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Abstract

The recently standardised 5th generation (5G) wireless communication technologies

and their evolution towards the 6th generation (6G) will enable low-latency, high-

density, and high-capacity communications across a wide variety of scenarios under

tight constraints on energy consumption and limited availability of radio electromag-

netic spectrum. Massive multiple-input multiple-output (MIMO) technologies will be

key to achieve some of these goals and cover the ever-growing demand of data rates,

reliability and seamless connectivity.

Nowadays, the design and evaluation of new wireless communication technologies

heavily rely on computationally-efficient channel models that can accurately capture

essential propagation phenomena and flexibly adapt to a wide variety of scenarios.

Thus, this thesis aims at providing methods of analysis of massive MIMO channels

and developing advanced massive MIMO channel models that will help assess the 5G

wireless communication technologies and beyond.

First, key aspects of massive MIMO channels are investigated through a stochastic

transformation method capable of modelling the space-time varying (STV) distribu-

tion of the delay and angle of arrival (AoA) of multi-path components (MPCs). The

proposed method is followed by a channel modelling approach based on STV param-

eters of the AoA distribution that leads to closed-form expressions of key massive

MIMO channel statistical properties. These methods are employed to analyse widely-

used channel models and reveal some of their limitations. This investigation provides

fundamental insights about non-stationary properties of massive MIMO channels and

paves the way for developing subsequent efficient and accurate channel models.

Second, three-dimensional (3D) non-stationary wideband geometry-based stochastic

models (GBSMs) for massive MIMO communication systems are proposed. These

models incorporate a novel approach to capture near-field effects, namely, the parabolic

wavefront, that presents a good accuracy-complexity trade-off when compared to other

existing techniques. In addition to cluster of MPCs (re)appearance, a Log-normal

cluster-level shadowing process complements the modelling of large-scale fading over

the array. Statistical properties of the models are derived and validated through

simulations and measurements extracted from the available literature.

Third, a highly-flexible and efficient 3D space-time non-stationary wideband mas-

sive MIMO channel model based on an ray-level evolution approach is proposed as



a candidate for the design and assessment of 5G and beyond 5G (B5G) massive

MIMO wireless communication technologies. The model can capture near-field ef-

fects, (dis)appearance, and large-scale fading of both clusters and individual MPCs

by employing a single approach. Its efficiency relies upon a more realistic wavefront

selection criterion, namely, the effective Rayleigh distance, which accounts for the

limited lifespan of MPCs over the array. This novel criterion can help improve the ef-

ficiency of both existing and B5G massive MIMO channel models by greatly reducing

the need for spherical wavefronts.
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Chapter 1
Introduction

1.1 Background

1.1.1 The 5G wireless communications and beyond

Over the last decades, the ever-growing demand for low-latency, high-density, and

high-capacity ubiquitous wireless communication services has fueled the steady de-

velopment of new technologies whose capabilities have doubled every two and a half

years, in agreement with Cooper’s law. Recent studies on global data traffic esti-

mated 18 billion connected devices in 2017, 2.4 per capita, and forecast more than 25

billion by 2022, 12 billion of which will be mobile [1]. A relative comparison across

multiple generations of wireless telecommunication technologies indicate that mobile

connections of the 4th generation (4G) generated about three times more traffic than

those of the 3rd generation (3G) in 2017. A similar ratio is expected between the

5th generation (5G) and 4G global data traffic by 2022. A relative temporal analysis

reveals a 17-fold growth in the global mobile data traffic per month from 2012 to 2017

and a 7-fold increase is expected from 2017 to 2022, as shown in Figure 1.1 A).

The enhancement of existing wireless communication technologies and development

of new ones, such as machine to machine communications, intelligent transportation

systems and wireless networks of sensors, are expected to bring remarkable benefits
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(a) (b)

Figure 1.1: A) Global mobile data traffic per month from 2017 to 2022 in [1] and
B) how wireless networks use electricity in [2].

to many aspects of our everyday lives. However, this progress is usually hindered

and driven by technological and ethical challenges. Among the most important, the

scarcity of fundamental resources such as the radio frequency (RF) electromagnetic

spectrum and the damaging environmental footprint of information and communica-

tion technologies guide the development of the 5G wireless communication technolo-

gies and beyond. Studies on energy usage of communications networks showed that

they add up to 1-3% of the world’s total energy consumption and their environmental

impact may become a major problem in the future. Wireless networks are typically

less energy efficient than wired or optical networks as power-hungry RF amplifiers

are employed to overcome the usually large propagation losses. Figure 1.1 B) breaks

down the typical energy consumption of current wireless networks [2].

According to the 5th Generation Public Private Partnership (5GPPP) formed by the

European Commission, 5G networks need to be designed, engineered and optimised

by relying on innovative technologies capable of providing 1000 times higher capacity

and a 90% reduction in energy consumption compared to the standards of the 4G

to cope with the increase of mobile data traffic and to reduce the carbon emission

footprint of mobile communications [17]. Similarly, the International Telecommunica-

tions Union Radiocommunication sector (ITU-R) published the International Mobile

Telecommunications (IMT) Vision for 2020 and beyond [18], listing the minimum re-

quirements of key performance indicators (KPIs) for 5G (IMT-2020) compared to the

4G (IMT-Advanced) wireless technologies as shown in Figure 1.2 A).
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(a)

(b)

Figure 1.2: A) Enhancements of key capabilities from 4G to 5G and B) importance
of key capabilities per use case.
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As these requirements are very stringent and they cannot be all met at the same

time using a single technology, multiple solutions have been proposed for different

use cases. For that purpose, IMT Vision [18] put forward a classification of the

three main usage scenarios for future 5G technologies: enhanced mobile broadband

(eMBB), ultra-reliable low-latency communication (URLLC), and massive machine-

type communication (mMTC):

• eMBB: It is considered an evolution of IMT-Advanced Mobile Broadband, i.e.,

human-centric communications for access to multimedia content, services and

data, with improved user data-rate, high mobility and seamless coverage.

• URLLC: It is characterised by high reliability, high mobility and very low

latency. The data rate requirements are less stringent when compared to eMBB.

Examples are industrial manufacturing, robotics, and transportation safety.

• mMTC: A scenario with a very large number of low-powered devices trans-

mitting a low volume of latency-insensitive data. Examples of this use case are

sensor networks.

The importance of each capability for every use case is depicted in Figure 1.2 b).

For the main use case (eMBB), different solutions have been proposed to increase

the network data transmission capacity and spectrum and energy efficiencies. Among

them, increasing the cell density by deploying cells of reduced coverage area, enhanc-

ing the spectrum utilisation, shifting the carrier frequency upwards to exploit larger

bandwidths available and increasing the spectrum efficiency are the most important.

At a high investment cost, increasing the cell density (cell densification) is an effective

approach to improve the network capacity in the past by spectrum reuse [19]. Cell

densification mitigates the environmental footprint by reducing the energy consump-

tion of RF amplifiers, as the closer the users are to the access network, the lower the

path losses that need to be compensated. The limit of this approach is usually called

the single-user limit and it occurs when each cell only serves one user. Beyond this
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point, further densification would require a very large degree of cell activity manage-

ment and the capacity gains would turn from linear to logarithmic as spectrum-reuse

gains would be replaced by signal-to-noise ratio (SNR) gains [20].

With an increasingly clogged spectrum at conventional RF bands (0.4-6 GHz), smart

dynamic spectrum allocation using cognitive radio and millimetre wave (mmWave)

technologies operating at frequency bands beyond 30 GHz have also been proposed

to increase the spectrum efficiency and network capacity, respectively. Cognitive

radio technology aims at improving spectrum utilisation by exploiting information

about the environment such as the activity of other nodes which share the same

spectral resources [21]. Communications at mmWave frequencies can benefit from

the large amount of spectrum available, but their coverage is usually limited by the

difficult propagation conditions and reduced effective area of constant-gain anten-

nas [22]. Nonetheless, ultra-dense cellular networks may leverage the characteristics

of mmWave propagation by reducing inter-cell interference. For macro-cellular cov-

erage, multiple-input multiple-output (MIMO) technologies can help overcome the

propagation difficulties through beamforming techniques [23].

In addition to the aforementioned technologies, MIMO antenna technologies have

demonstrated to be decisive to alleviate the scarcity of RF spectrum over the last

decades. MIMO technologies introduced new degrees of freedom and a new domain

(space) to the communication that can be exploited for multiplexing purposes without

detriment to other limited resources, e.g., time or bandwidth. Whereas spatial multi-

plexing techniques have contributed to the remarkable increase in the spectral, energy

and economic efficiencies of modern wireless communication systems, space-time cod-

ing helped improve their reliability [24]. A relatively small number of antenna elements

are supported by current standard wireless communication systems, e.g., Long Term

Evolution Advanced (LTE-A) of the 3rd Generation Partnership Project (3GPP) cur-

rently supports up to 8 parallel streams of data (layers) and antenna ports in the

downlink per user [25]–[27]. In Release-15 of the 3GPP, 5G New Radio technologies

can support up to 32 antenna ports in the downlink in a multi-user setup [27], [28]
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and larger number is expected in subsequent releases beyond 5G (B5G), as recent

Release-16 3GPP Study Items seem to indicate [29].

1.1.2 Massive MIMO: A key enabler of 5G and beyond

Recently, an increasing interest in the characteristics of massive MIMO, i.e., MIMO

technologies that employ from hundreds to thousands of antennas, has appeared both

in academia and industry due to some remarkable properties that many-antenna sys-

tems theoretically show. Some of these promising properties are [30]–[32]:

• Spectral efficiency: On a time-frequency varying channel, the achievable data-

rate of a MIMO antenna system scales as min(MT ,MR) log(1+SNR), where MT

and MR denote the number of transmit and receive antennas, respectively, and

SNR is the signal-to-noise ratio.

• Reliability: On a quasistatic channel, diversity schemes can greatly improve

the reliability of a point-to-point link as the probability of link outage scales

according to Prob(link outage) ∝ SNR−MTMR .

• Energy-cost efficiency: For a fixed transmitted power, the power per antenna

element is inversely proportional to the number of antennas. With a large ratio

of base station (BS) antennas to terminals, near-constant envelope signaling

that requires cheap and efficient RF amplifiers can be used.

• Interference reduction: For a fixed inter-element spacing, the higher the

number of BS antennas, the better the focusing capabilities of an antenna array.

Thus, the electromagnetic field strength can be focused to a point rather than in

certain direction, leading to less interference between spatially separated users.

Consequently, massive MIMO technologies have been recently proposed as one of the

key enablers of 5G and B5G wireless communications. Nevertheless, these promising

capabilities are not exempt of practical implementation challenges that have to be

tackled before these systems can be practically deployed. Some of the most important

challenges are listed below [31], [33]:
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• Spatial constraints: The number of BS antennas is constrained by the avail-

able space where they can be deployed. Important benefits of massive MIMO,

e.g., increased array gain, spatial resolution, and diversity order, depend on

the total size of the antenna array and require a sufficient separation between

adjacent antenna elements [34]. The limited space becomes a challenge at low

frequencies as arrays composed by hundreds of antennas can become bulky.

• Channel acquisition overhead: The uplink channel estimation overhead is

proportional to the number of user equipments (UEs) and the downlink one

is proportional to the number of BS antennas in frequency division duplex-

ing (FDD) schemes. Although FDD massive MIMO schemes seem unpractical,

reciprocity-based time division duplexing (TDD) schemes do not suffer such

overhead. However, it has been shown that the channel estimation quality per

antenna cannot be reduced by adding more antennas to the BS.

• Signal processing overhead: The complexity of signal processing tasks such

as channel estimation, equalisation, and precoding (beamforming) scales linearly

with the number of BS antennas and the number of UEs.

• Pilot contamination: As the number of orthogonal training sequences (pilots)

assigned to UEs for channel estimation and precoding is limited by the char-

acteristics of the time-frequency-varying channel, these are reused in adjacent

cells. Pilot reuse contaminates channel estimates and therefore produces UE in-

terference when beamforming is used. This interference grows with the number

of antennas and complex multi-cell signal processing is required to eliminate it.

• Deployment of many parallel transmit/receive RF chains: Massive

MIMO requires the integration of many compact RF chains: up/down con-

verters, analog-to-digital and digital-to-analog converters, etc. This will require

a highly efficient economy of scale in manufacturing.
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1.2 Motivation

In order to study some of these challenges and take advantage of them in the design

of new transmission schemes, there has been a substantial progress on channel mea-

surements and models involving both virtual and real massive MIMO systems. These

measurements campaigns revealed that large-scale antenna arrays (in the order of tens

of wavelengths) of different shapes and number of antennas exhibit new channel char-

acteristics that affect important metrics like the achievable data rate and reliability

of MIMO communication systems (see Section 2.1).

Furthermore, since the early years of wireless communications, channel models have

played an important role in the design and evaluation of new communication systems,

enabling both development and deployment in quicker and more economical manners.

However, traditional standard channel models such as those developed by the Wireless

World Initiative New Radio (WINNER) and European Cooperation in Science and

Technology (COST) actions (see Section 2.2) neglected some of these new channel

features such as near-field and non-stationary effects when many antennas are used on

the transmit or receive sides. Consequently, models capable of capturing fundamental

characteristics of massive MIMO channels in different environments and situations

are required. Although recent works on channel modelling have partially filled that

gap, there are still important unaddressed aspects of massive MIMO channel models

with respect to their accuracy, flexibility and complexity.

The main goal of this PhD project is to study the propagation characteristics of

wireless communication channels when many antennas are employed in one or both

sides of the communications link and incorporate these characteristics into flexible,

accurate and efficient channel models that can be used to assess and design new

wireless transmission technologies.
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1.3 Contributions

The key contributions of this thesis are summarised as follows:

Contributions of Chapter 3: A Study of Non-Stationary Mas-

sive MIMO Channels by Transformation of the Delay and An-

gular Power Spectral Densities

• Propose a general transformation method to study and model massive MIMO

channels using the distribution of the delay and angle of arrival (AoA) and

two-dimensional (2D) arbitrary-shaped arrays. Closed-form expressions of key

statistical properties of widely-used massive MIMO channel models such as the

scattering function (SF), auto-correlation function (ACF) and Doppler power

spectral density (PSD) are derived.

• Study of the drifting and spreading of the distribution of the delay and AoA

over large-scale arrays of widely-used scatterers distributions. It is shown that

the delay drift and spread over the array lead to an array-varying frequency

correlation function (FCF).

Contributions of Chapter 4: Novel 3D Non-Stationary Mas-

sive MIMO Channel Models based on Cluster-Level Evolution

• Propose a three-dimensional (3D) non-stationary wideband massive MIMO chan-

nel model. Parabolic wavefronts are proposed to reduce the mathematical and

computational complexity of massive MIMO channel models.

• Propose a cluster-evolution process to model large-scale fading over the array,

including cluster of multipath components (re)appearance and shadowing.
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• Derive a 3D extension of the parameter computation method called the Rie-

mann sum method (RSM). The amplitude and angular parameters of the 3D

simulation model are obtained.

Contributions of Chapter 5: A Novel 3D Non-Stationary Mas-

sive MIMO Channel Model based on Ray-Level Evolution

• Propose a 3D non-stationary wideband massive MIMO channel model. The

model incorporates a ray-level evolution process to capture space-time evolution

of individual multi-path components (MPCs) or rays. The proposed model is

suitable for 3D extremely large aperture array (ELAA). Close-form expressions

of the statistical properties of the ray-level evolution process and analysis of the

impact of its parameters on them.

• Propose a wavefront selection criterion for each cluster and MPC that can im-

prove the efficiency of both existing and B5G massive MIMO channel models

by greatly reducing the need for spherical wavefronts.

1.4 Original Publications

The work presented in this thesis has led to the following publications:

• C. F. Lopez, C.-X. Wang, and R. Feng, “A novel 2D non-stationary wideband

massive MIMO channel model,” in Proc. IEEE CAMAD’16, Toronto, Canada,

Oct. 2016.

• L. Bai, C.-X. Wang, S. Wu, C. F. Lopez, X. Gao, W. Zhang, and Y. Liu, “Per-

formance comparison of six massive MIMO channel models,” in Proc. IEEE/-

CIC ICCC’17, Invited Paper, Qingdao, China, Oct. 2017.

• C. F. Lopez and C. -X. Wang, “A study of delay drifts on massive MIMO

wideband channel models,” in Proc. WSA’18, Bochum, Germany, Mar. 2018.
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• C. F. Lopez and C.-X. Wang, “Novel 3D non-stationary wideband models for

massive MIMO channels,” IEEE Trans. Wireless Commun., vol. 17, no. 5, pp.

2893–2905, May 2018.

• C. F. Lopez and C.-X. Wang, “A study of 2D non-stationary massive MIMO

channels by transformation of delay and angular power spectral densities,” IEEE

Trans. Wireless Commun., under review.

• C. F. Lopez and C.-X. Wang, “A non-stationary 3D wideband massive MIMO

channel model based on ray-level evolution,” IEEE Trans. Commun., to be

submitted.

1.5 Thesis Organisation

The remainder of this thesis is organised as follows:

Chapter 2 reviews the state-of-the-art literature on massive MIMO channel measure-

ments and models. First, new propagation phenomena of massive MIMO channels

that have been discovered in measurements campaigns will be reviewed and key differ-

ences between conventional and massive MIMO channels will be presented. Second,

this chapter will provide a comprehensive classification of channel models according

to their approach. Techniques used by recent massive MIMO stochastic models to

capture these new phenomena will be analysed and major limitations highlighted.

From this analysis, the research gap motivating this research work will be identified.

Chapter 3 investigates fundamental properties of massive MIMO channels. This chap-

ter will present a transformation method to model the space-time varying (STV) dis-

tributions of time of arrival (ToA) and AoA. Next, the method will be employed to

study multiple array-variant properties of three widely-used geometry-based stochas-

tic models (GBSMs): the Unified Disk, Ellipse, and Gaussian scattering models. The
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chapter continues by introducing a simplified channel modelling approach based on

STV parameters of the AoA distribution. Finally, a validation of the proposed meth-

ods through numerical and simulation results of the statistical properties of these

three GBSMs is provided.

Chapter 4 presents a novel 3D non-stationary wideband geometry-based stochastic

theoretical channel model for 5G massive MIMO communication systems. A second-

order approximation to the spherical wavefront, i.e., the parabolic wavefront, is in-

troduced to capture near-field effects. Next, the chapter develops a cluster evolution

process comprising both cluster (re)appearance and large-scale fading over the array.

A corresponding simulation model will be derived along with a 3D extension of the

RSM for parameters computation. The most important statistical properties of the

proposed model will be derived and analysed. In addition, the accuracy and flexibil-

ity of the proposed model will be demonstrated by comparing simulation results and

measurements of the delay spread, cluster power variations, and size of VRs.

Chapter 5 introduces a flexible space-time non-stationary 3D wideband massive MIMO

channel model for B5G communications based on a single sub-cluster level approach

capable of modelling near-field effects, (dis)appearance, and cluster-level large-scale

fading. Additionally, an improved Rayleigh-distance criterion to determine the most

adequate wavefront for each cluster and ray is presented. The chapter continues by

deriving key statistical properties of the channel, including the ACFs, Doppler PSD,

spatial cross-correlation functions (S-CCFs), and FCFs, and analysing the impact

of the ray-level evolution process on them. The validation of the derived statistical

properties through numerical and simulation results and conclusions close the chapter.

Finally, Chapter 6 summarizes important conclusions of the work presented in this

PhD thesis. In addition, this chapter concludes by proposing future lines of research

on the field of massive MIMO channel modelling identified by the author.
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Chapter 2
Massive MIMO Channel Modelling:

Literature Review

This chapter presents a review of the state-of-the-art literature on massive MIMO

channel measurements and models. Specifically, it introduces the fundamental dif-

ferences between conventional and massive MIMO channel characteristics, classify

multiple channel modelling techniques and present recent contributions in channel

modelling to capture those new characteristics. From this analysis, a research gap

motivating this work is identified.

2.1 Massive MIMO Channel Measurements

In recent years, many research groups have developed prototypes to evaluate the

suitability of massive MIMO large-scale antenna systems as a solution to overcome the

challenges of future wireless communications [3]–[6], [8], [16], [35]–[46]. Measurements

campaigns have revealed unexpected channel effects that must be considered in order

to achieve an optimal operation of modern wireless communication systems involving

channel estimation, scheduling, resource allocation, modulation and coding scheme

selection. The following sections will summarize the outcomes of these massive MIMO

channel measurements. New channel characteristics related to the large size of the
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antenna arrays such as the non-stationary effects along the array, spherical wave

propagation and correlation effects will be introduced.

2.1.1 Non-stationary properties of the channel over the array

Massive MIMO measurement campaigns have demonstrated that channels cannot be

regarded as wide-sense stationary (WSS) over antenna arrays spanning long distances

compared to the carrier wavelength. In essence, this means that small-scale channel

characteristics such as the local-average received power, delay, Doppler and angular

spectra do not remain constant over large-scale arrays composed of hundreds of an-

tenna elements. Near-field effects have been pointed out to be the cause of some of

these new characteristics. Near-field effects appear when a source of electromagnetic

waves (or an intermediate scatterer) are located within the near-field region of a re-

ceiving antenna. The radiative near-field and far-field regions are delimited by the

so-called Rayleigh or Fraunhofer distance, beyond which wavefronts can be accurately

approximated by a plane surface. The far-field or Rayleigh distance of an antenna is

typically defined as

DF = 2D2
A/λ (2.1)

where DA is the maximum dimension of the antenna, e.g., its length in the case

of a linear antenna, and λ the carrier wavelength. The near-field effects that have

empirically been demonstrated are the following:

• Spherical wave propagation takes its name from the shape adopted by the

wavefronts — surfaces of equal phase — in the near-field region. In conven-

tional MIMO wireless communications, antenna arrays are composed of few

elements of similar size to the carrier wavelength, which is usually between 5 cm

and 50 cm. Thus, even in urban environments, scatterers and mobile stations

(MSs) are usually beyond the Rayleigh distance of the array and plane wave-

fronts are sufficiently accurate for channel modelling purposes. However, when
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a large-scale antenna array spanning tens of wavelengths is employed, spheri-

cal wavefronts may need to be considered. In that case, significantly different

AoAs and propagation delays can be observed at different antenna elements of

the array, i.e., MPCs or rays reaching largely separated antenna elements are

not approximately parallel. Figure 2.1 illustrates these concepts with a uniform

linear array (ULA). The waves transmitted by the MS are scattered by a nearby

object and arrive at antennas 1 and 2 of the ULA at similar angles α and α′,

respectively, but at a very different angle α′′ for a largely separated antenna ele-

ment (N). Whereas the phase difference between waves reaching antennas 1 and

2 can be expressed as ∆Φ1,2 = 2π
λ
d1,2 ≈ 2π

λ
δ cos(α), this linear approximation of

their phase difference is inaccurate for largely separated antennas.

• Scatterers (dis)appearance (blockage) and shadowing refers to the fact

that signals received by different antenna elements of a large array interact with

different sets of scatterers or clusters of scatterers in the environment and can

be blocked by them. The concept of clusters of scatterers is based on the fact

that multipath components tend to appear in groups in various domains such as

the delay and angular ones. The term shadowing or large-scale fading denotes

ULA

Scatterer

MS

MS

Spherical 

Wavefront

Plane 

Wavefront

1 2 N

Shadowing

𝛼 𝛼′ 𝛼′′

𝛿

Figure 2.1: AoA variations and shadowing over a large ULA. As rays are not
parallel for every antenna element of the array, spherical wavefronts are required.
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variations of the local-average mean power of the received signal and transitions

between line-of-sight (LoS) to non-line-of-sight (NLoS) communications. The

distance over which shadowing needs to be considered depends on the type of

environment and it usually ranges from a few to tens of wavelengths for urban

and rural environments, respectively [47]. Conventional arrays formed by few

antenna elements are hardly affected by shadowing over the array, but massive

MIMO arrays are likely to span tens of wavelengths and therefore shadowing is

likely to be present. This phenomenon has also been termed cluster (of scatter-

ers) disappearance or birth-death (BD) of clusters by referring to the technique

usually employed to model it, i.e., Markov BD processes. In Figure 2.1, it

is shown how an object (tree) can significantly obstruct or reduce the signal

strength for a particular set of antennas of the ULA but not for others.

A large number of massive MIMO channel measurements demonstrated that large-

scale antenna arrays often result in wireless channels that cannot be regarded as

WSS [3]–[6], [8], [16], [41]–[46], [48]–[54]. Measurements employed virtual ULAs [3],

[5], [6], [16], [41], [44], [51]–[53], uniform cylindrical arrays (UCAs) [3], [8], [16], [41],

[54], and uniform planar arrays (UPAs) [4], [41], [45], [46], [48]–[50], [53], [54] at a

single frequency band, e.g, 2.6 GHz [3], [5], [6], [8], [16], and at multiple frequency

bands, e.g., 11, 16, 28, and 38 GHz [45], and demonstrated multiple array-varying

channel characteristic such as AoA and angle of departure (AoD), propagation delays,

received power, Rician K-factor, and the number of MPCs.

In [3], Gao et al. conducted a measurement campaign with 128-element virtual ULA

and UCA at 2.6 GHz of carrier frequency. Figures 2.2 A) and B) show the large-

scale antenna arrays employed for this measurement campaign. The authors observed

significant smooth variations of the AoA of the MPCs at different antenna elements,

a phenomenon also referred to as angular drift, when the LoS component or strong

reflected MPCs were present. In NLoS conditions, they showed that certain clusters of

scatterers were not observable in the angular or delay spectra over the whole array as

they appeared and disappeared at different antenna elements, so each antenna element

may experience slightly different environments. These effects can be seen in the power
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(a) (b)

Figure 2.2: Large-scale antenna arrays used in [3]. A) A UCA with 128 patch
antenna elements and B) a virtual ULA with 128 omni-directional antenna positions.

Figure 2.3: Angular power spectrum along a 128-element ULA. A) LoS B) NLoS
scenario in [3].

spectrum of the AoA in Figure 2.3 and allow to empirically justify the non-stationary

properties of the channel.

Additionally, recent measurements employed advanced clustering and sub-cluster track-

ing algorithms to show the existence of massive MIMO effects of both clusters and

individual scatterers and MPCs as well [4]. Figure 2.4 A) shows the MPC-level evolu-

tion of the azimuth angle of departure (AAoD) across a 4-by-64 element uniform rect-

angular array (URA) at 6 GHz of carrier frequency. The MPC-level (dis)appearance

process was characterized by an exponential cumulative distribution function (CDF)

of the observed MPC length across the array as shown in Figure 2.4 B).

The angular drift of MPCs has been confirmed by many other measurements [6], [44],
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(a) (b)

Figure 2.4: A) Estimated AAoD from SAGE algorithm across the URA. Each
solid dot represents a multipath component. The dB-scaled power of the multipaths
is represented by colour. B) CDF of the observed MPC length over the array, with
the corresponding Exponential distribution fitting. The MPC length is normalized

according to the observed cluster length [4].

(a) (b)

Figure 2.5: A) Measured histogram of the RMS DS in LoS (top), NLoS (bottom)
scenario, and the approximated Log-normal PDF in [5]. B) Channel gain over the

array for different users in LoS (top) and NLoS (bottom) situations, in [6].

[48], [51]. In [6], the authors found channel gain variations of 4-6 dB, Rice K-factor

variations of 0.3-0.5, and MPCs angular drifts of 20 degrees along the array. Authors

in [5], [49], [52], [55] also showed that a fundamental parameter for the characterization

of wideband channels, the root mean square (RMS) delay spread (DS), varies along the

array and a good agreement was found by modelling its probability density function

(PDF) using a Log-normal distribution Log-N (3.67, 0.41) at 2.6 and 5 GHz in [5].

Some of the effects described are shown in Figure 2.5.

18



Chapter 2: Massive MIMO Channel Modelling: Literature Review

Channel gain and RMS DS variations are more pronounced in NLoS than in LoS

situations. Since the LoS signal usually conveys more energy than the rest of MPCs

in LoS situations, differences in clusters sets perceived by different antenna elements

represent a small fraction of the total received power. Consequently, these differences

have a lower impact on the stationary properties of the channel. However, a small

change in the number of MPCs in NLoS situations is more relevant because that

change represents a higher fraction of the total received power.

In [42], authors compared a ULA with a UCA at 2.6 GHz and confirmed the previous

results. They also showed that the ULA experiences larger power variations over the

measured bandwidth compared to the UCA. This is partly justified by the directivity

of the antennas, as the directional antenna elements in the UCA are exposed to limited

scattering in the angular domain as compared to the omnidirectional ones in the ULA.

Although there are no measurements available in the literature yet, it is expected that

near-field effects will be even more accentuated in B5G cell-free massive MIMO [56]

and ELAA [57] systems equipped with thousands of distributed low-cost antenna

elements, as an array could span hundreds or even thousands of wavelengths [7]. An

illustration of a possible deployment of ELAA in B5G systems is shown in Figure 2.6.

