Section 5.6. 

5.2 System configuration and key parameters 

This Section describes the system configuration and key experimental parameters used 

for all measurements presented in this Chapter.  The monostatic depth imaging system 

used in these field trials was broadly similar to that used in the Chapter 4 of this 
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Thesis - with optical components and detector settings optimised for each measurement 

scenario as required.  A detailed description of the system alignment, hardware, and 

optical components was provided in Chapter 4.  A schematic of the imaging system used 

in these measurements is shown in Figure 5.1. 

 

Figure 5.1: Schematic of the single-photon depth imaging system operated at 

a wavelength of 1550 nm.  The system comprised of a pulsed supercontinuum 

laser source, a single-pixel InGaAs/InP SPAD detector, a monostatic 

scanning transceiver unit, and a TCSPC timing module.  Optical components 

include: polarising beam splitter (PBS); fibre collimation packages (FC1, 

FC2, FCR, FCT); scanning galvanometer mirrors (GM1, GM2); relay lenses 

(RL1, RL2, RL3); objective lens (OBJ); longpass filters (LP1, LP2); shortpass 

filter (SP); bandpass filters (BP1, BP2).  

The illumination source used for these measurements was a broadband supercontinuum 

pulsed laser (SuperK EXTREME EXW-12, NKT photonics) [5.14] operated at a 

repetition rate of 15.6 MHz.  This laser was selected as it provided a high level of 

wavelength tunability with a selectable wavelength range of 450 – 2400 nm.  This 

provided the option to investigate alternative operating wavelengths during field trials.  A 

filter rig containing a series of high-performance optical filters was used to select a 

fibre-coupled illumination wavelength centred on λ =1550 nm.   This set of filters was 

comprised of a longpass filter (LP1) with a cut-on wavelength of 1500 nm, a shortpass 

filter (SP) with a cut-off wavelength of 1845 nm, and a 10 nm full-width half-maximum 

(FWHM) bandpass filter (BP1) centred on 1550 nm.  The average optical power used for 

all measurements presented in this Chapter was approximately 1.5 mW.  This optical 
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power level was the maximum available power level from the laser source with these 

filters and provided eye-safe imaging at the illumination wavelength of 1550 nm.  

Several target stand-off distances were used during these field trials depending on the 

type and density of obscurant used.  Thus, due to the frequent change in target range, the 

parallax-free system configuration provided by the monostatic transceiver unit was highly 

beneficial during these field trials.  The transmit and receive paths inside the transceiver 

unit were configured to be coaxial using a polarising beam splitter (PBS in Figure 5.1).  

This PBS was also used to de-multiplex the return signal from the common channel before 

the signal was routed to the detector.  The two galvanometer mirrors (GM1 and GM2 in 

Figure 5.1) were used to raster scan the beam on the target scene. 

An objective lens (OBJ in Figure 5.1) was used to both focus the outgoing illumination 

beam on the target and collect return photons, which had been scattered back from the 

target and from particles suspended in the air.  The collected photons were subsequently 

routed to the receive channel and fibre-coupled to the single-photon detector via a 10 µm 

diameter core armoured optical fibre.  A single-pixel InGaAs/InP SPAD detector (Micro 

Photon Devices, Italy [5.15]) with an operating wavelength range of 900 – 1700 nm and 

a single-photon detection efficiency of 35% at λ = 1550 nm (for a 5 V excess bias) was 

used in these measurements.  

As discussed in Chapter 4, light scattered from optical components within the transceiver 

unit can cause significant levels of back-reflections due to the monostatic configuration 

of the system.  This can result in ‘false’ target peaks in the timing histogram and could 

result in saturation of the highly sensitive SPAD detector.  Thus, the detector was operated 

in electronically gated mode to avoid these spurious back-reflections.  This means that 

the detector was activated approximately in synchronisation with the expected pulsed 

laser return and de-activated at other times.  For the measurements presented in this 

Chapter a detector gate width of 30 ns was selected, equivalent to a distance of 9 metres.   

As previously discussed in Chapter 3, relatively high levels of afterpulsing effects are 

typically found in InGaAs/InP SPAD detectors.  This occurs when charge carriers are 

trapped in defects that are subsequently released much later causing spurious avalanches, 

directly leading to an increased background count level and to a reduction in the 

signal-to-noise ratio.  Thus, in order to reduce the effects of afterpulsing, the SPAD 

detector was de-activated for a hold-off time of 40 µs after each photon detection event 

to allow trapped charge carriers to be released without resulting in further avalanche 

events.   
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To reduce the effects of ambient light on the background level, the receive channel was 

spectrally filtered using a 10 nm FWHM bandpass filter and a longpass filter (LP2) with 

a cut-on wavelength of 1500 nm.  These filters have a high transmission at the operating 

wavelength while providing sufficient out-of-band rejection.  The overall timing jitter of 

the system was measured to be approximately 220 ps (FWHM) on a uniform, cooperative 

surface.  The detector was a significant source of the overall system jitter; however, the 

laser source and data acquisition hardware also contribute. 

To measure photon ToF, the pulsed laser source provided an electrical start trigger to the 

TCSPC module (HydraHarp 400, PicoQuant, Germany [5.16]).  The stop trigger was 

provided by an electrical output from the SPAD module for each detection event.  The 

TCSPC module was configured to record time-tags for the detection events with a 2 ps 

timing bin resolution and this data was then transferred via USB to the control computer.  

A summary of these key system parameters is given in Table 5.1. 

Table 5.1: Summary of key system parameters 

Parameter Value/comment 

Illumination source 
NKT Photonics supercontinuum  

(SuperK EXTREME EXW-12) 

Illumination wavelength 1550 nm (10 nm) FWHM 

Laser repetition rate 15.6 MHz 

Average optical power ~ 1.5 mW 

Obscurants 
glycol-based smoke; white canister smoke;  

black canister smoke; water fog 

Detector 

Fibre-coupled, electrically gated-mode 

InGaAs/InP SPAD, MPD (www.micro-photon-

devices.com) 

Detector single-photon detection efficiency ~35% at λ = 1550 nm 

Detector excess bias 5 V 

Detector gate width 30 ns  

Detector hold-off time 40 µs 

Data acquisition hardware HydraHarp 400, PicoQuant (www.picoquant.com) 

Histogram timing bin size 2 ps timing bin width 

System timing jitter ~ 220 ps 

Spectral filters in transmit channel 

Longpass: Cut-on 1500 nm, transmission >98% 
(ThorLabs, FELH1500) 

Shortpass: Cut-off 1845 nm, transmission >90%  

(Spectrogon, SP-1845) 

Bandpass: 10 nm wide, 1550 nm central 

wavelength, transmission >95%  (Edmund Optics, 

#86-091) 

Spectral filters in receive channel 

Longpass: Cut-on 1500 nm, transmission >98% 
(ThorLabs, FELH1500) 

Bandpass: 10 nm wide, 1550 nm central 

wavelength, transmission >95%  (Edmund Optics, 

#86-091) 
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5.3 Experimental layout 

This Section provides details of the target configurations, obscurant types, and attenuation 

measurements performed for the experiments detailed in this Chapter.   

5.3.1 Target configuration 

The measurements presented in this Chapter were performed within an obscurant 

chamber housed in an indoor facility at The French-German Research Institute of 

Saint-Louis (ISL), France.  The obscurant chamber (as shown in Figure 5.2) had 

approximate dimensions of 26 × 2.3 × 2.5 metres (L × W × H).  During measurements, 

the obscurant was contained in the chamber by plastic sheeting that ran the entire length 

of the chamber.  A black fabric curtain was used for further containment during obscurant 

generation, and then subsequently drawn back to allow for measurements of the target 

within the chamber.  This obscurant chamber has been previously used to examine 

range-gated active imaging at SWIR wavelengths using non single-photon detection 

based approaches [5.13,5.17].  The use of this facility allowed for stable atmospheric 

conditions, experimental repeatability, and slow obscurant dispersion. 

 

Figure 5.2: (a) Photograph from the rear of the chamber with no obscurant 

present.  (b) Photograph from the front of the chamber with obscurant present. 

The chamber was lined with plastic sheeting to help contain the obscurant for 

the duration of the measurement set.  A black curtain was used to limit the 

dispersion of the obscurant before measurements. 

The target scene for all measurements presented in this Chapter comprised of a life-size 

polystyrene head mounted directly in front of a smooth wooden backboard, as shown in 

Figure 5.3.   

(a) (b) 
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Figure 5.3: Photographs of the life-size polystyrene head target and wooden 

backboard in the obscurant chamber mounted alongside calibration panel 

sets A and B.    

Two sets of calibration panels were positioned at several points throughout the chamber 

to calculate the level of attenuation in the chamber for both λ = 1550 nm and the visible 

band (400 – 800 nm wavelength range) in each measurement. The polystyrene head, 

wooden backboard, and both sets of calibration panels were mounted on a metal rail so 

that the target scene could be easily positioned in the chamber.  This set-up also allowed 

for quick yet calibrated changes to the target range.  Calibration set A(1,2,3,4) was used 

for the λ = 1550 nm measurements as indicated in Figure 5.3, and set B(1,2,…,8) for the 

visible band. Set A comprised four panels which were mounted to the left of the 

polystyrene head at one metre equidistant increments.  These panels had dimensions of 

150 × 150 mm and were made from a thin sheet of aluminium.  Half of the panel had a 

94% reflectance Permaflect coating [5.18] and the other half had a 18% reflectance 

Permaflect coating.  These coatings act as near Lambertian reflectors to provide a good 

contrast measurement.  In order to attain an accurate measurement of the level of 

scattering at the target position for λ = 1550 nm, calibration panel A3 was placed 

nominally in the same plane as the front of the polystyrene head.   

A Si-based camera (Prosilica GT1380) with a 100 mm EFL objective lens (NIKON 

18-300 zoom lens) was used to measure the visibility in the visible band using a passive 

imaging approach.  These measurements were achieved using contrast measurements 

from calibration set B.  This measurement approach used a combination of broadband 

illumination and detection in the wavelength band 400 – 800 nm.  This wavelength band 

can be approximated to the responsivity of the human eye.  The eight panels of calibration 

set B extended from the front to the rear of the chamber at a pre-determined spacing.  

Each panel had dimensions of 250  250 mm and was coated with 5% and 94% 

Permaflect.  This visible camera system was placed at approximately 27 metres from the 

entrance of the obscurant chamber, 10 metres behind the λ = 1550 nm depth imaging 
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system.  A schematic diagram and photograph of the target set-up at 5 metres from the 

front of the chamber is shown below in Figure 5.4. 

 

Figure 5.4: (a) A schematic diagram of the experimental layout inside the 

26-metre-long fog chamber with the polystyrene head placed at approximately 

5 metres.  Calibration set A(1-4) was used to calculate the attenuation 

coefficient for λ = 1550 nm and set B(1,2…,8) was used to measure the 

attenuation coefficient for the visible band.  (b) Photograph of the target 

configuration for set-up #2 prior to measurements.   

Three different target configurations were used for the measurements presented in this 

Chapter.  The configuration was dependent on the type of obscurant used in each 

measurement.  In the first configuration (set-up #1), the target was mounted on the rail at 

a distance of ~ 9.5 metres from the front of the chamber alongside calibration set A.  The 

effects of black canister smoke were investigated at this range.  In the second target 

configuration (set-up #2), the target and calibration set A were placed at a distance of 

5 metres from the front of the chamber.  The effects of water vapour were also 

investigated at this range.  Finally, for the third target configuration (set-up #3), the target 

and calibration set A were moved to the end of the obscurant chamber at a distance of 

24 metres from the front of the chamber (41 metres from the system position).  The effects 

of white canister smoke, glycol vapour, and water fog were investigated at this range.  For 

scenes at 5 and 9.5 metres into the obscurant, an objective lens with an effective focal 

length (EFL) of 200 mm and an aperture of 50 mm was used, providing a field-of-view 

(a) 

(b) 
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(FoV) of approximately 350 × 275 mm and 335 × 270 mm, respectively.  For targets at 

24 metres into the obscurant, a 500 mm EFL objective lens with an aperture size of 80 mm 

was used providing a FoV of approximately 335 × 270 mm.  The illumination beam 

diameter at the target was approximately 2 mm.  The per-pixel acquisition time for 

measurements using white canister smoke, glycol vapour, and water fog was 3 ms, and a 

6 ms per pixel acquisition time was used for black canister smoke, corresponding to total 

acquisition times of approximately 30 seconds and 60 seconds, respectively.  A summary 

of the experimental set-ups and key parameters used for each configuration is given in 

Table 5.2.  

Table 5.2: Summary of the three experimental set-ups used in this Chapter 

and key parameters used in these field trials.   

Parameter Value/comment 

Set-up #N Set-up #1 Set-up #2 Set-up #3 

Stand-off distance to 

chamber 
17 metres 

Stand-off distance within 

obscurant 
5 metres 9.5 metres 24 metres 

Obscurants water fog 
black canister 

smoke 

white canister smoke 

glycol vapour 

water fog 

Objective lens focal length  200 mm 200 mm 500 mm 

Objective lens aperture  Ø50 mm Ø50 mm Ø80 mm 

Illumination beam 

diameter at target 
~ 2 mm ~2 mm ~ 1.5 mm 

Scan area (X×Y)  ~350 × 275 mm ~350 × 275 mm ~335 × 270 mm 

Pixels (X×Y) 117 × 92 113 × 97 115 × 93 

Acquisition time per pixel  3 ms per pixel (6 ms per pixel for black canister smoke) 

Spacing of Calibration 

Set(A#) 
1 metre equidistant spacing 

Spacing of Calibration 

Set(B#) 

B1-3: 1.5 metre equidistant spacing 

B4-8: 3 metre equidistant spacing 

 

5.3.2 Obscurants used in this study 

Four different types of obscurants were used in this study: black canister smoke, white 

canister smoke, glycol vapour, and water fog.  Both the black and white smoke were 

generated by igniting Bjӧrnax AB Ventilax smoke canisters.  These canisters were based 

on the combustion of potassium chlorate and ammonium chloride and produced particles 

with a particle diameter distribution of approximately 400 nm - typical of the type of 

smoke found in most pyrotechnic smoke grenades.  A transmission spectrum for this 

particular smoke can be found in ref. [5.19].  The glycol vapour was generated by a JB 

Systems FX-700 smoke machine vaporising Universal Effects ST-Smoke Fluid Light.  

The glycol vapour had a particle size distribution of approximately 1 µm, meaning the 
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particles were larger than those from the canister smoke.  A system of high-pressure 

nozzles mounted along the ceiling of the full length of the obscurant chamber generated 

the water fog.  These nozzles were capable of creating a very fine mist, with an average 

particle size distribution of 18 ± 8 µm (measured using a LISST-100X granulometer 

(Sequoia Scientific Inc.)) which is a realistic particle size for atmospheric water particles 

[5.20].  Further details on these obscurants is provided in ref. [5.13]. Photographs showing 

each of these obscurants in the obscurant chamber are shown in Figure 5.5.  

 

Figure 5.5: Photographs of (a) the black canister smoke ignited in the 

chamber; (b) the target set up with a low density of white canister smoke; (c) 

view of the target scene at the start of a measurement with glycol vapour; and 

(d) view of the target set-up within the chamber with a low density of water 

fog.   

The obscurant was pumped into the chamber (or, in the case of the canister smoke, ignited 

in the chamber at equidistant intervals) until a sufficient density was achieved.  Fans were 

used to help homogenise the obscurant throughout the length of the chamber.  Over the 

duration of the measurement set, the obscurant would slowly disperse out of the open 

ends of the chamber until the scene was fully visible as shown in Figure 5.6.   

 

Figure 5.6: Photographs taken during a measurement set showing the 

dispersion of glycol vapour from the obscurant chamber over the duration of 

the measurement set.  

(a) (b) (c) (d) 
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5.3.3 Attenuation measurements for λ = 1550 nm and the visible band 

As discussed previously in Chapter 2 of this Thesis, scattering and absorption effects from 

particles suspended in the atmosphere can result in a significant reduction in the signal 

received by the light detection and ranging (LiDAR) system.  Therefore, it was necessary 

to obtain the attenuation coefficient, α, for each measurement made in obscurants for both 

λ = 1550 nm and the visible band due to variations in the obscurant density over the 

duration of the measurement set.  These attenuation measurements were made using 

calibration panels from set A and set B as discussed previously in Section 5.3.1.  The 

methods used to calculate the attenuation coefficient for both SWIR and visible 

wavelengths are described in this Section.  It is important to note that the methods used 

to calculate the attenuation coefficients for both the visible and SWIR wavelengths may 

have been affected differently by obscurant inhomogeneity since very different spatial 

averaging is used in the two measurement approaches.  

5.3.3.1 Calculating the attenuation coefficient for the visible band 

In order to make a measurement of the attenuation coefficient for the visible part of the 

spectrum, the contrast over a central region of the 5% and the 94% Permaflect in 

calibration set B was made.  Each measurement was performed in the presence of an 

obscurant, and then compared with the same region of the calibration panel in a reference 

set of images with good visibility (i.e. no obscurant present).  At the beginning of each 

measurement set, when the obscurant is thickest, the visible band images show very poor 

contrast.  However, the contrast improves as time passes and the obscurant disperses from 

the chamber.  In order to calculate the visible band attenuation coefficient, NAL(visible), the 

atmospheric visibility was calculated using the contrast measurements from the images 

acquired with the passive imaging system.  As defined by Koschmieder [5.21], 

atmospheric visibility, V, is related to the attenuation coefficient, α, by the law: 

01
ln ,

visible th

C
V

C

 
  

 
                                                 (5.1) 

where C0 corresponds to the target contrast (C0 = 1) and Cth is set equal to 0.05, as 

discussed in Chapter 2.  This is the human eye's minimal perceptible contrast as defined 

by the CIE (International Commission on Illumination) [5.22].  This corresponds to a 

visibility limit of approximately three attenuation lengths for the human eye. This limit 

was calculated for each measurement performed in obscurant to find the point at which 
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the contrast is 5% through use of polynomial fitting.  Given these values, the relation 

between visibility and attenuation can be expressed as: 

3
.visible

V
                                                         (5.2) 

For the measurements presented in this Chapter, the visibility calculations had good 

agreement with estimations made with the naked eye.  

5.3.3.2 Calculating the attenuation coefficient for λ = 1550 nm 

Due to the wavelength dependence on the level of particulate scattering in the atmosphere 

[5.23–5.26] (discussed previously in Chapter 2 of this Thesis), a separate measurement 

of the attenuation coefficient by the λ = 1550 nm imaging system was made for each 

single-photon measurement.  This was calculated by examining the single-photon return 

from a known region of calibration panel A3 (as indicated in Figure 5.7) when compared 

to a free-space reference measurement of exactly the same part of the panel, when no 

obscurant was present.  

 

Figure 5.7: Intensity profiles obtained using pixel-wise cross-correlation of 

(a) a noisy measurement taken of the target in a high level of scattering and 

(b) a reference measurement taken of the same scene with no obscurant 

present.  The region of calibration panel A3 used to calculate the attenuation 

coefficient is indicated in each intensity profile.   

The number of attenuation lengths (NAL(1550 nm)) between the transceiver and target was 

then calculated from the Beer-Lambert law as follows: 

0
(1550 ) 1550

1
ln ,

2
AL nm nm

n
N d

n


 
   

 
                                       (5.3) 

where d is the one-way distance of propagation in the obscurant, α1550nm is the attenuation 

coefficient for the level of obscurant present in the chamber, n is the number of returned 

photons in the presence of obscurant, and n0 is the number of returned photons in the 

(a) (b) 
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reference measurement (i.e., in the absence of obscurant), as discussed in Chapter 2 

[5.27].  These measurements were performed for each obscurant type from the highest 

attenuation level to the lowest as the obscurant dispersed out of the chamber. 

5.4 Computational Methods 

In recent years, there has been great interest in the development of reconstruction 

algorithms for single-photon data processing, with several algorithms demonstrating good 

reconstruction results of single-photon data in scenarios where the background level is 

relatively high and the return signal is very low [5.28–5.31].  These algorithms were all 

designed to improve the quality of the reconstructed depth and intensity profiles in the 

sparse-photon regime.  This Chapter presents results obtained using three algorithms of 

varying complexity; (i) pixel-wise cross-correlation, (ii) the Restoration of Depth and 

Intensity using the Total Variation (RDI-TV) algorithm, and (iii) the Multidimensional 

Nonlocal Reconstruction of 3D (M-NR3D) images algorithm.   

5.4.1 Pixel-wise cross-correlation algorithm 

The pixel-wise cross-correlation algorithm is a computationally simple algorithm that can 

be used to provide estimates of depth and intensity in single-photon data by comparing 

the data to a known instrumental response of the system.  This algorithm was described 

in detail in Chapter 4 of this Thesis.  The instrumental response function used for this 

analysis was acquired using a 100 second integration time single-pixel measurement, on 

the 94 % reflectivity region of panel A3 providing a uniform response.   

Since the cross-correlation algorithm approximates the depth position of the target 

assuming the absence of background noise, it performs poorly in the presence of high 

levels of obscurants due to low levels of photon returns from the target.  Figure 5.8 shows 

timing histograms taken from a single pixel in measurements of the target scene under 

the same illumination conditions taken in glycol vapour at α1550nm = 0.08 m-1 (i.e., low 

level of obscurant) and α1550nm = 0.18 m-1 (i.e., high level of obscurant).  Figure 5.8 (a) 

indicates that in clear conditions, the timing bins containing the target return peak are 

easily discernible.  However, in the presence of an obscuring media as indicated in Figure 

5.8 (b) the corresponding target bins may contain a similar number of photon counts to 

the background level and no discernible target return peak due to high levels of scattering.  

