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Abstract 
 

Continuous Oscillatory Baffled Reactors (COBRs) have been proven a viable 

alternative to traditional batch reactors for organic synthesis and crystallization 

processes. This thesis investigates the behaviour of solids in liquid in a COBR using 

CFD. Firstly, CFD is used to analyse the validity of two existing models for the 

estimation of power density in this type of reactors, the “quasi-steady” model (QSM) 

and the “eddy enhancement” model. By using a revised power law dependency on the 

number-of-baffles term (n
x
) in both models, an appropriate orifice discharge coefficient 

(CD) in the QSM and a proposed empirical correlation estimate EEM’s “mixing length”, 

both models were successfully validated. 

Secondly, energy losses experienced by both liquid and solid phases in COBRs are 

analysed; for the former, temporal pressure drop profiles and power dissipation rates 

along the length of a COBR are monitored for a wide range of operating and geometric 

conditions. The results provide detailed insights into the relationship between power 

dissipation and pressure drop profiles and reveals that geometries that are perfectly 

symmetric in the axial direction, i.e. periodically repeatable, do not present signs of 

energy losses. On the other hand, geometric events such as sections missing one or 

multiple baffle constrictions led to a decrement in power dissipation rates and velocities, 

caused by the eddy shedding phenomenon within the missing baffle sections. And 

sections with a reduced cross-sectional area of the baffle constriction and bend joints do 

not yield energy losses in the device; instead, they require a higher power density for 

the flow to overcome these constraints. 

A multiphase (S-L) Eulerian- Lagrangian model was employed to simulate the 

presence of solid particles suspended in a continuous liquid phase in a COBR. The 

behaviour of these particles was monitored with time as they travelled downstream the 

device for particles of different sizes; results unveiled that as particles increases in size 

they experience dampening in oscillatory velocity, translating into smaller axial 

dispersion, longer residence times and a reduction of particles’ suspension. For the 

determination of axial dispersion, both perfect and imperfect pulse methods were 

employed, the latter providing more reliable results.  

Thirdly, this research introduces an alternative Lagrangian based methodology, i.e. 

the Smoothed-Particle Hydrodynamics (SPH), for the simulation of fluid flow in an 

OBR. The results from a bespoke SPH solver are compared with those from Eulerian 



modelling, i.e. Finite Volume (FV) method, displaying a high degree of agreement. SPH 

was able to capture the expected flow characteristics in OBR as clearly and equally as 

its Eulerian counterpart. Making full use of SPH’s capabilities and its Lagrangian 

feature, two new indexes for the assessment of mixing and plug flow efficiency have 

also been proposed. 
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Chapter 1        Introduction 

1.1 Motive of the Research 

While stirred tank reactors have been the workhorse in chemical industry, tubular plug 

flow reactors, such as continuous oscillatory baffled reactors (COBR), have emerged as 

a viable alternative. Significant process and economic benefits were reported in the 

utilisation of COBR in a broad range of processes, e.g. crystallisation [1-17], reactions 

[18-20], heterogeneous catalysis [21-23] and fermentation processes [24, 25]. However, 

research in terms of evaluation and estimation of power dissipation rate for this type of 

reactors has largely been stagnated for the past 25 years [26]. This gap has been 

addressed by the content of this PhD work. 

How particles behave in COBR? What causes dampening in oscillatory velocity 

experienced by the liquid phase due to the presence of solid particles in COBR? Being 

able to understand and avoid this phenomenon is imperative for the optimum design and 

development of processes in COBRs. The present study has the motivation of targeting 

and identifying the potential reasons of this phenomenon using CFD. 

Extensive literature is available on the characterisation of flows in COBRs by 

monitoring residence time distribution (RTD) profiles of tracer concentration [27-45], 

i.e. all these studies were performed for a single liquid phase framework, thus there is a 

knowledge gap in the design of COBRs for multi-phase flow processes, which was 

recently pointed out by Ejim et al. [46] and corroborated by Kacker et al. [47]. This 

work, for the first time, investigates the effects of particle size on axial dispersion, and 

evaluates residence times and velocities experienced by particles of different sizes, 

leading to the quantification of the degree of suspension and the oscillation dampening 

experienced by solid particles in a COBR. 

Existing numerical models of mixing processes in oscillatory baffled reactors (OBR) 

were developed during the 1990s [28, 48-53] in a two-dimensional framework,  

evolving to 3-D in the following decades [36, 40, 54-64]; however, all these studies 

were mainly Eulerian-based. While few studies made use of a secondary Lagrangian 

phase for the modelling of massless tracers [50, 53, 65], its use has rather been limited 

due to the expensive computational costs of coupling continuous Eulerian-Lagrangian 

phases. These computational constraints for the coupling of Eulerian-Lagrangian phases 

become ever more significant when modelling dynamic solid-liquid flows with complex 
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interactions, e.g. particle agglomeration, breakage, growth, dissolution, etc. The 

motivation of this work is to introduce an alternative Lagrangian based methodology, 

namely Smoothed-Particle Hydrodynamics (SPH), for predicting flow patterns and 

assessing mixing performance in COBR. 

1.2 Objectives of the Project 

The primary objectives of this PhD research were to: 

 Update and validate the two existing models for the estimation of power 

dissipation rates in OBRs/COBRs; 

 Evaluate the effect of different operating conditions and geometric features on 

pressure drop and power density propagation along the length of a COBR while 

identifying energy losses in the liquid phase; 

 Evaluate the effect of unexpected geometric events, such as un-baffled straight 

joints, baffle constriction with reduced cross-sectional area and bend joints, on 

liquid phase energy losses; 

 Evaluate the effect of solid particles’ sizes on their axial dispersion, residence 

time distributions, oscillatory velocities and suspension using Eulerian-

Lagrangian coupling; 

 Develop a Smoothed-Particle Hydrodynamics (SPH) solver for the modelling of 

fluid flow in a two-dimensional OBR and use its implicit Lagrangian 

information to find new ways of quantifying mixing efficiency.   

1.3 Structure of Thesis 

Following this introduction, this thesis commences in Chapter 2 gathering a thorough 

literature review on oscillatory baffled reactors; this includes: history, mechanics of its 

flow, different geometric features, power dissipation, methods of evaluating mixing 

efficiency in OBRs and history of numerical studies that modelled oscillatory baffled 

flow. Chapter 3 proceeds on describing the geometry of the target device, as well as the 

numerical setup and grid of the CFD model utilised in this study. The first set of results 

of this research is presented in Chapter 4, where the “quasi-steady” model and the “eddy 

enhancement” model for the estimation of power dissipation in oscillatory baffled flow 
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are updated and validated. Following this, Chapter 5 analyses the evolution of pressure 

drop and power density along the length of the reactor for a wide range of operating 

conditions and geometric features. Similarly, Chapter 6 examines the impact of 

geometric event on pressure drop and power density propagation. Carrying on from this, 

Chapter 7 presents the results of a two-phase (S-L) flow model, and investigates the 

effect of particles’ size on the behaviour of solids in a COBR. This study focuses on 

solids’ axial dispersion, RTD profiles and the dampening in oscillatory velocity they 

have experienced, as well as the reduction in their degree of suspension. Furthermore, in 

Chapter 8, this projects moves away from commercially available CFD packages and 

goes on to develop a self-written solver using Smoothed-Particle Hydrodynamics 

methodology for the modelling of fluid flow in an OBR. Finally, the overall conclusions 

from the research are presented in Chapter 9 together with recommendations for future 

work. 

This thesis interpolates material from three publications by the author. Chapters 4, 7 

and 8 are based on References [66], [67] and [68], respectively. Some materials from 

these publications have also been incorporated into the different sections of Chapters 2 

and 3. In doing so, each chapter includes the relevant equations used for the calculation 

and treatment of results. 
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Chapter 2        Literature Review 

2.1 Introduction 

Chemical and process engineering systems often include unit operations with the 

purpose of separating or mixing difference compounds, this is the case for cyclone 

separators, fluidised beds and mixing tanks among others. The performance of these 

processes is greatly linked to flow characteristics in their geometric and operating 

conditions. While stirred tank reactors have been the workhorse in chemical industry, 

tubular plug flow reactors, such as continuous oscillatory baffled reactors (COBR), have 

emerged as a viable alternative for research and industrial applications due to their 

ability to offer uniform mixing [69] and linear scale up [70].  

2.2 History 

Oscillatory flow in baffled systems has been an emerging area of research since the 

mid-1980s. However, precedents date back to 1935 when Van Dijck [71], for the first 

time, reported the use of a pulsed sieve plate column to enhance liquid-liquid contact, 

and to 1959 when Karr developed reciprocating-plate extraction columns [72]. A decade 

and a half later, oscillatory flow through furrowed channels was applied in membrane 

filtration by Bellhouse et al. in 1973 [73] and the formation of vortexes and mixing 

patterns in this system was later numerically characterised by Sobey et al. and 

Stephanoff et al. in 1980 [74, 75]. The outcomes of the last two mentioned publications 

were in agreement with those by Knott and Mackley [76], also published in 1980, who 

reported that the interaction of sharp edges with oscillatory flow leads to eddy formation 

and enhances mixing efficiency. 

In 1987, the concept of oscillatory baffle reactor (OBR) was introduced by Mackley 

[77]. This device simply consisted of a cylindrical tube containing periodically spaced 

orifice baffles, onto which oscillatory flow was superimposed, generating vortexes 

during each oscillatory cycle. The formation of eddies and the mixing efficiency of this 

system was later quantified by Brunold et al. [78] in 1989. That same year, the work 

published by Dickens et al. showed the efficiency of these types of devices when 

working in a continuous mode. The work reported near plug flow behaviour under 

certain operating conditions due to the efficacy of eddy mixing [27]. This represented a 

benchmark in the field that led to vast research during the 1990s, broadening the 
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understanding and potential applications of oscillatory baffled reactors. Howes and 

Mackley (1990) [79] reported similar observations as those found in Dickens et al.’s 

work and once again proved the capability of OBRs to reduce axial dispersion and 

mimic plug flow; a detailed study of axial dispersion in OBRs was carried out both 

experimentally and numerically by Howes (1988) [80].  

When compared with traditional stirred tank reactors (STR), OBRs proved to 

improve efficiency and control over several processes such as mass [81, 82] and heat 

transfer [83], scale-up correlations [70, 84] and residence time distribution (RTD) [69]. 

Furthermore, the constant creation and cessation of vortexes in OBRs, caused by the 

combination of orifice baffles and fluid oscillation, unveiled a more efficient and 

uniform mixing than that provided by STRs [85]. Such control over different flow 

characteristics gives COBRs the capability of reproducing near plug flow RTDs even at 

laminar flow regimes [29, 30, 86], allowing processes to run continuously while 

providing long residence times.  

Conventionally, many processes were run in batch, reporting poor mixing and 

inconsistent product quality from one batch to another. Therefore, the features presented 

by OBRs and COBRs revealed great potential for industrial applications of this type of 

reactors. Numerous studies have been undertaken for processes such as polymerization 

[18], biodiesel production [19, 20], heterogeneous catalysis [21-23] and fermentation 

processes [24, 25]. Intensive research on crystallisation in OBRs/COBRs has been 

performed both in public and confidential domains, e.g. paracetamol [1, 3, 4, 10], L-

glutamic acid [2, 5, 8, 14, 15], aspirin [7], a pharmaceutical API [6], sodium chlorate 

[11, 12, 87], adipic acid [88], urea [89, 90], -lipoic acid:nicotinamide co-crystal [91], 

palm oil [92] and cyclopentane hydrate [93]. Seeded cooling crystallisation in NiTech 

DN15 crystallisers has successfully been running [94] for 10 hours [15] and four weeks 

in CMAC (Centre for Continuous Manufacturing and Crystallisation). In addition to 

this, antisolvent crystallisation from both experimental and modelling aspects [16, 17, 

95] was also undertaken in a COBR. 

2.3 Fluid Mechanics 

The flow in oscillatory baffled reactors is dominated by the fluid oscillation that is 

superimposed onto the net flow, which creates eddies when the flow interacts with the 

baffles. Mixing is then generated by the formation and cessation of these eddies, leading 
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to strong radial motions that provide uniform mixing in each inter-baffled section. The 

oscillatory pulses are periodic and fully reversing, with each cycle of the oscillation 

consisting of two semi-cycles, each of which contains flow acceleration, a peak velocity 

and deceleration. This generates a sinusoidal velocity – time function. Vortex rings are 

formed downstream of the baffles with each acceleration of the flow. Once the peak 

velocity is reached, the flow decelerates, sweeping the vortices into the bulk [78]; this 

results in an interaction between vortices generated in each semi-cycle of the oscillation. 

Hence, the pair of eddies generated during the forward and backward strokes collide and 

disrupt one another within each baffle-cell, generating highly efficient radial mixing and 

chaotic fluid patterns within the cell. The mixing efficiency attained within each baffle-

cell is similar to that achieved in a perfectly stirred tank. Therefore, an OBR can be 

compared to a series of multiple perfectly mixed stirred tanks, having the capability of 

achieving plug flow behaviour along the length of the device. The mixing mechanism in 

an oscillatory baffled reactor can be understood with the help of Figure 2.1.  

 

Figure 2.1. Mixing mechanism in an oscillatory baffled reactor 

The intensity of the mixing in OBRs and COBRs is controlled by two variables: the 

oscillation amplitude and the oscillation frequency. These are typically modulated by a 

piston in charge of applying oscillatory motion to the fluid upstream of the system; the 
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piston is commonly powered by a linear or rotary motor. The temporal displacement of 

the piston and the oscillatory inlet velocity in an OBR are represented by:  

   cosp ox t x t             (2.1) 

   sininlet ou t x t            (2.2) 

where xp is the piston’s position (m), uinlet the inlet mean velocity (m s
-1

), ω=2πf the 

oscillation angular frequency (rad s
-1

), f the oscillation frequency (Hz), xo the oscillation 

centre-to-peak amplitude (m) and t the time (s). For a continuous oscillatory baffled 

reactor, Equation (2.2) must include the contribution of the net flow of the system, Q 

(ml min
-1

), yielding: 

   sininlet net ou t u x t            (2.3) 

where unet is the net inlet velocity (m s
-1

), which can be calculated as the ratio of the net 

flow to the cross-sectional area of the tube (A). Figure 2.2 and 2.3 display a generic 

COBR experimental setup for cooling crystallisation processes and the schematics of 

continuous oscillatory baffled flow, respectively. 