Figure 2.6: A future B5G massive MIMO deployment including compact arrays
and ELAA in [7].
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2.1.2 Correlation and channel hardening

The correlation coefficient between two channel impulse responses (CIRs) or channel

vectors can be interpreted as a measure of the cross-talk between these two channels

when spatial multiplexing transmission techniques are employed. Thus, it can be

seen as an indicator of the unlikeness of the environments experienced by the signals

received from different antennas or users. In general, the proximity of two anten-

nas or users leads to highly correlated signals, which makes difficult to distinguish

them in the spatial domain for multiplexing purposes. In multi-user multiple-input

multiple-output (MU-MIMO) systems, the correlation between two channel vectors

corresponding to spatially separated users at positions i, j is given by [8]

ρi,j =
|hHi hj|
‖hi‖‖hj‖

(2.2)

where hi is a column vector representing the channel vector for the ith UE. The

operators ‖ · ‖ and (·)H denote the euclidean norm and the Hermitian or conjugate

transpose, respectively. As it has been pointed out, a low correlation between the

channel vectors at two different positions enables to simultaneously serve different

UEs with little cross-talk.

Important spectral and energy efficiency gains can be achieved using massive MIMO

technologies under favourable propagation conditions [32]. In short, favourable prop-

agation conditions require that the elements of hi to be independent and identically

distributed (i.i.d.) random variables with zero mean and unit variance. Authors in [8]

partially confirmed the existence of favourable propagation as their results showed

that channel vectors become more orthogonal as the number of antennas grows with

different antenna configurations, shapes and radiation patterns. As it is shown in

Figure 2.7 A), the correlation coefficient between any two channel vectors decreases

as the number of BS antennas increases and it is close to the correlation of the channel

vectors whose coefficients are i.i.d. random variables of zero mean and unit variance.
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Although the correlation between i.i.d. channel vectors converges to zero as the num-

ber of antennas increases, a saturation phenomena can be observed in real channels

where a little cross-talk seems unavoidable. These results were also confirmed by [40].

In addition to the correlation coefficient in (2.2), which evaluates the orthogonality

of channel vectors for any two UEs i, j, the joint orthogonality of multiple channel

vectors can be measured through the condition number (CN) of HHH where H =

[hi1 · · ·hiK ] ∈ CN,K is the channel matrix whose columns are the channel vectors for

every UE (iK) and N denotes the number of antenna elements in the BS array. The

CN is defined as follows [8]

κK,N =
max. eigenvalue of HHH

min. eigenvalue of HHH
. (2.3)

The CN is a widely-used indicator for the performance of linear precoders [8]. An

inverse CN close to one indicates that the channel vectors or columns of H are nearly

orthogonal. As it is shown in Figure 2.7 b), the inverse CN increases with the number

of antennas if the ratio of the BS antennas to UEs remains large. In general, although

the marginal gain of an additional antenna quickly diminishes in real systems, the

authors in [8] showed that most of the benefits of massive MIMO could be realized

over measured channels.

(a) (b)

Figure 2.7: A) Correlation coefficient between channel vectors and B) average
inverse CN as a function of the number of antennas in [8].
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Channel hardening refers to the fact that the eigenvalues of the channel matrix and

channel capacity become deterministic quantities as the number of transmit and re-

ceive antennas grows large and their ratio remains fixed. Channel hardening makes

communications performance less dependent of small-scale fading and more depen-

dent of large-scale fading [58, Section 2.2]. The same authors have shown that spatial

correlation decreases the level of channel hardening observed for a given number of

antennas, i.e., more antennas would be required to approximate asymptotic channel

hardening under spatially correlated fading than with i.i.d. Rayleigh fading. Channel

hardening has empirically been demonstrated in [36], [37], [59] and it has been shown

in [36] that it leads to a linear increase in spectral efficiency (SE) with the number

of antennas as long as the ratio of transmit/receive antennas remains large. Similar

results were also confirmed by researchers in [41], [60], [61].

2.2 Massive MIMO channel modelling

Channel models assist the design and analysis of new communication systems. They

represent cost-effective tools —in many cases the only one— for engineers and re-

searchers to assess the performance of novel algorithms, transmission and coding

schemes, compared to complex and expensive measurement campaigns. However, the

assumptions on the propagation aspects that must be considered or neglected by the

channel model determine the conclusions withdrawn from theoretical and simulation

results. For example, it was theoretically proved in [62] that excessive simplification

of channel models had misled many researchers on the capacity of massive MIMO

systems. In addition, it was shown that an accurate characterization of near-field

effects, spatial correlation and large-scale fading over the array is essential as they

enable substantial advantages in large dimensional signal processing such as simple

detection algorithms, e.g., pilot contamination or large-scale fading precoding, that

can achieve unbounded SE even under pilot contamination conditions [58], [62], [63].
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This section classifies different channel modelling techniques and describes some of

the most relevant MIMO channel models and their limitations. In addition, a general

view of preliminary works on massive MIMO channel models is also provided.

Channel models are usually classified by the modelling approach into deterministic

and stochastic. On the one hand, deterministic models are completely defined by de-

terministic parameters and aim to model the propagation of electromagnetic waves in

a specific environment or situation. They usually require detailed information about

the environment, e.g., elevation maps, buildings, vegetation, and materials, to provide

accurate predictions of the channel properties and they are computationally complex.

On the other hand, stochastic channel models aim to represent a broad set of situa-

tions or environments at a time by using random variables as parameters that account

for the properties of different environments. These are simplified models that usu-

ally require information regarding the statistical properties of different environments,

which is often obtained by conducting measurement campaigns. An overview of this

classification is shown in Figure 2.8.

 I.I.D

 Kronecker

 Weicheselberger

 Virtual Channel

Deterministic
 Ray-Tracing

 Ray-Launching

MIMO Channel models

Stochastic

GBSM CBSM

 RS-GBSM

 IS-GBSM

Figure 2.8: Classification of MIMO channel models.

2.2.1 Deterministic channel models

Deterministic models enable to simulate multiple propagation paths in relatively low-

complex and small-scale environments very accurately. As these channel models em-

ploy intense computational geometry algorithms to calculate multiple propagation
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paths between every antenna pair in the communication link, conventional determin-

istic MIMO channel models use a simple single input single output (SISO)-to-MIMO

extrapolation principle. Such simple linear-varying phase extrapolation is equivalent

to the use of plane wavefronts that, as introduced in Section 2.1.1, does not allow to

capture near-field effects.

METIS project developed a map-based channel model (MBCM) that employs ray-

tracing to extend the capability of the channel model (initially based on a stochastic

approach) to support the massive MIMO prediction requirements [9]. One exam-

ple of the proposed calculation is shown in Figure 2.9. Compared to the stochastic

approach, deterministic channel models can accurately capture local and specific non-

stationary properties of the channel by considering a realistic environment at the cost

of a high computational complexity. Although ray-based deterministic models are

computationally complex and the conclusions obtained from their results are limited

to specific environments, they can be a valuable complement to evaluate new MIMO

algorithms. The modelling of specular paths is an important asset of ray-based mod-

els for mmWave communications, as they will largely depend on these type of paths.

However, as illustrated in Figure 2.10 and stressed in [10], the number of simulated

rays and the level of complexity supported by the model (combining reflections and

diffractions) significantly affect the prediction of the MIMO channel capacity. Since

the path of each ray is traced for each antenna pair, massive MIMO channel charac-

teristics such as near-field effects can be captured by the model. Channel capacity and

Figure 2.9: Illustration of the METIS ray-tracing channel model proposed in [9].
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Figure 2.10: Impact of complexity of model on the MIMO prediction; A) MPC
for a single link in [10]; B) CN along a street for three levels of complexity.

eigenvalue analysis in [64] showed that plane wavefronts are not suitable for large-scale

antenna arrays and models should be enhanced with spherical wavefronts.

According to [9], a trade-off between complexity and accuracy must be reached when

considering the level of details of deterministic models. However, detailed high resolu-

tion data could be important to model environment-specific non-stationary properties

of the channel that affect massive MIMO systems performance. This will be more crit-

ical at mmWave frequency bands, where the blocking effect is strongly accentuated.

As the large number of antenna elements makes deterministic models time consuming

in complex scenarios, authors in [65] proposed to improve the accuracy-complexity-

flexibility trade-off by splitting the array in multiple smaller arrays to later compute

rays at several reference points in the antenna array before extrapolation. In general,

one major limitation today in the 5G MBCM devoted to massive MIMO systems is

the lack of validation [66], which requires to run ray-tracing simulations and to collect

a large set of channel measurements in the same environment.

2.2.2 Stochastic channel models

Stochastic channel models are usually further classified as correlation based stochas-

tic models (CBSMs) and geometry-based stochastic models GBSMs. In CB-

SMs, the spatial correlation properties of the channel are explicitly defined and they
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can be used to generate multiple correlated MIMO CIRs. In general, it is the struc-

ture and properties of the spatial correlation matrix what determines the different

types of CBSMs. Unlike CBSMs, GBSMs consider simplified geometric properties of

the channel and compute the CIRs by using the law of wave propagation applied to

specific transmitter (Tx), receiver (Rx) and scatterer geometries. From these CIRs,

the statistical properties of the channel can be obtained. The regularity of the ge-

ometry defining the environment allows to further classify models into regular shape

geometry-based stochastic models (RS-GBSMs) and irregular-shape geometry-based

stochastic models (IS-GBSMs), respectively. In both cases, some of the properties of

the channel are defined in a stochastic manner according to certain probability distri-

butions that determine the different types of GBSMs and their correlation properties.

Geometry based models are usually more accurate than CBSMs at the cost of higher

computational complexity.

2.2.2.1 Correlation-based channel models

Correlation models employ eigenvalue decomposition of a predefined MIMO correla-

tion matrix to generate CIRs through its Karhunen-Loeve expansion [58]. Due to its

simplicity and mathematical tractability, the so-called i.i.d. Rayleigh fading model

has extensively been used to obtain closed-form expressions of important metrics such

as the MIMO channel capacity. However, this simplified model assumes that all chan-

nel links are uncorrelated, which would be realistic only if the antenna elements of

the array were sufficiently separated in a rich scattering environment. As this is not

usually the case, unrealistic results that overestimate the channel capacity have been

obtained using the i.i.d. Rayleigh fading model [67]. Consequently, more accurate but

simple CBSMs have been proposed, including the Kronecker-based stochastic model

(KBSM), the virtual channel representation (VCR) and Weichselberger models.

In the KBSM, it is assumed that the direction of departure (DoD) and direction of

arrival (DoA) of a MPC are independent. As a consequence, the correlation between

channels links can be expressed as the Kronecker product of the correlation matrices

at the transmit and receive sides, which are considered uncoupled [68]. The channel
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matrix with NR receiving and NT transmitting antennas can expressed as

H = RR

1
2HwRT

1
2 (2.4)

where Hw is an NR×NT matrix with zero-mean unit-variance complex i.i.d. Gaussian

entries, and RT = E[HHH ] and RR = E[HHH ] denote the overall spatial correlation

matrices at the transmit and receive, respectively.

In the conventional KBSMs, since all the transmitting (receiving) antenna elements

implicitly share the same set of scatterers and their locations are not explicitly de-

fined, non-stationary properties of the channel such as delay and angular drifts as

well as scatterers (dis)appearance along the array cannot be easily modelled. The

use of the KBSM to model large-scale antenna systems showed discrepancies in the

predicted capacity and the joint spatial DoD-DoA spectra which are likely to be more

pronounced as the number of antennas grows [69]. The authors in [70] studied the

applicability conditions of the KBSM and they demonstrated that different radia-

tion patterns of the transmitting and receiving antennas weakens the separability

assumption of the KBSM, making them inappropriate for massive MIMO channel

characterization. However, recent efforts have been made in [71] to develop a massive

MIMO Kronecker model that improves the capacity estimation. This model incor-

porated clusters of scatterers (dis)appearance effects along the array into the spatial

correlation matrices, but it did not consider spherical wavefronts. Examples of use

of the conventional KBSM in standards can be found in LTE-A [25] and Institute of

Electrical and Electronics Engineers (IEEE) 802.11 TGn [72].

The VCR model describes the channel using spatial basis functions defined by fixed

virtual angles that are limited by the spatial resolution of the arrays [11]. In Figure

2.11 an schematic of the channel model is presented. The NT×NR size channel matrix

H representing a channel with NT transmit and NR receive antennas is determined

by virtual channel coefficients hvqp via a 2D Fourier Transform as follows

H =

ÑT∑
q=−ÑT

ÑR∑
q=−ÑR

hvqpaR(θ̃R,q)aT (θ̃T,p)
H = ÃRH

vÃ
H

T (2.5)

27



Chapter 2: Massive MIMO Channel Modelling: Literature Review

where ÑT = (NT − 1)/2 and ÑR = (NR − 1)/2, denote the number of fixed virtual

directions depending on the number of antenna elements, the matrices ÃR(ÃT ) are

NT ×NT (NR×NR) in size and, if the principal period of the virtual angles θ̃R,q (θ̃T,p)

is sampled uniformly, they are full rank unitary Fourier matrices. In such a case,

the corresponding AoAs and AoDs are not uniformly sampled. The virtual channel

coefficients matrix Hv represent the coupling between NT virtual transmit and NR

virtual receive angles and it is the 2D Fourier Transform of H . Although the accuracy

of this model increases with the number of antennas [73], as long as the model depends

solely on DoD-DoA measured from the centre of the array (far-field assumption) and

the path gains remain the same for every antenna element, it might be difficult to

include new non-stationary properties of the channel over the array. Also, as pointed

out by [11], VCR is restricted to single polarized ULAs.

Finally, the Weichselberger model is inspired by and generalizes both the KBSM and

VCR model [69]. This model relaxes the separability constraint of the Kronecker

model and has the ability to include channel correlations at both the transmit and

receive sides. In this model, a mutual coupling matrix between spatial correlation ma-

trices at the Tx and Rx enables to model the joint DoD-DoA spectra. This approach

predicted a variety of channel metrics more accurately than the i.i.d., KBSM and VCR

models [73]. The Weichselberger model includes the KBSM model by constraining the

coupling matrix to be rank one and can be reduced to VCR model by using discrete

Fourier transform (DFT) matrices as eigenbases [69]. In the Weichselberger model,

Figure 2.11: Schematic of the physical representation of the VCR model in [11].
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the channel matrix can be written as

H = UR(Ω̃�G)UT (2.6)

where G is a random matrix with i.i.d. zero-mean complex-normal entries with unit

variance, UR (UT ) denotes the spatial eigenbasis at the receive (transmit) side, and

Ω̃ is the so called coupling matrix, which is generally a full-rank matrix consisting

of real-valued non-negative elements. The coupling matrix models the amount of

energy coupled between eigenvectors of the transmit and receive sides. Unfortunately,

the Weichselberger model was designed to model stationary channels, which makes it

inappropriate for modelling non-stationary properties along the array.

Compared to other channel modelling approaches, CBSMs are simple, computation-

ally efficient and provide a useful reference for system designers. The drawback of

CBSMs comes from the oversimplified unrealistic representation of link correlations.

It has been shown [74] that CBSMs tend to be better than other models for calibration

purposes due to their balance between complexity and accuracy. However, as current

CBSMs do not allow to explicitly define geometrical characteristics of the channel

and properties of individual antenna elements, it can be difficult to map new channel

characteristics related to the geometry of the environment or the shape/size of the

antenna array to the structure of correlation and coupling matrices.

2.2.2.2 Geometry-based channel models

From the definition of the location and properties of the effective scatterers, GBSMs

can be further classified into RS-GBSMs and IS-GBSMs. In RS-GBSMs, it is assumed

that all the effective scatterers are placed on regular shapes such as a ring, disk,

ellipse, etc., and either the Tx or the Rx are usually placed in locations where simple

geometrical properties can be leveraged mathematically. GBSMs often result in simple

closed-form solutions of important correlation functions of the channel [67], [75].

A geometric shape widely-used for RS-GBSMs is the ellipse. In the Ellipse model,

the scatterers are assumed to be distributed on an ellipse and the Tx and Rx are
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located at its foci. As the sum of the distances from the foci to any point of the

ellipse is a constant, the ellipse allows to model the constant propagation delay of

signals travelling from the Tx to the Rx via scatterers.

In Figure 2.12, an example of the Ellipse RS-GBSM for an NT ×NR MIMO channel

with scatterers Sn placed on an ellipse is depicted. The Tx (Rx) is equipped with a

ULA centred on one focus of the ellipse and the distance between adjacent antenna

elements is δT (δR). The Rx moves in the direction indicated by ~v. The distance

between the two focal points or arrays centres is 2f and the semi-major/minor axis

lengths of the ellipse are denoted as a and b, respectively. The transmitting (receiving)

arrays are tilted by an angle βR (βT ) with respect to the x-axis and the AoA (AoD)

corresponding to the scatterer Sn are denoted by αTn (αRn ). Even though this is not a

requirement of the model, the following assumptions are usually made in RS-GBSMs

for the shake of simplicity and mathematical tractability.

• The scatterers are beyond the Rayleigh distance (far-field region) of the antenna

arrays, i.e., (NT (R) − 1)δT (R) � a − f . As a consequence, the AoDs and AoAs

Figure 2.12: Geometrical Ellipse scattering model for an NT ×NR MIMO channel
with local scatterers Sn placed on an ellipse in [12].

30



Chapter 2: Massive MIMO Channel Modelling: Literature Review

are independent of the location of the antenna elements and homogeneous plane

wave propagation is assumed.

• The period of time in which this model is valid is short, i.e., |~vt| � a− f .

Generally, the CIR of a GBSM can be obtained as the sum of multiple space-time-

varying complex exponential functions modelling every path between the Tx and the

Rx via scatterers. In the reference model, an infinite number of scatterers following

a predefined PDF is assumed. In this case, the CIR of the reference model is usually

obtained as [12]

hqp(t) = lim
N→∞

N∑
n=1

Ene
j(Θn−~kRn ·~rR(t)−k0Dkln ) (2.7)

where En and Θn denote the path gain and the phase shift caused by the interaction

of the nth plane wave with the local scatterer. The symbol ~kRn denotes the wave

vector and ~rR(t) the spatial translation vector pointing in the direction in which the

Rx is moving. Furthermore, k0 is the free-space wave number k0 = 2π/λ. Finally,

Dkl
n denotes the total length travelled by a plane wave from the lth transmitting

to the kth receiving antenna. The simulation model approximates the expression

(2.7) using a finite number of complex exponential functions or scatterers for a given

complexity-accuracy tradeoff. Although the main advantage of these simple models

is their mathematical tractability, recent studies have shown their flexibility to cap-

ture space-time non-stationary properties of the channel and near-field effects at the

expense of increasing their mathematical and computational complexity [13], [76].

In [13], the authors developed a 2D non-stationary wideband massive MIMO channel

model based on the concept of the Ellipse RS-GBSM, in which clusters of scatterers are

placed on the edge of confocal ellipses which model delay-resolvable clusters. In Figure

2.13 the depicted model represents visible clusters using blue-coloured paths (observ-

able links) and non-visible ones in red. In this model, spherical wavefronts are consid-

ered and a Markov BD random process is used to capture the cluster (dis)appearance

over the antenna array and time axes. The results presented in [13] demonstrated some
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Figure 2.13: A wideband ellipse model for massive MIMO systems in [13].

massive MIMO properties such variation of Doppler spread, local-average power vari-

ations, and angular drift along the array. The Markov BD random process employed

determines the probability of survival of a cluster P
T (R)
survival and the average number of

newly generated clusters E[N
T (R)
new ] along the array using exponential functions of the

antenna separation as

P
T (R)
survival = e

−λR
δT (R)
Dac (2.8)

E[NT (R)
new ] =

λG
λR

(1− e−
δT (R)
Dac ) (2.9)

where E[·] designates the expectation operator, λG(m−1) and λR(m−1) denote the clus-

ter generation and recombination rates, respectively; and Da
c represents an scenario-

dependent correlation factor. In Figure 2.14, an example of cluster (dis)appearance

over a ULA is presented.

In [14], the authors developed a non-stationary concentric multi-ring channel model

for massive MIMO systems. They considered spherical wavefronts and used a Markov

BD process to model cluster (dis)appearance over the array and time domain. In
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axis). [13].

Figure 2.15 the model shows visible paths in blue and invisible ones in red colour. In

this case, mobility and presence of scatterers are considered only at the transmit side.

Recent works have introduced 3D characteristics of massive MIMO channels into RS-

GBSMs [77], [78]. In [77], the authors proposed a double cylinder RS-GBSM including

spherical wavefronts and cluster (dis)appearance through visibility areas of spherical

shape. Thus, scatterers can interact with the signal transmitted by a given antenna

only if the distance from the scatterer to the antenna is smaller than a predefined

value (radius of the sphere). In [78], the authors proposed a 3D extension of the

Ellipse model by employing an ellipsoid generated as a solid of revolution around the

Figure 2.15: A wideband multi-ring massive MIMO channel model in [14].
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straight line passing through the Tx and Rx. This model considers UPAs and includes

spherical wavefronts and cluster of scatterers (dis)appearance through a Markov BD

processes. Whereas the main advantages of RS-GBSMs are their higher flexibility and

accuracy at a relatively low complexity, the introduction of spherical wavefronts and

clusters of scatterers (dis)appearance have resulted in more complex and less insightful

channel models.

In contrast to RS-GBSMs, IS-GBSMs assume clusters of scatterers to be randomly

located across the environment. The locations of the scatterers are not constrained

by any specific shape and they are usually based on statistical distributions obtained

from measurement campaigns. In Figure 2.16 a schematic representation of a IS-

GBSM is shown. In this approach, the CIR can similarly be obtained by adding

the contribution of every MPC connecting the transmitting and receiving sides via

scatterers. A general CIR of a cluster-based IS-GBSM from the transmit antenna p

to the receive antenna q can be expressed as

hqp(t) =
∑
i

∑
j

aijst(Ωij)sr(Φij)δ(τ − τi − τij) (2.10)

where aij denotes the complex gain of the jth MPC in ith cluster, st(Ωij) and sr(Ωij)

are the transmit and receive steering vectors in the DoD Ωij and DoA Φij. The pa-

rameter τi is the delay experienced by the signal from the Tx to the Rx via the cluster

ith, and τij accounts for the relative delay of the jth MPC within that cluster.

Figure 2.16: Principle of the clustered IS-GBSM in [15].
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In order to decouple angular power spectra of arrival and departure and better model

the power delay profile (PDP), multi-bounce components were introduced into IS-

GBSMs either by double-directional properties [79] or twin-clusters [80]. The twin-

cluster approach assumes two identical representations (twins) of a cluster of scatterers

at each side of the communication link and a one-to-one correspondence among the

transmit- and receive-side scatterers in each twin cluster. The twin cluster can ac-

curately reflect the relationships between DoDs, DoAs, and delays, and reduces the

computational complexity associated to multi-bounce channel models from quadratic

to linear form. The twin-cluster model was later incorporated into the standard COST

273 [81], and maintained in COST 2100 channel models [82].

Whereas IS-GBSMs rarely lead to closed-form solutions of important statistical prop-

erties of the channel, they are sufficiently accurate and flexible models to adapt to

complex environments keeping spatial consistency, i.e., building a coherent propaga-

tion environment for multiple UEs located at different positions. Also, they are able

to capture non-stationary effects found in massive MIMO measurements easily at the

expense of higher computational complexity. Several standard channel models em-

ployed this approach in the past [82]–[87]. However, as non-stationary properties of the

channel over the array are negligible in conventional MIMO systems, channel models

such as those developed in 3GPP-spatial channel model (SCM) [83], WINNER+ [85],

IMT-A [86], COST 2100 [82], and 3GPP-3D [87], did not capture them.

Recently proposed IS-GBSMs [9], [88]–[95] aimed at filling that gap. Spherical wave-

fronts were considered by computing the exact distances between every antenna ele-

ment of the array and the surrounding scatterers. In addition, in the channel models

that addressed large-scale fading over the array [9], [13], [88], [89], [91]–[94], this was

captured focusing on the array-varying number of clusters of scatterers only. Thus,

Markov BD processes [13], [88], [89], [91], [92], [94] or VRs [9], [90] were employed.

The VR approach was first implemented in COST 259 directional channel model [96]

to account for the mobility of UEs. A VR is a region of space, usually of random

location and size, where a cluster of scatterers is active or, equivalently, where the

signal transmitted or received by an UE interacts with that particular cluster. In [90],
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the concept of the VR was extended to the BS array to account for the (dis)appearance

effect found in massive MIMO measurements. In this context, if a cluster is visible for

a particular antenna element, paths involving that specific cluster and antenna element

can be formed between the Tx and Rx. In Figure 2.17 the VR approach is represented

schematically, in which regions of a particular colour represent a particular VR of a

cluster. Clearly, certain elements or subarrays of the BS array share a particular

cluster set, so every antenna observes a slightly different environment.

Figure 2.17: Concept of cluster VR applied to the BS antenna array [16].

Although the authors in [16] reported a significant large-scale fading over the array

in both LoS and NLoS conditions, it is worth noting that very few works considered

large-scale power variations of clusters of MPC. In [16], the authors characterized

cluster-level large-scale fading using a very simple single-slope model. In [89], the

authors developed a general 5G wireless channel model that included MPCs power

variations over the array to capture large-scale fading by using an inverse-square law.

In summary, GBSMs demonstrate a good accuracy-complexity-flexibility trade-off

when compared to the simple but inaccurate CBSMs and the very complex but precise

deterministic map-based channel models. Further details on MIMO channel modelling

and advances in massive MIMO channel modelling can be found in [15], [66], [97].

2.3 Research Gap

In the recent works introduced above, the authors proposed novel non-stationary

massive MIMO channel models that were able to capture key characteristics of the
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channel observed in measurements campaigns. Although near-field effects and large-

scale fading over the array have been studied in the literature, there are important

aspects of these phenomena that have not been addressed yet.

At the moment, spherical wavefronts are the only technique that has been proposed to

model near-field effects and no other simpler, more efficient, and insightful techniques

have been suggested. In addition, the most appropriate wavefront (plane or spherical)

for a MPC is normally determined by comparing the Rayleigh distance of the array

with the distance from the array to a scattering object. Since the Rayleigh distance of

an array depends on its largest dimension, spherical wavefronts seem to be necessary

for a large percentage of MPCs in most scenarios. However, this approach does not

consider the limited lifespan of MPCs over the array. A better understanding of the

characteristics of spherical wavefronts and their properties would help discover efficient

and precise methods to capture near-field effects only when they are required.

It has been proved in [62] that the inaccurate modelling of spatial correlation and large-

scale fading over the array led to the remarkably important but wrong conclusion in

numerous studies that massive MU-MIMO capacity is limited by channel estimation

interference, i.e., pilot contamination. In particular, the authors showed that the SE

provided by multicell minimum mean-squared error (M-MMSE) precoding/combining

scheme grows without bound as the standard deviation of the large-scale fading over

the array increases, unlike previous studies that considered no large-scale fading over

the array. In addition, it was shown in [58, Section 2.2] that the distribution of the

small-scale fading has a smaller impact on communication performance than that of

large-scale fading as the channel hardening effect increases.

Existing massive MIMO channel models considered large-scale fading over the array

as a consequence of cluster of scatterers (dis)appearance only. Thus, those works

modelled exclusively the (dis)appearance phenomena by employing either Markov BD

processes or VRs. However, it has been pointed out in measurements [16] that clusters

of MPCs can also experience large-scale fading over the array. In addition, Markov

BD processes and VRs usually model the occlusion of clusters for short intervals over

the array as multiple independent clusters [13], [89], [90]. This increases the number
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of clusters per simulation and can underestimate the correlation of the channel in the

large scale. Both Markov BD and VR approaches predict that the random number of

clusters at any location of the array is Poisson distributed. However, measurements

reported that a negative Binomial distribution is more accurate [16]. How to resolve

this apparent contradiction is still an open question. An approach that can model

cluster-level large-scale fading over the array and reappearance effects at the same

time would result in a more accurate and efficient description of the shadowing effect.

Although sub-cluster ray-level (dis)appearance over the array was also reported in

measurements [4], models including these phenomena and comprehensive studies of

its impact on their statistical properties are still missing. The assessment of per-

formance metrics such as the channel capacity of new precoding/combining spatial

multiplexing MU-MIMO techniques would benefit from a deeper understanding and

more appropriate modelling of these phenomena as demonstrated in [58] and [62].

2.4 Summary

In this chapter, the state-of-the-art massive MIMO measurements and models have

been introduced and reviewed. Measurements campaigns revealed fundamental differ-

ences between the channel characteristics of conventional MIMO systems employing

few antenna elements and massive MIMO systems equipped with large-scale antenna

arrays. The key difference is that massive MIMO channels cannot be regarded as WSS

over the array as they are subject to near-field effects, i.e., spherical wave propagation,

scatterers (dis)appearance and shadowing over the array.

These new channel characteristics fostered the development of highly accurate, flexi-

ble and complex channel models. Both deterministic map-based and stochastic chan-

nel models can capture massive MIMO channel characteristics. Whereas determin-

istic models are appropriate for a detailed analysis of concrete environments, their

specificity and high computational complexity make stochastic models a more afford-

able and attractive solution for a broad set of scenarios. Although the mathematical

tractability and low complexity of CBSMs compensated for their poor accuracy, their
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limited flexibility to adapt and capture new massive MIMO effects has hindered their

recent progress. In contrast, the more versatile GBSMs have demonstrated to be suf-

ficiently flexible to incorporate these new channel features with higher accuracy than

CBSMs and lower computational complexity than deterministic ones.