This high level of background can potentially lead to an incorrect depth estimate, as 

cross-correlation is only effective at finding the highest peak in the histogram.  This 

highlights the need to apply advanced processing algorithms capable of dealing with 
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scenarios involving high levels of scatter or low target returns such as the RDI-TV or 

M-NR3D algorithms.  Figure 5.8 (c) and (d) also show aggregated timing histograms 

(containing data acquired from all 10,695 pixels) of the target scene through 24 metres of 

glycol vapour obtained with the cross-correlation algorithm.  The return peaks from the 

target are shown in Figure 5.8 (c) with an attenuation coefficient of α1550nm = 0.08m-1.  

The average background level per timing bin at this level of attenuation was 

approximately 5 counts.  When the glycol vapour is much denser (i.e., α1550nm = 0.18m-1), 

the level of scattering increases resulting in a higher background level of 25 counts per 

timing bin and a reduced signal-to-noise ratio.   

 

Figure 5.8: (a) and (b) show single pixel timing histograms extracted from a 

measurement of the target through 24 metres of glycol vapour.  Each 

histogram shows the number of photon returns obtained in a single pixel over 

an acquisition time of ~ 3 ms for (a) α1550nm = 0.08 m-1 (i.e., low level of 

obscurant) and (b) α1550nm = 0.18 m-1 (i.e., high level of obscurant). (c) and (d) 

show aggregated timing histograms of the target and calibration set A# for 

attenuation coefficients of 0.08 m-1 and 0.18 m-1, respectively.   

(a) (b) 

(c) 

(d) 
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5.4.2 RDI-TV algorithm 

As previously discussed, the presence of obscuring media can lead to a high level of 

photon scattering.  Due to low levels of photon returns, this can lead to an increase in 

noise in single-photon depth and intensity measurements or even pixels where no 

information is acquired, resulting in a degradation in image quality.  This means that the 

cross-correlation algorithm does not perform well in these conditions.  In order to process 

single-photon data acquired in high levels of scattering media, a more sophisticated 

algorithm was applied to the data obtained at these field trials.  The RDI-TV algorithm 

has been previously shown to be a good candidate algorithm for single-photon data 

reconstruction where there is only one target depth but contains multiple surfaces 

[5.32,5.33].  This algorithm is described in detail in Chapter 4 of this Thesis and in 

ref. [5.33].   

5.4.3 M-NR3D algorithm 

A third algorithm, M-NR3D, was used to process the data presented in this Chapter.  This 

algorithm differs from the RDI-TV algorithm in that it considers the full histogram cube 

as it contains more information than the preliminary estimates of depth (Dinit) and 

intensity (Iinit).  M-NR3D is based on the minimisation of a cost function that accounts 

for the Poisson statistics of the single-photon data, and improves the methodology used 

in the RDI-TV algorithm.  It achieves this by (i) accounting for non-local spatial 

correlations between target reflectivities; (ii) assuming the presence of few number of 

peaks in each group of pixel neighbourhoods [5.34–5.36]; (iii) accounting for the 

correlations between multi-temporal 3D images of the target scene acquired in 

succession.  In this Chapter, the algorithm will be denoted as NR3D when performing an 

independent processing of the data and M-NR3D for a joint processing of several images.  

The cost function Cf used to restore multi-temporal 3D images composed of K frames is 

given by: 

                
1 1 2 21

( ) ( , ) ( ) ( ),
K
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
                              (5.4)                     

where Lk(Yk,Xk) is the log-likelihood of the data, Xk is the matrix representing the cloud 

points of the data after denoising for the kth frame, and Tφ1 and Tφ2 are two regularization 

terms.  Note that in contrast to the RDI-TV algorithm, which processes images 

independently, the M-NR3D algorithm performs a joint processing in order to improve 

the restoration quality.  Further details on the M-NR3D algorithm are given in ref. [5.37]. 
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5.5 Experimental results and discussion  

This Section presents results obtained using the pixel-wise cross-correlation, the RDI-TV, 

and the M-NR3D algorithms from data acquired through high levels of scattering media.  

For scenarios where there was a very high level of scattering and where the reconstructed 

depth profiles are significantly degraded, a signal-to-reconstruction error (SRE) value is 

provided.  The SRE is given as: 

2
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where dref is the reference depth profile (or ground-truth image), d is the reconstructed 

depth profile, and Np is the total number of pixels in the image.  The ground truth image 

is taken from data with the highest quality depth reconstruction, no obscurant present, and 

with the longest acquisition time available.  The SRE values are given in decibels (dB) 

with a higher SRE representing a better reconstruction [5.37].  This simple metric gives 

an indication of the reconstructed quality of an image taken in degraded conditions when 

compared to the reference image taken in clear conditions.  

5.5.1 Black canister smoke 

The first obscurant investigated was the black canister smoke at a stand-off distance of 

9.5 m into the obscurant chamber (approximately 26.5 m from the system position).  The 

canisters containing the black smoke were ignited at several points within the chamber 

and, once a sufficient level of obscurant was present, measurements were performed using 

both the λ = 1550 nm system and the visible system to acquire attenuation coefficients 

for both wavelengths.  The dispersion rate of the black smoke from the chamber allowed 

for a 60 second measurement (6 ms per-pixel) duration repeated every 60 seconds for an 

overall measurement duration of approximately 8 minutes.  A plot of the attenuation 

coefficient for both the visible band and λ = 1550 nm is shown in Figure 5.9. 
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Figure 5.9: A comparison of the attenuation coefficient as a function of time 

for both λ = 1550 nm and the visible band for a target position of 9.5 metres 

in black canister smoke.   

The results show that attenuation coefficient at λ = 1550 nm is lower than in the visible 

band over the entire duration of the measurements.  The λ = 1550 nm attenuation 

coefficient measured was very low meaning that a high level of propagation was 

achieved, even at the start of the measurement set.  Reconstructed depth and intensity 

profiles obtained using pixel-wise cross-correlation from data obtained at the start of the 

measurement set are shown in Figure 5.10. 

 

Figure 5.10: Reconstructed depth (a) and intensity (b) profiles of the target 

scene through 9.5 metres of black canister smoke for an attenuation coefficient 

of α1550 nm = 0.1 m-1 obtained using pixel-wise cross-correlation.   

(a) (b) 
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These results were obtained at attenuation coefficients of approximately α1550 nm = 0.1 m-1 

and αvisible = 0.57 m-1, equivalent to NAL(1550 nm) = 0.95 and NAL(visible) = 5.4.  Figure 5.10 (a) 

shows that both the depth and intensity profiles were successfully reconstructed from the 

first measurement in the set meaning that a more challenging scenario was required to 

evaluate the system performance.  Moreover, these results were obtained using only the 

simple pixel-wise cross-correlation algorithm with no need for the more sophisticated 

reconstruction algorithms.  These results demonstrate a clear advantage of SWIR 

operation compared with visible detection approaches in this type of obscurant. 

5.5.2 White canister smoke 

Due to obtaining results from the very start of the measurement set with black smoke, the 

measurements were repeated with the target placed at a more challenging stand-off 

distance of 24 metres into the obscurant (approximately 41 metres from the system 

position).  A white version of the canister smoke was used for these measurements. A 

shorter per pixel acquisition time of 3 ms was used, resulting in a measurement format of 

a 30 second measurement duration repeated every 60 seconds for an overall period of 

approximately 7 minutes.  The attenuation coefficient measurements for both the visible 

band and λ = 1550 nm are shown in Figure 5.11.   

 

Figure 5.11: A comparison of the attenuation coefficient as a function of time 

for both λ = 1550 nm and the visible band for a target position of 24 metres 

in white canister smoke.   

Attenuation coefficients of α1550nm = 0.1 m-1 and αvisible = 0.5 m-1, equivalent to 

NAL(1550 nm) = 2.4 and NAL(visible) = 12 were measured at the beginning of the attenuation set.  
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The visible band attenuation decreases over the measurement duration while the SWIR 

band remains relatively constant.  Figure 5.12 shows results obtained in both clear 

conditions and in high density white canister smoke.  In order to provide a good visual 

representation of the polystyrene head, depth data were only selected from a range of 

0.2 metres around the target and a subset of pixels containing only target information 

from the head is shown.  Figure 5.12 (a) and 5.12 (d) show RGB photographs of the target 

scene at the point of measurement for both clear conditions and in white canister smoke; 

Figure 5.12 (b) and 5.12 (e) show the depth profiles obtained using the pixel-wise 

cross-correlation approach.  Figure 5.12 (c) and Figure 5.12 (f) show the intensity maps 

obtained by summing events over a 200-bin range centred on the highest value in the 

cross-correlation.  

 

Figure 5.12: Depth and intensity profiles of the polystyrene head through 24 

metres of white canister smoke obtained using pixel-wise cross-correlation.  

The top row shows results obtained with no obscurant present while the 

bottom row shows the results obtained in white smoke when the attenuation 

coefficient was α1550nm = 0.10 m-1 at λ = 1550 nm.  This represented 2.4 

attenuation lengths at λ = 1550 nm and 12.0 attenuation lengths in the visible. 

(a) and (d) show RGB photographs taken of the scene at the time of 

measurement; (b) and (e) show depth profiles of the target; and (c) and (f) 

show intensity profiles of the target. 

(a) (b) (c) 

(d) (e) (f) 
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The results show, that even with the very poor visibility shown in Figure 5.12 (d), the 

target was discernible from the first measurement in the set.  In fact, the intensity profile 

in Figure 5.12 (f) indicates that a higher number of photons than required to obtain an 

accurate depth and intensity estimate were collected from the target.  Therefore, shorter 

acquisition times were extracted from the full time-tagged single-photon data file to 

investigate the results obtained for a per-pixel acquisition time τacq = 0.01, 0.05, and 

0.1 ms.  3D point cloud representations of the target scene for the reduced acquisition 

times, when α1550nm = 0.1m-1, are shown in Figure 5.13.  

 

Figure 5.13: 3D point cloud representations of the target scene through 

24 metres of white canister smoke at α1550nm = 0.10 m-1 for reduced acquisition 

times of τacq = 0.1, 0.05, and 0.01 ms.  The reconstructions were made using 

pixel-wise cross-correlation. 

The results in Figure 5.13 demonstrate the decreasing quality of the image reconstruction 

for shorter acquisition times.  However, using the cross-correlation algorithm, a partial 

reconstruction of the target scene was achieved with only 1 photon per pixel on average.  

Therefore, these results were then processed using the RDI-TV and NR3D algorithms.  

Figure 5.14 shows the depth profiles obtained for per-pixel acquisition times of 

τacq = 0.01, 0.05, 0.1, and 3 ms obtained using the cross-correlation, RDI-TV, and 

M-NR3D algorithms.  The SRE values are also given for each image with the ground 

truth taken from the full acquisition time data (i.e. 3 ms per-pixel) obtained using 

pixel-wise cross-correlation.  

The results show that, at shorter acquisition times, the depth profiles obtained using 

pixel-wise cross-correlation exhibit high levels of noise and have many pixels where 

either a depth estimate could not be made or an inaccurate measurement outside the set 

depth threshold was obtained.  However, the RDI-TV and NR3D algorithms provide 

much better reconstructions, even at the lowest acquisition time of τacq = 0.01 ms where 

the head is almost fully reconstructed.  However, while the RDI-TV algorithm succeeds 
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in reconstructing much of the data from missing pixels or bad estimates, it has a tendency 

to over smooth the depth profile resulting in a loss of detail in the face of the polystyrene 

head.  The NR3D algorithm achieves good reconstruction at acquisition times as low as 

0.05 ms per-pixel, but seems to struggle at 0.01 ms per-pixel.  The computational time 

for the RDI-TV and NR3D algorithms are approximately 10s of seconds and 1000s of 

seconds per image, respectively.  Therefore, for the shortest acquisition times, RDI-TV 

appears to give the best reconstruction while requiring only moderate processing times, 

allowing for more rapid data acquisition using a single-pixel detector.   

 

Figure 5.14: Depth profiles of the polystyrene head through 24 metres of white 

canister smoke for α1550nm = 0.10 m- 1 and τacq = 0.01, 0.05, 0.1, and 3 ms 

per-pixel obtained using (a) the pixel-wise cross-correlation, (b) RDI-TV, and 

(c) the NR3D algorithms.  

5.5.3 Glycol vapour 

In order to investigate the effects of a larger particle size on optical propagation, the next 

set of measurements was performed through 24 metres of glycol vapour where the 

particles were approximately 1.5× larger than the canister smoke particles.  Due to the 

relatively slow dispersion of the glycol vapour out of the obscurant chamber compared to 

the canister smoke, a measurement format of 30 seconds scans every 60 seconds was used 

(a) 

(b) 

(c) 
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resulting in a total measurement duration of 14 minutes.  The attenuation coefficients for 

both wavelength bands over the duration of the measurement set are shown in Figure 

5.15.  

 

Figure 5.15: A comparison of the attenuation coefficient as a function of time 

for both λ = 1550 nm and the visible band for a target position of 24 metres 

in glycol vapour.  

Due to the high level of obscurant at the beginning of the measurement set, a very low 

return was obtained from the target.  This resulted in a large variation in the visible 

attenuation from the start of the measurement set to the end.  The SWIR measurements 

also demonstrate a larger variation than in the case of the canister smoke, however, it is 

less significant than in the visible band. Due to the very low target returns at high 

obscurant densities, for the λ = 1550 nm attenuation data, only those data points where 

there was a sufficient signal-to-noise ratio to make a reliable attenuation coefficient 

measurement are shown.  For these measurements, attenuation coefficient measurements 

could be made starting from approximately 270 seconds into the measurement set.  The 

results show that once again there is a significant difference in the propagation for the 

two wavelength bands, with λ = 1550 nm demonstrating much better penetration through 

the glycol.  Figure 5.16 shows intensity and depth profiles obtained using pixel-wise 

cross-correlation for NAL(1550 nm) = 2.7, 3.1, 3.5, and 4.0.  The corresponding visible band 

attenuation length measurements are also shown.  3D point cloud representations 

demonstrating the effects of particulate scattering on the reconstructed images are shown 

in Figure 5.17.   
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Figure 5.16: Depth and intensity profiles of the polystyrene head target 

through 24 metres of glycol vapour at NAL (1550 nm) = 4.0, 3.5, 3.1, and 2.7.  In 

the visible region, these attenuation lengths are equivalent to 13.6, 11.4, 10.0, 

and 8.8, respectively.  (a) Depth profiles of the target obtained using 

pixel-wise cross-correlation where colour represents depth.  (b) Presents the 

intensity profiles. 

 

Figure 5.17: 3D point cloud representations of the target scene through 24 

metres of glycol vapour at NAL (1550 nm) = 4.0, 3.5, 3.1, and 2.7 demonstrating 

the effects of particulate scattering in highly attenuating media.  The 

reconstructions were made using pixel-wise cross-correlation. 

(a) 

(b) 
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The target profiles, for both depth and intensity, begin to become discernible at 

approximately NAL (1550 nm) = 4.0 and fully visible at NAL (1550 nm) = 3.5, even with the high 

levels of scattering indicated in Figure 5.17.  This corresponds to the equivalent of 11.4 

attenuation lengths in the visible – far higher than can be seen by the human eye.  

However, the high level of scattering does result in many missing pixels.  Therefore, the 

results were then processed using the RDI-TV and M-NR3D algorithms to investigate 

their use for single-photon data in high levels of obscurants.  3D point cloud 

representations and SRE values for (NAL (1550 nm) = 3.5, 3.1, and 2.7) are shown below in 

Figure 5.18.   

 

Figure 5.18: 3D point cloud representations of the polystyrene head target 

through 24 metres of glycol vapour at NAL(1550 nm) = 3.5, 3.1, and 2.7.  In the 

visible region, these attenuation lengths are equivalent to 11.4, 10.0, and 8.8, 

respectively.  The data was reconstructed using: (a) cross-correlation; (b) 

RDI-TV; and (c) the M-NR3D algorithms.  

The results indicate that both the cross-correlation and RDI-TV algorithms performed 

poorly on data acquired with high levels of attenuation in glycol vapour, with the finer 

features of the target largely unrecognisable in most cases.  The advantage of the 

M-NR3D algorithm becomes apparent at very high levels of attenuation, with an SRE of 

(a) 

(b) 

(c) 
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6 dB in comparison to -3 dB for both cross-correlation and RDI-TV.  However, there is a 

significant trade-off with regards to the acquisition time.  The M-NR3D algorithm has a 

much longer computational time of approximately 2500 seconds as it must jointly process 

the three images.  The faster RDI-TV algorithm has a computational time of only 

approximately 100 seconds per image. 

5.5.4 Water fog 

The final set of measurements was performed through 5 metres of water fog.  The shorter 

stand-off distance used during these measurements was chosen due to the high density of 

obscurant in the chamber at the beginning of the measurement set (i.e., αvisible = 1.2 m-1).  

However, in order to make a side-by-side comparison with glycol vapour and canister 

smoke, the attenuation coefficient for propagation through water fog was measured for 

both the 5-metre range and the 24-metre range.  To account for the relatively faster 

dispersion of the water fog from the chamber, the scans were taken for a duration of 30 

seconds, with a separation of 30 seconds between scans for a total measurement set period 

of 8 minutes.   A plot of attenuation coefficient through 24 metres of water fog for the 

duration of the measurement set is shown in Figure 5.19. 

 

Figure 5.19: A comparison of the attenuation coefficient as a function of time 

for both λ = 1550 nm and the visible band for a target position of 24 metres 

in water fog.  

For these measurements, an accurate attenuation coefficient for λ = 1550 nm could not be 

obtained until approximately 5 minutes into the measurement set due to a very high level 

of scattering in the chamber.  Figure 5.19 suggests that there may be a slight advantage 

in working in the SWIR region for this particular particle size and density of water fog, 
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as the measurements indicate that the operating wavelength of λ = 1550 nm may have 

slightly lower attenuation under these conditions than the visible band.  However, when 

the attenuation coefficient was measured over a range of 5 metres, the results indicated 

that there appears to be no advantage in operating at  =1550 nm in this particular water 

fog environment when compared to the visible band.  This could be due to error arising 

from the inhomogeneity of the obscurant in the first few metres of the chamber or a 

consistent systematic error due to the different measurement approaches used for each 

wavelength band. Due to the short range and rapidly changing obscurant density during 

this measurement, it was difficult to make a reliable measurement of the attenuation 

coefficient in the visible band at the 5-metre range.  However, the 24-metre data presented 

in Figure 5.19 suggests that the SWIR wavelength will have slightly less attenuation.  

Figure 5.20 shows RGB photographs of the scene taken in synchronisation with the SWIR 

measurements, the number of attenuation lengths for λ = 1550 nm, and the depth and 

intensity profiles of the head at NAL(1550 nm) = 2.8, 3.1, 3.8, and 4.7 obtained with 

pixel-wise cross-correlation.   

 

Figure 5.20: Depth and intensity profiles of the polystyrene head target 

through 5 metres of water fog at NAL (1550 nm) = 4.7, 3.8, 3.1, and 2.8 obtained 

using pixel-wise cross-correlation.  The per-pixel acquisition time was 3 ms 

(approximately 30 seconds total).  (a) presents RGB photographs of the scene 

at the point of measurement, (b) presents depth profiles of the target, and (c) 

presents the intensity profiles. 

(a) 

(b) 

(c) 
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The results in Figure 5.20 show that at NAL (1550 nm) = 3.8 the target becomes recognisable 

in the depth and intensity profiles using the pixel-wise cross-correlation algorithm while 

at NAL(1550 nm) = 3.1 the target becomes fully discernible.   

The results were then processed using the RDI-TV and M-NR3D algorithms.  The 

obtained 3D point clouds and corresponding SRE values are shown in Figure 5.21 for 

NAL (1550 nm) = 2.8, 3.1, and 3.8.  

 

Figure 5.21: 3D point cloud representations of the polystyrene head target 

through 5 metres of water fog at NAL(1550 nm) = 3.8, 3.1, and 2.8.  The data was 

reconstructed using: (a) cross-correlation; (b) RDI-TV; and (c) the M-NR3D 

algorithms.  

Similar to the results obtained previously in glycol vapour, the cross-correlation and 

RDI-TV algorithms produce satisfactory results at lower levels of attenuation lengths but 

are unable to reconstruct the target at higher levels of attenuation (i.e., > 3.5 attenuation 

lengths at λ = 1550 nm).  The M-NR3D algorithm was able to successfully reconstruct 

some of the finer features in the face of the target in water fog at NAL(1550 nm) = 3.8, 

however, some pixels remained empty around the edges.  The RDI-TV algorithm requires 

a computational time of approximately 100 seconds to process each image, and the 

(a) 

(b) 

(c) 
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M-NR3D algorithm takes approximately 1300 seconds for the joint processing of the 

three images – similar to the results in glycol vapour.  These results show the potential 

for the M-NR3D algorithm for use in highly scattering environments such as 

single-photon data obtained in water fog. 