 

Figure 2.2. Schematic of a generic COBR setup for cooling crystallisation processes 
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Figure 2.3. Continuous oscillatory baffled flow 

From a fluid mechanical stand point, flow in a pipe is widely characterised by the 

Reynolds number (Re), a dimensionless group governed by the ratio of inertial to viscus 

forces, which helps in understanding and predicting flow behaviours. For flow in a pipe, 

Reynolds number values < 2000 denote laminar flow, in which viscus forces are 

dominant and the fluid moving along the pipe presents a streamlined nature. At Re > 

4000, the flow is expected to be in the turbulent regime, where the layered structure of 

the fluid is disrupted, giving rise to tendencies of chaotic eddies as inertial forces take 

over; at 2000 < Re < 4000 the flow is said to be in the transition regime [96]. However, 

oscillatory baffled reactors yield complex flow patterns that cannot be characterised by 

the Reynolds number alone. The dimensionless numbers that govern the conditions of 

the flow in a COBR are the net flow Reynolds number (Ren), the oscillatory Reynolds 

number (Reo), the Strouhal number (St) and the ratio of the area of the orifice to the area 

of the tube, known as the restriction ratio (). 

Re net
n

u D


             (2.4) 

Re o
o

x D 


             (2.5) 

4 o

D
St

x
             (2.6) 

2

2

bD

D
              (2.7) 

where ρ is the fluid density (kg m
-3

) and μ its dynamic viscosity (kg m
-1

 s
-1

), D is the 

diameter of the tube (m) and Db the diameter of the baffle hole (m).  

unet-inlet

ωxo DDb

Lb

Wb
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The concept of a pulsating Reynolds number was early introduced in 1945 by Binnie, 

in order to describe the intensity of the mixing input to the system [97]. The maximum 

pulsating velocity (m s
-1

) was then given as the product ωxo in the work of Sarpkaya 

[98]; the well accepted derivation of Reo was defined as per Equation (2.5) by Brunold 

et al. in 1989 [78]. It has been reported that under low Reo of 100 – 300, flow patterns 

are dominated by symmetrical vortexes generated within each baffle cell, leading to 

potential plug flow behaviour [69, 99]. For high Reo (>300) this symmetry is broken, 

leading to intense mixing and chaotic patterns in the flow [28]. The oscillatory 

Reynolds number is widely used as the dimensionless number for the comparison of 

results from processes undertaken on COBR geometries or operating conditions. 

However, while Reo accounts for the oscillatory variables xo and f, other operational 

parameters such as net flow and geometric features like baffle diameter, baffle spacing 

(Lb) and the restriction ratio remain unaccounted for; further discussion on this is taken 

up in Section 4.5.  

The Strouhal number was initially introduced by Sobey in 1980 [74] to account for 

the new parameters associated with oscillatory baffled flow, see Figure 2.3. He 

described its physical meaning as the ratio of scales between channel length and fluid 

particle displacement [100]. Again, Brunold et al. was responsible for the derivation of 

St as per Equation (2.6), this dimensionless number was described as the ratio of 

column diameter to amplitude of oscillation [78]. Further evaluation and analysis on 

dimensionless groups for oscillatory baffled flow was taken-up by Ni and Gough, who 

proposed updated derivations for Reo and St that included relevant geometrical features 

specific of OBRs [101]. Despite their efforts, subsequent publications in the area 

continued to use the original forms of these numbers, i.e. Equations (2.5) and (2.6). 

An additional dimensionless group regarded as the velocity ratio (ψ) was proposed by 

Stonestreet and Van Der Veeken (1999), who unveiled residence time distributions in 

COBRs as a function of Ren and Reo. For this reason, the velocity ratio was defined as 

the ratio of two mentioned Reynolds numbers [102]: 

Re

Re

o

n

               (2.8) 

Studies in COBRs have reported that plug flow behaviour is more likely to be achieved 

for velocity ratios of 2 – 10 [102-104]. This brings to light the ability of COBRs to 
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decouple mixing from the net flow; this feature allows COBRs to achieve plug flow 

with intense radial mixing under laminar flow regimes.  

2.4 Reactor Geometry 

Besides operating conditions, the geometric characteristics of OBRs are what determine 

the intensity and efficiency of the mixing process that takes place in oscillatory baffled 

flow. The geometric parameters include the type of baffle, its thickness, the dimeter of 

its orifice and the separation space between baffles. The schematic of a generic moving-

baffle OBR is represented in Figure 2.4. 

 

Figure 2.4. Schematic of a generic moving-baffle OBR 

Where Dc is the column diameter (m), Db the baffle diameter (m), Do the orifice 

dimeter, Wb the baffle width (m) and Lb the baffle spacing (m). Note how in lab COBRs 

containing smooth-edged baffles, e.g., NiTech DN15, the baffle diameter and baffle 

orifice become identical (Db = Do), see Figure 2.3. Besides the geometric difference 

between reactors with in-wall baffles and reactors with moving-baffles, the oscillatory 

mechanism of the former is generated by a pulsed flow, i.e. moving fluid, and the 

latter’s is generated by the oscillatory movement of the baffles. 
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Baffle spacing is a key parameter affecting vortex generation and eddy-eddy 

interaction. Baffles should be sufficiently spaced from one another in order to leave 

room for the generation of vortexes, i.e. vortexes will not be created if baffles are too 

close to each other, resulting in flow channelling through the centre channel of diameter 

Do. On the other hand, if the space in between baffle constrictions is too large, vortexes 

interaction during the change in direction strokes (2 and 4) will diminish. Therefore, the 

energy carried by eddies will dissipate into the bulk fluid before they collide with one-

another, resulting in lower mixing intensity and stagnant regions within the baffle-cell.  

The optimal baffle spacing required to provide the highest mixing efficiency in 

oscillatory baffled flow with smooth-edged baffles has been reported as 1.5 times the 

tube dimeter (Lb = 1.5D) by Brunold et al. (1989) through visual assessment of flow 

patterns [78] and by Zhang et al. (1996), who analysed oil – water dispersion efficiency 

in an OBR [105]. For air – water mass transfer in a similar device, Ni and Gao (1996) 

reported a value of Lb = 1.8D as the optimum baffle spacing [82]. In a different study, 

Gough et al. (1997) reported that maximum efficiency of eddy mixing patterns can be 

achieved with a baffle spacing of up to twice the tube diameter and an oscillation 

amplitude of a quarter of the baffle spacing; this study was carried out in a moving-

baffle reactor [106]. A comparative study on OBRs containing moving-baffles and in-

wall baffles was performed by Ni et al. (1998), who reported an optimal value of Lb = 

2D for the former and of Lb = 1.8D for the latter [32]. It should be noted that a baffle 

spacing of 1.5D has been the norm for OBRs and COBRs containing smooth-edged 

baffles [2, 20, 22, 26, 39, 43, 57, 60, 107-109].  

Ni et al. (1998) also reported an optimal baffle thickness of 2 – 3 mm; these findings 

agreed with those from a study by the same author, where a thickness of 3 mm was 

identified as optimal for the suspension of methylmethacrylate in OBRs since it gave 

the best size distribution [110]. Another geometric feature assessed in the comparative 

study performed by Ni et al. (1998) was the restriction ratio (), whose optimal value 

was reported to be in the range of 0.20 – 0.22.  

The gap size between baffle disks and the tube diameter (Dc – Db) in moving-baffles 

OBRs was examined by Ni and Stevenson (1999), who reported its impact on mixing 

times and concluded that the larger the gap size, the lower is the mixing efficiency in 

OBRs [33]. Therefore, baffles tightly fitted to the wall are preferred.  
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In 2000, Ni et al. investigated the effect of baffle geometric design on a larger scale, 

i.e. D = 0.38 m. Results revealed that the dependency of mixing efficiency on Lb and Do 

was of the same magnitude as reported for smaller scales, reinforcing the linear scale-up 

process of OBRs [111]. 

The evaluation of flow patterns in OBRs with different baffle types has been a 

recurrent topic, e.g. disc baffles, annular doughnut baffle, a combination of disc and 

annular baffles [112], and helical baffles. These types of studies are relevant to this day, 

the most recent being published in 2016 by Mazubert et al., who compared the mixing 

performance of single orifice baffles, disc-and-donut baffles and three novel variations 

of helical blades; their findings suggested that each geometry  enhanced different 

characteristics of the flow, thus “no firm conclusions can be made at this stage 

regarding the general performance” [64, 65]. 

2.5 Power Dissipation & Energy Losses 

During the design and development of any mixing device, its power requirement is a 

key area that needs understanding [113]. Furthermore, power density is a widely used 

variable for the comparison of mixing efficiency among different apparatus [3]. 

Regarding processes undertaken in OBRs, research suggested that this type of reactors 

is more power efficient than traditional STRs [111, 114], even reporting constant power 

density values at different scales, thus giving OBRs the upper hand for scaling-up 

processes. 

Essentially two published models have been used in the field of OBRs and COBRs: 

the “quasi-steady” model (QSM) from the work of Jealous and Johnson [115] and the 

“eddy enhancement” model (EEM) by Baird and Stonestreet [116, 117]. The latter was 

developed as an empirical mathematical model to predict dynamic pressure response 

and power dissipation rates in oscillatory baffled flow; it aimed to overcome the 

operating limitations of the already existing QSM. However, despite their efforts, QSM 

has continued to dominate power density calculation in OBRs and COBRs [2, 5, 11, 13, 

21, 32, 33, 35, 46, 70, 84, 87, 107, 110, 111, 118, 119]. The origin of both models 

stemmed from the evaluation of pressure drop over oscillatory devices; and while the 

equations were empirical, research has neither been carried out on the validation of the 

above models nor on how these models could be used in continuous operation where 

there is a net flow.  
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Further details on the derivation and validity of these two models, along with more 

information on pressure drop and power dissipations rates in OBRs and COBRs are 

expanded in Chapter 4. 

Hardly any work has been conducted on energy propagation and energy losses in 

oscillatory baffled flow. A directly proportional dependency between power dissipation 

rates and the number of baffles present in the system was report in 1989 by Brunold et 

al. [78]. During the early days of COBR research, 1991, Mackley et al. [120] measured 

power dissipation values experimentally and computationally, and proved the existence 

of a phase shift between velocity and pressure oscillation waves; pointing out how this 

phase shift “could lead to a significant power reduction of the system”. Not until very 

recently, academic studies [14, 121] and confidential industrial trials reported a decrease 

in the oscillatory velocity experienced by liquid tracers and solid particles as they travel 

downstream a COBR. Further research is yet to be undertaken on this area, in order to 

understand and avoid the causes of potential energy losses and oscillation dampening 

experienced in COBRs.  

For this reason, a detailed analysis of potential energy losses experienced by a 

continuous liquid phase in a COBR at different operating conditions and geometric 

designs is undertaken in Chapter 5. Additionally, an analysis of the impact of 

unexpected geometric events is laid out in Chapter 6. Lastly, thorough examination of 

the velocity of solids particles suspended in continuous oscillatory baffled flow is 

presented in Chapter 7. 

2.6 Evaluation of Mixing Efficiency 

Numerous studies have been conducted in order to assess the effect of different 

operational and geometric parameters on mixing efficiency in OBRs and COBRs. The 

quantification of mixing efficiency is not a trivial matter and the dimensionless numbers 

aforementioned in Section 2.3 are often insufficient. The two most commonly reported 

techniques in the assessment of mixing in this type of reactors are: 

1. The measurement of residence time distribution (RTD) profiles and  

2. The characterisation of the axial dispersion [122]. 

Residence time distribution (RTD) profiles of tracer concentration have widely been 

used to characterise flows in OBRs/COBRs, see for example, Dickens et al. (1989) [27] 
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Mackley and Ni (1991, 93) [29, 69], several publications by Ni where the impact of 

geometric features was analysed [30-33] and studies where the effect of operational 

parameters was addressed [37, 123].  

Furthermore, RTD data was employed to assess the impact of fluid density in axial 

dispersion in these types of devices [34, 35] and also to aid the development of a new 

generation of meso-scale COBRs [38, 39, 41, 42]. The linearity of the scale-up process 

of OBRs and COBRs was postulated by Ni et al. in 2001 based on the impact of device 

diameter on axial dispersion [70], this was later corroborated by Smith and Mackley in 

2006 [124], who also proposed a multi-orifice baffled design for OBRs/COBRs. 

Recently, a scaled-down version of the commercially available NiTech DN15 

crystalliser was proposed by Olivia et al., also based on the comparison of axial 

dispersion performance among devices at different operating conditions [125]. 

Predominantly, RTD studies for axial dispersion assessment in OBRs and COBRs 

have been performed by injecting homogenous liquid tracers in a continuous liquid 

phase. RTD profiles are popularly measured using conductivity probes, with the 

exception of the work by Fitch and Ni, who in 2003 proposed the use of a non-intrusive 

laser-induced fluorescence (LIF) technique for this purpose [126, 127]. . In 1999, 

Stonestreet and Van Der Veeken measured tracer RTD profiles in order to obtain 

optimal operating conditions for plug flow behaviour in a COBR, claiming that the 

dimensionless velocity ratio (ψ) was sufficient for a priory plug flow efficiency 

assessment [102]. The ratio ψ is considered an important parameter in COBR 

operations; minimal dispersion has been reported for ψ values of 2 – 10 [102-104]. 

However, the majority of the processes performed in COBRs involve interaction 

between liquid and solid phases, e.g., crystallisation, where solid slurries vary in density 

throughout the system. Therefore, the analysis of RTD and axial dispersion of liquid 

phases is not sufficient, for instance, the work of Briggs et at. demonstrated that a ψ  of 

20 [15] was suitable for a continuous seeded crystallisation of L-glutamic acid, which is 

a higher value when compared to the range recommended for single liquid phase.  

Recent work by Ejim et al. [46] on slurry plug flow behaviour in a continuously 

operated meso-scale COBR has underlined the lack of information on the behaviour of a 

secondary solid phase in COBRs. This was further emphasised by Kacker et al. [47] 

who reported that not only the optimal operating conditions for minimal axial dispersion 

involving solids were different from that of single phase, but also longer times were 



 

15 

spent by solids in a COBR, highlighting the need to properly address the effect of 

different solid particles on axial dispersion. Baptista et al. [128] analysed the behaviour 

of suspended solid particles of different sizes and densities in a baffled reactor; 

however, their system did not include oscillatory flow and their findings were 

inconclusive, as the interaction between particles was too substantial for the effects of 

size and density to be evaluated. To address the knowledge gap in this area of research, 

the present work provides novel information on RTD performance of secondary solid 

phase in a COBR for different particles sizes in Chapter 7. 

Two other alternative methods and indexes to quantify mixing efficiency in 

oscillatory flow have been used in a number of computational studies, i.e. the so called 

axial to radial velocity ratio [43, 57, 58] and stretch rates [50, 53].  Based on the above, 

a novel mixing assessment coefficient is proposed in this work in Section 8.4.4. 

2.6.1 Models for the Quantification of Axial Dispersion 

Axial dispersion is a measure of the rate at which a tracer is spread axially into the bulk 

of a fluid flow in a reactor, which can be used to assess the degree of mixing achieved.  