Despite the recent progress, fundamental aspects of these new channel effects and

models need to be addressed in order to improve their accuracy, efficiency and flexi-

bility. Spherical wavefronts are considered as a flexible approach to model near-field

effects, but more efficient methods and criteria to determine when they are required

would be beneficial. Markov BD processes and VRs are two fundamental methods

to model large-scale fading over the array, but a deeper understanding and accurate

modelling of this phenomenon that complements clusters of scatterers (dis)appearance

is required to assess the potential benefits of massive MIMO technologies.
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Chapter 3
A Study of Non-Stationary Massive MIMO

Channels by Transformation of the Delay

and Angular Power Spectral Densities

3.1 Introduction

In order to assess and design new wireless communication technologies, it is important

to study the underlying propagation channels and incorporate their most relevant

features into existing and new channel models. As discussed in Chapter 2, the large

size of massive MIMO arrays lead to complex propagation effects, e.g., near-field

effects, that were not present in conventional MIMO systems equipped with few co-

located antennas. As near-field effects such as the non-linear phase variations over

the array due to the angular drifting and shadowing along the array introduce a

dependency of the spatial correlation on the absolute position of the antenna elements

in the array, massive MIMO CIRs cannot generally be regarded as WSS.

In the past, time-domain non-WSS wireless channels were firstly studied to enable

high-mobility communication systems [98], [99], e.g., vehicular and high-speed train

[100], due to their rapidly-varying characteristics. Recent high-mobility channel mod-

els [101]–[107] employed the so called parameters drifting, i.e., time-varying channel
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parameters such as ToAs and AoAs, with increased theoretical and computational

complexity. Alternatively, the family of COST channel models, e.g., COST 207 [81]

and COST 2100 [82], were intrinsically designed as non-stationary in the time domain

by computing the location of clusters of scatterers in the environment and the exact

distance between these and transceivers. A similar approach was used in recent works

on massive MIMO channel modelling that incorporated spherical wavefronts [13], [88],

[89]. Spherical wavefronts require computing the exact distances between the scat-

terers and the antenna elements of the array. Similarly to the parameters-drifting

approach, spherical wavefronts capture non-WSS channel properties over the array

at the expense of high theoretical and computational complexity. In [13], [88], [89],

the authors proposed 2D [13] and 3D [88], [89] wideband massive MIMO GBSMs

that used spherical wavefronts, temporal parameter drifting, and space-time Markov

BD processes to capture near-field effects and (dis)appearance of clustered MPCs,

respectively. However, these works [13], [88], [89] neglected variations of the ToA

over the array and did not study the STV distribution of ToA and AoA. The quasi-

deterministic channel models QuaDRiGa [91] and mmMAGIC [92] employed a com-

bined approach including spherical wavefronts and temporal parameters drifting. The

stochastic COST 2100 [82], METIS [9], 3GPP-NR [93] and IMT-2020 [94] chan-

nel models did not consider spherical wavefronts and supported mobility at the MS

side only. Although COST 2100 [82] channel model did originally not supported

large-scale arrays, its extension [90] incorporates spherical wavefronts and VRs over

the array. The map-based deterministic METIS model and the quasi-deterministic

MiWEBA [95] channel model implicitly included spherical wavefronts and temporal

channel evolution through ray-tracing techniques with high computational complexity.

Among these works, delay drifts over the array were only considered in the determin-

istic map-based METIS [9] and quasi-deterministic QuaDRiGa [91] models. However,

these [9], [91] did not study the effects of delay drifts on the statistical properties of

massive MIMO channels and none of the works above studied the STV distribution

of ToA and AoA.

A novel approach to channel modelling was presented in [108]. The authors employed
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the theory of transformation of random variables to investigate the spatial configura-

tion of the scatterers in multiple coordinate systems for predefined joint probability

density functions (PDFs) of the AoA and ToA. Similar investigations were conducted

in the past for specific GBSMs [109], [110], but they did not study non-WSS channels

in space or time domains.

Theoretical studies on the STV joint PDF of the ToA and AoA and space-time param-

eters drifting for non-WSS massive MIMO channels are still missing. Moreover, the

equivalence of the spherical wavefront and parameters drifting approaches to model

the statistical properties of massive MIMO channels has not been investigated yet.

To fill these gaps, this chapter introduces a general transformation method capable

of modelling the STV joint PDF of the ToA and AoA. The proposed method pro-

duces analytical expressions of the STV SF, delay and angular PSDs for arbitrary

configurations of the scatterers. In addition, this chapter introduces an approxima-

tion method to obtain the STV angular spread, which was not considered in previous

theoretical studies of massive MIMO channels. The main contributions and novelties

of this chapter are the following:

1. A general transformation method to model the STV joint PDF of the ToA and

AoA for 2D non-WSS massive MIMO channels is proposed. This method can be

used to obtain closed-form expressions of this joint-PDF for the three most com-

mon ways of specifying the distribution of the scatterers, e.g., in the ToA-AoA,

polar, and Cartesian domains, and for arbitrary-shaped 2D arrays. Through

numerical evaluation and simulation, the equivalence of the proposed methods

and the spherical-wavefront approach to capture the statistical properties of the

channel is demonstrated.

2. Approximate expressions for the STV angular spread of the channel when the

AoA follows a von Mises distribution through a geometry-based method are

presented. Additionally, new closed-form approximate solutions of key statisti-

cal properties of massive MIMO channels, such as the temporal ACF and the

Doppler PSD, are obtained by employing the closed-form solutions of the STV

angular spread.
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3. A study of the STV joint-PDFs of the AoA and ToA of widely-used MIMO

GBSMs such as the Ellipse, Unified Disk, and Gaussian scattering models is

conducted. In all cases, the joint-PDFs of the AoA and ToA are subject to

drifting and spreading over the array. Leveraging on this study, it is shown that

the array-varying properties of the FCF of these three GBSMs are caused not

only by the disappearance of MPCs, but also by the drift and spread of the ToA

over the array.

4. Limitations of existing MIMO GBSMs that were upgraded to simulate massive

MIMO channels, e.g., the Unified Disk, Ellipse, and Gaussian scattering models,

due to the array-variant characteristics of the joint PDF of the ToA and AoA.

The rest of this chapter is organized as follows. In Section 3.2, the non-stationary

wideband massive MIMO channel model employed in the following sections is intro-

duced. Section 3.3 presents the general transformation method for the three most-used

coordinate systems. Key statistical properties of the channel are derived using the

transformed joint PDF of the ToA and AoA in Section 3.4. Section 3.5 compares

important statistical properties obtained through the transformation method, the ap-

proximation method, the conventional spherical wavefront approach, and simulation

results. Finally, conclusions are summarized in Section 3.6.

3.2 A 2D Wideband Massive MIMO Stochastic

Channel Model

Let us consider a 2D wideband massive MIMO channel model depicted in Figure 3.1

where the Tx and Rx are equipped with ULAs. The transmitting (receiving) ULA is

composed of NT (NR) omnidirectional antenna elements equally spaced with a distance

δT (δR) and it is tilted at an angle αT (αR) with respect to (w.r.t.) the x-axis of a

Cartesian coordinate system centred at the receiving array’s centre. The p-th (p =

1, 2, ..., NT ) transmitting and q-th (q = 1, 2, ..., NR) receiving antenna elements are

denoted by ATp and ARq , respectively. We assume that the signal is omnidirectionally
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Figure 3.1: A 2D wideband massive MIMO channel model.

bounced only once by each scatterer, denoted by Sn (n = 1, 2, ..., NS), and it travels a

distance Dn,qp(t) = DT
n,p +DR

n,q(t) from ATp to ARq via Sn at time instant t. The phase

shifts θn introduced by the scatterers are modeled as i.i.d. random variables obeying

a uniform distribution over [0, 2π) [12]. The massive MIMO channel is represented

by the matrix H(t, τ) = [hqp(t, τ)]NR×NT whose (q, p) entry denotes the CIR between

the antennas ATp and ARq . The CIR is given by

hqp(t, τ) =

NS∑
n=1

cne
jψn,qp(t)δ(τ − τn,qp(t)) (3.1)

where j =
√
−1, δ(·) is the Dirac delta function. The term ψn,qp(t) = k0Dn,qp(t) + θn

denotes the phase of the signal, k0 = 2π/λ, and λ denotes the carrier wavelength.

The n-th scattered signal is received with amplitude cn and its associated propagation

delay is τn,qp(t) = Dn,qp(t)/c0, where c0 denotes the speed of light. Since signals from

and to sufficiently separated antenna elements of the array experience different ToAs,

τn,qp(t) in (3.1) depends on the antenna indices p and q. The channel transfer function

(CTF), i.e., the Fourier transform of the CIR w.r.t. τ , is given by

Hqp(t, f) =

NS∑
n=1

cne
jψn,qp(t)e−j2πfτn,qp(t). (3.2)

For simplicity, we assume that the centre of the receiving array is located at the origin

at t = 0 and it moves at a constant speed vR forming an angle ξR w.r.t. the x-axis.

The Tx is static and located at a distance d from the Rx along the negative x-axis.
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Accordingly, the distance traveled by the signal radiated by ATp and received by ARq

via Sn can be computed as

Dn,qp(t) =
√

(xn − xRq − vRx t)2 + (yn − yRq − vRy t)2 +
√

(xn + d− xTq )2 + (yn − yTp )2

(3.3)

where (xn, yn) denote the Cartesian coordinates of Sn. The terms xRq = δRq cos(αR)

and yRq = δRq sin(αR) with δRq = (NR − 2q + 1)δR/2 denote the Cartesian coordinates

of the antenna ARq at t = 0. Similarly, xTq = δTp cos(αT ) and yTp = δTp sin(αT ) with

δTp = (NT−2p+1)δT/2 are the projections of the position vector of ATp w.r.t. the centre

of the transmitting array onto x and y axes, respectively. The Cartesian components

of the velocity vector are vRx = vR cos(ξR) and vRy = vR sin(ξR).

Although the distance in (3.3) depends on the Cartesian coordinates (xn, yn), it is

often convenient to describe the channel in terms of delays and angles, which is more

suitable for channel characterization through measurements [108]. However, there

are channel models, e.g., the One-Ring model, in which the scatterers’ locations are

described in other coordinates such as polar.

3.2.1 Spherical and plane wavefronts

Spherical wavefronts are considered in the model as long as (3.3) is used to compute

the phase of the signal ψn,qp(t) in (3.1). The conventional approximation for short

periods of time and small arrays, i.e., the first-order or plane wavefront approximation,

reduces the distance Dn,qp(t) to

Dn,qp(t) ≈ Dn − δTp cos(φTn − αT )− δRq cos(φRn − αR)− vRt cos(φRn − ξR) (3.4)

where Dn = DT
n +DR

n (0) =
√

(xn + d)2 + y2
n+
√
x2
n + y2

n denotes the distance between

the arrays’ centres, and the terms φTn and φRn denote the AoD and AoA of the n-

th scattered signal w.r.t. to the arrays’ centres, which can be calculated as φRn =

arctan(yn/xn) and φTn = arctan(yn/(xn + d)).
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In spatial WSS non-massive MIMO channel models, the plane-wavefront approxima-

tion in (3.4) is usually employed to compute the phase of the signal in (3.1) [12].

From (3.1) and (3.4), it can be seen that this approximation leads to linear space-

time variations of the phase, which do not allow to capture the non-WSS properties

of massive MIMO channels. In addition, the ToA τn,qp(t) in (3.1) and (3.2) is usually

approximated as a constant value for every scatterer, i.e., τn,qp(t) = τn. We will show

that this assumption may be inaccurate for large antenna arrays.

3.3 A Transformation Method of the STV joint-

PDF of the ToA and AoA

In conventional WSS GBSMs [12], scatterers are assumed to be randomly distributed

in the environment according to a predefined PDF that models the ToA and AoA

of the received signal, and this PDF is space-time-frequency independent [108]. Un-

like WSS channels, measurements [3], [5], [6], [16], [42]–[45], [66] have shown that

ToAs and AoAs may change over the array and time for large arrays and periods

of time, respectively. In addition, systems employing extremely large bandwidths,

i.e., millimeter-wave systems, may be subject to frequency non-stationary effects that

would need to be incorporated into the PDF of the ToA and AoA. However, we will

assume that the PDF of ToA and AoA is frequency independent in this work.

In this section, we will introduce a method to obtain the STV joint PDF of ToA-AoA

for every antenna pair ATp –ARq at any time instant t using the theory of transformation

of random variables and the joint-PDF of ToA-AoA defined at the centre of both arrays

and time instant t = 0. In addition, we will derive the transformation equations for

the three most common ways of specifying the distribution of the scatterers, e.g.,

in the ToA-AoA [108], polar, and Cartesian domains. We will provide examples of

application and derive the STV distributions of widely-used channel models such as

the Ellipse, One-Ring, unified disk scattering model (UDSM), and Gaussian cluster

models. These STV distributions will be used to compute the statistical properties of

the channel in Section 3.5.
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3.3.1 Transformation in ToA-AoA domain

As the direct transformation of the random ToA and AoA is rather complicated and

leads to cumbersome expressions for the Jacobian determinant, we use a stepped trans-

formation to obtain the STV joint PDF of ToA-AoA. For clarity, the most important

elements of the transformation are illustrated in Figure 3.2 for a MIMO system em-

ploying 2 × 2 antennas at time instant t = 0. Note that we have depicted ULAs for

convenience, but the proposed method is not constrained by any arrangement of the

antenna arrays, i.e., it can be applied to arbitrary-shaped 2D arrays.

The origin of the Cartesian coordinate systems (X, Y ) and (X1, Y1) are located at the

centre of the receiving array and AR1 , respectively. The AoAs of the signal scattered

by Sn and measured at (X, Y ) and (X1, Y1) are denoted by φRn and φR1,n, respectively.

Signals radiated from the centre of the transmitting array and bounced by the scatter-

ers located in the ellipse ε, e.g., Sj and Sn, arrive at the centre of the receiving array

with the same ToA, which is denoted as τn. Likewise, the ellipse ε1 illustrates the same

concept as ε when the signals transmitted from AT2 and received at AR1 experience a

RxTx

Sn
ǫ

AR
1

AR
2

AT
1

AT
2

dqp

Y1

X1

ǫ1

X

Y

d

τn

τ1,n

φR
n

φR
1,n

αT
αR

vR
ξR

Sj

Sk

φT
n

Figure 3.2: Elements of the transformation of the joint PDF of the ToA and AoA
at t = 0.
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constant delay denoted as τ1,n. The distribution of the ToA-AoA of a signal radiated

from AT2 and received at AR1 can be obtained using the following method:

1. From a given distribution of ToA-AoA fτ,φR(τ, φR), the joint PDF of the location

of the scatterers fXY (x, y) in the Cartesian coordinates (X, Y ) is derived as

proposed in [108]. The transformation of the random variables (τ, φR) is indeed

a transformation of coordinates.

2. A second transformation is performed from (X, Y ) into (X1, Y1), resulting in the

PDF fX1Y1(x1, y1; δR1 , δ
T
2 , t). These coordinate systems are related by shift and

rotation operations dependent of the positions of the antennas AT2 and AR1 .

3. The random variables determining the locations of the scatterers in the system

(X1, Y1) are transformed back into the ToA-AoA domain, obtaining the joint

PDF fτ1,φR1 (τ1, φ
R
1 ; δR1 , δ

T
2 , t) for the antenna elements AT2 and AR1 .

The main advantage of this stepped approach compared to the direct one from (τ, φR)

to (τ1, φ
R
1 ) is that the transformation equations can be reused for other specifications

of the scatterers’ distribution in different domains, as it will be shown later. Also

the resulting expressions for the Jacobian determinant of the transformations are less

cumbersome than those of the direct transformation. Using the previous method, the

joint PDF fτ1,φR1 (τ1, φ
R
1 ; δRq , δ

T
p , t) can be obtained as (see Appendix A)

fτ1,φR1 (τ1, φ
R
1 ; δRq , δ

T
p , t) =|J1(x, y)|−1|J3(τ1, φ

R
1 )|−1

× fτ,φR
(
c−1

0 (
√
x2 + y2 +

√
(x+ d)2 + y2), arctan(y/x)

)
(3.5)

with

x = 1
2

(
(c0τ1)2−d2qp(t)

c0τ1+dqp(t) cosφR1

)
cos(φR1 + αqp(t)) + xRq + vRx t (3.6)

y = 1
2

(
(c0τ1)2−d2qp(t)

c0τ1+dqp(t) cosφR1

)
sin(φR1 + αqp(t)) + yRq + vRy t (3.7)

and the Jacobian determinants J1(x, y) and J3(τ1, φ
R
1 ) can be found in Appendix A.

Notice that the actual AoA measured from ARq is not φR1 but φR1 − αqp(t) due to
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the rotation of the coordinate system (X1, Y1) w.r.t. (X, Y ). It can be seen that

for small arrays and periods of time, i.e., δTNT � (c0τ − d), δRNR � (c0τ − d), and

vRt � (c0τ − d), then |J1(x, y)|−1|J3(τ1, φ
R
1 )|−1 ≈ 1, αqp(t) ≈ 0, dqp(t) ≈ d, and

fτ1,φR1 (τ1, φ
R
1 ; δRq , δ

T
p , t) ≈ fτ,φR(τ, φR). In such conditions, the joint PDF of ToA-AoA

is independent of the antenna element and time instant. Hence, the channel can be

considered as WSS.

It is important to highlight the difference between the transformation method pro-

posed and the ones used in previous theoretical works (e.g., [104]–[106] and [13], [88],

[89]). In the proposed method, the parameters that define fτ,φR(τ, φR) are space-time

invariant, but this distribution gets transformed for different antenna elements of the

arrays and time instants. In those previous works, it was assumed that only some pa-

rameters, e.g., the mean AoA, defining the distribution are STV, but the distribution

remained space-time invariant. The previous approach is an approximation that may

only hold in some limited cases as we will show in subsequent sections.

3.3.1.1 Ellipse narrowband and wideband channel models

In the Ellipse channel model, the scatterers are located in the perimeter of an ellipse

with foci at the center of the transmitting and receiving arrays. In the single-ellipse

model, the ToA is fixed to a single value τ0, but the AoA distribution is not defined.

Here, we will employ the widely-used von Mises distribution to model the AoA as

an example, as it can cover both isotropic and non-isotropic angular distributions

through its parameters [12], [111]. The joint PDF is given by

fτ,φR(τ, φR) = δ(τ − τ0) · 1

2πI0(κ)
eκ cos(φR−µφ) (3.8)

where µφ and κ are the mean AoA and concentration parameter, respectively, and I0(·)

denotes the zero-order modified Bessel function of the first kind. It is important to

remark that (3.8) implies independent time dispersion and frequency dispersion [12],

i.e., its joint PDF of ToA-AoA is separable, and is also a narrowband channel model,

i.e., the absolute value of the FCF is constant. A more flexible distribution of the
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scatterers that includes the previous one as a special case and permits to capture

wideband characteristics of the channel is

fτ,φR(τ, φR) =
1

στ
e−

(τ−τ0)
στ · u(τ − τ0) · 1

2πI0(κ)
eκ cos(φR−µφ) (3.9)

where u(·) denotes the unit-step function, i.e., u(x) = 1 for x > 0 and zero otherwise.

Note that the marginal distribution of delays δ(τ − τ0) in (3.8) has been substituted

in (3.9) by a shifted exponential distribution with minimum delay τ0 and standard

deviation στ , which denotes the delay spread of the channel. The unit-step function

is used to guarantee that the model is causal. It is clear that as στ → 0, the PDF in

(3.9) converges to that in (3.8). From the communications system’s perspective, as

long as στ is much smaller than the time-resolution of the system considered, both

distributions model equivalent channels. The transformed PDFs at the antennas

ATp , ARq and time instant t can be obtained by plugging (3.8) and (3.9) into (3.5).

As it will be shown in the results presented in Section 3.5, the transformation of

(3.8) breaks down the separability of the distribution of ToA-AoA, introducing a

dependence between these two random variables. This can be easily seen by noting

that the term δ(τ−τ0) in (3.8) is transformed into δ(c−1
0 [
√
x2 + y2+

√
(x+ d)2 + y2]−

τ0), with x and y given by (3.6) and (3.7), respectively. As the values of φR1 that

solve
√
x2 + y2 +

√
(x+ d)2 + y2 = c0τ0 depend on the the delay τ1, the ToA and

AoA are dependent and therefore correlated. As this argument can be applied to

any separable distribution, the important independent time dispersive and Doppler

frequency dispersive property [12] of the Ellipse and other channel models is broken

down by the large dimensions of the array.

3.3.2 Transformation in polar domain

Analogous to the previous section, the PDF of the position of the scatterers is trans-

formed in three steps. However, as the given PDF is defined in polar coordinates, i.e.,

fR,φR(r, φR), the first transformation into the coordinates (X, Y ) is performed using

X = R cos(φR) and Y = R sin(φR). Applying the theory of transformation of random
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variables, the joint PDF of (X, Y ) is given by

fX,Y (x, y) = |J1(x, y)|−1fR,φR
(√

x2 + y2, arctan(y/x)
)

(3.10)

where J1(x, y) is the Jacobian of the transformation, i.e.,

|J1(x, y)|−1 =

∣∣∣∣∣ 1√
x2 + y2

∣∣∣∣∣ . (3.11)

Finally, the joint PDF fτ1,φR1 (τ1, φ
R
1 ; δRq , δ

T
p , t) can be obtained as

fτ1,φR1 (τ1, φ
R
1 ; δRq , δ

T
p , t) =|J1(x, y)|−1|J3(τ1, φ

R
1 )|−1fR,φR

(√
x2 + y2, arctan(y/x)

)
(3.12)

where |J3(τ1, φ
R
1 )|−1, x, and y are defined in (A.14), (3.6), and (3.7), respectively.

3.3.2.1 One-ring model and unified disk scattering model

The one-ring model defines the geometrical configuration of the scatterers in a circular

ring around the center of the receiving array. This geometry is usually applied to model

narrowband channels, although its delay spread is not zero and varies according to

the radius of the ring and the distribution of the AoA [112]. Using the von Mises

distribution for the AoA, the PDF of the position of the scatterers in polar coordinates

is given by

fR,φR(r, φR) = δ(r − r0) · 1

2πI0(κ)
eκ cos(φR−µφ) (3.13)

where r0 is the radius of the ring. A more flexible distribution that includes the one-

ring model as a special case is the UDSM [113]. Although the UDSM is constrained

to uniform distributions of the AoA, the PDF of the position of the scatterers can be

extended to account for other distributions as

fr,φR(r, φR) =
(kU + 1)

r
(kU+1)
0

rkU ·
[
u(r)− u(r − r0)

]
· 1

2πI0(κ)
eκ cos(φR−µφ) (3.14)
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where kU > −1 is a real-valued parameter called the shape factor that controls the

spread of the scatterers w.r.t. the radial distance. As kU →∞, the scatterers become

more concentrated near the edge of the disk forming a ring of radius r0 and (3.14)

converges to (3.13). The transformed PDFs at the antennas ATp , ARq and time instant

t can be obtained by plugging (3.13) and (3.14) into (3.12). The resulting PDFs are

omitted here for brevity.

3.3.3 Transformation in Cartesian domain

In this case, the transformation procedure is reduced to two steps as it is not nec-

essary to perform a transformation to cartesian coordinates. Thus, the joint PDF

fτ1,φR1 (τ1, φ
R
1 ; δRq , δ

T
p , t) is a function of the joint PDF fX,Y (x, y) and can be obtained

as

fτ1,φR1 (τ1, φ
R
1 ; δRq , δ

T
p , t) =

∣∣∣J3(τ1, φ
R
1 )
∣∣∣−1

fX,Y (x, y) (3.15)

where x and y are defined in (3.6) and (3.7), respectively.

3.3.3.1 Gaussian cluster channel model

The Gaussian cluster model has widely been used in multiple standard GBSMs, e.g.,

COST 207 [81] and COST 2100 [82], to model single- and multi-bounce clustered

MPCs including intra-cluster delay and angle spreads. A simplified PDF of the posi-

tion of the scatterers for this model in Cartesian coordinates is given by

fX,Y (x, y) =
1

2π(σxy)2
e

−1

2(σxy)2
[(x−x0)2+(y−y0)2]

(3.16)

where (x0, y0) denote the coordinates of the center of the cluster and σxy the spread of

the cluster in the xy-plane. The spreads of the cluster in the x and y axes are assumed

to be equal here for simplicity. The joint PDF fτ1,φR1 (τ1, φ
R
1 ; δRq , δ

T
p , t) can be obtained

by plugging (3.16) into (3.15). The resulting PDF is omitted here for brevity.
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3.4 Statistical Properties of the Channel

In the following, the STV PDF fτ1,φR1 (τ1, φ
R
1 ; δRq , δ

T
p , t) obtained in Section 3.3 will be

used to compute the Doppler, delay, and angular PSDs, and the spatial-temporal-

frequency cross-correlation function (STF-CCF).

3.4.1 Computation of statistical properties from the trans-

formed distribution of the ToA-AoA

3.4.1.1 Delay power spectral density (PSD)

The delay PSD or PDP measures the distribution of the received power in the delay

domain. In addition, the PDP is proportional to the distribution of the ToA of the

received signal [12, p. 348]. Accordingly, the STV PDP can be obtained through

the marginal PDF of τ1 as Sτ1(τ1, δ
R
q , δ

T
p , t) = σ2

0fτ1(τ1, δ
R
q , δ

T
p , t) where σ2

0 denotes the

total received power and fτ1(τ1, δ
R
q , δ

T
p , t) denotes the marginal PDF of the ToA.

3.4.1.2 Angular power spectral density (PSD)

Similarly, the angular PSD or power angular spectrum (PAS) is a measure of the in-

coming power in the angular domain. Thus, the STV PAS can be analogously obtained

through the marginal PDF of the AoA φR1 as SφR1 (φR1 , δ
R
q , δ

T
p , t) = σ2

0fφR1 (φR1 , δ
R
q , δ

T
p , t)

where fφR1 (φR1 , δ
R
q , δ

T
p , t) denotes the marginal PDF of the AoA.

3.4.1.3 Doppler power spectral density (PSD)

For a mobile station moving at a constant speed vR and direction defined by the angle

ξR, the Doppler frequency ν is a function of the AoA as ν = νmax cos(φR1 − ξR), where

νmax = vR/λ denotes the maximum Doppler frequency. According to this definition,
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it can be proved that the Doppler PSD is given by [12]

Sν(ν, δ
R
q , δ

T
p , t) =

2σ0

νmax

√
1− (ν/νmax)2

· gφR1 (arccos[ν/νmax]; δRq , δ
T
p , t) (3.17)

where

gφR1 (φR1 ; δRq , δ
T
p , t) =

1

2

(
fφR1 (φR1 , δ

R
q , δ

T
p , t) + fφR1 (−φR1 , δRq , δTp , t)

)
(3.18)

is the even part of the STV PDF of the AoA.

3.4.1.4 Space-time-frequency cross-correlation function

In the proposed approach, the cross-correlation between the signal corresponding

to the link ATp –ARq at time instant t and frequency f , and that of the link ATp′–

ARq′ at time t + ∆t and frequency f + ∆f can be obtained as ρqp,q′p′(t,∆t,∆f) =

E[Hqp(t, f)H∗q′p′(t+ ∆t, f + ∆f)], with E(·) denoting the expectation operator and

H∗ the complex conjugate of H. Thus, the STF-CCF can be computed as

ρqp,q′p′(t,∆t,∆f) = σ2
0

∫ ∞
0

∫ 2π

0

e−jk0Ψq
′p′
qp (t,∆t)e−j2π∆fτ1fτ1,φR1 (τ1, φ

R
1 ; δRq , δ

T
p , t)dτ1dφR1

(3.19)

where Ψq′p′
qp (t,∆t) = ∆pp′ cos(φT1−αT+αqp(t))+∆qq′ cos(φR1−αR+αqp(t))+v

R∆t cos(φR1−

ξR +αqp(t)) denotes the phase difference between the signal transmitted from ATp and

received by ARq at time t and the signal transmitted from ATp′ and received by ARq′ at

t+ ∆t. The distance between ATp and ATp′ is ∆pp′ = (p− p′)δT , and that between ARq

and ARq′ is ∆qq′ = (q − q′)δR.

Although the STF-CCF in (3.19) approximates the correlation between two signals

separated in time by ∆t and transmitted (received) by antennas separated by ∆pp′

(∆qq′), the joint PDF of the ToA-AoA fτ1,φR1 (τ1, φ
R
1 ; δRq , δ

T
p , t) is defined for two specific

antennas ATp and ARq , and a single time instant t. This indicates that (3.19) remains

valid for a space-time region around the antennas ATp and ARq , and time instant t

where fτ1,φR1 (τ1, φ
R
1 ; δRq , δ

T
p , t) is approximately space-time invariant. The short-term
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invariance of this PDF can be justified by noting that the coherence region of most

channels, i.e., the region where the STF-CCF is above certain threshold, is usually

much smaller than the region where the channel can be considered WSS. This also

justifies the use of the plane wavefront approximation in (3.4) to obtain (3.19).