5.6 Conclusions and future work 

A monostatic depth imaging system based on the single-photon ToF approach was used 

to obtained three-dimensional depth profiles of targets through a variety of obscuring 

media in a 26-metre-long indoor obscurant chamber.  The system was based on a 

single-pixel InGaAs/InP SPAD detector with a wavelength range of 900 – 1700 nm, a 

temporal resolution of 2 ps, and a single-photon detection efficiency of approximately 

35% at λ = 1550 nm.  A pulsed supercontinuum laser source alongside a series of 

high-performance filters were used to deliver a fibre-coupled illumination of 

λ = 1550 nm.   

Four different obscurants were investigated in this study: black canister smoke, white 

canister smoke, glycol vapour, and water fog.  Attenuation coefficient measurements 

were obtained for each obscurant for both λ = 1550 nm and the visible band.  The results 

demonstrate that the use of 1550 nm wavelength illumination provides significant 

benefits over the visible band for both smoke types and glycol vapour but little or no 

benefit for the case of the water fog used in these measurements.  As discussed in Chapter 

2, at these wavelengths Mie scattering from particles suspended in the atmosphere 

dominate, with relatively little contribution from absorption effects [5.20].  These 

scattering effects are dependent on the particle size of the fog in comparison to the 

wavelength of the transmitted beam.  Therefore, the use of SWIR wavelengths will prove 

highly beneficial compared to visible wavelengths for imaging applications in high 

densities of obscurants where the particle size is small, as in the case of smoke.  The 

measurements presented in this Chapter had initial visibilities in the order of metres, 

which can be regarded as propagation in high levels of obscurants.  However, further 

studies are necessary to examine natural fog environments with a range of droplet sizes 

in order to examine imaging scenarios with current interest to the scientific community.  

For example, target distances of 100 metres or more, which are consistent with 

automotive LiDAR.  

Results obtained using the λ = 1550 nm imaging system were processed using three 

image processing algorithms; (i) pixel-wise cross-correlation, (ii) RDI-TV, and (iii) 

M-NR3D. The cross-correlation algorithm provides a simple, computationally 
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inexpensive solution while the RDI-TV and M-NR3D algorithms reconstruct depth and 

intensity profiles by exploiting spatial correlations in single-photon data.  While the 

cross-correlation algorithm provided good results in both black and white canister smoke, 

it failed to reconstruct scenarios where much larger diameter particles were present (such 

as in water fog or glycol vapour).  However, depth and intensity profiles were obtained 

at attenuation length values of up to 3.8 at λ = 1550 nm in water fog and 3.5 in glycol 

vapour, equivalent to > 11 attenuation lengths in the visible band using the more 

sophisticated RDI-TV and M-NR3D algorithms.  Each algorithm’s performance depends 

on the considered scenario, where RDI-TV appears to be more suitable for measurements 

containing a reduced background level.  The M-NR3D algorithm is more general in the 

sense that it accounts for the presence of multiple peaks, it jointly processes a sequence 

of images (i.e., for videos of dynamic scenes) and it performs very good data restoration 

even in presence of high levels of scattering background.  The M-NR3D algorithm, 

despite its computational costs, will be particularly useful in reconstructing distributed 

targets composed of several surfaces in the presence of obscurants and will be a feature 

of future work.  The use of such image processing algorithms indicates significant 

improvements in image reconstruction in the sparse photon regime, which will assist in 

the move towards imaging at higher levels of atmospheric attenuation and reduced data 

acquisition time in future work.   

This Chapter has demonstrated the use of the TCSPC technique for depth profiling 

through obscurants at short acquisition times (less than 1 second for the entire scan) using 

a single-pixel detector, making this method more suitable for a number of depth imaging 

applications.  However, these acquisition times are still relatively slow and remain an 

obstacle for applications with fast dynamic scenes, such as target tracking.  In recent 

years, large format InGaAs/InP SPAD detector arrays integrated with TCSPC electronics 

[5.38–5.41] have become of great interest for rapid three-dimensional imaging.  The use 

of these detectors in SWIR 3D imaging through obscurants will be presented in the next 

Chapter of this Thesis. 
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Chapter 6: Imaging through obscurants at λ = 1550 nm using a 32 × 32 

InGaAs/InP SPAD detector array  

6.1 Introduction 

This Chapter will describe a bistatic active imaging system based on the single-photon 

time-of-flight (ToF) approach using arrayed SPAD detectors in the SWIR region.  The 

system incorporates a 32 × 32 InGaAs/InP single-photon avalanche diode (SPAD) 

detector array and is operated at a wavelength of 1550 nm.  This system can be used to 

measure the depth profile of objects in both clear conditions and in challenging 

environments, such as through high levels of particulate scattering.  The use of the 

time-correlated single-photon counting (TCSPC) technique using single-pixel 

InGaAs/InP detectors for target depth profiling in highly scattering environments has 

been detailed previously in Chapter 4 and Chapter 5 of this Thesis.  While single-pixel 

based systems have been previously demonstrated to be highly successful in acquiring 

depth and intensity profiles in highly attenuating environments, such as through 

camouflage [6.1], in turbid water [6.2], and in smoke and fog [6.3], data acquisition times 

can be prohibitively long (i.e., up to tens of seconds) due to the point-and-stare method 

of data acquisition.  The use of arrayed InGaAs/InP detectors in active light detection and 

ranging (LiDAR) systems can significantly reduce data acquisition times, potentially by 

several orders of magnitude, allowing for rapid, high-resolution, three-dimensional (3D) 

depth profiling in challenging outdoor scenes [6.4,6.5].   

Firstly, this Chapter will present an overview of the system and key experimental 

parameters.  In addition, a characterisation of the detector will be provided in Section 6.2, 

with discussion of parameters such as the dark count rate (DCR), the single-photon 

detection efficiency (SPDE), and the timing response of the detector.  Then, an adapted 

LiDAR model for the bistatic active imaging system based on the photon-counting 

LiDAR equation is described in Section 6.3 alongside predictions on the ranging 

performance of the system.  Finally, the performance of the system is evaluated in 

Section 6.4 over distances of 50 and 150 metres in the presence of obscurants, and at a 

longer range of 1463 metres in clear conditions.  Conclusions and future work are 

presented in Section 6.5. 
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6.2 Overview of system configuration and key experimental parameters 

This Section presents an overview of the system configuration and key experimental 

parameters used in both the characterisation of the detector and for in-situ measurements.  

Parameters such as the DCR, the SPDE, and the instrumental response of the detector will 

be discussed alongside the illumination source and data acquisition.   

6.2.1 Princeton Lightwave Kestrel 32 × 32 InGaAs/InP SPAD detector array 

The detector used in the experiments presented in this Chapter was the Princeton 

Lightwave (PLW) Kestrel 32 × 32 Geiger-Mode Flash 3-D LiDAR Camera (Princeton 

Lightwave, USA) [6.6,6.7].  This camera is based on InGaAs/InP SPAD detector array 

technology and has a 32 × 32 pixel format focal plane array (FPA) with dimensions of 

3.2 mm × 3.2 mm, providing a pixel pitch of 100 µm × 100 µm.  The dimensions of the 

camera are 10 cm × 10 cm × 9 cm and a Chassis C-mount is provided for optical 

component attachment.  A photograph of the detector and a close-up of the FPA is shown 

in Figure 6.1. 

 

Figure 6.1: The PLW Kestrel 32 × 32 InGaAs/InP SPAD array and a close-up 

photograph of the FPA.  The array has dimensions of 3.2 mm × 3.2 mm, 

providing a pixel pitch of 100 µm × 100 µm.  A Chassis C-mount is provided 

for optical component attachment and the camera has dimensions of 

10 cm × 10 cm × 9 cm. 

This sensor can be used for single-photon and low-light detection in the near infrared with 

an operational wavelength range of 1400 – 1620 nm, as stated by the manufacturer [6.8].  

The camera has the capability of 250 – 1250 ps timing bins for gated operation up to 2 µs, 

providing a 3.75 cm time-of-flight resolution per photon return for a maximum gating 

range of 300 metres.  For all the results presented in this Chapter, a 250 ps timing bin size 

was used in order to achieve the highest level of temporal resolution.  The maximum 

frame rate of the camera is 186,000 Hz.  However, in order to assure stable operation 
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during measurements, a frame rate of 150,421 Hz (translating to a frame period of 

6.648 µs) was chosen.  A summary of these key parameters, as stated by the manufacturer, 

is presented in Table 6.1.  

Table 6.1: Table of key parameters for the Princeton Lightwave Kestrel 

32 × 32 InGaAs/InP SPAD detector as shown in ref. [6.8]. 

Parameter Value/comment 

Sensor type InGaAs/InP SPAD 

Camera dimensions 100 × 100 × 90 mm 

Camera weight 1.3 kg 

Array format / dimensions 32 × 32 pixels / 3.2 × 3.2 mm 

Pixel pitch 100 × 100 µm 

Wavelength range 1400 – 1620 nm 

Time bin duration (Tbin) 250 – 1250 ps 

Gate duration 4 – (8000 ∙ Tbin) ns 

Maximum frame rate 186,000 Hz 

Mean photon detection 

efficiency at λ = 1550 nm 
18% 

Mean dark count rate 318 kHz  

Timing jitter 500 ps (maximum) 

Data output format CameraLink 

 

6.2.1.1 Single-photon detection efficiency  

As discussed in Chapter 3, the SPDE is defined as the ratio of the number of photons 

incident on the active area of the detector and the number of detected photons.  This is 

affected by two main mechanisms: absorption probability and triggering efficiency [6.9].  

Both of these mechanisms are affected by the breakdown voltage of the SPAD, which is 

highly temperature dependent [6.10,6.11].  The PLW InGaAs/InP SPAD detector 

contains a temperature control system comprising a temperature sensor and a thermo-

electric cooler (TEC) inside the FPA.  This control system automatically monitors 

ambient conditions and adjusts the FPA settings accordingly; maintaining temperature 

stabilisation and reducing thermal noise.  

The mean SPDE of the detector, as stated by the manufacturer [6.8], is approximately 

18% when using an operational wavelength of 1550 nm.  However, the SPDE of the 

detector during operation is determined by a user-selected sensitivity setting, which alters 

the excess bias.  The sensitivity setting ranges from 1 – 100% with 100% being the most 

sensitive.  A plot of the SPDE as a function of the sensitivity setting is shown in Figure 

6.2. 
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Figure 6.2: Plot of the SPDE as a function of sensitivity setting for the PLW 

32 × 32 InGaAs/InP SPAD array.  The maximum achievable SPDE of the 

detector is approximately 25% for a sensitivity setting of 100%. 

The results presented in this Chapter were all obtained using a sensitivity setting of 100%, 

which corresponds to a SPDE of approximately 25%.   

6.2.1.2 Dark count rate  

The DCR of the detector was measured in a dark laboratory with the lens cap on the 

objective lens to avoid ambient counts.  As discussed in Chapter 3, dark counts in SPAD 

detectors are caused by three mechanisms: thermal noise, charge carriers generated by 

tunnelling, and afterpulsing effects [6.12,6.13].  In InGaAs/InP SPAD detectors, dark 

counts generated by afterpulsing effects are comparably high compared to visible band 

SPAD detectors, such as Si-SPADs [6.14–6.16].  In order to reduce these effects, the 

DCR measurements were performed with a relatively short detector gate width of 20 ns.  

A repetition rate of 150,421 Hz and a sensitivity setting of 100% were selected to 

approximate the standard detector parameters used during field trials. The DCR is defined 

in units of counts per second, and therefore data were recorded for a 1 second acquisition 

time for simplicity.  However, due to the gated configuration of the detector resulting in 

periods of detector inactivity, the DCR was normalised to simulate a free-running 

configuration.  Thus, the DCR for gated-mode was calculated as follows: 

,dark

rep acq gate

N
DCR

  
                                                  (6.1) 



Chapter 6: Imaging through obscurants at λ = 1550 nm using a 32 × 32 InGaAs/InP SPAD detector array 

 

147 

 

where 𝑁𝑑𝑎𝑟𝑘 is the number of recorded dark counts,  𝜈𝑟𝑒𝑝 is the repetition rate (Hz), 𝜏𝑎𝑐𝑞 

is the acquisition time (s), and 𝜏𝑔𝑎𝑡𝑒 is the gate width (s).  A DCR map (where colour 

corresponds to count rate) for the entire FPA alongside the corresponding histogram 

detailing the DCR distribution over the FPA for a sensitivity setting of 100% 

(approximately 25% SPDE) are shown in Figure 6.3.  

 

Figure 6.3: (a) A DCR map (where colour corresponds to count rate) for the 

entire FPA. (b) The corresponding histogram detailing the DCR distribution 

over the FPA at a sensitivity setting of 100% (approximately 25% SPDE) for 

a 1 second acquisition at a repetition rate of 150,421 Hz taken in a dark 

laboratory. 

The results in Figure 6.3 show that the distribution of the DCR across the pixels in the 

FPA ranges from approximately 50 – 750 kcps with a mean value of approximately 

318 kcps at these settings.  In this measurement, four pixels exhibited a DCR significantly 

higher than the average measured value for the array.  These are known as ‘hot-pixels’ 

and largely arise from mid band-gap traps in the SPAD material, which can result in a 

lower breakdown voltage (and consequently a higher DCR) due to a substantial reduction 

of the activation energy of the pixel [6.15].  While these hot-pixels are very common in 

sensor arrays, they can cause optical cross-talk between pixels and aberrations in images 

which must then be eliminated in post-processing [6.17–6.19].  

An average DCR for the array was also measured for different gate widths in order to 

demonstrate the effects of afterpulsing in the camera.  Figure 6.4 shows the average DCR 

over a full range of sensitivity settings for gate widths of 20, 100, and 200 ns.  

(a) (b) 
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Figure 6.4: Plots of the average DCR for the InGaAs/InP SPAD array as a 

function of the sensitivity setting (i.e., SPDE%) for gate widths of 20, 100, and 

200 ns.  As the gate width is increased, the average DCR also increases due 

to the deleterious effects of afterpulsing. 

DCRs of approximately 318 kcps, 2160 kcps, and 5370 kcps were found for gate widths 

of 20 ns, 100 ns, and 200 ns, respectively.  The results in Figure 6.4 show that as the gate 

width is increased, the average DCR also increases due to the deleterious effects of 

afterpulsing.  The longer the detector is active, the higher the likelihood of trapped carriers 

being subsequently released - initiating spurious avalanche events and resulting in a 

higher DCR.  Therefore, for all measurements presented in this Chapter, the gate width 

was kept to the minimum size required for each target scenario.  

6.2.1.3 Instrumental response of the array 

As discussed in Chapter 4, in order to reconstruct a depth profile of a target using a 

pixel-wise cross-correlation algorithm, an accurate instrumental response of the system 

must be known.  For a single-pixel detector a single long-acquisition measurement is 

adequate to obtain this information.  However, in such an arrayed detector each pixel has 

an individual SPAD detector with its own dedicated timing electronics, often resulting in   

a variation in the timing response from pixel to pixel.  In order to characterise the 

instrumental response of the PLW 32 × 32 SPAD array, a 500,000 binary frame 

measurement (approximately 3 seconds acquisition with a repetition rate of 150,421 Hz) 

was made of a uniform, cooperative surface (a Spectralon Diffuse Reflectance panel, 

Spectralon, Labsphere, Inc).  This was obtained in dark laboratory conditions over a short 
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stand-off distance of 2 metres using a 100% sensitivity setting for the camera.  The 

maximum average optical power level (220 mW) of the laser source was used in order to 

replicate operating conditions during long-range measurements, with neutral density 

filters used to reduce the power so that the detector FPA was not damaged.  Timing 

histograms of the instrumental response of several pixels of the array are shown in Figure 

6.5 (a) alongside a photon count map (Figure 6.5 (b)) showing the number of counts in 

the peak bin in each pixel and a peak bin location map (Figure 6.5 (c)) which shows the 

bin location that contains the peak in each pixel.  The peak bin locations in Figure 6.5 (c) 

were arbitrarily numbered from 1 – 4 to demonstrate the shift across the array.  

 

Figure 6.5: The instrumental response function of several pixels of the PLW 

32 × 32 SPAD array obtained for 500,000 binary frames from a uniform, 

cooperative surface in a dark laboratory over a 2 m stand-off distance at a 

100% sensitivity setting.  (a) shows the timing histograms from several pixels; 

(b) shows a photon count map with the number of counts in the peak bin in 

each pixel of the array; and (c) shows a peak bin location map which shows 

the bin location that contains the peak in each pixel of the array. 

(a) 

(b) (c) 
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As indicated in Figure 6.5 (a), each pixel of the array has a non-identical instrumental 

response varying in both amplitude and shape.  The bin location that contains the target 

peak can also vary by as much as 1 ns across the array.  This is due to varying latency 

present in the timing electronics of each individual SPAD detector.  This is taken into 

consideration during data reconstruction by using a separate instrumental response for 

each pixel. 

6.2.1.4 Depth resolution 

The minimum timing bin size of the PLW 32 × 32 InGaAs/InP SPAD array is 250 ps, 

which corresponds to a ToF depth of approximately 3.75 cm.  Due to Poissonian statistics, 

the depth resolution of a time-correlated single-photon counting (TCSPC) system is 

highly dependent on the number of photons detected - with a higher number of detected 

photons providing better depth resolution [6.20].  This is true as long as the background 

is relatively low in comparison to the signal.  This means that there exists a trade-off 

between the acquisition time of a measurement and the achievable depth resolution, as 

the uncertainty in the depth is simply the standard deviation in the measurement, 

calculated as follows: 

,
N


                                                         (6.2) 

where σ is the mean timing jitter of the system in each measurement and N is the number 

of integrated photon counts.  

In order to investigate the depth resolution of the system, a custom-made 3-D pillar depth 

chart was produced.  The chart was manufactured using 3-D printing, cleaned to remove 

excess printing residue, and painted with white primer in order to create a highly reflective 

surface.  The main section of the chart had dimensions of 90 × 90 mm and comprised 

multiple square pillars with equidistant spacing of 15 mm and 5 mm depth 

increments - ranging from 5 – 90 mm.  A smaller grid with 1 mm depth increments 

(ranging from 1 – 4 mm) was placed above the main section.  A CAD model and 

photograph of the 3D pillar depth chart is shown in Figure 6.6. 
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Figure 6.6: (a) A CAD model of the 3-D pillar depth chart.  (b) A photograph 

of the 3D pillar depth chart comprised multiple square pillars with equidistant 

spacing of 15 mm and 5 mm depth increments. 

A depth measurement (shown in Figure 6.7) of the pillar depth chart was obtained using 

a 20 ns gate width, a repetition rate of 150,421 Hz, an acquisition time of 1 second, and a 

sensitivity setting of 100%.  The target was placed at a stand-off distance of 

approximately 2 metres in a dark laboratory.   A pulsed fibre-coupled laser (operated at 

an illumination wavelength of λ = 1550 nm) with an average optical power level of 

220 mW was used to flood illuminate the target.  To avoid damage to the sensitive FPA, 

a neutral density (ND) filter with an optical transmission of 0.01% (ND4) was used in the 

transmission channel of the laser to reduce the optical power.  

 

Figure 6.7: Depth profiles of the pillar depth chart obtained using the PLW 

32 × 32 SPAD array using a 20 ns gate, a repetition rate of 150,421 Hz, a 

1 second acquisition time, and sensitivity setting of 100%. (a) 3D 

representation of the pillar depth chart. (b) 2-D depth profile of the pillar 

depth chart.  These results were acquired using pixel-wise cross-correlation. 

(a) (b) 

(a) (b) 
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The results in Figure 6.7 (a) and (b) show that four separate depth estimates, ranging from 

0 – 11.24 cm, were obtained.  As expected, these estimates have depth increments of 

3.75 cm, corresponding to four sequential 250 ps timing bins.  As discussed, this depth 

resolution could be further improved during data processing using methods described in 

[6.20]. 

6.2.1.5 Camera control and data acquisition  

The PLW 32 × 32 SPAD array is controlled through an industry standard CameraLink 

interface - supporting Base, Medium and Full mode - and is connected via standard 

CameraLink cables to a National Instruments PCIe-1433 framegrabber card housed 

within the control computer.  The camera field-programmable gate array (FPGA) allows 

a high-speed data transfer of 125 Mb/line over 32 parallel lines (one for each pixel row), 

which output data from the focal plane array (FPA).  The control interface on the host 

computer allows for simple camera configuration and control by the user via a simple 

graphical user interface (GUI).  The camera supports both external and internal triggering 

for image acquisition and an external or internal master clock, allowing for easy 

synchronisation with an illumination source in order to obtain accurate ToF 

measurements.  The camera was powered by a TDK-Lambda 100 W embedded switch 

mode power supply at 28 V and 3 A.  

ToF data for each frame period is stored in binary format, where either a detection event 

is registered (1) or it is not (0), for each of the 1024 pixels in the array.  The memory is 

cleared after each frame to begin a new accumulation for the next frame.  This binary data 

can then be converted to create timing histograms based on the user-selected timing bin 

size, frame period, and repetition rate of the camera for subsequent depth and intensity 

profile reconstruction.  

6.2.2 Illumination source 

The laser source used for all measurements in this Chapter was a pulsed fibre laser (BKtel, 

France) operated at an illumination wavelength of λ = 1550 nm [6.21].  An IPS 3610D 

direct current (DC) power supply (RS Components, UK) was used to supply a voltage of 

5.2 V to the laser.  While the laser source has a large operational repetition rate range 

(0 – 2 MHz), a rate of 150,421 Hz was selected in order that the laser was synchronised 

with the detector to achieve ToF measurements.  The laser was mounted directly on to an 

aluminium breadboard (as shown in Figure 6.8 (a)) for portability, and to avoid accidental 
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damage to the delicate fibre output.  A block diagram of the laser is shown in Figure 

6.8 (b). 