There are two principal models frequently used in literature for the description of 

axial dispersion in oscillatory baffled flow: 

1. The diffusion model and 

2. The tank-in-series model. 

The diffusion model, firstly applied to OBRs by Mackley and Ni (1991) [69], describes 

macro-mixing by using an analogy of Levenspiel and Smith’s molecular diffusion 

model [122] and is appropriate in physical processes where a relatively high degree of 

homogenous mixing is achieved [129]. It has been widely used for the quantification of 

axial dispersion in COBRs [29, 31-35, 38, 43-47, 65, 69, 104, 123-127]. Further 

information on the effects of perfect pulse and imperfect pulse methods on dispersion is 

described in Section 7.4.2. 

The tank-in-series model [129] assesses the degree of mixing by calculating the 

number of well-mixed tanks required to emulate the axial dispersion performance of a 

given system and it was firstly implemented in OBRs by Dickens et at. (1989) [27]. 

Dickens et at. discovered that this model produced similar results as the diffusion model 
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at certain conditions: a minimum value of the inverse Peclet (Pe) number of 0.025 

compares closely to the N value from the tank-in-series model as Pe ≈ 2N. 

There are treatments to the tank-in-series models in literature [129] that are able to 

account for upstream mixing, such as the one utilised by Howes and Mackley (1990) 

[79], illustrated in Figure 2.5. An imperfect pulse for the injection of the tracer was 

proposed, which quantifies a single parameter regarded as backmixing coefficient, F. 

This model achieved a reasonable good fit [80] for a modest range of operating 

conditions. A disadvantage of this treatment is that the backmixing coefficient, F, is not 

a real measure of physical mixing, since a degree of short-recirculating takes place and 

contributes to its value. Mecklenburg and Hartland (1975) discussed in great detail the 

relationship of the tank-in-series with backmixing model and the diffusion model, 

reporting the Peclet number of each baffle-cell as a function of the backmixing 

coefficient [130]. 

1
0.5

cell

F
Pe

             (2.9)  

 

Figure 2.5. The “tanks-in-series with backmixing” model 

The tank-in-series model has been used in a significant number of studies for axial 

dispersion assessment in OBRs/COBRs [35, 39, 41, 79, 102, 103, 131]. 

2.7 Modelling of Oscillatory Flow in Baffled Reactors 

The characterisation of oscillatory baffled flow through computational modelling dates 

back to the early 1980s. The first work was reported by Sobey, who extensively 

analysed flow through furrowed channels making use of 2D numerical methods in 1980 

and 1983 [74, 132]; soon after, in 1986, Ralph performed a 2D numerical study of 

oscillatory flow in wavy walled tubes [133]. Thereafter, Ghaddar et al. utilised a 

spectral element method for the assessment of laminar oscillatory flow in periodically-

net flow

oscillation

net flow

Model:
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grooved channel [134] and examined heat transfer enhancement in grooved tubes [135], 

in 1984 and 1986, respectively. The findings of these studies together with experimental 

observations pointed the generation of vortexes in oscillatory baffled flow as the cause 

of highly efficient mixing. In 1988, based on the work by Sobey and Ralph, Howes 

developed a numerical solver for the assessment of dispersion of unsteady flow in 

baffled tubes [80]. This work was taken up by Roberts, who expanded it in 1992 with 

the simulation of 2D oscillatory flows in baffled channels [136]. These studies solved 

time-dependent Navier-Stokes equations by utilising a vorticity–stream function with 

finite difference formulation; the fluid considered was incompressible and Newtonian. 

The flow was assumed to be axi-symmetrical, i.e. flow patterns and eddies are 

symmetrical to the centre line of the reactor; and periodic in the spatial domain, i.e. 

identical flow within each baffle-cell. These solvers were able to successfully predict 

the chaotic nature of the flow in OBRs where  asymmetric flow patterns were often 

observed under certain operating conditions [28, 120]. In 1995, Roberts and Mackley 

made use of massless Lagrangian particles, whose motion was based on the time-

dependent velocity field; the Lagrangian information of these particles was used in the 

calculation of fluid stretch rates as an alternative method for mixing quantification [50]. 

This was further explored in 1999 by Mackley and Neves Saraiva, who used this 

passive Lagrangian tracer for the calculation of stretch rates and concentration fields in 

oscillatory baffled flow [53]. Although asymmetric flow patterns were successfully 

reproduced by Roberts and Mackley [51], the two-dimensional nature of these solvers 

prevented their simulated results to be experimentally validated for chaotic flow in 

three-dimensional OBRs.  

It was not until the beginning of the 21
st
 century that the rapid development of 

computational fluid dynamics (CFD) software allowed unsteady 3D flow to be 

modelled, as done by Ni et al. [54], who validated their results with  experiments using 

the digital particle image velocimetry (DPIV) technique. Jian and Ni expanded this 

work and compared velocity fields obtained from simulations using RANS turbulence 

models (k-ε) with those obtained from large-eddy simulation (LES) [36]; their study 

concluded that the time-averaging process in RANS turbulence models prevented them 

from reproducing asymmetric chaotic patterns in OBRs, thus regarding LES as a more 

suitable alternative. This led to further work by Ni et al., who investigated the turbulent 

integral length scale in an oscillatory baffled column using LES and DPIV [55]. Their 

work also reported the contribution from the sub-grid scale turbulence to be relatively 
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small for all the conditions considered in their study and the majority of the subsequent 

modelling studies used a laminar solver. The work by Jian and Ni assessed OBR scale-

up behaviour through the analysis of simulated OBR velocity fields [58]; and the work 

by Fitch et al. investigated the effects of fluid viscosity on flow patterns in OBRs using 

DPIV and CFD codes [57]. 

Since the mid-2000s until now, numerous studies have utilised CFD codes for the 

assessment and characterisation of flow in OBRs and COBRs. Chew et al. and Chew 

and Ristic used simulated shear rate distribution to compare flow patterns between an 

OBR and an impeller-driven stirred vessel (IDSV) [3, 56]. CFD codes and the use of 

particle image velocimetry (PIV) measurements played a major role in the development 

of so-called meso-scale OBRs by Reis et al. in 2005 [59], which presented different, 

albeit similar flow features, suitable for chemicals’ manufacturing and catalysis 

screening. Their simulated flow patterns also aid in the understanding of RTD 

performance in meso-scale COBRs [40]. The effects of different operating conditions 

on the generation of asymmetric oscillatory flow in a tube containing sharp-edged 

periodic baffles was studied by Zheng et al. in 2007 using PIV measurements and CFD 

codes [60]. PIV measurements were also utilised by Nogueira et al., in 2012, for the 

validation of numerical models to simulate oscillatory flow in an OBR containing 

periodic-tri-orifice baffle geometries [63]. Most recently, commercial CFD packages 

were used in the work of Mazubert et al., who analysed mixing efficiency for different 

geometric designs of COBRs [64]; and also in the examination of heat transfer and 

power dissipation in COBRs at different operating conditions performed by González-

Juárez et al. [109]. 

All of the aforementioned studies were performed exclusively for single liquid phase 

with Eulerian based numerical simulations. Modelling of multiphase flow in COBRs 

has been limited to the simulation of a homogenous tracer by the addition of a transport 

of species model. Examples of this are the work of Manninen et al., who examined the 

impact of fluid viscosity on mixing efficiency [43]; the work of González-Juárez et al., 

who analysed RTD and axial dispersion performance in different geometric designs of 

COBRs [44]; and the work of Kimuli et al. who investigated axial dispersion in a meso-

scale COBR at different operating conditions [45]. The simulation of discrete 

Lagrangian phases in oscillatory baffled flow was performed with the sole purpose of 

modelling passive tracers, consisting of massless particles whose movement is driven 

by the velocity field of an Eulerian phase, e.g. the abovementioned studies of Roberts 
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and Mackley [50], Mackley and Neves Saraiva [53] and a recent investigation on 

mixing performance in COBRs  for five different baffle designs [65]. The limited work 

reported in this area can easily be attributed to the expensive computational costs of 

coupling continuous Eulerian-Lagrangian phases for dynamic fluid-solids modelling 

including their complex interactions. Coupling CFD with the Population Balance 

Equation (PBE) to model crystallisation processes in stirred tank crystallisers is a well-

documented example [137]. The question remains if the complexity of these coupled 

methodologies can be avoided and if all phases can be modelled using a Lagrangian 

scheme. 

As a result, this work presents a novel approach to modelling oscillatory baffled flow 

using a mesh-free Lagrangian method, i.e. Smoothed-Particle Hydrodynamics (SPH); 

this is presented in Chapter 8. 
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Chapter 3        Problem Definition & Simulation Method 

3.1 Geometry 

The target device of this study is the commercially available NiTech DN15 COBR 

reactor (http://www.nitechsolutions.co.uk/products/dn15-range/), as shown in Figure 

3.1. The geometric dimensions of the DN15 and all design details were provided by the 

manufacturer, Alconbury Weston Ltd (http://www.a-w-l.co.uk/); Figure 3.2 presents the 

two CAD detailed geometries supplied by the manufacturer. The total length of the 

reactor is 752 mm, containing 32 baffle-cells; Figure 3.3 shows a detailed schematic 

with the geometric dimensions of the DN15 straight section.  

 

Figure 3.1. Commercially available NiTech DN15 COBR reactor 

(http://www.nitechsolutions.co.uk/products/dn15-range/) 

http://www.nitechsolutions.co.uk/products/dn15-range/
http://www.a-w-l.co.uk/
http://www.nitechsolutions.co.uk/products/dn15-range/
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Figure 3.2. Detailed CAD geometry of a straight section (left) and a bend joint (right) 

of the NiTech DN15 

 

Figure 3.3. Dimensions of the NiTech DN15 straight section used in CFD simulations; 

all dimensions are in mm [66] 

The vast majority of CFD simulations performed during the present work were 

undertaken for the geometry shown in Figure 3.3, however, for the effect of different 

geometric parameters on energy dissipation, pressure drop and flow patterns in COBRs, 

certain geometric features of the device were modified for specific runs; any geometry 

that differs from Figure 3.3 is described in the corresponding chapter where its results 

are presented. 

3.2 Numerical Simulations Setup 

There are two main branches that compose the study of fluid mechanics: kinematics, 

which describes the motion of a fluid based on the structure of its velocity field; and 

dynamics, which analyses the forces that develop within the fluid as a result of its 

motion. The fundamentals of both kinematics and dynamics are combined with 

Newton’s second law and the mass conservation principal in order to derive a system of 
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differential equations describing the structure of a steady flow and the evolution of an 

unsteady flow [138]. 

Let’s consider the flow of a homogenous fluid consisting of a single phase, and a 

particular fluid parcel with centre at point x . Taking the limit when the size of the 

parcel tends to zero, at time t, this fluid parcel experiences a velocity  ,u x t ; therefore, 

 ,u x t  is an infinitely differentiable function of position and time. This is the 

foundation of the continuum approximation, which is valid as long as a continuous fluid 

is discretised above the molecular scale where random molecular motions manifest 

[138]. Similarly, the density (ρ) of a fluid parcel can be computed as the ratio of fluid 

mass to fluid volume contained in the parcel; in doing so and taking the limit when the 

size of the parcel becomes infinitesimal, density becomes a function of position and 

time,  ,x t . 

This very process can be applied to any kinematic or thermodynamic property, f, 

such as a temporal or spatial derivative of the velocity, the kinetic or thermal energy, the 

entropy or the enthalpy per unit mass of the fluid. Hence, this variable can also be 

regarded as a function of position and time,  ,f x t . This method of describing the 

kinematic structure of the flow, as well as the thermodynamic and physical properties of 

the fluid, is regarded as Eulerian framework. This methodology focuses on spatially 

fixed spaces, whose properties are given by the fluid that flows through them at a 

specific moment in time [138].    

On the other hand, sometimes, it can be mathematically convenient to describe a 

fluid domain as a continuous set of point particles, whose state and motion define the 

state of the fluid and the properties of the flow. Each point particle is then assigned an 

identification vector, 
PP , containing three dimensionless scalar variables, i.e. 

 , ,P Px Py PzP P P P . In doing so, any physical, thermodynamic or kinematic property at a 

specific location, x , and time, t, can be regarded as the property of the fluid point 

particle that happens to be at that particular location at that precise instant: 

    , , ,Pf x t f X P t t ; where X  is the position of the particle point 
PP  at the exact 

instant t. This methodology is regarded as Lagrangian framework, which focuses on 

tracking individual fluid particles that move through space and time.  
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Eulerian and Lagrangian formulations are related by the material derivative (D/Dt); 

this mathematical relationship is further explained in Appendix 1. Figure 3.4 displays an 

explanatory scheme of the differences between these two methodologies. 

 

Figure 3.4. Explanatory scheme of Eulerian and Lagrangian frameworks  

All the numerical modelling of this study is performed under a Eulerian framework 

using the commercially available ANSYS
®

 Fluent 15.0 CFD package; with the 

exception of the secondary discrete phase modelled in Chapter 7 and the novel approach 

to model oscillatory baffled flow presented in Chapter 8, which are solved under a 

Lagrangian framework. The relevant theory describing these Lagrangian methods is 

explained in the corresponding chapters.  

3.2.1 Model Equations 

The equations that describe fluid flow consist of the continuity equation, or mass 

continuity equation, and the Navier–Stokes equations, or equations of motion 

(momentum). The equations of mass and momentum conservation are described by 

Equations (3.1) and (3.2), respectively: 
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 D u
g F

Dt


               (3.2) 

where 
D

Dt
 is the material derivative,  the gradient vector operator, ρ the density, u  

the velocity vector,   the total stress tensor defined as pI     and F  the 

summation of any external forces. Within the total stress tensor, I is the identity 

matrix, p the pressure, 
2

2
3

u I E  
 

    
 

 is the viscus stress tensor with E , the 

rate of strain tensor, given by    
1

2

T
E u u    

 
. Additional information on the 

derivation of the mass continuity and Navier-Stokes equations is included in Appendix 

3. 

Equations (3.1) and (3.2) can be expanded by partial derivatives for Cartesian 

coordinates (x, y, z) into Equations (3.3) and (3.4), respectively: 
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where the components of the stress tensor can be expressed in terms of velocity 

gradients as: 
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The equations of mass and momentum conservation for an incompressible flow with 

constant viscosity can substantially be simplified and are given by Equations (3.6) and 

(3.7), respectively; assuming that the system is fully flooded with a single-phase fluid: 
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         (3.7) 

Equations (3.6) and (3.7) can be decomposed using partial derivatives for Cartesian 

coordinates into Equations (3.8) and (3.9): 

0
yx z

uu u

x y z

 
  

  
           (3.8) 

2 2 2

2 2 2

x x x x x x x
x y z

u u u u u u up
u u u

t x y z x x y z
 

        
         

          
  (3.9a) 

2 2 2

2 2 2

y y y y y y y

x y z

u u u u u u up
u u u

t x y z y x y z
 

         
                     

  (3.9b) 

2 2 2

2 2 2

z z z z z z z
x y z

u u u u u u up
u u u

t x y z z x y z
 

        
         

          
   (3.9c) 

All the numerical simulations performed in this study, using the commercially available 

ANSYS
®
 Fluent 15.0 CFD package, solve for the three-dimensional time-dependent 

mass conservation and momentum conversation equations described as per Equations 
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(3.8) and (3.9), respectively. These equations solve for the velocity field, 

 , ,x y zu u u u , and pressure field, p, given that sufficient initial and boundary 

conditions are provided. In order to do so, these partial differential equations are 

integrated and discretised, dx dy dz x y z    , resulting in a system of algebraic 

equations. Consequently, the domain upon which these equations are applied and solved 

must be discretised [138]. The three most popular methods for the discretisation of these 

equations are finite difference, finite element and finite volume. This study makes use of 

the finite volume method, which is the norm for the most well-established commercially 

available CFD codes, such as PHOENICS, STAR-CD, ANSYS
®
 CFX and ANSYS

®
 

Fluent. The finite volume method is implemented as per the following summarised steps 

[139]: 

 Division of the domain into a set of discrete control volumes using a 

computational grid/mesh. 