When the spherical wavefront is used, the STF-CCF can be calculated as [88]

ρ̂qp,q′p′(t,∆t,∆f) = σ2
0

∫ ∞
0

∫ 2π

0

e−jk0Ψ̂q
′p′
qp (t,∆t)e−j2π∆fτfτ,φR(τ, φR)dτdφR (3.20)

where Ψ̂q′p′
qp (t,∆t) = Dqp(t) − Dq′p′(t + ∆t) and Dqp(t) denotes the total distance

traveled by the signal from ATp to ARq at time instant t as given by (3.3). Notice that

the ToA and AoA used in (3.20) are defined at the center of the transmitting and

receiving arrays at time t = 0 and they are space-time invariant. Consequently, the

spherical wavefront is required to capture non-WSS properties of the channel and the

plane wavefront approximation in (3.4) cannot be used.

With respect to the deterministic simulation model as defined in (3.1) and (3.2) once

the random variables involved are drawn, the STF-CCF can be computed as a local

time-average, i.e.,

ρ̃qp,q′p′(t,∆t,∆f) ≈ 1

T

∫ t+T/2

t−T/2
Hqp(t

′, f)H∗q′p′(t
′ + ∆t, f + ∆f)dt′. (3.21)

The temporal ACFs can be obtained by setting ∆f = ∆qq′ = ∆pp′ = 0 in (3.19),

(3.20), and (3.21) as ρqp,qp(t,∆t, 0), ρ̂qp,qp(t,∆t, 0), and ρ̃qp,qp(t,∆t, 0), respectively.

By setting ∆t = ∆f = 0 in the same equations, we can calculate the S-CCFs as

ρqp,q′p′(t, 0, 0), ρ̂qp,q′p′(t, 0, 0), and ρ̃qp,q′p′(t, 0, 0). The FCFs are computed by setting

∆qq′ = ∆pp′ = ∆t = 0 as ρqp,qp(t, 0,∆f), ρ̂qp,qp(t, 0,∆f), and ρ̃qp,qp(t, 0,∆f). The

ACFs, S-CCFs, and FCFs obtained depend on the antenna indices and the time

instant through the joint PDF fτ1,φR1 (τ1, φ
R
1 ; δRq , δ

T
p , t) in (3.19) and through the total

distance in Ψ̂q′p′
qp (t,∆t) in (3.20), indicating that the channel is space-time non-WSS.
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3.4.2 Approximate solutions to the ACF and Doppler PSD

Although analytic solutions for the STF-CCF in (3.19) are difficult to obtain due to

the complexity of the STV joint-PDF of the ToA and AoA, approximate expressions

for the ACF, Doppler PSD, and S-CCF can be derived for non-WSS massive MIMO

channels. We propose a simplified approach based on an implicit assumption of previ-

ous works, e.g., [103] and [104], in which the PAS was assumed space-time invariant,

but some of its parameters were not.

Let us consider that the AoA defined at the center of the array (φR) follows a von

Mises distribution with parameters (κ, µφ). If we assume that only the parameters of

this distribution are STV, the PDF of the AoA for any ATp , ARq and time instant t is

fφR1 (φR1 ; δTp , δ
R
q , t) =

1

2πI0(κqp(t))
eκqp(t) cos(φR1 −µ

φ
qp(t)) (3.22)

where the mean AoA µφqp(t) and concentration parameter κqp(t) are now dependent of

time and antenna indices. In slowly varying channels, we can assume that the rates

of change of µφqp(t) and κqp(t) are small. If the spatial-temporal evolution of these

parameters is known, the STV ACF can be approximated as [12]

ρ(∆t; δ
T
p , δ

R
q , t) ≈

2σ2
0

I0(κqp(t))

× I0

(√
κ2
qp(t)− (2πνmax∆t)2 − j4πκqp(t)νmax∆t cos(µφqp(t)− ξR))

)
.

(3.23)

As the parameters µφqp(t) and κqp(t) depend on the position over the array and time

instant, the channel is non-WSS in these domains. Similarly, according to (3.17), the

STV Doppler PSD is

Sν(ν, δ
R
q , δ

T
p , t) ≈

2σ2
0 e

κ2qp(t) cos(µφqp(t)−ξR)ν/νmax

πνmaxI0(κ2
qp(t))

√
1− (ν/νmax)2

× cosh

κ2
qp(t) sin(µφqp(t)− ξR)

√
1−

(
ν

νmax

)2
. (3.24)
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In Appendix B, we derive approximate solutions of the STV concentration κqp(t) and

mean AoA µφqp(t) as

κqp(t) = κ

1 +

(
δRq
rc

)2

+

(
vRt

rc

)2

− 2
δRq
rc

cos(µφc − αR)

−2
vRt

rc
cos(µφc − ξR) + 2

vRtδRq
r2
c

cos(αR − ξR)

) (3.25)

and

µφqp(t) = arctan

(
rc sin(µφc )− δRq sin(αR)− vRt sin(ξR)

rc cos(µφc )− δRq cos(αR)− vRt cos(ξR)

)
, (3.26)

respectively. It can be easily seen that, for small arrays and short periods of time,

i.e., NRδR/2� rc and vRt� rc, the concentration parameter and mean AoA become

invariant, i.e., κc,q(t) ≈ κc and µφqp(t) ≈ µφc .

3.5 Results and Analysis

In this section, the array-varying distribution of channel parameters and statisti-

cal properties obtained using the proposed transformation method, approximation

method, spherical wavefront approach, and simulation results, for three channel mod-

els introduced in Section 3.3 are presented and compared. The results corresponding

to the transformation method were obtained by numerical evaluation of (3.5), (3.12),

and (3.15). Similarly, those corresponding to the approximation method were com-

puted by evaluating (3.23)–(3.24) and making use of the variant parameters as deter-

mined by (3.25) and (3.26). We evaluated (3.20) to obtain the results corresponding

to the spherical wavefront approach. For the simulation results, we generated 103

scatterers randomly distributed and computed the CIR as in (3.2). Realizations of

the channel parameters, e.g., ToA and AoA, were obtained by the inverse transform

sampling method [114]. In this method, samples of a uniformly distributed random

variable are transformed by the inverse of the aimed cumulative distribution function

(CDF), e.g., the AoAs were generated as φR = F−1
φR

(U) where U denotes a random

variable uniformly distributed over the interval [0, 1) and F−1
φR

(·) denotes the inverse of
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the aimed CDF of the AoA. To obtain the simulation results, the statistical properties

were computed by averaging 103 realizations of the STF-CCF in (3.21).

In the following, we assume that no line-of-sight path exists between the Tx and Rx,

which are located 100 m apart along the x-axis at t = 0 and both count on ULAs

composed of 100 antenna elements each. The separation between adjacent antennas

is λ/2 at 2 GHz of carrier frequency. Other parameters used may be different and

they will be specified for every result.

3.5.1 Array-variant ToA-AoA joint-PDF

In Figure 3.3, we present the STV joint-PDFs of the ToA-AoA in logarithmic scale

(dB) of the wideband Ellipse model at the extremes and center of the receiving array,

i.e., at AR1 (left), AR50 (center), and AR100 (right). We imposed a minimum ToA of

τ0 = 400 ns and a concentration parameter k = 0, i.e., uniform AoA. On one hand,

the joint PDF of the ToA-AoA at AR50 (center) shows the properties imposed by the

channel model such as uniformity in the AoA domain, exponential decay in the ToA

domain, and independence between ToA and AoA. On the other hand, the PDFs

at the extremes of the array are remarkably affected by the transformation. The

resulting meandering shape of the PDFs at AR1 and AR100 shows that the ToA varies as

a function of the AoA. This is most noticeable when the receiving antenna is farthest

Figure 3.3: Joint-PDF of the ToA and AoA at AR1 (left), AR50 (center), and AR100

(right), for the wideband Ellipse channel model in (3.9) (d = 100 m, fc = 2 GHz,
τ0 = 400 ns, στ = 2 ns, µφ = π/5, κ = 0, NR = 100, δR = λ/2, αR = π/4, t = 0 s).
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from the focus of the ellipse, i.e., at AR1 and AR100, as the sum of the distances from

the opposite focus (Tx) to such antennas via scatterers of the ellipse is highly variant.

In the AoA domain, the uniformity imposed (κ = 0) at the center of the array is no

longer valid at its ends. Two maxima of the PDF appear around φR1 ≈ −π/2 and

φR1 ≈ π/4 for AR1 and AR100, respectively, indicating a reduction of the angular spread.

In Figure 3.4, an analogous comparison with a different value of the concentration

parameter (κ = 10) is shown. In the AoA domain, whereas the PDF at AR1 is stretched

and the maximum is slightly shifted toward lower values, the PDF at AR100 becomes

more concentrated and shifted toward higher values, resulting in higher and lower

values of the angular spread, respectively.

Similarly, in the delay domain, the distributions at AR1 and AR100 are shifted toward

lower and higher values, respectively, but the variations of the ToA are relatively small.

We have observed that the angular spread increases and the mean ToA decreases at

one end of the array and vice versa at the other end. These results can be easily

explained by noting that AR1 and AR100 are closer to the ellipse of scatterers than AR50.

The results presented show that, at the extremes of a large-scale array, additional delay

spread may be introduced into the channel model with unforeseen consequences. This

artifact of the Ellipse channel model produced by the large dimensions of the array

was not considered in previous works, e.g., [13], [88], [89], [115], [116]. Moreover,

Figure 3.4: Joint-PDF of the ToA and AoA at AR1 (left), AR50 (center), and AR100

(right), for the wideband Ellipse channel model in (3.9) (d = 100 m, fc = 2 GHz,
τ0 = 400 ns, στ = 2 ns, µφ = π/5, κ = 10, NR = 100, δR = λ/2, αR = π/4, t = 0 s).

59



Chapter 3: A Study of Non-Stationary Massive MIMO Channels by Transformation
of the Delay and Angular PSDs

both Figures 3.3 and 3.4 indicate that the transformation performed breaks down the

separability of the joint PDF of the ToA and AoA, as the conditional distribution of

the AoA given a specific ToA depends on the delay considered.

As the STV statistical properties of the channel are noticeable only when the scatterers

are relatively close to any of the arrays, we will use the parameters of the channel

models presented in Table 3.1 in the following unless otherwise stated. In this case,

the scatterers are clustered 11 m away from the centre of the receiving array, with

mean AoA of 36 degrees and angular spread of 18.6 degrees approximately (κ = 10).

The parameters of the Ellipse, modified UDSM, and Gaussian cluster models are

selected so that the maximum concentrations of the scatterers of all three models are

coincident. Thus, by setting µφ and σφ
R

, the remaining parameters are µx = µr cos(µφ)

and µy = µr cos(µφ), with

µr =
1

2

(c0µ
τ )2 − d2

c0µτ + d cos(µφ)
. (3.27)

The parameters σx and σy can be obtained according to the relationship σx = σy =

µr/
√
κ established in Section 3.4.2. The delay spread of the Ellipse model στ and

distance spread of the UDSM model σr can be chosen arbitrarily small.

3.5.2 Delay and angular power spectral densities (PSDs)

In Figures 3.5 and 3.6 we present these two marginal distributions at both extremes of

the array, i.e., at AR1 and AR100. Along with the drift of the marginal PDFs, variations

of the angular and delay spreads over the array can be observed. Specifically, the

mean AoA drifts approximately 0.13 rad (≈ 7 degrees) and the angular spread is

approximately 12 degrees higher at AR1 than that at AR100. As it was stated above, the

Table 3.1: Parameters of the PDF of the three channel models.

Ellipse UDSM Gaussian

φR (deg) τ (ns) φR (deg) r (m) X (m) Y (m)

µφ σφ
R

µτ στ µφ σφ
R

µr σr µx σx µy σy

36.0 18.6 400 1 36.0 18.6 11 1 8.9 3.5 6.4 3.5
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angular spread at AR1 is higher because this antenna is closer to the maximum of the

scattering region than AR100 and it is well known that the angular size of a region is

inversely proportional to the distance to it.

As the marginal PDFs of the AoA are the same for the three models (von Mises),

their variations over the array result in almost identical distributions. Note that

this is consistent with the approximations used in (3.25) and (3.26) to obtain the

STV parameters of the AoA distribution. Although each model presents a different

Figure 3.5: Comparison of the PDF of the AoA at the two extremes of the array
for the Ellipse, modified UDSM, and Gaussian cluster channel models (d = 100
m, fc = 2 GHz, τ0 = 400 ns, r0 ≈ 11 m, στ = 3.4 ns, kU = 10, σxy ≈ 3.5 m−1

µφ = π/5, κ = 10, NR = 100, δR = λ/2, αR = π/4, t = 0 s).

Figure 3.6: Comparison of the PDF of the ToA at the two extremes of the array
for the Ellipse, modified UDSM, and Gaussian cluster channel models (d = 100
m, fc = 2 GHz, τ0 = 400 ns, r0 ≈ 11 m, στ = 3.4 ns, kU = 10, σxy ≈ 3.5 m−1

µφ = π/5, κ = 10, NR = 100, δR = λ/2, αR = π/4, t = 0 s).
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Table 3.2: Mean and spread values of the AoA and ToA at three antenna elements
of the receive ULA.

Ellipse UDSM Gaussian

Angle (deg) Delay (ns) Angle (deg) Delay (ns) Angle (deg) Delay (ns)

µ σ µ σ µ σ µ σ µ σ µ σ

AR1 31.2 26.4 389.7 1.8 31.4 28.0 382.1 8.2 30.9 32.2 390.6 21.2

AR50 36.0 18.6 400.8 1.0 36.0 18.6 392.4 7.8 35.9 19.2 401.5 21.6

AR100 38.5 14.3 413.0 1.3 38.3 13.8 404.5 7.7 38.3 14.1 413.7 21.8

marginal PDF of the ToA, a similar drift of approximately 23 ns of the mean ToA and

small variations of the delay spread (below 1 ns) can be observed in Figure 3.6 for the

three models. For the reader’s convenience, Table 3.2 summarizes the mean values

and spreads of both marginal distributions at the two extremes of the receiving array

for the three models. For comparison purposes, the same parameters are provided for

one of the two innermost receiving antennas (AR50), i.e., approximately at the centre

of the receiving array.

As we will show, the differences between joint PDFs of the AoA and ToA at different

positions of the array will result in STV statistical properties of the channel such as

the ACF, S-CCF, Doppler PSD, and FCF.

3.5.3 Temporal autocorrelation function (ACF)

In Figure 3.7, we present a comparison of the absolute values of the array-variant lo-

cal ACFs obtained by the transformation method, approximation method, spherical

wavefront approach, and simulation, at the two extremes of the receiving ULA and

for different directions of motion ξR. Although there are small differences between the

results corresponding to each method, the ACFs obtained through the transforma-

tion and approximation methods are very similar in the whole range. Moreover, the

good agreement between the methods proposed and the spherical wavefront approach

indicates that all these methods are approximately equivalent.

Note that only the ACF of the Ellipse model is presented in Figure 3.7. This is

because in equal conditions of motion, i.e., vR and ξR are equal for the three models,
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Figure 3.7: Comparison of the absolute values of the local ACF obtained by the
transformation method, approximation method, spherical wavefront approach, and
simulation at the two extremes of the receiving array (d = 100 m, fc = 2 GHz,
τ0 = 400 ns, στ = 3.4 ns, µφ = π/5, κ = 10, NR = 100, δR = λ/2, αR = π/4,

νmax = 90 Hz, vR = 13.5 m/s, δT = 0 m, t = 0).

the ACF is only determined by the PDF of the AoA. As the PDFs of the AoA of the

three models are approximately equal as shown in Figure 3.5, it is not necessary to

show the ACFs corresponding to the other models.

3.5.4 Doppler power spectral density (PSD)

In Figure 3.8, we present a comparison of the absolute values of the array-variant

Doppler PSDs obtained through the transformation method, the approximation method,

the spherical wavefront approach, and simulation, at the two extremes of the ULA

and for different directions of motion ξR. The variations of the Doppler PSD along

the array can be attributed to the difference in relative motion w.r.t. the scatterers

at sufficiently separated antenna elements, e.g., AR1 and AR100. It can be seen that not

only the Doppler PSD drifts along the array, but also the Doppler spread is affected.

On one hand, when the ULA points to the maximum concentration of the scatterers,

i.e., αR − µφ ≈ 0 or αR − µφ ≈ π, the Doppler PSD hardly drifts, but there is a

noticeable variation of the Doppler spread along the array. On the other hand, for a

perpendicular orientation of the ULA, i.e., when αR − µφ ≈ ±π/2, the Doppler PSD

tends to drift over the array, but the Doppler spread hardly varies.
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Figure 3.8: Comparison of the absolute values of the local Doppler PSD obtained
by the transformation method, the approximation method, and simulation at the
two extremes of the receiving array (d = 100 m, fc = 2 GHz, τ0 = 400 ns, στ = 3.4
ns, µφ = π/5, κ = 10, NR = 100, δR = λ/2, αR = π/4, νmax = 90 Hz, vR = 13.5

m/s, δT = 0 m, t = 0).

3.5.5 Spatial cross-correlation function (S-CCF)

In Figure 3.9, we present a comparison of the absolute values of the array-variant

receive-side S-CCFs obtained by using the transformation method, the approximation

method of variant parameters, the spherical wavefront approach, and simulation, at

the receive antenna positions AR1 and AR100 for different values of the angular tilt of the

receiving antenna αR. There is clearly a good agreement between the transformation

and approximation methods proposed. As in the ACFs presented in Figure 3.7, the

differences between the transformation and approximation methods can be attributed

to the fact that the latter assumes that the function determining the PAS remains

the same, e.g., von Mises (3.22), at any position of the array and only the parameters

of that function, i.e., κ and µφ, are array-variant.

3.5.6 Frequency correlation function (FCF)

In Figure 3.10, the absolute values of the array-variant FCFs of the Ellipse, modified

UDSM, and Gaussian cluster models are presented. In the figure, it can be seen that

the variant distribution of the ToA results in array-variant FCFs as a consequence

of the large dimensions of the receiving array. This effect is specially significant for
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Figure 3.9: Comparison of the absolute values of the local S-CCF obtained by
the transformation method, the approximation method, the spherical wavefront
approach, and simulation at the two extremes of the receiving array (d = 100 m,
fc = 2 GHz, τ0 = 400 ns, στ = 3.4 ns, µφ = π/5, κ = 10, NR = 100, δR = λ/2,

αR = π/4, δT = 0 m, t = 0 s).

the modified UDSM and the Ellipse model. In the last one, the imposed narrowband

property (στ = 0.3 ns) or frequency flatness is slowly degraded as the distance between

the centre of the array and the considered antenna element increases. The cause of

this artefact has already been explained in the analysis of Figure 3.3. As a conse-

quence, what it was designed as a frequency non-selective and frequency-uncorrelated

channel model may change to a frequency-selective and frequency-correlated channel

for sufficiently large arrays. Note that in the case of the Ellipse model we have chosen

Figure 3.10: Comparison of the absolute values of the local FCFs at AR1 and
AR50 obtained by the transformation method, the spherical wavefront approach, and
simulation (d = 100 m, fc = 2 GHz, τ0 = 400 ns, r0 ≈ 11 m, στ = 0.3 ns, kU = 10,
σxy ≈ 3.5 m−1, µφ = π/5, κ = 10, NR = 100, δR = λ/2, αR = π/2, δT = 0 m, t = 0

s).
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a sufficiently small value of the delay spread στ to consider the channel as frequency

non-selective in most practical cases, as it can be seen in the almost-flat FCF depicted

for AR50. Conversely, the FCF of the Gaussian cluster model is barely affected as the

shift and rotation of a 2D symmetric Gaussian distribution only affects its mean val-

ues, but not its spread. Hence, its delay PSD only experiences a shift (see Figure 3.6

and Table 3.2), which affects the phase but not the absolute value of the FCF.

In general, channels with large delay spreads are less prone to experience variations

of the FCF along the array as compared to channels with highly concentrated PDPs.

We have observed that the variations of the FCF over the array are usually negligible

when the delay spread is sufficiently large compared to the spread induced by the

transformation over the array.

3.6 Summary

In this chapter, a novel method to model the STV joint PDF of the ToA and AoA for

massive MIMO channels has been proposed. The method can be used to study massive

MIMO channel characteristics of both channel measurements and channel models. In

addition, an approximation method based on STV parameters of the AoA for the von

Mises distribution has been presented and approximate closed-form expressions of

key statistical properties of the channel have been derived. The statistical properties

obtained with these two methods have shown a good agreement between them and

with the spherical wavefront approach. The proposed methods incorporate the non-

stationary properties of the channel model through the STV joint PDF of the ToA and

AoA. Moreover, both the means and spreads of the AoA and ToA have been shown to

vary over the array. As a consequence of the drift and spread of the delays, the FCF

of massive MIMO channels is array-variant as well. Finally, it has been demonstrated

that artifacts may appear when conventional MIMO models such as the Ellipse model

and UDSM are applied to large-scale antenna arrays.
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Chapter 4
Novel 3D Non-Stationary Massive MIMO

Channel Models based on Cluster-Level

Evolution

4.1 Introduction

In the previous massive MIMO channel modelling works [9], [13], [88]–[92], [95], the

authors employed spherical wavefronts to capture the so-called near-field effects. This

method requires computing the exact distance between every scattering object and

every antenna element of a large-scale array. However, the flexibility and accuracy of

this approach to model all possible scenarios is traded off against a high mathematical

and computational complexity. Measurements reported in Chapter 2 and the results

presented in Chapter 3 indicate that the AoAs tend to vary smoothly over the array

and the rate of change is higher when the distance between the scatterers and the array

is shorter. This observation can be used to develop a more efficient but sufficiently

flexible and accurate method capable of capturing near-field effects.

In addition, existing massive MIMO GBSMs captured cluster (dis)appearance by

employing BD processes [13], [88], [91], [92], [95] or VRs [90]. In those works, clusters

occluded over small regions of the array were considered as multiple independent
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clusters, i.e., once a cluster has disappeared over the array, it cannot reappear again

with similar characteristics. This increases the number of clusters per simulation,

underestimates the spatial-temporal correlation of the channel in the large-scale, and

may not capture the blocking effect accurately.

It is worth noting that previous works assumed that cluster (dis)appearance is the

main cause of large-scale fading over the array, but measurements [4], [16] demon-

strated that large-scale fading of clusters, i.e., cluster shadowing, is not negligible.

Very few works have considered this phenomenon. The authors in [89] employed

an inverse-square law that captured path loss but no large-scale fading of clusters

of MPCs. Similarly, other works approximated cluster-level large-scale fading using

a single-slope attenuation model [90]. Although deterministic models such as map-

based METIS model [9] used realistic maps to account for large-scale fading effects,

its stochastic counterpart neglected cluster-level (re)appearance and shadowing.

This chapter introduces advanced and efficient methods that overcome the problems

introduced above to capture near-field effects. The main contributions and novelties

of this work are the following:

1. An efficient parabolic wavefront is proposed as an alternative to the spherical

wavefront. As a second-order Taylor approximation to the spherical wavefront,

the parabolic wavefront is a more mathematically and computationally efficient

method to capture near-field effects and non-stationary properties of the channel

in both space and time domains with a small degradation in accuracy.

2. An cluster-level evolution process to accurately capture large-scale fading over

the array is proposed. First, cluster (re)appearance processes are employed to

model the visibility of clusters and LoS to NLoS transitions. Second, shadowing

processes are used to model smooth variations of the clusters’ average power

over the array and time domains.

3. Approximate expressions for the relationship between non-stationary properties

of the channel, e.g., spatial-temporal Doppler frequency drifts, and the distances
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between the transmitting and receiving arrays as well as between these arrays

and clusters are provided.

4. A 3D extension of the RSM [117] to compute the amplitude and angular pa-

rameters of the 3D simulation model is derived and we use the von Mises Fisher

(VMF) distribution to jointly model azimuth and zenith angles of the scatterers.

The rest of this chapter is organized as follows. Section 4.2 proposes a theoretical

non-stationary wideband massive MIMO channel model. In this section, the parabolic

wavefront and cluster-level evolution processes are described. Section 4.3 derives im-

portant statistical properties of the theoretical model, e.g., the spatial-temporal cross-

correlation function (ST-CCF). In Section 4.4, a corresponding simulation model and

its statistical properties are obtained, along with the 3D extension of the RSM. Sec-

tion 4.5 shows the excellent agreement between the theoretical and simulation model

results along with a comparison between the simulation results and measurements.

Section 4.6 concludes the chapter.

4.2 A Theoretical Non-Stationary Wideband Mas-

sive MIMO Channel Model

Let us consider a 3D channel model represented in Figure 4.1 where the ULA at the

Tx or base station is composed of NT equally δT-spaced antenna elements oriented

by the zenith and azimuth angles βT and αT, respectively. Similarly, the Rx or

MS ULA is composed of NR equally δR-spaced antenna elements oriented by the

zenith and azimuth angles βR and αR, respectively. The pth transmit and qth receive

antenna-elements are denoted by AT
p and AR

q , respectively. Moreover, the MS moves

at a constant speed vR in the direction indicated by the zenith and azimuth angles

ζR and ξR, respectively. The signal received at the MS is a superposition of the

LoS and scattered components through CS single-bounce clusters (SBCs) and CM

multi-bounce clusters (MBCs). However, only the cth MBC is represented in the

figure for clarity. This cluster is modeled as a one-to-one pair at both sides of the
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Figure 4.1: A 3D wideband massive MIMO channel model.

communication link, where the transmit-side MBC is represented as CMT
c and the

receive-side MBC as CMR
c for c = 1, 2, . . . , CM. Every pair of MBCs CMT

c − CMR
c is

connected through a virtual link that models the delay as in [82]. Clusters CMT
c and

CMR
c are comprised of Mc and Nc scatterers, denoted as SMT

c,m for m = 1, 2, . . . ,Mc and

SMR
c,n for n = 1, 2, . . . , Nc, respectively. Although the cth SBC, denoted as CS

c , is a single

cluster and has a uniquely defined position, it is convenient for notation simplicity to

use two representations as CST
c and CSR

c for c = 1, 2, . . . , CS, denoting the SBC from

the Tx and Rx frames of reference, respectively. The cth SBC CS
c is comprised of

Ic scatterers whose transmit- and receive-side representations are denoted as SST
c,i and

SSR
c,i for i = 1, 2, . . . , Ic, respectively. The position vector of the ith transmit-side SBC

scatterer at time t is sST
c,i (t) = sST

c,i (0) + vST
c,i t, with

sST
c,i (0) = rST

c,i (sin θ
ST
c,i cosφST

c,i , sin θ
ST
c,i sinφST

c,i , cos θST
c,i ) (4.1)

vST
c,i = vST

c,i (sin ζ
ST
c,i cos ξST

c,i , sin ζ
ST
c,i sin ξST

c,i , cos ζST
c,i ) (4.2)

denoting the initial position and velocity vectors of the scatterer, respectively. Simi-

larly, the position vectors of receive-side scatterers are computed as in (4.1) and (4.2)

by substituting ST by SR. For clarity, the rest of the parameters of the channel model

are presented in Table 4.1.

In general, it is assumed that every scatterer within a cluster is approximately at

the same distance from the centre of the corresponding array and moves with the

same velocity, e.g., rST
c,i ≈ rST

c , vST
c,i ≈ vST

c , ζST
c,i ≈ ζST

c , and ξST
c,i ≈ ξST

c . The centre
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Table 4.1: Definition of parameters of the channel model in Figure 4.1.

Parameter Definition

δT, δR Distances between consecutive elements in the transmit- and receive-
array, respectively

r
ST(R)
c , r

MT(R)
c Distances from the centre of the transmit- (receive-) array to C

ST(R)
c

and C
MT(R)
c , respectively

DST
c,i,p(t), DSR

c,i,q(t) Distances from AT
p to SST

c,i and from AR
q to SSR

c,i , respectively

DMT
c,m,p(t), DMR

c,n,q(t) Distances from AT
p to SMT

c,m and from AR
q to SMR

c,n , respectively

rL Distance between the centres of the transmit- and the receive-array

θ`c, φ
`
c Elevation and azimuth angles of C`

c with ` ∈ {ST,SR,MT,MR}, re-
spectively

θ
ST(R)

c,i , φ
ST(R)

c,i Elevation and azimuth angles of the scatterer S
ST(R)

c,i , respectively

θ
MT(R)

c,m(n), φ
MT(R)

c,m(n) Elevation and azimuth angles of the scatterer S
MT(R)

c,m(n), respectively

θL, φL Elevation and azimuth angles of the Rx with respect to the Tx, re-
spectively

ζ`c , ξ
`
c Elevation and azimuth angles of the velocity of C`

c with ` ∈
{ST,SR,MT,MR}, respectively

ζR, ξR Elevation and azimuth angles of the velocity vector of the Rx, respec-
tively

βT(R), αT(R) Elevation and azimuth orientation angles of the transmit (receive) ar-
ray, respectively

v`c, v
R Speeds of the cluster C`

c with ` ∈ {ST,SR,MT,MR} and speed of the
Rx, respectively

of the receive array with respect to the centre of the transmit array at any time t is

r(t) = r(0) + vRt, where

r(0) = rL

(
sin θL cosφL, sin θL sinφL, cos θL

)
(4.3)

vR = vR
(

sin ζR cos ξR, sin ζR sin ξR, cos ζR
)
. (4.4)

The position vector of AT
p from the centre of the transmit array is given by

aT
p = δT

p (sin βT cosαT, sin βT sinαT, cos βT) (4.5)

with δT
p = (NT − 2p + 1)δT/2 for p = 1, 2, . . . , NT. The position vector of AR

q from

the centre of the receive array can be analogously obtained by substituting T by

R and p by q in (4.5). Unlike conventional MIMO channel models, the far-field

assumption or Rayleigh criterion, i.e., rL � max[2(NT − 1)2δ2
T, 2(NR − 1)2δ2

R]/λ and

r`c � max[2(NT − 1)2δ2
T, 2(NR − 1)2δ2

R]/λ with ` ∈ {ST, SR,MT,MR}, is not imposed.
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4.2.1 Channel impulse response (CIR)

The massive MIMO channel is represented by the matrix H(t, τ) = [hqp(t, τ)]NR×NT

for p = 1, 2, . . . , NT and q = 1, 2, . . . , NR. The CIR hqp(t, τ) is calculated as a super-

position of the LoS, SBC, and MBC components as

hqp(t, τ) = hL
qp(t)δ(τ − τL) +

CS∑
c=1

hSB
c,qp(t)δ(τ − τSB

c ) +

CM∑
c=1

hMB
c,qp(t)δ(τ − τMB

c ) (4.6)

where the superscripts L, SB, and MB refer to LoS, SBC, and MBC components,

respectively. The propagation delays τL, τSB
c , and τMB

c are computed geometrically

as τL = rL/c0, τSB
c = (rST

c + rSR
c )/c0, and τMB

c = (rMT
c + rMR

c )/c0 + τVL, respectively,

with c0 denoting the speed of light and τVL the delay of the virtual link. Here, τVL is

randomly generated according to the uniform distribution over (τL, τmax], where τmax

is the maximum delay of the virtual link [88].