 

Figure 6.8: (a) The λ = 1550 nm pulsed fibre laser (BKtel, France). (b) Block 

diagram of the laser adapted from ref. [6.21]. The laser has a pulse width of 

approximately 400 ps and a maximum average optical power of 

approximately 220 mW at a repetition rate of 150,421 Hz. 

The optical power output of the laser is fibre-coupled via a FC/APC 900 µm single-mode 

fibre, and is user-controlled via the software TeraTerm by selecting the current setting of 

the laser.  The average output power as a function of current was measured using a 

fibre-coupled Newport 1936-R optical power meter, for a repetition rate of 150,421 Hz.   

The measured output power was found to be approximately linear with respect to 

increasing current, with the lasing threshold occurring at a current of 1000 mA and a 

maximum output power of approximately 220 mW at 3000 mA.  The central wavelength 

of the source was measured as 1549.7 nm using a Yokogawa AQ6370D optical spectrum 

analyser (OSA). This was measured via a fast scan (shown in Figure 6.9 (a)) of 

0.2 s/100 nm over a wavelength range of 100 nm performed using an average optical 

power level of 0.8 mW.  A 9 nm at full width half maximum (FWHM) wide band-pass 

(BP) filter with a central wavelength that was matched to that of the laser source, > 70% 

optical transmission, and an average out-of-band optical density (OD) > 4 was used to 

minimise the unwanted effects of any potential amplified spontaneous emission (ASE) 

from the laser source [6.22].  The pulse length of the laser source was investigated using 

a fibre-coupled, single-pixel InGaAs/InP SPAD detector with a timing resolution of 2 ps 

(Micro Photon Devices (MPD), Italy) [6.23].  A detector gate width of 30 ns and a 

hold-off time of 40 µs were selected and a 300 second integration time was used.  A 

timing histogram of the photon returns from a uniform, cooperative surface is shown in 

(a) (b) 
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Figure 6.9 (b).  This result was acquired in a dark laboratory at a repetition rate of 

150,421 Hz using an extremely low optical power to avoid saturation of the detector.  The 

pulse length of the laser source was measured to be 413 ps FWHM. 

 

Figure 6.9: (a) The normalised spectral response of the BKtel 1550 nm pulsed 

fibre laser.  The central wavelength was found to be 1549.7 nm. (b) A 

single-pixel timing histogram obtained from a uniform, cooperative surface 

measured with the MPD InGaAs gated detector for an integration time of 300 

seconds.  The pulse length was measured to be 413 ps at FWHM. The 0 ns 

point in time with respect to the signal was chosen arbitrarily. 

6.2.3 Raptor Ninox 640 VIS-SWIR 640 × 512 InGaAs array 

In the field trials presented later in this Chapter, a Raptor Ninox 640 VIS-SWIR InGaAs 

PIN array (Raptor Photonics, UK) was used for both alignment of the PLW field-of-view 

(FoV) with the illumination beam and capturing synchronised SWIR reference videos 

during measurements. The Raptor Ninox 640 has dimensions of approximately 

123 × 89 × 64 mm and has a standard C-mount connection optical interface. A 

photograph of the camera (taken from [6.24]) is shown in Figure 6.10 (a).  The sensor has 

an active area of 9.6 × 7.68 mm with a pixel format of 640 × 512 and a pixel pitch of 

15 × 15 µm.  The wavelength range of the camera is 400 – 1700 nm.  The efficiency 

varied between 0 and ~93% across the wavelength range of the camera with a > 80% 

efficiency at λ = 1550 nm.  The maximum frame rate is 120 Hz, and the data output 

format is 14-bit CameraLink.  

(a) (b) 
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Figure 6.10: (a) A photograph of the Raptor Ninox 640 camera; (b) The 

quantum efficiency of the sensor over the entire wavelength range.  Both 

images taken from ref. [6.24]. 

A summary of these key parameters, as stated by the manufacturer, is given in Table 6.2. 

Table 6.2: Key parameters for the Raptor Ninox 640 camera listed in 

ref. [6.24]. 

Detector parameter Value/comment 

Sensor type InGaAs PIN-Photodiode 

Camera dimensions 123 × 89 × 64 mm 

Camera weight 0.9 kg 

Array format / dimensions 640 × 512 pixels / 9.6 × 7.68 mm 

Pixel pitch 15 × 15 µm 

Wavelength range 400 – 1700 nm 

Photon detection efficiency 

at λ = 1550 nm 
> 80% 

Maximum frame rate 120 Hz 

Data output format CameraLink 

 

The broad spectral response of this sensor means that, with the appropriate optical filters 

mounted on the optical interface, it can be used to image scenes at specific wavelength 

bands.  For example, Figure 6.11 shows passive images of a colleague taken at a stand-off 

distance of 50 metres with a 300 mm effective focal length (EFL) objective lens 

optimised for a wavelength range of 900 – 1700 nm.  Figure 6.11 (a) shows a close-up 

reference photo taken with a visible camera.  Figure 6.11 (b) shows a passive image taken 

with the Raptor Ninox 640 camera operating over its full wavelength range.  Figure 6.11 

(c) shows a passive image taken with the Raptor Ninox 640 camera using a high 

performance long-pass (LP) filter with a cut-on wavelength of 1400 nm mounted on the 

optical interface.  The low photon returns from the face and hands shown in Figure 6.11 

(c) demonstrates the low reflectivity of human skin in the SWIR region [6.25].  

(a) (b) 
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Figure 6.11: Passive images of a group member taken at a stand-off distance 

of 50 metres.  (a) Close-up RGB photograph taken with a visible for reference; 

(b) Image taken with the Raptor Ninox camera over the full wavelength range 

(400 – 1700 nm) of the sensor; (c) Image taken with the Raptor Ninox 640 

camera using a long-pass filter with a cut-on wavelength of 1400 nm. 

6.2.4 SWIR Objective lenses  

Two lenses were primarily used as the objective lenses for both the PLW and Raptor 

Ninox cameras during field trials.  The first was a 300 mm EFL lens with a maximum 

aperture diameter of 85 mm (f/3.5) (Figure 6.12 (a)), and the second was a 500 mm EFL 

lens with a maximum aperture diameter of 71 mm (f/7) (Figure 6.12 (b)).  Both of these 

lenses are optimised for a wavelength range of 900 – 1700 nm and have transmissions of 

> 95% at λ = 1550 nm. 

 

Figure 6.12: The two SWIR lenses used as objective lenses for the PLW and 

Raptor Ninox camera during field trials: (a) a 300 mm EFL lens with a 

maximum aperture of 85.7 mm (f/3.5) and (b) a 500 mm EFL lens with a 

maximum aperture of 71.4 mm (f/7).  

These lenses have an M42 optical interface and were attached to the standard C-mount 

interface of the cameras using an adaptor.  Both lenses were mounted to the main system 

breadboard for stability.  A brief summary of the lens parameters is given in Table 6.3. 

(a) (b) (c) 

(a) (b) 
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Table 6.3: Summary of key parameters for the 300 mm and 500 mm SWIR 

objective lenses used in these field trials. 

Lens parameter 
Value/comment 

OB SWIR 300/3.5 OB SWIR 500/7 

Wavelength range SWIR 900 – 1700 nm 

Focal length 300 mm 500 mm 

Maximum f-number f/3.5 f/7 

Transmission at λ = 

1550 nm 
> 95% > 97% 

Maximum diameter 99 mm 85 mm 

Length 293 mm 400 mm 

Mass 2 kg 2.4 kg 

Optical interface M42 interface 

 

6.2.5 System configuration and key parameters  

During the field trials reported in this Chapter, measurements were made over several 

stand-off distances from tens of metres to kilometre ranges, and in a variety of weather 

conditions ranging from heavy rain to bright sunlight.  This meant that the system design 

had to be portable and modular, while remaining robust to a wide range of conditions.  

Photographs of the system in-situ at the Porton Down Battery Hill Laboratory are shown 

in Figure 6.13 (a) and (b). 

 

Figure 6.13: Photograph showing the key components of the bistatic system 

in-situ at the Porton Down Battery Hill Laboratory: (a) front view of the 

system and (b) rear view of the system. 

(a) 

(b) 



Chapter 6: Imaging through obscurants at λ = 1550 nm using a 32 × 32 InGaAs/InP SPAD detector array 

 

158 

 

The system was set up in a bistatic configuration in order to avoid potential issues with 

back-reflections from optical components causing damage to the sensitive FPA.  The 

bistatic configuration was comprised of two main parts: the illumination source and the 

two SWIR cameras.  The BKtel pulsed fibre laser source, the PLW 32 × 32 SPAD array, 

and the Raptor Ninox 640 camera were all mounted on the same M6-threaded 

450 × 300 mm aluminium breadboard, which was attached to a custom-built basic 

aluminium structure to raise the imaging system off the optical bench, such that they 

shared the same FoV.  This upper breadboard was then fixed to an identical lower 

breadboard so that a pitch adjustment mechanism could be attached between the two (as 

shown in Figure 6.13).  The two breadboards were then attached to a small rotation stage 

allowing for yaw adjustment of the entire system.  This set up allowed for fast and easy 

control of the imaging system for all target scenarios and distances presented in this 

Chapter.  A full schematic of the bistatic system configuration used in these field trials is 

shown in Figure 6.14. 

   

Figure 6.14: Schematic showing the key components and configuration of the 

bistatic imaging system comprising the Princeton Lightwave Kestrel 32 × 32 

InGaAs/InP SPAD array, Raptor Ninox 640 camera, and λ = 1550 nm pulsed 

illumination source.  Optical components include: objective lenses (OBJ1, 

OBJ2, OBJ3); longpass filters (LP1, LP2); bandpass filters (BP1, BP2); and 

an ND filter (ND) when required. 
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The optical layout for the illumination channel is shown in Figure 6.15.  The BKtel laser 

module was fixed to the upper breadboard (as shown in Figure 6.13) and coupled via a 

900 µm diameter single-mode optical fibre to an FC/APC reflective collimator.  This 

collimator has a transmission of > 97.5% over a wavelength range of 450 – 2000 nm, and 

outputs a 4 mm (0.13 NA fibre) diameter collimated beam.  This layout was chosen so 

that the output fibre could be quickly decoupled allowing the average optical power to be 

monitored using a fibre-coupled power meter throughout the course of the field trials.  

The light was then routed through a 9 mm FWHM bandpass filter (BP2) with a central 

wavelength of 1554 nm in order to suppress any potential out-of-band light or ASE 

produced by the laser source.  A two-lens system, comprised of a 9 mm EFL lens and a 

75 mm EFL lens used in a telecentric configuration to create a manual zoom mechanism, 

was used to flood illuminate the target scene with the output beam.  These achromatic 

lenses were optimised for use in the SWIR region of the spectrum.  In some cases, such 

as at shorter ranges or for calibration measurements, an ND filter was used in the transmit 

channel to lower the average optical power of the outgoing light to avoid potential over 

saturation of the detector.  For safety considerations, a manual beam shutter - inserted 

between the filters and the reflective collimator - was used to block the beam when the 

system was not in use. 

 

Figure 6.15: The illumination layout used for the bistatic depth imaging 

system. Optical components included a reflective collimator, a bandpass filter 

(BP2), and a zoom mechanism comprised of two lenses (9 mm and 75 mm) in 

a telecentric layout. If required, an ND filter was inserted prior to the zoom 

mechanism to reduce the output power.  A manual shutter was used to block 

the beam when the system was not in use.  
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The PLW 32 × 32 SPAD array camera and corresponding objective lens were attached 

to a mount, which was subsequently fixed to the upper breadboard alongside the 

illumination optics.  This mount has four exterior locking screws, allowing for accurate 

fine-tuning of the position of the camera.  A C-mount lens tube with SM1 threading was 

used to house a high-performance bandpass and longpass filter (LP1 and BP1 in Figure 

6.14) to reduce potential detection events from ambient illumination. The 

high-performance bandpass filter was selected to have a central wavelength that was 

matched to that of the laser source and has an average out-of-band optical density (OD) 

> 6.  The transmission of this BP filter was measured over a range of 400 – 2000 nm.  The 

central wavelength of the BP filter was measured to be 1554 nm with a peak transmission 

of 94.9% and a 9.3 nm FWHM while achieving excellent out-of-band rejection.  

However, while this does not match the measured central wavelength of the laser source, 

this is most likely due to an offset in the calibration measurement on the BP filter.  The 

longpass filter had a cut-on wavelength of 1500 nm with a transmission >98% and an OD 

> 5 for wavelengths below this threshold.  The transmission plots for BP1 and LP1 are 

shown in Figure 6.16 (a) and Figure 6.16 (b), respectively. 

 

Figure 6.16: (a) Transmission of the 1550 nm BP filter over a wavelength 

range of 400 – 2000 nm.  The central wavelength was measured to be 

1554 nm, the filter width was measured to be 9.3 nm, and the peak 

transmission at the central wavelength was measured to be 94.9%.  (b) 

Transmission of the LP filter over a wavelength range of 320 – 2200 nm.  The 

cut-on wavelength was measured to be 1500 nm, and the transmission > 98%. 

The Raptor Ninox 640 camera and corresponding optical components were mounted on 

an identical mount, to the upper breadboard next to the PLW SPAD array.  A longpass 

(a) (b) 
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filter with a cut-on wavelength of 1400 nm, a transmission of > 80%, and an OD > 5 

allowed for image acquisition exclusively in the SWIR region of the spectrum.  The 

300 mm EFL and 500 mm EFL SWIR objective lenses (discussed previously in this 

Chapter) were mounted to each sensor as necessary depending on the desired FoV and 

stand-off distance of the target.  The overall system jitter was found to be approximately 

485 ps. 

6.3 Adapted LiDAR model for the bistatic depth imaging system 

In order to predict the potential ranging performance of the bistatic depth imaging system 

in the presence of obscurants such as fog and smoke, a LiDAR model based on a photon 

counting adaptation of the general LiDAR equation presented in [6.26] was developed. 

6.3.1 General form of the photon-counting LiDAR equation. 

The photon-counting LiDAR equation in its most general form can be written as: 

( ) ( ) ( ) ( ),P R KG R R T R                                               (6.3)  

where P is the signal power received by the imaging system from a stand-off distance of 

R [6.26].  Two of the contributing factors to the LiDAR model, K and G(R), are intrinsic 

to the LiDAR system and are therefore determined by the configuration and performance 

of the system hardware and components.  The first factor, K, describes the performance 

of the LiDAR system, including parameters such as optical component transmission 

efficiency, detector efficiency, and the overall temporal response of the system.  The 

second factor, G(R), describes the measurement geometry of the system, which is 

dependent on the range of the target.  The two extrinsic factors, β and T, are environmental 

factors that can vary greatly depending on atmospheric conditions during measurements.  

The first of these extrinsic factors, β(R), indicates the backscatter coefficient, which 

describes the ability of the atmosphere to scatter light back in the direction of propagation.  

The second extrinsic factor, the transmission term T(R), describes the range-dependent 

reduction of light caused by forward scattering and absorption due to the atmosphere.  

These two factors are highly sensitive to the presence of smoke or fog, with high levels 

of obscurants resulting in much lower photon levels received by the LiDAR system. 

The following Section of this Thesis describes a LiDAR equation based on the general 

photon-counting model described above and adapted for the configuration of the bistatic 

depth imaging system detailed in this Chapter.  This equation calculates the expected 

number of photon returns in the timing histogram bin containing the highest peak for a 
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single pixel in the SPAD array.  It is important to note that, due the non-uniformity of the 

detector response across the 32 × 32 FPA (shown in Figure 6.3 (a)), these results are 

estimated based on the response of a central SPAD in the array (e.g., pixel [17:17]) that 

gives an average response.  Therefore, pixels on the outer edges of the array may produce 

marginally different results.  However, by operating the SPAD array at a setting of 100% 

sensitivity (i.e., maximum bias level) the non-uniformity across the pixels array is 

minimised. 

6.3.2 Adapted LiDAR equation for the bistatic depth imaging system 

This Section describes each parameter considered in the adapted LiDAR equation.  As 

discussed above, the resulting number of photons detected by the LiDAR system is 

greatly affected by the optical configuration of the system and atmospheric conditions 

during measurements.  Therefore, these parameters will have to be considered for each 

measurement scenario and altered if any modifications are made to the system. 

6.3.2.1 Average optical power and wavelength dependence 

The number of photons collected by the LiDAR system is linearly dependent on the 

average optical power used.  Knowing both the average optical power level, Pout, and the 

illumination wavelength, λ, the rate of photon emission per second, γ, from the 

illumination source can be calculated as follows: 

,outP

hc


                                                       (6.4)  

where c is the speed of light in a vacuum and h is Planck’s constant. 

6.3.2.2 Acquisition time 

The acquisition time, τacq, for the SPAD array can be defined as the amount of time the 

system acquires data from the target for each measurement.  Since each of the 1024 

arrayed pixels measure the scene simultaneously, the total acquisition time for one 

measurement can be taken to be the number of measured frames, Nf, divided by the fixed 

repetition rate, frep, of the laser source and camera: 

,
f

acq

rep

N

f
                                                         (6.5) 
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6.3.2.3 Target reflectivity 

Target reflectivity, ρ, can be defined as the percentage of incident light reflected from the 

target.  When light is incident on a target, photons are either absorbed, transmitted, or 

scattered depending on the properties of the surface and material.  Factors such as surface 

roughness, colour, and the orientation of the target all have a significant effect on the 

number of photons reflected by the target and thus, the number of photons received by 

the LiDAR system.   

6.3.2.4 Geometric factor 

Due to geometrical limitations, the LiDAR system is unable to collect all photons that are 

scattered back from the target.  In practice, the number of photons collected by the system 

is dependent on both the area of the objective lens, Alens, and the target range, R.  In an 

ideal scenario, the target acts as a perfect Lambertian reflector such that all the light is 

scattered and none is transmitted meaning only half of the overall solid angle should be 

considered.  Therefore, the ratio of the number of photons scattered by the target, Ps, and 

the number of photons collected by the system, Pc, at a stand-off distance, R, is as: 

2
.

2

lensAPc

Ps R
                                                       (6.6) 

In a bistatic system, the separation of the detector and the source should be considered in 

determining the true range of the target.  However, due to the minimal separation distance 

of these components in the bistatic set-up used in this system configuration, we can make 

the assumption that since R >> d (where d is the separation distance between the source 

and the detector) then we can approximate the target range as simply R. 

Another geometrical consideration is that if the illumination spot does not match the size 

of the detection window at the target.  For example, if the illumination over-fills the 

detection window (as shown in Figure 6.17) then photons from outside the detection 

window will not be detected by the system.   
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Figure 6.17: Example of the illumination over-filling the system detection 

window.  A correction factor must be applied, as photons from outside the 

window will not be detected by the system. 

The area of the detection window, AFoV, with radius a is given as: 

22 ,FoVA a                                                        (6.7) 

and the area covered by the laser beam spot Aspot with radius a is given as: 

 
2 ,spotA a                                                        (6.8) 

Therefore, the corrected ratio (corr) can be expressed as the ratio between these two areas: 

2

2

2 7
.

11

a
corr

a
                                                       (6.9)  

Thus, with consideration of these lost photons, the range-dependent geometrical term 

for the adapted LiDAR equation is as follows: 

 
2

7
( ) .

22

lensA
G R

R
                                                    (6.10) 

6.3.2.5 Environmental attenuation 

Atmospheric attenuation is highly dependent on weather, ambient conditions, and the 

wavelength of the propagating light.  While in clear conditions the level of attenuation is 

low, in a degraded visual environment the high level of obscurants in the atmosphere can 

result in significant levels of atmospheric attenuation due to particulate scattering.  

Therefore, the transmission term of the adapted LiDAR equation, ςattn, considers the 

fraction of light that is attenuated due to the volume of scattering media present in the 

round trip between the LiDAR system and the target as follows: 

 
2 ,R

attn e                                                       (6.11) 
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where the attenuation coefficient, α (m-1), is dependent on the relative size of the 

scattering particles, χ. The particle size parameter is dependent on both the propagation 

wavelength, λ, and the radius of the scattering particles, rparticle, as follows: 

2
.

particler



                                                    (6.12) 

6.3.2.6 Internal attenuation 

The internal system coefficient, εint, considers losses within the LiDAR system due to 

optical components and any potential misalignments.  Optical loss within the system can 

arise from spectral or spatial filtering, coupling losses, and transmission losses in the 

optical fibres.  Since the internal system coefficient is dependent on the optical set-up it 

must be revised if modifications, such as a change in objective lens or optical filters, are 

made. 

6.3.2.7 Temporal response coefficient 

The temporal response coefficient, tresp, is the instrumental response of the system.  This 

is determined by taking a measurement from a flat, cooperative target positioned 

perpendicular to the laser propagation and calculating the ratio between the number of 

counts in the highest bin in the histogram peak and the total number of photons in the 

entire histogram peak. 

6.3.2.8 Detector efficiency 

The single-photon detector efficiency, η, is dependent on the sensitivity setting (i.e., the 

excess bias) of the SPAD detector and the operational wavelength of the laser source.  As 

previously discussed, the detector efficiency for the PLW 32 × 32 InGaAs/InP SPAD 

array at an operational wavelength of 1550 nm and a sensitivity setting of 100% 

corresponds to an SPDE, η, of approximately 25%. 