 Integration of governing equation of fluid flow over each individual control 

volume, generating algebraic equations for the discrete variables, i.e. pressure, 

velocities, temperature and any other conserved scalars. 

 Solutions of the resultant equation system by an iterative method.  

3.2.2 Solver 

All simulations were performed using a laminar solver; which is consistent with 

literature. This solver has extensively been used during the past [54, 57, 59] and present 

decade [44, 45, 64, 65, 109] when modelling fluid flow through oscillatory baffled 

reactors using CFD, including flows at relatively high Reo (up to 8043) [43, 58]. 

The solver is defined in ANSYS
®
 Fluent as pressure-based segregated, in which the 

mass conservation constraint of the velocity field is achieved by solving a pressure 

correction equation. The pressure correction equation is derived from the continuity 

equation and the conservation of momentum equations, in such a way that the velocity 

field, corrected by the pressure, satisfies the continuity [139]. This algorithm belongs to 

the class of methods known as the projection methods [140]. The pressure field is 

therefore obtained from the pressure correction equation; for additional information on 

the derivation and form of this equation, refer to ANSYS
®
 Fluent Theory Guide [139]. 
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In the pressure-based segregated solver, the governing equations are solved 

sequentially, i.e. segregated from one another. Due to the non-linear and coupled nature 

of the equations, this process requires an iterative solution process until convergence is 

achieved; each iterative step is illustrated in Figure 3.5. 

 

Figure 3.5. Pressure-based segregated solver solution method  

In addition, because of the coupled nature of the governing equations, this segregated 

method requires a pressure-velocity coupling algorithm that is implemented into the 
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pressure correction equation, in order to satisfy the continuity equation. ANSYS
®
 

Fluent’s SIMPLE pressure-velocity coupling algorithm was used for all the simulations 

of this study. For additional information on this algorithm refer to ANSYS
®
 Fluent 

Theory Guide [139]. 

3.2.3 Discretisation Schemes 

By default, ANSYS
®
 Fluent stores values of variables at the centre of the control 

volume cells (ϕc) and the values at the centre of every face of each control volume cell 

(ϕf) are calculated according to the spatial discretisation scheme selected. The difference 

between cell-centred and face-centred values is illustrated in Figure 3.6.  

A second order upwind scheme was utilised for the spatial discretisation of the 

momentum equation [139]: 

i i if c c fd              (3.10) 

where 
ic  and 

ic  are the cell-centred value and its gradient in the upstream control 

volume cell, i. 
if

d  is the displacement vector from the centroid of the upstream control 

volume cell, i, to the centre of the face, f. The gradient 
ic  is computed following the 

least squares cell-based method. This method assumes variables to change linearly 

from the centre of a control volume cell, i, to the centre of a contiguous cell, j [139]: 

 
i i jc ij c cd               (3.11) 

where 
ijd  is the displacement vector from the centroid of the control volume cell, i, to 

the centroid of a contiguous cell, j. Equation 3.11 is written for every cell contiguous to 

cell i, resulting in a system of linear equations, which is solved in a least-squares sense 

[139]. 

A second order scheme was utilised for the interpolation of pressure at the faces of 

the grid [139]: 

   1 1

2 2ij i j i i j jf c c c f c fp p p p d p d             (3.12) 
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where 
ijfp  is the pressure at the centre of face common to two contiguous control 

volumes cell, fij; 
if

d  and 
jfd  are the displacement vectors to the centre of the face f 

from the centroid of control volume cell i and j, respectively.  

 

Figure 3.6. Illustration of spatial discretisation of two-dimensional control volume cells  

As aforementioned, all simulations were performed under a transient framework; 

therefore the governing equations must also be discretised in time. This requires the 

integration of every term in the partial differential equations over a time-step, Δt, as 

illustrated in Figure 3.5. The change of a given variable, ϕ, with time is defined as 

 F
t








, where F(ϕ) includes any spatial discretisation. A first order implicit 

scheme was utilised for the temporal discretisation in this study [139]: 

 1 1n n ntF              (3.13) 

The time-step was set to 2 ms throughout all simulations, except for run #5 (f = 8 Hz) – 

refer to table 4.1 – where a time-step of 0.5 ms was selected. This ensured that the 

convergence criteria (residuals of 10
-3

 and 10
-4

 for continuity and momentum equations 

respectively) were met and the number of time-steps per oscillation cycle was above 

125, which is higher than others reported in recent literature for these types of 

Cell i
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ci

cj
fij

if
d

jfd

ijd
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oscillatory baffled devices [44, 65]. The average value of the Courant–Friedrichs–Lewy 

coefficient (CCFL) [141] was consistently maintained below 6 and the maximum CCFL 

value below 50.  

CFL

t
C u

x





          (3.13) 

where Δx is the size of a control volume cell and u the velocity at that control volume 

cell. 

3.2.4 Boundary Conditions 

Incompressible water (ρ = 998.2 kg m
-3

, μ = 1.003∙10
-3

 kg m
-1

 s
-1

) was the selected fluid 

for this study. The inlet and outlet of the device were modelled as open boundaries.  

Time-dependent inlet velocity profile was imposed with a User Defined Function 

(UDF) as per Equation (2.3). In order to minimize the impact of inlet boundary 

conditions on the main flow, the inlet oscillatory velocity was imposed with a fully 

developed parabolic profile as: 

 
2

2
( , ) 2 sin 1inlet net o

r
u r t u x t

R
 

 
        

 
     (3.14) 

where R is the COBR outer radius and r is calculated as: 
2 2r y z  .  

The outlet boundary conditions were set at constant gauge pressure of 0 Pa, and 

operating temperature and pressure conditions were set at 300 K and 101325 Pa, 

respectively. Walls in the system were modelled as no-slip boundaries. 

For consistency with the vast majority of literature on OBRs and COBRs, the net 

flow velocity at the inlet is named in this work as unet. This should not be confused with 

the mean net velocity of the system, termed as U in this work. The net volumetric flow 

rate, Q, is constant and unet is calculated from Q/A. However, while both Q and unet are 

constant, the net flow velocity does change along the length of the reactor due to the 

presence of smooth-edged orifice baffles, as shown in Figure 3.3. It should be noted that 

sharp-edged baffles were used in previous studies, smooth-edged baffles are fabricated 

in all DN15 series and used in this work, where V ≠ L∙A. Subsequently, the velocity 

through orifices (unet-baffle) is defined as Q/Ab and the mean net velocity (U) of the 

system is within the range of Q/A ≤ U ≤ Q/Ab, where Ab is the cross-sectional area of the 
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baffle orifice 
2

4

bD 
 
 

. When the volume of the DN15 reactor is known, U is calculated 

as QL/V. 

3.3 Mesh Generation 

The computational domain illustrated in Figure 3.3, thirty-two DN15 baffle-cells, is 

discretised into a large number of small volume control cells through the generation of a 

computational grid. The density of the selected mesh is of ~117 k nodes per baffle-cell. 

The number of computational nodes per baffle was selected through a mesh 

sensitivity analysis undertaken on a 5-baffle-cell tube geometry, illustrated in Figure 

3.7, considering global mesh refinement. This analysis was performed at the most 

adverse conditions considered in this study, proving the highest axial velocities (Reo = 

10505) and the most rapid changes of flow direction (f = 8 Hz), hence requiring a finer 

mesh. Simulations were run for 24 oscillatory cycles. Pressure drop vs time profiles, 

p(t) = p1(t) – p2(t), and velocity magnitude vs time profiles extracted at lines 1 & 2 and 

planes 1 & 2 (as shown in Figure 3.7) were cycle-averaged.  The resulting pressure drop 

and velocity profiles (duration of an oscillatory cycle) were compared for meshes of 

five different resolutions, using the coefficient of determination (R
2
): 

 

 

2

, 1,2 1

2

1, 1,1

1 1

n

j i iires

n
tot

i ii

SS
R

SS

 

 






   






       (3.15) 

where SStot is the total sum of squares of the target profile (that from mesh #1) and SSres 

is the sum of squares of residuals between the profile under evaluation (from mesh #j) 

and the target profile. The subscripts i and n represent, respectively, a single data point 

and the total number of data points of a certain profile, while j is the index of a certain 

mesh and ϕ the variable under evaluation.  
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Figure 3.7. Five-baffle-cells geometry, lines and planes where variables were 

monitored during mesh independency test [66] 

The results from each subsequent mesh were compared to those from mesh #1. Table 

3.1 summarizes the results of the mesh independency analysis; mesh #2 was chosen for 

this study on the balance of accuracy and efficiency, and its density is above the norm 

reported in literature [43, 45, 54, 58, 59, 62, 142]. All meshes were O-grid structured 

containing only hexahedral elements and were created on ANSYS
®
 ICEM. 

Table 3.1. Mesh sensitivity analysis results, reporting R
2
 for each variable tested (Q = 

50 ml min
-1

, f = 8 Hz, xo = 14 mm) 

   
Velocity Magnitude at 

Mesh # Nodes
*
 Δp

**
 Line 1 Line 2 Plane 1 Plane 2 

1 236 k – – – – – 

2 117 k 0.978 0.990 0.997 0.995 1.000 

3 64 k 0.940 0.984 0.996 0.984 0.999 

4 31 k 0.922 0.984 0.996 0.980 0.999 

5 7 k 0.670 0.911 0.989 0.825 0.997 
* 
Number of nodes per baffle cell.

  

**
Pressure drop profile between planes 1 and 2:      1 2p t p t p t   . 

Indexes such as absolute error (%), as given by Equation (3.16), were considered for 

the evaluation of this mesh independency analysis, in order to quantify errors between 

profiles of different meshes. 
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 

, 1,

1
1,

100

%

n j i i

i
i

error
n

 
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 
 




       (3.16) 

However, the nature of the profiles compared is oscillatory, meaning that values 

oscillate from positive to negative, in the case of pressure drop profiles, and values 

drastically decrease in magnitude (close to zero) at certain times, in the case of velocity 

profiles. When pressure drop and/or velocity values approximate to zero, small 

differences between two profiles are greatly magnified, due to the small magnitude of 

the denominator in 
, 1,

1,

j i i

i

 




. This results in low percentage errors at the peaks of 

these profiles (large values) and high percentage error at times when the profile crosses 

or gets close to a small value (zero). Due to this difference of scales within the same 

profile, absolute error was discarded as a valid index to quantify resemblance among 

profiles. The root-mean-square coefficient (RMSE) was also considered for the 

quantification of the mesh sensitivity analysis. However, RMSE is not a normalised 

coefficient, i.e. it is sensitive to the magnitude of the profiles; hence it is not suitable for 

comparison between profiles of different variables and results. 

 
2

, 1,1

n

j i iiRMSE
n

 






        (3.17) 

Therefore, the coefficient of determination was selected for the quantification of 

resemblance between profiles of different meshes. 

3.4 Model Assumptions 

The selection and implementation of the utilised time discretisation scheme and residual 

criteria was made taking computational resources and time constraints into 

consideration.  An assessment was carried out to quantify the impact of this decision on 

the accuracy of results nonetheless. Following the same methodology used for the mesh 

sensitivity study, and making use of the same 5-baffle-cell geometry and the selected 

mesh (#2), the results obtained using a first order implicit time discretisation scheme 

were compared to those from a second order implicit scheme. The results of this 

comparison between schemes was also reported for the highest Reo simulated (Reo = 

10505), see Table 3.2. It is worth noting that although a second order implicit scheme 
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may presumably give more accurate results, it also presents difficulties in achieving 

high convergence rates, requiring smaller CCFL; hence a smaller time-step, i.e. 1/16
th

 of 

the time-step used for a first order implicit scheme was required to achieve 

convergence. Such a small time-step increased the computational time up to 750%, i.e. 

this simulation was run for 231 hours as opposed to the 27 hours required by the first 

order implicit time discretisation scheme, both running in parallel on 48 processors 

cores. This is not feasible within the time constraint of the project, taking into account 

the already computationally expensive nature of these simulations. Hence, on the 

balance of accuracy and computing time a second order implicit scheme was discarded. 

Similarly, the effect of the selected convergence residual criteria on the accuracy of 

results was also quantified. The results obtained utilising a residual criterion of 10
-3

 

(ANSYS
®
 Fluent’s default) and 10

-4
 for continuity and momentum equations, 

respectively, were compared to those using an overall 10
-5

 residual criterion. The 

difference between the results is reported in Table 3.2. 

While a higher grid resolution was implemented near the wall, a fine-resolution wall 

inflation layer was not utilised in the simulations performed in this study. This decision 

was again made to balance the competing needs for accuracy and computation time, and 

the effects of the presence vs absence of such inflation layer were quantified by 

comparing the results obtained with the selected discretisation schemes, and mesh (#2), 

and those using a 12-layer inflation layer. This comparison was also performed at the 

operating conditions providing the highest mixing intensity (Reo = 10505). During this 

assessment, the maximum wall shear stressed, τw, was monitored with time, and its 

time-averaged value was used for the calculation of y
+
, defined as: 

fu y
y



            (3.18) 

where υ is the kinematic viscosity (m
2
 s

-1
), uf the frictional velocity defined as 

f wu    and y the distance from the wall to the nearest computational node. It was 

found that the maximum wall shear rate was consistently experienced on the wall 

around the centre of the baffle orifice, reporting an average value of τw = 125.0 Pa. In 

this region (Line 2 in Figure 3.7), the nearest to the wall computational node was 

located at y = 6.24×10
-6

 m. Hence, a y
+
 value of 2.2 was reported for the simulated 

operating conditions (run #5 in Table 3.2); the inflation layer had a growth of 1.3. The 

performance of the simulation including this inflation layer, on a 5 baffled-cells domain, 
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for 24 oscillatory cycles (3 real seconds at f = 8 Hz) lasted 269 hours running on 48 

processors cores. Hence, the use of an even finer and denser inflation layer was not 

contemplated. It should be noted that due to the unsteady and non-uniform nature of the 

flow in oscillatory baffled reactors, the actual thickness of the viscus layer is unknown. 

