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Abstract

In this thesis we study quantum vacuum radiation. This is the radiation that
is emitted due to changes of the electromagnetic vacuum in time. Specifically, we
explore the phenomena in optical media at a macroscopic scale by introducing a
time-dependent permittivity. We model this by inducing time varying changes to
the medium’s resonance frequencies.

To start with, we build a perturbative model, from which we learn that the
physics of quantum vacuum radiation is well-described in terms of the collective
light-matter excitations (polaritons) but that the retarded response of the matter
degree of freedom should not be forgotten. In particular, the retarded response
of the medium leads to quantum vacuum radiation that can be driven not only by
frequencies supported by the spectrum of the modulation, but also local frequencies,
such as the beating pattern of two waves. We then apply this model to analyse a
fibre optics experiment where photon pair production was measured, and find a
good agreement between the measured and predicted spectrum. Interestingly, the
measured photon pair production coincide with quantum vacuum radiation driven
by the beating pattern formed by a travelling polarisation wave and the spatial
modulation of the fibre.

Following this, we use the perturbative model to study a scenario mimicking a
rapidly (~ optical timescales) expanding and contracting spacetime. In this scenario
however, the probability to excite quantum vacuum radiation in naturally occurring
materials is vanishingly small. Motivated partly by this, we turn to study vacuum
radiation in man-made metamaterials, where large changes to the optical properties
in time are possible. Specifically, we study an e-near-zero metamaterial whose time-
dependent permittivity has been experimentally measured. In a model that neglects
the retarded response of this metamaterial, we find that the quantum vacuum radi-
ation becomes strongly peaked around the point where the real permittivity passes
through zero.

In order to extend the perturbative model to also include large changes to the
optical properties in time, we finish this thesis by mapping macroscopic quantum
electrodynamics to a trapped particle in a magnetic field. Using the intuition gained
from this, we study a variety of non-perturbative settings including bichromatic
periodic driving and return to e-near-zero metamaterials. This confirms some of the

previous analysis, as well as provides an intuitive explanation for the physics.
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Chapter 1

Introduction: Quantum vacuum

radiation 1in some context

“So BAM, he invents light, day one
and then he misses the dark part

so he invents night too”

Cory O’Brien in Zeus grants stupid wishes, 2013

There are two ways we can start this discussion, opening either with the first or
the second part of the thesis title — ‘quantum vacuum radiation’ or 'optical media’.
Perhaps mainly for the sake of sticking to some order, let us start with the former.
A good outset to this is possibly defining exactly what we mean with ‘quantum
vacuum radiation’. It is radiation, by which we mean travelling electromagnetic
waves, or simply ‘light’ for short [1]. Furthermore, the part in the title about the
quantum vacuum refers to the origin of this radiation, namely the electromagnetic
vacuum state, defined as the lowest energy configuration [2]. Crudely speaking,
quantum vacuum radiation is the radiation that can be emitted when you start
changing this lowest energy state with time. This relies on the fact that the ground
state, and consequently particle number in general, is only defined for systems with
time-translational invariance [3].! Therefore, when we say that the ground state is
time-dependent what we really refer to is that the ground state becomes ill-defined
for a period of time. Generally speaking, after some such period of time-dependence,
the system may not return to the ground state, but may find itself in an excited
state. The quanta in the excited states are the quantum vacuum radiation.

Now that we have gotten the definition out the way, there are many examples of
quantum vacuum radiation, but I will restrict the discussion somewhat. Perhaps the
conceptually simplest and most famous example is the so-called dynamical Casimir
effect, where radiation is emitted from the vacuum state in a cavity whose mirrors
oscillate in time [6]. We see that this fulfils the above definition of quantum vacuum
radiation if we note that the vacuum energy of the cavity is proportional to 1/L

(with L being the length of the cavity) — introducing a time-dependent length L(t)

IThis follows because energy is conserved only in such systems (Noether’s theorem) [4, 5].
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therefore leads to a time-dependent vacuum state. However, a quick back-of-the-
envelope calculation? also tells us that the mirror would have to move at relativistic
speeds (~ ¢) in order to observe this radiation. Instead, this was first observed
in a superconducting circuit, where an effective length could be introduced for a
microwave cavity, and consequently modulated in time [7, 8].

This effect is quite general and can be extended to many different schemes, in-
cluding circuits and optical systems [9, 10], and may have links to sonoluminescence
— the light emitted from a collapsing bubble [11] — although this might have a more
complicated origin [12-14]. Indeed, quantum vacuum radiation can furthermore be
emitted from a single moving mirror [15-18]. Now, the special case of a uniformly
accelerated mirror brings us to the so-called Unruh effect [19, 20], where an acceler-
ated observer measures a thermal vacuum state with temperature T' o< acceleration.
By the equivalence principle, the principle that equates gravitational acceleration
to its motional counterpart, this has further links to the famous Hawking radiation
[21, 22], the thermal radiation emitted from a black hole [23]. Likewise, we can di-
rectly link this to cosmological particle creation [15], i.e. the particles excited from
the vacuum state by rapidly expanding spacetimes.

Just like the dynamical Casimir effect, the radiation emitted by cosmological
expansion, a black hole, or a uniformly accelerated mirror, are experimentally in-
accessible in real life scenarios because the radiation is typically very weak. An
example of this is that the temperature of most black holes is lower than the cos-
mic background radiation. An alternative is to study related effects in condensed
matter and optical systems [9, 24]. For instance, cosmological particle creation
has been studied in cold atomic gases [25-28], ion traps [29, 30] and optical media
[31]. Indeed, Steinhauer [32] recently claimed to have observed ‘Hawking radiation’
[32, 33], and a quantum simulation of the Unruh effect was reported in Ref. [34],
both in Bose-Einstein condensates. The classically stimulated variant of the former
has also been observed in an optical fibre [35]. This is a topic which we will return
to in Chapter 5, but there has of course been a good amount of theoretical study
leading up to these observations, a review of which can be found in Ref. [24].

In broad strokes, the link between all these effects is that they rely on quantum
field theory on a time-dependent background [15, 36-39]. In general, we can think
of this as a physical system with temporally varying natural oscillation frequencies
[30]. As hinted towards in the previous paragraph, the quantum radiation that we
have discussed so far also has a classical counterpart. Classically, what we describe

here are parametric oscillators [40], studied for mechanical motion [41-44], in fluids

2Let us assume the frequency of the emitted radiation to be inversely proportional to the
mirror displacement timescale Toscil, i.6. Wrad = 27/Toseil. In order for this radiation to be
detected, it is also reasonable to assume that the radiation should be in the optical regime, since
current technology is most efficient there. If we now suppose a modest mirror displacement of
Losein ~ 0.5 pum, and Toscil ™ Loscil/Voscil, then we must demand that vosen =~ 0.5¢ in order for
Wrad =~ 2mc/1000 nm. Note that this does not estimate how much energy that is radiated.
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[45, 46], electronics [47, 48] and light-matter systems [49], to name but a few. In
short, it is the physics of a swing, or multiple swings coupled together with springs
in the case of light in optical media. We will return this point later (Chapter 6).

It is also worth noting that in some scenarios the phenomenology of quantum
vacuum radiation in optical media overlaps with parametric fluorescence (also called
spontaneous parametric down-conversion) [50, 51], where photons are emitted from
the vacuum state due to the presence of a pump beam. This is routinely used to
generate photon pairs in quantum optics experiments [52]. In particular, the two
effects overlap when nonlinear effects are used to generate periodic time-dependent
changes in the optical medium. This is the case for some of the scenarios that we will
study in this thesis. However, by doing so we bring a different perspective on the
physics. This can illuminate previously overlooked physics (for instance physics at
frequencies well-separated from the pump frequency), as well as provide a complete
model of the dispersion properties (which is commonly treated perturbatively [53]
around the pump frequency). Importantly however, the phenomenology can, but
doesn’t have to overlap.

Let us return to the second part of the thesis title: optical media. In this con-
text, by dispersion we mean that an optical medium respond differently to different
frequencies of light travelling through it. For example, the light coming through
your window pane is qualitatively different from the light passing through your cup
of coffee. Most commonly we refer to the phase velocity of light v, that vary for
different frequencies w, as quantified by the refractive index n(w) [54] such that
vph = ¢/n(w).

Likewise, if we are to quantise the electromagnetic vacuum inside a medium,
we would expect it to be different from the vacuum in absence of charges. This is
naturally well-known and, at the scale of crystals and glasses as opposed to individ-
ual atoms, is captured extremely well by the theory of macroscopic electrodynamics
[1, 55]. In this we aim to construct an effective model for the medium that ignores
the microscopic detail, whilst still yielding the same results at a macroscopic scale.
Microscopically, dispersion is caused by the chain of absorption and re-emission
events of the medium constituents. Generally, we expect the probability of such
an event to occur to depend on the frequency of light, as the constituents are gen-
erally some kind of oscillator [1, 56] and oscillators have some natural oscillation
frequencies.® Here these natural oscillation frequencies correspond to the resonance
frequencies of the medium. In macroscopic quantum electrodynamics, we take this
into account by posing a phenomenological frequency-dependent permittivity .4

Whilst this greatly simplifies the mathematics on a classical level, it does in-
troduce some difficulties when quantising the system. First of all, all media are

absorbing, a simple consequence of causality as expressed through the Kramers-

3A consequence of having a minimum energy.
4In most cases linked to the refractive index as € = n?.
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Kronig relations. These relations relate the real (retarded response) and imaginary
(absorption) parts of the permittivity [1]. Even in the case where absorption can
be neglected, a frequency dependent permittivity by necessity leads to a temporally
non-local equation of motion for the electromagnetic field. Suppose for instance we
have a uniform and isotropic medium whose permittivity is given by e(w), then the

electric field E can be shown to be governed by

~V2E(t) + 0—123—; {E(t) + /_t ds x (t —s)E(s)| =0, (1.1)

where x(t) = [70 %e~! [¢(w) — 1] is the medium response function, and ¢ is the
speed of light. Quantising this is possible, but conceptually difficult as most quan-
tisation schemes rely on time-locality.” In particular, the temporal nonlocality and
absorption can make Lagrangians and Hamiltonians of macroscopic electrodynamics
ill-defined. As a consequence, a multitude of different models have been developed
over the years, which are nicely reviewed in Refs. [57, 58] and the references therein.

The solution to this is to introduce a microscopic matter degree of freedom
phenomenologically, that is, chosen such that it reproduces the correct physics on a
macroscopic scale. Often this is done by introducing an effective degree of freedom
for the polarisability of the medium, as was first done by Hopfield [59] for non-
absorbing media, and later extended to include absorption by Huttner and Barnett
[60], and Philbin [61]. Usually, the matter degree of freedom is modelled by a
simplified version of the actual microscopic detail. For instance, a large enough set
of two-level atoms with the same resonance frequency will behave collectively like a
harmonic oscillator. Now, as we mentioned earlier, the mere presence of the medium
affects the structure of the electromagnetic quantum vacuum, leading to Casimir,
and Casimir-Polder, forces, a review of which can be found in Ref. [62].

Our interest is in quantum vacuum radiation, and this leads us directly to op-
tical media with time-dependent properties. This is naturally linked to all excita-
tions in temporally modulated quantum systems [63, 64]. There have been a wide
range of studies into time-varying optical media, perhaps starting with the study
of Unruh-like acceleration radiation in a rapidly expanding plasma by Yablonovitch
[65]. These studies include so-called time-refraction in the limit where dispersion
can be neglected [66, 66-69], which is the analogue of spatial refraction (Snell’s law
[54]) for abrupt changes in time, as well as the study of the emitted radiation in
the same limit [70, 71]. Some studies include dispersion, such as Refs. [72-74], but
tend to only consider effects that are first order in the refractive index variation. It
might thus be worth asking if the dispersion can cause non-trivial changes to the
quantum vacuum radiation.

This is further related to the direct study of collective excitations in light-matter

5We will discuss this further in Chapter 2.
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systems, that is, the study of polaritons. In general, coupled systems offers a variety
of phenomena to be explored, such as combined resonances and transport properties,
and this is, of course, the case also for polaritons [75, 76]. As such, there have been
a large number of studies, of which we will mention here but a few. Cavities offer
strong light-matter coupling, and this has commonly been the scenario in which
polaritons have been studied. For instance, the cavity quantum electrodynamics
of polaritons have been explored in Refs. [77, 78], and this has further been linked
to driven-dissipative photon fluids [79, 80] where the polaritons form a fluid-like
state similar to a Bose-Einstein condensate. Another interesting aspect of polariton
physics is optomechanical systems [81, 82], where the light-matter system is further
coupled to mechanical motion, as well as surface-plasmon polaritons [83] for metal-
dielectric interfaces.

Quantum vacuum radiation in time-dependent optical media for these systems
becomes the study of exciting polaritons by temporally modulating its vacuum state.
As with all studies of polaritons, this has a rich history, especially for micro-cavity
polaritons and semi-conductor exciton-polaritons [49, 84-93], whereas limited stud-
ies have focused on surface-plasmon polaritons [94, 95].

In this thesis, I will, for the most part, focus on polaritons in bulk optical me-
dia, such as a piece of glass or an optical fibre. My aim is to build models for
quantum vacuum radiation that takes all dispersion fully into account, ideal for the
theoretical modelling of experiments such as those reported in Refs. [96] and [97]. 1
will start by introducing some background methods required for this in Chapter 2.
This is followed by a perturbative model for quantum vacuum radiation, based on
macroscopic quantum electrodynamics in the spirit of Hopfield, in Chapter 3. We
then apply this to the experiment of Ref. [97] in Chapter 4, and show that the
radiation observed is consistent with quantum vacuum radiation. The thesis then
has a small intermission in Chapter 5, where we further explore the link to the cos-
mological physics we discussed earlier, as well as motivate the need for building a
non-perturbative model of quantum vacuum radiation. We then build such a model
in Chapter 6, where we link the physics of light-matter systems to that of a trapped
particle in a magnetic field. The thesis then finishes with some concluding remarks
in Chapter 7.

Finally, I want to note that I will base this thesis on Items 1-3 (with some
commentary from Items 4 and 5) in the List of Publications. The remaining articles
(Items 6-17) are on related subjects in the topics of optical and cold atom physics
(and a diversion into high-energy physics), but not directly relevant to this thesis.
As a practical aside, I should note that, unless otherwise stated, all figures in this
thesis is produced using Mathematica (versions 10 and 11), specifically as analytical

expressions of some variables.



Chapter 2

Background theory and methods

“Take one step at a time, it is in fact the only way forward.”

An old proverb

Before we delve into the main work of this thesis it is a good idea to put ourselves
on firm theoretical footing. Primarily we will work with quantum field theory (QFT),
but in our context it is instructive to think of it as quantum mechanics with fields.!
The following chapter is heavily influenced by Feynman et al. [3], as well as Grosche
and Steiner [98], and Altland and Simons [5]. Mainly, we will concern ourselves with
Feynman’s path integrals, but we will also discuss other approaches to quantum
mechanics (and field theory), specifically the Schrédinger equation and canonical

quantisation. In other words, we will define the following:

e The path integral

dan)=o
(D6(2), to|da (), ta) :/ D 191, (2.1)
b(x,ta)=¢a(x)

e The Schrodinger equation

0

iU [0(@), ] = [72/2+ V(,0)] wle(a). ). (2.2)

e And time-evolution of canonical operators

dag -
S — il a). 2.3
e =i|A.a, (23
A sketch of the different quantisation schemes can be seen in Fig. 2.1. There are of
course many more representations of quantum mechanics and quantum field theory,

but we will limit ourselves to the ones used in the thesis. We will also study a

!This is sometimes known as second quantisation, as opposed to first quantisation (that is
quantum mechanics). Such a notion is mostly relevant when for instance treating the Schréodinger
equation as a quantum field, as is commonly done in condensed matter physics, but not for elec-
tromagnetism due to its field nature in both a classical and quantum setting. I will return to this
point in Section 2.2
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2 ta

Schrédinger Path integral

SN o~

alt,)|0) — al(ty)|0)

Canonical quantisation

()

Figure 2.1: Illustrations of the different quantisation techniques used in this thesis.
(a) In the Schrodinger equation, the wavefunction (here illustrated in position space)
is evolved each time-step dt according to a differential equation. (b) The path
integral, on the other hand, is the sum over all classical paths (represented as black
lines) that starts within the wavefunction at time t,, from which we can find the
wavefunction at time ¢,. (c) Canonical quantisation instead evolves some operator
a' in time, which ultimately contains information about the wavefunction.

simple example using the above versions of quantum mechanics. Whilst some of the
topics we will discuss might seem somewhat trivial, and the definitions feel overly

complicated, a solid starting point is important for what follows.

2.1 Quantum mechanics - the abridged version

Let us start with a couple of definitions. Here we will be dealing with a single
particle in 1-dimensional space x. Generalising to further dimensions, as well as to
fields, is fairly straightforward, and where relevant we will discuss this directly in
each chapter. For simplicity, in this thesis we will work with units such that A =1,
and for our quantum mechanics discussion here set the particle mass m to unity. We

will also be using concepts from classical mechanics, in particular the Lagrangian

L = kinetic energy — potential energy

=i?/2 — V(x,1), (2.4)
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as well as the Hamiltonian

H = kinetic energy + potential energy
=p?/2+ V(). (2.5)

In general, we can move between the two formulations of classical mechanics by

defining the momentum p conjugate to = as

oL

== (2.6)

p

The Hamiltonian is then defined as the Legendre transformation of the Lagrangian
H=pit—L. (2.7)

Furthermore, we will simply assume the following since we do not intend to dwell

on the intricacies of how quantum theory is defined:

e We can express any state as [¢), and the overlap between two states is given
by (¢|1), which represents the probability amplitude of measuring |¢) from a
state [¢). It follows then that |(¢[¢)|? is the associated probability.

e Aslong as a representation forms a complete basis, we can resolve the identity
by

I=>Y |4)(A]. (2.8)

e We can resolve the state |¢) in terms of a basis. For instance, ¢ (zx) is given
by

) = / " |a) (o)

o

- / " dz |2 (), (2.9)

o0

where |z) is the position state defined as the eigenstate of the position oper-
ator,? and we define the overlap (x|¢)) = ¢ (z). Likewise, we could expand in

the energy basis as

[0) =Y In) (nle) =D |n) ay. (2.10)

2That is, 2 |z) = z |x).
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e We combine two representations of a state through

o= [ " J) (al) = / T ar Y ) (nle) (el

o0 -

~ @Y I v = Y anln). (211)
where 1), () is the representation of the energy eigenstate in the position basis,
and a, = [°_dz ¢} (x)y(z) is the overlap between the state [¢) and the energy

eigenstate |n).

e The position operator # and the momentum operator p do not commute,® and

their commutator is given by [z, p] = i.

This will give us a starting point for the discussion.

2.1.1 The Schrodinger equation

As it forms a good starting point, let us quickly introduce the formulation of quan-
tum mechanics that relies on the Schrodinger equation. It is intimately linked to the
path integral formulation, but will also come in use in later chapters. Here we are
interested in finding a wavefunction t(z, t) such that |1)(z,)|* gives us the probabil-
ity of finding a particle at position x and time t. We suppose that this wavefunction

will satisfy
D ety = (z,t
2, ) = e, )
= |57+ V0| v, (2.12)

where p is the momentum of the particle and V is its potential energy. From

analytical mechanics we know that we can define the momentum as

oL

p=s (2.13)

Now, we know also that [z, p] = ¢, and we find the z-representation of this algebra

by letting the momentum and position operators take the form

0

S
x

SH
I
Q

z, (2.14)

=
I

3We define the commutator as [&, 13] = ab — ba.
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in the Schrodinger equation of Eq. (2.12). We thus arrive at the familiar

9] 1 9
Z& (x,t) = —§w+‘/(x,t) U(z,t). (2.15)

2.1.2 The position space path integral

Suppose now that we wish to calculate the probability amplitude of transitioning
from some initial state |i) to a final state |f).* Such an amplitude is given by (f]i).
Furthermore, we can at some time ¢; ask ourselves if the particle is at a position z1,

and sum over all possible positions. This is a type of resolution of identity

]I:/dxl ‘I17t1> <$1,t1‘, (216)

where we resolve the identity in space. Therefore, we can write our probability

amplitude of starting in |¢) and finishing in |f) as

iy = [ dor (flo ) (ot
:/dﬂfl/dﬂfjv <f|$N,tN>...<l’2,t2’$1,t1> <l‘1,t1|i>, (217)

where in the second line we have simply repeated this procedure N times.
Now if we want to calculate the probability amplitude of starting at position
x, at time ¢, and finishing at position x; at time ¢,, then we set |i) = |z4,t,) and

|f) = |zp, tp). For simplicity, we can choose our times where we resolve the identity

as
t, =t, + ne (2.18)
where
tb - ta
— ) 2.19
‘TN (2.19)

We then have

(2h, ty|Ta, ta) = <H / da:n> (H <xn,tn\xn1,tn1>>. (2.20)

In the limit where N — oo we can write this as

z(tp )=
(2, By ta) = / D (w4, ol ta) | (2.21)

(ta)=2a

This is indeed the path integral for quantum mechanics in position space. The

4Here we will follow closely the derivation outlined in Ref. [99].

10
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question now becomes finding an expression for (zy, ty|z,, ta) | To do this, we

should define the action

a(t)"

Sla] = /ttb dt I(z, 1), (2.22)

where L is the Lagrangian as defined in Eq. (2.4)
From classical mechanics, we know that by extremising the action in Eq. (2.22)

we find the classical equation of motion, i.e. we want to compute

5_5’
ox

=0, (2.23)

=]

Supposing that such a solution exists then it is easily shown to be given by the

Euler-Lagrange equation®

d (0L oL

which does indeed yield the expected classical equation of motion

oV
P+ — = 0. 2.25
T+ o7 ( )
With this in hand, we can assert
<xb7 tb|xa7 ta> |z(t) = exp (ZS [l‘]) ) (2'26)

where S[z] is the action in Eq. (2.22). This is an assumption, based upon the semi-
classical expansion of the Schrédinger equation, that turns out to be correct. Finally

we arrive at the usual formula for the position space path integral

z(ty)=zp ‘
(xp, tp| T, ta) = / Dz 5, (2.27)

(ta)=2a

We could also define this as the Green’s function of the Schrodinger equation, as it

is straightforward (albeit somewhat algebraically intensive) to show that

{182

) + V(l‘b,t) - Zi:| <l‘b,tb|fL‘a,ta> = —i(;(tb - ta)é(xb - ZL’a). (228)
20x;

oty

5For this we want to compute

58 = S [z + 6z] — S [x]
(e[ [ (5) - &) oo o).

where the first term goes to zero as we choose dxz(t;) = dx(t,) = 0. Such a term is usually referred
to as a surface term.

11
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Therefore, we can find the wavefunction at time ¢t = T from the wavefunction at

time ¢ = 0 by computing
W2, T) = /dxo (2, o, 0) (0, 0). (2.29)

2.1.3 Canonical quantisation

In this scheme we will concern ourselves with the time-evolution of operators in-
stead of wavefunctions. Specifically, we will turn to the canonical raising (lowering)
operators a' (a) associated with jumps within energy space. Our discussion here
is centred around the work by Jacobson [37]. We will (mostly) be working within
the so-called Heisenberg representation of quantum mechanics, where the operators
have a time-dependence, as opposed to the Schrodinger representation where the
states depend on time. Canonical quantisation is in general based on a quantum
mechanical version of Hamiltonian mechanics, where the so-called Poisson brackets
are promoted to commutators.® An operator A has the time-dependence

0A

—i [ﬁ,A] + 5 (2.30)

dA
dt
in this picture, where the partial derivative becomes important if the operator is
explicitly time-dependent. This is of course also true for the position and momentum
operators, but what is of more interest here are the operators @ and a', as they tell
us about changes in the systems energy.
Let us start at a classical level. Suppose that the classical equation of motion is
given by

i(t) + % — 0. (2.31)

This is a second order ordinary differential equation. By the usual theory of dif-
ferential equations [100] this has two independent solutions, which we will call f(¢)
and ¢(t). In particular, we can choose these functions to be orthonormal according

to the norm

(ﬁg)zi[fﬁhy—g@fﬁ. (2.32)

6Say x and p are related by Eq. (2.13) along with the Hamiltonian H = ip — L, then for any
function f we find

_Ofdx  dfdp  Of
T ordt Tapdt ot
_Of0H Of0H  Of
“ocop Opoxr ot

%f(pw,t)
of
{va} + Ea

where we used Hamilton’s equations in the second line. Here {f, g} is the Poisson bracket, which
is promoted to a commutator by letting {f, g} — i[f, g].

12
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Therefore, we can always choose to expand any solution to Eq. (2.31) as

x(t) = af(t) + bg(t). (2.33)

If we now return to the quantum mechanical problem at hand, where the position
operator obeys

%fzﬂﬁjl (2.34)

We find that we can likewise expand the time-dynamics of the position operator as
2(t) = f(t)a+ g(t)a', (2.35)

where we have suggestively chosen a and a' as the two independent operators (in
the Schrédinger picture), and where f and g satisfy the classical equation of motion.
Note here that whilst 4 is Hermitian, @ and a' are not. Specifically, we choose f to
be the independent function with positive norm, i.e. such that (f, f) = 1 whereas
(9,9) = —1. Now, we find that

la,a"] =1, (2.36)

since we have defined f and ¢ to be orthonormal according the norm in Eq. (2.32).
In other words, @ and a' satisfy the canonical commutation relation. We can also

define the ladder operators as

a= (f’ iﬂ)
it = —(g,2), (2.37)
where the sign on the second line follows from (g, g) = —1. Another way to approach

this is to define the norm such that the canonical commutation relations are satisfied.
We can now construct the energy space of the problem, by first finding a ground
state that satisfies

a|0) = 0. (2.38)

This of course assumes that such a ground state exists. We can obtain the Heisenberg

representation by defining the time-dependence as

at(t) = g(t)al. (2.39)

13
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It follows that

dig) —i [H &(t)] . (2.40)

2.1.4 An example: the harmonic oscillator

Up to this point this has perhaps been fairly abstract, so let us apply the different
methods to the most common example of all: the harmonic oscillator. Our starting

point will be the classical equation of motion
i(t) + w?z(t) = 0. (2.41)

This can be found from extremising the action

tp 1
Sz] = / dt 5 [i* — w?a?] . (2.42)
ta
We thus have the Lagrangian
=1 47 — w?a?] (2.43)
2 ’ '

from which we can define the conjugate momentum to x as

L

Finally, by the Legendre transform we find the Hamiltonian

H=px—-L
1
=3 [p* + w?a?]. (2.45)

This defines the classical physics. Let us now quantise this problem using the above
mentioned approaches.
2.1.4.1 Schrodinger equation

We start by promoting the position x to the position operator z, as well as the
momentum p to the momentum operator p. We can then promote the Poisson

bracket” of x and p to a commutator that satisfies the commutation relation

2, 9] = 4, (2.46)

"That is, {x,p} = 1.

14
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which we can satisfy by writing the momentum operator in position space as

h = —i—. 2.47
p=—ig (2.47)
The Schrodinger equation thus becomes
0 1 0%  wa?
i = |- = ) 2.4

It is straightforward to confirm that the ground state has energy £ = w/2, and its

wavefunction is given by

bola, t) = (f) e /2gmiwt/2, (2.49)
m

As usual, this is the first of the infinite set of energy states of a harmonic oscillator
found, up to a normalisation constant, by computing (a")"g.®
2.1.4.2 Position space path integral

In the path integral the relevant quantity is the action

Sz] = /t b dt % [i* — wa?], (2.50)

and as such this will be our starting point. We now wish to compute
z(tp)=p '
(@p, ty|Tay ta) = / Da 51, (2.51)
z(ta)=%a

Whilst this can be done by discretising time, as is done in its definition, there are
several more straightforward methods. Let us first focus on the action S [z]. Suppose
that we split x into its classical dynamics and quantum fluctuations. Specifically
r = xq + n where xq(t,) = z, and xq(ty) = x, whereas n(t,) = n(ty) = 0. Now x4

obeys
Fq+wirg =0 (2.52)

with the above boundary conditions. If we substitute this into the action in Eq. (2.50)
we find that

ty 1
Slaa-tal = [ dt 5 [+ i) = o (a0’
ta

= S[za] + S [n], (2.53)

8The definition of &' can be found in Section 2.1.4.3.

15
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where we used the boundary conditions of 1 as well as the classical equation of
motion in order to obtain the second line. In other words, it separates into the
classical and quantum action. This is a feature of all quadratic actions. We can

change the basis of the path integral, and integrate over n instead of x. This yields

i n(tp)=0 i [t d? )
(o, to|Ta, ta) = €'l /( ) P exp <_§/ dt () {_@ o } n(t))
n(ta)=0 ta

1 i S L
_ iS[za] = D T iSlaal 2 54
e = w (& ) :
\/m' det [ a &) | )

2
—m—w]

where we have defined the functional determinant
o)
det {—— - wg} (2.55)

in analogy with the usual Gaussian integral. Eq. (2.54) is the probability amplitude
for finding the particle at position x; at time ¢, if it starts at position z, at time t,.
We will return to this shortly, but let us first calculate the classical action.

In order to compute the classical action, we must first find the solution to the
classical equation of motion in Eq. (2.52) with the boundary conditions z(t,) = z,

and ) (ty) = zp. It is straightforward to verify that this is given by

1
sinwT’

iL‘Cl(t) =

[zpsinw(t —t,) + zgsinw(ty, — )], (2.56)

where T' = t, — t, is the total time. Furthermore,

ool a5
Szal = dt 3 [20® — w’zd)]
ta

L. g . ..
== [xdxd]iz — / dt zq [ZEa + w'za) = = [xd:ccl]iz , (2.57)
ta

2 2
where we made use of the classical equation of motion in the last step. Thus we find

the standard result

w

Sa = S[za) = [(w% + xz) coswT — Qxb:va] ) (2.58)

2sinwT

What is left to find is the transition amplitude in Eq. (2.51) for which we need to

compute the functional determinant in Eq. (2.55).
Functional determinants and Morette-Van Hove Perhaps the most straight-

forward, but very specialised, way of computing this functional determinant is to

recognise that due to time-translational invariance it can only depend on the total

16
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time T. We can then use a resolution of identity to compute

Do(T) = (0,T]0,0) / dz (0, T|z, 1) (x, )0, 0)
> iwcosw (T —t) iw coswt
=D, (T — t)]D)w(t)/ dx exp ( Ysinw (T —1) x2) exp (mxz)

2misinw (T — t) sinwt

=D, (T — t)]D)w(t)\/ (2.59)

wsin w7

/ w
D,(T) =4/ ——— 2.60
( ) 2misin wl’ ( )

by expanding for T" > t. It is also worth noting that in the w — 0 limit, we are left

From this we can obtain

with a free particle, whose pre-factor is

Dy(T) = ,/273”. (2.61)

From this we find the solution to the functional determinants

d? 9 2sinwT
det [—@ — W :| = o s
d2
det |[——| = 2T. 2.62
¢ { dtQ} (2.62)

This doesn’t however generalise very well, as indeed not all problems are time-
translational invariant. In fact, the problems that we want to study are not. To
resolve this, and develop a more general method of evaluating functional determi-

nants, we can start with defining it in analogy with a matrix determinant as [98]
det [O] S (2.63)

where O is some operator and y, are its eigenvalues on the interval ¢ € [t,,1,]. In

particular, we define the eigenvalues through

Of(t) = Af(t), [(ta) = f(ts) = 0. (2.64)

For instance, if we apply this to the free particle, i.e. O =—d? /dt?, then we find the

eigenvalues \,, = (n7/T)? for n € Z*. We therefore want to compute the product
R R I1 (m>2 (2.65)
et |——5| = A7) :

However, computing functional determinants as an infinite product is not straight-

forward, and usually divergent. These divergences commonly arise due to a lack of

17
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a reference point. For instance, the electric potential energy of an infinite line of
charges is infinite, but the electric field, which measures the difference in electric
potential between neighbouring points, is finite and calculable [101]. We can rem-
edy this by regularisation, which is a procedure designed to remove the problematic
infinities and leave only the terms contributing to the physical observable (such as
the electric field). A way to regularise functional determinants is to define them
through [98]

det O = exp [—¢5(0)] (2.66)

where (5(s) is the zeta function associated with O, defined through the spectrum
of O as

Co(5) =Tr O™ = ZA‘ (2.67)

This takes care of the regularisation. In particular, we find that

Caganls) = (Z)%azs), 269

™

where ((2s) is the usual Riemann-Zeta function defined by ((s) = > >° , n~*. We

can thus compute the zeta regularised functional determinant of —d?/dt* as

2

det[ e

} = 2T, (2.69)

using the fact that ((0) = —1/2 and ¢'(0) = —In(27) /2. This is in agreement
with above. We can similarly obtain the functional determinant for the harmonic

oscillator, after some algebra,

Caar-up(s) = (%)Qi [n2 — (:T/Wﬂs

n=1

2

d
= det [_@ —w } = exp [Cldz/dtz,wz(O)} = 2sin (wT) /w. (2.70)

This is indeed the same result as Eq. (2.62).

This doesn’t however lend itself very easily to computations. Commonly, it is

18
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far simpler to compute the functional determinants as ratios, such as

2 pe - —w
det L w?| =det | —— dt2 ]
dt? dt? det dt2

2T2
=[] T (1~ 225)

sin wT 2 sinwT
=97 = 2.71
7 — (2.711)

where in the last step we used the definition of the sinc-function as an infinite
product. This is because the determinant in the denominator provides a reference
point and regularises the problem. In particular, this allows us also to use the
so-called Gel’fand-Yaglom formalism [102, 103], where we can compute a ratio of

functional determinants by first calculating

@
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vO vO
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~—~ ~—~
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(2.72)

The ratio of functional determinants of O and A on the interval ¢ € [t,, ) is then

given by
det [é] / det [A} = F(t,)/G(t). (2.73)
In our case, it is easy to show that

{_% — uﬂ} F(t)=0, F(t,) =0, F'(t,) =1,

[_%ﬂcwyza G(ta) =0, G'(ta) = 1, (2.74)

has solutions F'(t,) = sin (wT") /w and G(tp) = T'. Thus we find

det [ a2z WQ} B sinwT’
det [~ dt?] wT’

(2.75)

The proof of Eq. (2.73) can be found in Appendix A of Ref. [104].° Finally, let us
turn to the Morette-van Hove determinant [98, 103, 105]. The Morette-van Hove

determinant is an especially useful way to compute the pre-factor of the path integral

9This proof goes as follows. Note this is intended as a brief overview only and I refer the reader
to Ref. [104] for further details. Suppose we have an eigenvalue equation of the form

dt2w<”( )+ VO 0Y(t) = xM(1),

on the interval ¢ € [0,7]. We can 1et 1&&1) be the solution with initial conditions z/;/(\l)(O) =0 and
1/;(1)( 0) = 1. Now the operator _W + V(t) acting on the same interval has an eigenvalue AY

19



Chapter 2: Background theory and methods

where we find, given an action that is at most quadratic in the coordinates,

) —1/2
D(T) =:-——1——]v det -—-fif%if . (2.76)
\/ 271 améaxa

Here N is the dimension of your space such that x = (2!, 2%, ..., 2"), and ‘det’ is in
this case the usual matrix determinant.'® If the action is not quadratic, then this
determinant forms the semi-classical expansion [98, 105, 106]. In the case of the
harmonic oscillator, it is easy to confirm that the Morette-van Hove determinant
yields

0%S4 sinwT

_axbﬁxa: w (2.77)

and thus Eq. (2.76) is in agreement with Eq. (2.60) for the harmonic oscillator.

if and only if
1
lbig;) (T) =o0.

This is similarly true for some other operator —j—; +v® (t). Both the left hand side and right
hand side of the following

det [—;}7 + V() - /\] $O(T)
det [— L + V() =] P (D)

are meromorphic functions of A\ with simple zeros at AS) and simple poles at )\%2). Furthermore,

by Fredholm theory we see that the left hand side goes to unity as A approaches infinity in any
direction but the real axis (determinant is dominated by A). Also, the right hand side behaves
identically as A\ approaches infinity (differential equation dominated by \). The two sides are thus
the same, and when A = 0 we recover the result stated in the text.

10T prove this, let us return to N = 1. Suppose we study classical particle dynamics given by
the equation of motion

&—Q(t)z =0.