6.3.2.9 Background level 

The background level is defined as the number of counts registered by the LiDAR system 

that do not originate from target returns.  These can arise from dark counts of the SPAD 

detector, from atmospheric scattering effects, or from ambient light. This means that the 

level of background varies with both the ambient conditions and the system configuration.  

Thus, the background level must be measured for each specific optical configuration and 

for changes in environmental conditions during measurements.  The level of background 

for each measurement can estimated from a flat section of the timing histogram containing 
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no photon returns from target surfaces.  The average number of background counts 

per-bin per-second, nb, can be obtained using the following equation: 

,
counts rep

b

bins f

N f
n

N N
                                                 (6.13)  

where Ncounts is the number of counts in the selected region of the timing histogram, Nbins 

is the number of timing bins in this region, frep is the repetition rate of the laser source and 

camera, and Nf  is the number of binary frames used for the measurement. 

6.3.2.10 Signal-to-noise ratio 

The signal-to-noise ratio, SNR, of the photon return peak and the average background 

level can be estimated from the number of photons in the bin with the highest count in 

the return peak, np, and the average number of background counts per bin per second, nb, 

as follows: 

.
p

p b

n
SNR

n n



                                               (6.14)  

In order to use the proposed adapted LiDAR equation to estimate the maximum number 

of attenuation lengths achievable by the system in various configurations, a minimum 

threshold for the SNR (SNRmin) had to be established.  This threshold was empirically 

measured from timing histograms with very low return signal and was found to have a 

SNRmin = 1.8 for this system when processed using pixel-wise cross-correlation.  In fact, 

this is a conservative estimate as other work on underwater imaging [6.27] placed the 

lower limit for single-pixel imaging at 1.4 for single-photon data.  The estimate of SNRmin 

is a subjective analysis, based on the ability to register an image, and will be affected by 

the number of pixels recorded in the image and in this field trial, the system was limited 

to only a 32 × 32 pixel format.  It should also be noted that the depth image analysis is 

pixel-wise, and that use of image processing exploiting spatial correlations would further 

reduce the SNRmin to much less than the 1.8 value quoted here.  

6.3.2.11 Adapted LiDAR equation 

By considering the general form of the photon-counting LiDAR equation and the 

parameters discussed in this Chapter, the adapted LiDAR equation for the bistatic depth 

imaging system can be expressed as follows: 
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where np is the number of photons in the histogram bin with the highest count in the return 

peak subsequently divided by the total number of pixels in the array, Np, to obtain the 

estimated number of photon returns for a single pixel.  

6.3.3 Simulations 

Several simulations were performed using this adapted LiDAR equation to estimate the 

maximum achievable performance of the bistatic depth imaging system in different 

environmental conditions.  An example of the system parameters and values used to make 

these estimates is shown in Table 6.4.  These parameters were chosen so that they 

reflected the actual parameters used in the field trials presented in this Chapter. 

Table 6.4: An example of the system parameters and values used to estimate 

the maximum achievable performance of the bistatic depth imaging system in 

different environmental conditions. 

System parameter Value/comment 

Wavelength λ 1550 nm (10 nm FWHM) 

Camera/Laser repetition rate 

(frep) 
150,421 Hz 

Average optical power level Pout 220 mW 

Lens diameter Φ 85 mm 

Target range 150 m 

Target reflectivity ρ ~ 95% 

Internal attenuation τint 

~ 70% (Estimated by taking in to account the 

transmission losses in the spectral filters and 

lenses used in the system.) 

Temporal response τresp 
0.3 (Calculated using a known instrumental 

response for the SPAD array) 

Detector efficiency η 
~ 25% at 100% sensitivity setting as specified 

by the manufacturer  

Average number of background 

counts per bin per second nb 
~ 100  

SNRmin 1.8 

 

The adapted LiDAR equation was used to estimate the number of photons collected by 

the system over the full average optical power range of the illumination source 

(0 – 220 mW).  This analysis was performed for 1.5, 3, 4.5, 5.25, and 6 attenuation 

lengths, as shown in Figure 6.18 (a).   The SNR as a function of the average optical power 

was also investigated (Figure 6.18 (b)) for several values of attenuation length 

(i.e., 5.25 – 6.3 in 0.15 increments) in order to determine the maximum achievable 

number of attenuation lengths using this particular laser source.  
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Figure 6.18: (a) Semi-logarithmic plot of photon counts in the histogram bin 

versus the highest return peak as a function of average optical power level for 

different numbers of attenuation lengths estimated using the adapted LiDAR 

equation. (b) A plot of the SNR as a function of average optical power for 

various values of attenuation lengths at λ = 1550 nm estimated using the 

adapted LiDAR equation. The estimated minimum threshold SNRmin = 1.8 is 

shown by the dotted red line. 

It is evident from Figure 6.18 (a) that, as expected, as the output power of the laser 

increases the number of photon returns from the target collected by the system increases.  

This means that the use of the full available average optical power of the laser would be 

greatly beneficial for imaging in high levels of obscurants.  Figure 6.18 (b) indicates that 

the maximum achievable number of attenuation lengths with this system set-up is 

approximately 6 attenuation lengths (i.e., an attenuation coefficient of α = 0.40 m-1) at 

150 m.  This is dependent on the level of background, with lower background levels 

potentially allowing for imaging at higher atmospheric attenuation.  This estimate is also 

based on the current system configuration which has a system efficiency (due to loss in 

the receive channel, but not including detector efficiency) of approximately 70%, 

meaning that the use of better performance optical components could potentially lead to 

an increase in system performance.  

The distance between the target location and the LiDAR system has a significant effect 

on the number of return photons collected by the objective lens.  The proposed adapted 

LiDAR equation was used to investigate the number of photon counts in the bin with the 

highest peak for a single-pixel over a range of 200 – 1000 metres, and at different levels 

(a) (b) 
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of attenuation (shown in Figure 6.19 (a)).  Figure 6.19 (b) estimates the maximum 

achievable number of attenuation levels for stand-off distances from 150 – 500 metres. 

 

Figure 6.19: (a) Semi-logarithmic plot of photon counts in the histogram bin 

with the highest return peak as a function of target range for different numbers 

of attenuation lengths estimated using the adapted LiDAR equation.  (b) Plot 

of maximum achievable number of attenuation lengths as a function of SNR 

for several target ranges. The estimated minimum threshold SNRmin = 1.8 is 

shown in red. 

Figure 6.19 (a) demonstrates that the number of photon returns collected by the LiDAR 

system decreases significantly at longer target ranges for very high levels of attenuation.  

For example, less than one return photon is predicted for a 200 m range for 6 attenuation 

lengths.  Figure 6.19 (b) indicates that a maximum of 6 attenuation lengths is achievable 

for a range of 150 metres using the current system configuration, and up to 3 attenuation 

lengths at a 300 metre range.  If the target range is extended to 500 metres, it may no 

longer be possible to make an accurate depth estimate with the current system 

configuration in such highly attenuating environment.  However, with modifications and 

improvements to the transceiver, it may be possible to acquire depth images at these 

extended ranges. 

Another parameter that has a significant effect on the number of photons detected by a 

LiDAR system is the diameter of the objective lens of the receiver, with a larger aperture 

diameter, φ, improving the return collection.  A plot of the number of photon counts in 

the histogram bin with the highest return peak as a function of the lens diameter for 

varying attenuation lengths (1 – 7 attenuation lengths) is shown in Figure 6.20 (a).  Figure 

(a) (b) 
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6.20 (b) shows the maximum achievable number of attenuation lengths as a function of 

the SNR for increasing lens diameters.  

 

Figure 6.20: (a) Semi-logarithmic plot of the number of photon counts in the 

histogram bin with the highest return peak as a function of lens diameter for 

different numbers of attenuation lengths estimated using the adapted LiDAR 

equation. (b) Plot of maximum achievable number of attenuation lengths as a 

function of SNR for several objective lens diameters. The estimated minimum 

threshold SNRmin = 1.8 is shown in red. 

It is evident from the simulation results in Figure 6.20 (a) that a larger aperture lens can 

significantly increase the number of photon returns collected by the LiDAR system.  

Objective lenses with aperture sizes up to 85 mm were used to obtain the results presented 

in this Chapter. However, for future field trials the objective lens for the receiver could 

be switched to a larger aperture lens to achieve imaging at a higher number of attenuation 

lengths (see Figure 6.20 (b)).  

Weather conditions, solar background, detector dark counts, and back-scattering from 

obscuring media will all contribute to the average level of background counts recorded 

by the LiDAR system.  This background level has a direct impact on the minimum SNR 

threshold (SNRmin) required to obtain a depth estimate, with a higher background level 

resulting in a lower number of achievable attenuation lengths.  For example, Figure 6.21 

shows a plot of the maximum achievable number of attenuation lengths as a function of 

the SNR (setting SNRmin = 1.8) for different levels of background counts per bin per 

second.  

(a) (b) 



Chapter 6: Imaging through obscurants at λ = 1550 nm using a 32 × 32 InGaAs/InP SPAD detector array 

 

171 

 

 

Figure 6.21: Plot of maximum achievable number of attenuation lengths as a 

function of SNR for different average background levels. The minimum 

threshold SNRmin = 1.8 is shown in red. 

It is clear from the results shown in Figure 6.21 that it is desirable to maintain as low a 

background level as possible in order to achieve maximum penetration through 

obscurants.  A major factor in achieving this is the use of high-performance optical filters 

in the receive path such as longpass and narrow width bandpass filters that are 

well-matched to the laser emission.  The use of a restricted FoV will also reduce the 

background level.  Another method is to perform imaging either at night or indoors with 

no ambient lighting although this is impractical for many applications. 

In conclusion, by using the maximum available optical power of the laser source, an 

objective lens diameter in the order of 85 mm, and with the system configuration 

described in this Chapter, the proposed LiDAR model predicts that imaging through 

obscurants at up to 6 attenuation lengths at a range of up to 150 m should be possible 

(Figure 6.22).  This is of course highly dependent on the level of background due to 

ambient illumination, the optical components used, and the target, as previously 

discussed.  If the target is more complex or less reflective than estimated, this is likely to 

lower the number of attenuation lengths achievable.  Therefore, further investigation of 

the reflectivity of targets with different materials and geometry are required to improve 

this model further. 
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Figure 6.22: Plot of the maximum achievable number of attenuation lengths 

as a function of SNR for an average optical power level of 0.220 W, a lens 

diameter of 85 mm, and at a target range of 150 metres.  The minimum 

threshold SNRmin = 1.8 is shown in red.  

6.4 Experimental layout for the Porton Down field trials 

This Section gives details of experiments conducted at field trials undertaken at Dstl 

Porton Down Battery Hill Laboratory (BHL) in Salisbury to evaluate the performance of 

the arrayed detector depth imaging system described in this Chapter.  

6.4.1 Measurement ranges, procedures, and targets 

Measurements were performed in both indoor and outdoor environments in daylight 

conditions for short (50 metres), mid (150 metres), and long (1463 metres) ranges to 

identify the conditions and parameters for optimum sensor performance at each range.  

The indoor range was housed in the BHL gun shed with the system located 50 metres 

from the target position.  The 150 and 1463 metre range measurements were performed 

with targets placed outdoors and the system housed within the main building of the BHL.  

For the short and mid-range measurements, an obscurant was introduced to the sensor 

line-of-sight.  A smoke gun, using disposable gas canisters, was used to produce a 

glycol-based vapour with particle sizes ranging from 1 – 2 µm.  This vapour condenses 

upon reaching normal atmospheric conditions and produces a dense, non-toxic, white 

smoke designed for use in agricultural, theatrical, or military training exercises.  The 

variable output of the smoke gun was regulated such that anything from light mist to a 
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dense fog could be produced.  To contain the obscurant, a polyethylene marquee (shown 

in Figure 6.23) with dimensions of 3 m (H) × 4 m (W) × 10 m (L) was erected in the 

system line-of-sight.  

For each measurement, the marquee was filled with the glycol vapour until a sufficient 

density was achieved.  The marquee door was then opened to allow measurements of the 

targets while the glycol vapour dispersed from the marquee over the duration of the 

measurement, as shown in Figure 6.23.  For the 50 m range, two large fans were used to 

disperse the obscurant for improved uniformity. 

 

Figure 6.23: Photographs showing the dispersion of the obscurant from the 

point where the marquee door was opened to the end of the full measurement 

duration. 

In order to evaluate the system performance when imaging through various densities of 

glycol vapour, a 1 m × 1 m 3D panel chart (Figure 6.24) comprising four flat, white 

panels set at 10 cm depth increments was imaged.  This target provided a cooperative 

surface allowing for both calibration and evaluative measurements and could be 

positioned in the target scene as required.  

 

Figure 6.24: Front and side views of the 3D panel chart target with 10 cm 

depth increments.  

For each measurement the λ = 1550 nm system was synchronised with a transmissometer 

(discussed later) and the Raptor camera, via a countdown, such that the measurements 

were matched with the data acquired from the array.  Data were acquired until the point 



Chapter 6: Imaging through obscurants at λ = 1550 nm using a 32 × 32 InGaAs/InP SPAD detector array 

 

174 

 

at which either the target was visible, or the detector was saturated.  At this point, the 

camera was shut off and the laser blocked to avoid damage to the highly sensitive SPAD 

detector array.  

6.4.2 Quantitative measurements of the number of attenuation lengths 

The number of attenuation lengths (NAL) at λ = 1550 nm between the system and the target 

was calculated from single-photon data collected from a known area of the 3D panel chart 

for each measurement using the Beer-Lambert law [6.28] in a similar fashion to the results 

presented in Chapter 5 of this Thesis.  The equation used to calculate this is as follows: 

1
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where C is the number of photons in the target return peak in the presence of obscurant, 

C0 is the number of photons in the target return peak in the absence of obscurant, d is the 

one-way distance of propagation, and α is the attenuation coefficient.  Due to the longer 

stand-off distances and higher levels of attenuation used in these measurements than those 

presented in Chapter 5 of this Thesis, the target return peak in the timing histograms was 

sometimes of the same magnitude as the background level.  Moreover, as discussed 

previously in Section 6.2.1.3, each pixel in the array has a non-identical response.  

Therefore, in this case, C and C0 were calculated from timing histograms summed over a 

9 × 9 pixel neighbourhood for a 1 second data acquisition to acquire an accurate 

measurement of the number of attenuation lengths for the entire measurement duration.  

A reference measurement (used to calculate C0) on the 3D panel chart was performed 

using an appropriate level of ND filter in the transmission channel in order to attenuate 

the illumination beam when no obscurant was present.  This was done to avoid damage 

to the detector FPA, and a suitable level of ND was chosen for each measurement 

scenario, target range, and system configuration.  Attenuation measurements were also 

taken using a transmissometer for both λ = 1550 nm and λ = 637 nm for comparison 

between SWIR and visible wavelengths.  An example of single-pixel timing histograms 

acquired for one second of single-photon data over a 50 metre stand-off distance using 

the 32 × 32 PLW SPAD array is shown in Figure 6.25.  Timing histograms from both a 

reference measurement and a noisy measurement are shown. 
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Figure 6.25: Examples of single-pixel timing histograms acquired for one 

second of single-photon data over a 50 metre stand-off distance using the 

32 × 32 PLW SPAD array for (a) a reference measurement with no obscurant 

present and (b) a measurement taken when the number of attenuation lengths 

between the system and the target (one-way) was 4.4. 

As shown in Figure 6.25, the SNR is significantly lower when an obscurant is present 

during measurements due particulate scattering resulting in a loss of light to and from the 

target.  Thus, in order to obtain an accurate calculation of the number of attenuation 

lengths, a background subtraction was performed for each measurement.  For the results 

presented in Chapter 5 of this Thesis, the background was estimated by calculating the 

average background per-pixel from a flat region of the timing histogram without a return 

peak.  However, the normalised timing histogram shown in Figure 6.26 (taken from the 

background region in Figure 6.25 (b)) indicates that the detector exhibits a periodic 

pattern in the background level repeating in 4 timing bin intervals (i.e., every 1 ns) which 

creates ‘false peaks’.  This may be due to a known issue of the timing electronics in the 

SPAD array causing small variations in the timing bin size during operation.  This 

periodic pattern makes it difficult to obtain a true background reading when the signal 

level is close to the background level.  Moreover, if the return peak happens to be located 

in the same bin position as one of the ‘false peaks’, this may cause an attenuation length 

measurement to be inaccurate.  Therefore, for the results presented in this Chapter, the 

background was estimated by summing the counts in ± 2 bins around the ‘false peak’ 

adjacent to the target peak and subtracting this from the same number of bins centred on 

the target return peak.  Further characterisation of this effect would be required before 

future use of the system to improve the attenuation length measurements. 

(a) (b) 
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Figure 6.26: Example of a timing histogram with no target return peak 

demonstrating periodic ‘false peaks’ arising in the background of the 

measurement at 1 ns intervals. 

6.5 Analysis and discussion of experimental results 

This Section presents analysis and discussion of the experimental results for the 50 m, 

150 m, and 1463 m ranges obtained in these field trials.  All the results presented here 

were obtained using the pixel-wise cross-correlation algorithm described in Chapter 4 of 

this Thesis. 

6.5.1 50 m indoor range 

The first set of measurements were performed at a range of 50 metres (100 metres 

round-trip) inside the indoor gun shed at the BHL range.  The depth imaging system and 

the Raptor Ninox SWIR passive imaging camera were housed at one end of this facility, 

while the target scene and marquee were set up at the far side as indicated in Figure 6.27.   

 

Figure 6.27: Photographs taken of the indoor range.  Photograph (a) shows 

the λ = 1550 nm system located 50 m from the target position, and photograph 

(b) shows the 50 m range during a measurement with obscurant present. 

(a) (b) 
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A transmissometer operating at both visible (λ = 637 nm) and infrared (λ = 1550 nm) 

wavelengths was set up to the left of the sensor location approximately 10 m closer to the 

target to obtain a second measurement of the number of attenuation lengths between its 

position and the target.  The transmissometer laser beam was directed through the 

marquee to a corner cube retro-reflector located behind the marquee and reflected back 

to a fibre-coupled InGaAs photodiode.  

Firstly, a set of measurements were made on the 3D panel chart in order to evaluate the 

system performance.  For these measurements, the 300 mm EFL lens was used as the 

receiver objective lens of the PLW 32 × 32 SPAD array.  This resulted in a FoV of 

approximately 0.53 × 0.53 m at 50 m meaning that the central region of the 1 m × 1 m 

3D panel target was imaged.  A detector gate size of 20 ns (or 80 timing bins at 250 ps) 

was selected to encompass the entire target while reducing potential afterpulsing.  The 

3D panel chart was flood-illuminated with 220 mW optical power from the illumination 

source, which was subsequently aligned with the detector FoV using the Raptor Ninox 

camera.  Attenuation results for this measurement obtained by the Dstl transmissometer 

(for both λ =1550 nm and λ = 637 nm) and the λ = 1550 nm depth imaging system are 

shown in Figure 6.28.  The attenuation curves are shown from 200 seconds until the end 

of the measurement (590 seconds).  This is due to the transmissometer being unable to 

obtain an accurate value prior to this point because of a high density of obscurant. 

 

Figure 6.28: Plots of the number of attenuation lengths as a function of time 

for the PLW 32 × 32 SPAD detector array at λ = 1550 nm (black), the 

transmissometer at λ = 1550 nm (red) and λ = 637 nm (blue) obtained from 

the 3D panel chart at a stand-off distance of 50 metres using a 300 mm EFL 

objective lens and a detector gate size of 20 ns. 
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These results indicate that λ = 1550 nm light has lower attenuation than that at 

λ = 637 nm, likely due to the particle size distribution of the glycol vapour and the 

reduced solar background at SWIR wavelengths.  These results further demonstrate the 

benefits of SWIR wavelengths over the visible band. A discrepancy of approximately one 

attenuation length was found between the λ = 1550 nm results for the Heriot-Watt 

imaging system and the Dstl transmissometer.  However, it is important to note that the 

systems used for this calibration were different in some respects: (1) the stand-off 

distances were different, and several metres apart near the target in the region of most 

dense fog (the calibration target of the single-photon measurements was placed several 

metres further away than the retro-reflector used for the transmissometer); (2) the 

direction of the line of sight was significantly different; and (3) the height of transmission 

was different (the transmissometer optical path was slightly higher).   Moreover, despite 

the use of large fans to enhance dispersion, the obscurant was not homogenous throughout 

the propagation region meaning there was potential for each system to see a different 

obscurant density at the same instance throughout the measurement time.  

Figure 6.29 presents timing histograms acquired by the 32 × 32 InGaAs/InP SPAD array 

at λ = 1550 nm (summed from a 9 × 9 pixel neighbourhood).  As the number of 

attenuation lengths between the target and the system increases the number of photons in 

the target return peak decreases until it is similar to the background level. 