Therefore an estimate value based on a worst-case-scenario-basis was performed as 

described above. Bearing all this information in mind, the difference among results with 

and without the aforementioned inflation layer is reported in Table 3.2. It must be 

mentioned that while this analysis was done on a 5-baffle-cell geometry, all the 

simulations performed in this work were done for a 0.752 m long COBR. This 

translated into 3.7M nodes for the selected mesh #2; the presence of the tested inflation 

layer would increase the number of computational nodes up to 5.7M. Therefore, the 

absence of such inflation layer allowed for the simulations times of this study to be 

significantly reduced. 

Table 3.2. Accuracy analysis between results obtained with different model features, 

reporting R
2
 for each variable tested (Q = 50ml min

-1
, f = 8Hz, xo = 14mm) 

 
Velocity Magnitude 

 
Comparing Line 1 Line 2 Plane 1 Plane 2 Δp(t)

**
 

Time discretisation scheme: 1
st
 vs. 2

nd
 order 0.986 0.995 0.950 0.997 0.942 

Residual criteria (10
-3

 & 10
-4

 vs. 10
-5

) 0.990 0.997 0.995 1.000 0.976 

Inflation layer: without vs. with 0.968 0.975 0.988 0.998 0.930 
**

Pressure drop profile between planes 1 and 2:      1 2p t p t p t   . 

The geometry modelled in this study, described in Section 3.1, required a large number 

of computing resources. Additionally, the same geometry/mesh used for a single phase 

study that analysed pressure drop propagation and energy losses on a COBR, Chapters 4 

– 6, was utilised for a multi-phase (S-L) study that examined axial dispersion, residence 

time, velocity and suspension experienced by solid particles in a COBR. In the latter, a 

discrete phase model (DPM) is coupled to the continuous Eulerian phase, solid particles 

are then injected and flow through the device is simulated until these particles 

completely leave the domain. This resulted in simulation runs taking up to 60 days to 

complete, running on 48 processors, for a single scenario. The chosen time 

discretisation scheme, residual criteria and the absence of a denser boundary layer 

helped the optimization of computing resources, allowing this research to perform the 

required number of simulations for the aforementioned studies. 
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Chapter 4        Validation of Power Dissipation Models in OBRs 

4.1 Introduction 

While continuous oscillatory baffled reactors (COBR) have been proven a viable 

alternative to traditional batch reactors for organic synthesis and crystallisation, research 

into the estimation of power density for this type of device has largely been stagnated 

for the past 25 years. Essentially two published models have been used in the field of 

COBR and OBR (oscillatory baffled reactors): the “quasi-steady” model (QSM) from 

the work of Jealous and Johnson [115] and the “eddy enhancement” model (EEM) by 

Baird and Stonestreet [116, 117] The origin of both models was stemmed from the 

evaluation of pressure drop over oscillatory devices; while the equations were empirical, 

research has neither been carried out on the validation of the above models nor on how 

these models could be used in continuous operation where there is a net flow. In this 

chapter, a detailed analysis and examination of the applicability, the capability and the 

deficiencies of the two models are, for the first time, reported using a CFD 

methodology. This chapter has been published in the Journal of Chemical Engineering 

and Processing: Process Intensification, Vol. 134, 2018, pages 153-162 [66].  

4.2 Background on Power Dissipation Models for OBRs 

It should be noted that power density (εv) is often regarded as power dissipation rate. 

These two nomenclatures have been used interchangeably in literature and both refer to 

the same variable: εv (W m
-3

). The nomenclature power dissipation rate is not to be 

confused with the change in power with time (W s
-1

); instead, it only refers to the 

change in energy with time per unit volume of fluid (J s
-1

 m
-3

). Hence, it should be more 

accurately named as energy dissipation rate. However, for the purpose of consistency 

with previous literature, εv is referred to in this work as both power dissipation rate and 

power density; this is the power experienced by liquid. 

In order to predict power density due to pulse generation in pulsed columns, Jealous 

and Johnson in 1955 developed the QSM from pressure drop, which accounted for 

inertial and frictional effects of the flow, as well as pressure drop due to a static head 

that was present on their experimental setup [115]. QSM power density equation for 

oscillatory baffled reactors was then derived from the work of Jealous and Johnson as 

[116, 117]: 
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


           (4.1) 

Due to the constriction of an orifice baffle, it is the frictional losses, instead of inertia, 

that resulted in the overall gain in kinetic energy. The geometric parameters taking part 

in Equation (4.1) include the orifice discharge coefficient (CD), usually taken as 0.6 – 

0.7 [32, 84, 107, 115-118], the reactor’s length (L) in meters, the number of baffles (n) 

and the ratio of the area of the orifice over the area of the tube, known as the restriction 

ratio ( = Db
2
 / D

2
), D is the diameter of the tube (m) and Db is the diameter of the 

baffle hole (m); operational parameters involve ω=2πf as the oscillation angular 

frequency (rad s
-1

), xo the oscillation centre-to-peak amplitude (m) and f the oscillation 

frequency (Hz); physical parameter is the fluid density (ρ) (kg m
-3

). Note that a term 

counting for the net flow velocity was not included in Equation (4.1), as pulse columns 

have been operated batch-wise. 

It is generally thought that QSM works well for low frequencies (below 5 Hz) and 

high amplitudes (above 5 mm) [70, 115, 116]. However, this is not in full agreement 

with the work of Panton and Goldman, who, after investigating the derivations of QSM, 

reported that QSM was not strictly valid when     1 2
3 100ox    where υ is the 

kinematic viscosity (m
2
 s

-1
) [143]; note that all the conditions presented in this study are 

within the aforementioned range. In addition, selection of the CD value in the QSM also 

affects the accuracy of the model. Furthermore, the assumption made by Jealous and 

Johnson that there is a linear relationship between the number of baffles in the device 

and the frictional pressure losses due to their orifice constriction is yet to be proven for 

OBRs/COBRs. This argument is further examined, developed and addressed in Section 

4.5.2. 

Braid and Stonestreet developed an empirical EEM model to predict overall power 

dissipation rates, coupling acoustic behaviour with local eddy turbulence [116], based 

on the prediction of frictional pressure drop as the acoustic resistance of a single orifice 

plate:  

3 21.5 o
v

n x

L





            (4.2) 
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While similar geometric, physical and operational parameters are involved in this 

model, “mixing length” (m) is an additional parameter and has a value similar to a 

characteristic length scale of the reactor, e.g. a value of 7 mm was selected in previous 

research with a tube diameter of 12 mm [116]. This model was proposed for higher 

frequencies (above 5 Hz) and lower amplitudes (below 5 mm), hence filling the gap left 

by the QSM.  However, the dependence of power dissipation rate on mixing length 

casts doubts, as mixing length is often unknown and has not accurately been predicted 

in OBR. Furthermore, it was unclear whether this model is suitable for continuous 

operation. The EEM, similarly to the QSM, also assumes a linear relationship between 

the number of baffles and frictional pressure losses. 

Accompanying the EEM, the phase shift between velocity and pressure waves was 

given as [116]: 

1tan
3

iLK

n
   
  

 
           (4.3) 

where Ki is a geometry-dependent inertial corrector factor (a value of 0.9 was selected 

by Braid and Stonestreet in their work). Although the two empirical models mentioned 

above, QSM in particular, have commonly been used by researchers in order to compare 

performances of oscillatory baffled reactors with other types of devices, no validation 

has yet been conducted. 

4.3 Power Dissipation & Pressure Drop in OBRs 

In oscillatory flow devices, both inlet velocity and pressure drop follow sinusoidal 

wave forms, separated by a phase shift (δ), as represented in Figure 4.1. The time-

averaged power density, referred to as power density (εv) from this point onwards, in a 

COBR can be calculated by solving: 

   
0

1 T

v Q t p t dt
VT

             (4.4) 

where V is the volume of the system (m
3
), T the oscillation period (s), Q(t) the 

volumetric flow rate (m
3
 min

-1
) defined as    Q t A u t  , A being the cross-sectional 

area (m
2
), the velocity profile  ( ) sinnet ou t u x t    and unet is the inlet net velocity 

(m s
-1

). The temporal pressure drop profile across the device p(t) (Pa) has often been 
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assumed to have a sinusoidal wave form similar to that of the flow motion, defined as 

   sinnet op t p p t       [116, 117, 120], where po is the maximum centre-to-

peak pressure drop fluctuation, pnet the net pressure drop and  the phase shift. Making 

use of this hypothesis, the integration of Equation (4.4) over an oscillatory cycle results 

in: 

 

 

 

 

cos 2 cos

2 2

o o net net o o

v

x p u p x p

V A V A

   


   
         (4.5) 

The volume to cross-sectional area ratio in Equation (4.5) is often substituted by the 

reactor’s length (L); however, while this is true for sharp-edged disk-like baffles, it is 

far from reality for smooth-edged baffles as observed in Figure 4.1, e.g. the percentage 

difference between V/A and L is 25% for all runs, except for runs #8 – 11 where this 

difference ranges from 5 to 30%. For this reason, V/A was used in Equations (4.1), (4.2) 

and (4.5) as opposed to L throughout this study. 

 

Figure 4.1. Inlet velocity and pressure drop wave forms illustrating phase shift; cycle-

averaged simulated data from run #2 [66] 
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4.4 Methodology – Parametric Study 

This study was undertaken for a standard NiTech DN15 COBR reactor, whose 

geometric details and characteristics are earlier described under Section 3.1. 

However, the present work follows the research path suggested by Braid and 

Stonestreet [116] to study the effect of a wide range of geometric and operating 

parameters on the pressure drop and power dissipation experienced in COBRs; the 

parameters include baffle hole diameter (Db), baffle spacing (Lb), volumetric flow rate 

(Q), oscillation frequency (f) and centre-to-peak amplitude (xo). All the conditions 

modelled in this study are listed in Table 4.1, along with their respective net flow 

Reynolds numbers (Ren = unetρD/μ) and oscillatory Reynolds numbers (Reo = ωxoρD/μ) 

which are included in the last two columns of the table. Additionally, Figure 4.2 

displays the geometric dimensions and design details of baffle constrictions with 5 mm 

and 9 mm baffle diameter; Figure 4.3 shows all the different geometries modelled 

during this parametric study. 

Table 4.1. Parametric study list of conditions simulated 

Run # Q (ml min
-1

) f (Hz) xo (mm) Db (mm) Lb (mm) Ren Reo St 

1 50 0.5 14 7 23.5 70.5 657 0.0853 

2 50 1 14 7 23.5 70.5 1313 0.0853 

3 50 2 14 7 23.5 70.5 2626 0.0853 

4 50 4 14 7 23.5 70.5 5253 0.0853 

5 50 8 14 7 23.5 70.5 10505 0.0853 

6 50 1 5 7 23.5 70.5 469 0.239 

7 50 1 23 7 23.5 70.5 2157 0.0519 

8 50 1 14 5 23.5 70.5 1313 0.0853 

9 50 1 14 9 23.5 70.5 1313 0.0853 

10 50 1 14 7 47 70.5 1313 0.0853 

11 50 1 14 7 94 70.5 1313 0.0853 

12 100 2 5 7 23.5 141 938 0.239 

13 100 2 7 7 23.5 141 1313 0.171 

14 100 2 10 7 23.5 141 1876 0.119 

15 100 2 14 7 23.5 141 2626 0.0853 
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Figure 4.2. Dimensions of the NiTech DN15 straight section with Db = 5 mm (top) and 

Db = 9 mm (bottom) used in CFD simulations; all dimensions are in mm  
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Figure 4.3. Geometries employed on the parametric study 
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The validation of the “quasi-steady” model (QSM) and the “eddy enhancement” 

model (EEM) starts by generating temporal pressure drop profiles over a reactor’s fixed 

length. Each simulation consisted of a 0.752 m long straight section and was run for 10 

oscillatory cycles. In order to minimize the effect of the open boundary conditions at the 

inlet and outlet, the equivalent of the first two and last two baffle constrictions, when LB 

= 23.5 mm, were discarded. In order to assess temporal pressure drop across the device, 

the area-weighted averaged static pressure was monitored at two cross-sectional planes: 

Plane 1 (p1), placed 47 mm from the inlet and Plane 2 (p2), placed 47 mm from the 

outlet. The pressure drop profile was obtained over the remaining 0.658 m, equivalent 

to 28 baffle-cells if LB = 23.5 mm, as p(t) = p2(t) – p1(t). 

 For each run, the simulated time-dependent pressure drop profile, p(t), was 

extracted and utilised in the numerical integration of Equation (4.4) for the calculation 

of power density. The simulated power density of a particular run is then compared with 

the power density estimated by the QSM and EEM, which are directly calculated with 

Equations (4.1) and (4.222); a mixing length of 7 mm was used for the EEM 

calculations as previously proposed by Braid and Stonestreet [116]. The comparison 

between simulated and model estimated power density values enabled a detailed 

examination and comparison of the QSM and EEM for a wide range of operational and 

geometric conditions.  

The averaged absolute error (AAE) (%) between the simulated and model predicted 

power densities was quantified as: 

 
1

100

%

predicted simulated
n i i

simulatedi
i

AAE
n

 



 
 
 
 




        (4.6) 

where i is a single case/run, n the total number of cases in this study and ɸ the property 

under evaluation (εv). 

4.5 Results & Discussion 

In previous CFD simulations of OBR and COBR [144], a quasi-steady state, indicating 

the flow was fully developed and cycle-repeatable, was achieved in 5-7 cycles of 
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oscillation. Flow patterns in oscillatory baffled reactors tend to be chaotic in nature, due 

to the constant formation and disruption of eddies. For this reason, monitoring variables 

at specific points of the domain to assess an overall quasi-steady-state is not feasible for 

these types of devices. Hence, the procedure presented by Jian’s work [144] is followed 

in this study, i.e. the volume-weighted average strain rate is monitored with time, which 

serves the purpose of visually assessing when a quasi-steady-state is achieved. Figure 

4.4 (left) shows the change of the volume-weighted averaged strain rate with time; a 

quasi-steady state is seen after cycle 5. Being conservative, all the data presented on this 

study were taken from the cycle 7 (included) onwards. Furthermore, Figure 4.4 (right) 

plots Δp(t) at different oscillatory cycles, visually confirming the repeatability of the 

results after cycle 7. The monitored strain rate shows larger amplitude peaks at the 

forward strokes, followed by smaller values at the backward stroke of the oscillation. 

This is due to the net flow effect, i.e. the forward oscillation is in favour of the flow, 

while the reversal stroke is against flow.  