Suppose now that [, (t) and Fy(t) are the solutions to this equation with boundary conditions
F.(ts) =0, Fy(te) =1 and Fy(t) = 0, Fy(tp) = —1 respectively. Given an initial position z, and
velocity &, we can then express any solution as

(@ ort) = s [0 = Ful)Doft)] = Dt

Thus we have

- 8%1, - (95%@ -1
Falte) = 57, = (ax,,>

(0 [ aSa]\t [ 9Sa \ !
T\ Oxp | Oz, o 0x,0z, ’
where the second line follows from a small variation to the initial position and time to the clas-

sical action. Since Fy(ty) satisfies the conditions for the Gel’fand-Yaglom theorem after suitable
normalisation, we find the Morette-van Hove determinant.
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Solution to the path integral After a few detours on useful ways to compute
the functional determinants, we arrive at the transition amplitude for the harmonic

oscillator as

z(tp)=2p '
(xp, tp|Ta,s ta) = / Dax 5!

(ta)=2a

it Zw 2 2

As mentioned earlier, this is the probability amplitude of measuring the particle

at position z, at time ¢, given that it was at position x, at time ¢,. Importantly,
Eq. (2.78) can be used to compute the time evolution of any wavepacket in a har-
monic potential, if we recall Eq. (2.29). The phase terms in Eq. (2.78) tells us
the varying phases acquired by different parts of the wavefunction, whereas the

pre-factor is related to the amplitude.

2.1.4.3 Canonical quantisation

In the Heisenberg picture, we have the equations of motion

dz A
dp A
Egzzi[fﬂgﬂ S (2.79)

Substituting the first line into the second yields

ez
&;+w}i=& (2.80)

We can now expand
&= f(t)a+ g(t)al, (2.81)

where f and ¢ satisfy the above equation of motion for z. It is easy to see that

—iwt

g(t) = = (2.82)

satisfy Eq. (2.80) and are orthonormal according to the norm in Eq. (2.32). In other

words, we have chosen the normalisation such that (f, f) = 1 and (g,9) = —1.
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Assuming that we can find a ground state satisfying!!
al0) = 0. (2.83)

Using this we can for instance calculate the vacuum expectation value of the position

operator (z(t)) as

(@(t)) = —— (0] (e~ “"a + et 0) = 0, (2.84)

¥l
&

whereas

1
2w

(@()2(t)

(O] (e7'a + e“'al) (e*i”t/d + ei“t/&T) 0) = 7@ /9. (2.85)

Furthermore, we can obtain p from Eq. (2.79) as

dz —iw . .
N 1) = — — —iwt A iwt AT ) 2.
p(t) T (e a—e“ta ) (2.86)

Using this we find the somewhat more usual expression of the ladder operators as

it = g <x - 1;5) , (2.87)

where we set t = 0 so that the Heisenberg picture and Schrodinger picture coincide.
The above methodology might seem overly complicated at the moment, but it is

crucial for more complicated scenarios.

2.1.5 Two-time potentials

It might seem that the position space path integral does not offer many advantages
as compared to the other methods. That is indeed the case for a harmonic oscillator,
but the path integral offers a structured approach to perturbations, especially when
dealing with time-nonlocal quantum mechanics (which is indeed something we will

consider in this thesis). To demonstrate this, let us consider an action of the form

S[a] = /tt dt%[@«?- /tt ds 2(t) K (¢, s)(s) | (2.88)

U This is formally derived by expressing H in terms of @ and af [f[ =w (&Td + 1/2)]7 using
which we can define the number operator 7 = afa. The number operator defines the number
states |n) such that 7 |n) = n|n), and using this we find a|n) = \/n|n — 1). This recursion series
terminates when n = 0, defining the ground state.
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Commonly K (t,s) is a Green’s function after integrating out some other degree of

freedom. As such, it satisfies some equation of the form

d
L [E} K(t,s) =6(t—s). (2.89)
Schematically, we can write this as K(t,s) = L716(t — s), which can in turn be

expanded as

n

K(t,s)=>_ anj?é(t —5). (2.90)

n

This is indeed a common approach in fibre optics theory [107]. When we substitute

this back into the action, we find

S[a] = /t dt % [:b? e (Z (—1)"%%9;@))] | (2.91)

n

In this way we can apply the usual quantisation procedures. However, in the
Schrodinger and canonical quantisation language we must define an infinite set of
conjugate momenta such that
0L
Pn—1 = ma

oL .
Prn—2 = Opn—1) Prn-1;

oL .
Po = = — P, (292)

ot
where (™ denotes the n'* time-derivative. Perhaps understandably, this makes
computations algebraically cumbersome. A good discussion of this can be found in
Ref. [108].

In the path integral language we can instead work directly with the Lagrangian.
This does not require the Legendre transform to the Hamiltonian representation.
We can then simply define the path integral as usual, where its evaluation requires
us to find the classical action. Whilst this is well-defined, it can nonetheless be
non-trivial. For instance, we first need to solve the classical equation of motion

i+ % /t ds[K(t, s) + K(s, )] 2(s) = 0 (2.93)

with boundary conditions z(t,) = x, and x(tp) = xy.
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2.1.5.1 Defining nonlocal perturbation theory

Luckily, we can solve this perturbatively, and the path integral offers a structured
approach. For this, let us start with a time-local perturbation V(x,t). We are first
going to solve the driven problem, and then replace x(t) in the perturbation by
functional derivatives with respect to the driving force J(t). In order to do this, we

must first introduce such a driving force to the Lagrangian. This is done by letting
tp
L— L +/ dt z(t)J(t).
ta
Hence we have the total Lagrangian
ty 1 ty 1
L= / dt 5 [* + V(z,1)] — / dt 5 [i? + V(z,t)] + 2J.
ta ta

Our goal is now to let

V(z,t) =V 0 t (2.94)

“ i0J(t) ) ‘

Since the driving term .J couples linearly to the coordinate x, it is easy to show that
it does not change the pre-factor in the path integral.'? It does however affect the
classical action, because the classical equation of motion is now given by &+0,V = J.

In general, we thus have

I(tb):ﬂ?b tp 1
(xp, tp|Ta, ta) = / Dzx exp (z/ dt 5 [x'Q — V(:L‘,t)])
x ta

(ta)=2a

z(tp) =z . t .
:/ ' bpx exp {_ﬁ/b AtV (LJ)} ot i dt 3[#%]+I(B)a(t)
z(ta)=2q 2 ta Z(SJ(t)

i [™ )
= exp {—5 /ta dtV <m,t)} (zp, to|a, ta) 5

where (zy, ty|2,,tq) ; is the driven transition amplitude, and where J = 0 should be

J=0

, (2.95)

J=0

interpreted as setting the driving function to zero for all time after the functional

derivatives are performed. Similarly, in the time-nonlocal case we have

X z(tp)=xp ty 1 ty
(T, tp|Ta, ta) = / Dz exp (z/ dt 3 {332 —/ ds w(t)K(t,s)x(s)])
z(ta)=2q t ta

= ex —z/tbdt/tbds[((t s) 0 0 (2, ty|Ta, ta) T
B TN A A isa(tyiod(s) | e el

)
J=0

(2.96)

where we should note that the ordering of the derivatives does not matter in this

case, since we are dealing with a single variable. In our example, the free driven

12This is done in an identical manner as to Eq. (2.53).
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transition amplitude is given by

(i, to|a, ta) T :\/E exp [i (zy — 24)° /2T
X exp [ixb /tt dt (%) J(t)] exp {zm /tt ds (T; S) J(s)}
X exp [—i /tt it /tt ds J(#) (S(T—T_t)> J(s)} | (2.97)

from which the nonlocal transition amplitude can be computed.
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2.2 Quantum field theory - minimal version

We can define quantum field theory analogously to what we did for quantum me-
chanics, but where the position z is replaced by a field variable ¢(x,t). In other

words, in the above we let
z(t) = o(x,1). (2.98)

In analogy with the position state |z) for quantum mechanics, which is defined as
the eigenstate of the position operator Z, we can introduce the field state |¢) as
the eigenstate of the field operator ¢E(X) We can also introduce the classical field

momentum

oL
0%(x, t)

m(x) =

in an analogous way as the classical momentum p [Eq. (2.13)]. The momentum can
then be promoted to a field momentum operator 7(x,t), and together the field and

momentum operators satisfy the equal-time commutator

[b(x, 1), 7(x,1)] = id0(x —y). (2.99)

Along with these definitions and the resolution of identity defined as [109]

/ Dé(x)|6) (6] =1L (2.100)

we can go through the same procedure as was done in Section 2.1. We should
also note that we can switch between Heisenberg representation where the time-
dependence is in the operators [e.g. gzg(x,t)] and Schrodinger representation where

the time-dependence is in the states [e.g. |¢,t)], just like in quantum mechanics.

2.2.1 Introducing spatial modes

It is however often beneficial to expand the field in a set of spatial modes uy(x) such
that

S, 1) =D uie(x)u(t). (2.101)

These spatial modes uy(x) are generally the set of solutions that satisfy the spatial
part of the classical equation of motion for the field. This also serves to define a

dispersion relation, i.e. an equation that relates w and k. For instance, suppose we
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consider a free field whose classical equation of motion is given by
¢ — V3¢ = 0.

We can now expand ¢ using Eq. (2.101), and this allows us to separate the temporal

and spatial degrees of freedom, yielding the equations of motion

V3 (x) + Mg = 0, (2.102)
Ik + A = 0. (2.103)

The first line defines A\x, and depends on the spatial boundary conditions. In the
simplest case of an infinite space (with period boundary conditions), we can set

uy x exp(ik - x) where the normalisation is determined by

/de Uy (X)up(x) = dk p (2.104)

with N being the dimension of x-space. Now Eq. (2.102) implies that \, = |k|*.
Furthermore, Eq. (2.103) becomes

o + |k[*px = 0,

which can be quantised using the methods discussed in Section 2.1. In other words,
given that the spatial modes form a complete set of solutions for the spatial degrees
of freedom, we can do quantum mechanics for each spatial mode amplitude ¢,
almost exactly as in the previous section.

Put differently, we can treat each spatial mode independently. Suppose we start
in a state |¢(x),?). This state can then be expanded in its corresponding spatial

modes, such that

‘¢(X)7t> = |¢k17t> ’¢k27t> ‘¢k37t> e ‘{¢k7t}> ) (2105)

where we use the notation |{ay}) as shorthand for the tensor product between all
states with label k, as is commonly done in quantum optics [2]. Note that the
number of modes depend on the physical situation, but in the example of a free field
as used above there is a continuum of modes. If we want to calculate the expectation

value of some operator, say for instance gg(x), then we find

00,0) = (900111691601 = (900, ] 2 )00, 1)
0, t] 2 b {0 1) = (601 3 () i 1)
- zuk<x>¢k< ) (2.106)
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where ¢(x,1) is the configuration of the field at time ¢, and where in the third line
we used that oy |¢p, t) = ¢ if and only if k = p, otherwise zero. Furthermore,
we can expand each amplitude state |¢k,t) in terms of the number state basis |ny),
such that

‘(bka Za’ |nk

from which it follows that

[6(x):t) = o, t}) = D arx(t) {md))- (2.107)

Nk

2.2.2 Wavefunctionals and wavefunctions

It is at this point instructive to introduce the wavefunctional representation of the
field. In general, just like the position x in quantum mechanics is only known up
to some uncertainty,'® the field ¢(x,t) is only known up to some uncertainty. In
quantum mechanics, the position uncertainty can be embodied by the wavefunction
(), and it follows that we can define the wavefunctional W [¢(x,t)] for quantum
field theory. A general state is therefore best denoted |V, t), and we can expand this

in the wavefunctional basis by

1) = / Do(x)[6) (6|0, 1) = / Do) )V [6(x).f  (2.108)

using the resolution of identity in Eq. (2.100), and where we define the wavefunc-
tional as the overlap W [p(x),t] = (¢|¥,t). Using the spatial modes discussed in
Section 2.2.1, we can then further resolve the state |¥,¢) by expanding the field
state in terms of the normal modes [Eq. (2.105)], yielding

1) = /w) ) (9]0, 1)

-1/ d¢k] o)) (oni )

- H/d¢k ¢k(¢k,t)] {ox}) (2.109)

where ¥y (¢k,t) = (dx|V, t) is the overlap between the general state |, ) and each
spatial mode state |¢px). Note that i (¢x,t) is a wavefunction, as opposed to the
wavefunctional ¥ [p(x),t]. If we compare Eq. (2.108) and Eq. (2.109), we find that

Vo(x),t] = [ i ¥(ox, 1)

13Basically Heisenberg’s uncertainty principle.
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2.2.3 On treating each spatial mode independently

In this thesis, we will often be interested in the probability of measuring a change
in some specific spatial mode up(x), in a system described by the state |V, ¢). Let
us call such a probability amplitude A, whose probability is given by |.Ap\2. For
instance, say we want to find the probability of measuring the 15 excited state in
the spatial mode p. We would then calculate the overlap between the state |V, )
and an almost identical state |Wy, 1,,¢) that has the same amplitude in all spatial
modes apart from p, denoted here with the p-subscript. Such a state |¥y, 1,,¢) can

written as

Wy Ly, t) = &”@wmb>U%%%mMM (2.110)
k#p

which we will denote by |1,) as a shorthand. Here ¢;(¢) is the wavefunction of the
1%-excited state, whereas ¥y (¢) is the wavefunction for each spatial mode k # p as

introduced in Eq. (2.109). It now follows that the amplitude A can be computed as

A—th<Hﬁmmmm>UMﬂ%M%ﬁ

k#p

:/d¢p 90>1k(¢p)¢p<¢pvt)> (2.111)

where second line follows from the first since each state is normalised to unity.

As can be seen in Eq. (2.111), the resulting amplitude and probability depends
only on the wavefunction of the single mode p, the rest being superfluous. This
follows because the set of spatial modes forms a complete set. Therefore, within
this formalism we might as well have treated each spatial mode independently, and
discussed only the properties of the part of the state associated with spatial mode
up(x). In the remainder of the thesis, we will do exactly this, whilst the reader is
advised that this is only shorthand, and the wavefunctional |V, ) is a tensor product
over all spatial modes. Especially of interest in this thesis is the ground state of the
field, which would be described by a wavefunctional. However, in light of the above
discussion, it suffices to discuss the ground state of each spatial mode independently.

Note also that the spatial modes might couple for potentials that depend on
space V(¢(x),x,t). First of all, the potential defines a new set of spatial modes, as
each set of spatial modes is tied to a certain potential. Commonly however, we can
treat this perturbatively using spatial modes that are defined in the absence of the
potential, given that the spatial variation is small compared to other factors in the
dynamics. This then yields a coupling between the spatial modes, and consequently
transitions between spatial modes are allowed. Nonetheless, in this scenario, the
dynamics is computed independently for each spatial mode at zeroth order in the

perturbation series. All the following orders will however contain sums over all
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spatial modes, taking the transitions into account.

2.2.4 Connecting discrete modes to continuum modes

Finally, we should note that we have so far implicitly assumed that the spatial modes
form a discrete set. In this treatment, we have been using sums and Kronecker -
functions, such as ), and dyp. For instance in the orthonormality condition in
Eq. (2.104), we assumed that x is a continuum, whereas k forms a discrete set. If
we treat a physical situation where a continuum of spatial modes uy(x) is more

appropriate, then we should replace Eq. (2.104) with

/dNa: up (x)up(x) = (27)Vo(k — p). (2.112)

As can be seen, this changes the dimensionality of the problem, since the Dirac
d-function carries the dimension of 1/V, where V is the volume of x-space. This is

to ensure that

/(;iﬂ)kN/de uf{(x)up(x)_/(;iw)k 2m)Vé(k —p) =1, (2.113)

as compared to

Z/de g (X)up (x Zakp (2.114)

for the discrete modes. In fact, in the case of fields in the bulk, where the boundary
conditions can be allowed to be periodic, we can view Eq. (2.113) as the limit of
Eq. (2.114), as the volume V approaches infinity.'* As long as we are consistent with
this, we can keep working with discrete modes, and thus use sums »  and Kronecker
o-functions, until the need to specify arises. If we need to transition to continuum

modes, we will use the following replacements throughout this thesis:

av k
Z / (2.115)
where NN is the dimension of x-space, and V is the volume, and
dkp = 0(k—p)/V. (2.116)

As a last comment, we note that this convention also applies to commutators. In

particular, the discrete mode commutator can be connected to the continuum mode

14Some care must be taken when considering structured volumes, as the boundary conditions
can make a difference.
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commutator as
[qgk,frp} = 0y ¢ [ék,frp] — i6(k — p), (2.117)

where the nature of the mode amplitudes ggk and T, must be inferred from the
context, and where 7y is defined through 7(x) = >, uk(x)7k (for discrete modes).
Finally, we can keep only the k = p term in Eq. (2.117), if there is no spatial

dependence in the problem that can cause transitions between spatial modes.

2.2.5 QFT in summary

In summary, since we can treat each spatial mode independently, we find:

e The path integral
(Db tolPra ta) = /chk et Slond, (2.118)

from which we can construct (¢p(x), tp|0a(x), ta) = ({dxp to H{Pka ta})-

e The Schrodinger equation

i%wk(%t) = | /2 + V(. 1) | il P 1), (2.119)

where the momentum operator 7 is defined through 7(x) = >, uk(x)7k.

Also, we find the full wavefunctional as ¥ [¢(x),t] = [ [, ¥« (¢x, ).

e Time-evolution of canonical operators

dine [ .
k=i [H, ak] . (2.120)

Whilst the first and third representation is common for fields, the Schrodinger lan-
guage is somewhat unusual, but we nonetheless find it useful. We will address the

details of this procedure as we proceed in the thesis.
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Chapter 3

Vacuum radiation from small

variations to the optical properties

“It doesn’t prove anything very much except that the
awesome splendour of the universe is much easier to

deal with if you think of it as a series of small chunks.”

Terry Pratchett in Mort, 1987

Let now start to explore quantum vacuum radiation in optical media. In particu-
lar, this chapter is based on Item 1 in the List of Publications, and is a perturbative
treatment suitable to small changes in the optical properties.

If we recap a little of what we discussed in the introduction, quantum vacuum
radiation, although it sounds like an oxymoron, is a term for radiation that is emit-
ted from the vacuum state when, colloquially speaking, the mode density of the
vacuum is changed in time. Physically, the notion of a particle becomes ill-defined
as the mode density changes [15], allowing for the final state to have a non-zero oc-
cupation number. The term encompasses phenomena from many fields of study in
physics, astrophysical scenarios (Hawking radiation/cosmological particle creation)
and optical settings (dynamical Casimir effect/time-dependent media) alike. Our
focus here is the study of vacuum radiation in temporally varying optical media,
which is introduced by making some parameter in the model depend on time. How-
ever, optical media are dispersive, that is, the response of the medium depends on
the frequency of light with which it interacts. In the time-domain, this leads to a
delayed response. The interplay between this delayed temporal response and the
time-dependent optical parameters is at the heart of this chapter.

In order to study this, it is convenient to turn to macroscopic quantum electro-
dynamics — the study of light-matter systems on a scale at which the microscopic
details of the medium can be taken into account by an effective model. That being
said, nature allows for many approaches to treating quantum electrodynamics at
a macroscopic scale. This is hardly surprising, given that it is an effective model.
The model in question here, indeed the one we will use throughout, was proposed
by Hopfield [59] and introduces the optical medium as a phenomenological matter

degree of freedom coupled to light through a simple dipole coupling. Such a model is
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valid in frequency-ranges away from a medium resonance, as it neglects absorption.
Whilst it should be noted that the vacuum state includes all frequencies (see discus-
sion in Section 2.2), we will see later in this chapter that only some small frequency
range, which is determined by the time-dependence of the optical properties, con-
tributes to any given vacuum radiation process. This allows us to effectively ignore
the regions around the medium’s resonance frequencies.

In this chapter, we will aim to form an effective action by ‘integrating out’ the
matter degree of freedom, allowing us to describe the problem in terms of the relevant
quasiparticles of the system: polaritons. The action will however, by necessity, be
nonlocal in time, that is (in part) dependent on past events. This will complicate
the quantisation, as time plays a special role in quantum theory. By and large, we
will devote a large portion of this chapter to the procedure used to manage this
complication, discussed in Section 3.1, 3.2 and 3.3. The introduction of the time-
dependent media will be treated in Section 3.4, and the resulting quantum vacuum

radiation will then be discussed in Section 3.5.

3.1 Model

We wish to study optical media that can be described by a refractive index n of so-
called Sellmeier’s form. Such models for the refractive index encompass the linear re-
sponse of many bulk crystals and glasses, as discussed in for instance Ref. [54](p. 85).
These are media that has N resonances at frequencies €2;, with a coupling to light
characterised by a coupling strength g; respectively, as well as negligible absorption.

We can characterise Sellmeier’s type media by a refractive index of the form

n?(w) = 1—2#?02. (3.1)

Note that g¢; is the effective plasma frequency of the " resonance. Introduc-
ing a time-varying refractive index can now be done simply by introducing time-
dependencies in the resonance (€2;) or the plasma (g;) frequencies. Here we will
focus on the former. From a physical perspective, such a time-dependency of
the resonance frequency can be produced through the quadratic Stark shift [110],
where the resonance shifts under the influence of a strong electric field Eyump as

Qi(x,t) = Q + ak?

pump
w (frequency) and t (time) are conjugate variables. Instead, we must introduce

(x,t).! Naturally, it would be incorrect to write n(w,t) since

a phenomenological matter degree of freedom, such that the effective equation of

! Acousto-optic modulation would rather change the density of the media in time, but nonethe-
less introduce a time-dependent refractive index.
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motion for the electromagnetic field has a dispersion relation given by
—|k|* + w?n?*(w) =0, (3.2)

with n(w) given by Eq. (3.1). Consequently, we will consider a quasi-microscopic
action for the electromagnetic field, E and B, coupled to a set of harmonic oscillators
R, through a dipole term. Also, we should note that we will work in units ¢ = 1,
h =1 and ¢y = 1 for notational simplicity.

To establish such a quasi-microscopic model for macroscopic electromagnetism,
let us start with Maxwell’s equations in a (dielectric and non-magnetic) macroscopic

medium with no free charges [1, 111],

V- -B=0, VxE=-B
V-D =0, V xB=D, (3.3)

where D = E + P is the electric displacement field, and P is the polarisation field.
Eq. (3.3) establishes the relevant setting for this thesis. From it, we find an equation

of motion for the electric field E of the form
V xV xE+9;[E+P]=0. (3.4)

If we now further suppose that the polarisation P varies sufficiently slowly in space,?
then V - P ~ 0 and from the first equation on the second line of Eq. (3.3) we find
that V - E = 0. This implicitly assumes that the physics we study is in the bulk of
the medium, or that any spatial variation is slow as compared to the wavelength.
Nonetheless, within these assumptions, Eq. (3.4) reduces to the more familiar wave

equation
~V?’E + 0} [E+P] =0, (3.5)

which can be readily compared to Eq. (1.1).
The question then becomes: how do we construct P such that we attain a dis-
persion relation of the form seen in Eq. (3.2)?7 Suppose for now that the material

properties are constant in time, then the Fourier transform of Eq. (3.5) is given by
(|k\2 — wQ) Ey(w) — w?Py(w) = 0, (3.6)
where we define

fulw) = F(f)) = [ e [ar e pie.x).

2Intuitively, the relevant length scale to which comparison is made here is the wavelength of
light. This will become important later in the chapter.
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Let us now split the polarisation into N contributions, as in P = va P;, and then
further let

P; = /dt’ xi(t —tHE(), (3.7)

with x;(t — t') being the medium response function for each resonance. Moreover,

suppose that the equation of motion for R; is given by

where ¢; is the dipole moment for each resonance frequency €2;. We can then connect
the medium response function y; to the component-wise propagator for R; [denoted
A;(t,t')] through

(07 + ] At ) = =0t =) = xilt —t) = pgi Ai(t, 1),

where p is the density of the oscillators. This also specifies the polarisation P; in

terms of the oscillator R; through
P; = pg:R;. (3.9)

The dispersion relation in Eq. (3.2) follows if we now finally identify the plasma
frequency of each resonance as g; = \/pg;.

This sets-up the problem at hand. Now, as mention in Chapter 2, in order to
quantise this, we will need an action and a Lagrangian. Any action from which
Maxwell’s equations [Eq. (3.3)] along with the correct equation of motion for the
oscillators R; [Eq. (3.8)] will serve this purpose. Before we do so however, let us
specify gauge. As always, both the electric and magnetic field can be represented
as a gauge potential [1], given by E = — (0,A + V) and B =V x A, where A
and ¢ are the vector and scalar potentials respectively. For this thesis, we will work

in Coulomb gauge, given by the constraint
V-A=0. (3.10)

Now, we previously assumed that spatial variations in the polarisation field P is
sufficiently small so that V - P ~ 0. In terms of our oscillators R;, this then implies
that

V- R;~0. (3.11)
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Subsequently, the bottom left Maxwell’s equation in Eq. (3.3) now reads
V-D=0= V% =0,

using Eq. (3.11). ¢ decouples from everything else, and we might as well set ¢ = 0.
This further implies that the electric field is now given by E = —0,A. Finally, from
the bottom right of Eq. (3.3) we find

N
A—VQAZP = A—V2A:quiRi,

where we used the vector identity V x V x A = V(V - A) — V2A, along with
Coulomb gauge condition in Eq. (3.10).
Now all the gauge freedom has been removed, and we can write down the action

for this system in Coulomb gauge. This is given by

ts 3 1 2 2
57:/ti dt/dxé[E _BY,

Sp = Z /tf dt/df‘x g [Rf — Q2 (x, t)R?] ;
1nt — Z/ dt/d3 pQZ : Rzu (312)

where p is the density of oscillators, and ¢; are the respective dipole moments. Note
that in this action, only the coupling term Si,; requires us to specify gauge. Written

in terms of the vector potential (in Coulomb gauge), we therefore have

S—/ dt/d%— ' VxA)}

SRZZ / i / P O [R? - 02 (x 1)R?]
St _Z/ dt/d3 —pgi) AR, (3.13)

where, as a reminder, the electric field is given by E = —0, A along with the magnetic
field B = V x A. We should note that the electric field E, the vector potential A,
as well as the oscillators R; (by assumption) are all completely transverse.

Here we have also introduced a space- and time-dependent medium by letting
the natural oscillation frequencies Q?(x,t) be space- and time-dependent. As for

the space-dependence, we can allow for spatial variations that are sufficiently slow
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as compared to the wavelength of light, specifically such that

VQ2(x,1)

k 14
oy < .

where |k| = 27/X is the wavenumber of light, with A\ its wavelength. We require
this condition so that we can still work in Coulomb gauge.®> Eq. (3.14) follows from
Eq. (3.8). Specifically if we take the divergence [V:] of Eq. (3.8) with the electric

field written in Coulomb gauge E = —J,A, we arrive at the consistency relation
[8? + Q2 (x, t)] V R, +VQ(x,t)-R; =0,

since V - A = 0. Suppose now that R; = cexp (ik - x — iwt) for some constant
vector ¢, where k is the wave vector of the electric field E driving the oscillator

[Eq. (3.8)]. The above consistency relation then reduces to

c- VQi(x,t)
—w? + Q2(x,t)

ic-k+ =0,

which can be approximated as
ic-k~0«< V- -R,; ~0,

given Eq. (3.14).* Therefore, this formulation is self-consistent given that the spatial
variations in the resonance frequencies €; are sufficiently slow to satisfy Eq. (3.14).

We should also note that we will, in this thesis, mostly concern ourselves with
bulk media, or the bulk response in structured media. In these cases, we consider
spatially uniform resonance frequencies. We do however consider slow spatial vari-
ation in Chapter 4, and this is therefore important to keep in mind. The action in
Eq. (3.13) is inspired by the Hopfield models employed in Refs. [59, 60, 73, 110, 112].
In the case of constant Q;(x,t) = €;, we find that Eq. (3.13) leads to a dispersion
relation for the electric field in the familiar Sellmeier form [see Eq. (3.1)]. In other
words, the action in Eq. (3.13) is a suitable starting point for modelling any dielectric

where absorption is negligible.

3.2 Effective action and spatial mode expansion

As of yet, we have simply defined the classical dynamics of the fields A and R;,
whose equations of motion are found by minimising the action in Eq. (3.13). We
now want to describe the dynamics using only A. Let us however first consider

the oscillator field, whose dynamics we will be integrating out in order to form an

3Remember, this is because Coulomb gauge here relies on V - R ~ 0.
40r alternatively, |VQ2(x, t)/w?| < [K| for w > Q2.
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effective action for the photons Seg[A]. This is done schematically by computing

the path integrals over R;, as in

where we will be using the boundary conditions R;(x,t;) = R;(x,t5) = 0, since
the dynamics of R; are not a concern here. Importantly, the coupling between the
vector potential A and the oscillator R; in the action Sj,[A, R;] is linear in each
field. Consequently, the full action S, riine is quadratic in the fields, using which
it is easy to show that the quantum fluctuation of R; does not affect A directly.
We should nonetheless note that setting these boundary conditions constitute an
approximation, where we assume that the oscillator dynamics has but a small con-
tribution to the overall dynamics of the system. This is well justified in regimes
in which the electromagnetic field dominates, which is indeed the case in the opti-
cal regime where our interest lies. We will relax this approximation in Chapter 6.
Within this approximation, we can therefore contain all quantum fluctuations in the
matter degree of freedom in the normalisation constant A/ (which we will from here
on set to unity) [3].

Because the action is quadratic in the fields, we can perform the path integrals in
Eq. (3.15) simply by finding the classical action for the oscillators, driven by —gA
and with boundary conditions R;(x,t;) = R;(x,ts) = 0 [98]. In other words, we

wish to solve
R, + Q%(x,t)R; = — A, (3.16)

with boundary conditions as stated above, the solution of which we substitute into
the action Sg. This is most conveniently done by first calculating the Green’s

functions
(0] + Q2 (x, )] Ay = —6(t — 1), (3.17)

with boundary conditions A;(x,ts,t") = Aj(x,t;,t') = 0. We can get the effective

action for photons by substituting

o [rtr
Rix,t) = & / dt Ay(x, £ ) A (x, 1)
t;

into Sint[A, R], where the factor 1/2 comes from a contribution in Sg. Furthermore,
the Coulomb gauge condition in Eq. (3.10) allows us to expand the vector potential
in the polarisation vectors A = Z/\=1,2 e Ay, where ey - ey = 0, v is defined with
respect to some reference vector p such that ey - p = 0. Also, we can expand the

oscillators R; into the same polarisation modes, since we previously assumed that
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the oscillators approximately satisfy the Coulomb ‘gauge’ condition V - R; ~ 0 (i.e.
their spatial variation is slow as compared to the wavelength of light). Finally, this

yields the effective and time-nonlocal action

Ser[A] = Z%( /t 7t / &z [Af — (VA
~Y g / T ar AA(x,t)Ai(x,t,t’)AA(x,t/)}), (3.18)

ti

where A; is the oscillator propagator given in Eq. (3.17), and g; = /pg; are the
effective plasma frequencies for each resonance. As can be seen, this action has the
time-local free propagation on the first line, followed by the time-nonlocal self-energy
acquired through the interaction with the matter degree of freedom on the second
line. We can also note that the two polarisations de-couple and so from this point,
we will for notational simplicity work with the scalar quantity A(x,t) by dropping
the A-subscript.

Until this point the treatment is completely general, and we have not specified
any space or time-dependence of ?. We will next discuss how to expand A(x,t)
into suitable spatial modes for various spatial configurations. First we will focus on
a spatially homogeneous situation (as in bulk media), and subsequently introduce

2
79

space-dependencies to €27, although we should note that we need to be careful to
still satisfy V - R; ~ 0. As mentioned earlier, this translates into requiring that the
variation satisfies Eq. (3.14). By introducing spatial variations, we will complicate
the dispersion relation in Eq. (3.2), as this is strictly speaking only valid for plane
waves. As discussed in Section 2.2, this will also let us treat this quantum field theory
problem in an essentially quantum mechanical fashion, by treating each spatial mode

independently.

3.2.1 Dispersion relation and expansion into spatial modes

Let us expand the vector potential into a set of orthonormal spatial modes uy(x)
such that

Alx 1) =) w(x)A(t),

which we will normalise by [ dz uj(x)ui(x) = 1. In order to find a suitable set
of such orthonormal modes, it is useful to first find the classical equation of motion

for the vector potential, as given by minimising the action in Eq. (3.18). This yields

ty . .
(07 = V) Ax,t) + > / dt' Ay(x, t, ) A(x, ') = 0, (3.19)
i it
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where the spatial boundary conditions would depend on the geometry investigated,
i.e. the values of A(0S,t) for some surface 0S. If we furthermore assume that the
oscillator frequency is time-independent, then we can expand the vector potential

A(x,t) = zk:uk(x)/%flk(w)e_w,

which after substituting into Eq. (3.19) yields

V2 4+ w? (1 _Zw?—g—éf(x)>] uk(x) = 0,

)

or more succinctly
[V? + w’n®(w, x)] w(x) = 0, (3.20)

with appropriate spatial boundary conditions. In its simplest case when n(w,x) =
n(w), this is simply the Helmholtz equation. The set of solutions to this equation
is what we will use as spatial modes. As is outlined below, such a set of solutions
include the usual plane waves and paraxial waves, but also fibre-like scenarios. We

will however mostly concern ourselves with plane waves.

3.2.1.1 Bulk media

Modelling bulk media, such as a bulk crystal or glass, now becomes straightforward
if we assume that the refractive index of the medium is constant in space, which
here maps to a spatially constant €2;. In this case, we define the spatial modes as

appropriately normalised solutions to the Helmholtz equation
[V? + w’n®(w)] w(x) = 0. (3.21)

Plane waves In the absence of any boundaries, the most natural modes are the

plane waves
u (x) = e**/V, (3.22)

where we have assumed an overall volume V (which will later be used as a quanti-

sation box [2]). This leads to the dispersion relation
—|k|* + w*n?(w) = 0. (3.23)

Paraxial waves In many experiments however, plane waves are not a good de-

scription of the spatial modes, in which case they are replaced by structured parax-
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ial beams. In this case, we construct a complete set of spatial modes if we expand
uk(x) o< ug(p, 2)e™™ with ¢?/2k* < 1, where k is the momentum in the z-direction
(chosen arbitrarily) and q is the momentum in the transverse direction conjugate to
the transverse coordinate p. In doing this, we can reduce Eq. (3.21) to the paraxial

wave equation
(V3 + 2ikd.) we(p) = 0, (3.24)

where V2 is the transverse Laplacian. In this case, the dispersion relation relates

only to k, as in
—k* 4+ w’n*(w) = 0. (3.25)

Solutions to the paraxial wave equation in Eq. (3.24) include the familiar Laguerre-
Gaussian modes and Hermite-Gaussian modes [113]. Using these in a quantisation

procedure was previously done in Ref. [114].

3.2.1.2 Structured media

We can similarly expand in some spatial modes also when the medium has some
sort of spatial structure. As an example, let us here suppose that we wish to model
a parabolic fibre, such that the refractive index n?(w, p) ~ ni(w) + v(w)(1 — r?) for
some small 7, with r being the transverse radial coordinate, and v(w) > 0. This can
be modelled in two separate ways, either by introducing a spatial dependence to the
density p — p[1 + d,(x)], or to the resonance frequencies Q7 — Q2 [1 — dg(x)]. As a
reminder, here the density enters the refractive index through the plasma frequency
g? = pq?. For the purpose of modelling a refractive index, these two approaches are

equivalent. This yields a refractive index of the form
2 ap ap
n*(w) = 1_2«:”2_9? - Z:WQ_QZZ 0p(x)
2 g;
= ng(w) + Z gy 0p(x)

(2

and

. g9
)= (1_;&—9% [1—aa<x>1>

i) + (Z ﬁ) da(x)

7 A

respectively, where in the latter case we have expanded to first order for 6o < 1,

for which we assume that w is far away from €2;. In either case, it takes the form of
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na(w) + v(w)d(x).
Let us return to the parabolic fibre, by assuming that d(x) = (1 — r?) within
some small interval for r. If we further suppose that uy(x) = uy. (p)e?*=*, then we

find a spatial mode equation of the form
[V +v(@)w (1= r*)] ur.(p) = [k2 = wng(w)] ur. (p),

or written more suggestively

{—%vi + (V(°“)2>w2> rQ} ur(p) = % [w? {ng(w) +v(w)} — k2] up. (p).

This is simply the equation for a 2-dimensional harmonic oscillator with ‘energy’
Liog o 2
&= 3 [w? {nj(w) +v(w)} — k2],

from which the solutions can be extracted [3]. After re-arranging the energy condi-

tion € = w?v(w) [n +m + 1] for n,m € N, we find the dispersion relation
w? (nj(w) — v(w)) = k2 + 2v(w)w? [n+ m].