 

Figure 6.29: Timing histograms summed from a 9 × 9 pixel neighbourhood 

obtained as the obscurant dispersed during the measurement of the 3D panel 

chart at 50 m taken by the 32 × 32 InGaAs/InP SPAD array.  The timing 

histograms for NAL(λ = 1550 nm) = 5.4, 4.4, 3.4, and 2.7 are shown as examples. 
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At high densities of obscurants where a return signal can be measured, the target peak can 

still be differentiated from the background.  However, the presence of an obscurant prior 

to the target position can result in a peak at the start of the timing histogram that is larger 

than the target peak itself (as shown in Figure 6.30).  This can result in issues when using 

the pixel-wise cross-correlation algorithm to reconstruct the target depth profile as this 

algorithm only operates on the largest peak in the histogram.  This can result in incorrect 

depth estimates if the peak from the obscurant is higher than the signal return. 

 

Figure 6.30: A timing histogram (aggregated for a 9 × 9 pixel 

neighbourhood) obtained from the 3D panel chart at a very high level of 

obscurant (i.e., NAL(1550 nm) = 5) using the 32 × 32 InGaAs/InP SPAD array at 

a range of 50 m.  The presence of obscurant prior to the target results in a 

peak at the beginning of the histogram that is larger than the target peak. 

For the measurements presented in this Chapter, this issue generally occurred when the 

number of attenuation lengths (NAL(1550 nm)) between the system and the target (one-way) 

is greater than 5.  In order to investigate the consequence of this issue on image quality, 

the cross-correlation algorithm was used to reconstruct depth profiles using: the full 

detector gate width of 20 ns (80 timing bins in the histogram) and a detector gate width 

of 15 ns (60 timing bins in the histogram).  This reduced gate removes the first twenty 

timing bins in the histogram, avoiding the large initial peak resulting from the obscurant.  

Figure 6.31 shows depth profiles of the target at the stand-off distance of 50 m obtained 

using an acquisition time of 1 second at an average optical power level of 220 mW for 

the full and reduced gate widths.  
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Figure 6.31: Depth profiles of the 3D panel chart at 50 metres (indoors) 

obtained with the PLW 32 × 32 InGaAs/InP SPAD array acquired with an 

acquisition time of 1 second per image at three different values of attenuation 

lengths.  The target was reconstructed using pixel-wise cross-correlation for 

bin ranges of 1-80 (top row) and 20-80 (bottom row).  

The results in Figure 6.31 show that a significant improvement to the reconstructed depth 

profiles was achieved by removing the first 20 timing bins in the histogram.  In fact, it 

was not possible to reconstruct the depth profile using cross-correlation when all 80 bins 

of the timing histogram were considered for 5.1 attenuation lengths, whereas, it was 

possible to almost fully reconstruct the entire depth profile of the target by simply 

omitting the first 20 bins.  Therefore, for all subsequent results presented in this Chapter, 

the timing bins prior to the target peak containing large peaks due to the presence of 

obscurant were omitted.  Moreover, for all measurements, a depth threshold was set such 

that all depths outwith a pre-determined distance around the target were considered to be 

inaccurate estimates, disregarded, and presented in the depth profiles as empty pixels.  

Figure 6.32 shows the depth profiles of the 3D panel chart taken with the PLW 32 × 32 

SPAD detector array, the corresponding RGB images taken in the visible (using a Nikon 

D750 camera), and SWIR images taken with the passive Raptor Ninox camera for 

NAL(λ = 1550 nm) = 6.2, 5.2, 4.2, and 3.2.  These depth profiles were recorded with an 

acquisition time of 1 second using an average optical power level of 220 mW.  For the 

cross-correlation, a reduced number of bins (60 bins at 250 ps per bin) was considered 

and the number of photons in a range of 4 timing bins around the centroid location was 

summed to obtain an estimate of the intensity (or reflectivity) of the target. 
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Figure 6.32: Images of the target scene at a stand-off distance of 50 metres 

indoors at several densities of the glycol vapour.  (Top) RGB photographs for 

the visible region of the scene taken with a Nikon D750 camera.  (Middle) 

Passive images of the scene obtained by the Raptor Ninox camera configured 

for operation in the SWIR region.  (Bottom) Depth profiles of the target 

obtained with the PLW 32 × 32 InGaAs/InP SPAD array for a 1 second 

acquisition time.  The target was reconstructed using pixel-wise cross-

correlation. 

Panels 2 and 3 of the 3D chart begin to become discernible at approximately 6.2 

attenuation lengths (one-way) due to the higher sensitivity of the pixels on the right side 

of the array as previously discussed.  The full depth chart becomes easily discernible at 

4.2 attenuation lengths.  The transmissometer measurements shown in Figure 6.28 

estimate that the visible attenuation is approximately double the SWIR attenuation 

meaning that these images were acquired through approximately 12 and 8 attenuation 

lengths in the visible region, respectively.  In both the visible RGB photographs and the 

passive SWIR images in Figure 6.32, the target scene was not imaged successfully even 

at NAL(λ = 1550 nm) = 3.2, demonstrating the potential of the PLW camera for imaging 

through obscurants at SWIR wavelengths.  The acquisition time of one second used for 

cross-correlation was arbitrarily chosen to provide a good quality depth image.  However, 

the average number of return photons from the target for a one second acquisition was far 

greater than required to make an accurate depth estimate.  Therefore, the depth profiles 

were then processed using fewer frames (i.e., shorter acquisition times), which were 
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extracted at one second intervals of the acquired data.  Figure 6.33 shows the resultant 

depth profiles of the 3D panel chart reconstructed via cross-correlation using 150,421 

frames (1 second acquisition), 15,042 frames (0.1 second acquisition) and 1504 frames 

(0.01 second acquisition).  A depth threshold of 0.7 metres was applied to the data. 

 

Figure 6.33: Depth profiles of the target at a stand-off distance of 50 metres 

indoors obtained by the PLW 32 × 32 InGaAs/InP SPAD array for various 

obscurant densities reconstructed using pixel-wise cross-correlation.  The 

results for three different acquisition times of (top) 1 second, (middle) 

0.1 seconds, and (bottom) 0.01 seconds are shown.  

An analysis of these depth profiles indicating the average photons per pixel (PPP) (for 

pixels within the given threshold criteria only) and the signal-to-reconstruction error 

(SRE) was also calculated in order to provide a quantitative metric, as discussed in 

Chapter 5 of this Thesis.  The results are presented in Table 6.5. This simple metric gives 

an indication of the reconstructed quality of an image taken in degraded conditions when 

compared to the reference image taken in clear conditions.  The number of reconstructed 

pixels with relevant target data (denoted ‘sampled pixels’) for each image is also given.  
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Table 6.5: Average photons per pixel (PPP), number of sampled pixels, and 

signal-to-reconstruction error (SRE) values for τacq
  = 1, 0.1, and 

0.01 seconds for NAL(λ = 1550 nm) = 6.2, 5.2, 4.2, and 3.2 obtained from 

measurements of the 3D panel chart at a stand-off distance of 50 m indoors. 

The average power level used for these measurements was 220 mW. 

 τacq = 1 second τacq = 0.1 second τacq = 0.01 second 

NAL 

(1550 nm) 

Avg. 

PPP 

# of 

Sampled 

Pixels 

SRE 
Avg. 

PPP 

# of 

Sampled 

Pixels 

SRE 
Avg. 

PPP 

# of 

Sampled 

Pixels 

SRE 

3.2 1445 1024 17.6 142 1024 17.8 14 973 4.2 

4.2 517 1016 15.4 43 873 0.6 4 513 -5.8 

5.2 287 636 -0.1 21 444 -5.0 3 361 -7.0 

6.2 184 517 -2.9 18 416 -5.7 2 343 -7.3 

 

The results in Table 6.5 show a decreasing number of average photons per pixel, number 

of pixels reconstructed (‘sampled pixels’), and SRE at increasing numbers of attenuation 

lengths, as expected due to higher levels of particulate scattering at higher numbers of 

attenuation resulting in lower signal.  Figure 6.33 shows that panels of the 3D chart 

become discernible at > 4.2 attenuation lengths at λ = 1550 nm with an average photon 

return per-pixel of 43 and an SRE of 0.6 for an acquisition time of 0.1 seconds.  At an 

acquisition time of 0.01 seconds, the panels are discernible at > 3.2 attenuation lengths at 

λ = 1550 nm with an average photon return of 14 photons per pixel and an SRE of 4.2.  It 

is clear from these results that very rapid measurements of targets obscured by high 

densities of obscurants can be made using the PLW 32 × 32 SPAD detector array - even 

in the sparse photon regime. 

In addition, the average depth of each panel of the 3D chart was also investigated for 

attenuation lengths of NAL(λ = 1550 nm) = 3.2 and 4.2 at acquisition times of 1, 0.1, and 

0.01 seconds.  The panel closest to the system position (panel 4 in Figure 6.24) was used 

as the reference point (0 cm) and the average depth of panels 1-3 was calculated relative 

to this distance.  Only depth estimates from pixels inside the set threshold were considered 

and the location of each panel was assumed to be unknown.  The results are shown in 

Table 6.6. 
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Table 6.6: Average depth measurements for panels 1-4 of the 3D panel chart 

(10 cm depth increments between panels) obtained at τacq = 1, 0.1, and 

0.01 seconds for NAL(λ = 1550 nm) = 3.2. Panel 4 is used as a reference depth and 

thus is set to zero.  The number of sampled pixels is also shown. 

 τacq = 1 second τacq = 0.1 second τacq = 0.01 second 

NAL 

(1550 nm) 

Avg. panel depth (cm) Avg. panel depth (cm) Avg. panel depth (cm) 

1 2 3 
4 

(Ref) 
1 2 3 

4 

(Ref) 
1 2 3 

4 

(Ref) 

3.2 33 ± 1 20 ± 1 8 ± 1 0 ± 1 32 ± 2 20 ± 1 8 ± 1 0 ± 1 26 ± 6 20 ± 4 8 ± 4 0 ± 4 

# of 

Sampled 

Pixels 

255 

(255) 

272 

(272) 

240 

(240) 

225 

(255) 

255 

(255) 

272 

(272) 

240 

(240) 

225 

(255) 

233 

(255) 

266 

(272) 

233 

(240) 

213 

(255) 

4.2 28 ± 5 20 ± 2 6 ± 1 0 ± 1 10 ± 2 11 ± 3 6 ± 4 0 ± 4 16 ± 3 5 ± 3 0 ± 3 0 ± 4 

# of 

Sampled 

Pixels 

247 

(255) 

272 

(272) 

240 

(240) 

225 

(255) 

190 

(255) 

242 

(272) 

223 

(240) 

194 

(255) 

119 

(255) 

130 

(272) 

126 

(240) 

122 

(255) 

 

For NAL(λ = 1550 nm) = 3.2, all the panels gave accurate depth estimates for each of the 

acquisition times, even when the average number of photons per pixel was as low as 14 

for τacq = 0.01 seconds.  For NAL(λ = 1550 nm) = 4.2 only estimates from the 1 second 

acquisition obtained accurate results.  Figure 6.33 indicates that in the depth profile 

acquired for a 0.1 second acquisition time many pixels did, in fact, obtain an accurate 

depth estimate.  However, many noisy pixels within the original 0.7 m threshold (but not 

related to the actual target depth) were also present.  These noisy pixels are likely due to 

returns from scattering within the given depth threshold resulting in an apparent 

inaccurate depth estimate of the panels in this case.  Thus, this result could be improved 

by performing further thresholding in the depth range chosen from prior knowledge of 

the actual panel spacing and positioning.  

6.5.2 150 m outdoor range 

The second set of measurements were performed outdoors in daylight conditions at a 

range of 150 metres (300 metres round-trip).  The systems were housed in the southwest 

facing room of the BHL.  The target scene, with the 3D panel chart target, was set up 

approximately 10 metres behind the marquee at the far side of the target.  The target was 

housed within an intermodal container to help shield it from adverse weather conditions. 
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All measurements at this range were performed with an average optical power of 

approximately 220 mW and a repetition rate of 150,421 Hz.  The receiver objective lens 

(OBJ2 in Figure 6.14) selected for this range was the 300 mm EFL SWIR lens, resulting 

in a FoV of 1.6 × 1.6 metres at the target range of 150 m.  Since the FoV was considerably 

larger at 150 m than at 50 m, the resultant data contained information from the entire 3D 

panel chart as well as superfluous information from the back wall of the intermodal 

container.  However, this lens was chosen over the 500 mm EFL (which would give a 

smaller FoV) due to a larger aperture diameter.  At longer distances, a larger aperture size 

is advantageous to collect as many return photons as possible.  Thus, for all depth profiles 

presented in this Section, a subsampled image only containing the 3D panel chart is 

presented for clarity.  The attenuation results for measurements performed at the 150 m 

range for λ =1550 nm are shown in Figure 6.34.  For this measurement data, no 

transmissometer attenuation measurements were available for comparison. 

 

Figure 6.34: Plot of the number of attenuation lengths as a function of 

measurement time for  λ = 1550 nm obtained by the PLW camera at a stand-

off distance of 150 metres from the system position using a 300 mm EFL 

objective lens and a detector gate size of 20 ns.  

The results indicate that the obscurant was very dense (> 5 attenuation lengths at 

λ =1550 nm) until approximately 30 seconds into the measurement set where it began to 

disperse rapidly due to windy conditions over the subsequent 30 seconds.  This meant 

that the measurement duration was limited to approximately 60 seconds to avoid 

saturating the detector when the density of obscurant was very low.  The reconstructed 

depth profiles, from 31 seconds onwards, for 1 second of data acquisition are shown in 
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Figure 6.35.  A reference measurement of the target obtained in clear conditions is also 

shown, as well as the SRE and average PPP values. 

 

Figure 6.35: Depth profiles of the 3D depth chart at 150 metres (outdoors) 

taken with the 32 × 32 PLW SPAD array acquired with an acquisition time of 

1 second per image at different values of attenuation lengths.  Also shown is 

the SRE for each reconstruction and the number of average photon returns 

per-pixel. 

These results show that, despite the longer range and higher ambient background 

compared to the indoor 50 m measurements, it was still possible to partially reconstruct 

the 3D depth chart at up to approximately 4.7 attenuation lengths with an average photons 

per pixel of 84. In addition, it was possible to fully reconstruct the profile at approximately 

3.8 attenuation lengths with an average photons per pixel of 642 using cross-correlation.  

These results are consistent with the results from the 50 m range in terms of image 

reconstruction quality as a function of the magnitude of return photons received by the 

system with only slight degradation in the SRE being observed.  Moreover, as expected, 

an overall lower number of attenuation lengths were achieved by the system for the 150 m 

range.  This is most likely due to the increased background illumination from solar 

background in the outdoor range and less photons returning from the target over the 
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longer distance.  These results are slightly lower than the predictions obtained from the 

adapted LiDAR model.  This could be attributed to the adverse weather conditions, such 

as rain, experienced during measurements, which will have affected the number of 

photons collected by the system due to particulate scattering, absorption effects, and a 

change in target reflectivity due to the presence of water on the panels.  

For completion, the same analysis as for the 50 m range was repeated for this 

measurement data, and the results for 0.1 seconds and 0.01 seconds are shown in Figure 

6.36 and Figure 6.37, respectively, alongside the corresponding SRE and average photon 

per pixel values. 

 

Figure 6.36: Depth profiles of the 3D depth chart at 150 metres (outdoors) 

taken with the 32 × 32 PLW SPAD array acquired with an acquisition time 

of 0.1 second per image at different numbers of attenuation lengths.  Also 

shown is the SRE for each reconstruction and the number of average photon 

returns per-pixel. 
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Figure 6.37: Depth profiles of the 3D depth chart at 150 metres (outdoors) 

taken with the 32 × 32 PLW SPAD array acquired with an acquisition time of 

0.01 second per image at different values of attenuation lengths between 

transceiver and target.  Also shown is the SRE for each reconstruction and 

the number of average photon returns per-pixel. 

The results shown in Figure 6.36 show that the 3D panel chart is successfully 

reconstructed with cross-correlation using a 0.1 second acquisition time at approximately 

3.4 attenuation lengths with an average photons per pixel of 84 and an SRE of 10.9.  For 

an acquisition time of 0.01 seconds, the target does not become discernible until 

approximately 2.8 attenuation lengths (17 photons per pixel on average and an SRE of 

3.2) while - in the case of the 50 m range - the system could achieve successful depth 

estimates at > 3.2 attenuation lengths.  This is once again most likely due to the more 

challenging scenario (long-range and outdoor conditions).  These results demonstrate that 

the system is capable of rapid three-dimensional imaging outdoors in high levels of solar 

background and adverse weather conditions. 

6.5.3 1463 m outdoor range 

The final set of measurements were performed at a range of 1463 metres (2926 metres 

round-trip) with no obscurant present at the target scene to better understand the sensor 

performance at more challenging distances.  The system was housed indoors in the BHL 

facility as shown in Figure 6.38 (a).  The target scene consisted of a stationary vehicle, a 

tree, and a wooden building positioned at unknown distances relative to one another as 

shown in Figure 6.38 (b). 
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Figure 6.38: (a) A photograph of the target scene location at 1.463 km taken 

from the viewpoint of the imaging systems housed in the Battery Hill 

Laboratory.  (b) A close-up photograph of the target scene comprising a 

stationary vehicle, a tree, and a wooden building. 

For these measurements, the ambient background level varied greatly over the course of 

a single measurement - with conditions at the target scene ranging from very dull and 

overcast to direct sunshine.  The conditions at the target scene was monitored by the 

Raptor Ninox 640 camera, and passive images showing the variation in the ambient 

background light experienced over the course of one measurement set is shown in Figure 

6.39.  

 

Figure 6.39: Passive SWIR images of the 1.463 km target scene taken by the 

Raptor Ninox 640 camera showing the large variation of the ambient 

background level over the course of a measurement. 

The average number of background counts per pixel was investigated for data taken from 

the start of the measurement when conditions at the target were dull and then at the end 

when the ambient light levels was high.  Figure 6.40 shows the passive SWIR image of 

the target scene at 1463 km acquired by the Raptor Ninox 640 camera, an intensity profile 

that shows the number of background counts collected in each pixel, and the average 

number of background counts per pixel. 

(a) (b) 
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Figure 6.40: (Top) Passive SWIR images of the target scene acquired by the 

Raptor Ninox 640 camera demonstrating the changing ambient conditions 

during a measurement.  (Bottom) Intensity profiles that show the background 

counts in each pixel along with the average background counts per pixel. 

It was found that, depending on the conditions, the average background counts per pixel 

could be up to double (607 average background counts per pixel when dull and 1123 in 

direct sunlight) when the ambient light level is high, reiterating the importance of 

background subtraction and mitigation in single-photon measurements. 

A stationary scene was used to assess the depth imaging system’s long-range capabilities 

- with different levels of ND used in the transmission channel to simulate the presence of 

an obscuring media.  The maximum available average optical power level of 220 mW 

and a repetition rate of 150,421 Hz was used for all measurements performed at the 

1463 km range.  The 500 mm EFL Optec SWIR lens (maximum aperture diameter of 

85 mm) was used to collect the return photons, resulting in a FoV of approximately 

9.4 × 9.4 m at the target.  A detector gate of 200 ns, equivalent to a range of 30 metres 

around the target, was selected. 
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Figure 6.41 shows a point cloud representation of the depth profile acquired of the target 

scene with a one second data acquisition time and no ND filter present in the transmission 

channel.  A depth threshold of 30 metres was applied to the depth profile.  The result 

indicates a distance of approximately 14.5 metres between the car and the tree, and 

approximately 5.2 metres between the car and the building.  The shadow of the car can 

be observed on the wall of the building by way of missing data points and individual 

branches on the tree are discernible at this distance. 

 

Figure 6.41: Point cloud illustrating the depth profiles of the three targets, a 

building, a car, and a tree, at the 1463 km scene.  

Figure 6.42 shows the resultant depth profiles taken at acquisition times of τacq = 1, 0.1, 

and 0.01 seconds for no ND filter, ND1 (10% of the original light transmitted), and ND2 

(1% of the original light transmitted) in the transmission channel, respectively.   This is 

the equivalent to 1.2 attenuations lengths between the system and the target location (2.4 

round-trip) at λ =1550 nm for the ND1 filter and 2.3 (4.6 round-trip) attenuation lengths 

for the ND2 filter. 
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Figure 6.42: Depth profiles obtained using pixel-wise cross-correlation of the 

target scene comprising a stationary vehicle, a tree, and a building at 1463 

metres taken with the PLW 32 × 32 SPAD array acquired with acquisition 

times of 1, 0.1, and 0.01 seconds per image at different levels of ND filters in 

the transmission channel to simulate the presence of obscurants.  

The results show that depth estimates of all three target objects can be made even at an 

acquisition time of 0.01 seconds using an ND1 filter in the transmission channel 

(equivalent to 20 mW average optical power).  For the ND2 filter (equivalent to 2 mW 

average optical power), only a few pixels from each target gave accurate depth estimates 

when using pixel-wise cross-correlation – even for a 1 second data acquisition.  However, 

these results show the potential for the use of the system for kilometre range depth 

imaging in the sparse photon regime both with and without the presence of obscurants. 
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6.6 Conclusions and future work 

A bistatic depth imaging system based on the single-photon ToF approach was used to 

obtain three-dimensional depth profiles of targets through varying densities of 

glycol-based vapour composed of particle radii in the range of 1 – 2 µm.  The system was 

based on a Princeton Lightwave Kestrel 32 × 32 SPAD detector array with a wavelength 

range of 1400 – 1600 nm, a temporal resolution of 250 ps, and an SPDE of approximately 

25% at the operating wavelength of λ = 1550 nm.  The DCR of the SPAD detector array 

was characterised for several gate widths at a repetition rate of 150,421 Hz.  The DCR 

was found to be approximately 318 kcps at a gate width of 20 ns and 5370 kcps at a gate 

width of 200 ns.  A pulsed fibre laser was used to provide an illumination wavelength of 

λ = 1550 nm with an average optical output power of approximately 220 mW at a 

repetition rate of 150,421 Hz.  