 

Figure 4.4. Convergence of strain rate with time (left) and pressure drop wave forms 

for cycles 7 to 10 (right) (Q = 50ml min
-1

, f = 1Hz, xo = 14mm) [66] 

Mazubert et al. predicted po and εv for different types of baffle configurations using 

CFD simulations [64], their results were the basis for comparison with ours. For a single 

orifice plate, D = 15 mm, Db = 8 mm, Lb = 26 mm, f = 1.05 Hz, xo = 16.5 mm, unet = 

14.05 mm s
-1

, they reported a maximum centre-to-peak pressure drop fluctuation per 

length and a power density of 0.73 kPa m
-1

 and 23.8 W m
-3

 respectively. The baffles 

utilised by Mazubert et al. were sharp-edged with a width (Wb) of 2 mm, in the axial 

direction, as opposed to the 10.5 mm of the smooth-edged baffles used in the present 

work (Figure 4.1). While a direct comparison is not possible due to different geometric 

and operational parameters, since po and εv are proportional to θ, where θ = 
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(xoWb)/(αLb), the maximum centre-to-peak pressure drop fluctuation per length and the 

power density reported by Mazubert et al. can be compared with those obtained in #2 of 

our work (2.3 kPa m
-1

 and 88.1 W m
-3

) by multiplying Mazubert’s data by a ratio of 

Ours Mazubert  . In doing so, the data of Mazubert et al. become 2.5 kPa m
-1

 and 81.8 W 

m
-3

 respectively, which are very similar to our results obtained from run #2. Note that to 

compensate for the shape difference in baffles, i.e. smooth vs sharp edges, Wb = 5.6 mm 

was used in the calculation of θ
Ours

; this is the baffle width a sharp-edged baffle of Db = 

7 mm should have in order for the area under its curve (AC) to be equal to that of the 

smooth-edged baffle of the DN15 used in this investigation, as displayed in Figure 4.5.  

 

Figure 4.5. Dimensions of DN15’s smooth-edged baffle and a sharp-edged baffle with 

equal area under their curvature; all dimensions are in mm 

Mackley et al. plotted power density over a section of OBR against ωxoD (m
2
 s

-1
), 

showing a third order power law dependency [120]. For the sake of comparison, the 

same plot was displayed using our simulated data (Figure 4.6 left) and a similar third 

order power law trend was observed here. However, ωxoD is not a dimensionless group; 

it has neither physical meaning nor importance, as it does not include all design and 

operational parameters. When plotting power density against ωxoD or the widely used 

oscillatory Reynolds number, see Figure 4.6 (right), multiple power density values 

(provided at different operation conditions) are obtained at the same ωxoD and Reo. 

There is generally a knowledge gap in the governing dimensionless groups in this area, 

because none of the existing dimensionless groups capture all key design and 

operational parameters, e.g., the oscillatory Reynolds number was directly derived by 

replacing the net flow velocity with the oscillatory velocity; the Strouhal number only 

describes a ratio of tube diameter to oscillation amplitude. A revised oscillatory 

Reynolds number was proposed by Ni and Gough [101] as *

o oRe Re  , accounting 

5.64

10.5

ACSmooth-edged = ACSharp-edged 
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for the effect of the baffle diameter, since the smaller the Db, the higher the inertia 

forces of the fluid. This was a step forward, it however did not include the effects of 

baffle spacing and the net flow of the system; baffle spacing controls the connectivity of 

eddies and net flow is an essential part of plug flow. In order to capture the effects of all 

key design and operational parameters, a new dimensionless number is proposed in this 

study as: 

NEW T
o

u D
Re

 

 
            (4.7) 

where Tu  is the total inlet maximum velocity of the system covering both the net and 

oscillatory flows  T o netu x u   (m s
-1

) and  is defined as the ratio of the optimal to 

user’s baffle spacing as 
opt

b bL L  , and Lb
opt

 = 1.5D. The optimal Lb/D ratio was 

identified as 1.5 by visually analysing flow patterns [78], and as 1.8 by quantitatively 

assessing the gas-liquid mass transfer coefficient in an OBR [84]. Since 1.5 has most 

commonly been reported in literature [2, 20, 22, 26, 39, 43, 57, 60, 107-109]; it was 

selected as reference in Reo
NEW

. When  is greater than one, more baffles than the 

optimal would be present, increasing the inertia forces of the fluid and vice versa. In this 

work  = 0.96 for all cases, except for runs #12 and 13 where  = 0.48 and 0.24, 

respectively. This new index (4.10) is used throughout the validation work. 

 

Figure 4.6. Power density plotted as a function of 
ox D  (left) and Reo (right) for runs 

#1 to 15 [66] 
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4.5.1 Power Dissipation Rates (εv) 

In order to assess the validity of Equation (4.5), where p(t) is assumed sinusoidal, 

values of pnet, po and δ were obtained from the simulated p(t) as: 

 Δpnet is calculated as the time-averaged value of the simulated pressure drop 

 netp p t   . 

 Phase shift is calculated by monitoring the times at which Δp(t) crosses its Δpnet 

value, e.g. every T/2 seconds, where T is the period of the oscillation. These 

times are then subtracted from the times at which velocity’s sinusoidal wave 

crosses its unet value. The resultant values are averaged among cycles 7 to 10 and 

converted from seconds into radians:        rad 2 s sT     . 

 The maximum centre-to-peak pressure drop fluctuation, Δpo, can be obtained by 

equating the first part of Equation (4.5), which includes the contributions from 

the net flow (pnet and unet), to the power density obtained from the numerical 

integration of Equation (4.4) and by solving it for Δpo, let’s call this value Δpo′. 

However, it can also be calculated by obtaining the maximum value of the cycle-

averaged Δp(t) profile and then computing Δpo = Δpmax – Δpnet, let’s call this 

value Δpo′′. 

Table 4.2 gathers all the information extracted from the simulated data for all the 

runs performed in this study. Although both the overall pressure drop and overall 

velocity in the DN15 contain a term counting for net flow, simulated results showed that 

the contributions of the net flow (pnet and unet) to power density were negligible in all 

conditions tested. This was assessed by calculating power density using Equation (4.4) 

and the simplified version of Equation (4.5) (right-hand side) for each simulated 

condition listed in Table 4.1, making use of the known variables unet,  and xo, as well 

as Δpnet, Δpo′ and δ extracted from the simulated Δp(t) profile. The relative percentage 

differences between the results provided by both equations were then computed, all of 

which were below 3.6%. However, it should be noted that the accuracy of Equation 

(4.5) is heavily dependent on the appropriate estimation of Δpo. Table 4.2 shows how 

different Δpo′ and Δpo′′ could be, reporting relative percentage differences as big as 

37%. Figure 4.7 plots the cycle-averaged pressure drop profile for run #2, along with 

the hypothetical sinusoidal profile that Δp(t) would display if  Δpo = Δpo′ and if Δpo = 
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Δpo′′. The latter presents a much larger area under its curve; it in turn reports a larger 

power density than the actual non-perfectly-sinusoidal profile. Note that it is advisable 

to act with caution when making use of Equation (4.5), as the estimation of Δpo could 

lead to erroneous results if the temporal evolution of Δp(t) is unknown. Cycle-averaged 

pressure drop profiles for all simulated conditions are presented in Appendix 6.   

Pressure drop and power dissipation results are presented in its dimensionless form, 

p
*
 and εv

*
 respectively, in Table 4.3, where 

*p p A , *

v v B  .  The scaling factors  A 

and B are defined as:  
2

net oA u x      and  
2

net oB f u x     . 

Table 4.2. Summary of results extracted from CFD simulations 

Run 

# 

Δpnet 

(Pa) 
Δpo′ (Pa) 

Δpo′′ 

(Pa) 

δ 

(rad) 

εv 
Eq. (4.4)

 

( W m
−3

) 

†
εv 

Eq. (4.5)
 

( W m
−3

) 
Reo

 
St

 
Reo

NEW
 

1 35.3 395.4 502.6 0.853 11.2 10.9 657 0.0853 1525 

2 58.6 1490.1 1907.7 0.791 88.1 87.6 1313 0.0853 2901 

3 120.0 5997.1 7409.0 0.786 709.0 708.0 2626 0.0853 5655 

4 215.9 22632.8 28169.3 0.769 5439.5 5437.5 5253 0.0853 11161 

5 458.0 83695.5 99453.0 0.621 45503.7 45499.6 10505 0.0853 22175 

6 15.1 352.7 356.6 0.936 6.4 6.2 469 0.239 1131 

7 111.6 3189.0 4071.8 0.636 353.1 352.1 2157 0.0519 4671 

8 232.5 3923.9 5365.2 0.540 293.8 291.6 1313 0.0853 4062 

9 28.3 710.2 642.1 1.002 30.9 30.6 1313 0.0853 2257 

10 54.8 1021.5 1020.4 0.716 57.7 57.2 1313 0.0853 2051 

11 27.9 638.2 600.2 0.886 28.6 28.4 1313 0.0853 1451 

12 100.0 1329.5 1328.1 0.911 50.4 48.6 938 0.239 2262 

13 171.1 2100.8 2292.0 0.803 125.0 121.9 1313 0.171 3049 

14 245.4 4415.3 4185.6 0.953 309.9 305.5 1876 0.119 4229 

15 248.2 5907.2 7578.9 0.768 714.9 710.4 2626 0.0853 5803 
† 

Calculated with the simplified version of Equation (4.5) (right-hand side) and Δpo = Δpo′ 

Table 4.3. Summary of results extracted from CFD simulations in dimensionless form 

Run # Δpnet
*
 Δpo′

*
 εv

*
 A B

 

1 7.10 79.63 4.51 5.0 2.5 

2 3.26 82.87 4.90 18.0 18.0 

3 1.76 87.80 5.19 68.3 136.6 

4 0.81 85.05 5.11 266.1 1064.5 

5 0.44 79.68 5.41 1050.5 8403.6 

6 5.51 129.03 2.33 2.7 2.7 

7 2.39 68.41 7.58 46.6 46.6 

8 9.24 155.87 11.67 25.2 25.2 

9 2.02 50.78 2.21 14.0 14.0 
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10 4.31 80.34 4.54 12.7 12.7 

11 3.10 70.98 3.18 9.0 9.0 

12 9.14 121.59 2.31 10.9 21.9 

13 8.61 105.77 3.15 19.9 39.7 

14 6.42 115.56 4.06 38.2 76.4 

15 3.45 82.13 4.97 71.9 143.9 

 

 

Figure 4.7. Cycle-averaged Δp(t) and its hypothetical sinusoidal form, estimating Δpo 

as Δpo′ and Δpo′′, for run #2 [66] 

4.5.2 Validation of Quasi-Steady Flow Model (QSM) 

Following the described procedures, power density was calculated using the QSM for 

all conditions listed in Table 4.1 and compared with those predicted by CFD simulation 

as shown in Figure 4.8, where the power density is plotted against Reo
NEW

. It is clearly 

observed that power density values predicted by the QSM for every condition were 

consistently higher than the simulated data; reporting an averaged absolute error (AAE) 

of 333% and 218% for CD = 0.6 and CD = 0.7, respectively. This over-estimation is 

coming from two sources: 
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 The orifice discharge coefficient (CD). A value of 0.6 ≤ CD ≤ 0.7 has commonly 

been used for the QSM in previous work [32, 84, 107, 115-118]; this is typically 

true for a standard orifice made of a sharp-edged thin plate. However, DN15 

have wall baffles of smoother curvature as shown in Figure 4.1; hence CD should 

have a higher value [145]. 

 Jealous and Johnson [115] modelled frictional losses as the total gain in kinetic 

energy due to baffle’s constriction. While this is true for a single orifice, 

consecutive resistances (baffles) will not necessarily increment kinetic energy 

linearly. Jealous and Johnson made the assumption that the effect of consecutive 

orifice resistances on pressure drop was linear; there was no pressure recovery 

because orifices were so close to one another that no calming section was 

available. COBRs contain orifices of smooth curvature and optimized baffle 

spacing, some degree of recovery would then be expected; the effect of 

consecutive baffles on pressure drop should thus be of a power law relationship. 

This study found that by re-adjusting the value of CD better agreement could be 

obtained between the power dissipation rates predicted by the QSM and that obtained 

from CFD simulations. However, the best fit arrives when CD = 1.3, this is neither 

physically or practically feasible as CD must have a value within a 0 – 1 range. As a 

result, an exponent is added to the number-of-baffles term in the QSM, and the best fits 

are obtained (as shown in Figure 4.9) when CD = 0.8 and n is replaced by n
0.7

, proving 

an AAE of 12%, as: 

   
 

30.7 2

2

2 1 1

3

o

v

D

n x

C V A

  





           (4.8) 

In summary, the existing QSM returned higher power dissipation rates due to some 

of the geometric parameters of its formulation not being applicable to modern 

oscillatory baffled devices; this can be corrected by applying a power law dependency 

with n and an appropriate CD value to account for smooth-edged baffles, as show in 

Figure 4.8. In doing so, not only have the QSM been validated, but also done for a much 

wider application range than previously outlined. Furthermore, it can also be stated that 

this newly revised QSM is valid for both batch and continuous operations, as the 

contribution of net flow to power dissipation rates is negligible (see Table 4.2). 
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Figure 4.8. Simulated and QSM predicted power density as a function of Reo
NEW

 for 

runs #1 to #15 [66] 

 

Figure 4.9. AAE (%) as a function of CD and n power law exponent; minimum reached 

at CD = 0.8 and x = 0.7 [66] 

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

5.E+02 5.E+03 5.E+04

ε v
( W

 m
-3

)

Reo
NEW

CFD

QSM (original)

QSM (revised) [CD=0.8 ; n0.7]

[CD=0.6]



 

52 

4.5.3 Validation of Eddy Enhancement Model (EEM) 

Power density from the EEM is calculated using Equation (4.2) taking a mixing length 

of 7 mm, as suggested in previous work [116], and then compared in Figure 4.10 with 

the power density directly obtained from CFD simulations. The estimations of power 

density using the EEM show a better overall fit with the simulated data (AAE = 58%). 

However, the accuracy of EEM can further be improved by implementing the same 

power law dependency proposed earlier (n
0.7

) to the number of baffles in the system: 

 

0.7 3 21.5 o
v

n x

V A





            (4.9) 

reducing the averaged absolute error to 42%. Additionally, the accuracy of the model 

can significantly be improved by properly estimating the “mixing length”, which is 

dependent on operational and geometric characteristics. Further discussion on this very 

“mixing length” is taken-up in the next sub-section. Along with εv values obtained from 

Equation (4.2) and those obtained from CFD simulations, Figure 4.10 displays power 

dissipation rates obtained from Equation (4.9), inputting estimated “mixing length” 

values as proposed in Section 4.5.3.1. In summary, not only has the EEM been 

validated, but also done so for a much wider application range than previously outlined. 