Note that in reality, only the lower lying ‘energy’ eigenstates (small n and m) can
be used from this treatment, since it is only valid for small r.

In the following, we will be considering bulk media but as can be seen from this
discussion, we are able to generalise it to also include structured media in certain

circumstances.

3.3 Quantisation

Let us return to the effective action for the vector potential in Eq. (3.18). We
now wish to expand this in terms of the spatial modes discussed in the previous
section, but in order to proceed, let us first transform to frequency space, using the

convention

A(x,t) :/de(x,w)e"”t.

P2
This yields
L [dw 3, A 2 2,2
Seft = 5[ 30 d’r A" (x,w) |V + wn’(w,x)| A(x,w),
7r

where we note that A*(x,w) = A(x,—w) since A(x,t) is a real number. Here
A;(x,t,t") is given by Eq. (3.17), and we have used that it is diagonal in the frequency

domain when (; is time-independent, as well as integrated by parts on the V-term.
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At this point, we can further expand in the spatial modes which was discussed in
Section 3.2, that is

Alx,w) =Y A(w) uge(x).
Kk
After this we find the effective action

S = %; / ‘;—;’ Az () D(k, ) A(w), (3.26)

where again A} (w) = A_x(—w), and where we have used that the spatial modes
are by definition orthonormal (i.e. [d*z uj(x)w(x) = d). Here we have used
D(k,w) to denote a general dispersion relation which depends on the particular

spatial modes. For instance, for bulk media the dispersion relation is given by
D(k,w) = —|k|* + w?n?(w)
2 2 9

Commonly, it is noted in textbooks (such as Refs [2-4]) that the quantisation of a
quantum field is done by considering an infinite set of quantum mechanical problems,
usually harmonic oscillators, for each position or momentum (in this context spatial
mode k). This is especially evident in a canonical quantisation scheme, which is
the most common blueprint used in quantum optics [2]. In particular, the canonical
operators and commutation relations are somewhat straightforwardly duplicated
for each spatial mode, ad infinitum. However, in a path integral setting, such a
construct is mostly used anecdotally in order to aid understanding [4]. Whilst
this has been considered briefly in Refs. [3, 115], it is not common to use this for
actual computations. As we shall see in this section however, this turns out to be
particularly suitable for addressing the quantisation of macroscopic electrodynamics.

Nonetheless, a brief glance at the effective action in Eq. (3.26) tells us that this
problem is nonlocal in time. This is the nature of optical dispersion and cannot
be avoided. Temporal nonlocalities do however interrupt the usual quantisation
schemes, as time does play a special role in quantum theory (and field theory).
Quantisation of nonlocal field theories can nevertheless be done, which is a concept
that often crops up when constructing effective field theories where one or more
fields are integrated out: the most famous example being the Euler-Heisenberg
Lagrangian of quantum electrodynamics [116], where the electron field has been
integrated out by assuming that the electromagnetic field is essentially static as
compared to the electron field.> Effective field theories [117, 118] can be found by
integrating out fields (as in Refs. [116, 119]), which is what we will be doing here,

5This is a low-energy approximation.
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or simply proposed ad hoc. They are not always nonlocal, although one should note
that higher order derivatives masquerade as nonlocalities, as in the Lee-Wick model
[120]. Interestingly, and connected to this, it is common to expand D(k,w) as a series
in w around some frequency v in the context of quantum optics [107], truncating at
some O(w™). One can then return to temporal space by replacing w™ — (—i0;)".
For instance, by truncating this expansion at O(w?), we can take into account group
velocity dispersion. This does however treat the dispersion in a perturbative manner
and does not capture the whole picture. We will avoid these complications by using
the fact that we are free to rescale the field variables, something which will only
introduce a constant in the path integral, although we note that this also involves
approximations, but of a different nature.

The specific rescaling that we intend to do will trade the temporal nonlocality
for a spatial nonlocality in the new coordinates, which is easier to treat in quantum
theory. Let us first consider the solution to the classical equations of motion for

each spatial mode. Schematically, we can write this equation as
D(k,w)Ax(w) =0,

which has the solutions Ay o< exp(£iwst), where w,(k) is given by the zeros of
D(k,w). In this way we can define the relevant quasiparticles of the system by
solving D(k,w) = 0 for w? as a function of spatial mode label k. In doing so,
we find N 4 1 quasiparticle branches (where N is the number of resonances of the
medium) for bulk media, and possibly more for structured media depending on
the exact frequency dependence of the dispersion relation D(k,w). As discussed in
Chapter 1, we refer to the quasiparticles in light-matter systems as polaritons. The
polariton branches will here be labelled by the subscript «. For a single-resonance
medium where n?(w) = 1 — ¢%/(w? — Q2), which is a good model for diamond, the
polariton modes are the solutions of w?n?(w) — |k|* = 0 for w as a function of k.

These are given by

1
Wi (k) = 5 <|1<|2 g2+ 02 (K24 g2 + 02)° 4|k|2Q) .

In a more complicated example, such as fused silica, the mathematical expressions
for the polariton modes become too lengthy to write down here, but can in principle
be found in the same manner. Fused silica is the medium which we will use as an
example here, due to its common usage in optical experimental set-ups, and as such,

we can see the branches in Fig. 3.1(a). In particular, fused silica is here modelled

44



Chapter 3: Vacuum radiation from small variations to the optical properties

using the following resonance frequencies §2; and plasma frequencies g;:

Q; = 1.90342 x 10 71,
Qy = 1.62047 x 1016 571,
Q3 = 2.7537 x 1010 71, (3.28)

and

g1 = 1.803 x 10 571,
go = 1.035 x 106 571,
g3 = 2.298 x 10" s 1. (3.29)

Using these polariton branches, inspired by Ref. [112], we can now do the fol-

lowing field transformation
w? —w?(k) w? — w2 (k)
A = —— LAk (w) = : Axa
() Dlicw) el \/ ) ke
= Pka(w)Aka(W>- (330)

This defines what we will refer to as a polariton coordinates. Importantly, this
transformation might appear ill-defined but is truly finite since the poles of 1/D(k, w)
coincide with the roots of w? — w?(k). Indeed, if we carefully take the limit of

«

Cra = P, (w — w,), we see that

Cka = lim
W—We

D] = Ty

Here we have used the fact that the dispersion relation can be factorised as

D<) T (w? = 92) = T (w* — ).

i ¥

This coefficient P, is the projection of the photon field onto a polariton field. It will
appear in any physical result, commonly squared and it is thus convenient to work
with Cx,. It can be absorbed into the measure in the path integral, so we can ignore
it there. In other words, we normalise our probabilities such that the Py,-coefficients
do not contribute, which is a well-defined procedure also for a frequency-dependent
coefficient such as this. This coefficient signifies the degree to which any polariton
branch « is photon-like for a specific k, and can be seen as a generalisation of the
Hopfield coefficients [59]. As such, it follows that 0 < Cy, < 1, and that this constant
will be close to unity when the polariton branch dispersion relation w, (k) is similar
to a free photon, and vice-versa. We can see an example of this in Fig. 3.1(b) for

fused silica.
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Figure 3.1: (a) The dispersion relation for the fused silica polariton branches (solid)
in units of ¢ = 1, and free photon dispersion relation (dashed). In these units, the
optical regime lies between 3 — 20 um™!. (b) Generalised Hopfield coefficients Cy,
for the different branches. Compare to (a), and note that this coefficient is close to
unity when a branch can be characterised as ‘photon-like’.
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As we will see, the main benefit is that the action (and corresponding equation
of motion) becomes local in time when written in polariton fields, as opposed to the
time-nonlocal action seen in Eq. (3.18). Thus, we incorporate the temporally de-
layed response directly in the definition of the polariton field and their dependence
on the spatial mode k. We have here traded the temporal nonlocality for a spatial
nonlocality, which means that the polariton branch frequency w(k) contains higher
order terms than O(k). This simplifies the quantisation procedure. As mentioned
earlier, it is possible to treat temporally nonlocal field theories, but this commonly
involves either truncating to some ‘order of nonlocality’ or it comes at a computa-
tional cost as one must define an infinite set of conjugate momenta (see for instance
Refs [121, 122]). A spatial nonlocality is, on the other hand, straightforward to
implement, as we can treat each spatial mode independently. We should note that
this process relies on knowledge of all the polariton modes.

By design the temporally nonlocal action in Eq. (3.26) now reduces to the ac-
tion of a set of complex harmonic oscillators when written in field-coordinates A,.

Specifically, we find after transforming back into temporal space the effective action
Y 1 A 2 2 2
St = [ dt 5 (JAka (D = w2 Aa(D)?) (3.31)
ko Yt

The discussion in this chapter is centred around this action, and since we will mostly
consider a single spatial mode k in branch «, we will drop the sum over k and «
and simply refer to them implicitly.

As we have mentioned previously (Section 2.2), macroscopic quantum electrody-
namics is indeed a field theory, but can be treated as a quantum mechanical problem
in this context. We will return to issue of the infinite set of spatial modes k later
in the chapter (Section 3.6), including the accompanying problem of regularisation.
Here, we will use a quantum-mechanical-style path integral, but it is instructive
to also consider a Schrodinger equation for the purpose of building intuition. The
latter will be discussed in Section 3.3.2.

We can now proceed as usual in quantum mechanics through single-particle path
integrals. First, we want to add a driving term Jx,(¢) to the problem. From the
perspective of macroscopic quantum electrodynamics, this represents the additional
dynamics of free charges in the medium. We will briefly discuss the radiation from a
uniformly moving charge in a medium in Section 3.4.1, but we will mainly use these
extra driving terms as a means for computations.

Thus, after some simple algebra, and after simplifying the notation slightly, we

arrive at the following action:

tr 1 /.
Set [, J7] = / t 5 (|A|2 —WRAP + A+ JA*) . (3.32)
t

i
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This is what we intend to quantise, that is, calculate the probability amplitude of a
polariton in branch «, mode k and polarisation A having amplitude A; at the initial
time ¢; and finishing with the final amplitude Ay at time ¢;. Schematically, this is
given by the integral

(s, tylAti), = [ DADA® exp (Sl T,

where we have the boundary condition A(¢;) = A; and A(t;) = Ay. This is in
complete analogy with the quantum mechanical amplitudes considered in Ref. [3],
albeit with some extra indices of which we need to take care.
Because this problem is quadratic in the fields, it is easy to show that the classical
and quantum dynamics completely decouple, such that
n(ty)=0

(Ap te|lAits) = eisd/ DnDn* exp (iSex[0, 0])

n(t;)=0

= F(T)ee.

This is done by substituting A(t) — Aa(t) + n(t) into the action, where we assume
that n(t;) = n(ty) = 0. Consequently, we find that the transition amplitude fac-
torises as F(T') exp [iSq], where the pre-factor F(7T') is determined by the quantum
fluctuations and S¢ = Seg[Aa] is the classical action.

Let us first consider the classical dynamics, which we can find after minimising

the action in Eq. (3.32). This yields the (approximate) polariton equation

Aa(t) +wiAq(t) = J(t)

with the boundary conditions A (t;) = A and Ay (t;) = A;. The equation of motion
for A is identical. This further separates into two terms, the free homogeneous
term Ay and the driven inhomogeneous term A;, where for the latter we require
Ai(ty) = A1(t;) = 0. This has the solution

Ap(t) = !

sin w1’

A(t) = —{

[Afsinw,(t —t;) + A;sinw, (t; — t)]

sinwa(tf—t) /t ;. / !

I —— dt ot —t)J(t
Wa Sinw, ' /4, sin e )J(#)

sinwe(t —t;) [ ,

P ——— dt’ oty —tHJ()]. 3.33
et [t st 00| (339

We can now either directly substitute this into the action in Eq. (3.32), or with

considerably less algebra, integrate the kinetic term by parts and use the classical
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Chapter 3: Vacuum radiation from small variations to the optical properties

equations of motion to find

@ @

SalJ, J*] = % [A;;AH] zf + % [A;;AI} zf n % / ‘tf dt J*(t) [Au(t) + Ai(t)] . (3.34)

If we now substitute the classical solutions from Eq. (3.33) we find, after some

tedious but straightforward algebra,

Wq

SalJ, J*| = SemewT [([ A7 4+ |Ai*) coswa T — (A} A; + c.c.)] (3.35)
! tf dt | Ay si *

+ A;sinw, (tf —t) J*(t)) + c.c.

ty ty
/ dt/ dt’ J*(t)sinw, (t —t)
t; t;

X sinw, (' —t;) J(t') + c.c.

1
B 2w, sin w, T’

Y

where c.c. denotes the complex conjugate. Finally, we wish to compute the pre-factor

n(ts)=0 ;

F(T) :/ T DDy e e (P —iinl?)
n(t;)=0

The simplest approach to this is to use the time-translational invariance of the

problem. Since this normalisation factor depends only on the total time 7, it follows

that

F(T) = (0,T]0,0) = (L) .

4y sinw T

In the end, we find that the transition amplitude is given by

(r At = (e ) s, (3.36)
where T' = t; — t; and the classical action Sq[J, J*] is that of a complex driven
simple harmonic oscillator. Physically, Eq. (3.36) is the probability amplitude for
the polariton field in branch « in spatial mode k and amplitude A; at time t; to
transition to amplitude Ay at time ¢;. Note that since the polaritons are the normal
modes of the system, and because the spatial modes form a complete basis, this
transition amplitude involves only dynamics within its own branch « and spatial
mode k. Also, it is the propagator for the wavefunction of a polariton in branch «a
and spatial mode k, and we can use this to calculate the time-propagation of some
initial state 1(A;,t;). This expression contains a fair amount of information about

the system; extracting it can however require a fair bit of algebra. For instance, we
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Chapter 3: Vacuum radiation from small variations to the optical properties

will present the Fock space (excitation number) wavefunctions in the Section 3.3.1.

Interestingly, if we were, at this point, to sum over all spatial modes k we would
find a divergent transition amplitude. This is well-known, and requires regularisation
[4, 115]. As we shall see in Section 3.4, we can avoid this issue by calculating
differences in number state population. We should, as a final aside, note that as

T — nw/w, for n € Z, the propagator in Eq. (3.36) reduces to
(Ap,tplAis ti) ; = 0(Ap — (=1)"Ay),

which is as expected for a harmonic oscillator since this signifies that the field returns

to its previous value after a full period of 27 /w,.

3.3.1 Polariton wavefunctions

As a first example of information that we can extract from the transition amplitude
in Eq. (3.36), let us calculate the Fock space wavefunctions. These wavefunctions are
the usual probability amplitudes ¥,,, associated with each energy state, and they
are written as mn-states where m and n denote the number of —k and k polaritons
respectively (whose classical amplitude is given by A* and its complex conjugate A
respectively), with a total number of polaritons given by m + n.

Whilst it is possible to find these wavefunctions through a direct expansion of
Eq. (3.36) in orders of exp (—iw,1"), it is more convenient to first calculate the
transition amplitude of starting in a state displaced from the centre by a, and
finishing in a state displaced by b. The initial state is given by

We

. A) = 7wa\A7a|2/2

where the normalisation is such that
[Eatomr -1

where d?A = dAdA* is the complex differential area element. Here the subscript a
denotes the distance that the field variable A is displaced from the origin. The final

state is in this notation given by ¢,(A). In other words, we want to calculate

F(b,a) = / P A A; $(Ap) (Ag,tr| A t) | dalAd). (3.37)

Note that this transition amplitude is closely related to the coherent state transition
amplitude, as indeed ¢,(A) forms the real part of a coherent state of amplitude a.5

It is however mot a coherent state, and we will therefore from now on refer to

6Tt is missing a ‘momentum’ kick given to the wavefunction by the imaginary part of the
coherent state.
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Chapter 3: Vacuum radiation from small variations to the optical properties

such states as ‘displaced states’ rather than ‘coherent states’. Also, Eq. (3.37) is
a generalisation of the quantum mechanical calculation in Ref. [3]. As these are

simply Gaussian integrals which can readily be computed, we find

F(b,a) = 'y(f“’“(“’PH‘Z‘Q)/4 exp [ija (ba™ +b*a)| , (3.38)

where v = exp(—iw,T). It is now much simpler to expand in orders of 7.
In order to find the Fock space wavefunctions ¥,,,(a), let us now expand the
displaced state ¢,(A) in terms of these wavefunctions, with some coefficient 1, (a),

ba(A) = Z V(@) Wimn(A),

where we have to sum over both m and n because —k and k-polaritons acts inde-
pendently. By virtue that the amplitudes v,,,(a) must only depend on a and not
A, we find

Yo (@) = e~ Tl (g)’"ﬁ (@)"a"

: (3.39)

We can now also expand the displaced state transition amplitude in Eq. (3.37) in

terms of Fock space wavefunctions, yielding

F(b,a) = / PAPA, G(Ap) (At Ant) | dulA)

=3 U (B)pa(a) / P A4 W (Ap) (At A ) o Upal(A)

mnpq

= Z wjnn(b)¢mn(a)7m+n+l' (3.40)

At this point, let us expand both Eq. (3.38) and Eq. (3.40) in orders of . Finally
with the use of Eq. (3.39), we can extract the Fock space wavefunctions V,,,,,(A). For

notational simplicity, let us introduce the complex Hermite polynomials H,,,(z*, =)

Hyp (2%, ) = mm(fn)(—n'fk! (72) (Z) ()™ F gk, (3.41)

k=0

as discussed in Refs. [123-125]. Finally, we find a compact notation for the Fock

space wavefunctions as

wa e_wa|A|2/2

27 vmln!

As expected, they are the generalisation of the quantum harmonic oscillator wave-

U (A ) = Hypn (Vo A*, g A) et mintDwat (3.42)

functions for complex coordinates. For the sake of clarity, the 0-, 1- and 2-polariton
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Chapter 3: Vacuum radiation from small variations to the optical properties

states are given by

WA, 1) = | oo™ % Helemiont
Yorv10(Aka, t) = \/;—; H\/waAka} V {\/w_a I*WH o~ 5 | Akal? g —2iwat
Wa Wa Wa "
o () = 22 [ {22 (4 by {2 (g} v { Genltial? - 1) )

x e—“’T‘l\AkaFe—?,iwat’
with V (i.e. ‘or’) denoting what combination of k and —k modes are excited, and

where the phase factor is given by exp [—i(m + n + 1)w,t] as expected.

3.3.2 Schrodinger equation

Let us instead see what happens if we quantise the action in Eq. (3.31) in an al-
ternative fashion, such that we obtain a Schrodinger equation. We will have to use
complex coordinates, but this does not change the viability of the method. For
instance, Ref. [126] considered a complex quantum mechanical harmonic oscillator.
First of all, let us define the canonical momenta as

0Ly 1 B ﬁ 1

y T = % = = Ay,
ok, 2

D GAk, 2

Tka

where, as usual, the Lagrangian is defined from the action as

ty
Sut = / dt Log.
t;

Using this we can calculate the Hamiltonian

~

1 Ao
Hka = 27%ltaﬁ-ka + 5&)3(1{) ikm{Aka‘

In order to quantise this, we must now enforce the following canonical commutation

relations
1 N A% ~x .
|:Aka7 7Tka:| = |:Aka7 7Tkoz:| =1,

where we use discrete spatial modes k (so that the relevant d-function is a Kronecker
d-function), and where we can focus on a single spatial mode k because there is no

potential present that can induce transitions.” This yields the canonical represen-

"Note also the discussion in Section 2.2.3 on this topic.
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tation

0 0

A %

Tka = 37 Tka = A1
i0Ak,” K i0AL)

which is nothing but a complex harmonic oscillator. The Schrodinger equation of

each @ mode now reads directly as

82

V(A )= | 2T
10 (Ao 1) DAOA

5209 A | W (A, ),

where we can use partial derivatives (04) rather than functional ones (0/JA) since
here we treat each mode quantum mechanically. It is important to note that the
probability amplitude product over all spatial modes k, polariton branches «, and
polarisations A will yield a functional Schrodinger equation. Here however, we can
treat each mode independently and work as if Ay, is simply a complex number.

Using this, it is easy to verify that the ground state wavefunction is given by

o(K »

U(Aka, t) = w2( ) exp (—wa (k) | Aral” /2) e~ walk)t
™

This is in agreement with Section 3.3.1, Ref. [126] for the quantum mechanical

complex harmonic oscillator, and for the ground state of the field theories discussed

in Refs [3, 4].

3.4 Transitions between number states

We have now quantised the coupled light and oscillator system in terms of polari-
tons. In other words, the dynamics of the system can be described by some set
number of polariton quanta. In this section, we will discuss changes in the number
of quanta in time. Generally, changes to the number of quanta are associated with
the introduction of some time-dependent drive or potential. Introducing a tempo-
rally varying medium will induce the latter, an effective time-dependent potential.
As we will see, this will excite quanta from the vacuum state, i.e. quantum vacuum
radiation. The fact that some quanta is indeed excited should not come as a surprise,
as light in a time-dependent optical medium is very closely linked to quantum fields
on time-dependent backgrounds [15]. Interestingly, and usually ignored because of
its relative insignificance,® the vacuum state can also be made to absorb quanta in
a similar but time-reversed process.

In the language we use here, the excitation (or absorption) of quanta is easily
interpreted as transitions between the Fock space number states we discussed in

Section 3.3.1. Any such process has some probability amplitude associated with it,

8The probability of transition depends on the density of states of the initial state, which in the
case of an excited state will be negligible as compared to the vacuum.
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which we will denote as

k *
Grnepg(ts ti) = /dQAf(fAz‘ U (Ap) (Ap, tplAi i) g (A:).
Here we start in a state with p + ¢ polaritons at time t;, and finish in a state with
m + n polaritons some time later at time ¢;. As we have done throughout most
of this chapter, we will drop the subscripts that identify the spatial mode k and
polariton branch «, unless necessary. The spatial modes in question will be the

plane waves living in volume V discussed in Section 3.2, that is
u(x) = e**/VV.

As such, it is natural to refer to k as the momentum, and we will do so from here
on. In order to treat a time-dependent medium, we will (as alluded to earlier) start
with a driven system, discussing the effect of free currents J(¢) on the amount of

polaritons.

3.4.1 Direct driving of the system

We first introduced free currents J(t), i.e. the motion of free charges, into the ac-
tion in Eq. (3.32). We will now use the resulting transition amplitude [Eq. (3.36)]
to calculate the probability amplitudes associated with transitions between number
states. This we can later use as generating functionals for constructing the corre-
sponding transition amplitudes for a potential in a perturbative manner, given that
the initial and final vacua are equivalent (with some period in-between where the
vacuum is ill-defined).

As it will be the building block for what follows, let us first calculate the vacuum
persistence amplitude. That is the probability amplitude for starting in the vacuum
state and finishing in the vacuum state Gy, oo (¢ s, ;) (which we will denote G, (¢, t;)

for notational simplicity). This is computed as
Gilts,t9) = [ AL A Wil Ar) (Ar, s ), Won( ),

where we now make use of the ground state wavefunction Wgo(A) found in Sec-
tion 3.3.1 (albeit a time-independent version). As before, A is a complex variable

and thus the integral can be computed, yielding

1
4w,

Goolts,ti) = exp [— / dt / dt' J(t) coswy (t — ') J*(t') | e” T, (3.43)

Perhaps unsurprisingly, this is once again the natural extension to complex variables

of the vacuum persistence amplitude for real variables, discussed in Ref. [3].°

9Differently to the real variable case, we do not need to keep track of the order of integration
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Chapter 3: Vacuum radiation from small variations to the optical properties

In principle, we can compute the analogous integrals for more general num-
ber state transitions. Unfortunately, this quickly becomes untenable simply due to
the sheer amount of algebra required. We will therefore once again compute the
associated displaced-state transition amplitude between wavefunctions starting at
displacement a [i.e. ¢,(A)] and finishing at displacement b [i.e. ¢,(A)], where as a
reminder a displace state is given by

w 2
A = _ae*w‘llAfal /2
Pa(4) 27
Also note that physically these states ¢,(A) signify a quantum state with average
field amplitude a. This means that we instead want to calculate the transition

amplitude
F(b, (Z)J :/dQAfdQAZ ¢Z(Af) <Af,tf|AZ, tl>J Qba(Az), (344)

which we will once again use purely for computational purposes. Just as we did in
Section 3.3.1, by expanding ¢, and ¢, in terms of the Fock wavefunctions ¥,,,,, we
find

Fb.a)s = Y 0@ [ EAEA U (A) (Arot5]As ) B A)

= > U0 g (@) Gy 1),

The integral in Eq. (3.44), on the other hand, yields
F(b,a); = 7G0‘]067%Ta(|b|2+|a|2) exp [%(ba* + b*a)}

X exp {27\/% (b8 + b*ﬂg}

X exp {z % (aB* + a*ﬁ)} (3.45)

where v = exp(—iw,T"), and

1 Ly ,
e / dt ¢Eiee-1) 7(p)
a Jit;
. 1 Y et 7
BL = T dt e T (). (3.46)
e ti

From the displaced-state transition amplitude in Eq. (3.45), we can then obtain the

here and can safely extend the integral over both ¢ and ¢’ to the full interval between [¢;,¢f]. This
follows because the integrand is symmetric under exchange of ¢ <> ¢’. Had this not been the case,
then we would have to use t € [t;,t] and ' € [t;, ], and multiply the integrand by a factor of two.

95



Chapter 3: Vacuum radiation from small variations to the optical properties

S

Figure 3.2: Schematic of a charge moving at a constant velocity through a medium,
and the radiation excited in its wake.

number state transition amplitudes by expanding in order of . This yields

J _
Gmn(—pq (tf7 ti) — Y00 \/WP'CJ'

with E,,, = (m + n)w,, and H,,, being the complex Hermite polynomials given

Hpg (1B, —i3* ) Hypm (1B, —i5%)

in Eq. (3.41). Thus we have found the transition amplitudes associated with all
processes involving number states that are possible.

As an example, which we will also use later, we find that the probability ampli-
tude of exciting two polaritons back-to-back from the vacuum state into mode k in

branch « is given by

]_ . . / / ! * !
G{M—OO _ (E) /dt/dt/ J(t)ezwatezwat J*(t/)e—ﬁ Jdt [ dt' J(t) coswa (t—t")J* (¢ )’

(3.47)

where global phases o exp (fiw,t;) have been ignored.

3.4.1.1 Quantum Cherenkov Radiation

An example of a free current is that of a point charge moving through the medium.
This is a physically rather artificial example, since the emission of radiation will
damp the motion, but it is nonetheless instructive. Let us here work out the prob-
ability of exciting photons in its wake. A schematic of this can be seen in Fig. 3.2.
This we will show to be the quantum emission of Cherenkov radiation [127], also

studied recently in Ref. [128]. The interaction action of a point charge moving at a
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constant velocity is

So- [ " [ #s@s e vty A,

where y(v) = 1/v/1 — v2 is the usual relativistic y-factor. This we can then expand
in the polarisation modes discussed in Section 3.1, with v, denoting the projection
of the velocity into the polarisation direction ey. We can, as before, treat both
polarisation modes independently but we will keep the A-subscript in the following

as a reference. Now, in the Fourier domain, the above action reads
S0= 53 [ % Qui 3 Pra)V 2800 v K ) + A )
Q 9 - o A ko ka ko )

where we have projected into the polariton degree of freedom using P (w). The

first part of this we will interpret as the polariton projected driving force defined as

Jxa(t) = % / ;l—:em QuAY(V)Pra(w)d(w — v - k),

where Jy, = Ji, since Pk, is even in w for the dispersion relations of interest here.
The action now has the form of Eq. (3.32), and we can use the results obtained thus
far.
Let us consider an initial state at ¢; = —7'/2 and a final state at t; = 7'/2. Then
we find that the transition amplitude of exciting two polaritons back-to-back is
02

T2 . _ UA'YQ 7262 (W —w
11400 = <4w V) Q037 Cra sine® ([wo — v - K|T/2) €~ 2oV Cham 0™ (wamen)

where sinc(z) = sin(x)/x, and where w, (k) is the frequency that satisfies w, = k- v.
In the exponential, we assumed that 7" > 1/w, so that we could approximate
the integration over ¢ and t' to the interval (—oo,00), as this result would be the
dominating contribution. The most likely emission is thus when w, = k - v, or

written in the more familiar form for Cherenkov radiation
Uph = v COs 0, (3.48)

where we have defined the phase velocity vpn = wa/k, and 6 is the emission angle
(the angle between the velocity v and wavevector k). The frequency of emission w,

is set by n™!(w.) = vcosf, and the probability of emission is

T4
16V2k2v2 cos? 0

2
2 4.4 4 —TIC,m2Quiqy?
Pll(*OOZCk*a< )Q vyy'e wav[k TI'QUA'Y]’

where 6(0) = T is the total time the charge is in the medium, V can be interpreted
as the total volume of the medium, and cosf is determined by Eq. (3.48). Here
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k. is the wavenumber such that Eq. (3.48) is satisfied. Lastly, with our choice of

polarisation vectors A = {1, 2}, then v; = vsinf cos ¢ and vy = v sin fsin ¢.

3.4.2 Time-dependent media

Albeit the radiation produced by moving free charges is interesting in its own right,
our main interest is in the radiation produced by time-dependent changes to the
properties of optical media. Let us thus re-introduce the space- and time-dependent
oscillator frequency discussed in Section 3.1. Specifically, we will here treat small

changes to the resonance frequency such that
QF(x, 1) = Q7 [1+ fi(x, 1)) (3.49)

where |f;] < 1 for all time. Now, we can use the results from the direct driving
discussed in Section 3.4.1. In essence, the small changes to the oscillator frequency
will act as sources in some sense.

Let us start with perturbatively constructing the propagator for the oscillators.
If we return to Eq. (3.17) and substitute in Eq. (3.49), we find

(07 + Q7 {1+ filx,t)}] As(x,t,t") = —6(t — 1), (3.50)

This we can solve perturbatively, by assuming that the perturbative propagators

contribute at appropriate orders of |f;|, such that
Ai(x, b, 1) = Al(x, 1, 1) + Al (x,1,1) + Al (x, 1, t) + O(|fil),

where we truncate at 2"d order as it to contains sufficient complexity. Let us now

transform Eq. (3.50) into frequency space,'® from which we can obtain

210 (w + o’
A (x,w,0) = ﬁ
1 AN e Y ﬁ(x’w+w/>
Ai (Xvwvw ) = () (w2 _ Q%) (w/z _ 922)
do’  fixw")  fixwtw —w)
A2 ) = 94/ ot
F(x,w, W) i 21 [(w— w")2 — QZQ] w2 — Q?] [w? — 93]7 (3.51)

where we denote the Fourier transform of f; as f;, specifically such that
~ d )
Fixw) = [ 5oefx,0)

Here we can note a few things. To 0*® order in | f;|, we obtain the usual propagator for

0These are exact when T' — 0o, but generally useful when T >> 1/w,, as the Fourier transform
is generally between ¢; and 5.
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the oscillator, which will be taken into account through the polariton transformation
of Eq. (3.30). Also, since f is not a d-function, we cannot do a similar trick to take
these extra parts of the propagator into account. Rather, the second and third line
of Eq. (3.51) will show up as temporally nonlocal potentials, which we will treat
perturbatively. This is simply because w’ # —w in these terms, which would be
required for the action to be diagonal in the frequency domain. For the rest of this
section, it will be useful to denote the characteristic amplitude of |f;| as ¢;, which is
defined such that

fi (X, t) = Eifi(X, t),

for some function f;(x,t) with unit maximum amplitude. Finally, it is useful to note

that the refractive index perturbation is to first order given by

n(w,e) \/ Zuﬂ Qzl—i-e)

)+ on(w (3.52)

where we have defined

N — L AU
=20 = 5 2 o 5

i

Let us now proceed with some care, and return to the action before any trans-
formation into polariton field coordinates, that is, Eq. (3.26). If we now substitute
the oscillator propagator that we found perturbatively in Eq. (3.51) into this action,

we find

At this point, we have defined the auxiliary propagator

Z:gz ww' [A](k,w,w’) + A7 (k,w,w')], (3.54)

out of the perturbative parts of the propagator in Eq. (3.51). We can now proceed
as before and apply the polariton transformation from Eq. (3.30). From this we find

Sar= [t 5 (1Aal0) — o Awa(0))

ti

_ -Z / dt / 4 A ()08 (1, ) AL (#), (3.55)
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after some simple algebra. Note that we sum over auxiliary momenta k’ and polari-
ton branches o'. In addition to this, we have also defined the polariton projected

auxiliary propagator g (t,t') through

o dus

— e_iwte_iw,tlpka(W)Uk/—k(wa W) Pirar (W), (3.56)
27 27

o (t,1) =
where Py, (w) is given in the polariton projection defined in Eq. (3.30). As expected,
we find a complex harmonic oscillator that is perturbed by a delayed response har-

monic potential of the form

V (A Z Aka Uk k/ t t,)Alt/Oc’ (t/) (357)

k'a’

This potential enables transitions between polaritons with momentum k and branch
« and those with momentum k’ in branch «'.

As discussed, we will treat this temporally nonlocal potential of Eq. (3.57) in a
perturbative manner. Following the prescription from Section 2.1.5 of Chapter 2,
we can compute the probability amplitude of transitions from a (p, g)-state to a

(m,n)-state as induced by this potential. This involves computing

) )
GV - J
e eXp( Z/ dt/. & o) VR0 iéJk/a/(t’)> Crnepa

kl/ Z

J=0
(3.58)

As can be seen, the radiation emitted from time-dependent changes to the medium
separates into two sectors. The emitted polaritons can either be excited into the
same polariton branch, or into two different ones. Whilst the mathematics is fairly
similar, we will discuss each separately, both for clarity and because the physics is
somewhat different. We will refer to these as intrabranch and interbranch vacuum
radiation respectively, depending on whether it involves the same branch (intra-)
or two different (inter-) branches. In either case, we will focus on the probability
amplitude of starting from the vacuum state at time t; = —oo, and finding two
polaritons emitted back-to-back at time ¢ty = oo, as is illustrated in Fig. 3.3. Put

differently, we will focus on quantum vacuum radiation.!!

3.4.2.1 Intrabranch vacuum radiation

Suppose now that o' = « in the perturbative transition amplitude in Eq. (3.58). We
want to study the probability amplitude of emitting two polaritons back-to-back,

H8pecifically, quantum vacuum radiation of the parametric excitation kind.
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7

Figure 3.3: Schematic representation of two polaritons generated back-to-back from
the time-modulation of an optical medium. Instantaneous refractive index is repre-
sented by the size of the box.

and so the appropriate driven transition amplitude is

1 twat dwat’ T -1 ! coswq (t—t") J* (¢
Ghwo= (o) [ [ 0 st s rasssnsmainirn,

(3.59)

Let us now we expand the exponential in Eq. (3.58) containing the functional deriva-

2nd

tives with respect to the current J to 2"“-order, so that we are consistent with the

perturbative order. This yields

) 7 1
hn = @aﬁfj(wa,wa) G2 T (Wa, Wa) 0 (Wary —Wa) (3.60)

+ ik (Wa, Wa ) 0igie (—Wa, Wa)
+0(0%),
after performing the derivatives, setting J to zero, and performing the integrals in
t and t'. In this, we have ignored global phases [x exp (—iw,t;)] as they do not

contribute to anything physically. If we now substitute into this the definition of

the nonlocal potential in term of auxiliary propagators, as defined in Eq. (3.54), we
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find
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where we can interpret 6(0) = V as the volume of the medium that is temporally
modulated, which is important when moving between discrete and continuous mo-
mentum modes. From this amplitude there are several items to note. First of all,
since we are discussing back-to-back emission of polaritons, momentum is naturally
conserved and we will sample the homogeneous part of the medium modulation
( fi(O, v) for some frequency v). Secondly, most types of temporal modulation have
a negligible response at zero frequency, as this would involve a perturbation with
no characteristic time-scale. This is certainly true for the dynamical Casimir-like
emission from periodic modulation which we will consider in Section 3.5. There-
fore, we can safely neglect the final term in Eq. (3.61), since it is proportional to
the zero-frequency part of the modulation. Finally, we should note that there are
two different mechanisms for vacuum radiation at play here. On the first line of
Eq. (3.61), we see that the amplitude of vacuum radiation is directly proportional
to the spectrum of the modulation. On the second line however, we find a term that
depends explicitly on past events (due to the integral over auxiliary frequency w’).
Such a term allows for vacuum radiation to be emitted also outside the spectrum of

the modulation, specifically by allowing mixing of drive frequencies.