As there are Ic rays in the link ATp –CS
c–A

R
q and Mc × Nc rays in the link ATp –CMT

c –

CMR
c –ARq , the LoS, SBC, and MBC components of the CIR are modeled as

hL
qp(t)=

√
P L
qp(t)e

jk0DL
qp(t) (4.7)

hSB
c,qp(t)=

√
P SB
c,qp(t) lim

Ic→∞

Ic∑
i=1

ac,ie
−j(k0DSB

c,i,qp(t)−ΘSB
c,i ) (4.8)

hMB
c,qp(t)=

√
PMB
c,qp (t) lim

Mc→∞
Nc→∞

Mc,Nc∑
m=1
n=1

ac,mne
−j(k0DMB

c,mn,qp(t)−ΘMB
c,mn) (4.9)

with j =
√
−1 and k0 = 2π/λ. The terms ΘSB

c,i and ΘMB
c,mn are independent and

identically distributed (i.i.d.) random variables uniformly distributed over (0, 2π]

that model the phase shift produced by the scatterers. The amplitudes of the rays ac,i

and ac,mn are constrained to E[a2
c,i] = 1/Ic and E[a2

c,nm] = 1/NcMc with E[·] denoting

the expectation operator. The processes P L
qp(t), P

SB
c,qp(t), and PMB

c,qp (t) are the array-

and time-dependent local average powers associated to the LoS, SBCs, and MBCs

paths, respectively (see Section 4.2.3). The distance travelled by the signal from AT
p
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to AR
q via SS

c,i is DSB
c,i,qp(t) = DST

c,i,p(t) +DSR
c,i,q(t), where

DST
c,i,p(t) =

[
(rST
c )2 + (vST

c t)2 + (δT
p )2 + 2rST

c vST
c t cosψST

1,c,i

− 2rST
c δT

p cosψST
2,c,i − 2δT

p v
ST
c t cosψST

3,c

]1/2

(4.10)

and the terms cosψST
1,c,i, cosψST

2,c,i, and cosψST
3,c are given by

cosψST
1,c,i=sin θST

c,i sin ζ
ST
c cos(φST

c,i−ξST
c )+cos θST

c,i cos ζST
c (4.11)

cosψST
2,c,i=sin θST

c,i sin β
Tcos(φST

c,i−αT)+cos θST
c,i cos βT (4.12)

cosψST
3,c=sin ζST

c sin βTcos(ξST
c −αT)+cos ζST

c cos βT. (4.13)

The receive-side distance DSR
c,i,q(t) can be analogously computed by substituting T by

R and p by q in (4.10)–(4.13). The vector sSR
c,i (t) is related to sST

c (t) as sSR
c,i (t) =

sST
c,i (t) − r(t) = sST

c,i (0) − r(0) + (vST
c − vR)t = sSR

c,i (0) + vSR
c t. Hence, the spherical

coordinates of sSR
c (0) are

θSR
c,i = cos−1

(
rST
c cos θST

c,i − rL cos θL

rSR
c

)
(4.14)

φSR
c,i = tan−1

(
rST
c sin θST

c,i sinφST
c,i − rL sin θL sinφL

rST
c sin θST

c,i cosφST
c,i − rL sin θL cosφL

)
(4.15)

where the distance rSR
c from the centre of the receiving array to the SBC is given by

rSR
c =

(
r2

L + (rST
c )2 − 2rLr

ST
c cosψ4,c,i

)1/2

(4.16)

with

cosψ4,c,i = sin θST
c,i sin θL cos(φST

c,i − φL) + cos θST
c,i cos θL. (4.17)

The distance travelled by the the rays from AT
p to AR

q via the cth MBC is DMB
c,mn,qp(t) =

DMT
c,m,p(t) +DMR

c,n,q(t) + c0 · τVL, where

DMT
c,m,p(t) =

[
(rMT
c )2+ (vMT

c t)2+ (δT
p )2 + 2rMT

c vMT
c t cosψMT

1,c,m

− 2rMT
c δT

p cosψMT
2,c,m− 2δT

p v
MT
c t cosψMT

3,c

]1/2

(4.18)
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where cosψMT
1,c,m, cosψMT

2,c,m, and cosψMT
c,3 are computed analogously to (4.11)–(4.13)

and hence they are omitted. The receive-side distance DMR
c,n,q(t) can be computed

by substituting T by R, p by q, and m by n in (4.18). Unlike SBCs, there is no

relationship between the transmit- and receive-side representations of MBCs.

The distance associated to the LoS path from AT
p to AR

q is

DL
qp(t) =

[
r2

L + (vRt)2 + (δR
q )2 + (δT

p )2 + 2rLv
Rt cosψL

1 + 2rLδ
R
q cosψL

2

− 2rLδ
T
p cosψL

3 + 2δR
q v

Rt cosψL
4 − 2δT

p v
Rt cosψL

5 − 2δR
q δ

T
p cosψL

6

]1/2

(4.19)

where the terms cosψL
i for i = 1, 2, . . . , 6 are given by

cosψL
1 = sin θR sin ζR cos(φR − ξR) + cos θR cos ζR (4.20)

cosψL
2 = sin θR sin βR cos(φR − αR) + cos θR cos βR (4.21)

cosψL
3 = sin θR sin βT cos(φR − αT) + cos θR cos βT (4.22)

cosψL
4 = sin ζR sin βR cos(ξR − αR) + cos ζR cos βR (4.23)

cosψL
5 = sin ζR sin βT cos(ξR − αT) + cos ζR cos βT (4.24)

cosψL
6 = sin βT sin βR cos(αT − αR)+cos βT cos βR. (4.25)

4.2.2 Spatial-temporal parabolic wavefronts

Equations (4.10), (4.18), and (4.19) enable to model near-field effects and non-stationary

properties of the channel in arbitrary situations. However, second-order approxima-

tions to these expressions can capture the non-stationary properties of the CIR for

small angular drifts and reduce the computational complexity. The second-order Tay-

lor series expansion of the distance DST
c,i,p(t) in (4.10) with respect to the ratios δT

p /r
ST
c

and vST
c t/rST

c when δT
p /r

ST
c < 1 and vST

c t/rST
c < 1 is

DST
c,i,p(t) ≈

Plane-wavefront approximation︷ ︸︸ ︷
rST
c + vST

c t cosψST
1,c,i − δT

p cosψST
2,c,i

Parabolic-wavefront approximation︷ ︸︸ ︷
+

(vST
c t)2

2rST
c

sin2 ψST
1,c,i +

(δT
p )2

2rST
c

sin2 ψST
2,c,i +

vST
c tδT

p

rST
c

Q(ψST
1,c,i, ψ

ST
2,c,i, ψ

ST
3,c) (4.26)
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where we defined Q(ψi, ψj, ψk) = cosψi cosψj − cosψk. Analogously, the distances

DSR
c,i,q(t), D

MT
c,m,p(t), and DMR

c,n,q(t) can be approximated by substituting {ST, i, p} by

{SR, i, q}, {MT, n, p}, and {MR,m, q} in (4.26), respectively. The distance of the LoS

path DL
qp(t) can be approximated as

DL
qp(t) ≈

Plane-wavefront approximation︷ ︸︸ ︷
rL + vRt cosψL

1 + δR
q cosψL

2 − δT
p cosψL

3

Parabolic-wavefront approximation︷ ︸︸ ︷
+

(vRt)2

2rL

sin2 ψL
1 +

(δR
q )2

2rL

sin2 ψL
2 +

(δT
p )2

2rL

sin2 ψL
3

−
δR
q v

Rt

rL

Q(ψL
1 , ψ

L
2 , ψ

L
4 ) +

δT
p v

Rt

rL

Q(ψL
1 , ψ

L
3 , ψ

L
5 )

+
δR
q δ

T
p

rL

Q(ψL
2 , ψ

L
3 , ψ

L
6 ). (4.27)

Unlike the first-order terms in (4.26) and (4.27), labeled as plane-wavefront approx-

imation, the second-order terms and cross-products, labeled as parabolic-wavefront

approximation, depend on the distances to the cluster rST
c and between the arrays rL,

respectively. Subsequently, it will be shown that the second-order terms cause the non-

stationarity of the CIR in time and space. In addition, the time-array cross-products,

e.g., vST
c t · δT

p , lead to a dependence of the S-CCF and temporal ACF with respect to

time and space, respectively. Note that the second-order terms are reduced to zero

for small arrays and short periods of time, i.e., δT
p /rL � 1, δT

p /r
ST
c � 1, vRt/rL � 1,

and vST
c t/rST

c � 1. In these conditions, only the first-order terms in (4.26) and (4.27)

remain as in conventional MIMO channel models [82], [83], [85]–[87].

On one hand, it is usually considered that the accuracy of the approximation ob-

tained through the second-order expansion of (4.10) is excellent when the ratios

δT
p /rL, δ

T
p /r

ST
c , vRt/rL, and vST

c t/rST
c are lower than 0.1. Using this criterion, the

parabolic wavefront approximation in (4.26) can be considered very accurate when

the distance from the centre of the array to any cluster is at least 5 times the length

of the ULA. Nonetheless, we will show in Section 4.5 that very accurate results of

the statistical properties of the channel model can be obtained using the parabolic

wavefront under less conservative conditions. On the other hand, the reduction of the
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computational complexity associated to the parabolic wavefront compared to that

of the spherical wavefront is obtained from the simplification of the exact distance

in (4.10) to the second-order polynomial in (4.26). Firstly, with the same number

of terms in (4.10) and (4.26), the second-order approximation does not require the

repetitive computation of the square root function in (4.10) for every AoA in every

cluster at any time instant and antenna element of the receive array. Secondly, efficient

quadratic-phase rotation algorithms, which are analogous to the efficient linear-phase

rotation algorithms used in the case of the plane wavefront [91], can be employed to

compute the phase associated to the parabolic wavefront.

4.2.3 Cluster-level shadowing and reappearance

Variations of the average received power in time and over the array are caused by

(re)appearance and shadowing of both LoS and cluster components, which are modeled

here by Markov two-state and Lognormal shadowing processes, respectively. As in

[115], in this work the WINNER+ [85] and COST 2100 [82] models are used as

references for the development of the cluster evolution processes. In [85] and [82], the

average power associated to the cth cluster, Pc, is modeled as

Pc = exp

[
−τc

rτ − 1

rτστ,c

]
· 10−

ηc
10 (4.28)

where τc is the delay of the signal scattered by the cth cluster, στ,c is the DS of

the channel, and rτ is the ratio of the standard deviation of the delays to the RMS

DS. The parameter ηc is a zero-mean Gaussian random variable used to model a

shadowing randomization effect on each cluster for each stationary simulation drop

or segment [82], [85]. Since the cluster-level evolution processes for LoS, SBCs, and

MBCs are analogous, only the SBC case will be considered in the following. Only

when it is necessary, the differences between SBCs and MBCs will be pointed out. In

this model, we propose the following modification

P SB
c,qp(t) = exp

[
−τc

rτ − 1

rτστ,c

]
· γSB

c,qp(t) · ΠSB
c,qp(t) (4.29)
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where the shadowing randomization factor 10−
ηc
10 in (4.28) is superseded by the prod-

uct of the processes γSB
c,qp(t) and ΠSB

c,qp(t). First, cluster (re)appearance (visibility) is

modeled by a two-state Markov process ΠSB
c,qp(t). Second, smooth variations of the

clusters average power in time domain and over both arrays are modeled by a Log-

normal process γSB
c,qp(t). Analogously, transitions between LoS and NLoS states and

smooth power variations of the LoS component are modeled by the processes ΠL
qp(t)

and γL
qp(t), respectively. Thus, the local average power of the LoS component in (4.7)

is P L
qp(t) = γL

qp(t) · ΠL
qp(t).

4.2.3.1 Spatial-temporal LoS/cluster reappearance

The product of the three two-state Markov processes ΠST
c (δT

p ), ΠSR
c (δR

q ), and ΠSB
c (t)

models cluster (re)appearance over the transmit- and receive-arrays and in time, re-

spectively. As every cluster may only be visible over certain array and time intervals,

these processes take value (0)1 if the cluster is (in)visible over the corresponding di-

mensions. The product of the processes is used because a cluster is visible only if it is

visible from both sides of the communication link at the same time. Similarly to [13],

[88], [101], the size of the invisibility and VRs of a cluster is modeled by exponential

i.i.d. random variables with intensities λI and λV , respectively. For the spatial process

ΠST
c (δT

p ) the transition matrix is [118]

Tc(δ
T
p )=

P ST
I,c + P ST

V,ce
−λSTT,cδ

T
p P ST

V,c − P
ST
V,ce

−λSTT,cδ
T
p

P ST
I,c − P

ST
I,c e

−λSTT,cδ
T
p P ST

V,c + P ST
I,c e

−λSTT,cδ
T
p

 (4.30)

where λST
T,c = λST

V,c + λST
I,c. The entries in the transition matrix in (4.30) represent the

probability of transition between visibility and invisibility regions of a cluster. The

probabilities that a cluster is visible or invisible at any position along the array are

P ST
V,c = λST

V,c/λ
ST
T,c or P ST

I,c = λST
I,c/λ

ST
T,c, respectively. For the temporal process ΠSB

c (t),

the transition matrix must be modified by substituting δT
p by the channel fluctuation

q(t), which can be expressed as q(t) = (vST
c + vSR

c )t assuming constant cluster and Rx

speeds [101]. Note that unlike the models in [13], [88], [101], the transition rates λST
V,c

and λST
I,c might be different for every cluster and dependent of the characteristics of
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the environment, hence resulting in a more flexible model. The total spatial-temporal

(re)appearance process for SBCs is given by

ΠSB
c,qp(t) = ΠST

c (δT
p ) · ΠSR

c (δR
q ) · ΠSB

c (t). (4.31)

Finally, it is important to highlight that unlike previous models where clusters can

only (dis)appear, the reappearance process proposed here can model clusters that keep

their properties while they are occluded before becoming visible again. This results

in a higher spatial consistency of the channel and reduces the total number of clusters

generated per simulation.

4.2.3.2 Spatial-temporal LoS/cluster shadowing

Applying the concept of spatial shadowing processes described in [12], [119], [120],

the spatial-temporal shadowing process γSB
c,qp(t) can be obtained as the product of

three Lognormal processes: two spatial processes evaluated at the positions of every

antenna element of the transmit/receive array and a temporal process to account for

smooth power variations in time domain. The process γSB
c,qp(t) can be expressed as

γSB
c,qp(t) = 10

(
mSB
c +σSB

c ηSBc (t)+σ
ST
c η

ST
c (δTp )+σ

SR
c η

SR
c (δRq )

)
/10

(4.32)

where the terms ηST
c (δT

p ), ηSR
c (δR

q ), and ηSB
c (t) are three independent real-valued zero-

mean Gaussian WSS processes with unit variance. The parameters σST
c , σSR

c , and

σSB
c are the shadow standard deviations of the cluster’s power and mSB

c is called the

area mean. Since they are zero-mean independent Gaussian processes, the resulting

sum σST
c ηST

c (δT
p )+σSR

c ηSR
c (δR

q )+σSB
c ηSB

c (t) is also a zero-mean Gaussian process whose

standard deviation is σec = [(σST
c )2 + (σSR

c )2 + (σSB
c )2]1/2. As indicated in (4.32), the

standard deviations and area mean can be different for every cluster and dependent

of the characteristics of the environment. Usually, the parameter mSB
c depends on

the distance between the arrays and the cluster, frequency, and other parameters of

the path-loss model applied [119]. As it will be shown, the parameter σec controls the

amplitude of the power variations over the array and in time.
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The theoretical model of the process ηST
c (δT

p ) is an infinite sum-of-sinusoids (SoS) [12]

given by

ηST
c (δT

p ) = lim
K

ST
c →∞

K
ST
c∑

n=1

bST
c,n cos

(
2πsST

c,nδ
T
p + ΘST

c,n

)
(4.33)

where KST
c , sST

c,n, bST
c,n, and ΘST

c,n denote the number of sinusoids, the spatial frequency,

amplitude, and initial phase of each sinusoid, respectively. The phases ΘST
c,n are i.i.d.

random variables uniformly distributed over [0, 2π) and the amplitudes bST
c,n are subject

to the condition E[(bST
c,n)2] = 1/KST

c . Analogously, the temporal Gaussian process

ηSB
c (t) is given by

ηSB
c (t) = lim

KSB
c →∞

KSB
c∑

n=1

bSB
c,n cos

(
2πνSB

c,nt+ θSB
c,n

)
(4.34)

where νSB
c,n denotes the temporal frequency of the nth sinusoid and the rest of the

parameters have an analogous meaning to those of the spatial processes in (4.33).

4.3 Statistical Properties of the Channel Model

In this section, key statistical properties of the model, e.g., the ST-CCF and Doppler

frequency shifts, considering the parabolic wavefront, cluster (re)appearance, and clus-

ter shadowing will be derived.

4.3.1 Spatial-temporal cross-correlation function (ST-CCF)

The ST-CCF is defined as E[hqp(t, τ)h∗q′p′(t + ∆t, τ)] and it can be split into three

terms as

ρqp(δT, δR,∆t, t)=ρ
L
qp(δT, δR,∆t, t)+

CS∑
c=1

ρSB
c,qp(δT, δR,∆t, t) +

CM∑
c=1

ρMB
c,qp(δT, δR,∆t, t)(4.35)

where uncorrelated scattering (US) in the delay domain was assumed. Due to the

independence of the large- and small-scale fading processes, every ST-CCF can be
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expressed as the product of a large- and small-scale ST-CCF, e.g., ρSB
c,qp(δT, δR,∆t, t) =

ρSB
LS,c,qp(δT, δR,∆t) · ρSB

SS,c,qp(δT, δR,∆t, t). Note that the large-scale ST-CCF does not

depend on absolute time t since, as it will be demonstrated, the (re)appearance and

shadowing processes are WSS. Next, these correlation functions will be derived.

4.3.1.1 Small-Scale ST-CCF

The small-scale ST-CCFs of the LoS, SBCs, and MBCs are given by

ρL
SS,qp(δT, δR,∆t, t)=e

−jk0∆L
qp(δT,δR,∆t,t) (4.36)

ρSB
SS,c,qp(δT, δR,∆t, t)= lim

Ic→∞

Ic∑
i=1

E
[
a2
c,ie
−jk0∆SB

c,i,qp(δT,δR,∆t,t)
]

(4.37)

ρMB
SS,c,qp(δT, δR,∆t, t)= lim

Mc→∞
Nc→∞

Mc,Nc∑
m=1
n=1

E
[
a2
c,mne

−jk0∆MB
c,qp,nm(δT,δR,∆t,t)

]
(4.38)

where the distance differences are obtained as ∆L
qp(δT, δR,∆t, t) = DL

qp(t) −DL
q′p′(t +

∆t), ∆SB
c,i,qp(δT, δR,∆t, t) = DSB

c,i,qp(t) − DSB
c,i,q′p′(t + ∆t), and ∆MB

c,mn,qp(δT, δR,∆t, t) =

DMB
c,mn,qp(t)−DMB

c,mn,q′p′(t+ ∆t). Thus, using the second-order approximations in (4.26)

and (4.27), it can be seen that ∆L
qp(δT, δR,∆t, t) ≈

≈−vR∆t cosψL
1 −∆qq′ cosψL

2 + ∆pp′ cosψL
3 −

(vR)2∆t(∆t+ 2t)

2rL

sin2 ψL
1

−
∆qq′(∆qq′ + 2δR

q )

2rL

sin2 ψL
2 −

∆pp′(∆pp′ + 2δT
p )

2rL

sin2 ψL
3

+
vRt∆qq′ + vR∆tδq′

rL

Q(ψL
1 , ψ

L
2 , ψ

L
4 )− vRt∆pp′ + vR∆tδp′

rL

Q(ψL
1 , ψ

L
3 , ψ

L
5 )

−(NR + 1)δR∆pp′ + (NT+1)δT∆qq′ − (qp− q′p′)δTδR

rL

Q(ψL
2 , ψ

L
3 , ψ

L
6 ). (4.39)

where ∆pp′ = δT(p− p′) and ∆qq′ = δR(q − q′).

For the case of SBCs and MBCs in (4.37) and (4.38), it can be seen that the distance

differences can be expressed as ∆SB
c,i,qp(δT, δR,∆t, t) = ∆ST

c,i,p(δT,∆t, t)+∆SR
c,i,q(δR,∆t, t)

for SBCs and ∆MB
c,mn,qp(δT, δR,∆t, t) = ∆MT

c,m,p(δT,∆t, t) + ∆MR
c,n,q(δR,∆t, t) for MBCs,
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where ∆ST
c,i,p(δT,∆t, t) is obtained as

∆ST
c,i,p(δT,∆t, t)≈−vST

c ∆t cosψST
1,c,i + ∆pp′ cosψST

2,c,i −
(vST
c )2∆t(∆t+ 2t)

2rST
c

sin2 ψST
1,c,i

−
∆pp′(∆pp′ + 2δT

p )

2rST
c

sin2 ψST
2,c,i −

1

rST
c

(
vST
c t∆pp′ + vST

c ∆tδp′
)

×Q(ψST
1,c,i, ψ

ST
2,c,i, ψ

ST
3,c) (4.40)

The difference ∆SR
c,i,q(δR,∆t, t) can be analogously computed by substituting ST by SR

and p by q in (4.40). The terms ∆MT
c,m,p(δT,∆t, t) and ∆MR

c,n,q(δR,∆t, t) can be computed

analogously and they are omitted here for brevity.

In the limit Ic →∞, the ST-CCF of the SBC in (4.37) can be computed as [12]

ρSB
SS,c,qp(δT, δR,∆t, t) =

∫ π

−π

∫ π

0

e−jk0∆SB
c,qp(δT,δR,∆t,t)fST

c (θST
c , φST

c ) dθST
c dφST

c (4.43)

where the discrete random variables ∆SB
c,i,qp(δT, δR,∆t, t), φ

ST(R)

c,i , θ
ST(R)

c,i , ψ
ST(R)

1,c,i , and

ψ
ST(R)

2,c,i in (4.37) have been substituted by their continuous versions ∆SB
c,qp(δT, δR,∆t, t),

φ
ST(R)
c , θ

ST(R)
c , ψ

ST(R)

1,c , and ψ
ST(R)

2,c , respectively. The function fST
c (θST

c , φST
c ) denotes

the joint-PDF of the elevation angle of departures (EAoDs) and AAoDs of CS
c . The

elevation angle of arrivals (EAoAs) and azimuth angle of arrivals (AAoAs) implicit in

(4.43) are a function of the AoDs as indicated in (4.14) and (4.15).

Due to the angular independence of the transmit- and receive-side MBCs, this MBC

contribution to the ST-CCF in (4.38) admits a Kronecker form as the product of the

transmit-side and receive-side ST-CCFs, i.e., ρMB
SS,c,qp(δT, δR,∆t, t) = ρMT

SS,c,pp′(δT,∆t, t) ·

ρMR

SS,c,qq′(δR,∆t, t). In the limit as Mc, Nc →∞, the transmit-side and receive-side ST-

CCF are

ρMT

SS,c,pp′(δT,∆t, t)=

∫ π

−π

∫ π

0

e
−jk0∆

MT
c,pp′ (δT∆t,t)

fMT
c (θMT

c , φMT
c ) dθMT

c dφMT
c (4.44)

ρMR

SS,c,qq′(δR,∆t, t)=

∫ π

−π

∫ π

0

e
−jk0∆

MR
c,qq′ (δR,∆t,t)fMR

c (θMR
c , φMR

c ) dθMR
c dφMR

c (4.45)
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where the discrete random variables φMT
c,m, φMR

c,n , θMT
c,m, θMR

c,n , ψMT
1,c,m, ψMR

1,c,n, ψMT
2,c,m, ψMR

2,c,n,

and ∆MB
c,mn,qp(δT, δR,∆t, t) in (4.38) have been substituted by φMT

c , φMR
c , θMT

c , θMR
c , ψMT

1,c ,

ψMR
1,c , ψMT

2,c , ψMR
2,c , and ∆MB

c,qp(δT, δR,∆t, t), respectively. The function fMT
c (θMT

c , φMT
c )

denotes the joint-PDF of the EAoD and AAoD of CMT
c and fMR

c (θMR
c , φMR

c ) the joint-

PDF of the EAoA and AAoA of CMR
c .

Equations (4.36)–(4.45), specially (4.40), show that the ST-CCF does not only depend

on relative time and antenna positions ∆t and ∆pp′ , but also on absolute time t and

antenna position δT
p , demonstrating the non-stationary properties of the CIR in both

temporal and spatial (over the array) domains, respectively. The terms dependent of

the ratios vST
c t/rST

c , δT
p /r

ST
c indicate that the closer the cluster is to the Tx, the more

it contributes to the non-stationarity of the CIR. In addition, the cross-products, e.g.,

vRt · δT
p , v

ST
c t · δT

p , introduce cross-dependencies into the correlation functions with

respect to the time and space, i.e., the temporal ACF and S-CCF depend on the

position over the array and on absolute time, respectively. In Section 4.5, it will be

shown that these terms are responsible for the Doppler spectrum drifts along both

dimensions. Moreover, the terms that depend on the ratios vST
c ∆t/rST

c and ∆pp′/r
ST
c

improve the accuracy of the ST-CCF compared to the conventional stationary MIMO

models. Finally, it is worth noting that as the temporal ACFs depend on the pair

of antennas AT
p and AR

q considered, they cannot be obtained from the ST-CCFs by

setting δT = δR = 0, but setting p = p′ and q = q′ in (4.36)–(4.45).

4.3.1.2 Large-scale ST-CCF

Because cluster (re)appearance and shadowing processes are assumed to be indepen-

dent for simplicity, the large-scale ST-CCF can be separated as the product of the

ST-CCF of the cluster (re)appearance processes and that of the shadowing processes

as

ρSB
LS(δT, δR,∆t) = ρSB

Πc,qp(δT, δR,∆t) · ρSB
γc,qp(δT, δR,∆t). (4.46)

Similarly, since the spatial-temporal cluster (re)appearance process in (4.31) is ex-

pressed as the product of three independent processes, hence the ST-CCF of ΠSB
c,qp(t)
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can be calculated as ρSB
Πc

(δT, δR,∆t) = ρST
Πc

(δT) · ρSR
Πc

(δR) · ρSB
Πc

(∆t), where

ρST
Πc

(δT)=E[ΠST
c (δT

p )ΠST
c (δp′)] = P ST

V,c

(
P ST
V,c + P ST

I,c e
−λSTT,cδT|p−p

′|
)

(4.47)

ρSB
Πc (∆t)=E[ΠSB

c (t)ΠSB
c (t+ ∆t)] = P SB

V,c

(
P SB
V,c + P SB

I,c e
−λSBT,c|q(∆t)|

)
(4.48)

where the receive-side ρSR
Πc

(δR) can be computed by substituting T by R and p by q

in (4.47). Note that (4.47) corrects [115, eq. (17)]. Since the total ST-CCF only

depends on relative time and antenna elements, the process ΠSB
c,qp(δT, δR, t) is WSS in

these domains. It is worth noting that, since clusters can reappear, the correlation

of the (re)apperance processes does not completely vanish for long distances between

antenna elements, i.e., the reappearance of clusters introduces additional large-scale

correlation.

As the shadowing processes associated to the transmit- and receive-arrays are consid-

ered independent, the ST-CCF of γSB
c,qp(t) can be calculated as [12], [119]

ρSB
γc,qp(δT, δR,∆t)=exp

(
mSB

0,c + (σSB
0,c )

2[1 + ρSB
ηc (∆t)]

)
× exp

(
(σST

0,c)
2[1 + ρST

ηc (δT)]
)

× exp
(

(σSR
0,c)

2[1 + ρSR
ηc (δR)]

)
(4.49)

where it has been defined mSB
0,c = mSB

c ln(10)/10, σST
0,c = σST

c ln(10)/10, and σSR
0,c =

σSR
c ln(10)/10. In addition, the terms ρST

ηc (δT), ρSR
ηc (δR), and ρSB

ηc (∆t) denote the ACFs

of the processes ηST
c (δT

p ), ηST
c (δR

q ), and ηSB
c (t) defined in (4.33) and (4.34), respectively.