Again, due to the minimal effects of net flow on power density, our validation of the 

EEM is applicable for both batch and continuous operations.  
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Figure 4.10. Simulated and EEM predicted power density as a function of Reo
NEW

 for 

runs #1 to #15 [66] 

4.5.3.1 Discussion on Mixing Length 

As aforementioned, the EEM bases the prediction of frictional pressure drop on the 

acoustic resistance of a single orifice plate [116] as  
0.5

3friction

op u   , arguing that 

kinematic viscosity (υ) can be substituted by an eddy kinematic viscosity, 2

e  , at 

high velocities. In this way, the “mixing length”    variable was introduced in EEM; 

 is however a rather loose term, as the former viscosity often refers to macro scales, 

while mixing length is associated with micro scale. In turbulent flows, large eddies are 

generated and dissipated into small ones, those further dissipate into smaller eddies and 

so on, i.e. energy cascading. There are generally three turbulent length scales: 

Kolmogorov scale, Taylor scale and integral length scale. The latter is comparable to 

the characteristic length scale of any given system, and sometimes referred to as the 

turbulent integral length scale  
3 2

o
kl


  where k is turbulent kinetic energy and ε the 

turbulent dissipation rate of this kinetic energy. Turbulent integral length scale denotes 

the distance over which fluid elements are moved due to turbulent eddies; the 
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determination of such a length scale for any reactor system is not a trivial matter, a good 

example of this is the work by Ni et al. where a sub-grid turbulent model was employed 

[55]. It is unknown whether the “mixing length” in Equation (4.2) refers to the turbulent 

integral length scale; however, Baird and Stonestreet [116] referred to it as “the average 

distance of travel of turbulent eddies” and gave it a value of 7 mm, which is within the 

same scale as the characteristic length of the system. Hence, thinking of it as the 

turbulent integral length scale seems appropriate. 

By equating Equation (4.9) to the power density obtained from simulated results 

using Equation (4.4), the “mixing length” can directly be calculated for all the simulated 

conditions; by doing so, the dependency of the “mixing length” on both geometric and 

operational parameters can be examined as shown in Figure 4.11. Clearly, baffle 

diameter and oscillation amplitude are the key parameters affecting “mixing length”, 

while the rest have little impact. The influence of amplitude on “mixing length” 

discovered in our work agrees with the findings reported by Reis et al. [37], in which an 

increment in amplitude (at constant frequency) resulted essentially in an increment in 

mixing length, thus increasing mixing in the axial direction and reducing it radially. 

Similarly, when Db is small, formed eddies occupy more radial space enhancing radial 

mixing and suspension of solids (if present), while a bigger Db leads eddies to occupy 

more axial space. The values of “mixing length” found in our work range from 7.6 to 

22.1 mm, agreeing with the concept of “mixing length”, which cannot be greater than Lb 

(Lb = 23.5 mm for all runs except for #10 and 11). Baffle spacing set the maximum 

value mixing length could achieve for a given system, however Lb alone does not have 

an impact on mixing length if the rest of operating and geometric parameters are kept 

constant. It is the combination of the oscillatory amplitude and the baffle orifice 

diameter that determines the scale of the mixing length. 

A good rough estimation for “mixing length” is  = xo, which reduced the AAE 

reported down to 18%. This study concludes that the “mixing length” is not a constant 

for a given device and should appropriately be estimated for each individual run. Figure 

4.12 plots the “mixing length” as a function of the dimensionless group St
*
, which 

captures the direct and inverse relationship of “mixing length” with xo and Db 

respectively, where  * b

o

D
St

x
  is the revised Strouhal number proposed by Ni and 

Gough [101]. Hence, an empirical correlation for the estimation of “mixing length” is 
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proposed:  
0.57

*0.002 St


 . This correlation for the estimation of , as opposed to a 

borrowed value of 7 mm, significantly improves the accuracy of EEM, reducing the 

averaged absolute error from 42% to 4%. 

 

Figure 4.11. Mixing length change with f, xo, Db, Lb and Q [66] 
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Figure 4.12. Mixing length as a function of St
*
 for runs #1 to 15 [66] 

4.5.3.2 Discussion on Ki 

Ki is a geometric factor in Equation (4.3) that corrects the assumption that the flow 

behaves as a central plug of baffle diameter [116], approaching one as baffle spacing 

decreases. In order to understand the physics behind this factor, Ki was directly be 

calculated from Equation (4.3) by equating it to the simulated phase shift values and 

utilising the calculated mixing length values reported in the previous sub-section. The 

calculated Ki values ranged from 0 to 2, when Ki should never be greater than one. This 

was solved by implementing a power law dependency with n as  1 0.7tan 3iLK n   

and solving for Ki. Figure 4.13 shows the dependency of Ki on all parameters listed in 

Table 4.1, displaying a non-existing dependency on flow rate and baffle diameter. 

However, not only its expected inversely proportional relationship with baffle spacing is 

not strictly linear, but it also shows a rather complex dependency with amplitude, 

especially at a 100 ml min
-1

 flow rate, and an inversely proportional with oscillatory 

frequency.  Additionally, a Ki value of 0.9 as suggested by Braid and Stonestreet [116] 

was not obtained for any of the simulated conditions. These findings suggest that this 

geometric factor is merely a fitting coefficient, thus questioning the validity of Equation 

(4.3). 
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Figure 4.13. Ki change with f, xo, Db, Lb and Q 
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This work, for the first time, provides CFD validations to the two existing models for 
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dependency on the number-of-baffles term (n
x
) and an appropriate CD, the QSM was 

subsequently validated for a much wider application range than previously outlined. 

The EEM generally provides better predictions of power density for the conditions 

tested; however, its accuracy can substantially be improved by making use of the same 

power law dependency on n and an empirical correlation of estimating EEM’s “mixing 

length” that is proposed in this work; the EEM has hence been validated for a much 

wider application range than originally stated. This work has also demonstrated that 

both the QSM and EEM are applicable for continuous operations, as net flow 

contribution to power dissipation rates is negligible in oscillatory baffled reactors. In 

addition, both revised models consistently predict similar power densities for every 

case, both presenting a high degree of agreement with our CFD simulations and 

reporting small AAE values for the wide range of geometric and operating conditions 

tested. This suggests that these two models can be used interchangeably with high 

confidence.  
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Chapter 5        Characterisation of Pressure Drop & Power 

Dissipation in Continuous OBRs (COBRs) 

5.1 Introduction 

As aforementioned in Section 2.5, previous studies [14, 121] and confidential industrial 

trials revealed dampening in the oscillatory velocity experienced by the liquid phase, 

observed with the use of tracers, and by solid particles as they travel downstream in 

oscillatory baffled devices. Occasionally, this phenomenon resulted in sudden settling 

of solids, having a tremendous impact on the control of processes such as crystallisation 

of pharmaceuticals because of its effect on solids’ suspension, mixing efficiency and the 

quality of the product, i.e. crystals. Hence, understanding the potential causes of 

oscillation dampening and energy losses in these types of reactors is essential so 

strategies can be proposed to avoid such events. Little or no research has been 

undertaken in this area; the only exception was the early work of Brunold et al. [78] 

who reported an increment in overall energy dissipation with an increase in the number 

of baffles in the systems, and the work of Mackley et al. [120] who for the first time 

claimed that the phase shift between the velocity and pressure drop wave forms could 

lead to significant reduction of the system’s power. However, a detailed analysis of the 

evolution of energy dissipation across the lengths of the device has never been reported. 

The purpose of the  research presented hereunder is to tackle this knowledge gap.  

5.2 Methodology 

This study was also undertaken in the standard NiTech DN15 COBR reactor, 

utilising the data obtained during the simulation of all the cases presented in Chapter 4, 

see Table 4.1. The effects of different operational and geometric parameters on the 

power dissipation rates and phase shift in COBR are studied by analysing the results 

reported in Table 4.2. Additionally, temporal pressure drop profiles across multiple 

longitudinal sections of the devices are extracted and the evolution of power density, εv, 

the maximum centre-to-peak pressure drop fluctuation, po, and phase shift, δ, along the 

length of the device are examined for a wide range of operational and geometric 

conditions. For this purpose, the area-weighted averaged static pressure was monitored 

at cross-sectional planes spaced 23.5 mm from each other, as shown in Figure 5.1. This 

allowed for the analysis of 32 temporal pressure drop profiles, one per baffle 

constriction when LB = 23.5 mm, along the modelled 0.752 m long straight section; each 
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profile was computed as pi(t) = pi-1(t) – pi(t), where i is the index of the section under 

evaluation ranging from 1 to 32, see Figure 5.1. As mentioned earlier in Section 4.4, the 

equivalent of the first two and last two baffle constrictions, when LB = 23.5 mm, were 

discarded in order to minimize the effect of the open boundary conditions at the inlet 

and outlet. Hence, the results obtained for p1(t), p2(t), p31(t) and p32(t) are not 

presented. Each simulated p(t) profile was utilised to calculate power density by 

numerically integrating Equation (4.4), and for the calculation of pnet, po and δ as 

previously described in Section 4.5.1 (po = Δpo′). 

 

Figure 5.1. Scheme for the extraction of temporal pressure drop profiles  

The contribution of net flow, i.e. net inlet velocity and net pressure drop, to power 

density was computed by comparing the results from Equation (4.4) and the simplified 

version of Equation (4.5); the relative percentage differences between both results were 

consistently below 3.6%. Similarly, by comparing the results of Δpnet and Δpo′ presented 

in Table 4.2, it is seen that the former is consistently less than 8.9% of the latter, Δpnet < 

0.089Δpo′, representing a rather negligible contribution to the pressure drop across any 

section. Hence, only the evolution of εv, po and δ along the length of the device are 

analysed in this study. 

An additional simulation was run in order to analyse the change of these variables with 

length in compressible flow in a COBR. This simulation was performed under the same 

operating conditions used for run #5. Air (μ = 1.7894∙10
-5

 kg m
-1

 s
-1

) was selected as the 

working fluid and its density in Equations (3.1) and (3.2) is solved as per the ideal gas 

law: 

pM

RT
               (5.1) 

where R is the ideal gas constant (8.3144598 kg m
2
 s

−2
 K

−1
 mol

−1
), M the molar mass 

(kg mol
-1

) and T temperature (K). This simulation was performed as per the same 

Δp1(t) Δp2(t) Δp3(t) Δp30(t) Δp31(t) Δp32(t)

p0(t) p1(t) p2(t) p3(t) p29(t) p30(t) p31(t) p32(t)
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framework earlier described in Sections 3.2 – 3.4 with the addition of a second order 

upwind scheme, utilised for the spatial discretisation of density.  

5.3 Results & Discussion 

5.3.1 The Effect of Operational and Geometric parameters on Power 

Density and Phase Shift 

The power dissipation rates reported in Table 4.2 are hereby presented as a function of 

the different operational and geometrical parameters analysed in this study, see Table 

4.1. Figure 5.2 unveils a power law dependency on all these parameters, with the 

exception of flow rate. Both oscillatory amplitude and frequency show a directly 

proportional power law relationship, as an increase in either of these parameters results 

in higher power density required by the system; oscillatory frequency plays the most 

dominant role, with a third order power law. These are expected.  

Both baffle diameter and baffle spacing exhibit an inversely proportional relationship 

with power density, i.e. an increase in the number of baffle constrictions in the system 

and a reduction in the diameter of baffle constrictions translate into a higher power 

density requirement, however, the change experienced in εv with Lb is substantially 

minor.  

While flow rate had a directly proportional impact on εv, its effect seems minimal 

and practically negligible for the conditions tested in comparison with the rest of the 

parameters under evaluation. Based on the above discussion, the following function can 

be deduced:  1, ,o bf f x D
 . 

While power density indicates the amount of energy required by the system to 

overcome all the geometric and operational constraints of the flow, it also denotes the 

rate at which the energy applied to the system is being dissipated into the fluid, thereby 

translating into fluid movement. This implies that the higher the power density, the 

higher is the energy gained and experienced by the fluid. 

In a similar manner, the dependency of phase shift on different operational and 

geometrical parameters was also analysed, as presented in Figure 5.3. Baffle diameter 

was revealed as the parameter with the largest influence on δ, displaying a positive 

proportional linear relationship. Oscillatory frequency and amplitude display an inverse 
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linear relationship with phase shift, the former showing a slightly larger impact on δ 

than the latter. The dependency on baffle spacing is not strictly linear and its impact 

seems to be rather negligible. For the conditions tested, flow rate also displayed a 

minimal impact on phase shift, much like the case of power density. Hence, the largest 

influence of operational and geometric parameters in phase shift can be summarised as 

 1 1, ,b of D f x   . 

It should be noted how all the parameters under this study have the inverse effect on 

power density and phase shift. For example, an increase in oscillatory frequency will 

result in a smaller phase shift and a larger power dissipation rate. On the contrary, baffle 

constrictions of smaller diameter will lead to a smaller phase shift value and a higher 

power density. Therefore, it can be concluded that power dissipation rates and phase 

shift values have an inverse relationship, i.e.  1f   . These findings significantly 

help in understanding the physical implications of δ, its relationship with εv and its 

overall impact on the flow in COBRs.  

Phase shift accounts for the temporal separation between the inlet velocity and 

pressure drop sinusoidal wave forms. This implies that if at time = t s, pressure drop 

reaches a value of p(t) = po, then at time = (t + δ) s the inlet velocity will be uinlet(t) = 

ωxo. Therefore, δ is the time taken for the energy generated due to pressure drop to be 

converted into fluid’s kinetic energy. If δ decreases, the rate at which energy generated 

by pressure drop dissipates into the fluid as kinetic energy increases, resulting in higher 

power density. On the contrary, larger phase shift values imply lower power dissipation 

rates. Decrements and increments in phase shift are qualitatively represented in Figure 

5.4, where the inlet velocity sinusoidal wave form is also displayed and a random value 

of δ = (π/2) rad is taken as reference. 
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Figure 5.2. Power density change with f, xo, Db, Lb and Q 
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Figure 5.3. Phase shift change with f, xo, Db, Lb and Q 
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Figure 5.4. Scheme of pressure drop wave forms illustrating a decrement (left) and an 

increment (right) in phase shift 

5.3.2 Evolution of Power Density, Pressure Drop and Phase Shift with 

Length 

Values of power dissipation rate, maximum centre-to-peak pressure drop fluctuation 

and phase shift obtained for consecutive sections (23.5 mm long each) of the reactor are 

plotted in Figure 5.5, displaying the evolution of these variables with length for all the 

conditions listed in Table 4.1. 