3.4.2.2 Interbranch vacuum radiation

In the case of interbranch vacuum radiation, i.e. when a # o in Eq. (3.58), we
consider transitions that connect two different branches. Because of the distinguish-
ably of the polaritons (as they are at different frequencies), we should consider a
slightly different driven transition amplitude. Therefore, instead of Eq. (3.47), we

will use the product of the amplitude of exciting one polariton into each branch.!?

12This is not an approximation, given that the unperturbed branches and spatial modes are
independent.
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This yields

G11<—00 - GIO%OOGOIFOO (362)
— - dt * t iwat dt/ t/ iwa/t’
(4 Wa,) [ wes [ aw s

X exp [—L/dt/dt’Ja(t) coswa(t—t’)J;(t’)}

/dt/dtj ) coswy (t —t) a,(t)], (3.63)

X exp[

where we have re-introduced the subscripts for the different branches o and o to
aid clarity. As we consider back-to-back emission, this amplitude involves one k and
one —k polariton. Just as for the intrabranch vacuum radiation, we can substitute
this into Eq. (3.58) to find the corresponding amplitude for a modulated medium

(where we now assume « # ). This yields a similar amplitude of the form

Gmter (Way Wa’) _

—
11+00 — 8\/m kk

o (i o) (i, 00). (3.64)
—————— 0 (—Wa, War ) O (War, Wa) - .
1284/ wdwey ki ki
For the same reason as for the intrabranch radiation, we have neglected terms that
involve f; (0,0). If we now substitute the definition of the two-time potential in

terms of auxiliary propagators, we find the transition amplitude

202
inter / - g; Qz Y
1100 = 1/ CaCiear V! Z 8 (w2 —0F) (W2 — ) [ ot [0, o)

dw' d3k' \/MQ ~ N x ) /
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+ CkaCka/V Z gz g] wWaW

128 (w2 — Q2) (w2, — Q2) (w2 — Q;)°
x [ £ (0,00 — wa) f; (0, 2%)]
O(f%). (3.65)

Similarly to the intrabranch transition amplitude in Eq. (3.61), we can note that the
second line opens up emission at frequencies outside the spectrum of the modulation.
However, since w,, and w, are at different frequencies, the first line of Eq (3.65) also
involve a type of frequency mixing. In addition to this, we can neglect the final line,
because it is unlikely that f; (0,2w,) and f; (0,wy — wy) are large simultaneously

and can therefore be assumed to be negligible.

3.4.2.3 Correlators

In this framework, we can also study the correlations between the emitted polaritons,

given a process. In order to do this, before we set the amount of free currents J
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in the system to zero when computing the transition amplitude in Eq. (3.58), we
apply an appropriate amount of further functional derivatives with respect to J.
The number depends on the situation. For example, we can compute the field-field

time correlator for back-to-back emission of polaritons through

5 5 zsl[ . ]
L, 15| Aga (D) AZ (7)) = e et | I te t;

where we with |¥) denote the ground state |0) which has been propagated with the
time-modulated version of the kernel in Eq. (3.36). In this, we have defined the S
as the perturbative action in the exponential of Eq. (3.58), that is

5 5 b
51 L’&] 26Jka/} Z / o / | ot e >6J;a(t)z'5jk,a,(t’)'

k// 1,

When considering periodic modulation, rather than studying the physics of scatter-
ing states that originate at ¢; = —oo and finish at ¢y = oo, it is more interesting to
use t; = —T/2toty = T/2 and track correlations as T = t — 7 increases. A
quick calculation will tell you that if you measure only at —oo and oo you cannot
distinguish whether the two polaritons are emitted simultaneously or are separated

by any integer number of the modulation period.

3.5 Quantum vacuum radiation

We are now in a position to return to the actual topic under consideration in this
chapter and study quantum vacuum radiation in some detail. In other words, we
will explore the physics of the probability amplitudes for exciting two polaritons
back-to-back from time-dependent media, as seen in Eqns. (3.61) and (3.65). As we
are interested in second order effects, let us suppose that the medium is modulated
periodically in time with two frequencies v; and vy for some long time 7. This is

captured by a modulation function
fi(x,t) = € (cos it + cosvat) e /77 (3.66)
whose Fourier transform is given by

f;-(k,w) _ EiTV\/g[e—;TQ(w—Vlf + e—%TQ(w+u1)2 + e—%7—2(w—1/2)2 + e—%TQ(UJ-Fl/Q)Q

(3.67)

As can be seen, the spectrum of the modulation contains the four Gaussians with
central frequencies £v; 5. Now, before we substitute this into the probability am-

plitudes given in the previous section, let us evaluate the retarded response integral
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from line two of both the intrabranch [Eq. (3.65)] and interbranch [Eq. (3.61)] sec-
tors. This is an integral over some auxiliary frequency w’, which we will denote
Igg;;ng. Since we have assumed that we modulate for a long time as compared to
both modulation frequency and mode frequency (i.e. 7 > max[l/w,,1/v12]), it is
straightforward to evaluate this integral for the modulation in Eq. (3.67). If we fur-
ther assume that the width of each peak is roughly 1/7, such that dw'/(27) ~ 1/7,
then we find

J

mixing

dw' d3K' Q? - ~

/ 21 (2m)3 (Wa — w’)2 02V Wawar fi (K, w') fi (K, wa + wor — W)

T 2 Q? 7;7_2(0-) + W —Vg—V )2

~ EQV (v/WaWe T) Z ¢~ 37 Watwo —va=1)? (3.68)

— (Wa — I/a)2 — 2

where the indices a,b denote each frequency possible in the set {£vy, 1o} As is
evident, this integral implies that vacuum radiation can be emitted at a plethora
of mixed frequencies, involving both a mixing of branches and a mixing of drive
frequencies.

For the sake of simplicity, suppose now that we modulate only the ¢*P-resonance
of the medium (¢, = €d;;). Furthermore, we can tidy up notation if we recall
Eq. (3.53), which relates the change in the refractive index dn to the amplitude of
the modulation e. In this case, Eq. (3.53) reduces to

n(w) = — €q- (3.69)

Whilst working with dn is physically intuitative, it is more convenient to consider
changes to the permittivity ¢ = n?. We will denote this de, and we can relate the

change in the refractive index dn to the change in permittivity de through
de(w) = —2n(w)dn(w).

In our case, this reduces to

2()2 2()2
Je(w) = E I 97, (3.70)
~ (2 - 02" (w2 —2)°

Let us substitute all of this into the intrabranch transition amplitude of Eq. (3.61).

After some algebra, we find

. 22
G /S_Scka(sgw&waTZ {e—g(ma—uﬂ)z

™ ( 2 2 2
+ \/i 0w, - ez Buarvam)Tl - (3.71)
2 zb: 92 ((wa — VQ)Q — 92)
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where we have used the notation de,, = de(w,). In the same manner, we also find

that the interbranch transition amplitude yields

11r11t<e_r00 [ —— 123 \/ Ckacka A /55wa6€w A WaWa! T Z |: *% waera/fya)z
fz \/ 0w, 0c,,, 92) e—é(wawa/—ua—yb)?
’ gq wa - Va - Qi)

T 7'2
- 5%ZCkaaewawm—ﬂw—Wa—”afe—ﬂ%a—”bf . (3.72)
b

Note that in most cases the interbranch transitions are suppressed, as they require
that CroCrar # 0. Physically, this implies that both the o and the o/ branch must
be photon-like simultaneously, which is unlikely to occur away from a resonance (2;.
However, this model should not be used close to any of the resonances, because we,
by assumption, neglect absorption. The transitions given by Eq. (3.72) are nonethe-
less non-zero also away from a resonance, which is the reason for their inclusion.
They are nevertheless greatly suppressed (since CyoCiq is still very small), and we
can safely neglect the last two lines of Eq. (3.72) as they then furthermore contribute
at the next order of perturbation theory.

Let us now specify the medium as fused silica. This has the branches seen in
Fig. 3.1(a) and the coefficients Cy, seen in Fig. 3.1(b) [p. 46]. Furthermore, as we
are mostly interested in the optical regime, suppose we modulate the first ultraviolet
resonance, which we will label as Q5 (i.e. ¢ =2 in the above). We choose v; = Qy/5
and v, = {)5/6, and suppose that the amplitude of the modulation € is such that
dn ~ 1073, This is small, but is a common value of dn for fused silica [107]. Thus,
using the above expressions of Eqns. (3.71) and (3.72), we can now calculate the total
excitation probability, given by ‘Gﬁtioo + Giﬁtﬁoof, as a function of the momentum
k, which we will refer to as the excitation spectrum. For the parameters chosen as
above, this spectrum can be seen in Fig. 3.4(a), where transparent and solid shading
denotes intra- and interbranch processes respectively. In Fig. 3.4(b), we can see the
polariton branches into which there is a non-zero probability of emitting quantum
vacuum radiation. Also in this we have labelled the modulation terms that are
relevant for each process.

We can draw a couple of conclusions from the spectrum in Fig. 3.4. First of
all, the temporal modulation of the medium provides energy to the system in pack-
ets proportional to 145, and any vacuum radiation emitted will be emitted into
branches that are at a similar energy scale. In this case it is the w; and wy polari-
ton branches. Now, the temporal modulation bridges the gap between a polariton
branch and some antipolariton branch (which is at negative energy), and thus we
see vacuum radiation at points when the modulation energy matches 2w, (intra-

branch) or wy +w; (interbranch). Vacuum radiation that connects polariton branch
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Figure 3.4: (a) Probability of emitting quantum vacuum radiation as a function of
vacuum wavelength, in the form of two back-to-back polaritons by a time-modulation
of the s-resonance of fused silica. This has been normalised to the maximum
probability 4.4 x 1075, Shaded (solid) filling denotes the intrabranch (interbranch)
processes. Parameters were chosen such that dn ~ 1073, modulated at frequencies
v, = Qy/5 and vy = Qy/6 for 7 ~ 42 fs (100 fs full width at half maximum).
These numbers where chosen for illustrative purposes, although 100 fs is a common
full width at half maximum in experiments. (b) The polariton branches involved as
function of vacuum wavelength. Temporal modulation connects a polariton (positive
frequency) branch and an antipolariton (negative frequency) branch, represented as
coloured arrows. (c) Possible mixing of drive frequencies.
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to polariton branch, such that the difference in energy is ws — wy requires breaking
the symmetry of the light-matter coupling, as discussed in Ref. [129]. Nonetheless,
allowing for transitions between different branches opens up for the possibility of
frequency-mixed vacuum radiation, in this case a mixing of system frequencies. It
is however, worth noting that the polaritons will oscillate at the same frequency as
they exit the medium,'® given by the inverse of their vacuum wavelength. Hence
any experimentally measured spectrum will appear as seen in Fig. 3.4(a).

Let us discuss each process separately, starting with the intrabranch resonances.
We can see the expected emission at frequencies wy = 17 /2 originating from the two
polaritons emitted at the same frequency, when we modulate at the frequency v 5.
However, we also see emission of two polaritons when wy = v; 2, and a mixing of the
drive frequencies in the case of wy = (v1 +14)/2. There is also a difference frequency
peak at we = |13 — 11| /2, but we will ignore it here since this is in the far infrared.
Moving on to the interbranch resonances, we see that two polaritons emitted from
the vacuum state, this time at two different frequencies, when wy, + w; = 11 and
wy + w1 = 15, which we have chosen to denote by solid shading with yellow and red
solid line, respectively, in Fig. 3.4.

All this shares many characteristics with nonlinear processes, a field in which
sum and difference frequency generation is well-studied [53, 107]. In this study
however, we have explicitly assumed that the system is linear. We can nonetheless
find a close connection of these phenomena to the physics of classical parametric

oscillators, that is oscillators that are driven in the form
E(t) + [Q% + dcosv] z(t) = 0. (3.73)

A single parametric oscillator will increase in amplitude if you modulate at twice
the natural oscillator frequency, i.e. when 2 = v/2 in Eq. (3.73). This is usually
referred to as a primary resonance in literature [40]. Less known but nonetheless
present is the case that such a system also has resonances when Q) = nv/2 for
n € N, referred to as sub-harmonic, which are significantly weaker. In addition to
this, coupled parametric oscillators have further resonances that combine multiple
modes of oscillation, which are called combination resonances [41, 42, 129]. As we
have modelled changes to the refractive index as shifts to the resonance frequency
of a harmonic oscillator, it hardly comes as a surprise that we find these resonances
also for the quantum vacuum radiation. As such the quantum vacuum radiation
observed here at 2wy = 115 and wy = vy is simply the quantum version of the
above primary and first sub-harmonic parametric resonance respectively, whereas
the radiation at ws 4+ w; = vy 9 is an example of a combination resonance.
Nevertheless, this does not adequately explain the resonances of the form w, +

Wo = |11 £ 15|, These resonances, of which only 2w, = v + vy is visible in the

13Exiting the medium is a classical process, and it doesn’t concern us here.
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spectrum in Fig. 3.4, are of a different type. Not only do they mix the driving
frequencies, but in doing so they also allow for emission outside the support of the
spectrum of the modulation.'* This is related to the ‘superoscillations’ discussed
in Ref. [130]. The origin in this case is nonetheless familiar. When we study the
drive f o cosuvit + cosvet we notice a beating between the waves, specifically at
frequencies |v1 £15|/2. Tt is from this beating pattern that the vacuum state absorbs
energy. This is a virtual two-stage process in which a quanta of energy from the
first modulation wave is absorbed into the system (say v;). The second modulation
wave then either contributes with another quanta (15) or an antiquanta (—vy). The
total energy (|v1 £11|) is then emitted into some polariton branch. This requires the
system to store energy for some time, which correlates well with the fact that the
origin of these peaks in the vacuum radiation spectrum is the temporally nonlocal
integral of Eq. (3.68). As such, this effect requires the retarded response of the

medium.

3.6 Regularisation and probabilities

The issue of regularisation has been left untreated so far. As this is a field theory,
we would expect the need to regularise. Indeed, the propagator in Eq. (3.36) is
formally divergent (as is well-known [115]). However, we avoid regularisation by
directly computing observables, i.e., the transition probabilities. For a transition
probability, or amplitude, we measure only the difference in occupation between
two states, and we need not worry about the actual occupation of each (which
would be infinite for the ground state and zero for any excited state).

Also, we should note that the probabilities calculated in the previous section are
indeed probabilities and not probability densities. For instance in Section 3.4, we
calculate the probability for the vacuum state to transition into a 2-polariton state
in spatial mode k in branch a. The total probability density for the process is found
by summing over all modes k and branches « and dividing by the volume (as is

commonly done, see for instance Ref. [37]),

d?
dV VZ po/ Z/ p 11%00’2

with the last step being exact for continuum states only. As discussed in Sec-
tion 2.2.4, we can transition between continuum and discrete states, given that we

are consistent in the treatment of each.

4The support of the spectrum is the frequency ranges of the spectrum that are non-zero.
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3.7 Conclusions from a perturbative setting

In this chapter, we focused on quantum vacuum radiation emitted due to small
time-dependent variations to the properties of optical media. In this, we had bulk
media or simple structured media such as fibres in mind,'® and used fused silica as an
example. In particular, we studied the effect of changing the resonance frequencies
in time, and examined how the time-delayed response of the medium affected the
spectrum of emitted photons. We found that two frequency mixing mechanisms
emerge in the system, both of which are of linear origin. The spectrum of quantum
vacuum radiation nonetheless takes on a ‘nonlinear’ character, with photons emitted
from the vacuum state due to both sum and difference frequency processes.

In particular, the photons are emitted when the sum of two polariton branch
frequencies equal a combination of modulation frequencies. Since we focused on a
medium whose resonance is modulated at two frequencies, v; and o, we found that

polaritons are emitted when

Wo + Wy = V1,2,
Wo + War = 211 2,
Wa + Wy = 11 £ 1y,

Wo + Wor = 12 £ 171, (3.74)

where o and o’ can denote the same branch, or two different branches. This encom-
passes the expected emission at frequencies v4/2 and v5/2, as well as emission at
|11 £15|/2. The latter is the aforementioned sum and difference frequency emission.
The system is at all times linear however, not nonlinear. We found that mixing of
frequencies can still occur in a linear system by two different mechanisms, involving
either energy emission or energy absorption. Note that here we refer to a differ-
ent kind of absorption than the one related to dissipation. Rather, in this context
‘absorption’ refers to the systems ability to gather energy.

Let us first consider the mixing process associated with emission. This is quan-
tum vacuum radiation that involves two different branches, i.e. when a # o in
Eq. (3.74). The physics behind this relates to the nature of coupled systems, which
has multiple modes of oscillation, here the polariton branches. For instance, in the
simple case of a medium with only one resonance €2, there are two mode frequencies

given by

1
Wy = |\/5 ((k2 + 02+ ¢2) & \/(k2 + Q2 4 g2)2 — 4/@92) _ (3.75)

15In particular, media where the bulk excitations can be treated independently, with some
spatial degree of freedom fixed by the structure.
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At a quantum level, it follows that excitations of the system (of which the quantum
vacuum radiation is an example) will consist of some superposition of w,—polaritons
and w_—polaritons. In fused silica there are four branches whose algebraic form is
much more complicated (depicted in Fig. 3.1) but the physics is nonetheless the
same. Hence, as it is in general possible to create an excitation that consists of a
superposition of two different polariton branches, it follows that quantum vacuum
radiation will also mix the branches. Notwithstanding, the likelihood for the exci-
tation of polaritons in the same branch is higher, because the modulation couples
more strongly to ‘photon-like’ branches and throughout most of the spectrum only
one branch is ‘photon-like’ at any one time.

Now, quantum vacuum radiation that contains the sum and difference of drive
frequencies however, i.e. the terms in Eq. (3.74) that involve |y & 15|, has its origin
not in the emission process (where two polaritons are emitted) but in the absorption
process. This is a consequence of the time-delayed response of the medium to
variations in its resonance frequencies. It requires the optical medium to absorb
energy in a two-step process, allowing it to be driven by the beating pattern of the
drive. The modulation which we used here [f(f) o< cosvit + cosiit] beats at the
frequencies |y +14|/2, frequencies which are absent from its spectrum f(w). In order
for this to be absorbed, the medium first absorbs one (anti)quanta of energy (—)uvy,
which is stored until a second (anti)quanta of energy (—)vs is absorbed. The energy
stored, |v; £ 1], is then emitted in terms of polaritons, and energy conservation
demands that w, +ws = |1 £1»|. The origin of this absorption process is the time-
delayed response, as captured in the model by the mixing-integral of Eq. (3.68).

We should also note that the probabilities seen in Fig. 3.4 are low, but the number
of polaritons emitted in an experimentally feasible scenario can still be significant.
We can estimate this by assuming a fused silica slab of roughly 100 pum thickness,
and a transverse area that is considerably larger than a pump laser spot size of Agpos.
The number of photon pairs emitted per unit angle df is then

= | kIGhT + Gl
~ Aspot (21) (2—W) |G + GITE ? Mmix) ~ 3 x 1076 (3.76)
T Amix < 0o e ’

where we assumed that Ag,e = 250 pm? and approximated dk ~ 27 /7. We have
focused on the vacuum radiation whose origin is the beating pattern in the modu-
lation, specifically the (v + v5)/2-resonance seen in Fig. 3.4 whose vacuum wave-
length is given by Anix >~ 0.65 pum. The polaritons excited from the vacuum state
would propagate in the orthogonal direction to the pump beam (i.e. the transverse
plane). This estimate is the probability of emission per pulse with a full-width-
at-half-maximum of 100 fs. If we furthermore assume a repetition rate of 1 MHz

we find that roughly three photon pairs per second are emitted. Given that the
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polaritons can be out-coupled from the transverse plane, this is feasible to measure
with current technology [131]. An important point is that these frequency-mixed
polaritons are background free, and would therefore be unlikely to be affected by
any filtering.

Finally, we should also mention that in this chapter we studied specifically quan-
tum vacuum radiation originating from small changes to the resonance frequencies.
This model is readily applicable to experiments in bulk media, where the resonance
frequency is shifted through the quadratic Stark shift, as mentioned in Section 3.1.
Indeed, in Chapter 4 we will apply the results discussed here to the the fibre ex-
periment in Ref. [97]. Whilst the quadratic Stark shift introduces a nonlinear light-
matter coupling, we expect the quantum vacuum fluctuations to be too small to
impact the results discussed here. It is important to note that the results are com-
pletely general with regards to how the resonance frequency is modulated in time,
and thus does not require the modulation to be nonlinear in origin. It is also related
to polaritons in microcavities, such as those discussed in Refs. [84-88], although in
such a scenario the light-matter coupling is modulated (the Rabi frequency) rather
than the resonance frequency.

We can also gain some insight into what we might expect from an experiment
such as the one described in Ref. [71], where the time-delayed response of dispersion
was neglected. In the proposed experiment, building on experiments performed in
Refs. [96, 132], an e-near-zero metamaterial is illuminated by a pulse of light from
a strong pump. This changes both the refractive index and the absorption rapidly
in time a process akin to the quadratic Stark shift.!® We can still expect some of
the intuition gained here to apply in this situation, although we cannot apply the
results directly as absorption plays an important role, and as the changes to the
refractive index are non-perturbative. We will discuss this in later chapters, where

we treat non-perturbrative changes to the medium properties.

6Note that the exact physical process is not currently known.
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Chapter 4

Perturbative quantum vacuum

radiation in experiments

“Theories come and go, but good measurements endure.”

— “And as often it is the other way around.”

Dr Kurt Hansen, random conversation, Lund, Dec. 2018
— addendum by Prof. Claudia Eberlein

Whilst it is interesting to study quantum vacuum radiation in a purely theoreti-
cal setting, it is always healthy to have a grounding in experiments. In this chapter,
we will analyse the experimental situation of Item 2 from the List of Publications
using the formalism built in Chapter 3. The actual experiment was primarily per-
formed by Dr Stefano Vezzoli. We expect the theory to be readily applicable, as the
experiment deals with small changes to the optical properties in a near-absorption-
less optical medium. In particular, the experiment concerns an optical fibre with a
modulated dispersion parameter in space. The time-dependence is then introduced
by a travelling high-intensity pump pulse. It is this time-dependence that will be re-
sponsible for exciting quantum vacuum radiation, and we can link this to dynamical

Casimir-like physics in the co-moving frame of the pump pulse.

4.1 The experiment, brief introduction to fibre

optics and building a model

Let us start with describing the experiment in some more detail, although we should
note that the finer details are not relevant. As can be seen in Fig. 4.1(a), the
fibre cladding diameter is periodically stretched during fabrication. This results in
effective changes to the optical parameters of the fibre in space. Specifically, we are
here discussing a dispersion modulated photonic crystal fibre. However, let us first
give a small introduction to fibre optics, whilst a lengthier discussion can be found
in Ref. [107].

As mentioned briefly in Section 3.2.1.2 in Chapter 3, a fibre is a waveguide

where the light is guided by a small spatial variation to the refractive index in
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v
HWP G1

Figure 4.1: (a) Schematic of the fibre, where the modulation along with the trav-
elling pump pulse leads to the emission of quantum vacuum radiation. (b) Exper-
imental set-up. Here DOF is the dispersion-oscillating fibre, the transverse plane
of which can be seen in the inset. HWP is a half-wave plate responsible for rotat-
ing the output polarisation, whereas G1, G2 and G3 are gratings used for filtering.
Note the position of the idler detector i, as well as the signal detectors S1 and S2.
All detectors are single photon avalanche detectors (SPADs). Figure adapted from
Ref. [97].

74



Chapter 4: Perturbative quantum vacuum radiation in experiments

the transverse plane (with respect to the propagation direction). We can usually
assume the dynamics of the transverse plane [(z, y)] to be fixed, (set by the structure
of the fibre, which acts like a potential), and consider only the dynamics along the
propagation direction [z]. Therefore, it is appropriate to expand in some polarisation

A, as well as some transverse mode Fy(z,y), such that the electric field is given by
E(x,t) = Y Fu(z,y)es Bx(z,1). (4.1)
A

Fibre optics is the study of Ex,(2,t). We will however drop the subscript as we will
only consider a single transverse mode at a time, along with one polarisation.

Suppose now that we have a plane wave travelling down the fibre. This would
be characterised by a frequency dependent wavenumber kg = k(wp) [107] such that
the electric field

E(z,t) < exp(—i [wot — k(wp)z], (4.2)

where we have chosen z to be the direction of the fibre. If this wave is no longer
a plane wave but a Gaussian wavepacket with a central frequency wy, then we can

characterise its propagation as

E(z,t) x /dw e~ Mlem (Wm0 /20" oxp (ik(w)2)

where
Ok 1 0k2 )
k(CU) :ko+%(w—wo)+§w(w—wo) + ...
1
Ek’o—i—ﬁl (Cd—wo)—i‘éﬁg (w—w0)2+... (43)

In fibre optics, it is customary to characterise dispersion by the dispersion parameters
B; governing the i*'-order dispersion. For instance 3; relates to the group velocity,
whereas (3, characterises the change in the group velocity during propagation. Hence
[ is called the group velocity dispersion.

The photonic crystal fibre used in this experiment is spatially varied in such a
way that the group-velocity dispersion parameter 5, becomes space-dependent, i.e.
Po — [a(z). In particular, as can be seen in Fig. 4.2, the modulation in the fibre

takes the form

L/A
Ba(2) =~ B9+ 65 Z exp [— (z — An)? /202}
n=0

= Bg + AB(Z)7 (4'4)

where A is the period of the modulation, which in the experiment is 5 m, and where
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Figure 4.2: Experimental group velocity dispersion parameter (5 as a function of
distance along the fibre. Note the Gaussian-like modulation with period A = 5 m.
Figure adapted from Ref. [97].

B, (ps’/km)

L is the length of the fibre. To model this in the context of Chapter 3, we can return
to the dispersion relation in Eq. 3.2 in the case of a time- and space-independent

optical medium. We can rewrite this as
k(w) = wn(w)

g?
=w 1_Zw2—ZQ?'

(4.5)

If we expand this around some central frequency wy in orders of w — wy, we find
k(w) =~ n(wo)wo + [n(wo) + won' (wo)] (w — wp)
+?m@m+wwwmw—mf+m (4.6)
Thus we can identify
B2 = 2n' (wo) + won” (wo)

¥ 1| 3gkwe 4giud B g3 (47
~no (w2 - 027 (w02 (@ — ) (w3 —2)*m3 |’

J

where we let ng = n(wp). In the context of Chapter 3, the simplest option to create

a space-dependent (35 is to introduce a space-dependent change in the resonance

76



Chapter 4: Perturbative quantum vacuum radiation in experiments

frequencies Q22 — Q2 (1 + A?), such that

L/A

AZ(z) = —n; Z exp [~ (z — An)? /20%] . (4.8)

where 7; is the amplitude of the modulation and A is as before the periodicity.
We can assume that the optical characteristics (such as resonance and plasma fre-
quencies) are similar to fused silica, as it is the main component of the fibre [133].
Using this as a starting point, it is straightforward to obtain 8, and (4 as reported in
Ref. [97] by slightly shifting the infrared plasma frequency of fused silica (here g;) —
this is well justified physically as the fibre is stretched during fabrication, changing
in oscillator density. Importantly all the physics we are concerned with takes place
close to the pump frequency of w, ~ 27¢/1050 nm, meaning that we can separate
this from the physics close to the infrared resonance frequency.! In particular, we

use the background resonance frequencies of fused silica

Q, = 1.90342 x 104 7!
Qy = 1.62047 x 10 71
Q3 = 2.7537 x 1010 571 (4.9)

as well as slightly modified plasma frequencies

g1 = K 1.803 x 10™ 571
go = 1.035 x 106 571
g3 = 2.298 x 10" 571, (4.10)

with k = 1.48 is a phenomenological scale factor used to match the reported disper-
sion parameters at the pump frequency. Finally, we can reproduce [y from Fig. 4.2
by choosing A = 5 m and 7; = 0.0426; » so that we only spatially modulate the near-
visible ultaviolet resonance €)y. Interestingly, the change in dispersion parameters
B; for these values is in the order of ~ 0.5 — 1% except for the the group veloc-
ity dispersion (35 where the relative shift is ~ 600%. This is a consequence of the
higher derivatives involved when calculating the group velocity dispersion. Clearly
the physics as modelled here will be dominated by the physics of a modulated group
velocity dispersion, as in the experiment.

In addition to the periodic modulation in space, the medium is changed in time
by a strong pump pulse Epump. As discussed in Chapter 3, we can understand
this through the quadratic Stark shift to the resonance frequencies of the medium

Qi — Qz + OénonlinEw2

amps where aypenin 18 the nonlinear polarisability. In particular,

INote that this is naturally an approximation.
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we will choose our parameters such that Q2 — Q2 (1 + Al) with

A:(Z7 t) = Qg |Epump(27 t>|2 + aPE;%ump<Zv t)a (411)
where we have separated the response into the so-called Kerr response, proportional
to intensity |Fpump|?, and the polarisation wave o Egump [53]. Here ax and ap are
the nonlinear polarisabilities for the respective effects. For a pump pulse travelling

down the fibre we have

Eﬁump = Jpe~7uaD/27 cog (2wpt — 2k, 2)
| Epump|” = Toe~0aD/27°, (4.12)

Thus we arrive at a model for the dispersion modulated photonic crystal fibre that
can be analysed in the context of Chapter 3, where in total we have a modulation

to (2, as
Q3(2,t) = Q3 [1 + A(2) + Ab(z, t)}
L/A
— Qg (1 o nz e—(z—An)Q/Zag
n=0
+ Ipe~(mvat)/2r {OzK + ap cos (2wyt — 2k,z) 1 ) : (4.13)

where 7 is the relative amplitude of the spatial modulation in €2,. Finally, we can
define

L/A
f(z,t) =—n Z e~ (FmAm)? 205 | | Tye~(zmvat)/27 |:OzK + apcos (2wyt — Qkpz)} ,
n=0

(4.14)

to bring the notation in line with Chapter 3, in particular Eq. (3.49). Eq. (4.14) is

the total space and time modulation in the {2;-resonance of the medium.

4.2 Modulation leads to vacuum radiation

Let us now analyse the quantum vacuum radiation emitted in the fibre from this
type of mixed spatial and temporal modulation. Apart from the straightforward
restriction from 3-dimensional space to 1-dimension, we can directly apply the for-
malism developed in Chapter 3. However, because of the spatial modulation, we can
no longer assume that back-to-back emission of polaritons will be the most signifi-
cant process. In fact, this is likely no longer the case. It follows that the polaritons

are no longer identical even in the intrabranch vacuum radiation processes. Also,
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we should note that this removes the mathematical differences between intrabranch
and interbranch processes. In general, we will label the polariton pair as composed
of a signal polariton along with an idler polariton of frequencies w, and w;, respec-
tively. These polaritons are also characterised by differing wavenumbers, ks and k;
respectively.

For notational simplicity, let us first rewrite f from Eq. (4.14) as

L/A

flet) = 77( 3 ek
n=0

I 1
+ {QK 04 2P0 eos (2wyt — 2kpz)}e(zvgt)/272>
n

n
L/A
2
=n|- Z i B {(5;( + dp cos (2wyt — 2k,2) 1 e~ Gmuat)2r |

(4.15)

as we expect 1 to be the dominating contribution to the shift in the resonance fre-
quency.? This follows from the experimental setting in Ref. [97], because in the
experiment the intensity of the pump pulse is very weak and yielding only small
changes in the optical parameters as compared to the spatial dispersion variation.
Only in this limit is quantum correlations observed. Here we defined the dimen-
sionless parameters dx p as the shifts from the Kerr effect and polarisation wave
respectively.

It now follows from Chapter 3 that the probability amplitude for the emission

of quantum vacuum radiation is

«/Méw
Cireoo = in/CoC L W Y 2E 50| i F ks — kegy s + wi) + 2

mixing

0c, ~ ~
—1 V CsCiLil% V wgwi.f(ks — kia ws + wl)f(07 O)
n
0c, - _
—1 CSCiL_IL\/wfjwif(ks — ki wi — ws) f(0, 2ws) |, (4.16)
n
where Cs = C.,, and where we have suppressed the index « for notational simplicity.
Here we have defined the mixing integral as

st dw' dk' Q% r 1IN / /
Imlxlng - g%(ws — w’)Q — Qg\/waif (ks +k , W ) f (_kz —k ,Ws + W —w )

dvdk 2 ) )
= / 27.(. 27r V2 Q2 \/wswif <k5 + k/7w8 + I/) f( Wz — V) (417)
2

where in the second line we have defined v = w’ — w, in order to bring the integral

2For a theoretical perspective, this is rather like dealing with a perturbation to the perturbation.
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into a more symmetric form. Note that we evaluate f at k, — k; rather than the
more conventional ks + k; because we have defined the signal and idler polariton
to travel at opposite directions in Chapter 3. In other words, if k, = k; then the
emission is back-to-back.?

To evaluate this probability amplitude we first need to compute the mixing

integral If;zlxmg And in order to do this, it is convenient to define
L/A
§z[k‘,w] =V 27TO'/5 [27T5(w)] Z _‘Tgk2/2 inAk
n=0
L/A

~ [210(w)] J_aﬁiczfs —nK)|, (4.18)

where the last step is valid when o3 << A < L.* This is indeed the case for
the experimental scenario analysed here. Here, we defined the spatial modulation

wavenumber as K = 27 /A. Also, it is convenient to define
Gilk,w, K, Q)] = V2rre ™ -K?/2 [T (w—Q —v,ylk — K])] (4.19)

such that we find the Fourier transform of the modulation as

flkyw)=mn [ — sk, w] + 20k Ge [k, w, 0,0] + O pge[k, w, £2k,, £2w,| | . (4.20)

Let us now evaluate some of the terms involved in the mixing integral. There are
four terms in total, and we will call these terms T} to T}, respectively. Specifically,

we have terms of the form

dw' dk! Q2
T, :/ﬁ——Qﬂz,/wswigz[ks—l—k”,ws—l—y]gz[—ki—k",wi—u]
5

21 27w v2 —
QQ L/A
= Ve | 2750 (wi + w) K7 > (ki — ks + [m—n)K)
s 2 n,m=0
=0, (4.21)

where the last line follows because wy and w; are both positive quantities. This is

expected as it arises from purely spatial modulation. Also, we have the contributions

3This is a convenient definition when treating back-to-back emission, but leads to this uncon-
ventional sign here.
“In the experiment, A = 5 m whereas the fibre length L = 80 m.
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that mix the spatial and temporal modulation

dw' dk! Q2
TQ[K, Q] = \/551/2 _2Q%\/w5w7;gz[k’5 + k",ws + V]gt[—k‘l — k",wi — U, K, Q]

- wg?EQ%M[WJBT’C:z/QECS(Ws +wi — Q= vy [ks — by — K — nK])
x exp (—7% (ks — ki — K —nK)? /2)
(4.22)
as well as
T3[K, Q) = /é—i(é—iﬂ (_2%93 Vwswigilks + K ws + v, K, Q)g.[—ki — k', w; — V]
02 L/A
= wg_gg\/m{mﬁmgﬂﬁ—ws—wi+vg[ks—/<:l-—K—niq)
x exp (=7 (ks — ki — K —nK)* /2)
=T[K, Q). (4.23)

Finally, there is the mixing involving only the temporal modulation

dw' dk' Q2
TyK,Q K Q= [ —— 2 Jwswigilks + K ws + v, K, Q]
2m 21 v? — Q3 !

X gt[_k'z — k’,wi — U, K/, Q/]

QZ sWq
~ VY [27r5(ws+wi—Q—Q’—vg[k:s—k:i—K—K’])

(2 — w,)? — Q2
2
X \/2%7_ exp (_TZ (ks — ki — K — K’)2> },

(4.24)

where we assumed that 1/7 > K — k, in order to perform the last integral. Now

the mixing integral becomes

Irsniixing = 772 ( - 45KT2 [07 0] - 25PT2[2kp’ QWP] - 25PT2[_2kp7 _2wp]
+ 265 T4[2k,, 2wy, —2k,, —2w,] + 05Ty [2k,y, 2w,, 2kp, 2w,

+ 40%T4[0,0,0, 0] + 65Ty [—2k,, —2w,, —2k,, —zwp]) : (4.25)
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Finally, this yields the probability amplitude of emitting a polariton pair

\/0Eu, 0,
\/CSCiT [

G100 =1

+2@{<¢%nﬁ@ah[1+z@wfﬂ\A;qpk%/aw¢mLﬂqe7%%m”2

X 26 (ws + w; — vglks — ki)

L
02 L/A
—72 s—Ri{—N 2
S n=0

x%u%+w—%m—m—mm>

+d0p (V?W\/MT [1 +i(27)/2\/C.Cs [en, /8] wsagL/A:| 7k 2

X %6 (ws + w; £ 2wy, — vylks — ki = 2k,))

L/A

02 2 (e —Fos 2o — )2
_ 277 (wz _293) (magT]C) Ze (ks —k;+2kp—nk)? /2

n=0

L
+ [terms of O (0%,67) and thus of limited relevance] , (4.26)

X Z(S(ws+wij:2wp—vg[ks—kij:ka—nlC]))

where we interpret §(0) = L. It suffices to limit the discussion to leading order in
dx.p in Eq. (4.16), as we expect these parameters to be small in the experimental
setting. We have also neglected exponentially suppressed terms.® Clearly, there is
nonetheless a plethora of quantum vacuum radiation with different origin. Inter-
estingly, the vacuum radiation may occupy widely different parts of the spectrum,

related to the multitude of time-scales present in the problem.