In addition, a LiDAR model was presented to evaluate the potential ranging performance 

of the system.  This model was based on the photon-counting LiDAR equation and 

adapted for this specific system configuration.  Several parameters, both intrinsic and 

extrinsic, were used to evaluate the system performance in a range of conditions including 

different target ranges and different levels of obscuring media.  The results suggested that 

successful depth imaging should be achievable in highly scattering environments at up to 

6 attenuation lengths in the SWIR region at target distances up to 150 metres.  However, 

this estimation is highly dependent on the level of background due to ambient illumination 

during measurements, the optical components used, and the target reflectivity and 

geometry.  Further improvements could be made with larger aperture lenses and improved 

control of the background level. 

Depth profiles of targets were successfully acquired at stand-off distances of 50 and 

150 metres (indoors and outdoors respectively) through 10 metres of obscurant contained 

within a marquee at field trials hosted at Porton Down Battery Hill Laboratory.  At 

50 metres, the system obtained images of the full target scene at approximately 5.0 

attenuation lengths using pixel-wise cross-correlation and partial reconstructions at up to 

6.0 attenuation lengths for a one second data acquisition.  At acquisition times of 0.1 and 

0.01 seconds, successful depth reconstruction was achieved at approximately 4.0 and 3.0 

attenuation lengths, respectively.  At 150 m, partial target reconstruction was achieved at 

4.7 attenuation lengths and full reconstruction at 3.4 attenuation lengths for a one second 

data acquisition.  Successful reconstructions were achieved at 3.2 and 2.8 attenuation 

lengths for acquisition times of 0.1 and 0.01 seconds, respectively.  The benefits of SWIR 
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wavelengths over the visible region for imaging through obscurants were demonstrated 

with λ = 1550 nm being almost twice as penetrative as λ = 637 nm.  These results are 

mostly consistent with the simulations performed with the adapted LiDAR equation, 

albeit slightly lower than predicted.  This is most likely due to a lower target reflectivity 

than expected, adverse weather conditions such as precipitation, and a higher background 

level during actual measurements than the parameters used in the model prior to the field 

trials. 

Depth estimates were also obtained at a range of 1463 metres to better understand the 

sensor performance at more challenging distances using various levels of neutral density 

filters to simulate high levels of obscurants.  Target depth estimates were successfully 

made at 0.01 seconds acquisition time using an ND1 filter in the transmission channel to 

simulate imaging at kilometre range in obscurants, and to explore the possibilities of 

examining identifying and tracking moving targets.  

A simple pixel-wise cross-correlation algorithm performed all processing of the results 

presented in this Chapter. While this algorithm is simple and computationally 

inexpensive, more advanced image processing algorithms, which exploit spatial 

correlations in sparse single-photon data [6.29,6.30], could be used to improve upon the 

results presented here.  Moreover, the use of the bistatic depth imaging system for 

successful video imaging and target identification in highly scattering media was 

investigated during these field trials to demonstrate the use of the system for rapid 

acquisition of dynamic scenes.  Thus future work will focus on the development of more 

advanced image processing algorithms to process single-photon data at real-time frame 

rates.  This will be discussed in further detail in the next Chapter of this Thesis. 

In conclusion, the λ = 1550 nm arrayed single-photon detector system exhibited highly 

effective depth imaging at up to 6.2 attenuation lengths between transceiver and target in 

daylight conditions with a low power, eye-safe (220 mW average) source, at much shorter 

acquisition times than the single-pixel imaging system presented in Chapters 4 and 5.  

Future experiments will utilise this system to achieve successful real time depth imaging 

and target identification at kilometre ranges.  
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Chapter 7: Imaging dynamic complex scenes using a 32 × 32 TCSPC 

SPAD array 

7.1 Introduction 

This Chapter will demonstrate the potential of the single-photon avalanche diode (SPAD) 

detector array system described in Chapter 6 of this Thesis for the acquisition of full-field, 

video-rate, three-dimensional (3D) data.  This arrayed single-photon detector has been 

previously demonstrated to be successful for the rapid acquisition of single-photon data 

obtained in challenging environments, such as long-range aerial imaging [7.1], in outdoor 

scenes with high ambient background [7.2], or in high levels of atmospheric scattering 

[7.3] as shown in Chapter 6.  The recent interest in the integration of the light detection 

and ranging (LiDAR) approach in advanced driver assistance systems (ADAS) and fully 

autonomous vehicles has highlighted the need for real-time depth profiling at distances 

up to hundreds of metres [7.1,7.4–7.8].  LiDAR systems incorporating the time-correlated 

single-photon counting (TCSPC) approach offer the high timing resolution required for 

object recognition at ranges relevant to vehicles travelling at high velocities 

(i.e., > 200 metres). The implementation of InGaAs/InP single-photon detectors in 

LiDAR systems allows for operation at short-wave infrared (SWIR) wavelengths. As 

discussed in Chapter 2 of this Thesis, the use of SWIR wavelengths in LiDAR systems 

has several advantages over visible band wavelengths, such as compatibility with the 

loss less telecommunications window, decreased solar background [7.9], and high 

atmospheric transmission [7.10,7.11].  In addition, the eye-safety threshold is increased 

by a factor of 20 or more compared to visible wavelengths, permitting the use of higher 

optical power levels. Thus, InGaAs/InP SPAD detectors with TCSPC capability 

[7.1,7.12] are a good candidate technology for integration in ADAS systems.  However, 

a major bottleneck in the use of single-photon LiDAR systems is that current 

state-of-the-art algorithms designed to reconstruct depth profiles using single-photon data 

suffer from long execution times (10s to 100s of seconds) [7.13–7.21], limiting their use 

in many applications which rely on near instantaneous target analysis.  

This Chapter presents the results obtained using a state-of-the-art algorithm designed for 

the ‘real-time’ image reconstruction of complex scenes at 320 metres [7.22].  A brief 

overview of the system and key parameters are provided in Section 7.2, and a description 

of the experimental layout is given in Section 7.3.  The algorithm framework is described 
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in Section 7.4.  Results obtained from a variety of scenes with increasing complexity are 

shown in Section 7.5. Finally, conclusions and future work are given in Section 7.6. 

7.2 System configuration and key parameters 

The system used for the measurements presented in this Chapter was based on the 32 × 32 

single-photon array Kestrel camera manufactured by Princeton Lightwave (PLW) 

[7.23,7.24].  A full description of the system is given in Chapter 6 of this Thesis and a 

schematic is shown in Figure 7.1.  

 

Figure 7.1: Schematic showing the key components and configuration of the 

bistatic imaging system comprising the Princeton Lightwave Kestrel 32 × 32 

InGaAs/InP SPAD array and the λ = 1550 nm pulsed illumination source.  

Optical components include: objective lenses (OBJ1, OBJ2); a longpass filter 

(LP1);  bandpass filters (BP1, BP2); and an ND filter (ND). 

The InGaAs/InP SPAD detector array had a single-photon detection efficiency (SPDE) 

of approximately 25% (as stated by the manufacturer) and a measured average dark count 

rate of approximately 320 kcps at the operating wavelength of 1550 nm.  The camera was 

operated with a timing bin resolution of 250 ps and a gate duration of 40 ns, 

corresponding to a measurement depth range of 6 metres.  A fibre laser source (BKtel, 

France [7.25]) with an operating wavelength of 1550 nm and a pulse duration of 

approximately 400 ps was used to provide flood-illumination at the target scene.  It was 

operated at a repetition rate of 150,421 Hz (clock signal provided by the PLW camera), 

and the resulting average optical power level was approximately 220 mW.  The output 

fibre from the laser module was connected to a reflective collimation package and the 

exiting beam was then passed through a 12 nm full-width at half-maximum (FWHM) 

bandpass filter (BP2 in Figure 7.1).  This filter was matched to the operating wavelength 

of the laser source in order to remove any amplified spontaneous emission (ASE) that 
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was present.  A neutral density (ND) filter with an optical density of 0.5 and transmission 

of approximately 32% at λ = 1550 nm was used to reduce the average optical power level 

to approximately 70 mW to avoid saturating the sensitive detector.  The zoom mechanism 

(described in Chapter 6) enabled the diameter of the illuminating beam at the scene of 

interest to be adjusted to match the field-of-view (FoV) of the camera.  The Raptor Ninox 

640 camera (Raptor Photonics, UK [7.26]) described in Chapter 6 was used to align the 

system to the target scene.  

The system was implemented as a bistatic arrangement with the apertures of OBJ1 and 

OBJ2 separated by approximately 125 mm.  This configuration was used to avoid 

potential issues with back-reflections from optical components.  The detector objective 

lens (OBJ2 in Figure 7.1) was used to collect scattered photon returns from the target 

scene.  The lens was designed for use in the wavelength range of 900 – 1700 nm and had 

a 500 mm effective focal length (EFL) with a fixed f-number of f/7.  This resulted in a 

FoV of approximately 2 × 2 metres at the target stand-off distance of 320 metres, 

i.e., each individual pixel covered an area of approximately 65 × 65 mm.  The receive 

channel was spectrally filtered in order to reduce the detection of ambient illumination.  

A pair of high performance passive spectral filters (LP1 and BP1 in Figure 7.1) was 

mounted between the rear element of the lens and the sensor of the camera.  The longpass 

(LP) filter had a cut-on wavelength of 1500 nm (LP1) and the BP filter (BP1) had a 9 nm 

FWHM with a central wavelength of 1550 nm.  A summary of the key system parameters 

is given in Table 7.1. 

Table 7.1: Summary of key system parameters 

Parameter Value/comment 

Target stand-off distance ~320 m 

Illumination source 1550 nm fibre laser 

Average optical power level 70 mW 

Laser and detector repetition rate 150,421 Hz 

Time between binary frames 6.648 µs 

Detector 32 × 32 InGaAs/InP SPAD array  

Detector single-photon detection efficiency 25% at detector sensitivity setting of 100% 

Detector gate width 40 ns 

Histogram timing bin size 250 ps 

System timing jitter ~ 485 ps 

Objective lenses  

Laser zoom mechanism (OBJ1)  

9 mm +75 mm EFL lens,  

Detector (OBJ2): 500 mm EFL, 85 mm diameter 

aperture 

Spectral filters in transmit channel 
Bandpass (BP2): 1550 nm – 12 nm at FWHM  

Neutral density filter (ND): OD 0.5   

Spectral filters in receive channel 
Longpass (LP1): Cut on 1500 nm 

Bandpass (BP1): ~1550 nm – 9 nm FWHM 
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7.3 Experimental layout 

The system was located in the rooftop laboratory of the David Brewster building at 

Heriot-Watt University to shield sensitive components from adverse weather – such as 

wind and rain.  The target scene was erected at ground level at a stand-off distance of 

320 metres from the system location.  Three different target scenarios were used to 

evaluate both the imaging performance of the system in cluttered scenes and the real-time 

capabilities of the reconstruction algorithm.  The first target scenario comprised of a 

single actor moving erratically, the second of two actors walking in parallel through the 

scene, and the third of the two actors walking in parallel but obscured by a layer of 

camouflage netting.  The commercially available camouflage had dimensions of 

3 × 2 metres and was positioned approximately 3 metres in front of a wooden backboard, 

perpendicular to the laser beam propagation. 

A CCD camera was placed next to the target scene at ground level to provide an RGB 

reference video for each measurement.  A diagram of the imaging set-up is shown in 

Figure 7.2. 

 

Figure 7.2: The LiDAR system was positioned on the rooftop laboratory at a 

stand-off distance of approximately 320 metres from the target scene.  An 

RGB camera filmed during measurements to obtain reference videos.  A 

graphics-processing unit (GPU) was used to obtain real-time 3D 

reconstructions of each scenario. 
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7.4 Computational methods 

In recent years, the image processing community has proposed several algorithms 

designed to reconstruct images obtained in challenging environments, such as objects 

hidden in clutter or obscured by fog or smoke.  These algorithms generally fall into two 

distinct categories.  The first category contains algorithms that work on a single surface 

per pixel by using classical image processing tools to construct depth and intensity 

profiles [7.13–7.17].  The RDI-TV algorithm described in Chapters 4 and 5 of this Thesis 

belongs in this category.  While these algorithms have proven to be successful in the 

reconstruction of single-photon data, they generally require a relatively high amount of 

supervised parameter tuning. In addition, the single-surface framework of these 

algorithms means that they are not robust to complex scenes with multiple depth surfaces, 

or scenes with regions that do not present any surface (target detection).  The second 

category of algorithms improves upon this framework and the methods are much more 

robust to multi-surface scenes.  These algorithms are primarily based on Bayesian models 

and Markov chain Monte Carlo (MCMC) methods and have demonstrated accurate image 

reconstruction of an arbitrary number of surfaces per pixel [7.20–7.21].  However, 

execution times remain prohibitively long for real-time processing of LiDAR data.  

Therefore, this Section describes a novel algorithm [7.22] designed to reconstruct 3D 

images of complex (multi-layered) scenes from LiDAR data at video framerates.  This 

algorithm was designed by Julián Tachella and Dr Yoann Altman of Heriot-Watt 

University with input from myself based on LiDAR data obtained with the system 

described in Section 7.2 of this Chapter. 

7.4.1 Real-time 3D reconstruction algorithm 

While current state-of-the-art algorithms require processing times on the order of seconds 

or minutes, the real-time 3D reconstruction algorithm is capable of reconstructing 3D 

profiles of complex multi-surface scenes at video framerates (i.e., dozens of frames per 

second).  A diagram of the algorithm framework is shown in Figure 7.3. 
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Figure 7.3: Diagram of the real-time algorithm framework. Depth, 

reflectivity, and background estimations are obtained from the raw LiDAR 

data by applying an iterative gradient step and point-cloud denoiser.  These 

estimates are then used to reconstruct the 3D target profile. 

The raw LiDAR data was processed using the algorithm, which was implemented on the 

graphics-processing unit (GPU) of the control computer.  The algorithm obtains depth, 

intensity, and background estimates through optimisation of the initial LiDAR point cloud 

alternating between gradient steps and denoising steps [7.27].  Although this is performed 

over many iterations, both the gradient and denoising steps can process each pixel in 

parallel resulting in very low processing times.  The algorithm applies a point cloud 

denoising method based on the algebraic point set surfaces (APSS) algorithm, which is 

an off-the-shelf computer graphics point cloud denoiser for distributed surfaces 

[7.28,7.29].  The APSS approach fits a smooth continuous surface to the depth points 

taken from the raw LiDAR data over many iterations to obtain an accurate 3D 

reconstruction.  Unlike conventional (image) depth denoisers, the APSS approach can 

handle an arbitrary number of surfaces per pixel, making it ideal for the measurements 

presented in this Chapter.  This approach is repeated for the reflectivity estimation step.  

In this case, the denoising step consists of low-pass filtering of the reflectivity points, 

only considering correlations between neighbouring pixels in the same surface. A 

minimum admissible reflectivity threshold was set so that any outliers were excluded 

from the final reconstruction.  The level of background was estimated using the same 

approach, but no spatial correlations were considered, as the background in a bistatic 

system is not necessarily spatially correlated.  

As discussed in Chapter 6, one of the limitations of the PLW SPAD array detector is that 

the 32 × 32 pixel format of the arrayed detector results in a relatively low image 

resolution.  However, the real-time 3D reconstruction algorithm allows the use of a 

super-resolution scheme [7.30] where each coarse LiDAR pixel is divided into a 3 × 3 

neighbourhood of finer pixels, as shown in Figure 7.4.  This means that the point cloud 
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can be converted from a 32 × 32 pixel format to a 96 × 96 pixel format, significantly 

improving the potential image resolution of the PLW array camera.  

 

Figure 7.4: An example of a super-resolution scheme, which divides one 

coarse LiDAR pixel into a neighbourhood of 3 × 3 smaller pixels.  This 

creates a large pixel format image and improves the resolution of the imaging 

system. 

7.5 Experimental results and discussion 

This Section presents results from preliminary tests obtained outdoors at a stand-off 

distance of 320 metres using the real-time reconstruction algorithm.  An average optical 

power level of approximately 70 mW was used and data were acquired for approximately 

6 seconds for all measurements.  The ambient conditions were overcast but with relatively 

high ambient background levels. 

The first scenario was comprised of an actor moving quickly and erratically through a 

distance of approximately 3 metres.  This scene contained a single depth-surface per pixel. 

For each measurement, the algorithm aggregated 20 ms worth of raw data (corresponding 

to approximately 3000 binary frames) to create a single grayscale frame. The analysis of 

the grayscale frames was then displayed at a rate of 50 frames per second, providing video 

frame-rates.  RGB reference photos, a 2D rendered representation of the raw LiDAR data 

point cloud, and the reconstructed 3D profile of the target obtained using the proposed 

algorithm are shown in Figure 7.5. 
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Figure 7.5: Measurements of an unobstructed actor at a stand-off distance of 

320 metres. The time between images was two seconds.  (a) shows the RGB 

reference photograph, (b) shows a 2D rendered representation of the raw 

LiDAR data point cloud, and (c) shows the reconstructed 3D profiles of the 

scene obtained using the real-time 3D reconstruction algorithm for a 

grayscale frame acquisition time of 20 ms, displayed at 50 frames per second. 

The results show that the proposed algorithm is capable of real-time reconstruction of a 

fast moving, erratic target at hundreds of metres range.  In these results, each pixel 

observed only a single depth-surface.  Each frame had approximately 520 photons per 

pixel, where 210 photons were due to target returns and 310 photons were related to dark 

counts of the detector or ambient illumination from solar background.  Due to the use of 

the super-resolution scheme, the target reconstruction also provides a much better depth 

resolution than what was obtained with the raw LiDAR data. 

The second scenario comprised of two actors passing one another while walking briskly 

through a distance of 3 metres.  A wooden backboard was place directly behind the two 

actors to create a second depth surface.  This scenario was designed to investigate the 

robustness of the algorithm to scenes with multiple targets, and to evaluate whether the 

real-time reconstruction could differentiate the targets as they passed one another.  Figure 

7.6 shows the RGB reference images (Figure 7.6 (a)), a 2D rendered representation of  

the raw LiDAR data point cloud (Figure 7.6 (b)), and the reconstructed 3D data obtained 

using the proposed algorithm (Figure 7.6 (c)). 

(a) (b) (c) 
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Figure 7.6: Measurements of two unobstructed actors walking in front of a 

wooden backboard at a stand-off distance of 320 metres. The time between 

images was one second.  These results were obtained using the real-time 3D 

reconstruction algorithm.  (a) shows the RGB reference photograph, (b) 

shows a 2D rendered representation of the raw LiDAR data point cloud, and 

(c) shows the reconstructed 3D profiles of the scene for a grayscale frame 

acquisition time of 20 ms, displayed at 50 frames per second. 

The results show that the proposed algorithm is successful in reconstructing scenes 

containing multiple targets at real-time frame rates.  In addition, the algorithm was 

capable of differentiating the two moving targets as they passed each other.  In this case, 

each frame had approximately 900 photons per pixel, where 543 photons were due to 

target returns. 

The final scenario was used to evaluate the robustness of the proposed algorithm to 

complex scenes with hidden objects and multiple depth-surfaces per pixel.  In this 

measurement, a camouflage net was erected in front of the actors and backboard, directly 

in the system’s line-of-sight.  The two actors then walked briskly through a distance of 

3 metres between the backboard and camouflage netting.  RGB reference photos, a 2D 

rendered representation of the raw LiDAR data point cloud, and the reconstructed 3D 

profile of the target obtained using the proposed algorithm are shown in Figure 7.7. 

(a) (b) (c) 
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Figure 7.7: Measurements of the two actors obscured by camouflage netting 

at a stand-off distance of 320 metres. The time between images was one 

second.  These results were obtained using the real-time reconstruction 

algorithm.  (a) shows the RGB reference photograph, (b) shows a 2D rendered 

representation of the raw LiDAR data point cloud, and (c) shows the 

reconstructed 3D profiles of the scene for a grayscale frame acquisition time 

of 20 ms, displayed at 50 frames per second.  

The results shown in Figure 7.7 demonstrate the potential of the algorithm for the 

successful real-time 3D reconstruction of complex scenes.  In the raw LiDAR data (Figure 

7.7 (b)) the depth profiles of the actors cannot be identified as most of the photon returns 

were reflected by the camouflage netting, resulting in no depth information in most of the 

target pixels associated with the human targets.  However, using the proposed algorithm, 

both targets were imaged in real-time (50 grayscale frames per second).  Each frame had 

approximately 900 photons per pixel, where 450 photons are due to target returns.  Most 

pixels have two surfaces present, except for those in the left and right borders of the 

camouflage netting, where there is only one return per pixel.  A maximum number of 

three surfaces per pixel were found in some parts of the reconstructed image due to the 

contour of the human targets. 