For the Gaussian correlation model, the ACFs in (4.49) are [12]

ρST
ηc (δT) = e−δ

2
T|p−p

′|2/(DST
c )2 (4.50)

ρSB
ηc (∆t) = e−[(vTc )2+(vRc )2]∆t2/(DSB

c )2 . (4.51)

The parameters DST
c and DSB

c are called the decorrelation distance and decorrelation

time and they are defined as the relative distance and time where the correlations

in (4.50) and (4.51) become e−1. Since the ACFs in (4.49)–(4.51) only depend on

relative time and distances, the cluster shadowing process γSB
c,qp(t) is WSS. Finally, as
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ρMB
LS (δT, δR,∆t) and ρL

LS(δT, δR,∆t) are computed analogously, they are omitted.

4.3.2 Spatial-temporal Doppler frequency drifts

The non-stationary properties of the channel model result in a spatial-temporal variant

Doppler PSD. Since the analysis for both SBCs and MBCs is similar and closed-form

solutions can only be obtained for MBCs, the MBC case will be presented here. The

instantaneous Doppler shift experienced by a ray scattered by a MBC can be computed

as the time derivative of the phase ∆ΦMB
c,mn,qp(t) = k0D

MB
c,mn,qp(t) in (4.9) as

νMB
c,mn,qp(t)=

1

2π
·

d∆ΦMB
c,mn,qp(t)

dt
= νMT

c,m,p(t) + νMR
c,n,q(t) (4.52)

where

νMT
c,m,p(t)

νMT
max

=

Conventional Tx
Doppler shift︷ ︸︸ ︷
cosψMT

1,c,m +t ·

Temporal drift at Tx︷ ︸︸ ︷
vMT
c

rMT
c

sin2 ψMT
1,c,m +δT

p ·

Array drift at Tx︷ ︸︸ ︷
1

rMT
c

Q(ψMT
1,c,m, ψ

MT
2,c,m, ψ

MT
3,c ) (4.53)

νMR
c,n,q(t)

νMR
max

=

Conventional Rx
Doppler shift︷ ︸︸ ︷
cosψMR

1,c,n +t ·

Temporal drift at Rx︷ ︸︸ ︷
vMR
c

rMR
c

sin2 ψMR
1,c,n +δR

q ·

Array drift at Rx︷ ︸︸ ︷
1

rMR
c

Q(ψMR
1,c,n, ψ

MR
2,c,n, ψ

MR
3,c ) (4.54)

with νMT
max = vMT

c /λ, νMR
max = vMR

c /λ. The normalized Doppler shift of the LoS compo-

nent is obtained as

νL
qp(t)

νL
max

=

Conventional
Doppler shift︷ ︸︸ ︷

cosψL
1 +t ·

Temporal drift︷ ︸︸ ︷
vR

rL

sin2 ψL
1 +δT

p ·

Array drift at Rx︷ ︸︸ ︷
1

rL

Q(ψL
1 , ψ

L
3 , ψ

L
5 )−δR

q ·

Array drift at Rx︷ ︸︸ ︷
1

rL

Q(ψL
1 , ψ

L
2 , ψ

L
4 ) (4.55)

with νL
max = vR/λ. The first term in (4.53) denotes the conventional Doppler shift

in stationary MIMO channels [12], [82], [83], [85], [86]. The second term results in

a linear Doppler frequency drift over time whose normalized slope is proportional to

vMT
c /rMT

c sin2 ψMT
1,c,m. The third term in (4.53) represents the effect of the antenna po-

sition along the array on the Doppler shift. Similarly to the second term, the Doppler

shift experiences a linear drift over the array with a normalized slope proportional to

δT/r
MT
c Q(ψMT

1,c,m, ψ
MT
2,c,m, ψ

MT
3,c ). Thus, we can conclude that it is the ratio of the array

length (cluster displacement) to the distance between the array and the clusters what
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determines the contribution of the cluster to the channel non-stationarity over the

array (in time domain).

For a uniformly distributed scattering over the 3D sphere, i.e., when f `c (θ
`
c, φ

`
c) =

sin(θ`c)/4π with ` ∈ {MT,MR}, we can obtain an explicit solution for the expected

value of the Doppler frequency shift as B
(1)
MB = E[νMT

c,m,p]+E[νMR
c,n,q], where the transmit-

and receive-side frequency shifts are given by E[νMT
c,m,p] = 2

3
ν
MT
max

r
MT
c

(vMT
c t − δT

p cosψMT
3,c )

and E[νMR
c,n,q] = 2

3
ν
MR
max

r
MR
c

(vMR
c t− δR

q cosψMR
3,c ), respectively. The Doppler frequency spread

corresponding to the MBC can be obtained as B
(2)
MB = (E[(νMB

c,mn,qp)
2]− E[νMB

c,mn,qp]
2)1/2

or, equivalently, as B
(2)
MB = (E[(νMT

c,m,p)
2]+E[(νMR

c,n,q)
2]−E[νMT

c,m,p]
2−E[νMR

c,n,q]
2)1/2 where it

has been used the fact that the transmit- and receive-side Doppler frequencies shifts

are independent. Finally, the term E[(νMT
c,m,p)

2] is given by

E[(νMT
c,m,p)

2]=
(νMT

max)2

15

5 + 8

(
vMT
c t

rMT
c

)2
− 16

(
vMT
c tδT

p

rMT
c

)2
cosψMT

3,c

+

(
δT
p

rMT
c

)2(
1 + 2 cosψMT

3,c + 5 cos2ψMT
3,c

). (4.56)

The term E[(νMR
c,n,q)

2] can be computed analogously and it is omitted here for brevity.

The average Doppler frequency shift drifts over the array and in time in a similar

fashion to the individual rays in (4.53) and (4.54). Notice that the drift of the average

Doppler shift and Doppler spread depends on the orientation of the array with respect

to the direction of motion, i.e., the angle ψMT
3,c . Furthermore, considering short periods

of time and small-arrays, i.e., {vMT
c t, (NT−1)δT} � rMT

c , both B
(1)
MB and B

(2)
MB become

spatial-temporal invariant as in conventional non-massive MIMO models. Closed-form

expressions cannot be obtained for the SBC Doppler drifts because the AoA and AoD

are interdependent.
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4.4 Simulation Model and Statistical Properties

The implementation of the theoretical model is not possible as it requires an infinite

number of scatterers. However, it is well known that a finite number of rays can ap-

proximate the statistical properties of the theoretical model [12]. As the procedure is

the same for SBCs and MBCs, only SBCs will be presented here. The SBC component

of the CIR for the simulation model is

ĥSB
c,qp(t) =

√
P̂ SB
c,qp(t)

Ic∑
i=1

âc,ie
jΘ̂SB

c,i e−jk0D̂
SB
c,i,qp(t) (4.57)

where âc,i, Θ̂
SB
c,i , D̂

SB
c,i,qp(t), and Ic are the simulation model parameters of the small-

scale fading process, and P̂ SB
c,qp(t) is the cluster’s average power of the simulation

model. For P̂ SB
c,qp(t), the Gaussian processes η̂ST

p,c(δ
T
p ), η̂SR

q,c(δ
R
q ), and η̂c(t) contained

within γ̂SB
c,qp(t) are approximated by a finite number of sinusoids. Due to the similarity

of the procedure, only the transmit-side process is presented here. Thus, the process

η̂ST
c (δT

p ) is defined as

η̂ST
c (δT

p ) =

K
ST
c∑

k=1

b̂ST
c,k cos

(
2πŝST

c,kδ
T
p + Θ̂ST

c,k

)
. (4.58)

In the simulation model, it is required to find reasonable values of the parameters

{âc,i, θ̂ST
c,i , φ̂

ST
c,i } in (4.57) and {b̂c,k, ŝc,k} in (4.58) in order to have a good approximation

to the statistical properties of the theoretical model. Aside from the values of Θ̂SB
c,i

and Θ̂ST
kc

that are drawn from i.i.d. random variables uniformly distributed over the

interval (0, 2π], the remaining parameters can be obtained using the corresponding

equations of the theoretical model, e.g, D̂SB
c,i,qp(t) in (4.57) can be obtained using (4.26).

In this chapter, a 3D extension of the RSM [117] is used to compute the parameters

of the small-scale fading processes, and the method of equal areas (MEA) [12] is used

to compute the parameters of the cluster shadowing processes.
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The small-scale ST-CCF of the simulation model for SBCs can be expressed as

ρ̂SB
SS,c,qp(δT, δR,∆t, t) =

IE,cIA,c∑
i=1

â2
c,ie
−jk0∆̂SB

c,i,qp(δT,δR,∆t,t) (4.59)

where IE,c and IA,c denote the number of rays used in the simulation model in the

zenith and azimuth planes, respectively, so the total number of rays in (4.57) is

Ic = IE,cIA,c. In the RSM, the theoretical correlation functions in (4.43) can be ap-

proximated as midpoints Riemann sums of finite number of terms [117]. The angular

parameters of the simulation model are assumed equally spaced in both the zenith and

azimuth planes as θ̂ST
c,i = π/IE,c

(
di/IE,ce − 1/2

)
and φ̂ST

c,i = 2π/IA,c
[
(i− 1/2) mod IA,c

]
,

with i = 1, 2, . . . , IE,cIA,c. Here, dxe denotes the least integer greater than or equal to

x and A mod B the remainder after division of A by B. In addition, the parameter

∆̂SB
c,i,qp(δT, δR,∆t, t) in (4.59) can be obtained by plugging θ̂ST

c,i and φ̂ST
c,i into (4.11)–

(4.13) and these into (4.40). The parameters âc,i in (4.59) can be obtained as [117]

âc,i =

 fST
c

(
θ̂ST
c,i , φ̂

ST
c,i

)
∑IE,cIA,c

i=0 fST
c

(
θ̂ST
c,i , φ̂

ST
c,i

)


1/2

. (4.60)

The introduction of a new dimension (the zenith angle) into the model increases its

complexity compared to its 2D counterpart, as it requires additional terms in the sum

of complex exponential functions to represent the zenith component of the rays.

Secondly, the ACF of the SoS process in (4.58) is given by

ρ̂ST
ηc (δT) =

K
ST
c∑

k=1

(b̂ST
c,k)

2

2
cos(2πŝST

c,k(p− p
′)δT). (4.61)

For the Gaussian correlation model, the MEA assumes the amplitude of all sinusoids

to be b̂ST
c,k =

√
2/KSB

c . In addition, the spatial frequencies ŝST
c,k can be obtained as [12]

ŝST
c,k =

1

πDST
c

erf−1

(
k − 1/2

KST
c

)
(4.62)

where k = 1, 2, . . . , KSB
c and erf−1(·) denotes the inverse error function.
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4.5 Results and Analysis

Henceforth, the scatterers distribution within a cluster is modeled by the VMF distri-

bution, which is defined by the mean zenith angle θµ, the mean azimuth angle φµ, and

its concentration parameter κ ≥ 0. The PDF of a VMF random variable is defined in

spherical coordinates as [111]

f(θ, φ) =
κ sin θ

4π sinh(κ)
eκ(sin θµ sin θ sin(φµ−φ)+cos θµ cos θ). (4.63)

The concentration parameter κ determines the angular spread in both azimuth and

zenith angles. A high value of κ produces a highly concentrated distribution and

κ = 0 results in a uniform distribution on the 3D sphere. In general, the azimuth and

zenith angles of the VMF are correlated, with the exception of κ = 0 and θµ = 0.

4.5.1 Small-scale statistical properties of the model

In Figures 4.2 A) and B), a performance comparison of the plane, parabolic, and

spherical wavefronts using the theoretical model is presented. In particular, the ab-

solute values of the transmit-side cluster-level array-variant ACFs and time-variant

S-CCFs for a MBC and different values of the VMF concentration parameter are

shown. For a fair comparison of the three wavefronts, it has been set t = 0 s and

p = p′ = NT/2 in (4.40) to obtain Figures 4.2 A) and B), respectively. This enables us

to eliminate the influence of absolute time and antenna position on the ACFs and S-

CCFs, respectively. Note that as the plane wavefront with static channel parameters

cannot capture non-stationary properties of the channel in the spatial or temporal

domains, the corresponding results do not show any difference at different antenna

elements or time instants. Thus, only the results obtained with the plane wavefront

at antenna AT
50 in Figure 4.2 A) and time instant t = 0 in Figure 4.2 B) are presented.

The temporal ACFs (Figure 4.2 A)) and S-CCFs (Figure 4.2 B)) at the centre of

the transmit-array (p = 50) and time t = 0, respectively, show negligible differences

for the three different wavefronts as expected. However, unlike the plane wavefront
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(a) (b)

Figure 4.2: Comparison of the cluster-level transmit-side A) array-variant ACF
(t = 0) s and B) time-variant S-CCF (p = 50) of the theoretical model using plane,
parabolic, and spherical wavefronts for different values of VMF κ-factor (f=2 GHz,
NT =100, δT =λ/2, βT = π/2, αT =0, θµ= 3π/4, φµ = π/3, ζMT

c = π/2, ξMT
c = π/6,

rMT
c = 30 m, vMT

c = 5 m/s).

model, the results obtained with the parabolic wavefront demonstrate that it can

model non-stationary channels and approximate the corresponding results obtained

with the spherical wavefront very well. Also, notice that the array and temporal

variations of the ACFs and S-CCFs, respectively, are the result of the cross-products

in (4.40) described in Section 4.3. Finally, it can be observed that the ACF at AT
100

is higher than that at AT
1 . The reason is that, as AT

1 is closer to the cluster than

AT
100, the aparent angular spread at AT

1 is higher than that at AT
100. Accordingly, as

the coherence time, i.e., the region where the ACF is above certain level, is inversely

proportional to the angular spread, hence the ACF widens from AT
1 to AT

100.

In Figures 4.3 A) and B), a comparison of the theoretical model, simulation model,

and simulation results is presented through the absolute values of the transmit-side

cluster-level time-variant ACFs and array-variant S-CCFs, respectively, for a MBC

and different values of the VMF concentration parameter. Note that as the CIR is

non-stationary and hence non-ergodic, the simulation results have been obtained by

averaging over 104 realizations of the correlation functions. Unlike Figures 4.2 A)

and B), these results demonstrate temporal and spatial non-stationarity through the

ACFs and S-CCFs, respectively. It is worth noting the very good agreement between
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(a) (b)

Figure 4.3: Comparison of the cluster-level transmit-side A) time-variant ACF
(p = 50) and B) array-variant S-CCF (t = 0) of the theoretical model, simulation
model, and simulation results for different values of VMF κ-factor (f = 2 GHz,
NMT
c = MMT

c = 15, NT = 100, δT = λ/2, βT = π/2, αT = 0, θµ = 3π/4, φµ = π/3,
ζMT
c =π/2, ξMT

c =π/6, rMT
c =30 m, vMT

c = 5 m/s ).

theoretical and simulation results obtained through the extended 3D RSM in non-

stationary conditions. In this study, we verified that the 3D RSM outperforms the

Monte Carlo method approximating the ACFs and S-CCFs in more than one order

of magnitude using NMT
c = 8 and MMT

c = 16 in the EAoD and AAoD, respectively.

On the other hand, whereas the accuracy of the parabolic wavefront has already been

assessed, the benefits in terms of computational complexity have not been shown yet.

In order to provide an estimation of the computational gain, we used the ratio of the

average simulation time of calculating plane, parabolic, and spherical wavefronts un-

der the condition that all the rest parameters in the simulations were kept the same.

To minimize the influence of the selected parameters on the results, random parame-

ters in every simulation are drawn and later the average computation time over many

realizations (104) is obtained. The ratios of the average computation time of comput-

ing plane, parabolic, and spherical wavefronts obtained are: Tplane/Tspherical = 0.06,

Tplane/Tparabolic = 0.35, Tparabolic/Tspherical = 0.17. The plane wavefront is the most

efficient but it cannot capture non-stationary properties of the channel. The average

computation time of the parabolic wavefront is 17% of the average time required by

the spherical wavefront, which demonstrates the efficiency of the proposed approach.
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4.5.2 Large-scale statistical properties of the model

The large-scale characteristics of the proposed model were validated by employing

the outdoor measurements reported in [16] and [5]. In [16], Gao et al. studied the

distribution of the VRs length along the array by setting a 128-element virtual ULA

spanning 7.5 m on the rooftop of a building in a semi-urban environment. In a similar

setting [6] [5], Payami et al. studied the array-variant RMS DS by setting a virtual

ULA composed by 128 omnidirectional antenna elements spaced half wavelength. In

both cases, the measurements were performed in LoS and NLoS conditions at a central

frequency of 2.6 GHz with a signal bandwidth of 50 MHz.

For the simulation results, if some channel parameters, e.g., carrier frequency, antenna

separation, and number of antennas, were provided in the measurements (such as in

[16] and [5]), they were directly employed in our simulations. The rest channel model

parameters, e.g., λV,c, λI,c, σc, and Dc, were then estimated using an optimization

algorithm in order to fit the statistical properties of the channel model to those of

the measurement data. In the estimation process, random initial values of those

parameters were first generated. Then, the average root mean square error of the

simulation and measurement results was minimized by optimizing the values of those

parameters in an iterative process. The following simulation results, e.g, CDFs, were

obtained by using the Monte Carlo method, i.e., performing multiple simulation runs

(104). A total number of 20 clusters per simulation run are employed with 25 sinusoids

per cluster to generate the shadowing processes. Notice that λI,c and λV,c, σc, and Dc

are assumed to be equal for every cluster.

In Figure 4.4, the CDFs of the measured and simulated VRs’ length over the array are

presented for different values of the visibility rates. The VRs inside the array were se-

lected for comparison as their information is complete and reliable [16]. Although the

measurement and simulation curves for λI,c = λV,c = 0.5 m−1 are in good agreement

for most of the range, there are discrepancies between these curves for low values of

the VR’s length, which can be explained due to the lack of reliable information for

short VRs. Note that as the maximum length of a VR that can be measured over

91



Chapter 4: Novel 3D Non-Stationary Massive MIMO Channel Models based on
Cluster-Level Evolution

Figure 4.4: Measured [16] and simulated CDF of the clusters’ VR lengths over
the array (f = 2.6 GHz, NR = 128, δR = λ/2 ).

a ULA is equal to the length of the array (see [16, Figures 6 b-c]), we limited the

maximum length of VRs to the ULA length. As a result, a discontinuity occurs in

the CDF at a VR length of about 7.5 m for λI,c = λV,c = 0.1. In this case, whereas

approximately 70% of VRs are strictly shorter than 7.5 m, 30% are longer than or

equal to 7.5 m. Generally, it can be stated that the lower the cluster disappearance

rate, the higher the percentage of clusters visible over the entire ULA and the larger

the discontinuity.

In the VR approach for massive MIMO arrays developed in [16], the slopes of the clus-

ters’ average power variations along the array were employed to model cluster-level

large-scale fading. These slopes were estimated in a least-squares sense in decibel

domain. In Figure 4.5, the CDFs of the slopes simulated and estimated from mea-

surements are presented for comparison purposes. Note that to estimate the values

of the slopes by simulations, the values of the visibility rates λI,c = λV,c = 0.5 m−1

previously obtained (see Figure 4.4) are kept constant. It is worth noting that larger

standard deviations of the clusters power σc tend to increase the spread of the slopes,

whereas larger decorrelation distances produce the opposite effect. Moreover, it should

be remarked that the area mean has little or no impact on the CDFs of the slopes.

Caused by the (re)appearance of clusters and smooth evolution of the clusters’ average

power along the array, variations of the RMS DS as reported in [5] need to be captured

by massive MIMO channel models. For that purpose, in Figure 4.6 a comparison
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Figure 4.5: Measured and simulated CDF of slopes of the cluster’s power varia-
tions along the array for different values of the standard deviation of the clusters’
average power (f = 2.6 GHz, λI,c = λV,c = 0.5 m−1, Dc = 1.23 m, NR = 128,

δR = λ/2).

Figure 4.6: Comparison of the simulated and estimated [5] CDF of the array-
variant RMS DS for different values of the (re)appearance rates and standard
deviation of the clusters’ average power (f = 2.6 GHz, NR = 128, δR = λ/2,

Dc = 1.23 m).

of the simulated and measured CDFs of the RMS DS over the array is presented.

The simulation results correspond to different values of the appearance rates and

clusters’ average power standard deviations. Whereas shadowing of clusters results in

variations of the DS, adding both cluster (re)appearance and shadowing enables us

to model such variations of the DS more accurately.
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4.6 Summary

In this chapter, a novel 3D non-stationary wideband theoretical channel model and a

corresponding simulation channel model for massive MIMO communication systems

have been presented. First, a new efficient and accurate way of capturing spatial-

temporal non-stationary properties of the channel through parabolic wavefronts has

been proposed. It has been shown that the parabolic wavefront is sufficiently flexible

and accurate to model the statistical properties of the channel with reduced com-

putational complexity. Moreover, the relationship between non-stationary properties

of the channel, e.g., time- and array-variant ST-CCFs and Doppler frequency drifts,

and the distance between the arrays and clusters has been demonstrated. Second,

non-stationary properties of the channel have also been modeled through cluster-level

evolution processes in space and time domains. A comparison of simulation results

and measurements has validated the spatial-temporal cluster (re)appearance and Log-

normal shadowing processes in order to approximate key statistical properties of the

channel such as the length of the clusters’ VRs, the array-variant cluster power and

array-variant DS. Finally, a 3D extension of the RSM for parameters computation has

been proposed and validated through simulations.
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Chapter 5
A Novel 3D Non-Stationary Massive

MIMO Channel Model based on Ray-Level

Evolution

5.1 Introduction

As introduced in Chapter 2, near-field effects take place when the distance between

the array and the scatterers is shorter than the Rayleigh distance, which is 2D2
A/λ

with DA denoting the largest dimension of the array and λ the carrier wavelength.

It is important to note that the Rayleigh distance was originally derived assuming

free-space LoS propagation and does not consider other phenomena related to multi-

path propagation [121], [122]. In agreement with this definition of Rayleigh distance,

the largest dimension of the array is commonly used to determine which wavefront

is the most adequate for each MPC or ray. This assumes that MPCs are received

by all antennas of the array regardless of its size, i.e., it does not consider clusters’

lifespans over the array. Clearly, this is in contradiction with the phenomenon of clus-

ter (dis)appearance over the array. This widespread criterion is employed in previous

works, e.g., [9], [13], [88]–[92], [95], including the model presented in Chapter 4. In

addition, it is assumed that rays’ lifespans over the array were equal to that of clusters.
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This leads to the wrong conclusion that high-order wavefronts are required for most

clusters and rays. This problem is accentuated when one considers B5G antenna array

geometries such as ELAAs in which the co-located assumption and sub-wavelength

separation between antenna arrays is challenged [7]. Due to their large aperture, the

conventional Rayleigh distance criterion applied to an ELAA implies that virtually

every scatterer lies within the near-field region of the array and every scattered MPC

is subject to spherical wave propagation. As discussed in Chapter 4, high-order wave-

fronts are computational more complex than the plane wavefront as they require to

calculate the exact or high-order approximations to the distances between every an-

tenna element of the array and the surrounding scatterers. Thus, an accurate method

to determine the most appropriate wavefront for each MPC would help reduce the

complexity of existing massive MIMO channel models.

Most massive MIMO channel models [9], [13], [88], [89], [91]–[94] consider large-scale

fading over the array by focusing on the array-varying number of clusters either em-

ploying Markov BD processes [13], [88], [89], [91], [92], [94], [115], [116] or VRs [90].

Aside from cluster (dis)appearance, very few works modeled cluster-level large-scale

fading over the array. In [89], the authors included cluster-level path loss, but ne-

glected shadow fading. In [90] and [91], only the slope of the cluster-level large-scale

fading was considered. However, cluster-level large scale fading will be particularly

important for the B5G channel models required by ELAAs as they will suffer from

strong shadowing effects due to the extreme size of the array [7]. In addition, recent

works [58] and [62] have shown the impact of an accurate modelling of large-scale

fading over the array on the achievable SE. In particular, the authors proved that

unlimited capacity can be achieved in multi-user massive MIMO systems employing

M-MMSE precoding/combining envisioned for B5G communication systems.

In addition, existing models predict that the random number of clusters at any location

of the array is Poisson distributed. However, measurements in [16] reported that

a negative Binomial distribution is more accurate. How to resolve this apparent

contradiction is still an open question.
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It was discussed in Chapter 3 that the variations of the delay over the array become

more significant for large arrays, e.g., ELAAs, and nearby scatterers. However, very

few massive MIMO channel models [9], [91] have incorporated and studied the impact

of the delay drift on the statistical properties of the channel. In Chapter 3, the array-

varying PDF of the delay was studied, but its effect on the FCF was presented in

isolation without considering the visibility of scatterers across the array.

Recent measurements that employed advanced clustering and sub-cluster tracking

algorithms demonstrated the existence of massive MIMO effects such as near-field

effects and (dis)appearance of both clusters and individual MPCs or rays as well [4].

These findings indicate that a more efficient use of wavefronts and a more accurate

modelling of sub-cluster (dis)appearance can be achieved. Models including these

phenomena and comprehensive studies of its impact on the their statistical properties

are still missing. Although the model proposed in Chapter 4 captured the large-scale

fading through (re)appearance and shadowing of clusters, it did not considered MPC

(dis)appearance and smooth transitions between VRs.

To fill this gap, this chapter proposes a 3D non-stationary massive MIMO channel

model that includes ray-level evolution and studies its effects into the small- and

large-scale channel statistical properties. The main contributions and novelties of this

chapter are the following:

1. A novel 3D non-stationary wideband massive MIMO channel model that is able

to capture space-time ray-level evolution is proposed. The evolution process can

flexibly control rays’ lifespans and smoothness of (dis)appearance in both space

and time domains. Cluster-level large-scale fading is automatically embedded

in the model as a consequence of the ray-level process and smooth cluster-level

(dis)appearance is guaranteed. The proposed channel model is suitable for 3D

antenna-array layouts of arbitrary shape.

2. A novel method to accurately determine the most adequate wavefront for each

cluster and ray is presented. For that purpose, the concept of effective Rayleigh

distance, which accounts for the limited rays’ lifespan over large-scale antenna
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arrays, is proposed. In addition, it is proved that the use of the proposed method

can significantly reduce the number of rays requiring spherical wavefronts.

3. Closed-form expressions of key statistical properties of the ray-level evolution

process are derived and the impact of its parameters on the statistical properties

of the proposed channel model is studied. The correctness of the derivations in

this chapter are validated through simulations.

4. A Gamma-Poisson mixture is proposed to model the number of clusters when

multiple locations of the mobile station are considered. This model resolves the

apparent contradiction between previous channel measurements and models in

order to fit the distribution of the random number of clusters appropriately.

The rest of this chapter is organized as follows. Section 5.2 introduces the proposed

3D massive MIMO channel model including the ray-level evolution process and the

improved Rayleigh criterion for ray-level wavefront selection. The derivations of the

channel model statistical properties, study of the impact of the ray evolution process

and the Gamma-Poisson mixture distribution to model the number of clusters are

included in Section 5.3. Section 5.4 studies the statistical properties of the channel

model through numerical and simulation results and verifies the correctness of the

derivations. Finally, conclusions are drawn in Section 5.5.

5.2 A Wideband Massive MIMO Channel model

Let us consider a generic 3D wireless channel in which the Tx and Rx can be equipped

with arbitrary-shaped 3D antenna arrays. For simplicity, we assume that only the Rx

is equipped with a large number of antennas. The p-th (p = 1, 2, ..., NT ) transmitting

and q-th (q = 1, 2, ..., NR) receiving omnidirectional antenna elements are denoted as

ATp and ARq , respectively. The position vector and distance of the antenna ATp (ARq )

measured from the centre of the transmitting (receiving) array are denoted as aTp (aRq )

and δTp = ||aTp || (δRq = ||aRq ||), respectively, with || · || denoting the Euclidian norm.

Let us assume that the Tx (Rx) moves with a velocity vT (vR) of constant magnitude
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Figure 5.1: A 3D massive MIMO channel model including the visibility regions
of individual scatterers across the large array.

vT (vR). Scattered rays with similar parameters, e.g., AoAs, AoDs, and delays, are

grouped into C clusters of Nm, m = 1 . . . C, rays each. In the following, the n-th

scatterer of the m-th cluster is denoted as Smn and its position vector measured from

the centre of the transmitting (receiving) array is denoted as sTmn (sRmn). The azimuth

and zenith AoDs (AoAs) of the scattered rays are denoted as φTmn (φRmn) and θTmn

(θRmn), respectively. The most important elements of the channel model are depicted

in Figure 5.1. For illustration purposes, we have employed a UPA at the receive side

and a conventional ULA at the transmit side. For the UPA, the horizontal (vertical)

inter-element spacing is denoted as δRH (δRV ) and its orientation is modeled by the

zenith and azimuth angles denoted as βR and αR, respectively. For the ULA, the

inter-element spacing is denoted as δT and its orientation zenith and azimuth angles

are denoted as βT and αT , respectively. Note that the regions of the UPA where

individual scatterers are visible are depicted in color.