4.3 Experimentally relevant vacuum radiation

Let us now focus on the one type of quantum vacuum radiation that is measured,
namely the mixing term o 75[2k,, 2w,| found in the last line of Eq. (4.26). Also, let
us re-define the direction of the idler, such that k; — —k;. In this notation, k; = —k;

implies back-to-back emission. Now, this mixing term in the amplitude Eq. (4.26)

5Terms that originate from f(k, — ki, w; — ws) f(0, 2w,) are either zero by the d-function con-
straint, as in the g, and §;[0, 2ws, 0, 0], or exponentially suppressed, as in §;[0, 2wy, £2k,, £2w,)].
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has the probability amplitude

2

) Q
Giicoo = — Zn_P\/C C; \/55%5@0 <w2—292) (Vwsw;osTK)
s~ 982
L/A
> ZG_T (ks+h;i—2k,—nk)2 /2T

—0 (ws + w; — 2w, — vy [ks + k; — 2k, — nK])

L
(4.27)
The above amplitude only becomes significant when
ws + w; — 2wy, — vy [ks + ki — 2k, — nkK] = 0. (4.28)

This might look rather curious and complicated, mixing both frequency and mo-
mentum degrees of freedom. However, considering that we are working with a
perturbation to the resonance frequency that is moving at a constant speed vy, it
is natural to shift into the reference frame of this pulse. We will refer to this as
the co-moving coordinates, and denote it by primed coordinates. A simple Lorentz
boost tells that

W=7 (w—v4k), (4.29)

where v = 1/,/1 —v2 is the Lorentz factor. We can now re-write the relation in
Eq. (4.28) as

W, +w; = nb + 2w, (4.30)

where ' = —yvy,K is the co-moving frequency of the spatial modulation. This
puts the results in a new light, where the relevant physics takes place in the co-
moving frame. In this frame, the quantum vacuum experiences temporal modulation
from the (laboratory frame) spatial modulation, as well as from the polarisation
wave. The beating between these two types of modulation results in the energy
conservation relation in Eq. (4.30). In essence, this becomes the problem analysed
in Section 3.5 of Chapter 3.

Furthermore, let us now assume that we are dealing with intrabranch vacuum
radiation, specifically of the most photon-like polariton mode (since the pump will
couple most strongly to this). If we then suppose that ws = w, + Aw and w; =

wp — Aw, i.e. a small off-shift around the pump frequency, we can expand

ks = k(ws) ~ ky + (61)Aw + = <B2>Aw + — (Bg)Aw + — <B4> ,

1
ki = k(ws) = ky — (B1)Aw + 5 <ﬁ2> w? —§<5 >AW + 5 <54> . (4.31)
We should note that the assumption that w,; = w, £ Aw implies that we are
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Figure 4.3: (a) High power [P = 12 W] experimental spectrum as measured at
the output of the fibre. Note the position of the signal and idler. This is not
the quantum emission, but classically stimulated. (b) Low power [P = 0.03 W]
coincidence-to-accidental ratio with a coincidence window of At = 1.7 ns. As can
be seen, the signal and idler have a ratio greater than unity indicating that the
photon pair has non-classical correlations. (c¢) Normalised coincidence-to-accidental
ratio as a function of the delay. Figure adapted from Ref. [97].

discarding possible vacuum radiation resonances well separated from the pump.
Nonetheless, the experiment was performed close to the pump frequency, and it
is therefore the relevant frequency region here. Also, we have chosen to truncate
the expansion in Eq. (4.31) at 4"'-order here, as further orders only leads to very
small corrections to the predicted frequencies of the signal and idler. Here it is
also appropriate to use the space averaged dispersion parameters to account for
the modulation in the dispersion parameters.® This is simply because k and z are
conjugate variables. Such construction is valid in the limit of k,; > 27 /A, which is
indeed the case here. Substituting this into Eq. (4.28), we find that

(Bo) Aw? + %(&)Au@ = nk. (4.32)

This has solutions

Bw = £/ —fﬂ—f% V3(82) £ v/3(B2)7 + (BinK. (4.33)

Note that this has real solutions when n < 3 for the parameters used in the experi-

ment (3, is negative).” Specifically, if we focus on the n = 3 emission, we see that

this predicts that sidebands of quantum vacuum radiation is emitted at

As1 = 954.3 nm (4.34)
Ais = 1173.1 nm (4.35)

6We define this average as (3;) = + AR Bi(z2).

A z0
"The n = 4 solution is at the very limit of yielding a real solution here, and will be disregarded.
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as well as

As2 = 993.9 nm

Indeed, if we compare this prediction to the experimental data in Fig. 4.3(a), we see
that the first set [Eq. (4.34)] are the sidebands observed in the experiment [97]. The
second set is also supported by the spectrum, but harder to measure in isolation. We
should also note here that we can obtain the same sidebands by a classical nonlinear
optics treatment, where ks + k; — 2k, — nK = 0 is known as the phase-matching
condition [53]. This was also done in Ref. [97]. Such a treatment is however classical,
and perturbatively expands the dispersion relation around the pump frequency.

To delve a little further into the experimental detail, the low-power emission
seen in Fig. 4.3(b) shows a coincidence-to-accidental ratio (CAR) greater than unity,
implying non-classical correlations between the signal and idler [2]. Here we define

the coincidence-to-accidental ratio as

st(o) — Nsi(T)
AR = ) )
CAR N (r) ,

(4.37)

where N ;(0) is the total number of detected photon pair coincidences at zero delay
within a coincidence time window of At and N;,;(7) is the average for non-zero
delay. A normalised example of photon pair coincidences can be seen in Fig. 4.3(c).
Note that coincidence-to-accidental ratio in Eq. (4.37) is implicitly pump intensity
dependent, as a high CAR is only likely to occur for quantum correlated photons,
which in turn requires a low intensity pump. To further show that the emission did
indeed have a quantum origin, we can calculate the second degree of correlation ¢

as

Ns s ZNZ
g@(0) = =2

— 4.38
Nsl,iNSQ,i’ ( )

where IV, , is the measured coincidence rate between beamsplitter ports x and idler
y and Ny 42, is the corresponding coincidences between all three. See Fig. 4.1(b)
for locations of ports s1 and s2. Importantly, a ¢ (0) < 1 implies that the emission
is indeed non-classical [134]. The measurement of this can be seen in Fig. 4.4(b),
where ¢®(0) drops far below unity. We can therefore expect that the signal and
idler photons are indeed the quantum vacuum radiation, as predicted here.

Indeed, let us we return to discussing the model for this experiment built in this
chapter. We see \GHHJO\Q for Eq. (4.27) in Fig. 4.5, where n = 3 is denoted by
solid blue, and the sum of n = {0,1,2,3} is denoted by dashed green.® Note that

8Here we approximated d(...)/L as exp [—(...)?/2€?] for a small e. In addition to this, we
modified the dispersion relation to reproduce the averaged (f2) and (84) by letting x — 1.51468
and Q; — 0.50;. We should thus view this as an effective model for the medium. Lastly, we used
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Figure 4.4: (a) Coincidence-to-accidental ratio as a function of peak power of the
pump beam. Note that it increases rapidly for low peak power. (b) Second degree
of coherence g? (0) at zero time-delay. It quickly decreases below unity for high
coincidence-to-accidental ratio, heralding quantum correlations between the signal
and idler. Figure adapted from Ref. [97].

we evaluated |G’11<_00|2 using Mathematica. We thus predict exactly the sidebands
as measured in the experiment. However, we also predict several other sidebands of
similar amplitude for n = 0,1,2. All these peaks do nonetheless fall within a small
window of frequencies and it is possible that further experimental complications, not
taken into account by the simple model produced here, act to reduce the amplitude
of these, especially since we modelled the photonic crystal fibre at a fairly coarse

level. Further inquest into this would be interesting.

4.3.1 What about the other vacuum radiation resonances?

Interestingly, the quantum vacuum radiation amplitude in Eq. (4.26) also contains
further resonances, that are independent of the pump wavenumber k, and frequency

w,. These are resonances that would often be missed in a fibre setting, as it is

-
commonplace to assume that all physics transpires in a frequency window around

the pump [107]. In particular, we also predict vacuum radiation when
ws +w; — vy [ks + k; —nk] = 0. (4.39)
This would, in the co-moving frame, correspond to
W+ w; = nd’ (4.40)

and we see that this is the first-order effect of the spatial modulation (which becomes
temporal in the co-moving frame), without the mixing due to the time-nonlocal

response of the medium. This radiation is however, completely independent of the

n = 0.042, and dp = 0.001.

86



Chapter 4: Perturbative quantum vacuum radiation in experiments

(a)

0.025
0.020
0.015
0.010

0.005
0

P(Aw)

(b)

0.025 a
0.020 |
0.015
Q- 0.010 U

0.005
0

(2)

950 1050 1150 1250
A (nm)

Figure 4.5: (a) Probability per unit frequency per unit length of emitting quantum
vacuum radiation as a function of the shift from the pump frequency Aw. The
experimentally measured n = 3 peaks can be seen in solid blue, whereas the sum of
n < 4 is denoted by dashed green. Note that a shift of Aw ~ 40.6 um™! corresponds
to Ay = 954 nm and A\; = 1173 nm respectively (+ — signal and vice-versa). (b)
Spectrum of vacuum radiation as a function of measured wavelength. Note the
relative similarity to Fig. 4.3(a).
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pump frequency, and we expect the resonance to be at low frequencies. Nonetheless,
it offers a different avenue of approach to vacuum radiation in a spectral regime off-
set from the pump.

Even more striking perhaps, the amplitude in Eq. (4.26) also contains
ws +w; — vy [ks + k; —nk] =0, (4.41)
which in the co-moving frame corresponds to
Wl +w=0. (4.42)

Importantly, depending on your choice of parameters, the co-moving frequencies can
be negative, and this condition can be fulfilled. This emission is directly linked to
the analogue Hawking-like radiation studied in Refs. [135] whose classical analogue

was experimentally verified in Ref. [35].°

4.4 Conclusions from analysing an experiment

In this chapter we analysed the experiment performed in Ref. [97] (Item 2 from the
List of Publications) in the context of the quantum vacuum radiation. Specifically,
we modelled the variations in the fibre group velocity dispersion fy as a variation
in the resonance frequency in space. Interestingly, from the start this appeared to
be a fair model, seeing that the dispersion coefficients 3; were hardly affected, apart
from the group velocity dispersion, as intended. In addition to this, we introduced a
travelling temporal variation of the resonance frequency through the quadratic Stark
shift of the resonance frequency. Through this we could account for the Kerr effect
of the ‘strong’ pump laser pulse used in the experiment, as well as the polarisation
wave excited by the pump. As all physics of the experiment could be accounted
for through shifts to the resonance frequency, we could apply the framework of
Chapter 3.

Through this, we predicted quantum vacuum radiation in agreement with the
experimental results, namely sidebands around the pump (which was at 1054.22 nm)

at

As1 = 954.3 nm (4.43)
A1 = 1173.1 nm. (4.44)

Curiously, the precise form of the energy conservation relation in the probability
amplitude of Eq. (4.27) suggests that the physics has a straightforward explanation

in the co-moving frame of the pump pulse. Indeed, in the co-moving frame, moving

9We will further comment on this in Chapter 5.
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with the pump pulse at the group velocity vy, these sidebands are a result of the
frequency mixing due to the time-delayed response of the medium as discussed in

Chapter 3. Thus we can immediately write down the energy conservation
/ r / /
W + w; =nb’ + 2w, (4.45)

where 6’ is the co-moving frequency of the spatial fibre modulation, as in this frame
the fibre appears to be modulated in time. We can compare this to Eq. (3.74) of
Chapter 3.

Nevertheless, the theory presented here predicts several other resonances for
quantum vacuum radiation. Especially intriguing are those that are disconnected
from the pump frequency [Eqns. (4.40) and (4.42)]. Such resonances would be
neglected by models that assume all frequencies to be centred around the pump,
which is commonplace when discussing fibre optics [107]. Whilst these resonances
usually are at low frequency, it nonetheless offers an interesting new avenue to pursue

experimentally.
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Chapter 5

Intermission: Analogue gravity &
photon production in ENZ

materials

“Strange department, this. Their motto was, ‘The comprehension of
Infinity requires infinite time.” I didn’t arque with that, but then they
derived an unexpected conclusion from it: ‘Therefore work or not, it’s all
the same.’ In the interests of not increasing the entropy of the universe,
they did not work.”

Arkadi and Boris Strugatsky in Monday begins on Saturday, 1966

Before we continue it can be instructive to bring in a different perspective of
the results obtained so far. The aim of this chapter is to analyse scenarios beyond
periodic modulation and perturbation theory, as well as to put the thesis in some
further context beyond that already discussed in Chapter 1. We will primarily
discuss the results of Chapter 3, but also use work from the previous studies Item 3
(work done in conjunction with Dr Angus Prain) and in Item 4 (work done prior to

doctoral studies) from the List of Publications.

5.1 Analogue gravity

Whilst the study of quantum vacuum radiation is fascinating in its own right, our
interest originates analogue gravity. Analogue gravity is the study of the quantum
fields on a background that simulates the effect of curved spacetime. Importantly,
the background here is not a spacetime in any strict sense, and is not required
to satisfy Einstein’s field equations. Nonetheless, many aspects associated with
quantum field theories on curved spacetime are inaccessible experimentally [24], and
analogue gravity offers a window through which we can gleam insights. Especially
interesting is if the effective spacetime created by the background in analogue gravity
can be made to mimic that of a real gravitational system.

As mentioned in Chapter 1, perhaps the two most prominent examples of ex-

otic quantum-field-theoretic effects on curved spacetime are that of photons emitted
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from a black hole (Hawking radiation [21, 22]) and particle pair production from an
expanding spacetime (cosmological pair production [15]). The former is also closely
linked to the Unruh effect [20] by the equivalence principle, where the accelerated
observer in flat spacetime measures a thermal vacuum whose temperature is pro-
portional to the acceleration. Analogue gravity was indeed first introduced to study
these effects. Specifically, Unruh [19] found that phase fluctuations on a flowing
fluid behave analogously to a scalar field on curved spacetime, forming a so-called

acoustic metric with line-element

ds* = cﬁ [— (&2 = v®) dt* + (dx — vdt)z] : (5.1)
where p is the density of the fluid, ¢, is the local speed of sound and v is the flow
velocity. In this way, Unruh introduced what is usually referred to as a ‘dump
hole’ [24], where the phase fluctuations experience an event-horizon-like point when
the fluid flow speed exceeds the local speed of sound. This has recently been ob-
served experimentally for quantum phase fluctuations in a Bose-Einstein condensate
[32, 33|, as well as studied extensively theoretically [24]. As we are not directly in-
terested in analogue gravity using the acoustic metric, we will simply refer to the
comprehensive review found in Ref. [24] for further details.

Also recently, Hawking-like photon pair production in an optical fibre was found
experimentally [35] in the case when the emission was seeded not by the quantum
vacuum but by a separate beam of light. This is where we will find the link to the
work contained in this thesis, as indeed some theoretical work directly related to the
recent observation was performed in Ref. [135] (List of Publications, Item 5). The
connection between an optical fibre and a black hole is however qualitatively different
from the acoustic metric for phase fluctuations on a fluid. Instead, it builds upon
the Gordon metric for light in a dispersion-less medium [136]. For a static observer

in flat spacetime, this line element takes the form

2
ds? = (n(i t)) dt? — dx?, (5.2)
where n is the refractive index of the medium and c is the speed of light in vacuum. In
the case of a time-independent refractive index, this metric links nicely to geometric
optics and Fermat’s principle, the principle that light will tend to minimize the
path traversed between two points a and b [54]. The null geodesics of Eq. (5.2),
determined by ds = 0, is given by

i = (i) 53)

This is the equation of motion for a ray of light. Suppose now that we want to
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calculate the total time T' of propagation, given by

T T 9 T d d
T = dt:/ du/(f)ﬁ:/ a4 22X
0 0 n/ c 0 dt dt c
1 [P
_1 / dse n(x), (5.4)
c a
where the last line is the usual formulation of Fermat’s principle and dsg = Vdx - dx
is the usual Euclidean line element. Interestingly, had we started with a metric of

the form
ds® = dt* — n*(x, t)dx?, (5.5)

we would have arrived at the same answer for null geodesics. This is a common
feature of the mapping between refractive index (or more generally permittivity and
permeability) and an effective spacetime metric: it is not one-to-one, and there are
multiple equally well-defined versions of an optical metric [24]. Note that this is also
discussed in the framework of transformation optics [137], where a refractive index
profile is chosen to emulate some coordinate transformation. The latter form of the
optical metric [Eq. (5.5)] is the metric of interest here. To simplify notation, let us
from now on work with units where ¢ = 1, ¢g = 1 and A = 1, in accordance with the
rest of the thesis.

Importantly, this metric emerges for slowly-varying (low-energy) electromagnetic
excitation in Hopfield models for macroscopic quantum electrodynamics, which are
the type of models with which we work. Suppose we study a medium where the
field is constrained in one spatial dimension, leaving the other two effectively free:
the dynamics of the transverse plane of a thin-film medium, where the extent in the
z-dimension is much smaller than a wavelength, would be an example of this. As
was shown recently by Linder et al. [110], if we further consider the limit where the
resonance frequency! of the medium €2 is much greater than the frequency of light,
then the combined light-matter excitations can be described by a scalar field on the

metric with line element

2

ds? = df* — (1 + o <t>> [da? + dy?] . (5.6)

Interestingly, had the dynamics been unconstrained in all three spatial dimensions,

then the light-matter excitations would behave as a scalar field in the metric

ds* = \/ﬁ —/ <1 + Qg_zt)) dx?. (5.7)

(t)

n general, we allow for a time-dependent
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Again, this goes to show that the optical mapping in analogue gravity is not one-
to-one. In order to show this, let us start at the Hopfield action introduced in

Chapter 3. To sum up, this action is given by

S, = / dt / &z % [Ai - (VAA)Q]
Sp = / dt / &z % [1%2 . 92@)32]

Sint = /dt/d% (—g AAR), (5.8)

which is a reduced version of Eq. (3.13) to a single oscillator R, and where we have
expanded into polarisation modes ey such that A = >, Aye, and ey-ey = d, v. We
discussed and motivated this in Chapter 3 but in short it describes electromagnetism
coupled to an optical medium with resonance frequency (2. Note that for a time-

independent €2, the refractive index is given by
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mW =

and ¢ is the effective plasma frequency of the medium. The corresponding equations

of motion are

A)\ - VQA)\ = gR
R+ Q*(t)R = —gA,. (5.9)

If we suppose that the excitation frequency w < €2(t) so that we can neglect R, then

the solution to the matter degree of freedom R is simply
R~ —gAy/Q%(t).

Furthermore, if we substitute this solution back into the action in Eq. (5.8) and
neglect the surface terms of R by setting R(¢;) = R(t;) = 0,2 we find

Syt Reint = / dt / d%% [(1 + ngt)) A2 — (VAA)Q} . (5.10)

2As we mentioned in Chapter 3, we can simply ignore the free action Sk and substitute this
into the interaction action Sy along with the factor 1/2. Formally, we can rewrite

17 1 Ltf 1 ..
_ 3. [p2 _o2mp2] — [ 3., (21 _ 1 2
SRf/dt/dzz[R Q(t)R} /dx(Q[RR]ti 2/dt [RH}R]R)
1 3 .
_§/dt/dx (gA,\R),
where in the second line we set R(t;) = R(t;) = 0 (an approximation) and use the classical

equations of motion (exact). In total we thus find Sgiint ~ %fdtfd?’x (—g AAR), and in the
low-energy limit we have Sgyime = [dt [ d®z [g2/20%(t)] A3. Eq. (5.10) follows from this.
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By comparison with the action of a scalar field ¢ in some metric g,,, whose action

is
Sy = /dt/d?’:c V—09"0,00,9, (5.11)

we find the low-energy optical metrics of Eqns. (5.6) and (5.7).> Here we define
the metric g,,, such that the line element is given by ds* = g, datds” [dz" is
the differential element of the u™ component of the 4-vector x = (¢,x)|, g is the
metric determinant and g"” is the metric inverse. It is worth mentioning that the
slowly-varying limit is exactly the limit where geometric optics is valid.

If we return to the gravity-side of this discussion, we should immediately notice
that the metrics (or line elements) of Eqns. (5.5) and (5.6) coincide with the metric of
an expanding universe, that is, the Friedmann—Lemaitre-Robertson—Walker metric
[23]:

ds® = dt* — a*(t)dx>, (5.12)

if we identify a purely time-dependent refractive index n(t) with the so-called scale
factor a(t). The metric is here written in the coordinates of a stationary observer.
In this a(t) is the scale factor, related to the Hubble constant through H = a/a
[24]. This striking resemblance was the basis of the work in Item 4 from the List of
Publications. Indeed, in that work, we studied this analogy in a dispersive medium
in the case when the change in refractive index is very small.

We will get to the details of that work shortly, but it is interesting to first note
a couple of things regarding particle pair production from cosmological expansion.
As was neatly summarised by Wittemer et al. [30] in the supplementary materials,
cosmological expansion affects different types of quantum fields in a qualitatively

different manner. As is commonly done, let us first switch to so-called conformal

t dt/
n= N
/0 a(t')

The metric for the expanding universe then takes the form

time 7, defined as

ds* = a(n)® [dn® — dx*] .

This does not alter the physics but simplifies the algebra. Of special interest to us,
they noted that the cosmological expansion couples directly to a scalar field ¢(n, x)
by changing its mode frequency in time, whereas for a vector field A*(n, x) it couples

only through the mass term. In particular they found that in a real gravitation field,

3For the former, we naturally integrate not over d®z but d2x.
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the scalar field equation? (V,V* —m?) ® = 0 can be reduced to
i + [anQ +[k[? - 9] S =0 (5.13)
a

for each momentum mode k, where f = df /dn and ¢ = a?/2®. As can be seen, even
in the massless case the cosmological expansion would change the mode frequency
in time, which in turn can lead to particle pair creation for the associated quantum
field. On the other hand, the equation of motion for a Proca-style massive photon®

can be reduced to
Ay + [@®m? + |k[°] Ay =0 (5.14)

for some polarisation A and momentum mode k. Since photons are massless, we
would therefore not expect cosmological expansion to excite photon pairs from the
vacuum state. This then brings up the question of why we would expect photon pairs
to be emitted from an optical medium where the refractive index changes rapidly
in time, mimicking cosmological expansion. The reason for this is dispersion. In
fact, the metrics established in Eqns. (5.5) and (5.6) are only valid in the limit of
geometric optics, where the fields are assumed to be slowly varying. If we instead
consider the high energy excitations, i.e. when w > 2 with €2 being the resonance
frequency of the medium. In this case, we can neglect the 2% term in Eq. (5.9) and

the solution to the matter degree of freedom is
R = —gA)\

The corresponding action is then
171 .
S-sRyint = / dt / d*x 3 [Ai —(VA,)? - gZAi] : (5.15)

which can be compared with Eq. (5.10). As can be seen, the coupling acts as a mass
term! It is noteworthy that this is also the equation of motion for a non-interacting
plasma, which does not have a resonance frequency.’

Whilst dispersion is a complicated phenomenon, which in general is taken into
account by a temporally nonlocal self-interaction (as discussed in Chapter 3), we see
from Eqns. (5.10) and (5.15) that in certain limits we can understand the dynamics
much more simply. In particular, depending on the frequency of the combined light-

matter interaction, the field behaves either as a field on curved spacetime, as in

“Here V,A® = 9, A + FZ‘BAB is the usual covariant derivative of A% [15], with I'] 5 being the
Christoffel symbols associated with the metric g, .

®Equation of motion V,V*A® — V, VYAl = m?A*.

6As an interesting aside, we can note that in this offers a natural interpretation of non-
propagating electromagnetic modes in a plasma below the plasma frequency: The mode simply
does not have enough energy for one ‘mass unit’ g.
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Eq. (5.10), or a free massive field, as in Eq. (5.15). It thus stands to reason that the
dispersion will interpolate between these situations. In either case, when introducing
a time-dependent refractive index in a manner where dispersion is taken into account,
we expect quantum vacuum radiation to be emitted, as indeed the mode frequency
changes in time. We can however link it to other scenarios such as cosmological
expansion or time-dependent mass terms in certain limits.

Nevertheless, we do wish to advice some caution when attempting to gleam
insights into the dynamics of quantum fields on expanding spacetime from the dy-
namics of electromagnetic excitations in an optical medium with time-dependent
parameters. The two situations might share similarities in certain limits, but they
are by no means the same. Nonetheless, this is the approach we took in Item 4,
of which Chapter 3 can be seen as an extension in some sense. In Item 4, we were
motivated by the similarity between the the Gordon-type optical metric of Eq. (5.5)
and the metric of cosmological expansion in Eq. (5.12), particularly in the case of
a spatially homogeneous refractive index in two spatial dimensions. There we em-
ployed a Hopfield model similar to the one used in Chapter 3, albeit truncated at
first order and ignoring some of the subtleties involving multiple polariton modes.
The medium in question was a thin-film, or slab, where the dynamics of one spatial
direction can be ignored. We then modelled ‘cosmological expansion’ as a change

to the refractive index of the form
on(t) = ongtanh (t/0), (5.16)

where ¢ is some time-scale and dng is its amplitude, using a diamond-like medium
with a single resonance frequency as a background medium. We would expect the
optical metric to be valid in this limit.

In the context of Chapter 3 and the rest of this thesis, this would be the equivalent

of a time-dependent resonance frequency of the form
Q*(t) = Q21 + etanh (t/0)], (5.17)

where € is some amplitude chosen such that it would reproduce dng using Eq. (3.53).

We would note that this is not accessible using perturbation theory as
Q(—00) # Q(00), (5.18)
and we will replace this with
QO?(t) = Q3 [1 + esech (t/0)], (5.19)

which can be thought of as two successive tanh-profiles. In other words, here

f(t) = esech(t/o). We can now apply the model developed in Chapter 3 to this
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Figure 5.1: (a) Spectrum of excited photon pairs for a refractive index variation of
dng = 1072 within the time-scale of ¢ = 1.25 fs. Figure adapted from Ref. [138].
(b) Same physical scenario as (a) (regularised as mentioned in the main text), with
¢ chosen such that on ~ 1072 and with ¢ = 1.25 fs. As can be seen, the main
intrabranch process of pair production is in agreement between the models (blue
shaded). However, the earlier work neglected the interbranch processes (solid green,
dashed red).

‘cosmological expansion’-like change to the resonance frequency.
Similarly to the previous work, let us assume a diamond-like medium with a
single resonance pole at a vacuum wavelength of around 200 nm. The important

quantity is as before the Fourier transform of the modulation f:
f(k,w) = emoVsech (%w) : (5.20)

We must however also evaluate the mixing integral from Eq (3.68) in order to find

the probability of exciting polariton pairs. Here we find

ao duw'’ dgk/ QQ I\ F / /
_[mlxulg = /% (27_[_)3 (w _ w/)2 _ Q? RV UJaWa/f (k , W ) f (_k , Wo ‘l’ Wo! — W )

0? ~ ~
PO Q2f (K, "+ wa) f (=K, we — ")

noo331.0
~ Vo | G
2 2 " Q2 mo
=€ V[ \/wawa} /d (”>2—_QZS€Ch( 5 [w +O}a]>
O ,
X sech <7 [War —w])

~ 0, (5.21)

where in the second line we defined w” = W’ — w,. The last line follows because for
the integrand to be significant, w” would have to be equal to both —w, as well as

Wy simultaneously.

Keeping in mind that we now wish to keep also terms that contain f (0,0), we
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can express the intrabranch and interbranch amplitudes from Chapter 3 as

1 . — 580—’& r (676% . — 68“’& r r3
Glﬁtfoo = iCkaV ™! e [waf(O, 2Wa) + Imixing — iCxaV 1?“2]%@ 2wa) £(0,0)

(5.22)

and

- \/ 0w, 0, , _ )
G110 = 1V CieaCia V! e [ Waar (0, W + war) + I35,

S¢ mixing

- i\/CkaCka/V_l—agw“ Vw3war f(0,wa + wa ) £(0,0)
€

— i BV T (0, = ) (0, 200)
€

(5.23)

respectively. Also note that in this case the polariton modes are those in Eq. (3.75),
ie. w, = wy. If we then substitute the expressions for the modulation and mixing
established in Eqns. (5.20) and (5.21), we find the probability amplitude of exciting

a polariton pair in a back-to-back configuration

Gt = iCra(dey,, /8) [[dea] sech (Tow,) — iCika (06w, /8) [T*0”w?:] sech (Wawa)}

(5.24)
and
Gt = 1B L2222 [r sy (T fr + ]
— i/CrnCrr 52"“ 702wt | sech (% e+ ]
iV B 2 [0 sech (T ] sech ()|
(5.25)

We can see the probability amplitude of emission in Fig. 5.1, but already from the
expression in Eq. (5.24) we deduce that the intrabranch emission probability peaks

when
we =~ 0.38/0 (5.26)

to first order, whereas the second order emission has a contribution at the same
frequency. Interestingly, since 1* is approximately zero, the time-delayed response
does not contribute significantly in this situation. The interbranch processes are
somewhat more complicated, but follow a similar qualitative picture. Unsurprisingly,

the emission is centred around ~ 1/0, as ¢ is the only time-scale in the modulation.
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As can be seen when comparing Fig. 5.1(a) and Fig. 5.1(b), the transitions be-
tween different polariton modes were neglected in the study in Ref. [138], as the two
interbranch probabilities (solid green, dashed red) are missing in (a). Nonetheless,
the two spectra are qualitatively similar to first order. Importantly, the new addi-
tions obtained using the theory developed in Chapter 3 are the existence of multiple
polariton modes.

Let us return to the connection to analogue gravity. We first note that the
applicable comparison is in two spatial dimensions, since the material discussed in
the above section is of a thin-film, or slab, nature.” This doesn’t affect the results
in Eqns. (5.24) and (5.25), but allows us to easily link the dynamics to that of
an expanding universe. In fact, this is exactly the type of scenario we considered
in Ref. [138]. Now, a massless scalar field in an expanding (2D) universe and the
w < € limit of light in a time-dependent optical medium [Eq. (5.10)] coincide if we
identify

(5.27)

We should stress here that this is only true when all oscillation frequencies in the
light-matter system are much smaller than the resonance frequency. It follows that
we can completely neglect the w,-polariton branch from the above consideration.
Admittedly, a universe with a scale factor given by Eq. (5.27) is a bit odd, especially
with  as determined by Eq. (5.19). Such a universe would first contract a little,
followed by a small expansion back to its original scale. Nonetheless, light in such a
medium still acts as a quantum field on curved spacetime, and we can gain insight
about the mechanism in which particles are created. However, particle creation in

a particular cosmology remains inaccessible in this scenario.

5.2 e-near-zero metamaterials

Whether or not we can connect the phenomenology of electromagnetism in time-
dependent optical media to the scalar fields in an expanding universe, the probability
of exciting photon pairs in this scenario is vanishingly small. The reason for this
is two-fold. As can be seen in Fig. 5.1, the quicker the change in refractive index,
the more polaritons are excited from the light-matter vacuum. Perhaps more im-
portantly however, in most materials the maximum change in the refractive index
obtainable is in the order of 1073, compared to a background refractive index of order
unity. Indeed, in most materials the changes to the refractive index in time is so small
[139] that quantum effects of time-dependent backgrounds become inaccessible. Up

until recently, this has made some of the physics discussed in this thesis hard to

"This heavily restricts the dynamics in one direction.
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Figure 5.2: Schematic of set-up, where the permittivity of the ENZ metamaterial is
changed in time by a strong laser pulse, and quantum vacuum radiation is conse-
quently emitted inside the material. Figure adapted from Ref. [71].

access experimentally, at least in bulk media.® Recent years have however, brought
the advent of so-called e-near-zero metamaterials whose background refractive in-
dex passes close to zero [140-142] at some wavelength. Around this wavelength, the
nonlinear response is also strongly enhanced, leading to a time-dependent refractive
index that change from ~0.1 to ~ 1 within optical timescales [96, 132]. These ma-
terials have thus opened up interest into quantum vacuum radiation beyond first
order in perturbation theory, which we studied in Chapter 3. However, absorption
cannot be completely neglected in these materials, in fact, absorption also becomes
time-dependent.

We explored this in Ref. [71] (Item 3 in the List of Publications), focusing on the
physics of quantum vacuum radiation in these materials rather than the connection
to analogue gravity. As mentioned earlier, the theoretical work here was done to-
gether with Dr Angus Prain. The combination of dispersion, absorption and large
changes to the optical properties introduces some theoretical challenges however,
and to make the calculations tractable we focused on tackling the large changes,
and its spectral dependence, into account. Indeed, the following chapter (Ch. 6)
will be focused on putting this work on firmer theoretical footing. As such, what
we will discuss here should be seen as valid in a qualitative sense. In particular, we

assumed that the time-delayed response of the medium does not qualitatively affect

8Similar physics has however been addressed in optical microcavities, such as those investigated
in Refs. [84-88]. In those studies, the cavity enabled a strong light-matter coupling regime whose
coupling strength the Rabi frequency (here the plasma frequency) was modulated in time.
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35 4.5 5.5
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Figure 5.3: (a) Permittivity of the metamaterial in question, ITO, as a function of
vacuum wavenumber. Note that the real permittivity passes through zero at around
4.56 pm~!. (b) Corresponding real and imaginary part of the refractive index as a
function of vacuum wavenumber. (c) The change in refractive index by the strong
laser pulse. Note that the real part peaks at wgnz. Figure adapted from Ref. [71].

the spectrum, and that absorption simply introduces an overall loss of the photon
pair yield.

As has become a staple of this thesis, we will focus on a scenario such as the
one seen in Fig. 5.2 where a strong laser pulse changes the medium properties in
time, and we study the polaritons excited back-to-back inside the optical medium.?
We focused on a particular ENZ metamaterial in this study, I'TO, whose optical

response can be described using a Drude-Lorentz model

2
wp

_ 5.28
w? + qwl’ ( )

e+ =ey —

where w,, is the by-now familiar plasma frequency, and we have introduced the
damping rate I'. Ref. [143] reported e, ~ 4.082, w) ~ 7.643 x 10°° s72 and I' ~
1.239x 10 s!, which we will use here. From this we can define a real and imaginary

refractive index through
nor + ing; = Ve' + ie”. (5.29)

This is the background index of the material, which is then made to change in time

9As an interesting aside we can note that the 2-dimensional character of these materials does
help with the connection to analogue gravity, as discussed in the previous section.
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through interaction with a strong laser pulse. Thus we can define the total refractive
index as n,(t) = ng, + noI(t), and similarly for the imaginary part. Importantly,

the nonlinear response [x I(t)] has been shown [96] to be proportional to the linear

_— (nm + no¢)
or X | ———— |,
ng, + ng;

Nas (u) . (5.30)

2 2
N, + Ng;

refractive index as

The dispersion relation for ITO can be seen in Fig. 5.3(a) and (b), whereas the
nonlinear response can be seen in (c) for the intensity used in Ref. [96].

There are, as mentioned, two important optical properties in ENZ metamaterials
for the excitation of photons from the light-matter vacuum state. Firstly, we can

note that the real permittivity crosses zero at some wavelength, at approximately

(.U2 _ FZ
ez = || —, (5.31)

which in this material occurs at 1377 nm. This is marked in Fig. 5.3, by the vertical
dotted line. Note that Ref. [71] has a minor error in this expression.