While these results were performed using a relatively low pixel format array (32 × 32 

coarse LiDAR pixels or 96 × 96 pixels after the use of a super-resolutions scheme), the 

proposed algorithm is capable of handling data from larger pixel format arrays while 

maintaining video-rate processing times.  Figure 7.8 (a) shows that the processing time 

(a) (b) (c) 
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remains constant at approximately 10 ms per frame up to a 150 × 150 pixel format, due 

to the parallel structure afforded by the GPU.  At larger pixel formats the processing time 

increases to approximately 30 ms per frame for a 400 × 400 pixel format.  This is due to 

hardware limitations, as the single GPU used in this work (an NVIDIA Xp) does not have 

enough processors to handle so many pixels at the same time.  Thus, future advances in 

GPU technology would alleviate this issue, bringing down processing times for larger 

format arrays.  Another factor that increases the processing time is the number of active 

bins in the raw LiDAR data.  Figure 7.8 (b) shows a plot of the processing time as a 

function of the number of active bins.  The results show that there is an almost linear 

dependency, as in this case the per-pixel computations are not parallelised meaning that 

there is a trade-off between the number of active bins selected for the measurement 

(i.e., the measurement depth range) and the processing time.  Therefore, the number of 

active bins in the timing histogram must be carefully considered for each scene when 

obtaining the original LiDAR data.  

 

Figure 7.8: Processing times of the real-time 3D reconstruction algorithm as 

a function of the number of (a) pixels in the detector array and (b) number of 

active histogram bins. 

7.6 Conclusions and future work 

A bistatic depth imaging system based on the single-photon ToF approach was used to 

obtain long-range data of moving targets in complex scenes, such as behind camouflage 

netting.  The system was based on a 32 × 32 InGaAs/InP SPAD detector array with a 

wavelength range of 1400 – 1600 nm, a temporal resolution of 250 ps, an SPDE of 

approximately 25% at the operating wavelength of 1550 nm.  The array was operated at 

a repetition rate of 150,421 Hz. A pulsed fibre laser was used to provide a 

flood-illumination of the target scene with an average optical power level of 

approximately 70 mW, resulting in eye-safe imaging in the SWIR band. 

This Chapter presented a novel algorithm capable of 3D reconstruction of LiDAR data 

with multiple depth surfaces at video-frame rates.  A range of measurements involving 

(a) (b) 
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fast moving targets, both unobstructed and hidden from view, were performed at a 

stand-off distance of 320 metres.  The results show that the algorithm is successful in 

providing real-time 3D reconstructions of LiDAR data of complex scenes in outdoor 

environments with processing times as low as 10 ms per grayscale frame.  This is a 

significant improvement on current state-of-the-art algorithms, which generally have 

processing times in the region of 10s to 100s of seconds [7.13–7.21].  The results show 

that the processing time of this algorithm is mainly dependent on two factors: (i) the size 

of the pixel format of the detector array and (ii) the number of active bins used to acquire 

the LiDAR data.  The former is limited only by the GPU implemented in the system, and 

future advances in GPU technology will allow for faster data reconstruction of larger 

scale arrays.  The latter is a limitation inherent to the TCSPC LiDAR approach.  Thus, 

the selected measurement depth range of the LiDAR system should be carefully chosen 

in each imaging scenario based on the requirements of the scene. 

The results presented in this Chapter demonstrate the potential for the implementation of 

single-photon counting approaches using InGaAs/InP SPAD arrays in modern embedded 

systems, such as driverless cars.  The high timing resolution, long-range capabilities, and 

low optical power levels inherent to the TCSPC approach fulfils many of the requirements 

of current systems [7.1,7.4].  However, further investigation is necessary to evaluate the 

system and proposed algorithm in more challenging scenarios.  This will include the 

investigation of targets travelling at higher velocities, over larger distances, and in adverse 

conditions – such as in heavy precipitation, fog, and smoke. 
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Chapter 8: Conclusions and outlook 

This final Chapter will summarise and conclude the work presented throughout this 

Thesis.  

8.1 Summary of conclusions 

In recent years there has been increasing interest in the use of Light Detection and 

Ranging (LiDAR) systems for the high-resolution imaging of targets in visually degraded 

environments [8.1–8.5].  This Thesis presented work on the characterisation of two 

single-photon depth profiling systems for free-space imaging through scattering media 

such as camouflage, smoke, and fog.  Both systems used the time-of-flight (ToF) 

approach alongside the time-correlated single-photon counting (TCSPC) technique, 

which offers high temporal resolution and excellent surface-to-surface resolution.  The 

measurements presented in this Thesis were all performed using an operating wavelength 

of 1550 nm using indium gallium arsenide/indium phosphide (InGaAs/InP) single-photon 

avalanche diode (SPAD) detectors.  The use of short-wave infrared (SWIR) wavelengths 

in LiDAR systems has several advantages over visible wavelength systems, such as high 

atmospheric transmission [8.6,8.7], low solar background [8.8], and compatibility with 

the fibre optics low-loss telecommunications window.  In addition, it allows the use of 

higher optical power levels due to an increased threshold in eye-safety for compared to 

wavelengths in the retinal hazard region (i.e., 400 – 1400 nm) [8.9,8.10].  To the best of 

the author’s knowledge, the work described in this Thesis represents the first application 

of the TCSPC technique using InGaAs/InP SPAD detectors for free-space imaging in 

obscurants at SWIR wavelengths. 

Chapters 1 – 3 presented an introduction to LiDAR imaging, the TCSPC technique, and 

single-photon detection.  

Chapter 4 presented work performed as part of the NATO SET 205 field trials in Virginia, 

USA, which included several LiDAR systems from different NATO countries.  The aim 

of this field trial was to evaluate the long-range imaging performance of the λ = 1550 nm 

depth imaging system for both unobstructed and obstructed targets [8.2].   In this work, a 

monostatic depth imaging system based on the TCSPC approach was used to obtain 

three-dimensional depth profiles of targets at a stand-off distance of 230 metres.  The 

system comprised of a pulsed supercontinuum laser source operated at an average optical 

power level of < 1 mW at a repetition rate of 19.5 MHz for all measurements.  A series 

of high-performance filters was used to deliver a fibre-coupled illumination of 
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λ = 1550 nm.  The detection system comprised of a single-pixel InGaAs/InP 

single-photon avalanche diode (SPAD) with a wavelength range of 900 – 1700 nm, a 

temporal resolution of 2 ps, and a single-photon detection efficiency of approximately 

35% at λ = 1550 nm.  This investigation was successful in both the imaging and 

identification of a range of hazardous and non-hazardous targets in challenging outdoor 

scenarios with a high level of ambient background.  The results showed that depth and 

intensity profiles of the targets could be reconstructed for unobstructed targets using a 

simple cross-correlation algorithm from data with acquisition times as low as 1 second.  

The target objects of interest were easily identifiable in the depth profiles with 

sub-centimetre depth resolution.  The second set of measurements were performed using 

the same target set behind a double layer of camouflage netting. By gating the timing 

histogram, the target profile could be successfully reconstructed with the target items 

easily identifiable.  However, in this case, many missing pixels where no data was 

acquired were present in both the depth and intensity estimates, due to the optical signal 

being blocked by the camouflage netting.  Therefore, the data were processed using the 

more sophisticated Restoration of Depth and Intensity using the Total Variation 

(RDI-TV) algorithm, which was designed to exploit spatial correlations in single-photon 

data.  This algorithm provided good reconstruction results, with accurate depth and 

intensity estimates obtained at well below one photon per pixel, on average. 

In Chapter 5, the same monostatic depth imaging system was used to obtained 

three-dimensional depth profiles of targets through a variety of obscuring media in a 

26-metre-long indoor obscurant chamber, at an illumination wavelength of 1550 nm 

[8.3].  The average optical power level for all measurements presented in this Chapter 

was less than 1.5 mW at a repetition rate of 15.6 MHz.  These measurements were 

performed in collaboration with the French-German Research Institute of Saint-Louis 

(ISL), who provided visible band measurements that served as a comparison for the 

1550 nm depth imaging system.  The obscurant chamber was housed in an indoor tunnel 

on-site at ISL in France.  Four different obscurants were investigated in this study: black 

canister smoke, white canister smoke, glycol vapour, and water fog.  Attenuation 

coefficient measurements were obtained for each obscurant for both λ = 1550 nm and the 

visible band.  The results demonstrate that the use of 1550 nm wavelength illumination 

provides significant benefits over the visible band for both smoke types and glycol vapour 

but little or no benefit for the case of the water fog used in these measurements.  The data 

were processed using three image processing algorithms of varying complexity; (i) 
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pixel-wise cross-correlation, (ii) RDI-TV, and (iii) the Multidimensional Nonlocal 

Reconstruction of 3D (M-NR3D) images algorithm. While the cross-correlation 

algorithm provided good results in both black and white canister smoke, it failed to 

reconstruct scenarios where much larger diameter particles were present (such as in water 

fog or glycol vapour).   Depth and intensity profiles were obtained at attenuation length 

values of up to 3.8 at λ = 1550 nm in water fog and 3.5 in glycol vapour, equivalent to 

> 11 attenuation lengths in the visible band using the more sophisticated RDI-TV and 

M-NR3D algorithms.   Each algorithm’s performance was dependent on the considered 

scenario. The RDI-TV algorithm appeared to be more suitable for measurements 

containing a reduced background level, while the M-NR3D algorithm performed very 

good data restoration even in presence of high levels of scattering background.  Moreover, 

the M-NR3D algorithm is more general in the sense that it accounts for the presence of 

multiple peaks.  

Chapter 6 presented a bistatic depth imaging system based on the single-photon ToF 

approach, which was used to rapidly obtain three-dimensional depth profiles of targets 

through varying densities of glycol-based vapour at an illumination wavelength of 

1550 nm [8.11].  The detection system was comprised of a 32 × 32 InGaAs/InP SPAD 

detector with a wavelength range of 1400 – 1600 nm, a temporal resolution of 250 ps, 

and a single-photon detection efficiency (SPDE) of approximately 25% at the operating 

wavelength of λ = 1550 nm.  The illumination source was a pulsed fibre laser with an 

average optical output power of approximately 220 mW at a repetition rate of 

150,421 Hz.  The average DCR of the detector was measured be approximately 318 kcps 

at a gate width of 20 ns and 5370 kcps at an increased gate width of 200 ns.  A LiDAR 

model, which was based on the photon-counting LiDAR equation and adapted for this 

specific system configuration, was presented in this Chapter to evaluate the potential 

ranging performance of the system.  The results suggested that successful depth imaging 

should be achievable using this system in its current configuration in highly scattering 

environments at up to 6 attenuation lengths at target distances up to 150 metres using 

SWIR illumination.  However, this estimation was highly dependent on the level of 

background due to ambient illumination during measurements, the optical components 

used, and the target reflectivity and geometry.  The performance was the system was 

evaluated over several target ranges (50, 150, and 1463 m) as part of a Dstl field trial at 

Porton Down in the U.K.  At a 50 m stand-off distance, the system obtained images of 

the full target scene at approximately 5.0 attenuation lengths using pixel-wise 
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cross-correlation and partial reconstructions of the scene were obtained at up to 6.0 

attenuation lengths for a one-second data acquisition.  A partial target reconstruction was 

achieved at 4.7 attenuation lengths and full reconstruction at 3.4 attenuation lengths for a 

one second data acquisition at a stand-off distance of 150 m.  A transmissometer with an 

illumination wavelength of 637 nm was used to obtain transmission measurements in the 

visible wavelength band.  This comparison highlighted the benefits of SWIR wavelengths 

over the visible region for imaging through obscurants, as the 1550 nm illumination was 

indicated to be almost twice as penetrative as the 637 nm wavelength.   Depth estimates 

were also obtained at a range of 1463 metres with no obscurant present.  This was 

performed to better understand the sensor performance at more challenging distances 

using various levels of neutral density filters to simulate high levels of obscurants.  Target 

depth estimates were successfully made at 0.01 seconds acquisition time using an ND1 

filter (10% optical transmission) to simulate imaging at kilometre range in obscurants, 

and to explore the possibilities of examining, identifying, and tracking moving targets.  

In Chapter 7, the same bistatic depth imaging system was used to obtain data of moving 

targets at stand-off distances of 325 m in complex scenes, such as behind camouflage 

netting [8.12].  A pulsed fibre laser was used to provide a flood-illumination of the target 

scene with an average optical power level of approximately 70 mW, resulting in eye-safe 

imaging in the SWIR band.  A novel algorithm capable of 3D reconstruction of LiDAR 

data with multiple depth surfaces at video-frame rates was used to reconstruct depth 

profiles of the target scene.  The results show that the algorithm is successful in providing 

real-time 3D reconstructions of LiDAR data of complex scenes in outdoor environments 

with processing times as low as 10 ms per grayscale frame.  These results indicate a 

significant improvement on current state-of-the-art algorithms, which generally have 

processing times in the region of 10s to 100s of seconds for similar data.  

8.2 Outlook  

This Thesis has demonstrated that depth imaging using illumination wavelengths of 

1550 nm in combination with highly sensitive single-photon counting techniques is a 

powerful approach for the identification of a target in extreme conditions, such as targets 

obscured by camouflage or in high levels of scattering media.   For example, depth 

profiles of targets were obtain at up to 6 attenuation lengths through glycol-based vapour 

using a bistatic arrayed detector imaging system.  This is estimated to be equivalent to 

approximately 12 attenuation lengths for visible band systems - a significant 

improvement on existing depth imaging systems for imaging in high levels of particulate 
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scattering [8.11,8.13].   However, several modifications could be made to further extend 

the capability of the two systems described in this Thesis.  In Chapter 6, a photon-counting 

LiDAR model was presented that indicated that the maximum achievable number of 

attenuation lengths by a system is dependent on several factors, such as the optical power 

level and the aperture size of the receiver objective lens.  Thus, the use of an illumination 

source with a higher maximum power level may allow for the imaging of targets over a 

greater number of attenuation lengths, whilst remaining eye-safe at SWIR wavelengths.  

However, the use of higher optical power levels requires careful consideration and care 

to avoid damaging the use of the highly sensitive single-photon detectors.  The use of a 

larger aperture diameter objective lens could also potentially increase the number of 

achievable attenuation lengths, as more photons could be collected by the system.  

However, this would also increase the number of background counts collected by the 

system due to ambient light, so improved spectral filtering may be required in this case. 

All of the results presented in this Thesis were acquired using artificially generated 

obscurants, such as canister smoke, glycol-based vapour, and water-based fog produced 

by a sprinkler system [8.3,8.11].  Therefore, future work will include depth profiling of 

targets in a wider range of environments, such as in natural fog or haze.  This will also 

involve a comparison between the visible spectrum and SWIR wavelengths through high 

levels of obscurants in outdoor scenarios with high ambient background levels. 

This work performed in this Thesis has revealed several limitations of current 

single-photon counting LiDAR systems. For example, data acquisition using scanning 

systems that use a point-and-stare approach can take a relatively long duration, as the scan 

speed has a lower limitation placed on it due to the movement of the scanning mirrors. 

This means that target identification in scenarios that require near-instantaneous 

feedback, such as in situations with fast moving targets, may prove challenging. In 

addition, the ability to make a successful measurement using single-photon counting 

systems is largely based on the signal-to-noise ratio (SNR) of the data, as discussed in 

Chapter 3. The work presented in Chapter 6 of this Thesis and in ref. [8.4] shows that 

there is a minimum SNR required to make a successful depth measurement, which is 

based on both the system configuration and the environmental conditions during 

measurements. The system configuration can always be optimised using improved 

components and hardware. However, if the environmental conditions during 

measurements are so extreme that this minimum SNR is not achieved, obtaining accurate 

measurements may prove difficult. This means that certain countermeasures against 
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single-photon LiDAR systems could be employed. For example, Chapter 5 demonstrated 

that the presence of obscurants with large particle size distributions can hinder successful 

data acquisition. Large densities of such obscurants could be deployed to hide targets 

from view of the system. Moreover, the number of photon returns collected by the system 

is dependent on the scattered reflectivity of the target, as well as the operating wavelength 

of the system as shown in ref. [8.14] and in Chapter 4 of this Thesis. This means that the 

material used in the composition of targets can be carefully selected to avoid detection 

from single-photon counting LiDAR systems.   

A further limitation of the approach used in this Thesis is the use of periodic laser sources 

which can result in range ambiguity, as well as being more readily detected by laser 

warning devices.  As shown in other single-photon depth imaging work [8.15], the use of 

pseudo-random pulse sequences can be used to avoid both potential system limitations. 

Development of ideal laser sources in terms of their potential for randomising their 

repetition rate and their compatibility with improved spectral filtering to help reduce the 

effects of the solar background, will remain a key aspect of future single-photon LiDAR 

research.  

Both systems described in this Thesis were based on InGaAs/InP SPAD detector 

technology. As mentioned previously, InGaAs/InP SPADs are currently the best 

candidate technology for single-photon counting applications in the SWIR due to their 

compatibility with compact Peltier cooling systems.  These detectors are commercially 

available in both single-pixel formats [8.16] and as SPAD arrays [8.17,8.18], and offer 

relatively low DCRs, low timing jitters and SPDEs of up to a maximum of 45% at a 

detection wavelength of 1550 nm at near-room temperatures. However, 

germanium-on-silicon (Ge-on-Si) SPAD detectors have become potential candidates for 

SWIR single-photon detection due to the good absorption properties exhibited by 

germanium at room temperatures for wavelengths up to 1600 nm and the excellent 

multiplication properties of Si [8.19].  Recently, custom-made Ge-on-Si SPADs operated 

at a wavelength of 1310 nm have been reported [8.20] that demonstrate record low NEPs 

compared to those reported in literature [8.21–8.23].  These detectors have SPDE values 

that are comparable to commercially available InGaAs/InP SPAD detectors, and 

demonstrate considerably reduced afterpulsing effects, which is a drawback of 

InGaAs/InP detectors.  Currently, these devices require further optimisation to reduce the 

dark count rate at increased operating temperatures to enable efficient single-photon 

imaging at a wavelength of 1550 nm.  Recently, detectors that incorporate tin (Sn) into 
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Ge have been demonstrated, which expand the spectral detection range to 2 µm and 

beyond [8.24–8.26].  However, these Ge:Sn detectors have never been shown in terms of 

SPAD operation.  Regardless, future work will incorporate these alternative detectors for 

imaging in highly scattering media and in outdoor environments.  

As discussed in Chapter 3, superconducting nanowire single-photon detectors (SNSPDS) 

provide improved timing resolution, high single-photon detection efficiencies, and very 

wide spectral range [8.27].  As discussed in this Thesis, SWIR wavelengths have higher 

atmospheric transmission and have a reduced solar background compared to visible 

wavelengths, and this becomes even more apparent at longer wavelengths above 

1550 nm. Thus, the implementation of SNSPDs that extend wavelength detection 

sensitivity to 2.3 µm [8.28] in single-photon LiDAR systems is the aim of future work as 

these detectors have the potential to enhance depth resolution and extend imaging ranges 

in outdoor environments. 

As discussed in Chapter 2, the LiDAR technique can be used to make multispectral 

measurements in order to obtain the spectral response information of a target object 

[8.29–8.31].  Preliminary investigations of the recovery of range and spectral profiles 

associated with remote three-dimensional scenes sensed via single-photon multi-spectral 

LiDAR has been performed [8.32,8.33].  In this work, two different spatial/spectral 

sampling strategies were considered and their performance for a similar overall number 

of detected photons was compared [8.32].  The results suggest a way forward for the 

integration of single-photon detector arrays with mosaic filters for use in a range of 

emerging photon-starved two-dimensional and three-dimensional imaging applications.  

Simultaneous multi-spectral measurements using only one single-photon detector were 

also performed [8.33].  By observing multiple wavelengths at each spatial location, a 

single waveform with wavelength-to-time mapped peaks could be obtained. These 

preliminary results suggest that single-photon multi-spectral LiDAR using mosaic filters 

could be used for a number of applications, such as vegetation analysis [8.31] and the 

discrimination of man-made objects in natural environments [8.34].  For example, water 

is strongly absorbing at a wavelength of 1550 nm relative to nearby wavelengths such as 

1310 nm [8.35].  Thus, the water content in foliage could be investigated by using a 

single-photon multi-spectral LiDAR system with an illumination wavelength of 1550 nm 

and a reference wavelength of 1310 nm, for example. 

Another potential use for SWIR single-photon counting LiDAR systems is the remote 

sensing of greenhouse gases and pollutants, as carbon dioxide, carbon monoxide, 
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methane, and nitrous oxide have their fundamental absorption bands located in the 

mid-infrared [8.36,8.37]. In particular, the fundamental absorption band of carbon 

dioxide is centred on 1573 nm [8.38] and a secondary absorption line is located at 

approximately 2100 nm [8.39].  Detection of these greenhouse gases is critical to the 

investigation of the Earth's atmosphere, atmospheric chemistry, and for monitoring 

climatic change. 

Finally, this Thesis has demonstrated that single-photon depth profiling of targets in 

extreme environments can be greatly improved through the use of sophisticated image 

processing algorithms that exploit spatial correlations in single-photon data 

[8.2,8.3,8.12].  This is particularly important for the free space depth profiling of targets 

at long-ranges and in high levels of scattering media, where the return signal can be much 

less than one photon on average.  Chapter 7 presented an algorithm that was used for the 

real-time reconstruction of single-photon data of a moving target with processing times 

as low as 10 ms per grayscale frame.   This preliminary investigation was performed with 

a complex scene typically containing more than one surface per pixel.  Future work will 

investigate the use of the arrayed detector imaging system for the real-time reconstruction 

of ultra-fast movement (i.e., 1000s of frames per second), for target tracking, for much 

longer target ranges, and in more complex scenes containing many different surfaces. 
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