The massive MIMO channel is modeled by the matrix H(t, τ) = [hqp(t, τ)]NR×NT with

p = 1, . . . , NT and q = 1, . . . , NR. The CIR hqp(t, τ) can be calculated as

hqp(t, τ) =
C∑

m=1

amhm,qp(t) (5.1)
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with am denoting the m-th cluster’s amplitude. The cluster-level CIR is defined as

hm,qp(t) =
Nm∑
n=1

gmn,qp(t)e
j(k0Dmn,qp(t)+θmn)δ(τ − τmn,qp(t)) (5.2)

where j =
√
−1 and k0 = 2π/λ. The term gmn,qp(t) accounts for the gain or amplitude

of a ray that has travelled a distance Dmn,qp(t) from ATq to ARq via Smn at time instant

t. The corresponding propagation delay is obtained as τmn,qp(t) = Dmn,qp(t)/c0, with

c0 denoting the speed of light. As signals from and to sufficiently separated antenna

elements of the array experience different delays, note that τmn,qp(t) in (5.2) depends

on the antenna indices p and q. In addition, scatterers introduce phase shifts θmn,

which are usually modeled as i.i.d. random variables uniformly distributed over the

interval [0, 2π). The CTF of this model, defined as the Fourier transform of the CIR

with respect to τ , is given by

Hqp(t, f) =
C∑

m=1

am

Nm∑
n=1

gmn,qp(t)e
j(k0Dmn,qp(t)+θmn)e−j2πfτmn,qp(t). (5.3)

5.2.1 Ray-level evolution process

In order to model the spatial-temporal ray-level evolution as it has been recently

measured [4], we have selected a tapered cosine profile due to its flexibility and math-

ematical simplicity. The temporal definition of this function is as

gmn(t) =


cmn 0 ≤ |t| < t′mn

cmn
2

{
1 + cos

(
2π

rTRmn

[
|t| − t′mn

])}
t′mn ≤ |t| <

TRmn
2

(5.4)

and zero otherwise. The parameter cmn denotes the maximum amplitude of the n-th

ray in the m-th cluster, TRmn the period of time when the corresponding scatterer is

visible (ray’s lifetime), and the normalized transition or taper parameter r ∈ (0, 1]

denotes the ratio of the duration of the tapered region to the ray’s lifetime. Small

values of r model rapid transitions between zero and the maximum gain of the ray, i.e.,

rapid (dis)appearance, and vice versa. The term t′mn = (1−r)TRmn/2 denotes the time
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separating the tapered from the constant-gain region. Note that the ray’s lifetime

TRmn is independent of the transition parameter r, i.e., the period of (dis)appearance

is included in the ray’s lifetime.

For an arbitrary-shaped 3D array at the receiving side, the gain in the spatial domain

gmn,qp(a
R
q ) can be analogously defined by using the change of variables t = ||aRq −wR

mn||

in (5.4), where TRmn = 2RR
mn. In this case, the parameter RR

mn denotes the radius of

the ray’s VR (see Figure 5.1). Note that this definition assumes spherical symmetry

of the ray’s gain for simplicity.

5.2.2 Spherical wavefront vs. plane wavefront

The total length of the path from ATp to ARq via Smn used in (5.2) and (5.3) can be

calculated as Dmn,qp(t) = DT
mn,p(t) +DR

mn,q(t) +Dmn,s, i.e.,

Dmn,qp(t) =
∥∥∥sTmn − aTp − vT · t

∥∥∥+
∥∥∥sRmn − aRq − vR · t

∥∥∥+Dmn,s (5.5)

where the term Dmn,s denotes the propagation distance between the first and last

scatterers. Clearly, for single-bounced signals Dmn,s = 0. However, due to the lack

of information, multi-bounce scattering is usually abstracted as virtual link between

the first and last bounces. The conventional approximation for short periods of time

and small arrays, i.e., the first-order or plane-wavefront approximation, reduces the

distance in (5.5) to [116]

Dmn,qp(t)≈Dmn− δTp cosψTmn− δRq cosψRmn− vT t cos ξTmn − vRt cos ξRmn (5.6)

where Dmn is propagation distance from the centre of the transmitting array to the

centre of the receiving array via Smn. The angles ψTmn, and ξTmn can be obtained as

cosψTmn,p=
aTp · sTmn

||aTp || · ||sTmn||
(5.7)

cos ξTmn=
vT · sTmn

||vT || · ||sTmn||
. (5.8)
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The explicit dependency of the angles ψTmn,p and ξTmn with respect to the azimuth and

elevation AoDs can be seen in spherical coordinates as

cosψTmn,p= sin θTmn sin βTp cos(φTmn− αTp ) + cos θTmn cos βTp (5.9)

cos ξTmn= sin θTmn sin βTv cos(φTmn− αTv ) + cos θTmn cos βTv (5.10)

where the terms αTp and βTp denote the azimuth and elevation components of ATp with

respect to the centre of the transmitting array. Similarly, the terms αTv and βTv denote

the azimuth and elevation components of the velocity vector vT , respectively. The

angles ψRmn,q and ξRmn are analogously obtained and are omitted here. In conventional

WSS models [12], the plane-wavefront approximation in (5.6) is used to calculate the

phase of the signal in (5.2) and (5.3). However, this first-order polynomial in δTp , δRq ,

and t results in linear spatial-temporal variations of the phase that do not capture

the non-stationary properties of massive MIMO channels. In such case, the AoDs and

AoAs are implicitly assumed to be constant over the array and time. Moreover, the

delay τmn,qp(t) in (5.2) is usually approximated as a constant value for every path,

i.e., τmn,qp(t) = τmn. However, this may be incorrect for large arrays and long periods

of time as it has been recently shown in [123].

5.2.3 Wavefront selection: Effective Rayleigh distance

One of the advantages of the proposed ray-level process is the possibility of selecting

the appropriate wavefront for each ray. The parameter commonly used to determine

which wavefront is required is the Rayleigh distance, which is DR = 2D2
A/λ with DA

denoting the largest dimension of the array and λ the carrier wavelength. However,

as most clusters and rays only exist over very small regions of the array [4], [46],

their effective Rayleigh distance is smaller than DA. We define the effective Rayleigh

distance of a ray as DE,n = 2 (2RR
n )2/λ with RR

n the radius of the ray’s VR, i.e., with

2RR
n being the ray’s lifespan over the array. Thus, when a scatterer is located at a

distance rn > DE,n measured from the centre of the ray’s VR, plane wavefronts can
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Effective Rayleigh distance

A1

AN

2RR
n

Sn

Conventional Rayleigh distance

Figure 5.2: Comparison of the conventional Rayleigh distance calculated using the
largest dimension of the array (black) and the proposed effective Rayleigh distance
considering the ray’s VR (red). The ray’s lifespan is depicted as a red segment over

the array.

be appropriately used. Figure 5.2 illustrates the concept of effective Rayleigh distance

using a ULA.

Note that halving the radius of the ray’s VR makes the effective Rayleigh distance

four times shorter. The same concept can be applied to the time domain for which the

effective Rayleigh distance is 2(vR · TRn )2/λ with TRn = 2RR
n /v

R, where it is assumed

that the Rx moves at a constant speed vR across the ray’s VR.

Measurements in [4] have shown that RR
n can accurately be approximated using i.i.d.

exponentially distributed random variables of equal rate λR. Thus, for a particular

cluster of scatterers located at distance r0, it can be easily seen that the average

fraction of scatterers that require spherical wavefronts is NSW
R /NR = exp(−

√
r0/r̄R).

The parameter r̄R denotes the effective Rayleigh distance of an average-size ray’s VR,

which is given by r̄R = 16(R̄R)2/λ with R̄R = 1/λR denoting the average radius of

the rays’ VRs. Note that for an average ray’s lifespan 4 times shorter than the largest

dimension of the array, i.e., DA/R̄
R = 8, less than 3% of the rays would require

spherical wavefronts to be employed. Analogous conclusions apply to the clusters

since the radius of the clusters’ VR are exponentially distributed as well [4]. However,

as clusters’ lifepans are larger in average than rays’, the fraction of clusters that require

spherical wavefronts may be larger.

In order to reduce the computational complexity, the following procedure is used with

those scatterers located beyond their effective Rayleigh distance. First, use (5.5),
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i.e., the spherical wavefront approach, to calculate the exact distance travelled by the

scattered ray only at the centre of the ray’s VR. Second, use (5.6), i.e., the plane

wavefront approach, to obtain the approximate distance travelled by rays received

within the VR. This is in contrast with previous approaches, in which the exact

distance in (5.5) was used for all rays, antenna elements and time instants. This

method enables to reduce the computational burden of the wavefront computation

process by the ratio of the complexity of computing the spherical wavefront to that

of the plane one.

5.3 Statistical Properties of the Channel Model

This section studies key statistical properties of the proposed massive MIMO channel

model. Although the section focuses on the small-scale properties, some relevant

statistical properties of the large-scale fading will be studied as well. As only the

cluster-level statistical properties of the channel are studied, it is possible to drop

the cluster index m in the following sections when it is not essential for the sake of

notation simplicity and readability.

5.3.1 Small-scale fading

5.3.1.1 Distribution of the amplitude of rays

Measurements in [4] indicate that the time of arrival tn, with n = 1, 2, ..., N , of rays

within a cluster can be modeled as i.i.d. random variables uniformly distributed over

the interval (0, TC ]. The cluster and rays within it remain visible over periods of time

denoted as TC and TRn , respectively. The rays’ lifetimes TRn can be modeled as i.i.d.

exponential random variables of equal rate λR = λRn as indicated in [4]. Thus, the

PDF of the amplitude of the rays can be obtained using the theory of transformation
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of random variables as

pgn(t)(x) = (1− pv) δ(x) + pv

(
r

π
√
cnx− x2

+ (1− r)δ(x− cn)

)
(5.11)

for 0 ≤ x ≤ cn and zero otherwise. The term pv = (λRTC)−1 denotes the probability

of a ray being visible at any time t of the cluster’s lifetime. Hence, the first term

(1 − pv) in (5.11) denotes the probability of the amplitude of the ray being zero,

i.e., scatterer not visible. The second term corresponds to the transition period of

(dis)appearance and the third to the period of maximum amplitude cn. Note that

(5.11) is approximately time invariant in (λR)−1 < t ≤ TC − (λR)−1 and is time

dependent outside this interval. As the average ray’s lifetime of a ray is much smaller

than that of a cluster [4], i.e., TCλ
R � 1, the distribution can be approximated by

(5.11) and gn(t) can be considered as a first-order stationary process.

The PDF of the amplitude of the rays in the spatial domain is given by

pgn(rR)(x) = (1− pv) δ(x) + pv

(
2πr0 + r arccos(1− 2x)

)2

2π2
√
cnx− x2

+ pv(1− r)δ(x− cn)

(5.12)

where the probability of a ray being visible at any location is pv = 4π(R̄R)3/(L′xL
′
yL
′
z).

The parameters L′x, L
′
y, and L′z denote the x, y, and z dimensions, respectively,

of a region containing the large array where the rays’ VRs are randomly generated

according to a uniform distribution.

5.3.1.2 Distribution of the envelope

Next, we will study the effects of the ray-level gain on the distribution of the cluster-

level envelope process Ξ = |hm,qp(t)| in (5.2) only in the temporal domain as closed-

form expressions can be derived. The analysis in the spatial domain leads to closed-

form expressions only in the case of ULAs, but it is more complex for 3D antenna

arrays of arbitrary shape. The distribution of Ξ for a fixed time instant t is given by
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(see Appendix C)

pΞ(z) = (2π)2z

∫ ∞
0

exp

{
rNa 2F3

(
1

4
,
3

4
;
1

2
, 1, 1;−(cπx)2

)}
× exp

{
Na

[
J0(2πcx)(1− r)− 1

]}
J0(2πzx)x dx (5.13)

for z > 0, with 2F3(·; ·; ·) denoting the generalized hypergeometric series of order

2, 3 [124] and Na the average number of active rays within the cluster at any time

instant. Note that all the rays are assumed to have the same maximum amplitude

c = cn in (5.13). For large values of Na, the integrand of the previous expression

decreases very rapidly. Thus, approximating the exponent by a third-order Taylor

polynomial at x = 0, pΞ(z) is approximately

pΞ(z) ≈ (2π)2z

∫ ∞
0

exp

[
−Na(cπx)2

(
1− 5

8
r

)]
J0(2πzx)x dx. (5.14)

Let σ be the total received power and the maximum amplitude of all rays is c =

σ
[
Na
2

(1− 5
8
r)
]− 1

2 . Finally, the previous integral can be solved using [124, Equation

(6.631.4)] as

pΞ(z) ≈ z

σ2
exp

(
− z

2

2σ

)
(5.15)

for z > 0 and zero otherwise. That is, the envelope is approximately Rayleigh dis-

tributed. Note that the maximum amplitude of the rays c = σ
[
Na
2

(1− 5
8
r)
]− 1

2 depends

on the average number of rays and the transition parameter r. The dependence on

r compensates the effective reduction of amplitude caused by the taper. Also, note

that the rays’ lifetimes have no effect on the distribution of the envelope as long as

the average number of rays Na remains constant over the cluster’s lifetime. In the

spatial domain, the analysis is analogous by plugging (5.12) instead of (5.11) into

(C.1). Unlike in the temporal analysis, no closed-form solution has been found to

such distribution for the 3D spatial ray gain.
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5.3.1.3 Temporal autocorrelation function (ACF)

The normalized temporal ACF of the channel impulse response can be defined as

ρqp(t1, t2) = E[Hqp(t1, f)H∗qp(t2, f)]/E[|Hqp(t, f)|2], where

E[Hqp(t1, f)H∗qp(t2, f)] =
C∑

m=1

C∑
m′=1

N∑
n=1

N∑
n′=1

ama
∗
m′

× E[gmn,qp(t1 − tmn)gm′n′,qp(t2 − tm′n′)]

×E[ejk0[Dmn,qp(t1)−Dm′n′,qp(t2)]]E[ej(θmn−θm′n′ )]. (5.16)

Since E[ej(θmn−θm′n′ )] = 1 for m = m′ and n = n′ and is zero otherwise, then

E[Hqp(t1, f)H∗qp(t2, f)] =
C∑

m=1

|am|2ρm,qp(t1, t2) (5.17)

with

ρm,qp(t1, t2) =
N∑
n=1

E[gmn,qp(t1 − tmn)gmn,qp(t2 − tmn))]E[ejk0[Dmn,qp(t1)−Dmn,qp(t2)]].(5.18)

That is, the total ACF is a weighed sum of the cluster-level ACFs. The total received

power can be obtained as E[|Hqp(t, f)|2] =
∑C

m=1 |am|2
∑N

n=1 E[|gmn,qp(t − tmn)|2]],

where the received power corresponding to a single ray is given by PR = E[|gmn,qp(t−

tmn)|2]] = c2
(
1− 5r

8

)
TR/TC for rays of constant lifetime TRn = TR and PR = c2(1 −

3
4
r)/(TCλ

R) when TRn are modeled as exponential random variables of rate λR. In the

calculation of PR, the boundary effects caused at the extremes of the cluster’s lifetime

have been neglected.

Due to the complexity and lack of closed-form expressions of the ray-level gain ACF

when TRn are random variables, we will derive the ACF for a constant lifetime and

study its impact on the ACF of the channel. The ACF considering i.i.d. exponentially

distributed rays’ lifetimes will be studied numerically in Section 5.4. For constant TR,

the ACF of the ray gain can be obtained as ρgngn(t1, t2) = E[gn,qp(t1 − tn)gn,qp(t2 −

tn)]/E[|gn,qp(t− tn)|2]], where we have dropped the cluster index m for clarity. Thus,
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ρgngn(τ ′) =

1
8−5r

[
8− 6r− 4τ ′+ (r − 2τ ′) cos

(
2π
r
τ ′
)

+ 3r
π

sin
(

2π
r
τ ′
)]

0 < τ ′ ≤ r/2

1
1− 5

8
r

[
1− 1

2
r − τ ′

]
r/2 ≤ τ ′ ≤ r̄

1
8−5r

[
6τ ′′ + 2r + [τ ′′ + r] cos

(
2π
r
τ ′′
)
− 3r

2π
sin
(

2π
r
τ ′′
)]

r̄ ≤ τ ′ ≤ (1− r
2
)

1
8−5r

[
−τ ′′

[
2 + cos

(
2π
r
τ ′′
)]

+ 3r
2π

sin
(

2π
r
τ ′′
)]

(1− r/2) ≤ τ ′ ≤ 1

(5.19)

and zero otherwise. To simplify notation, we have used τ ′ = |t2−t1|(TR)−1, τ ′′ = τ ′−1,

and r̄ = 1 − r. Equation (5.19) is valid only for 0 ≤ r ≤ 2/3. For 2/3 < r ≤ 1 the

ACF is obtained as ρgngn(τ) =

1
8−5r

[
8− 6r − 4τ ′ + (r − 2τ ′) cos

(
2π
r
τ ′
)

+ 3r
π

sin
(

2π
r
τ ′
]]

0 < τ ′ ≤ r̄

1

8− 5r

[
4r̄ − 2τ ′′ + (τ ′′ + r) cos

(
2π

r
τ ′′
)

− 3

2π
r sin

(
2πτ ′′

r

)
+ (r − 2τ ′) cos

(
2πτ ′

r

)
+

3r

π
sin

(
2πτ ′

r

)] r̄ ≤ τ ′ ≤ r
2

1
8−5r

[
−6τ ′′ + 2r + (τ ′′ + r) cos

(
2π
r
τ ′′
)
− 3

2π
r sin

(
2π
r
τ ′′
)]

r
2
≤ τ ′ ≤ 1− r

2

1
8−5r

[
−τ ′′(cos

(
2π
r
τ ′′
)

+ 2) + 3r
2π

sin
(

2π
r
τ ′′
)]

(1− r
2
) ≤ τ ′ ≤ 1.

(5.20)

As we have shown in (5.11), the ray gain is a first-order stationary process in the

interval TR/2 < t < TC − TR/2. As the ACFs in (5.19) and (5.20) depend only on

the time difference |t2 − t1| for TR/2 < ti < Ts − TR/2 with i = 1, 2, the process is

also second-order stationary and hence WSS for the majority of the cluster’s lifetime.

Assuming that the amplitudes of the rays are constant cn = σ[Na
2

(1 − 5
8
r)]−1/2, the

cluster-level temporal ACF is given by

ρqp(t1, t2) =
1

N

N∑
n=1

ρgngn(t1, t2)E[ejk0[Dn,qp(t1)−Dn,qp(t2)]]. (5.21)
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When all the rays’ lifetimes are equal or they are equally i.i.d. random variables, this

ACF can be separated as ρqp(t1, t2) = ρgngn(t1, t2) · ρS,qp(t1, t2), where

ρS,qp(t1, t2) =
1

N

N∑
n=1

E[ejk0[Dn,qp(t1)−Dn,qp(t2)]] (5.22)

is defined as the ACF of the cluster without ray-level evolution process. The rays’

gains introduce several effects in the total ACF that are worth studying. First, as the

ACF of gn(t) is a decreasing function of the time difference, the total ACF is tapered

off. This effect is more important when the rays’ lifetimes are of the same order of

magnitude as the coherence time of the cluster, defined as min
|t2−t1|

[ρqp(t1, t2) < ρC ], with

|ρC | ≤ 1. An estimate of the rays’ lifetimes guaranteeing that the reduction of the

absolute value of the ACF is at most 1/ρ0 with 0 < ρ0 ≤ 1 for a time difference |t2−t1|

can be calculated as

TR =
1−

(
1
2
r + ρ0

(
1 + 5

8
r
))

TC
. (5.23)

This expression is valid for r < 2/3 and rTR/2 < TC , which are reasonable conditions

as rays’ lifetimes are shorter than clusters’ and we assume a short (dis)appearance

times.

The ACF derived above considered a constant ray’s lifetime TR for all rays. However,

when TRn are i.i.d. random variables, the law of total probabilities can be used as

ρgngn(τ)(x) =

∫ ∞
0

ρgngn(τ)(x | TR = y)pTR(y) dy (5.24)

where ρgngn(τ)(x | TR = y) denotes the ACF of the n-th ray’s gain when its life-

time is a constant value TR = y as given by (5.19) and (5.20). For exponentially

distributed i.i.d. random rays’ lifetimes [4], the closed-form solution to (5.24) is

ρgngn(τ) = exp (−τ/λR), which is valid only for r = 0. Although we have not found a

general closed-form solution to the integral above valid for any value of r, the following

approximation

ρ̂gngn(τ) = e−λ
R(1+3r/8) τ (5.25)
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has been found to fit very well the results obtained using (5.24) for 0 < r < 1. Thus, it

can be seen that the exponentially distributed i.i.d. rays’ lifetimes transform a linear

decay into an exponential one. In addition, whereas the average ray’s lifetime has a

large effect on the total ACF, taper parameter has a relatively small impact on it.

5.3.1.4 Doppler power spectral density (PSD)

The Doppler spectrum of the channel can be obtained as the Fourier transformation

of the ACF of the CIR with respect to the time difference. As we have shown in

(5.22), the cluster-level ACF is separable as a product of two different ACFs. By the

convolution property of the Fourier transform, the cluster-level Doppler PSD can be

obtained as

Sqp(ν) = Sgn(ν)⊗ SS,qp(ν) (5.26)

where ν denotes the Doppler frequency, ⊗ the convolution operation, Sgn(ν) the

Doppler PSD of the n-th ray’s gain and SS,qp(ν) that of a cluster without ray-level

evolution process. Due to the convolution, the cluster-level Doppler PSD is spread.

For a constant value of TR, the Doppler PSD Sgn(ν) is given by the Fourier transform

of the ACF in (5.19) with respect to τ as

Sgn(ν ′) =
(TR)2

8π2ν ′2(ν ′2r2 − 1)(ν ′2r2 + 1)

[
2 (1 + cos

(
rπν ′

)
)

− cos
(
2πν ′

)
− cos

(
2πν ′(r − 1)

)
− 2 cos

(
rπν ′(r − 2)

)]
(5.27)

where ν ′ = νTR. Clearly, the rays’ lifetimes and taper parameter determine the

spectral characteristics of the ray-level evolution process. Whereas TR is a scale

parameter that controls the spread of the Doppler spectrum, r determines both the

spread and level of spectral leakage. The average Doppler shift and spread can be

calculated using the first and second derivative of the ACF with respect to the time

difference ρ̇(0) and ρ̈(0), respectively, as [12]

B(1)
qp (t) =

1

2πj
· ρ̇qp(t, t)
ρqp(t, t)

=
1

2πj

ρ̇S,qp(t, t)

ρS,qp(t, t)
(5.28)
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B(2)
qp (t) =

1

2π

√√√√( ρ̇qp(t, t)
ρqp(t, t)

)2

− ρ̈qp(t, t)

ρqp(t, t)

=
1

2π

√√√√( ρ̇S,qp(t, t)
ρS,qp(t, t)

)2

−

(
ρ̈S,qp(t, t)

ρS,qp(t, t)
− 4π2

r(TR)2

)
(5.29)

where we have used the relationships ρ̇gn(t, t) = 0 and ρ̈gn(t, t) = 4π2

r(TR)2
. Equation

(5.29) is not defined for r = 0 as the derivative of the ACF in (5.19) does not exist at

τ = 0. The average Doppler shift is not affected by the rays’ gains, but the Doppler

spread always increases. In particular, when rays’ lifetimes are similar or greater than

the reciprocal of the maximum Doppler frequency, the impact on the Doppler spread

of the channel will be higher.

5.3.1.5 Spatial cross-correlation function (S-CCF)

The S-CCF of the channel can be defined as the correlation between a signal trans-

mitted from the antenna element ATp and received by ARq and that transmitted from

ATp′ and received by ARq′ at time t and carrier frequency f . Thus, it can expressed as

ρqp,q′p′ = E[Hqp(t, f)H∗q′p′(t, f)]/E[|Hqp(t, f)|2]. Similar to the derivation of the ACF,

as E[ej(θmn−θm′n′ )] = 1 for m = m′ and n = n′ and is zero otherwise, then

E[Hqp(t, f)H∗q′p′(t, f)] =
C∑

m=1

|am|2
Nm∑
n=1

E[gmn,qp(t− tgn)gmn,q′p′(t− tmn)]

× E[ejk0[Dmn,qp(t)−Dmn,q′p′ (t)]]. (5.30)

The S-CCF of the ray-level evolution process can analogously be defined ρS,qp =

E[gmn,qp(t−tmn)gmn,q′p′(t−tmn)]/E[|gmn,qp(t−tmn)|2]]. One important difference in the

derivation of the ACF and S-CCF lies on the number of dimensions involved. Whereas

the ACF is limited to a single dimension, i.e., time, a larger number of dimensions

is required for antenna arrays at both sides of the communication link. Single or

multiple-dimensional antenna arrangements usually lead to complex expressions of

the S-CCF and closed-form expressions are usually not achievable. In the case of

ULAs with antenna spacing at the transmit- and receive-sides δT and δR, respectively,
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and multi-bounce propagation (where independence between the transmit-side and

receive-side is usually assumed), the S-CCF of the ray-level process can be expressed

the product of the transmit-side and receive-side S-CCFs. In these conditions, the

S-CCFs of the ray-level evolution process can be easily obtained by using (5.19) and

replacing |t2 − t1| by |δR(q − q′)|. Due to the limitations described above, we will

numerically study the S-CCF in Section 5.4.

5.3.1.6 Frequency correlation function (FCF)

The normalized FCF is ρqp(f1, f2) = E[Hqp(t, f1)H∗qp(t, f2)]/E[|Hqp(t, f)|2], where

E[Hqp(t, f1)H∗qp(t, f2)]] = PR

C∑
m=1

|am|2
N∑
n=1

e−j2π(f1−f2)τmn,qp(t). (5.31)

As delays corresponding to individual rays depend on the antenna elements of the

large array and time instant considered, the FCF is STV. As indicated by [123],

the relatively small variation of the delays over the array enables to use a linear

approximation of τmn,qp(t) as

τmn,qp(t) ≈ τ0,mn − τq cosψRmn − τTv (t) cos ξTmn − τRv (t) cos ξRmn (5.32)

where τ0,mn is the reference delay of the n-th ray in the mth cluster from the trans-

mitting to the receiving arrays centres, τTv (t) = vT t/c0 and τRv (t) = vRt/c0 denote

the extra propagation delay induced by the motion of the Tx and Rx, respectively,

and τq = δq/c0 denotes the propagation delay from the centre of the receiving large

array to the q-th antenna element. Therefore, the terms τq cosψRn , τTv (t) cos ξTn , and

τRv (t) cos ξRn in (5.32) model the relative delay experienced by the signal radiated from

ATp and received by ARq at time instant t with respect to τ0,mn. Note that previous

models assumed a constant delay that is independent of the time instant and an-

tenna element as τqp,mn(t) = τ0,mn, since δp/c0, δq/c0, vT t/c0, and vRt/c0 are small in

conventional WSS MIMO systems.
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5.3.2 Large-scale fading

The ray-level evolution process may be physically interpreted as shadowing of individ-

ual rays produced by objects in the environment. Thus, the cluster-level large-scale

fading is implicitly captured in this model due to the ray-level evolution process.

5.3.2.1 Distribution of the local-average received power

Even though the cluster-level average received power is a constant value PC = Nc2(1−

5/8r)TR, the cluster-level local-average received power is an STV random process

describing the cluster-level shadow fading [125]. A sample function of the average

received power can be obtained through the expectation of the instantaneous received

power conditioned to a set of fixed parameters of the ray-level evolution process, i.e.,

conditioned to a fixed large-scale environment, as

E
[
Hqp(t, f)Hqp(t, f)∗ | gmn,qp(t− tmn)

]
=

C∑
m=1

|am|2
Nm∑
n=1

g2
mn,qp(t− tmn). (5.33)

Thus, we can model the cluster-level large-scale fading by extending the formulation of

the average received power proposed in [126] and defining the process γm,qp(t) as [125]

γm,qp(t) =
Nm∑
n=1

g2
mn,qp(t− tmn). (5.34)

Although large-scale fading is usually modeled employing a Lognormal distribution

[12], the sum of Lognormal random variables is not Lognormal distributed [127], [128],

which hinders the modelling of the total large-scale fading. Thus, Gamma distribu-

tions have been proposed as a convenient alternative to the Lognormal distribution for

this purpose [129]. Let c2
mn ∼ Γ(kmn, θ), with m = 1 . . . C and n = 1 . . . Nm, be a col-

lection of i.i.d. Gamma-distributed random variables denoting the maximum squared

amplitude of Nm rays in C clusters. Note that the collection shares the same scale
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parameter θ, hence we can use the summation property of i.i.d. Gamma random vari-

ables, i.e.,
∑N

n=1 c
2
mn ∼ Γ(

∑N
n=1 kmn, θ). For a sufficiently large average number of visi-

ble rays within a cluster, the resulting process modelling the cluster-level local-average

received power is approximately Gamma-distributed as γm,qp(t) ∼ Γ(
∑N

n=1 kmn, θ).