To model this, and extract the number of photons emitted from the quantum
vacuum in realistic scenarios, we turn directly to the electric field wave equation
in macroscopic quantum electrodynamics. Specifically, let us once again expand
in some suitable polarisation vectors e, such that E(t,x) = >, E\(t,x)e\. We
can then treat the electric field in each mode polarisation F) independently. Fur-
thermore, since the medium in question is uniform and isotropic, the dynamics of
each polarisation will be identical and we can for notational simplicity ignore the

A-subscript. Also let us for now assume that the refractive index is constant in time.
This yields

t

1
~V2E(t,x) + gaf (E(t,x) +/

—00

ds x(t — s)E(s,x)) =0 (5.32)

where x(t) is the optical susceptibility, which takes into account the dispersive ef-

fects. Now, in this case

2
Cdp

Xw) = (6o — 1) — T (5.33)

This is complex, and we note this is outside the scope of the version of macroscopic
quantum electrodynamics studied in Chapter 3. We will return to this issue shortly,
and for now simply proceed at a classical level. In frequency space, which we will

here for notational simplicity denote using f,, = [ dt e f(t), the equation of motion
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for the electric field in Eq. (5.32) is given by

w? w?
VE,+ = |ee——2—|E,=0. 5.34
* c? (8 w? 4 iFw) (5:34)

In momentum space, this yields the dispersion relation

) W w,
— K"+ = (o — 2 ) =0, 5.35

K c? ( w? 4+ sz) (5.35)
where we have defined the in-material wavevector K to differentiate it from the
vacuum wavevector |k| = w/c. The reason for this will be clear shortly. From this

we can define
K ()] = = fon(w) + imifw)] (5.36)

as is usual in optics literature [54]. Now, the above dispersion relation will also define
the mode frequencies w(K) of the system (the polariton modes). The full form of
these are not important for the following but in general they are different from the
vacuum frequencies. In order to simplify the problem, let us now assume that the
electric field will oscillate close to its vacuum frequency also inside the material such
that |(w(K) — c¢|k|)| =~ 0. We can thus let

w—w—clK|

and expand to zeroth order in this difference. This constitutes replacing w inside

the susceptibility x by c¢|k|, or in other words

x(w) = x(c[k]).

This allows us to re-write the dispersion relation from Eq. (5.35) as

2 K 2
¢ L =0, (5.37)
€00 = FRELTaH
from which we find the equation of motion
2 K 2
02 By + ¢ K| Sy = 0. (5.38)

[ (e [K[) + ini(c [K])]

In essence, the physical difference between Eq. (5.32) and Eq. (5.38) is that the
latter keeps the time-delayed response of the medium only to 0'*-order. At this
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point, let us re-introduce the time-dependent refractive index as given by

Ny = Nor + nQT‘I(t)J
n; = no; + ngl(t). (5.39)

It should be noted that this is an approximation, the nature of which we will discuss

shortly. This yields an equation of motion of the form

02‘K|2
[n-(t) + in;(t)]

O’ Ey + Ey = 0. (5.40)

2

Now, for an observer outside the optical medium the in-medium wavevector is related

to the vacuum wavevector as
K| = [k [no(ck]) + ino:(c|k])],

and we find

. 2
OBy + & k|’ [nor + inoi | B =0, (5.41)
[nor + n2,: 1 (t) + i {noi + nail(t)}]

where we should note that ng,., ng;, ns,., and ng; are all evaluated at the vacuum
frequency c|k|. Importantly, this equation of motion reduces to that of a free plane

wave when I(t) = 0. We can furthermore define a natural oscillation frequency as

200\ — 2 k|2 [n0r + Z.71()1']2
wi(t) = c” K| ([no,,—l—ngrf(t)+i{n0i+ngi1(t)}]2>7 (5.42)

using which we arrive at the equation of motion for a harmonic oscillator
O} Fy + Wi (t)Ey = 0. (5.43)

This will be our starting point when analysing the spectrum of emitted photon
pairs. We should note here that after the completion of Ref. [71], it was pointed
out that when re-introducing the time-dependencies through Eq. (5.39), we neglect
terms that depend on the derivatives of the permittivity in time, that is £(¢) and
£(t) where € (c|k|, t) = [nor + o, L (t) + i {ng; + ng:1(£)}]°.'° This is indeed the case,
and in particular a term of the form £/ does contribute to the natural oscilla-
tion frequency in Eq. (5.42) [wi(t) — wi(t) + &/¢]. However, the effect of this is
quantitative and could be taken into account by choosing a different form of I(¢)."
Importantly, it does not alter the qualitative picture analysed here. This is in line

of the approximations made so far. That being said, the addition of these terms

10We thank Prof. Claudia Eberlein for this remark.
UTn fact, we should expect yet more emitted photon pairs.
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would make for an interesting future study.

In the following, we will interpret the real part of wy as being responsible for the
pair production, whereas the damping is largely ignored here, leading simply to a
reduction of the final yield. The latter is of course an obvious approximation. We
have thus made a few approximations here, this, along with neglecting the time-
delayed response of the ENZ metamaterial. The latter we did when we assumed
that wk — ¢ [k| ~ 0. Nevertheless, in light of the discussion in the previous section of
this chapter, it is reasonable to assume that the effects of the time-delayed response
are negligible for simple time-dependences.

Within these assumptions, let us now explore the spectrum of emitted photon
pairs as detected by an observer in the laboratory. In order to do this, let us first
quantise Eq. (5.43). Before this we neglect the imaginary part of wy(t) which, as
mentioned earlier, we will assume does not contribute to defining quantum vacuum.
The method used here relies on this. We can then quantise Eq. (5.43) by replacing
the classical amplitude Ey by the operator Ex. yielding

P Fy + wi(t)Ex = 0. (5.44)

As is outlined in, for instance, Refs. [15, 37], we can find the spectrum of quantum
vacuum radiation by calculating the so-called Bogoliubov coefficients, the concept of
which we will also describe here. Before we proceed however, it should be noted that
since we will here consider bulk excitations in a spatially uniform medium, we can
simplify the mathematics somewhat by treating the problem quantum mechanically,
as opposed to using quantum field theory. This amounts to ignoring the sums over
spatial modes, since the uniformity of the problem implies that only back-to-back
emission which naturally conserves momentum are possible. We will continue step-
by-step, but this should be seen as a review of the method rather than novel results.
Nevertheless, as explained in Chapter 2, we can always decompose the electric field

operator Ek as
B = filt)in + fi(D)a, (5.45)
where fi satisfies
fic + wie() fic = 0. (5.46)
Now, these fx mode functions are normalised using the norm

(f,9) =1 {f*&:g - gatf*} (5.47)

such that (fx, fi) = 1.2 Importantly, fi is chosen with positive norm (fi, fi) > 0

12Note that this is the quantum mechanical version, as we are dealing with the physics of each
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in order to preserve the canonical commutation relations for the ladder operators
ax and le(, ie. [&k, &L] = 1. Also, it follows from this that we can define the ladder

operators by

i = - (fﬁ, Ek) . (5.48)
Finally, suppose that wy () is constant in the limits ¢ — 400 such that

tLlI_noo Wk(t) - LL)LH

lim wy(t) = wp™.

t—o0
We can always decompose the electric field operator Ey in any set of ladder oper-
ators. In this case, it is natural to define two sets of mode functions, fyx and g,
related to decomposing the electric field operator Fy in terms of the initial and final

state operators respectively. In this case, these are

1

— —.e—iwg‘t
fe=
1 _iwoutt
ekt (5.49)

e

We then arrive at the general decomposition for a quantum electric field Ey:

By = filt)ax + fi(t)ay
= gi(t)bi + g (1)b].. (5.50)

We can now define the initial vacuum state by ax |0),, = 0. As we are interested in
quantum vacuum radiation, we want the initial electric field at time t — —o0 to be

given by ground state

: in
—twy 't
A~ k
n € ~

This mode function e~*& /,/2w™ will then propagate in time according to Eq. (5.46),

which has a region where the mode frequency wy(t) depends on time. After the time-

dependency has ended, at ¢ — oo, we must always be able to decompose the mode

function into some combination of gy and g;. The process can thus be described

momentum mode k. It straightforwardly generalises to a field by introducing an integral over d¥x
in the definition of the norm, along with subsequent dependencies on x. For each momentum mode
such a definition reduces to the version used here, which follows from the problem being spatially
uniform. As discussed in Section 2.2.4, the spatial uniformity also allows us to use discrete modes
k rather than continuum modes.
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schematically as
e—iw%‘“t
in
v/ 2wy

Therefore we must have

oWt e TRt

_|_
NN

<Hi fk(t) tﬁoo) (0%

Jie = aacgi + Brics (5.51)

where oy and Py are known as Bogoliubov coefficients. By substituting this into
Eq. (5.50), we find

i)k = ayly + ﬂltd;f{, (552)

and it follows that after the temporal variation of the mode frequency the vacuum

state has population
(mc) = (0] L buc [0) = |Bucl*. (5.53)

Thus we find the spectrum of emitted quantum vacuum radiation by calculating the
Bogoliubov coefficients f. Now, it follows from Eq. (5.51) that

Bk = (glt7 fk)
— W
. _f/ﬁ [w;;ut fic — 10, fk] . (5.54)
k

This is in some sense a measure of the difference between the out-mode frequency

w' and the instantaneous frequency of the mode function associated with a (i.e.

annihilation of quanta). The latter is quantified by the ratio i(0; fi)/ fk. In the case

considered here, w" = Wi = wy, and we finally arrive at the Bogoliubov 3 as given
by
efiwkt a
— = —1 , 5.55
Pr Ny [ka k — 10 f k} ( )

where fy is given by the solution to
fe+wi(t) i =0, (5.56)

with wf () given by the real part of Eq. (5.42), and with the initial condition

e—iwkt

\/2&)1( ‘

fk(t — —OO) =

(5.57)
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Figure 5.4: Spectrum of quantum vacuum radiation emitted in the ENZ metama-
terial, using the change in refractive index from Fig. 5.3(c). Note that it is slightly
displaced from wgnyz, which is denoted by the dashed vertical line. Figure adapted
from Ref. [71].

Using this, we arrive at the spectrum seen in Fig. 5.4,'% where we assume an intensity

profile
I(t) o sech®(t/o) (5.58)

in Eq. (5.42).

Note that this should be understood as back-to-back emission of photon pairs
from the vacuum state. We have here ignored the momentum k of each mode in
the calculation, but this does not change the results. As a reminder, since we are
considering the bulk, which is spatially uniform, the inclusion of sums over modes k
would simply lead to the addition of a d-function such that k; +ky = 0, where k; o is
the momentum of first and second photon in the pair respectively [15]. It should be
noted however, that this is a (minor) approximation given that most pump beams
will vary slightly spatially.

As can be seen, the peak emission of quantum vacuum radiation is strongly as-
sociated with the frequency of zero real permittivity wgnz. The reason for this is
two-fold. Fig. 5.3 tells us that this is the point in the spectrum when both the
background refractive index is the smallest and the temporal change in the refrac-
tive index is the largest. In turn, this allows for the largest relative change mode
frequency Awy/wk, which is the relevant quantity from which [y is determined.
Interestingly, this effect contradicts the usual conclusion that emission is centred

around 1/0. In the context of analogue gravity, we should note that this is qual-

13In particular, to produce Fig. 5.4 we solve Eq. (5.56) with the initial condition in Eq. (5.57)
under the assumption that wi(t) is varied in time according to Eq. (5.58), using the Maple-
software’s built in numerical solvers of ordinary differential equations. The Bogoliubov [y can
then be extracted using Eq. (5.55), and the spectrum (ny) can be calculated.
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itatively different from what we would expect from a scalar field in an expanding
universe, where quantum emission would be expected to be strongly tied to the
time-scale of driving 1/o.

If we take a step back, we arrived at this result by neglecting most dispersive
effects. First, we should note that this removes the existence of multiple polariton
modes, and we have therefore studied only intrabranch quantum vacuum radiation
in this work. However, we also neglected the time-delayed response in order to
arrive at Eq. (5.40). In particular, we assumed that |w(K)| ~ c¢|k| throughout the

dynamics in order to approximate

wp wp
w2+ iTw — 2 |k|> +ilc k|’

This is the expansion of the left hand side to the 0™ order in the difference w — ¢ |k]|.
Indeed, this is the most severe approximation made in this work, but within the

range discussed in Fig. 5.4 it is easy to check that

o < )] — el

< 0.4

for the most photon-like polariton mode. We can therefore assume that the results
obtained in Ref. [71] are a decent approximation, and some of the qualitative con-
clusions are valid. In particular, it is reasonable to assume that emission will indeed
be centred around wgnz.

We should note that there is a second polariton mode in the system, associated
with the matter degree of freedom, which oscillates at low frequency. We learned
in Chapter 3 that low energy modes are most likely to be involved in interbranch
vacuum radiation, and it is therefore feasible that this mode will play an interesting
role in the physics of ENZ metamaterials also.

In addition to this, we have assumed that only the real part of the mode frequency
wi(t) plays a role, and the imaginary part will only act as a damping factor. This
was necessary in order to formulate the theory in terms of mode operators. It is
a physically motivated assumption, but it is nonetheless a crude approximation for
the dissipative physics. In the next chapter (Ch. 6), we will return to this, and
treat the dissipative physics with more care. Finally, we should note that we would
expect this damping to reduce the average population (ny) by roughly a factor of 10
for each micron propagated in the medium. This will greatly reduce the number of

potentially observable photons, unless they are out-coupled in an efficient manner.
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5.3 Lessons from the intermission

It might be worth re-connecting the result of the previous section to the start of this
chapter. We turned to e-near-zero metamaterials in order to access large changes in
the optical characteristics in time. However, whilst these materials have a rich phe-
nomenology of quantum vacuum radiation, it obscured the connection to a scalar
field in an expanding universe. Indeed, we found a spectrum of emitted radia-
tion [Fig. 5.4] quite unlike the spectrum expected for a scalar field in an expand-
ing/contracting universe [Fig. 5.1]. The approximations made in deriving the ENZ
vacuum radiation spectrum further obscures any direct connection to a scalar field.
However, purely at a level of the equations of motion we can still find some links,
and an explanation for the qualitative difference between the spectra.

Each momentum mode of a massive scalar field obeys the equation of motion

2\a 2a?

. 1 .. . 2
e + {\kf +m¥a? — = (9 - “—)} b =0 (5.59)
in a 2+1 dimensional expanding universe with metric
ds* = a(n)? [—dt* + da* + dy’] (5.60)

which is written in conformal time. We have here suitably re-scaled the scalar field
in order to eliminate 15%-order time-derivatives.'* We can compare this to the mode
equation for the electric field in Eq. (5.43). As discussed in the previous section,
the quantum vacuum radiation is usually determined by a combination of the time-
scale of the temporal variation in the mode frequency (say 1/0) and the relative
amplitude of the mode frequency variation (say Awy/wk). We noted that the latter
effect completely suppresses the former in an ENZ material, and emission is peaked
in the region where Awy/wy peaks. For scalar fields on the other hand, this ratio
is firmly peaked at zero momentum: it is much easier to excite low energy modes
than high energy ones. Therefore we expect the time-scale to dominate the emission
spectra instead. Thus, ENZ physics is of little relevance to cosmology, but it is an
interesting link.

Finally, we should note that time-dependent e-near-zero metamaterials offer an
intriguing window into quantum vacuum radiation that is worth exploring further.
We expect that the approximations made will be valid to leading order, but the

effects of dispersion and dissipation are to be explored further.

14We start with [V, V* —m?] & = 0 using the metric in Eq. (5.60), and we define ¢ = a'/2®.
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Chapter 6

Macroscopic QED as a trapped

particle in a magnetic field

“All theoretical physics is in the end Gaussian integrals and harmonic

oscillators - they’re the only problems we seem able to solve!”

Prof. Luigi Del Debbio, tutorial ‘Adv. Stat. Phys.’, Higgs Centre, 2015

Moving beyond small variations to the refractive index, which we explored in
Chapter 3 is a considerable task. In this chapter, we find that macroscopic quantum
electrodynamics can be mapped to a quantum harmonic oscillator in a magnetic
field — the wavenumber of light and the resonance will act as the two harmonic trap
frequencies, and the dipolar coupling serves as a magnetic field. Whilst this trapped
‘particle’ in a magnetic field lives in functional space, it is still possible to transfer the
intuition gained from other studies of the problem. In particular, we will show that
the complete problem can be solved semi-analytically; that is, we can exactly solve
the dynamics of the system in terms of some coupled ordinary differential equations.
In the case of a static medium the equations can be solved exactly, whereas for more
complicated scenarios we must rely on numerical methods. This chapter is based on

research notes, which have yet to be compiled into a publication.

6.1 A return to the Hopfield action

Let us start by returning to the action outlined in Eq. (3.13) (p. 36). To recap,
this is a phenomenological model that describes the electromagnetic vector poten-
tial, A, coupled to a set of harmonic oscillators R;. The latter models an optical
medium with resonances set by the natural oscillation frequencies §2; of the oscil-
lators. We will refer to this model as the Hopfield model of macroscopic quantum
electrodynamics. For simplicity, let us in this chapter focus on media that can be
described by a single resonance frequency €2, and we therefore need only to keep a
single oscillator R. Diamond is a good example of such a medium. Furthermore, let
us also assume that we want to describe bulk media. As such we assume that the

oscillator frequency €2 can depend on time but not space. In this case, Eq. (3.13)
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(p. 36) reduces to

AR, (6.1)

s.= [l [ [
/ dt / d%'% QQ(t)RQ] ,
mt—/ it [ s

where once again p is the density of the oscillator R, and ¢ is its dipole moment.
In this chapter, we will as before work in units where c =1, ¢g =1, and A = 1. In
addition to this we will, for the purpose of notational simplicity, work in units of
time scaled by 1/€.¢, where . is some reference frequency. In other words, we

will use the dimensionless time
T = Qref t7

as well as rescale both the vector potential A and the oscillator R as

A — A/,
R — R/v/per.

We can then further expand the vector potential in some set of two polarisation

vectors

=) A\(x) ey (6.2)

A=1,2

where ey - ey = 0, . Through this we find the simplified action which, written in

momentum space,! takes the form

gk L Td A? — K Ay )?
v T 9 T |Ax|” = K7 Ax[%,
0
1 r 52 2 2
SR:E dr R* — Q*(1)R?,
ﬂ%:——/ m-pk+Aﬂf& (6.3)
20

Note that the full electromagnetic action is given by S,1; = > Sfy‘H. However,
we can here treat each spatial mode k independently, since we are considering a

spatially uniform oscillator frequency €2 and no transition between spatial modes are

I'Here we use the convention

3
o) = / (;iﬂ]): e fie(1).
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Light \(v
B=<g
Coupling ¢ — &_;

Optical medium

Figure 6.1: To the left is a representation of macroscopic quantum electrodynamics,
as interpreted as light coupled to an harmonic oscillator. This is equivalent to
considering a trapped particle in a magnetic field, as can be seen on the right hand
side, where the position in the trap is the field amplitude and the coupling acts as
a magnetic field.

therefore allowed.? With this in mind, we will in the following omit the superscript k
in the action for notational simplicity. Also, we have here defined the scaled plasma
frequency of the medium g = /pq/She, and symmetrised the interaction term for
reasons we will discuss later. In order to keep notation simple, we have furthermore
implicitly defined the unit-less variants of k and €2 from the unit-full quantities used
in Eq. (6.1) by letting

k/Qref — k,
Q) vt — Q. (6.4)

Finally, we have chosen ¢; = 0 and ty = {fI" for similar reasons. This action will

yield the familiar dispersion relation

2
2 2 g _
which is the reduction of Eq. (3.2) (p. 34) in Chapter 3 to a single resonance fre-
quency. In this chapter, we will not switch to polariton variables, as was previously

done in Chapter 3 (p. 45), but instead solve the system directly.

6.2 Connection to harmonic oscillators

As we will see, we can directly map the physics of macroscopic quantum electrody-
namics to the physics of a trapped particle in a magnetic field, with the coupling
playing the role of the magnetic field. Importantly, as the former is a well-studied
problem [98, 144, 145], linked to quantum Hall physics [146] amongst other things,

we can use the intuition obtained from these studies in understanding the physics

2This is further discussed in Section 2.2.3.
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of macroscopic QED.
Let us start by defining a pair of real variables for the vector potential Ay such
that

Ax = Tk + iy,
A; = Tk — z'yk. (66)

The physical interpretation of these coordinates xx and yy is somewhat obtuse,
but we should nonetheless note a few features. We can first note that Ay and
Aj. propagate in opposite directions. Therefore, interpreting the combination of zy
and vy depends on the relative sign, where the same-sign-between-zy-and-y, photon
propagates in the k-direction, and vice-versa. Also note that the magnitude of the
vector potential is given as |Ax| = \/m, whereas its phase is determined by
0 = arctan (yx/xy).>

Regardless of the physical interpretation, these coordinates are a very useful

representation. The action in Eq. (6.3) now becomes

T
Sen=g [ dr [ -]+ [ - k) + [ - R

S[Z—g/OTdT [Ak—I—AI*(}R:—g/OTdTikR:g/OTdT (:ka—:ka>,

where we integrated by parts in the last step. We can now introduce the position

and magnetic field vectors

q = (7x, Yk, R)
B =(0,—g¢,0), (6.7)

respectively, as well as the trapping matrix

2 0 0
A= 0 & o (6.8)
0 0 2

in order to rewrite the action further. After some algebra, this yields

T

1. 1 1 )

SMH:/ Ir 5@~ Ja- A% a+ 5 (Bxa)-4 (6.9)
0

We can recognise this as a charged particle trapped in a quadratic potential in the

presence of a magnetic field. A visual representation of this link can be found in

Fig. 6.1. Interestingly, in this representation, the dipolar coupling between light and

the oscillator acts as a magnetic field, whereas the respective field amplitude maps

3The vector potential can thus be decomposed as Ay = | Ay|e®.
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onto a position in the harmonic well. Quantising this follows as usual, but we must
take care to allow A? to be time-dependent. We will here use a generalisation of the
work by Davies [147].

6.3 Quantisation

We now wish to quantise the Hopfield system in terms of the real variables introduced
in Section 6.2. A path integral quantisation procedure is formally given by
a(T)=b ‘
(b,T|a,0) = / Dq eSr+rild] (6.10)
q(0)=a

where S, 4 gy is the action given in Eq. (6.9). The path integral sums over all paths
of q that start in position a at time 7 = 0 and finish in position b at time 7 = T.

However, as this is a quadratic action, it can be quantised by finding the classical
action, and then calculating the Morette-van Hove determinant [98]. This procedure
was discussed in detail in Section 2.1.4.2 (p. 20), as well as Section 3.3, of this
thesis, and we will here go through similar steps. Therefore, if we let q(7') = b and
q(0) = a, then we find that the transition amplitude is given by

1/2

1 .
eiSel, (6.11)

(2mi)3/2

B 0S4
(%j 8ak

(b, Ta,0) =

where S is the action in Eq. (6.9) evaluated for the classical solution, and where
0/0b; is shorthand for the derivative with respect to the 5™ component of b (and
likewise for a). As a reminder, Eq. (6.11) gives the probability amplitude for the
oscillator to start in position a at time 7 = 0 and finish in position b at time 7 = T'.
This can then be used to calculate the time-propagation of an initial wavepacket,
as discussed in Section 2.1.2, and as we have previously done in Chapter 3 (see for
instance p. 50). We must therefore first find the classical action in order to quantise

this problem. And to do this, we must solve the classical equations of motion, given
by

q+Bxq+ A*(s)q =0, (6.12)

with boundary values q(7') = b and q(0) = a. We can however, transform this to

an initial value problem, by first defining the vector

&(s) = (a(s), a(s)), (6.13)

where we note that & here is a 6-by-1 vector. The equations of motion can then be
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written as

; 0 I
é(s) = ( e _n ) £(s). (6.14)

where I is the identity matrix, and we have defined the matrix B such that Bz =
B x z for all z € R3. In this case, this yields

0 0 —g
B=|00 0 (6.15)
g 0 0
) ) E(s) F(s
Furthermore, let us introduce the block matrix whose elements F/,
G(s) H(s)
F. G, H are matrices themselves such that
E(s) F(s)
s) = 0). 6.16
30 ( o i )€ (6.16)

In this formalism, the equation of motion Eq. (6.14) can be written as

(E:(s) P(s) > _ < 0 I ) (E(s) F(s) > (617
G(s) H(s) —A%(s) —B G(s) H(s)

F~H(T)q(T) — F~H(T)E(T)q(0),
Q(T) = H(T)F~'q(T) + [G(T) — H(T)F~(T)E(T)] q(0).

'Q.

—~
(=)

~—
I

If we assume that the effective magnetic field is constant, i.e. g does not change in

time, we can show that
G(T)-H(T)F Y (T)E(T)=~-F", (6.18)
with which we find

4(0) = F~Y(T)q(T) — F~(T)E(T)q(0),
a(T) = H(T)F~'q(T) — F~(T)q(0), (6.19)
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where F~T denotes the transpose of the inverse of F.*
As usual, the classical action in Eq. (6.9) can be integrated by parts, and after

using the equation of motion, we find

Finally, using Eq. (6.19), we find that

1 )
Sa=y b FF ' bia F'Ea-2 F' b (6.20)
Here
d*F dF
4+ B/ 4+ A% F =0 6.21
S5 T B+ As) : (6.21)

with F(0) = 0 and F(0) = I, and

d*FE dFE
— 4+ B— 4+ A*S)E=0 6.22
T3 T B+ AYs)E =0, (6.22)

with £(0) = I and F(0) = 0. For clarity, here we use
K 0 0

0
A= 0 K 0 , B=| o0
0 0 Q%s) g

-9
0
0

o O O

This completely specifies the classical action in terms of matrix equations, which in

4In order to prove this, let us define

(he)-(54)"

Using Eq. (6.17), and known rules regarding the algebra of matrices, we find that

d (P Q) _ P @ 0 I PO) QO)\ (I 0
s\ R S ) "\ R S —A%(s) -B )’ RO) S©) )~ \o 1)
In particular, we find that Q(s) satisfies the following equation of motion
Q+QAXs) ~ QB =0

where Q(0) = 0 and Q(0) = —1. For this we had to assume that B = constant matrix. In a similar
manner we can show that F7 satisfies

FT + FTA%(s) - FTB =0
where FT(0) = 0 and F7(0) = 1. Here we used that (AQ)T = A? and BT = —B. Now we see that
since —F7T (s) and Q(s) satisfy the same equation of motion with the same initial conditions, then

by uniqueness they must be the same function. Thus

~FT=Q=~(BE~FH'G) ' FH ™' = ~F T(s) = G(s) — H(s)F}(s)E(s).
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general will have to be solved numerically. Throughout this chapter, equations of
the form seen in Eqns. (6.21) and (6.22) will be solved numerically using an explicit
4™ order Runge-Kutta method [148, 149], a solver which was written in MATLAB

for the purpose. The transition amplitude now follows, and we find that

[

b,T|a,0) = ——%
< ) ‘aa > (27Ti)3/2

e, (6.23)

6.3.1 Comments on the transition amplitude

Importantly, it is easy to check that when g — 0, the transition amplitude in
Eq. (6.23) reduces to the transition amplitude for three uncoupled harmonic oscil-
lators. Likewise, when & — 0 and €2 — 0, we get a free particle in a magnetic
field. However, and curiously, there is an imbalance between the real part xy, and

imaginary part y, of Ayx. In general, the action is rather complicated, but the y-

_k
2sin kT

the corresponding coefficient for z7 is much more complex. This seems to be re-

term always has the simple coefficient cos kT of a harmonic oscillator, whereas
lated to the uneven coupling, where ¥, does not couple directly to R. Nonetheless,
most terms have time-dependences that involve the roots of the dispersion relation
Eq. (6.5), which hints that the polaritons are well described by this representation.

Also, we could have chosen a non-symmetrised coupling in the original action
Eq. (6.3), such that

T .
S] = —g/ dr AkR
0

This would introduce an imaginary effective magnetic field that couples vy, and R.
We can still solve the problem, as it is defined as long as A2 is positive definite, but
the solution looks quite different. The sought after roots of the dispersion relation
are, for example, no longer present. The same physics should be represented, just in
somewhat oblique terms. In this case, since the difference between the two versions
of the action is a total derivative, the transition amplitudes should be connected
by a gauge transformation. This is related to the fact that we are dealing with an

effective functional ‘gauge’ field, whose curl yields B.

6.4 The polariton ground state

As it will be useful later, let us compute the ground state wavefunction from the
transition amplitude in Eq. (6.23). By definition of the transition amplitude [3] in
Eq. (6.23), it can always (for time-independent systems) be expanded in terms of
the energy-space wavefunctions VU,,,,,(q). There are three indices here, since we are

working with three degrees of freedom xy, yx and R. Therefore, we can expand
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w,(k)

Figure 6.2: (a) Unnormalised ground state for £k = 1, @ = 2 and ¢ = 1/2 in
normalised units. As we change k, the width in the photon direction xy changes.
(b) Polariton modes in the system. (c) Coefficients governing the degree to which
the ground state is photon- or matter-like. For instance, at high momenta k, the
system is mostly photon like, as N, approaches unity and Ny decays to zero.

Eq. (6.23) as

(b, Tla,0) =Y e T T (b)(q)Umy(a). (6.24)

mnp

If we let T'— —i3, then

(b,—iBla,0) = Y e Pl (b)W, 8 — e 00PUE () Wog(a) as B8 — oo,

mnp
mnp

(6.25)

and we can thus extract the ground state wavefunction Wo(q) = Wgeo(q) from
Eq. (6.25) in the limit when 5 — oo. In other words, in the limit of § — oo,
only the ground state remains in the transition amplitude as this decays the slow-
est. In practise, it is simpler to set a = 0 and then compute the unnormalised
ground state wavefunction, which can be done if we ignore the normalisation of the
transition amplitude. Naturally, in this we will let A?(s) = A? = constant in order
to have a well-defined lowest energy state. We should also note that the dispersion

relation in Eq. (6.5) has two solutions w? (k), given by

1
w2 (k) = 5 (k2 + QP+ g7+ \/(k2 + Q2+ g2)° - 4k2Q2> : (6.26)
These are the natural excitation modes of the system, defining the polaritons we

found in Chapter 3 (p. 46), and will be important in the following. An example can
be seen in Fig. 6.2(b) for Q@ =2 and g = 1/2.
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If we return to the classical action in Eq. (6.20), then setting a = 0 yields

Su = % [b - F(T)F~X(T) -b] = % [b CF(—iB)FY(—iB) - b] |

where we also let T" — —i in the last step. This enters into the transition amplitude

as 15, implying that
(b, —if0,0) o exp <—% [b CF(—iB)FY(—iB) -b]) 5 W(b) as § — oo,

where we with Up*(b) denote the unnormalised version of ¥y(b). We can therefore

define the ground state matrix G as

G = lim [F(—zﬂ)F—l(—zﬂ)]

B—ro0
Given F' is the solution to Eq. (6.21), we find that this matrix is given by
Ny(wy +w-) 0 ig (159)

G= 0 k 0 : (6.27)
g (ZI_—%) 0 Np(wy+w-)

where N, and Np are coefficients bounded between 0 and 1. Specifically,
EN [ ¢+ (k+Q)? g2+ k2 — Q2
N, = <_) ( 2> - — - s(wy —w )? ), (6.28)
Q 2(k+Q) 2(?+ (k=) (k+9Q)

N (Q) (g2+(k+ﬂ)2 ) FRRTINS ' (w+_w_)2>. (6.29)

k

2(+9)7° 2(2+(k—Q)2) (k+Q

As can be seen in Fig. 6.2(c), where N, and Ng are plotted for Q@ =2 and g = 1/2,
we can interpret these coefficients as corresponding physically to the proportion of
photon-component versus matter-component present in the ground state.

We have thus shown that the ground state wavefunction is given by
Wo(q) o< e 2999,
This can then be normalised such that
[ #arm@r =1
from which we find the ground state wavefunction
Uo(q) = (|Re[g] [x )" e, (6.30)

The normalisation is found in the usual manner, where Re [G] is the real part of G.
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A plot of a sample (unnormalised) ground state can be seen in Fig. 6.2(a) for k = 1,

=2 and g = 1/2 in normalised units.

6.4.1 The bare/strongly coupled ground state

Some properties of Eq. (6.27) are noteworthy. When the light-matter coupling goes

to zero with g ~ 0, the ground state matrix reduces to the diagonal

gbare = (631)

o o
o x> o
D o o

as expected for three independent harmonic oscillators. This is the bare ground
state of the light-matter vacuum.

In the opposite limit, i.e. the strong-coupling case when g > k, {2, we have to
be a bit more careful due to the off-diagonal terms in Eq. (6.27). This is related
to the degeneracy of the lowest lying Landau level, where only the co-rotating (w., )

polariton mode contributes [150].5 We find the simplest case when k = ), given by

k’2
g/2 + ; 0 0
g =~ gLandau - 0 k 0 . (632)
0 0 g2+

As expected, in the limit of k/g — 0, this is the Landau ground state [151] for a

particle in a homogeneous magnetic field.

6.5 Vacuum persistence amplitude

It is now fairly straightforward (at least formally) to calculate the vacuum persis-
tence amplitude, i.e. the probability amplitude that the system remains in the vac-
uum state after a period during which the oscillator frequency (2 is time-dependent
(and subsequently A2%(s) is not constant). It is worth noting that we can ignore the
yx degree of freedom, as it is unaffected by changes to the medium. This reduces
the problem to 2-by-2 matrices, simplifying the algebra.

We want to calculate

(0[0) = /_ " dPa Wi (b) (b, Tla, 0) Wo(a). (6.33)

[e.9]

This is simply Gaussian integrals, and can be computed. However, we should note

®Note that both the co-rotating (w, ) and the counter-rotating (w_) polariton modes contribute
to the energy of a harmonic oscillator in a magnetic field. This is not the case for a free particle in
a magnetic field (k — Q — 0), where only the co-rotating mode contributes [150]. This is because

in this limit Eq. (6.26) becomes w} = 1 (9% £ |g?|), from which it follows that w_ = 0.
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that whilst it involves positive definite matrices (this has been confirmed numeri-
cally), they are not symmetric. We can still solve the integral, but the standard

result for a N-dimensional Gaussian integral is altered slightly to become

> N —luAdu+tJu (QW)N 134553
dVue 2 = [ ———exT fym (6.34)
_ | Asym|

o0

where Agym = (A+AT) /2 is the symmetric part of A. After reducing to 2-
dimensions and some algebra,® we find that the vacuum persistence amplitude is

given by

(0]0) = (2) [RelG]11F77] , (6.35)
i) A [Zpl ‘zE 4 F-L(Sp) )t FT

sym sym

sym

where Xp = G* —iFF1, Yy = G — iF'E, and the subscript ‘sym’ denotes taking
only the symmetric part. The problem is therefore reduced to solving a coupled
set of ordinary differential equations and a somewhat significant amount of matrix

algebra. Specifically, we first want to solve Eqns. (6.21) and (6.22) where

A2:<k2 0 ) B:<O _g). (6.36)
0 Q%(s) g 0

This is best done numerically, and we will here use a 4"*-order Runge-Kutta method
to do so, but it is worth considering the physics implied by the structure of Eq. (6.35).

First of all, let us note that the matrices F' and E are the two independent
solution to the second order equation in Eq. (6.12), in that any solution to Eq. (6.12)

can be constructed as
q(s) = F(s)c; + E(s)ca, (6.37)

where c; 9 are constant vectors. This is similar to the orthonormal functions in
Eq. (2.33) (p. 13), which in turn is used to expand the position operator # in terms
of ladder operators a and a' in Eq. (2.35). However, I and E are not orthonormal
according to the norm in Eq. (2.32), although orthonormal functions could be con-
structed from F' and F. Now, we should further note the similarity of these matrices
to the Bogoliubov §-coefficients that we calculated in Chapter 5. In particular, recall
Eq. (5.55) (p. 107), which we will for clarity repeat here:

e—iwkt
b= - [wkfk - zatfk} |
VvV 2wk
SNote that [ dNu dNv e-zwAuewBve—3v:Ov = (em)

\/1Ceyml[A=BCoy BT,

ym
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This Bogoliubov S-coefficient is a measure of the difference between the ground state
frequency wy and the instantaneous frequency (—id; fx)/ fi. It further relates to the
number of excitations in the system through (ny) = |Bx|?>. We can then note that
both G and —iF'F~' are matrices of frequencies, the former containing the ground
state frequencies whereas the latter represents the instantaneous frequencies in the
system. Hence |Yp|sym is a measure of the difference between the instantaneous
frequency (—iFF~') and ground state frequency (G). This holds true similarly for
—iF~'E. Tt thus stands to reason that both |Yr|qym and |Zg|sym are related to the
Bogoliubov S-coefficients, and we should not be surprised to see them in the vacuum

persistence amplitude.