5.3.2.2 ACF of cluster-level large-scale fading

The ACF of the process γm,qp(t) is obtained as

ργmγm(t1, t2) =
Nm∑
n=1

Nm∑
n′=1

E
[
g2
mn,qp(t1 − tmn)g2

mn′,qp(t2 − tmn′)
]

(5.35)

which can be analogously computed to the ACF of the ray gain in (5.19) and it is

omitted here for brevity. As an example, closed-form expressions of this ACF can be

found for rapid (dis)appearance of rays (r = 0) as λR exp (−τ/λR) with τ = |t2 − t1|.

This ACF depends only on time difference |t2 − t1| and has a form similar to that

in (5.19) and (5.20), being a smoothly decreasing function of the time difference.

Traditionally, the exponential profile has been widely used to fit measurement results

of the ACF of the large-scale fading [12].

5.3.3 Distribution of the number of rays and clusters

As in previous sections, let us assume that the appearance times of N rays within a

cluster are modeled as i.i.d. random variables uniformly distributed over the cluster’s

lifetime as tn ∼ U(0, TC), with n = 1 . . . N . In addition, rays’ lifetimes TRn are modeled

as i.i.d. exponentially distributed random variables with rate λR. The total number

of visible rays in the cluster at time t is a random variable which can be expressed as

nR(t) =
N∑
n=1

1tn<t<tn+TRn
. (5.36)

The term 1tn<t<tn+TRn
above denotes the indicator function, i.e., it is unity when

tn < t < tn + TRn and zero otherwise. For a given time instant t and a constant
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TR = TRn , the event tn < t < tn + TR is a Bernoulli trial with probability of success

given by

p(t) =


1
TC
·
(
t+ 1

2
TR
)

−TR

2
< t ≤ TR

2

TR

TC

TR

2
< t ≤ TC − TR

2

1
TC

(
TC − t+ 1

2
TR
)

TC − TR

2
< t < TC + TR

2

(5.37)

where TR < TC was assumed. Thus, the probability of a ray being visible is approx-

imately a constant p ≈ TR/TC over the majority of the cluster’s lifetime as long as

TR � TC . However, as TRn are i.i.d. exponentially distributed random variables with

rate λR, p(t) can be computed using the law of total probabilities and is given by

p(t) =



1
2

1
λRTC

· e2λRt
(

1− e−2λRTC

)
t ≤ 0

1
λRTC

·
(

1− 1
2

[
e−2λRt + e−2λR(TC−t)

])
0 < t ≤ TC

1
2

1
λRTC

·
(
e−2λR(TC−t) − e−2λRt

)
TC ≤ t.

(5.38)

The number of visible rays at any time instant nR(t) is the sum of N Bernoulli trials,

so it is Binomial distributed with parameters N and time-varying probability p(t) as

given by (5.38). However, as recent measurements [4] showed that rays’ lifetimes are

usually much shorter than clusters’, e.g., λRTC ≈ 10, from (5.38) the probability p(t)

can be approximated as p = (λRTC)−1. Then, the number of visible rays is Binomial

distributed as nR(t) ∼ B
(
N, (λRTC)−1

)
approximately in the interval 0 < t < TC .

Thus, the average number of visible rays in a cluster is approximately a constant value

NR(t) = E[nR(t)] = Np(t) ≈ N(λRTC)−1.

When the cluster (dis)appears, the number of rays increases (decreases) exponentially

and the raising (decay) time from (to) the L% to (from) the (1 − L)% of the total

number of rays is

∆tL% = − 1

λR
· log

(
1

100
· 2L

1− e−2λRTC

)
(5.39)

for 0 < L < 50%. Examples of transition periods are ∆t10% ≈ 1.6(λR)−1 ∆t1% ≈
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3.9(λR)−1, where we have assumed λRTC � 1. The raising (decay) time ∆tL% guar-

antees a smooth transition of the cluster’s power when it (dis)appears without adding

additional elements to the model. In addition, as λRTC � 1 [4], the law of rare

events allows us to approximate nR(t) as a Poisson random variable with rate pa-

rameter N(λRTC)−1, as proposed by previous non-stationary massive MIMO channel

models [13], [88], [89].

Using an analogous argument, the number of visible clusters at any time instant nC(t)

is Poisson distributed with rate parameter λC . However, measurements [16] reported

that the number of clusters at different locations of the array can be accurately mod-

eled by a negative binomial random variable when multiple locations of the MS are

considered. This apparent contradiction is solved by noting that a negative binomial

distribution can be obtained as a continuous mixture of Poisson and Gamma distri-

butions. Thus, a negative binomial random variable denoted as x ∼ NB(r, p) can be

expressed as x ∼ Poisson(λ) where the rate parameter λ is also a Gamma-distributed

random variable λ ∼ Γ(k, θ), with k = r and θ = p
1−p .

Thus, let λCl , l = 1, 2, ..., L, be i.i.d. Gamma-distributed random rates correspond-

ing to the Poisson-distributed number of visible clusters at any time instant for L

different locations of the MS. Using the scaling property of the Gamma distribu-

tion and assuming that the L random rates are i.i.d. as λCl ∼ Γ(k, θTS/C) with

C the total number of clusters, the aggregated number of visible clusters follows a

negative binomial distribution, i.e., nC(t) ∼ NB(r, p) with parameters r = k and

p = θ/(θ + 1). The average of the aggregated number of visible clusters is given by

NC = E[nC(t)] = E[λCl C/TS] = kθ. Finally, using measured parameters p and r of

the negative binomial distribution as given in [16], the random (dis)appearance rates

can be modeled as i.i.d. random variables distributed as λCl ∼ Γ(r, p
1−p

TS
C

). From

the physical point of view, it is reasonable to expect different average numbers of

visible clusters at different locations of the MS. This assumption is less restrictive

than the opposite, i.e., that of spatially-invariant average number of visible clusters.

The previous results focused on the temporal characteristics of the number of visible

116



Chapter 5: A Novel 3D Non-Stationary Massive MIMO Channel Model based on
Ray-Level Evolution

rays/clusters can be analogously extended to the spatial (array) domain and they are

ommited here for brevity.

5.4 Results and Analysis

As the main contribution of this work is the ray-level spatial-temporal evolution pro-

cess, in this section we we will numerically study the effects produced by the ray-level

gain on the statistical properties of the channel model. The following theoretical

results were obtained by numerical evaluation of the expressions derived in section

5.3. For the simulations, we used the recent massive MIMO channel measurements

reported in [4] to generate the channel parameters, e.g., ray-level visibility character-

istics, angles, and delays, and computed 103 realizations of the CTF in (5.3). The

measurements [4] were conducted in a subway station, employing a virtual 256-element

rectangular antenna array at the transmitting side and a single antenna element at the

receiving side. The sounding signal was centred at 6 GHz and spanned 100 MHz. Ad-

vanced clustering and tracking algorithms enabled the authors to obtain both cluster-

and ray-level parameters and their evolution over the array, e.g., ray (dis)appearance

rates. Although both Tx and Rx remained static due to the limitations of the virtual

array technique, we will assume the Tx moves at a constant speed in order to study

the ACF and Doppler spectrum predicted by the channel model.

5.4.1 Envelope distribution

First, we will study the effect of the ray-level gain and its parameters on the distri-

bution of the envelope as defined in Section 5.3.1.2. In Figure 5.3, the distribution

pΞ(z) is depicted for short and long (dis)appearance times, i.e., for values of the taper

parameter r = 0 and r = 1, respectively. For reference, the Rayleigh distribution of

unit variance is also shown. Both theoretical and simulated distributions resemble a

Rayleigh distribution almost independently of r. However, note that the maximum
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Figure 5.3: Comparison of the theoretical and simulated distribution of the enve-
lope for rapid and slow (dis) appearance times, i.e., r = 0 and r = 1, respectively.
The Rayleigh distribution of unit variance is also shown for comparison (σ = 1,

Na = 10).

amplitude of the rays is scaled by r as c = σ
[
Na
2

(1− 5
8
r)
]− 1

2 to compensate the re-

duction of amplitude caused by the taper. This is, the contribution of every ray to

the overall received signal is uneven as the amplitude of every ray is weighted by the

ray gain. In addition, it can be seen that the average number of visible rays required

to achieve a given level of accuracy approximating a Rayleigh distribution is larger

than that of existing models due to the random nature of the number of rays.

5.4.2 Temporal autocorrelation function (ACF)

In Figure 5.4, we present a comparison of the theoretical and simulated absolute

values of the array-variant cluster-level ACFs with and without ray-level evolution for

a maximum Doppler frequency of νTmax = 24 Hz. These results show that the ray-level

evolution process can have a strong impact on the temporal correlation and hence the

coherence time. As the average lifetime of rays is shorter than the cluster’s coherence

time, the ray-level evolution process significantly reduces the total cluster-level ACF.

For instance, for a correlation level of 0.5, the coherence time becomes 1/νTmax seconds

shorter in Figure 5.4, which represents a reduction of the 66 % of the coherence time

of the cluster without considering ray-level evolution.
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Figure 5.4: Comparison of the absolute values of the theoretical and simulated
ACF with and without ray-level evolution for different values of the temporal taper
parameter r (Na = 10, NT = 256, NR = 1, αT = 45◦, βT = 0◦, sTc = (4, 4, 0) m,
φTµ = 45◦, φTσ = 4◦, θTµ = 0◦, θTσ = 0.5◦, αTv = 135◦, βTv = 90◦, νmax = 24 Hz,

νTmax · TR = 0.7).

The impact of the (dis)appearance times on the ACF is less significant than that of the

rays’ lifetimes, but its effects are not negligible. Long (dis)appearance times (r ≈ 1)

reduce the temporal ACF more than short ones (r ≈ 0) because rays’ lifetimes are

independent of their duration, i.e., TRn does not increase with r. If the total lifetime of

the ray depended on r, the effect would be the opposite. Note that we have used the

spatial rays’ lifespans DR provided in [4] in order to calculate the temporal lifespan

as TR = DR/vT . In addition, note that the ray-level evolution reduces the differences

among ACFs at different locations of the array produced by near-field effects.

5.4.3 Doppler power spectal density (PSD)

In Figure 5.5, a comparison of the theoretical and simulated cluster-level Doppler

PSDs is presented. Since the simulted Doppler PSD has been obtained through the

Fourier transformation of the corresponding ACF, the effects of the ray-level evolution

can be deduced by duality. Thus, a short average lifetime of rays leads to large cluster-

level Doppler spreads. In particular, we observe in Figure 5.5 that the cluster-level

Doppler spread increases from 75 to 86 Hz on average, which represents a 15% approx-

imately. In addition, shorter (dis)appearance times (r ≈ 0) spread the Doppler PSD
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Figure 5.5: Comparison of the absolute values of the theoretical and simulated
cluster-level Doppler PSD with and without ray-level evolution for different values
of the temporal taper parameter r (Na = 10, NT = 256, NR = 1, αT = 45◦,
βT = 0◦, sTc = (4, 4, 0) m, φTµ = 45◦, φTσ = 4◦, θTµ = 0◦, θTσ = 0.5◦, αTv = 135◦,

βTv = 90◦, νmax = 24 Hz, νTmax · TR = 0.7).

less than longer ones (r ≈ 1). As explained above, this effect is due to the indepen-

dence of the rays’ lifetimes on r. Finally, note the differences in the Doppler spectra

at different locations of the array that demonstrate the non-stationary properties of

the channel in the spatial domain.

5.4.4 Spatial cross correlation function (S-CCF)

In Figure 5.6, the theoretical and simulated absolute values of the cluster-level S-CCFs

are compared. The effects of the ray-level gain are similar to those observed above

for the ACF. Thus, the small sizes of the rays’ VRs tend to reduce the cluster-level

antenna correlation. As presented in [4], the average lifespan of rays is one order

of magnitude shorter that cluster’s. This is specially important for clusters highly

concentrated in the angular domain, since they present longer coherence regions. For

widespread clusters in the angular domain, the effect of the ray-level evolution process

is lower as the S-CCF decays faster. Note also that the effect of the parameter r on

the S-CCF is smaller than that observed in the ACF above due to the 2D circular

shape of the ray-level spatial VRs.
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Figure 5.6: Comparison of the absolute values of the theoretical and simulated
cluster-level S-CCF with and without window (Na = 10, NT = 256, NR = 1,
αT = 0◦, βT = 0◦, sTc = (5, 5, 0) m, φTµ = 45◦, φTσ = 4◦, θTµ = 0◦, θTσ = 6◦,

RR = 0.15 (1.2λ) m ).

5.4.5 Frequency correlation function (FCF)

In Figure 5.7 we present a comparison of the theoretical and simulated absolute values

of the cluster-level FCFs. The FCF is unaltered by the ray-level gain as this is

independent of the delay domain. However, note that the FCF depends on the antenna

element considered as a consequence of the delay drifts and spread, as described

in [116]. These effects are more noticeable for values of the delay spread similar to

the time it takes a ray to travel across the array, i.e., when τrms ≈ c−1
0 ·DA, with DA

the largest dimension of the array.

5.5 Summary

This chapter presented a novel space-time non-stationary 3D wideband massive MIMO

channel model that is able to capture ray-level near-field effects and smooth (dis)appearance

recently reported in massive MIMO measurements. Moreover, the impact of the ray-

level evolution process on the most important statistical properties of the channel

model has been studied and it can be concluded that the cluster-level ACF, Doppler

PSD, and S-CCF can be largely affected by the ray’s lifespan and smoothness of
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Figure 5.7: Comparison of the absolute values of the theoretical and simulated
cluster-level FCF for different values of intra-cluster delay spread (Na = 10, NT =
256, NR = 1, αT = 45◦, βT = 0◦, sTc = (4, 4, 0) m, φTµ = 45◦, φTσ = [6 50]◦, θTµ = 0◦,

θTσ = [4 30]◦).

(dis)appearance. A novel method has been proposed to determine the most adequate

wavefront for each cluster and ray. A large percentage of clusters and rays of lim-

ited lifespan can still use plane wavefronts and significantly reduce the computational

complexity of the channel model.
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Chapter 6
Conclusions and Future Work

This dissertation dealt with the modelling of wideband massive MIMO wireless chan-

nels under spatial and temporal non-stationary conditions. The comprehensive lit-

erature review on both channel measurements and models presented in Chapter 2

has permitted to identify the limitations and major areas of improvement of exist-

ing channel models. The study of fundamental aspects of massive MIMO channels in

Chapter 3 has been leveraged to propose accurate and efficient channel models for B5G

communication systems in Chapters 4 and 5. This concluding chapter summarizes

the key findings of this work and provides an outlook on future research directions.

6.1 Summary of Results

In Chapter 3, a transformation method to model STV 2D non-stationary wideband

massive MIMO channels has been proposed. This method can be used to obtain the

STV joint PDF of the ToA and AoA at any time instant and antenna element of

the array from a predefined configuration of the scatterers. In addition, the chapter

introduced a simplified channel modelling approach based on STV parameters of the

AoA distribution and demonstrated that key statistical properties of massive MIMO

channels, such as the STV temporal ACF and Doppler PSD, can be derived in closed

123



Chapter 6: Conclusions and Future Work

form. As examples of application, multiple array-variant properties of three widely-

used GBSMs: the Unified Disk, Ellipse, and Gaussian scattering models, have been

studied. Numerical results and simulations of the statistical properties of the three

GBSMs have demonstrated a good agreement between the proposed techniques and

the spherical wavefront approach. It has been shown that both the means and spreads

of the AoA and ToA vary over the array and that the array-varying properties of the

FCF of these three GBSMs are caused not only by the disappearance of MPCs, but

also by the drift and spread of the ToA over the array.

In Chapter 4, a novel 3D non-stationary wideband geometry-based stochastic theoreti-

cal channel model for 5G massive MIMO communication systems has been introduced.

The proposed model includes a second-order approximation to the spherical wavefront

in space and time domains, i.e., parabolic wavefront, that captures near-field effects

more efficiently than spherical wavefronts with a negligible reduction in accuracy. In

addition, space-time large-scale fading has been modeled by spatial-temporal cluster

(re)appearance and shadowing processes. A novel (re)appearance process to model the

visibility of clusters with enhanced spatial-temporal consistency have been proposed.

Shadowing processes have been used to capture smooth spatial-temporal variations of

the clusters’ average power. Additionally, a corresponding simulation model has been

derived along with a 3D extension of the RSM for parameters computation. Key sta-

tistical properties of the proposed model, e.g., the spatial-temporal cross-correlation

function, have been derived and analysed. This chapter included numerical and simu-

lation results showing an excellent agreement between the theoretical and simulation

models and a validation of the proposed parameter computation method. The ac-

curacy and flexibility of the proposed simulation model have been demonstrated by

comparing simulation results and measurements of the RMS DS, slope of cluster power

variations, and VRs’ size. The relationship between non-stationary properties of the

channel, e.g., time- and array-variant ST-CCFs and Doppler frequency drifts, and the

distance between the arrays and clusters has been demonstrated.

In Chapter 5, a novel space-time non-stationary 3D wideband massive MIMO channel

model has been proposed. The sub-cluster ray-level evolution process introduced can
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model the spatial-temporal evolution of individual MPCs or rays, including near-field

effects and (dis)appearance, and cluster-level large-scale fading. The evolution process

can flexibly control rays’ lifespans and smoothness of (dis)appearance in both space

and time domains. Key statistical properties of the channel, including the ACF,

Doppler PSD, S-CCF, and FCF, have been derived and the impact of the ray-level

evolution process on them analysed. The chapter demonstrates the correctness of the

derived statistical properties through numerical and simulation results. In addition, it

introduces an improved criterion based on the effective Rayleigh distance to determine

the most adequate wavefront for each cluster and ray, significantly reducing the need

for spherical wavefronts. Existing models can easily use the proposed criterion and

make a more efficient use of computation resources. Moreover, a Gamma-Poisson

mixture distribution has shown a good accuracy modelling the number of clusters

when multiple locations of the MS are considered.

6.2 Future Research Directions

Massive MIMO channel modelling is a vast area of research that is still maturing.

Important aspects of this field are under investigation and need significant effort

to be considered as solved. The following list includes potential research directions

identified by the author:

• The theoretical analysis of massive MIMO channel characteristics presented in

Chapter 3 has only considered single-bounce propagation. However, multi-

bounce propagation could represent a relevant fraction of the received power

in some cases. As the AoD, AoA, and delay cannot uniquely identify a multi-

bounce path, additional propagation information is required to overcome this

challenge. In addition, an extension of the method that considers the eleva-

tion characteristics of the channel may lead to new conclusions about the non-

stationary properties of massive MIMO channels.

• The characteristics of VRs such as their 3D shape need further investigation

through both measurements and models. As these measurements will require
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high spatial sampling rates over long distances, the development of parallel

MIMO channel sounders could help accomplish this task in an affordable time.

Stochastic geometric shapes may be worth investigating to overcome the over-

simple and common circular or spherical shape of VRs. Additionally, it is impor-

tant to understand the impact of cluster (re)appearance on the performance and

accuracy of massive MIMO channel models, particularly at mmWave frequencies

where blockage effects are more pronounced.

• The statistical properties of cluster-level large scale fading processes and their

relative importance compared to the (dis)appearance of clusters would also be

valuable. New channel parameter estimation techniques capable of measuring

individual mutipath components and sub-clustering effects are needed. This will

allow to study the relationship between the clusters’ and rays’ lifespans more

accurately. The amount of power conveyed by different rays in a cluster will

help determine the impact of non-stationary characteristics of the channel on

key performance metrics of wireless communication systems.

• Different methodologies to determine the most appropriate wavefront for each

ray need to be empirically supported. For that purpose, measurements that

capture the proportion of plane and high-order wavefronts in real environments

would be required. Moreover, further investigation on the definition of the

stationary region of the channel based on the STV PDF of the ToA and AoA

would complement existing methods.

• Additional channel measurements and models for mmWave and THz commu-

nications using (ultra) massive MIMO are essential. The use of extremely high

carrier frequencies, bandwidths and number of antennas will require a deep un-

derstanding of the propagation characteristics of quasi optical communications.

Although LoS conditions are usually required at these frequencies, it is worth

investigating how a large number of highly packed transmitters and receivers

could compensate for the high scattering loses in NLoS conditions without ac-

centuating potentially extreme Doppler spreads.
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Appendix A
Derivation of the transformed PDF of the

ToA and AoA

For single-bounced rays, the ToA-AoA parameters of the rays (τ, φR) are related to

their Cartesian coordinates in (X, Y ) through the following non-linear transformation

equations [108]

X =
1

2

(c0τ)2 − d2

c0τ + d cosφR
cosφR (A.1)

Y =
1

2

(c0τ)2 − d2

c0τ + d cosφR
sinφR. (A.2)

The PDF in Cartesian coordinates fXY (x, y) can be calculated by applying the theory

of transformation of random variables as [108]

fX,Y (x, y) = |J1(x, y)|−1fτ,φR
(
c−1

0 (
√
x2 + y2 +

√
(x+ d)2 + y2), arctan(y/x)

)
(A.3)

where J1(x, y) is the Jacobian of the transformation, i.e.,

|J1(x, y)|−1 = c−1
0

∣∣∣∣∣ 1√
x2 + y2

+
1 + dx

x2+y2√
(x+ d)2 + y2

∣∣∣∣∣ . (A.4)

Using fX,Y (x, y), we can obtain a second distribution for the antennas ATp and ARq and

time instant t by performing shift and rotation operations on the random variables
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(X, Y ) as defined by the following transformation equations

X1

Y1

 =

X − xRq − vRx t
Y − yRq − vRy t


 cosαqp(t) sinαqp(t)

− sinαqp(t) cosαqp(t)

 (A.5)

where αqp(t) denotes the angle between the segment joining ATp and ARq at time instant

t and the x-axis, which can be calculated as

αqp(t) = arctan

(
yRq + vRy t− yTp

xRq + vRx t− xTq + d

)
. (A.6)

Obviously, at the center of both arrays and t = 0, the transformation defined by (A.5)

becomes the identity, i.e., X1 = X and Y1 = Y , and αqp(t) reduces to zero. As this

transformation corresponds to a shift and rotation of the coordinate system, hence

|J2(x1, y1)|−1 = 1. The distribution in Cartesian coordinates is now fX1Y1(x1, y1) =

fXY (x(x1, y1), y(x1, y1)), with

x
y

 =

cosαqp(t) − sinαqp(t)

sinαqp(t) cosαqp(t)


x1

y1

+

xRq + vRx t

yRq + vRy t

 . (A.7)

In the third step, the random variables (X1, Y1) are transformed back into the ToA-

AoA domain (τ1, φ
R
1 ) by using the inverse transformation equations of (A.1) and (A.2)

used in the first step, i.e.,

τ1 = c−1
0

(√
X2

1 + Y 2
1 +

√[
X1 + dqp(t)

]2
+ Y 2

1

)
(A.8)

φR1 = arctan
(
Y1/X1

)
(A.9)

where the separation dqp(t) between ATp and ARq depends on the antennas locations

at any time as

dqp(t) =

√(
xRq + vRx t− d− xTq

)2

+
(
yRq + vRy t− yTp

)2

. (A.10)
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Thus, the joint-PDF of the random variables (τ1, φ
R
1 ) can be computed as

fτ1,φR1 (τ1, φ
R
1 ; δRq , δ

T
p , t) = |J3(τ1, φ

R
1 )|−1fX1Y1(x1(τ1, φ1), y1(τ1, φ1)) (A.11)

where

x1(τ1, φ1) =
1

2

(c0τ1)2 − d2
qp(t)

c0τ1 + dqp(t) cosφR1
cosφR1 (A.12)

y1(τ1, φ1) =
1

2

(c0τ1)2 − d2
qp(t)

c0τ1 + dqp(t) cosφR1
sinφR1 (A.13)

and J3(τ1, φ
R
1 ) is the Jacobian of the transformation, i.e.,

|J3(τ1, φ
R
1 )|−1 =

c0

4

∣∣∣∣∣∣∣
[
(c0τ1)2 − d2

qp(t)
] [

(c0τ1)2 + d2
qp(t) + 2dqp(t)c0τ1 cosφR1

]
[
dqp(t) cosφR1 + c0τ1

]3
∣∣∣∣∣∣∣ .
(A.14)

The resulting joint-PDF fτ1,φR1 (τ1, φ
R
1 ; δRq , δ

T
p , t) in (3.5) is obtained using (A.3)–(A.14).
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Derivation of the STV prameters of the von

Mises Distribution

The simplest approach to obtain µφqp(t) and κqp(t) relies on the geometrical description

of the channel. To find a reasonable solution, we use the Gaussian cluster model

defined in (3.16) whose marginal distribution of the AoA approximates very well a

von Mises distribution as it will be shown. The distribution of the position of the

scatterers in the Gaussian cluster model expressed in polar coordinates (R, φR) can

be obtained by applying the transformation defined by the equations X = R cosφR

and Y = R sinφR as

fR,φR(r, φR) =
r

2πσ2
xy

e
− 1

2σ2xy

(
r2+r2c−2rrc cos(φR−µφc )

)
(B.1)

where the relationships r2
c = x2

0 + y2
0 and µφc = arctan(y0/x0) have been used. Clearly,

the conditional distribution fr,φR(φR|r = rc) follows a von Mises distribution with

mean angle µφc and concentration parameter κc = r2
c/σ

2
c . Integrating (B.1) w.r.t. r,

the marginal distribution of the AoA is given by

fφR(φR) =
e−(rc/

√
2σxy)2

2π
+

1

2
√

2π

rc
σxy

1 + erf

(
rc√
2σxy

cos(φR − µφc )

)
× cos(φR − µφc )e−(rc/

√
2σxy)2 sin2(φR−µφc ).

(B.2)
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Appendix B. Derivation of the STV prameters of the von Mises Distribution

It can be seen that (B.2) is a very good approximation of the von Mises distribution

with mean angle µφc and concentration parameter κc = (rc/σxy)
2 for κ � 1. In

practice, a root mean square error below 1% is obtained for any value of κc. Using the

previous observation, the STV concentration parameter can be calculated as κ2
q(t) =

(rc,q(t)/σxy)
2, where rc,q(t) can be obtained by applying the law of cosines as

r2
c,q(t) =r2

c + (δRq )2 + (vRt)2 − 2rcδ
R
q cos(µφc − αR)

− 2rcv
Rt cos(µφc − ξR) + 2δRq v

Rt cos(αR − ξR).
(B.3)

Next, the distance rc and the parameters of the von Mises distribution imposed at the

center of the receiving array µφc and κc can be used to obtain the standard deviation

of the Gaussian cluster model as σxy = rc/
√
κc. The STV concentration parameter

κqp(t) in (3.25) can be computed substituting (B.3) in
r2c,q(t)

r2c
κ. Finally, by geometrical

considerations, the STV mean AoA µφqp(t) can be obtained as indicated in (3.26).
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Appendix C
Distribution of the Envelope Ξ

The distribution of Ξ can be calculated as [130]

pΞ(z) = (2π)2z

∫ ∞
0

 N∏
n=1

∫ ∞
0

pgn(yn)J0(2πynx) dyn

 J0(2πzx)x dx. (C.1)

Thus, plugging (5.11) into (C.1), we obtain

pΞ(z) = (2π)2z

∫ ∞
0

 N∏
n=1

∫ cn

0

[
(1− pv) δ(yn) +

pvr

π
√
cnyn − y2

n

+ pv(1− r)δ(yn − cn)
]
J0(2πynx) dyn

)
J0(2πzx)x dx (C.2)

= (2π)2z

∫ ∞
0

N∏
n=1

[
(1− pv) + pv(1− r)J0(2πcnx)

+
pvr

π

∫ cn

0

J0(2πynx)√
cnyn − y2

n

dyn

]
J0(2πzx)x dx (C.3)

= (2π)2z

∫ ∞
0

N∏
n=1

[
(1− pv) + pv(1− r)J0(2πcnx)

+ pvr 2F3

(
1

4
,
3

4
;
1

2
, 1, 1;−(cnπx)2

)]
J0(2πzx)x dx (C.4)

for z > 0 and with 2F3(·; ·; ·) denoting the generalized hypergeometric series of order 2,

3 [124]. For the special case where all the windows have the same maximum amplitude
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Appendix C. Distribution of the Envelope Ξ

c = cn, then

pΞ(z) = (2π)2z

∫ ∞
0

{
1 + pv

[
2F3

(
1/4, 3/4; 1/2, 1, 1;−(cπx)2

)
r

+ J0(2πcx)(1− r)− 1
]}N

J0(2πzx)x dx. (C.5)

As the number of active rays at time instant t is a Binomial-distributed random

variable with N trials and probability of success pv = (λRTC)−1, the average number

of visible rays at any time instant is Na = N(λRTC)−1. Thus, substituting pv = Na
N

into (C.5)

pΞ(z) = (2π)2z

∫ ∞
0

{
1 +

Na

N

[
2F3

(
1/4, 3/4; 1/2, 1, 1;−(cπx)2

)
r

+ J0(2πcx)(1− r)− 1
]}N

J0(2πzx)x dx. (C.6)

Let us assume that TS → ∞, the average number of rays Na is constant over the

simulation time, and the total number of rays N → ∞. Under these conditions, we

can use the well-known identity ex = limn→∞(1 + x/n)n in the integrand of (C.6) as

pΞ(z) = (2π)2z

∫ ∞
0

exp

Na

[
2F3

(
1

4
,
3

4
;
1

2
, 1, 1;−(cπx)2

)
r

+ J0(2πcx)(1− r)− 1
]}
J0(2πzx)x dx. (C.7)
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