6.5.1 Periodic modulation

We can now compute the vacuum persistence amplitude by numerically solving
Eqns. (6.21) and (6.22) using a 4™-order Runge-Kutta method, and from 1—[(0[0)|’
extract the probability to excite quanta in the system. Inspired by Chapter 3,” we

will consider a time-dependent resonance frequency of the form
N
Q*(s) = <1 + [ag cos vy s + g cOS Vo] e~ [#°/20%)] ) : (6.38)

where «; and v; are the amplitudes and frequencies of the modulation. Also, o
denotes the duration of the interval in which we modulate the medium, and N is
the order of super-Gaussian used (in order to have sharp turn-on/off times). An
example of this can be seen in Fig. 6.3(a) for the medium parameters 0y = 3 and
g = 2, which is modulated using a; = as = 0.1 for the duration o = 100 at
frequencies ;1 = 1 and v, = 0.8. Here we have chosen N = 10.

This modulation of the medium resonance frequency produces vacuum radiation,
the spectrum of which can be seen in Fig. 6.3(b) (solid blue). At a maximum rela-
tive modulation amplitude of 0.1, it can be argued to be slightly non-perturbative.
Interestingly, the character of the spectrum is identical to the result of the one
found in Chapter 3 [Fig. 3.4, p. 67], where we discussed frequency mixing processes
for vacuum radiation at a perturbative level. Note that the spectrum has multiple
resonances at mixed modulation frequencies.

As can be seen in Fig. 6.3(b) (dashed green), when we increase the modulation
amplitude to a3 = as = 0.3, further resonances become visible in the spectrum.
This is not captured qualitatively by 2"d-order perturbation theory, they are higher-
order mixing processes, similar to a nonlinear optics spectrum [53]. Note that for
this choice of modulation frequencies (17 and v4), we access mostly resonances with
the w_ branch. For example, quanta are excited when w_(k) = 1v;/2. This is the

case for both amplitudes chosen. Physically, this means that we are only driving

"In particular Eq. (3.49) along with Eq. (3.66).
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Figure 6.3: (a) Modulation of the medium resonance frequency. Here we use (2 = 3
and ¢ = 2, and modulated using oy = ay = 0.1 for ¢ = 100 with N = 10, with
v1 = 1 and v, = 0.8. (b) Vacuum radiation spectrum produced by a time-dependent
medium. Here two different amplitudes were used, a; = ay = 0.1 (solid blue) and
a; = ag = 0.3 (dashed green). The mixing processes have been labelled accordingly.
For this choice of 14 and 5, we mainly access resonances related to the w_ branch
and have therefore omitted the polariton frequency label unless necessary. In other
words, the quanta is excited when for instance w_ (k) = 1v4/2.
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the photon-like degree of freedom. It is interesting to note that we would expect a
larger response from the matter-like degree of freedom, as we are modulating the

matter parameters.

6.5.1.1 Classical parametric resonances

Differently to a nonlinear system, the quantum behaviour of the macroscopic QED
system 1is solely determined by the classical solution. This follows from its linear-
ity, as we discussed in Chapter 3. We should therefore be able to understand the
resonances discussed in the previous section in the context of classical parametric
resonances. This becomes apparent especially if we consider the classical equations

of motion in Eq. (6.12), which can be rewritten as

4 ki = —gR,
R+ Q1+ f(t)] R = gix, (6.39)

where we have ignored the equation of motion for g as it is uncoupled to matter
(and its solution is simply that of a harmonic oscillator). Here, f(¢) contains the
time-dependence of the resonance frequency of the medium. The formalism of this
chapter lends itself to the stability analysis commonly performed when considering
parametric resonances.

As is outlined in a book by Arnol’d [152], we are interested in the stability of the
matrix M that connects the system at time ¢ = 0 to the later time ¢t = 7, where 7

is the period of the modulation, i.e. we look for the matrix M such that

£(r) = Mg(0),

where £ is given by Eq. (6.13). Interestingly, this matrix M is given by

[ E(r) F(7)
M = ( Gy O ) , (6.40)

which has already been used extensively. Suppose that we consider a single-frequency
modulation such that f(¢) = acos(vt). Then the equation of motion in Eq. (6.39)
is the same at times ¢t = 0 and ¢ = 27 /v. Therefore 7 = 27 /v.

From Ref. [152], we learn that this map is stable if all eigenvalues of M are
complex, and can therefore be reduced to a rotation, whereas it is unstable if at
least one of the eigenvalues is real. As was noted in Ref. [147], the eigenvalues of

M are given by exp (+iw.T) for a general period 7. This follows because +iw, are

()
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and from Eq. (6.17) we find that exp (+iwy7) are the eigenvalues of M. Thus, we
see that at least one of the eigenvalues of M is real when exp (+i27wy /v) = %1,

that is, when

nv
W=y

for n = Z. From this we find that we expect quantum vacuum radiation to be

emitted when
we =v/2, v, 3v/2, 2v, bv/2, ...

at decreasing amplitude. Interestingly, it is not straightforward to analyse the two-
frequency modulation in Eq. (6.38) within this framework. This is because the

two-frequency modulation is not strictly periodic in either 7 = 27 /1y or 7 = 27 /vs.

6.5.1.2 Fock-Darwin spectrum

Whilst it is possible to understand the spectrum of emitted quantum vacuum radi-
ation in terms of classical parametric resonances, another interpretation might be
more natural. In this chapter, we have shown that the dynamics of macroscopic
quantum electrodynamics can be directly linked to the dynamics of a harmonically
trapped particle in a magnetic field. It follows that it must be possible to decompose
any wavefunction into a weighted superposition of the energy state wavefunctions.
Now, the energy state space of a trapped particle in a magnetic field is well-studied,
and its spectrum is often called the Fock-Darwin spectrum [144, 145]. As is also

pointed out in Ref. [147], the states have energies

1 1
Eon = (m+§)w++ <n+§>w_,

where m and n are positive integers. Therefore, after the modulation of the reso-

nance frequency the final state wavefunction can be decomposed as

U(q) = Z Cmnqjmn(q)e_iEmna

where U,,,,(q) is the wavefunction for the state with energy F.,,. Here we only have
two indices m and n, as compared to three in Eq. (6.24) as we ignore the y, degree
of freedom, seeing that it is decoupled from the rest of the system. From this we

can conclude that quantum vacuum radiation must fulfil

AFE = energy supplied,

mw, + nw_ = energy supplied,
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Figure 6.4: Spectrum of a quench.

where m and n are the number of w,—polaritons and w_—polaritons respectively.

6.5.2 The Schrodinger equation and quenches

So far we have solved the problem for a general oscillator frequency €(7) in a path
integral language. In the case of quenches,® however, we can find a simple answer
using the Schrodinger equation. As can be seen, we can use familiar quantum
mechanics to solve this quantum field theory problem.
It is easy to see that for the action in Eq. (6.9), we have the Schrédinger equation
ig—\f = —% (V —iA)” + %kQ (zi + yie) + %QQ(T)R2 v, (6.41)
where we have defined an effective ‘gauge’ potential A = (—gR, 0, gzy) /2 written in
symmetric ‘gauge’, and where V = (0,,,0,,,0r). Using the Schrédinger equation,
it is straightforward to obtain the vacuum persistence amplitude in the case of a
quench. Note that this should be seen as a mathematical exercise, useful in order to
gain intuition about the system. In reality, no perfect quench is possible.” Eq. (6.41)
also highlights that we can interpret the dynamics in terms of a functional gauge field
A. As we mentioned earlier, we are free to choose another ‘gauge’ corresponding to

the addition of a total derivative to the action, at the cost of a phase change.
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6.5.2.1 Quench to bare vacuum

We can thus address the typical scenario of a quench between the polariton vacuum
and the bare vacuum, which was considered in a cavity scenario in, for example,
Ref. [84]. From the Schrédinger equation we can immediately see that if we change

the optical parameters abruptly then the vacuum persistence amplitude is given by

1/4
(0[0) = <|Re [Gi] Re [gfy) |
(|g}'3 +Gil/2)

where G; and Gy is G at the initial time 7 = 0 and the final time 7 = T, respectively.
Suppose now that we start in the polariton vacuum state described in Section 6.4

at 7 = 0, and then quench ¢ — 0 at 7 = T". Then we find

(0l0) = \/ . /ARQN, Ng (k + Q)% (w, —2|—w_)  642)
(k=) + (E+ Q)2 [N, (wy +w_) + k" [Ng (wy +w_) + 9]

As a reminder, here N, p are the coefficients seen in Eqns. (6.28)-(6.29), which de-
termines the relative composition of the polariton ground state in terms of ‘photon-
like” and ‘matter-like’ fluctuations respectively. This amplitude has the same general
structure as the full amplitude in Eq. (6.35), where the important quantity is the
difference between initial ground state frequencies (G) and the final ground state
frequencies [—iF' F~'(T)]. The probability spectrum, i.e. 1 — [(0]0)[?, for such a
quench can be seen in Fig. 6.4, where we have chosen g = 2 and {2 = 3, similarly to
the periodically driven example in Section 6.5.1.

Whilst the general structure of the vacuum persistence amplitude in Eq. (6.42)
is very similar to the generic case in Eq. (6.35), the actual spectrum seen in Fig. 6.4
and Fig. 6.3 respectively, is vastly different. The origin of this is two-fold. The
quench has no preferential frequency into which quantum vacuum radiation can be
emitted. Therefore, we expect fairly homogeneous emission across the spectrum.
However, there is still some dependence on k, specifically a small suppression of
emission for k = (), as can be seen in the inset of Fig. 6.4.

This depends strongly on the ratio of NV, and Ng, which essentially counts the
degree to which the ground state is ‘photon-like’ or ‘matter-like’, respectively. In the
k < Q regime, the energy cost of exciting n photons (o nk) after the quench is much
smaller than the respective cost for the matter degree of freedom (ox n{2). Hence,
photons are preferentially emitted after the quench, and the small energy cost leads
to the close to unity probability of emission seen in Fig. 6.4. On the opposite side
of the spectrum, photons carry a higher energy cost than matter quanta. However,

the emission is suppressed in general by the fact that the energy cost of each matter

8 Abrupt changes to the parameters.
9For one, the changes needed might be quicker than the speed of light, which is clearly un-
physical!
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quantum is still considerable. In the special case of k£ = €1, the photon and matter

quanta are degenerate and this balance reduces the total number of emitted quanta.

6.6 Direct driving

We have so far in the chapter explored the physics of a time-dependent resonance
frequency, which has links to parametric driving (see Section 6.5.1.1). Let us now
turn to direct driving, similarly to what was done in Section 3.4.1 where we studied
the emission of quanta due to free currents in the system. We will here consider direct
driving of the matter degree of freedom, rather than the electromagnetic degree of
freedom. The reason for this will become clear in Section 6.7, but we can physically
imagine such a driving to originate from an external classical electromagnetic field.
It is, however, straightforward to generalise to include free currents. If we return to

the action in Eq. (6.3) and include a driving term Jg(7), we find the action

1 r i 12 2 2
S’y = = dT |Ak| —]{7 |Ak| s
2 Jo
1 r 52 2 2
SR:§ dr R —Q(T)R +JR<T>R,
go T . .
S;=-Y / dr [AHA;;} R. (6.43)
2 Jo

This is our starting point, but it follows in a straightforward fashion that we can re-
write it into the action of a driven and harmonically trapped particle in a magnetic

field by the same procedure as was done in Section 6.2. From this we find,

o1, 1 1 .
Swm:/ dr 54" —5a- A" a+5(Bxa)-4+J-q (6.44)
0

where we have defined the driving force vector

J=1(0,0,Jp), (6.45)

along with the q, B and A? defined as in Eqns. (6.7) and (6.8), respectively. From

this action, we find the equation of motion
4+ B+ A*(s)qg = J, (6.46)

where we have defined the matrix B as in Eq. (6.15). We can now also define £ as
before [Eq. (6.13)] in order to find the equation of motion
SR N PO (6.47)
s) = s)+ o, :
—A%(s) —B
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where we have also introduced the new driving force vector
o=(0,J). (6.48)

We can now solve the equation of motion in Eq. (6.46), using the solution to the
homogeneous problem (o0 = 0) that we studied in Section 6.2. For the sake of

notational simplicity, let us define the matrix

0 I
T(s) = ( _As) B ) .

Suppose we re-write the equation of motion as
é - T(S)€ =0,
from which it follows that (at least formally)
d S S
— {exp (—/ dt T(t)) 6(3)] = exp (—/ dt T(t)) o(s).
ds 0 0
After some elementary algebra we find the formal solution
s —1
€)= o (- [(ar70)] €0
0
s -1 /s t
+ [exp (—/ dt T(t))] / dt {exp <—/ dt’ T(t’))] o(s). (6.49)
0 0 0

We can now notice that the first line is simply the formal homogeneous solution,
which we solved in Section 6.2 in terms of the matrices E(s), F'(s), G(s) and H(s)
[Eq. (6.16)]. Therefore, it is useful to define

oo (- [[a7)] "= ( oo ) |

and its inverse
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Note that we can express

( P(s) Q(s) ) B ( E(s) F(s) >
R(s) S(s) G(s) H(s)

_( E'4E'W[H-GE'F]'E' —E'F[H-GEF]”
- —[H-GE'F]"'GE™ [H-GEF]™" ’

(6.50)

where we have suppressed the s-dependence for notational simplicity. In particular,

from this we find

(6.51)

This form will be important for computations. We have thus found the full solution
of the driven equation of motion in Eq. (6.46) in terms of the differential equations

discussed in Section 6.2. Specifically, we have
_ [ E(s) F(s) E(s) F(s) ’ P(t) Q(t)
&)= ( G(s) H(s) )5(0) N ( G(s) H(s) ) /0 “ ( R(t) S(t) ) ()
(6.52)

From this, we can extract the solution q(s) of the driven dynamics, i.e. the classical

solution to the driven Hopfield equations. This yields

v 56 ([ ar Qi) - rer e ( | Car Q30)

0

— F(s) / "t S(30). (6.53)

Interestingly, we can separate this into the homogeneous qy and inhomogeneous

solution qp as
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where we find the solution in Eq. (6.53) by q(s) = qu(s) + qi(s). Importantly, in

this construction we find that

qH(O> = a, qH(T) = Db,
ai(T) = 0. (6.55)

Q
—
=]
N~—
Il

In other words, the boundary conditions are, by construction, taken into account
by the homogeneous solution. We can substitute this solution into the action in

Eq. (6.44), separating the solution into homogeneous and inhomogeneous parts as

Sa = Syrr+rlan + ai

1. . T 1
= 5 [qHQH]g +/ dr J - (qH + B Cl[) , (6.56)
0
where we used the fact that
T . T
[ ar Bxa a=(Bxa - [ arBxa)q
0 0

Z—/OTdT (Bxq)-q

since (B x q) L q and

T T
/ dr (BXQH)'QI_/ dr (B xqi)-qu,
0 0

using the boundary conditions in Eq. (6.55). Finally, substituting the classical
solution of the Hopfield equations in Eq. (6.53) into the action in Eq. (6.56) yields

St 9] :% [b~FF*1-b+a-F*1E~a—2a-F*1~b}
+ /0 ds J(s) - ([E(s) — F(s)F N(T)E(T)] a+ F(s)F~'(T)b)
_ % /0 ds /O Tt 3(s) - [5T<S)FT<t) + F(s)F- (T)E(T)Q()

+ QN (s)EN(T)FH(T)F () — E(s)Q(t)| - I(2),
(6.57)

in which we used the identity

/OTds/Osdt f(t,s) Z/OTds/STdt f(s.t). (6.58)
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In order to simplify notation, and also provide some physical intuition, let us define

the classical propagator
A(s,t) = 0(s —t) | ST(s)FT(t) + F(s)F 1 (T)E(T)Q(t)
+ Q) EN(T)F(T)F'(t) — E(s)Q(t)|. (6.59)

This propagator is the Green’s function for the classical Hopfield equations, that is,

it is the solution to
[10? + BO, + A%(s)] A(s,t) = 16(s — t),

with boundary conditions A(0,¢) = A(T,t) = 0, and where I is the identity matrix
as before. Notably, time-reversal symmetry is broken since the light-matter coupling
acts as a ‘magnetic field’, and we expect A(s,t) # A(t, s). Finally, we find the driven

action
1 .
Sal) =3 [b-FF—l ‘bta -F'E.a—2. F -b]

+ /0 ds J(s) - {[E(s) — F(s)F""(T)E(T)] a+ F(s)F ' (T)b}

- %/0 ds/o dt 3(s) - A(s,t) - I(2). (6.60)

Importantly, it is straightforward to show that this action reduces to the expected
harmonic oscillator action when we let the light-matter coupling g go to zero.°
Given that we have mapped the dynamics to the harmonic oscillator in a mag-
netic field, the classical action of the driven Hopfield model of macroscopic QED in
Eq. (6.60) contains few surprises. The driving simply adds a constant shift to the

action.

6.6.1 Quantisation

It is well-known that a driving term J does not couple to the quantum fluctuations in

a harmonic oscillator [3], meaning that it does not contribute to the normalisation

10Tn the case of g — 0, the classical action in Eq. (6.60) reduces to

1 CpskT .k
sd[J1=2[[b+a}-(’%ng qusgr ) bral-2a-(FT 5 )

sin QT sin QT

sin ks 0 sin .IC(T?S) 0
/ ds J(s ( T n o ) L B Y e N
sin QT sin QT

sin kt sin k(T s) 0
- / dS/ dt J(s kSIBkT sin Qt sin Q(T'—s) -J(t),

Qsin QT

where we have as usual omitted the yx degree of freedom (which is a xi-replica in this case).
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factor of the transition amplitude (b,7'|a,0);. This is also true for a harmonic
oscillator in a magnetic field, and thus also the case for the Hopfield system. We
can see this by separating the coordinate q into classical q. and quantum parts 1
as in q = qq + 1, where n(0) = n(7T") = 0, and substitute this into the action in
Eq. (6.44). This yields

S[q> J] = S["%O] + Scl[qclaJ]7

and the formal path integral in Eq. (6.10) reduces to

, n(T)=0 '
(b,T|a,0), = ¢"Salda] / Dn e'Srrrinll, (6.61)
n(0)=0
For our purposes however, the quantum fluctuations are taken into account in the
Morette-Van Hove determinant D, seen in the pre-factor of Eq. (6.10). In a generic

N-dimensional system, this determinant is given by

1 1/2

(2mi)N/2

 0°Sa
3bj8ak

(6.62)

As can be seen, only terms in the classical action that contain both a and b will
contribute, and thus the determinant will not contain any terms proportional to J.

Finally, it follows that the driven transition amplitude is given by

[E

<b7 Tlaa O>J = (27TZ')3/2

€xp (iSCI [qclu J]) ) (663)

with Sg given in Eq. (6.60).

6.6.2 Driven vacuum persistence amplitude

Let us start by calculating the vacuum expectation value for the driven Hopfield
system. This follows similarly to Eq. (6.33), but where we now wish to use the
driven transition amplitude from Eq. (6.63) instead of the one in Eq. (6.23). In

other words, we want to compute

(0[0), = /_ " b dia wi(b) (b, Tla, 0), Uy(a), (6.64)

[e.9]

where the ground state wavefunction ¥, was found in Eq. (6.30). Since this is in the
form of Gaussian integrals, we can use the relation in Eq. (6.34). However, due to

the algebraic complexity, let us proceed step-by-step. It is useful, for reasons that
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will soon become clear, to first evaluate the integrals

0
/ dNU dNU e—%u-A~u+J-ueu~B~v€—%v-C~v+K~v

[e.o]

o (\/|Csym’ ‘A BCSY%HBT’synJ

X G%K. (Csym+csymBT [A_BcsymBT] symBCs§1n) ‘K

%J-(A—BCS_},}HBT);;‘J

X e

Rl (A- BCsymBT)  BCymK

as well as

oo
/ dNU de e*%uAA-u+J~ueu~B-v€f%VAC-erK-V

o0

= 2m)" (/1 4gm [C = BTAZLB| )1

% e% (C BTAsyinB)slm
« 3 (A5t ATk BlC-BT AL | BTASL)-3

K-(C- BTASylmB) CBTAG LT

X e , (6.67)

where we find either (6.65) or (6.67) depending on which integral (u or v) we evaluate
first. From this we can establish some useful matrix identities, i.e. that

-1

Cogmn + Coom BT [A - BC’SymBT] BC, = (C—-B"ALB)__,

Sym sym sym
A +ALB[C — BTASymB] CBTAL, = (A- BOSymBT)Sym ,
(C— BTAZLB) | BTAL = CLBT (A= BCLBT) . (6.68)

where we have to assume that the arbitrary matrices A and C' are positive definite
(but not necessarily symmetric) and suitably invertible.!! The simplest form of this

integral is thus

/OO AV dVp e swAuHIu uBY v OviKy _ (2)

= \/Covml [4 = BCSLBT| |
o 3K BTAgymB)Sylm
o 3 (A- BCSymBT)S;n-
BT OR( 0

1By suitably invertible we mean that A, C, C — BT A~ B as well as A— BC~!BT are invertible.
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which is the version we will use from here on. We can now use this to compute the

driven vacuum persistence amplitude by identifying
A>YSp=G" —iFF!,
B — —iF !,
C—Yp=G—iF'E,

J— i/T ds F~TFT(5)J(s),
K—i /O ds [E"(s)— ETFTF(s)] 3(s),

where we should remember to check that G* — iFF~! and G — iFF~'E are indeed
positive definite. This is best done numerically, after F' and E have been computed.
Note that for notational simplicity, a matrix is implicitly assumed to be evaluated at
7 = T whenever the argument is omitted. Finally, we arrive at the driven vacuum

persistence amplitude

(0]0); = (0]0) eXp(——/ ds/ dt J(s { “(S/SE) g FIFT ()

+ {E(s) = F(s)F'E} (8/%p) oy {E"(t) = ETFTTF" (1)} } J(t))

><exp<——/ ds/ dt J(s [ 1)
— 2F(s)F Y (S/Ep) g FH (Ep) g {ET (1) ETF‘TFT(t)}}J(t))

(6.70)

where (0]0) is the J = 0 vacuum persistence amplitude from Eq. (6.35), and where

we have introduced the matrix

Sy —iF!
s=( = , (6.71)
— T Yk

as well as the symmetrised Schur complements [153]

(S/E )= (Be + P (Sr)n F)

(S/S8)ym = (zF + P (Se)h F*T> . (6.72)

sym

Whilst the expression in Eq. (6.70) is complicated, it is nonetheless calculable and
entirely expressable in terms of the ground state matrix G from Eq. (6.27), and the

propagation matrices F' and E as defined in Eqns. (6.21) and (6.22) respectively.
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Let us, for notational simplicity, define the Fock space propagator

Aoo(s,t) = iA(s,t) + F(s)F (S/Sp) g FF (1)
+{E(s) = F(s)F'E} (8/Sp) ym {E"(t) = ETFTF(t)}
— 2iF(s)F " (S/SE) g F T (SE)gm {ET(t) — ETFTFT (1)}

sym
(6.73)

in analogy with the standard result for a harmonic oscillator [3] and Eq. (3.43) in

Chapter 3. We can therefore express the driven vacuum persistence amplitude as

(0]0); = (0]0) exp (—% /0 " s /0 "t J(S)Aoo(s,t)J(t)) . (6.74)

In order to bring the field-point propagator A(s,t) and the Fock space propagator
Ago(s,t) to the same form, it is convenient to define the symmetrised Fock space

propagator
AR (s,t) = Dgo(s,t) + Apol(t, 5). (6.75)

This brings the vacuum persistence amplitude into the form

(0]0); = (0]0) exp (—%/OT ds /0 dtJ@)Ag{)m(s,t)J(t)) , (6.76)

where we used the integral identity in Eq. (6.58). This will be a handy notation
for computations.’> We can directly see that any driving force J will exponentially
suppress the vacuum persistence. Unsurprisingly, the vacuum is unstable when

driven.

6.6.3 Correlators

We are mostly interested in vacuum-correlators, and so we can use the vacuum
persistence amplitude in Eq. (6.70) as a basis when calculating the correlators. As
discussed briefly in Section 3.4.2.3 of Chapter 3, we can calculate the two-point

correlator as

6 5 1 T s sym
0lg; (7)0) = 010 =5 Jo ds [ dt I(s)A50" (s,6)I(t)
Ol (I0) = s s Ol0)e

= (0]0) (7 — ') [Ago™ (7, 7')]

J=0
(6.77)

17

2In this form it is easy to confirm that when ¢ — 0 and for time-independent €2, we find the
usual harmonic oscillator amplitude

T s et (s—t)
<oo>J=<0|o>exp<—§ [ras [Faae () ez-Q(?t)/Q)J(t))
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for 7,7 € [0,T], where ¢; refers to the i*" component of q (similarly for J;), and
where [Agy" (7, T,)]ij

physical interpretation of Ag™ in terms of the field-field correlator. Note that the

refers to the i*" column and j* row of Ag,". Thus we find a

free vacuum persistence amplitude (0[0) is not necessarily unity for all times. In
fact, from Section 6.5, we know that it is not when the resonance frequency of the

medium depends on time.

6.7 A damped harmonic oscillator

In order to properly model many materials, it is crucial to also include dissipation.
This has been ignored in the treatment so far, restricting the use to materials where
absorption can be neglected. Whilst this is indeed the case far away from the
resonance frequency in most materials, the models simply are not valid close to the
resonance frequencies. In order to remedy this, let us first study the dynamics of a
damped harmonic oscillator. The lessons learned from this can then be applied to
the matter degree of freedom in the model for an optical medium.

As this is a type of open quantum system, we will require the introduction of a
reservoir into which energy can be dissipated. We will here model this reservoir as a
free field living in an auxiliary dimension . This is similar to the Lamb model [154]
of the quantum Langevin equation for a damped harmonic oscillator studied also in
many different works, such as [155-161]. The general framework of including a bath
to absorb energy is used in a variety of scenarios relating to open quantum systems,
most commonly through a master equation [56, 162-164] but also its (Keldysh)
path integral representation [165] (and references therein). Applications of this are
ubiquitous, but include lossy cavities [56, 166, 167] and the damped dynamical
Casimir effect [168, 169].!3 In particular, we will be using the version introduced by
Unruh and Zurek [170] where the harmonic oscillator is coupled to the free scalar
field by a derivative coupling in order to explicitly break time-reversal symmetry.

Let us start at the action, given here by

1 /.
SRz—/ dr R?> — O’R?,

2 Jo
T
sD_%/O dT/dCD2—(8<D)2,
T
Sint = dr [ d¢ uD ,T)O(CO)R(T), )
| ar [ acupic.mirren) (©.79

where we used the same normalised units as previously in the chapter. Here D is
the free scalar field playing the role of reservoir. It propagates only in the auxiliary
(1-dimensional) (-axis, and the coupling in Sj,, ensures that energy is deposited at

the origin ¢ = 0. In particular, the d-function at the origin of the (-axis ensures that

13This is not by any means an exhaustive list!
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energy is emitted into (-space, and no energy that has been previously emitted can
be re-absorbed.!* Furthermore, the derivative in time explicitly breaks the time-
reversal symmetry of the system. Because of this nature, we will refer to the field

D as the dissipator. It follows that the equations of motion are

R+ Q%R = uD(0,7),
D — 0D = —ps(¢)R(r). (6.79)

We can most easily solve this system by using the Green’s function for the dissipator
D, which satisfies

07 = 0Z] Gp(rT —7',¢ = (') = 6(¢ = ¢)o(r — 7).

This is well-known [1, 170] and given by

Golr—7',¢~ () = 28 (r —7' ~ ¢~ ),

where we have chosen the retarded Green’s function out of physical considerations.'®

The full solution for the dissipator is therefore

H 4 / / S (!
D) = Duer) =% [ ar o(r =7~ [CDR() (6.50)

where Dy ((, 1) satisfies the homogeneous equation of motion. By substituting this

back into the equation of motion for R in Eq. (6.79) we find
. M2 . .
R+ R+ Q*R = uDy (0, 7). (6.81)

The form of the damping is a direct consequence of the -function in the coupling
Sint, and would take a considerably more complicated form otherwise. This is clearly
a damped harmonic oscillator driven by the fluctuations in the dissipator. As such,

it takes the form of the quantum Langevin equation when

(D(0,7)D(0,7")) < 6(1 — 1), (6.82)

which is indeed the case if we let Dy be a thermal field at high temperature. To
bring this into a familiar form, let us define the dissipation rate v = p?/4, with
which we find

R+2YR+ Q?R =2/7Dy (0, 7). (6.83)

4The energy will simply propagate out towards ¢ = oo.
15We are interested in whether energy is being emitted into the auxiliary space ¢, not energy
being absorbed from it. The latter would involve the advanced Green’s function.
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For now, let us ignore the driving and focus on the homogeneous version of Eq. (6.83).
We will treat the driving later. As such, let us for now assume that Dy = 0.
We wish to quantise the above system by computing the path integral

R(T)=Ry
<Rb7 T‘R(U 0> = / DR exp [iSR+D+int] y (684)

R(0)=R,
where we are treating only the inhomogeneous part of the dissipator. As we are
dealing with a quadratic action, in order to compute this we want to find the solution
to the classical equation of motion Eq. (6.83) with boundary conditions R(0) = R,
and R(T) = Ry. It is easy to show that the action in Eq. (6.78) can be reduced to
the usual
1r. 17 1 . T
SR+D+int = 3 [RR] + - /dC [DD} ,
2 o 2 0
by integrating by parts. If we consider only the homogeneous part of R together with
the inhomogenoeus part of the dissipator (as we are not interested in the dynamics
of the dissipator), we find
1r- T v 9
Sppiin :—[RR] T(Ry — R,),
Rt Dint = 5 . Ty (R )
where R obeys
R+2vR+ QR =0 (6.85)

with boundary conditions R(0) = R, and R(T') = R,. The solution to Eq. (6.85)

with these boundary conditions is

1
~ sinyT

R(t) [—R.e " sinx(t — T) + Rye "D sinxt] (6.86)

where we use Yy = /2 — ~2. This in turn leads to the action

X 2 2 '
- T -2 h~T + 2 — T .
S 2sin xT (8 + Rq) cos x RyR, cosh T + 2R, (R, — Ry) sin xT|

(6.87)

Interestingly, in the limit of {2 — 0 we have to be a bit careful, as the correct action

is
590 — % [(Ry — Ra)? coth7T + 2R, (R, — Ry)] , (6.883)

which is not the same as the 0 — 0 of Eq. (6.87). This is because if we naively
take this limit we cross a branch cut, as is common when some sort of damping is

included (see for instance the inverted harmonic oscillator in Ref. [98]). Let us focus
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on the damped free particle, as it can tell us a bit about the role of each term. It is

straightforward to find the transition amplitude

(Ry, T|R,, 0) = \/ % (1 + cothT)eld ™ (6.89)

where we used the Morette-Van Hove determinant from Eq. (6.62) in order to com-
pute the normalisation. If we start with a Gaussian wavefunction with width ¢ and

initial momentum py,

2

U(R) o ¢ 22 R, (6.90)
we find that
Po
RY(T — oc0) = —. 6.91
(BT~ 00) = 31 (6.91)

This matches what is expected from the classical damped free particle.'® If the last
term in the action in Eq. (6.88) is ignored, i.e. the contribution from the dissipator,
then we get the incorrect result of (R)(T — 00) = po/7. In other words, we cannot
simply neglect the dissipator dynamics in the action. This is not the full story,
however, as we have presently ignored the driving term 2\/f_yDH(0, 7).

Including this driving term into the dynamics of R is fairly straightforward as

we can adopt the general solution we found in Eq. (6.54). In this case, we find
Ru(s) = [E(s) — F(s)Fﬁl(T)E(T)] R, + [F(S)Ffl(T)] Ry,

s = 56) ([ areétn) - e ([ aowén)

0

— F(s) / dt S(t)E(L), (6.92)

where we have defined £(t) = 2,/7Dy(0,7) for notational simplicity. Here the

matrices E, F', G, and H reduce to scalars and we have the equation of motion

<E<s) F(s) ) :< 0 1 > (E(s) F(s)) (6.9
G(s) H(s) -0 -2y G(s) H(s)

16Tn the classical limit, we have
Rd + 2’}/RC1 =0,
whose solution for R.;(0) = 0 and R = po is

Ry(r) = % (1—e27) T2, g—f;
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together with the initial values

E(O) FO)\ (10
Go) Ho) ) \o 1)’

However, we cannot directly adopt the action found in Eq. (6.60), as we can no
longer equate G — HF'E = —F~T. This required B = —B7 in Eq. (6.15), which
is here given by B = 2v. Clearly this cannot be satisfied as 2y # —2~ unless 7 = 0.

Nonetheless, the action can be written as

—_

Sa €] =5 [Ro (FF™) By Ry (F7'E) Ry = Ry (F7' 4+ B"F"H" = G") )

ds &(s) - {[E(s) — F(s)F'E] Ry + F(s)F 'Ry}

T2

+

s 3R 5 [ s [ aéeacoio, (691

where we kept the transpose notation despite dealing with scalars as this will be
useful when we generalise this to the Hopfield system. As expected, when é — 0 we

arrive at the action of Eq. (6.87). Thus we find the transition amplitude

1 s
(Ry, T|Ra, 0)¢ = \/% (1 + > [F~'+ ETF-THT — GT])elscl[S]

1 X iSa€]
= h~T oA, .
\/2m' (’y + T coshy )e (6.95)

We now want to integrate over all configurations of the dissipator Dy in order to

take the fluctuations into account. Whilst we can perform the path integral over D,
it is simpler to deal with & (1) = 2\/§DH(O, 7) directly. This is akin to the Martin-
Siggia-Rose formalism for stochastic path integrals [171], although we should note
that we do not restrict ourselves to the high-temperature limit just yet. In other

words, we can now integrate over é such that the correlation function for é is [154]

(s)) = —ZVkBTdiS coth [rkgT (s — t)] = Kr(s,t) + Kr(t, s),
(6.96)

—
Iy
—~
V2)
S—
Iy
—~
~
SN—
7a2%
—~
~~
N—
Iy

where T is the temperature of the bath and kg is the Boltzmann constant. In the

high-temperature limit, we have
Kr(s, t) " X° dykpTs(s — t), (6.97)

corresponding to the classical Langevin limit. On the other hand, when T" — 0 the
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noise is dominated by quantum fluctuations in the dissipator, and we find

11‘:0 1 1

K’]T(S, t) - (5 ~ t)2 .

(6.98)

We can compute the correlation function in Eq. (6.96) through the path integral

A~ ~ ~ ~ A A A~ T T A~ ~

I + 0 = [Déémerrem |- [as [ gk née)

__ & / DE e~ o s dt 3K (5080

~ )i

« et o ds f(9)é(s)
F=0
52 T 1
— Wexp (—/0 ds dt §f(s)KT(S,t)f(t)) fzo,
(6.99)

where we define K ! as the functional inverse of Kr,'” and where we have normalised
such that the path integral with f = 0 equals unity. We can use this to define
averages with respect to the noise, which we will denote as ({...)). In this way we

can compute the noise averaged transition amplitude

(TR 0) = [ D6 (11RO exp [ [ s [ e S .étn]
(6.100)

It is fairly straightforward to formally compute this, yielding

det K7t 1 X
Ry, T|R,,0)) = r ./ — (7 + — cosh ’yT) exp [15q] ,

(6.101)

where ‘det’ is the functional determinant (as discussed in Chapter 2), and we have
defined the combined propagator (K{ T4 Z'A)fl as the inverse of Ki' +iA. Also,

7K.t is defined implicitly though Eq. (6.96), as we never need to find the explicit form of it.
In the high-temperature limit however, we can note that Ky ' = d(s —t)/(4ykpT).
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from Eq. (6.101) we find the noise averaged classical action is given by

1

S01:§

B (FF™Y) By Ry (F7'E) Ry = Ro (F~' + B"F"H" = G") )
+% /O s /O L {[E"(s) — E'F"F(s)"] R, + F"F"(s)R,}
(ﬁ) (s, ) {[E(t) = FO)FE] Ra + F()F " Ry}
X %(Rb — R, (6.102)

At this point, we have yet to make any approximation of the dissipator dynamics.
As can be seen, this defines a time-nonlocal action whose memory kernel is given by

(Kp'+ iA)fl. We can formally compute this memory kernel perturbatively'® as

) (s,t) ~ Kr(s,t) —I—i/ds//dt/ Kr(s, s )A(s' ") Kr(t',t) + ...
(6.103)

(qul +iA

This corresponds to a perturbation series quantifying the degree to which the bath
dynamics are affected by the oscillator. Let us for now truncate this expansion at
the 0 order in 7, where the bath is unaffected by the oscillator, in order to get a
feeling for the physics. Furthermore, let us also work in the high-temperature limit,

such that the bath correlations reduce to a d-function. In this limit, we find

1 ~ small high T
V() B Kp(st) "R 4y kg TO(s — 1), 6.104
(s ) 0 2 Kalo) "E ks Tos =0, (6100

where the last step follows from Eq. (6.97). Hence, we find

det K;! ~1
det (K7t +iA)""

and
/0 ' ds /0 ! dt {[E"(s) = ETF"F(s)"| Ra+ F "F"(s)Ry}
X (m) (s,8) {[E(t) — F(t)F'E] Ro + F(t)F 'R,
~ 4ykpT /0 ' ds( [E(s) — F(s)F'E] R, + FTFT(S)RI;)2

= 4vkpT /0 ' ds [Ru(s)]?, (6.105)

where Rp(s) is the solution to the homogeneous equations of motion for the oscil-

BNote that it is also possible to solve it non-perturbatively in a Dyson equation fashion [4].
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Figure 6.5: (a) Unitary evolution of the wavepacket. (b) Non-unitary evolution
with kT ~ 1/255 (that is 300 K with a reference frequency Q,r = 10 fs’l)

lator, seen in Eq. (6.86). This term is responsible for the loss of unitarity, since
Eq. (6.105) enters the action in Eq. (6.102) with a factor of ¢, meaning that this
‘phase’ term in the propagator in Eq. (6.101) becomes a decay rate. We can now

rewrite the noise averaged classical action as
1 .
S, = 3 {Rb (FF—1 + 7) Ry+ R, (F'E+7) R, (6.106)
T
— R, (F'+E"F"H" — G" +2v) Ry, + idvkpT / ds [RH(S)]2:| :
0

Here the first three terms govern the phase acquired (expiS.) by a wavepacket
during propagation. This is unitary evolution. The 4'"-term of Eq. (6.106), on the
other hand, leads to a decay rate — non-unitary evolution. Finally we arrive at the

transition amplitude

1 .
((Rp, T|R,,0)) = \/% (’y + - XxT coshfyT) el (6.107)

S11

We can see a comparison of the unitary to non-unitary propagation of an initial
state of the form of Eq. (6.90) in Fig. 6.5(a) and Fig. 6.5(b) respectively. As can
be seen, the main effect of the 4"-term in Eq. (6.106), which originates from the

thermal fluctuations, is the loss of amplitude.

6.8 Vacuum radiation in absorbing media

Let us now take what we have learned from the damped harmonic oscillator and
apply this to study quantum vacuum radiation in absorbing media. The idea here is

to couple the oscillator, which is responsible for dispersion, to a reservoir in order to
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induce damping. We can more or less apply the same procedure as in Section 6.7 in
order to do this, but with some caveats. Also, we should note that other approaches
to macroscopic quantum electrodynamics in absorbing media, the most prominent
of which is by Huttner and Barnett [60], are very similar in spirit, building on the
same idea of coupling the oscillator to a reservoir.

If we now return to the Hopfield action in Eq. (6.1), we want to further couple
the harmonic oscillator R (which sets the resonance frequencies of the medium) to

the bath degree of freedom. Our starting point is thus the action

ty .

Syz/ dt/d%l[AQ—(VxA)?]
t; 2
ty P I

Sp = / dt / &z L [R2 - Q%)Rﬂ
titf

Sp :/ dt/d{
t;
tr .

Sint. A :/ dt/d% (—pqg) A-R

t;

S = / "t / d¢ D(C,7)8(C) - R(7). (6.108)

[D? - (acpf]

O = DN

where p is a vector chosen along the polarisation directions in Eq. (6.2). The
rationale behind choosing p in this way is to ensure that both polarisations are
damped equally. Furthermore, we should note that this is possible because we have,
when deriving Eq. (6.1), chosen to work with a spatially uniform oscillator R such
that V - R = 0, which means that the oscillator also satisfies the Coulomb gauge
condition. Further discussion of this can be found in Section 3.1 (p. 35). As before,
we can expand into the polarisation directions e), re-define the fields and time-
coordinates to scale it into dimensionless form, and split up the vector potential

into real and imaginary parts Ay = xx + iyx. This yields

o1, 1, 1 _
Sverer = | dT 54 —5a-A"-a+ 5 (Bxq)-q
0

27 2
Sp = /OTdT/dg % D* ~ (9D’
Sint.p = /0 ' dr / d¢ D(¢,7)8(C) pR(7), (6.109)
where
q = (Tx, Yk, R)
B = (0,—g,0). (6.110)

First of all, let us, as usual, ignore the y, degree of freedom, as it is not coupled to
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the matter degree of freedom. What follows is an extension of the method used in
Section 6.7 to consider a 2-dimensional coordinate q, rather than R. In particular,
we consider only the retarded Green’s function for the dissipator D. In this way, we

can arrive at the equation of motion
4+ B,q+ A%(s)q =, (6.111)

where J = <0,§) and

A2:<k2 0 ) sz<0 _g>, (6.112)
0 Q2(s) g 2y

where v = p?/4. Note that By, i.e. B, in the case when v = 0, is the matrix we
considered in the undamped case in Section 6.5 [Eq. (6.36)]. By introducing £, we
have a driven-damped system, which we can solve in the same manner as previously

in terms of the matrices F, F, G, and H. In this case we have the equation of

(L0 (Lo (B mo)
G(s) H(s) —A%*(s) -B, G(s) H(s)

B(0) F(0)\ (10
Gy Ho) ) \o 1)’

We can now go through the same procedure as in Section 6.7, but with the intro-

00
P:(O 7). (6.114)

Finally we arrive at the action of the driven-dissipative Hopfield system

motion

duction of the matrix

Sa €] = % [b (FF'+T)b+a(F'E+T)R,

—a(F '+ E"FTH" —-G" +2I') b

+
c\.,
S~
ISH
V)
[
=
—_

E(s)— F(s)F'E]a+ F(s)F'b}

—%/OTds/OTdtJ(s)-A(s,t)-J(t), (6.115)
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where, as a reminder, the driving force

J= (0,5) (6.116)

is of the stochastic nature explored in the end of Section 6.7. Also, we have intro-

duced the classical propagator
A(s,t) = 0(s —t) | ST(s)FL(t) + F(s) F"Y(T)BE(T)Q(t)
+ QU(s)EN(T)F(T)F'(t) — E(s)Q(t)|, (6.117)
which is the solution to
[10? + B,0, + A%(s)] A(s,t) =16(s — ). (6.118)

The transition amplitude now becomes

(b, T|a, 0); = g@,ll exp (isd M) , (6.119)

where we used the Morette-van Hove determinant to calculate the pre-fractor of the

path integral. Also we have here defined the matrix
1
Fl= 3 (F—1 +ETFTHT - GT + 2r) (6.120)

for notational convenience. Note that as v — 0 then F~' — F~! because I' = 0
and By = — B! in this limit, and thus Eq. (6.18) can be used.

6.8.1 Vacuum persistence amplitude

Suppose now we want to calculate the persistence amplitude of the ground state of
the damped system. Let us for this calculation assume that the ground state is given
by Eq. (6.30), i.e. that it has the same form as the un-damped ground state. We
will return to the physical relevance of this shortly. As in Section 6.6, this involves

calculating an integral of the form of Eq. (6.69), but where

A=Y =G —iFF' —il,
B — —iF ",
C—%Y,=G—iF'E—il,

T
I / ds F=TF7 (5)3(s),
0

K—i /O ds [ET(s) — E"F~TF"(s)] J(s).
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The rest follows analogously to Section 6.6. For notational simplicity let us further-

more define

Z’Y _,r—1
S e A (6.121)
—iF T ¥

the symmetrised Schur complements

sym

(S/EF)gm = (Sh+F T F )
sym

(8/28) g = (T + F 7 (T FT) (6.122)

as well as the Fock space propagator

Afo(s,t) = iA(s,t) + F(s)F (S/S%) o FF (1)
+{E(s) = F(s)F'E} (8/S)) ym {E"(t) = ETF"FT (1)}
— 2iF(s)F ' (S/S) g F ' (Eh)qu {ET() —ETFTFT(1)} .
(6.123)

This yields the vacuum persistence amplitude

(0/0)7 = (0/0)" exp (—% /0 " /0 s dtJ(s)Af)%m”(s,t)J(t)>, (6.124)

where

1
(0[0Y" = (2) [Re[G]|17] , (6.125)
v oy S+ F () om F T

F’syrn

sym

and where we have defined
Ag%mﬁ(& t) = AEJYO(S7 t) + Agﬂ(ta S)' (6126)
We can finally average over the noise f by computing

~ TS T lAs 718 s— sym,y (g o
<<O’0>>’Y _ <O‘O>’Y/D§ e Jo ds [y dt 5&( )(qu (s,8)+0( t)[Aoo ( 7t)]272)§(t), (6.127)

where [AGy™" (s, )], , is the element of the propagator in Eq. (6.123) related to the
oscillator dynamics R. This yields

det K !
det [ K + (A%,

((0[0))" = (0]0)” (6.128)

-1
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The functional determinant can be re-written as

det K;!
det [K7" + (A5,

sym,y -1/2
— = det [1 + K [Agy ™ ]2,2}

1
— exp {—5 Tr log (1 + Ky [Agﬁmﬁ]mﬂ . (6.129)
Now the exponent can be approximated as [172]
Tr [log (14 K [AR"],,) | = Tr | K [A3™),.)
T s
_ / ds / dt Kp(s,1) [AZ™ (5],
0 0
T
= 4714:BT/ ds [Agy 7 (5, 5)]y0 (6.130)
0

by expanding log (1 + z) ~ z for x < 1. This can be further simplified if we consider
the form of [Agy™7(s,s)]y, [Eq. (6.123)]. It can be shown that the equal time
Fock space propagator is a measure of the ground state fluctuations. In particular,
the (2,2)-component measures the fluctuations in the matter degree of freedom R.
These fluctuations will be proportional to the inverse of the ground state energy.
For instance, if we let the plasma frequency g go to zero, where the relevant ground
state energy is (2, we know that [Ag™" (s, s)],, = 1/Q2. Therefore, if we consider a

time-independent dielectric (where €2 is a constant) we find

1

sym 1
S (5500 = [ 0 B (el

" 2Ng (ws w )

It is thus reasonable to estimate [Agy™7(s,s)],, =~ 1/[Ng(wy +w_)] also in the
time-dependent dielectric. As a reminder, the coefficient Ny [Eq. (6.29)] determines

the degree to which the ground state is matter-like. Hence we find

-1
det K ~ o271 kT T/[NR(wi+w-)] (6.131)

1 —
det (K7 + [A%"],.)

The thermal noise thus introduces a weak exponential decay of the persistence am-
plitude. We can expect this exponential decay to be significant at timescales of
T ~ wy /2vkpT. In the optical regime where wy > kT, and with a small damping

factor v, this is much longer than any other timescale in the system.' For notational

YFor instance, we find that room temperature (300 K) corresponds to kgT =~ 1/76 with a
reference frequency Qyef = 27/210 nm. If we further assume v = 0.1 and Ng (w4 + w-) ~ 3 then
the relevant timescale is 7" ~ 1140.
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simplicity, let us define the thermal decay rate
Yin = 47 kgT/ [Nr (Wi +w-)].

At short timescales, we can nonetheless approximate

det K *
det (K" + [AF"],,)

o~ 1, (6.132)

but for longer times we find the damped vacuum persistence amplitude is given by

(010))" = (g) S et (6.133)
1 ’2’7 + F- 1 (E’Y) F-T ’

sym

| Flsym sym

where, as a reminder, Xy = G*—iFF~, ¥y = G—iF~'F with G given in Eq. (6.27)
and F~! as seen in Eq. (6.120). Furthermore, the propagation matrices F', E, H
and G are obtained from Eq. (6.113).

Let us now return to the physical interpretation of this amplitude. From the
above, it is clear that this amplitude will reduce with time, eventually reaching
zero, as it continually dissipates energy into the bath D. Clearly this is not a good
description of the ground state of the damped Hopfield system. This is related to the
fact that we are treating the coupling to the bath perturbatively. Energy is allowed
to flow away from the system and into the bath, but the energy flow back into the
system is very small and of thermal nature.? For the latter, we are assuming that
the temperature of the bath is at much lower energy than than the characteristic
energy of the oscillator hS). This is a reasonable assumption for optical systems as
typical optical energies of 1.5 eV are about ~ 60 times larger than room temperature
(~ 300 K) energies.

Nonetheless, we would expect the ground state to persist. Suppose we first
consider a static resonance frequency Q*(s) = Q2 for some constant . With
the oscillator still coupled to the bath, we would from this computation expect
the ground state to decay according to Eq. (6.133). We will call this amplitude
((0]0)) 2 aticr With the subscript ‘static’ implying a time-constant resonance frequency
2. However, we can ensure that the ground state persists by renormalising the
vacuum persistence to unity. This would involve simply dividing by Eq. (6.133) by
itself.

Let us now return to a time-dependent resonance frequency Q?(s). Since a
room temperature thermal state contains mostly the ground state,?! we can also

renormalise the modulated vacuum persistence amplitude (denoted as ((0]0))] 4)

20Tn the zero temperature limit, it would be appropriate to drive the system by the quantum
fluctuations, as discussed briefly in Section 6.7.

21The relative population of the first excited state would be ~ e =69,
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with respect to the static vacuum persistence amplitude. In other words, we only
care about changes with respect to the static ground state. Physically, this implies
that we assume that only states above the ground state are dissipated into the bath.
In this way we can still extract information about quantum vacuum radiation by
considering

P(radiation) = 1 — |{{0]0))}0al” / [{(0]0))agic!” - (6.134)

static

The polaritons that are excited from the vacuum state can however be absorbed
by the bath, and we expect the long time dynamics of this probability to return to
zero. This is in line of expectations for radiation in an absorbing medium. If the

radiation can couple out before being absorbed, it can be observed.

6.8.2 Excitation probability

Unfortunately, extracting information about the quantum vacuum radiation from
the vacuum persistence amplitude in this case is troublesome. This is because the
normalisation procedure is prone to amplify numerical noise, since the matrices
involved can quickly become near-singular due to the damping.?? Instead, we can
calculate the probability amplitude of starting in the vacuum state and finishing
in an excited state. In particular, we are interested in the transition amplitude to

excited states of the form

" (q) = ([Re[g] = ~2)"* [2Re [g], , 2 — 1] e 3400 (6.135)
or

U2 (q) = (|Re[g] |x~2)"* [zRe Gl B — 1} e~dada, (6.136)

The former [Eq. (6.135)] is a photon-like excited state containing two polaritons,
whereas the latter [Eq. (6.135)] is matter-like. Here Re [G]; ; is the (i, j)-component
of the real part of G. It is straightforward to show that the relevant transition am-
plitude can be calculated from the (un-renormalised) vacuum persistence amplitude
by

(@0 = [ b [97(b)] b, 71, 0) Bala)
o0

ORe [g]1,1/2,2
= (00 [(5"/Eehnn),, ] (5750

{(010))”

(6.137)

22In particular, the calculation of F~! is troublesome with near-singular matrices.
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Figure 6.6: (a) Real and imaginary part of the refractive index for = 3, g = 2 and
~v = 0.1. This can correspond to a variety of media with a single resonance frequency,
since the reference frequency €, is not specified. However, it is the relation between
the parameters 2, g and « that determines the physics. (b) Corresponding real and
imaginary parts of the polariton frequencies w,. Dashed lines represent the effective
dispersion relation using the resonance frequency in Eq. (6.139). The differing signs
between the imaginary parts of the refractive index and polariton frequency are due
to the differing sign conventions for the space and time Fourier transforms.

Here we implicitly average over the thermal noise é in the first line. Note that we
must do a bit of renormalisation here also, this time subtracting off the contribution
from free (static) dynamics. This is because 2-polariton states is also absorbed by
the bath, and the overlap with the ground state consequently increases. It should
be noted that this procedure is also prone to noise, but considerably less.

Let us now consider the same optical medium that we used in Section 6.5, i.e.
Q= 3 and g = 2, but with a damping term of v = 0.1. This has the dispersion

relation determined by

2

K4 (11— g —0. 6.138
tw ( w2—|—2w’w—§22> ( )

The refractive index of this is shown in Fig. 6.6(a), determined by solving Eq. (6.138)
for k(w), with the corresponding polariton frequencies wy seen in Fig. 6.6(b). In

particular, the real part of the polariton frequencies wy is given by Eq. (6.26) with

Q — /02 — (29). (6.139)

As a simple example, let us now modulate the medium with a single frequency v at

a shifted resonance frequency
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amplitude a for some time o such that
Q*(s) = Q2 [1 + acos (vs) 6_82/202] . (6.140)

The result can be seen in Fig. 6.7, where we consider wavenumber k = 2. Interest-
ingly, if we compare the unitary and damped evolution we see that the damping does
not contribute to the excitation dynamics, but simply shifts the polariton frequen-
cies. After the polaritons are excited, however, the damping serves to reduce the
overall amplitude. Specifically, we can take the damping into account by multiplying

the unitary evolution by exp (—y+7),% where
v+ = [Im [we]].

The damping rate will depend on the kind of excitation in the system. In the
example chosen, we modulate at 2w, and would therefore expect to predominately
excite polaritons oscillating at wy. It is this decay rate that we see. We should
note that the type of excitation studied here is not the pure co-rotating (wy) nor
counter-rotating (w_) excited state.?* In fact, both the photon-like state and the
matter-like state contains a mix of both polariton modes.?> This means that the
probability of observing such a state will be damped by the maximum damping rate
in the system.

Therefore, we finally find that we can solve the problem of numerical noise?® by
computing unitary dynamics, and afterwards subject the radiation to damping. The
unitary dynamics is here simply solving Eq. (6.113) with v = 0 everywhere, but with
a shifted resonance frequency according to Eq. (6.139). For long time-dynamics, we
must also include the damping ~;, due to the thermal noise. In short, we have

[(210))7 1 = 1(210) Fporm €47 €770, (6.141)
where (2|0)

in Eq. (6.139). Here 74y is the time taken for the polaritons to exit the medium.

renorm 15 the unitary evolution using the renormalised oscillation frequency

This is in line with our discussion in Chapter 5, as well as Ref. [71]. It follows that
we can extract information from the unitary evolution of the vacuum persistence

amplitude in the same manner, such that the probability of emission becomes

Pdamped = (1 _ ’<0‘O>|2 ) 677i70ut677th70ut’ (6142)

renorm

where 7., is an estimate of the time taken for any excitation to leave the medium,

23Here we can ignore the thermal noise as it is only relevant at much longer timescales.

24The actual wavefunctions are considerably more complicated and can be found in Ref. [173].

25They are nonetheless eigenstates of the system.

26 As mentioned, this numerical noise originates from the fact that Eq. (6.113) yields near-
singular matrices, especially at long time-scales due to the damping factor.
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Figure 6.7: Probability of exciting a photon-like excitation by modulating the
medium with v = 2w, and amplitude o = 0.9, where (2 = 3, ¢ = 2 and v = 0.1.
The solid blue line is the the unitary dynamics with a shifted resonance frequency,
and solid red denotes the unitary dynamics combined with damping determined by
Eq. (6.141), whereas dashed green is the fully numerical solution. For this, we used a
4*™_order Runge-Kutta method to solve Eq. (6.113) with the above parameters spec-
ified for the medium. In particular, we consider a close to resonance wavenumber
k = 2. Here we used the decay rate determined by Im [w, ]| on the unitary evolution.
Naturally, the probabilities less than zero are noise and should be ignored.

usually directly proportional to the system size. For instance, for a medium of
physical width L this time scale would be given by 7o = Q.erL, where L should be
given in units of ¢ = 1.

We can therefore qualitatively expect the same behaviour as already discussed in
Section 6.5, but where the overall extracted quantum vacuum radiation is reduced
by a factor of ~ exp (—7y7ou). Here it is useful to give an estimate for the time Toy¢.
Suppose that we set the reference frequency Qs ~ 3 fs~! (such that the resonance
frequency 2 = 3Qyr ~ 27/210 nm), where it is useful to recall Eq. (6.4) to see how
the scaling factor enters. In this case, a medium of width 10 um corresponds to
Tout =~ 100.

Let us now study three examples, first of all re-analysing the bichromatic driving
we studied in Section 6.5, followed by a simulation of an expanding/contracting
universe in the spirit of Section 5.1 from Chapter 5, and finish by a model of ENZ

metamaterials similar to Section 5.2 of the same chapter.

6.8.3 Periodic modulation

Let us now return to periodic modulation, specifically the bichromatic modulation
we studied in Section 6.5, and study how the damping affects the quantum vacuum
radiation. We use the same medium as in the previous section,?” whose optical

characteristics can be seen in Fig. 6.6. Let us therefore return to modulating the

2TThat is, Q = 3, ¢ = 2 and a damping rate of v = 0.1.
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Figure 6.8: Probability of exciting polaritons from the vacuum state as measured
at different times. 7ot = ATmoa is the probability of observing quantum vacuum
radiation emission directly after the modulation finishes, whereas 7,,; = 1000 is an
estimate of surviving vacuum radiation as it exits the medium. Note the similarity
to Fig. 6.3 (b).

resonance frequency as seen in Eq. (6.38). To re-cap, this is a time-dependent

resonance frequency of the form
N
Q*(s) = Q3 <1 + [ cos 18 + g cOS o8] ¢ [5%/20%)] ) ,

where «;, v;, o are the amplitudes, frequencies and duration of the modulation,
respectively. Also, here N is the order of super-Gaussian. In Fig. 6.8 we see the
resulting spectrum for a; = agy = 0.3, as well as ;1 = 1 and v, = 0.8 for a period of
o = 100 with N = 10. When compared to Fig. 6.3, we seen that the emitted radia-
tion is essentially the same as without damping, albeit slightly shifted as expected
due to the renormalised resonance frequency. However, the emission closer to the

resonance frequency is quickly absorbed, and is thus unlikely to be observed.

6.8.4 Back to the expanding universe

Once again, we use the same medium as seen in Fig. 6.6. As opposed to the periodic

modulation however, we now temporally vary the resonance frequency as
Q%*(s) = Q2 (1 4+ asech s/o) . (6.143)
Depending on the sign of «, the permittivity ¢ either increases (sgn(a) = —1) or

decreases (sgn(«) = 1) with time, connecting either to an expanding or a contracting

spacetime, as discussed in Section 5.1 [specifically Eq. (5.27)]. As we mentioned
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Figure 6.9: Probability of exciting polaritons from the vacuum state as measured
at different times. We note here that the changes in resonance frequency are far
into the non-perturbative regime. (a) A contracting ‘universe’. Emission is centred
around w_ ~ 0.38/0 [k ~ 0.85], as seen in the inset. The duration of the temporal
modulation is A7y0q. (b) An expanding ‘universe’. Note the shifted peak emission
at k ~ 1.8, as compared to the contracting ‘universe’ in (a).

there, from a perturbative analysis we expect the emission to be centred around
w_ ~0.38/0. (6.144)

This is indeed what we see in Fig. 6.9(a), i.e. for the analogue contracting space-
time where the permittivity decreases (sgn(a) = 1). Interestingly however, in the
second case seen in Fig. 6.9(b), where the analogue spacetime expands (sgn(a) = —1)
we see something different. Instead the emission is peaked at a higher frequency.
This is a non-perturbative effect, related to the fact that the change in the permit-
tivity is strongly peaked around the instantaneous resonance frequency (1 + a) Qg
at s = 0.

In the contracting ‘universe’, i.e. when the permittivity decreases in time, the
change in permittivity is fairly flat close to 1/0, as the resonance frequency is moved
further away. In the expanding ‘universe’, on the other hand, the resonance moves

closer to 1/0, and consequently the peak permittivity variation is at a frequency
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comparable to, but still different from, 1/0. As discussed in Section 5.3, we expect
quantum emission to be maximised close to either the frequency set by the inverse of
the modulation time ¢ or around the maximum of Ae/e. When sgn(a) = —1, both
effects overlap considerably. In Fig. 6.9(b), the change in permittivity wins out,
and the peak emission moves close to the s = 0 resonance frequency, which is here
(s = 0) ~ 1.5. This also explains the order of magnitude increase in the emission.
In both cases we used || = 0.5. The absorption however makes the probability of
observing the quantum vacuum radiation more likely at lower frequencies. This is
simply because the w_—polariton mode has a low damping rate at low frequencies,

as these polaritons are mostly photon-like.

6.8.5 A slightly-less crude model of an ENZ material

Finally, let us attempt a model of an e-near-zero metamaterial, as in Section 5.2. In

our case, we have a permittivity given by
2

g

—1- .
e(w) w? 4 2iyw — Q2

(6.145)

It is possible to model a medium with a real permittivity that crosses zero if the
dominating frequency is the plasma frequency ¢g. This corresponds to the strong-
coupling limit, where the light-matter coupling dominates the physics. Interestingly,
if we return to thinking of the light-matter coupling as an effective magnetic field, we
see that the physics will be dominated by the effective Landau levels. Specifically,

if we choose

v =02,
Q) >~ 4.2,
g =427, (6.146)

we find the permittivity seen in Fig. 6.10(a). Note the similarity to the actual ENZ
metamaterials in Fig. 5.3. Here we find the crossing point wgny =~ \/92—7(27)2 ~
4.4.?% In addition to this, we should take into account that the change in the
permittivity is strongly peaked around wgnz. We can do this by choosing a change

in the oscillator frequency of the form

Q?(s) = Q5 [1 — a(k)sech(s/o)], (6.147)

Z8This follows from Eq. (5.31), as here g5, = 1.
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Figure 6.10: (a) Permittivity of the e-near-zero metamaterial. Note the crossing
point wgnz =~ 4.4 where the real permittivity goes to zero. Solid lines is the back-
ground permittivity, with blue the real part and green the imaginary part. Dashed
blue denotes the maximum shift in the real permittivity due to the modulation. (b)
Probability of exciting polaritons from the vacuum state. Blue is the initial proba-
bility directly after the modulation (whose duration is A7yeq), whereas green is the
damped probability of observing the radiation after some time. Solid and dashed
lines is the probability of observing w,—polaritons (matter-like) and w_—polaritons
(photon-like) respectively.

where (k) is given by

(k — kgnz)®

SAS : (6.148)

a(k) = apexp [—

with kgxz = Re [ 6(wENZ)] X wgnz being the in-material wavenumber correspond-
ing to the ENZ frequency wgnz. Interestingly, however, in order to model a medium
where the change to the permittivity is of the order of unity in this manner, we must
choose ap ~ 50 in Eq. (6.148). We find the resulting permittivity in the dashed line
of Fig. 6.10(a), where we also set A, = 0.1. The result is that the matter degree
of freedom turns from a harmonic oscillator to an inverted oscillator during the
modulation. This will naturally excite polaritons from the vacuum state around the
e-near-zero frequency. This can be seen in Fig. 6.10(b), where the probability of
emission is close to unity around wgnz, in agreement with Section 5.2. Here we used
o=1/2.

In addition to this we should note that the 1/0 chosen here is of the same order
of magnitude as the w_—polariton, which is, in this case, the matter-like polariton
as we are beyond the resonance frequency of the medium. The w,—polariton is, on
the other hand, the photon-like mode, as discussed in Section 5.2. As we invert the
oscillator, we would expect both polariton modes to be highly populated after the
modulation.

The medium is however absorbing and both polariton modes are damped around
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wgNz, with the photon-like w,—polariton experiencing a higher rate of absorption.
We see this in the green solid and dashed lines in Fig. 6.10(b) for the photon-like
w;—mode and the matter-like w_-mode respectively. Nonetheless, this does not qual-
itatively change the spectrum, and the quantum vacuum radiation is centred around
wgnz. We should note however, that the damping of the photon-like w,—polaritons
will preferentially leave polaritons at lower frequencies. This is qualitatively similar
to what we found in Section 5.2, where the peak emission of photons was found to

be slightly shifted to lower frequencies with respect to wgnz.

6.9 Conclusions from a non-perturbative analysis

In this chapter, we found that the Hopfield model for macroscopic quantum electro-
dynamics can be mapped to a trapped particle in a magnetic field. This opens up
a wide range of topics to be explored, and allowed for the solution of the problem
in a non-perturbative manner. Here we focused on the quantum vacuum radiation
from periodic modulation, essentially extending Chapter 3 to a non-perturbative
setting where the changes to the medium properties can be of similar order to the
background. We also extended the discussion to absorbing media, and connected
the discussion briefly to analogue gravity and e-near-zero materials that we explored
in Chapter 5.

Starting with the periodic modulation, we confirmed what we found from the
perturbative analysis in Chapter 3, i.e. that quantum vacuum radiation can be

emitted whenever
mwy + nw_ = pry + que, (6.149)

where m,n are positive integers whereas p,q can be both positive and negative.
This is the case for a bichromatic drive oscillating at frequencies v, and v,. The
damping does not change this behaviour, but tends to strongly damp modes close to
the resonance frequency, as expected. This means that quantum vacuum radiation
close to the resonance frequency is unlikely to be observed. Instead, the damping
rate serves to renormalise the resonance frequency such that Q2 — Q2 — (2v)?.
Similarly, for a modulation that is aimed to model an expanding/contracting
universe in the manner we discussed in Chapter 5, we can confirm that quantum

vacuum radiation is peaked when
wy ~ 0.38/0, (6.150)

where ¢ is the characteristic time associated with expansion and contraction. This
is the case when the change in permittivity is relatively uniform over the spectrum.

If the permittivity change becomes peaked in some region on similar frequency-scale
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as 1/o, the peak emission of quantum vacuum radiation shifts accordingly.

We find the latter physics again when we discuss e-near-zero metamaterials. We
know from experimental data (Ref. [71]) that the change in permittivity is strongly
peaked around the frequency where the real permittivity crosses zero (wgnz). To
model this, we let the change in resonance frequency be peaked around these wave-
lengths. Subsequently, we found quantum vacuum radiation preferentially emitted
around wgnz. However, in order to model large changes to the permittivity of order
unity we had to allow the modulation to invert the resonance of the matter degree
of freedom. For some short time, the matter degree of freedom behaves as an in-
verted oscillator. These are unstable, and it comes as no surprise that this allows for
near-unity probability of emission of quantum vacuum radiation. Whilst the results
are similar to what we found in Chapter 5, perhaps a more sophisticated model of
e-near-zero metamaterials is warranted. In particular, since these are reasonably
strongly-damped materials, we should expect the approximations made in deriving
the damped vacuum persistence amplitude to break down. Nonetheless, the analysis
presented here suggests that these materials are a promising experimental candidate
for quantum vacuum radiation.

As a final remark, there is much that can be explored in macroscopic quantum
electrodynamics if we think of it as a trapped particle in a magnetic field. Certainly
it would be interesting if a functional variant of quantum Hall or topological physics
could be realised in this manner. This would of course require the study of much

more complicated media.
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Chapter 7

Concluding remarks

“If I haven’t seen as far as others,

it’s because giants have been standing on my shoulders...”

Prof. Alejandro Jenkins, offhand remark about theses,
local pub in Edinburgh, May 2019

The pressing question now finally becomes, from this thesis, what have we learned
about quantum vacuum radiation in optical media? That is what we will attempt
to answer in this chapter. The aim here is not to go into any sort of detail, but
rather to try link together the progress so far.

In this thesis we have built models for quantum vacuum radiation in optical
media from first principles, starting with an action for the electromagnetic field
coupled to some matter degree of freedom representing the optical medium. We then
used this to study the radiation emitted from the vacuum state when some optical
parameter varies temporally. Our aim was to build models applicable to optical
experiments of bulk media or the bulk response of structured media, specifically in
thin sheets and fibres, respectively. As such, we adopted a formalism of macroscopic
quantum electrodynamics focused on optical media that could account for dispersion

relations of the form

2 g9’
— |k|* + w? (1_w2+27iw—92> = 0. (7.1)
Here g is the plasma frequency of the medium, €2 its resonance frequency with v being
the damping rate. Time-dependent optical media can then be modelled by letting
the previously mentioned parameters vary with time. We focused on the resonance
frequency (2, as we found it sufficient to model the experiments of interest.

After some introductory remarks and background theory in Chapters 1 and 2
respectively, we approached quantum vacuum radiation in Chapter 3 by supposing
that the time-dependent changes to the medium were small enough to be treated
analytically. From this we learned that the physics is well described by the collective
light-matter excitations of the medium, namely the polaritons. Any excitation can
be explained as transitions between the different polariton branches. However, we

also have to keep in mind the nature of the medium, in particular the retarded
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response. This becomes apparent at next-to-leading order in perturbation theory,
where the probability amplitudes depend on past events. This latter effect allows
the quantum vacuum radiation to be stimulated also by interference patterns in the
temporal modulation, as opposed to being directly linked to the spectrum of the
modulation. Interestingly, we found that the quantum vacuum radiation spectrum
took on a character similar to what is observed in nonlinear optics, where sum and
difference frequency generation is commonplace.

We then, in Chapter 4, applied this framework to analyse a fibre optics ex-
periment. In this experiment, one of the dispersive parameters of the fibre was
modulated in space and driven by a strong pump pulse. The pump pulse is respon-
sible for creating a travelling refractive index perturbation, as well as a polarisation
wave. Both effects can be modelled using the framework that we established in
Chapter 3, and we found good agreement between the experimental results and the
predicted quantum vacuum radiation (in fact they match exactly). In particular, we
learn from the model that the photon pairs measured in the experiment are excited
from the vacuum state by the beating pattern formed by the fibre modulation and
the travelling polarisation wave of the pump. We must therefore conclude that the
retarded response of the medium, and the subsequent frequency mixing processes,
are required to describe the physics correctly.

The framework can also be applied to other scenarios, which is what we explored
in Chapter 5. In the first part of the chapter, we explored some analogue gravity,
specifically studying the photon pair production from an emulated expanding ‘space-
time’. Whilst the effective ‘spacetime’ is of little cosmological relevance, we found
that it serves as an interesting description of the low-energy physics of light in an
optical medium.

Later in the chapter we turned to an experiment which cannot faithfully be
described using the perturbative framework. Here we studied a so-called e-near-zero
metamaterial, a material whose permittivity € passes through zero at some frequency
wgnz- In such a material it is known that the nonlinear response can change the
refractive index from O(0.1) to O(1) — a highly non-perturbative setting. Through
an analysis that neglects the time-nonlocal response, we found that the quantum
vacuum radiation in this case becomes strongly centred around wgnz.

We returned to this problem in Chapter 6, where we created a framework capable
of taking into account both non-perturbative changes to the permittivity, as well
as the time-nonlocal character of optical dispersion. Interestingly, we found that
our formulation of macroscopic quantum electrodynamics could be mapped to a
harmonically trapped particle in a magnetic field. Even if this is a ‘particle’ in
functional space as opposed to real space, this allowed us to use much of the intuition
from quantum mechanics to study quantum vacuum radiation. Subsequently we
studied a sample of non-perturbative settings, including a bichromatic driving in

the spirit of Chapter 3, an expanding ‘spacetime’ similar to Chapter 5 as well as a

163



Chapter 7: Concluding remarks

model of an e-near-zero metamaterial.
In the first case, we confirmed some of the results obtained in the perturbative
setting, and furthermore expanded the spectrum to include further mixed-frequency

resonances. This yielded the general energy conservation condition of
mwy + nw_ = pry + qus (7.2)

where m,n € Z* whereas p,q € Z. Here w, and w_ are the polariton frequencies
of the co-rotating and counter-rotating polariton branch respectively, and v, o are
the two frequencies of the bichromatic modulation. It is not hard to generalise this
to include further frequencies in the drive, and we can imagine driving quantum
vacuum radiation from a multitude of ‘interference’-frequencies, since p,q, ... are
allowed to be both positive and negative.

In the cases of analogue gravity and ENZ metamaterials, we found results that
were largely in agreement with the treatment in previous chapters — fascinatingly, in
ENZ metamaterials the time-nonlocal response is not all that important. We should
note here that if we return to thinking of this as particles and magnetic fields, we
realise that the physics is dominated by the magnetic field, and therefore transitions
between the effective Landau levels. The indifference of quantum vacuum radiation
to the time-nonlocal response in ENZ metamaterials is perhaps not so surprising in
light of this.

All in all, quantum vacuum radiation from time-dependent optical media can
come in all shapes and colours. Sometimes we have to recall its time-nonlocal
origin, and other times we can think of it as a trapped particle in a magnetic field!

Especially in the latter interpretation is there bound to be new physics to explore.

Vena, bibi, scripsi — said Harold the Hypothetically
Attentive Reader Of Limitless Discernment.
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