It is observed that the three analysed variables (εv, po and δ) remain practically 

constant along the length of the reactor for all the conditions under evaluation, see runs 

#1 – 9 and #12 – 15, with the exception of runs #10 and 11. Figure 5.6 shows the power 

density calculated from pressure drop profiles over a total length of 0.658 m and the 

section-averaged εv are plotted against Reo
NEW

.  
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Figure 5.5. Power density, maximum centre-to-peak pressure drop fluctuation and 

phase shift as a function of reactor’s length 
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Figure 5.5. (continuation) Power density, maximum centre-to-peak pressure drop 

fluctuation and phase shift as a function of reactor’s length 
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Figure 5.5. (continuation) Power density, maximum centre-to-peak pressure drop 

fluctuation and phase shift as a function of reactor’s length 
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Figure 5.5. (continuation) Power density, maximum centre-to-peak pressure drop 

fluctuation and phase shift as a function of reactor’s length 
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Figure 5.5. (continuation) Power density, maximum centre-to-peak pressure drop 

fluctuation and phase shift as a function of reactor’s length 
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Figure 5.5. (continuation) Power density, maximum centre-to-peak pressure drop 

fluctuation and phase shift as a function of reactor’s length 
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Figure 5.5. (continuation) Power density, maximum centre-to-peak pressure drop 

fluctuation and phase shift as a function of reactor’s length 
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Figure 5.5. (continuation) Power density, maximum centre-to-peak pressure drop 

fluctuation and phase shift as a function of reactor’s length 
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When looking closely at the geometric domain simulated in run #10, Figure 4.3, it is 

observed that the domain can be divided into thirty-two 23.5 mm long sections, sixteen 

of which contain a baffle constriction while the rest do not; sections with baffle 

constrictions are alternated with no baffles. This geometric feature results in two 

distinguishable sets of values for each of the three variables under evaluation. As 

expected, the power dissipation rates reported at the sections containing a baffle 

constriction were of higher magnitude, while power density values for the non-baffled 

sections were reported as negative. Non-baffled sections have also displayed four times 

higher values in δ and approximately a half in po. Figure 5.7 is the velocity vector map 

during the backward pulse and the stroke of change of direction of oscillation. It is 

observed how eddies formed during the backward stroke are visibly detached from the 

edge of the baffle constriction and then dissipate into the bulk fluid, at least to a certain 

degree, before colliding with eddies formed during the forward-stroke. Therefore, at the 

time of interaction between eddies formed at opposite strokes, part of their energy has 

already been dissipated into the bulk fluid. This behaviour results in lower mixing 

intensity with the region between two baffle constrictions.  

This very phenomenon is further accentuated with an increase in distance between 

constrictions, as simulated in run #11. This geometry comprises three 23.5 mm long 

sections between every two baffle constrictions, containing a total of only eight 

constrictions (instead of thirty-two) over the total length of the reactor, see Figure 4.3. 

Eddies generated during the forward or backward strokes are detached from the edge of 

the baffle walls and ejected into the bulk fluid, where they fully dissipate during the 

change of direction strokes without interacting with each other, i.e. the eddies are not 

connected or there is no eddy current. This leads to non-mixing within the region 

between two baffle constrictions, generating regions of local stalling; this phenomenon 

is noticeably observed in Figure 5.8. The cycle-averaged pressure drop profiles obtained 

over baffle constrictions and non-baffled sections for runs #10 and 11 are presented in 

Figure 5.9. It should be noted how the sudden increase in phase shift within the sections 

containing no baffle constriction leads to almost reversed pressure drop profiles in 

comparison to those extracted across baffle constrictions. 



 

 

7
5 

 

Figure 5.7. Velocity vector map of sections 15 – 19 at strokes 3 and 4 of simulated cycle 10 for run #10 (Q = 50ml min
-1

, f = 1Hz, xo = 14mm) 
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Figure 5.8. Velocity vector map of sections 13 – 21 at strokes 3 and 4 of simulated cycle 10 for run #11 (Q = 50ml min
-1

, f = 1Hz, xo = 14mm) 
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Figure 5.9. Cycle-averaged pressure drop profiles measured at different sections for 

runs #10 and 11 (Q = 50ml min
-1

, f = 1Hz, xo = 14mm) 

While decrement in power density denotes less amount of energy being gained by the 

fluid, negative εv implies that the fluid is undergoing energy loss. The findings obtained 
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which translates into regions of lower energy due to pressure drop, ultimately resulting 

in fluid zones with lower kinetic energy. 

However, it is worth noting that while the three variables under study present 

different sets of values for run #10 and 11, the values within each set remain constant 

with length or revolve around a nearly constant value. Therefore, there are no signs of 

potential energy losses undergone by the fluid as it moves downstream for these runs. 

Velocity vector maps at strokes 1 – 4 of oscillatory cycle 10 for all simulated conditions 

are presented in Appendix 7. 

5.3.3 Evolution of Power Density, Pressure Drop and Phase Shift with 

Length in Compressible Flow in a COBR 
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moves downstream, an additional case with compressible air flow in a COBR was 

simulated. Tables 5.1 and 5.2 list the simulation conditions for this case and the 

obtained εv, pnet, po and δ values extracted from the Δp(t) profile measure over a total 

length of 0.658 m, respectively. Analogous to the study presented in the previous 
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section, the evolution of εv, po and δ with length along the device is shown in Figure 

5.10. 

Table 5.1. Conditions under which compressible flow was simulated 

Q (ml min
-1

) f (Hz) xo (mm) Db (mm) Lb (mm) Ren Reo St 

50 8 14 7 23.5 4.6 685 0.0853 

 

Table 5.2. Summary of results extracted from CFD simulated compressible flow 

Δpnet (Pa) Δpo (Pa) δ (rad) εv ( W m
−3

) 

1.5 150.2 1.09 46.8 

 

 

  

Figure 5.10. Power density, maximum centre-to-peak pressure drop fluctuation and 

phase shift as a function of reactor’s length for compressible flow 
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are no signs of potential energy losses as the fluid moves downstream the reactor, 

reporting nearly constant power density and phase shift values with length. While the 

maximum centre-to-peak pressure drop fluctuation seemed to vary slightly, it visually 

revolved around a rather constant value; it should be noted that even very small 

variations in δ result in larger changes of  po, as the latter is calculated from Equation 

(4.5). 

Additionally, the maximum and volume-weighted averaged Mach numbers were 

monitored with time. The cycle-averaged Mach number and Δp(t) profile measure over 

a total length of 0.658 m are shown in Figure 5.11, the former was consistently reported 

below 0.016. These findings confirm that even for a fully compressible fluid, the flow 

always remains within the subsonic range (Mach < 0.8) for all the conditions tested in 

this study. Hence, the possibility of energy losses due to local compression of the fluid 

in compressible flow in a COBR is discarded; this includes the potential compressibility 

of liquid flow due to the presence of air bubbles.  

 

Figure 5.11. Cycle-averaged Mach number (left) and pressure drop profiles (right) 

measured over a total length of 0.658 m for compressible flow 

5.4 Conclusions  

The current work presented a detailed analysis on the effect of a wide range of 
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analysis also revealed an inversely proportional relationship between power density and 

phase shift, providing a physical explanation for this dependency. Further examination 

of the evolution of power density, pressure drop and phase shift along the length of the 
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losses. This conclusion was further reinforced by evaluating compressible flow under 

the most adverse conditions simulated in this study; this evaluation also displayed no 

signs of energy losses across the length of the device and reporting Mach numbers 

within the subsonic range. These findings discredit the possibility of energy losses due 

to the presence of air bubbles which could add a certain degree of compressibility to a 

liquid phase. 

Additionally, geometries with larger baffle spacing proved to promote eddy 

shedding, preventing any connectivity or interaction of vortexes formed during the 

forward and backward strokes. This results in local negative power density values, i.e. 

local energy losses experienced by the fluid, a sudden decrease in pressure drop and an 

increase in phase shift. 
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Chapter 6        The Effect of Geometric Events on Pressure 

Drop & Power Dissipation in COBRs 

6.1 Introduction 

All the geometrical conditions described in Section 3.1 are symmetrical along the axial 

direction, i.e. periodically repeatable, this chapter deals with cases where non-

symmetrical geometry is involved. Examples of such geometric events include small 

joints without baffle constriction that connect two straight sections; a reduction in the 

baffle constriction cross-sectional area which may be experienced due to fouling around 

a baffle’s wall; and bend joints commonly used to connect straight tubes.  

This work uses some imaginary geometries with irregularities and geometric events 

that break the symmetry of the system to assess their impact on power dissipation rates 

and pressure drop profiles in COBRs. 

6.2 Methodology 

The standard NiTech DN15 COBR reactor was used again as the target device of this 

study. However, geometric modifications were made in order to implement the 

following geometric events: sections with a missing baffle constriction, baffle 

constrictions with a reduced cross-sectional area and bend joints. Table 6.1 lists all the 

geometries modelled and the operating conditions under which simulations were run. 

Figure 6.1 shows the geometric dimensions of the DN15 bend joint used for the 

connection of two straight sections. In the same manner as described in Section 5.2, 

temporal pressure drop profiles were monitored across multiple longitudinal sections of 

the devices, each of them 23.5 mm long, refer to Figure 5.1. In order to minimize the 

effect of the open boundary conditions, the first two and last two 23.5 mm long sections 

were discarded. This allowed for the extraction of a pressure drop profile over the 

remaining 0.658m of the device as p(t) = p2(t) – p30(t), as well as the individual 

pressure drop profile of each longitudinal section as pi(t) = pi-1(t) – pi(t). The procedure 

for the calculation of εv, pnet, po and δ from each pressure drop profile was as earlier 

described in Sections 4.4 and 4.5.  
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Table 6.1. List of conditions simulated containing a geometric event 

Run # Event 
Event 

section 

Q          

(ml min
-1

) 

f 

(Hz) 

xo 

(mm) 
Ren Reo St 

16 1B (baffle) miss 16 50 1 14 70.5 1313 0.0853 

17 2B miss: consecutive 16 – 17 50 1 14 70.5 1313 0.0853 

18 3B miss: consecutive 16 – 18 50 1 14 70.5 1313 0.0853 

19 2B miss: separate 7, 16 50 1 14 70.5 1313 0.0853 

20 3B miss: separate 7, 16, 25 50 1 14 70.5 1313 0.0853 

21 1B Db = 5 16 50 1 14 70.5 1313 0.0853 

22 2B Db = 5: consecutive 16 – 17 50 1 14 70.5 1313 0.0853 

23 3B Db = 5: consecutive 16 – 18 50 1 14 70.5 1313 0.0853 

24 2B Db = 5: separate 7, 16 50 1 14 70.5 1313 0.0853 

25 3B Db = 5: separate 7, 16, 25 50 1 14 70.5 1313 0.0853 

26 Bend joint 17 – 23  50 1 14 70.5 1313 0.0853 

27 Bend joint 17 – 23 100 2 7 141 1313 0.171 

 

 

Figure 6.1. Dimensions of the bend joint connecting two NiTech DN15 straight sections 

used in CFD simulations; all dimensions are in mm  

Figure 6.2 shows all the different geometries modelled during this study. Sections 

containing either missing baffles or baffle constrictions with a reduced cross-sectional 

area are distributed in such a way that the effect of multiple events is analysed when 

these are set in consecutive and in alterative manner. For better visualisation, baffle 

17.5

θ = (π/16) 
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constrictions with a reduced cross-sectional (Db = 5 mm) were framed with a dotted 

square. 

Runs #26 and 27 comprise two straight DN15 sections containing sixteen baffle 

constrictions each, both connected with a bend joint as displayed in Figure 6.3, adding 

up to a total of thirty-nine baffle constrictions. A scheme for the extraction of temporal 

pressure drop profiles for these runs is also presented in Figure 6.3. Results from 

individual Δp(t) profiles for each of the thirty-nine baffle constrictions are extracted and 

presented in Section 6.3.3, with the first two and last two baffle constrictions being 

discarded. The overall temporal pressure drop profile extracted over a total of twenty-

eight baffle constrictions was calculated as p(t) = p5(t) – p33(t); this comprises eleven 

baffle constrictions from the first straight section, i.e. 0.2585 m, seven from the bend 

joint, i.e. 0.1662 m , and ten from the second straight section, i.e. 0.235 m, adding up a 

total of  0.6597 m.  

Due to the geometric complexity of runs #26 and 27, the mesh was automatically 

generated using the commercial application ANSYS
®
 Meshing. The grid contained only 

tetrahedral elements and had a resolution of 120 k nodes per baffle constriction, which 

is even higher than the 117 k nodes from the structured hexahedral mesh used for runs 

#1 – 25; this was reflected by the number of tetrahedral elements that had to be 

generated: 418 k elements per baffle constriction as opposed to the 113 k hexahedral 

elements from the mesh used for runs #1 – 25. 
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Figure 6.2. Geometries employed for runs #16 – 27 
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Figure 6.2. (continuation) Geometries employed for runs #16 – 27; the highlighting cells are related to reduced baffle restrictions 
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Figure 6.3. Geometry containing a bend joint used for runs #26 & 27 (top) and scheme for the extraction of temporal pressure drop profiles (bottom) 
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6.3 Results & Discussion 

6.3.1 The Effect of Missing Baffles 

Missing baffles result in lower power dissipation rates and pressure drop fluctuations 

together with larger phase shift values, as anticipated from the findings extracted from 

run#10 and 11. Table 6.2 displays the information extracted from the simulated Δp(t) 

profiles over a total length of 0.658m for runs #16 – 20; cycle-averaged pressure drop 

profiles for all simulated conditions are presented in Appendix 6. Results from run #2 

are also displayed for comparison, in order to quantify the percentage difference in εv, 

po and δ caused by different arrangements of the missing baffle sections. The impact 

of missing baffles on these variables is accumulative, as it increases with the number of 

missing baffles; however, it should be noted that consecutive sections with missing 

baffles have a larger impact as opposed to when they are distributed along the entire 

length of the device. Thus, both the number and length of sections with missing baffles 

contribute to potential energy losses in COBR. 

Table 6.2. Summary of results extracted from CFD simulations for runs #16 – 20 

Run 

# 

Δpnet 

(Pa) 

Δpo/L 

(Pa m
-1

) 

Δpo/L 

diff. (%) 

δ 

(rad) 

δ diff. 

(%) 

εv            

(W m
−3

) 

εv diff. 

(%) 
Reo St 

2 58.6 2264.6 – 0.791 – 88.1 – 1313 0.0853 

16 44.1 2262.0 -0.1 0.798 0.9 86.5 -1.9 1313 0.0853 

17 39.9 2212.0 -2.3 0.814 2.9 82.4 -6.5 1313 0.0853 

18 36.9 2154.4 -4.9 0.824 4.2 78.7 -10.6 1313 0.0853 

19 42.5 2241.6 -1.0 0.819 3.6 83.0 -5.8 1313 0.0853 

20 41.3 2226.7 -1.7 0.823 4.0 81.5 -7.5 1313 0.0853 

 

The evolution of power dissipation rate, the maximum centre-to-peak pressure drop 

fluctuation and phase shift with length for runs #16 – 20 is presented in Figure 6.4, 

which displays results obtained for consecutive 23.5 mm long sections of the reactor. 

These variables undergo minimal changes with length; the only exception being the 

results obtained within the missing baffle sections and their neighbouring sections in 

both directions. Run #16 clearly shows a drastic decrease in εv within the missing baffle 

section, reporting a negative power dissipation rate; this is also reflected by a decrease 

in po and a large increase in δ within this section.  
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Figure 6.4. Power density, maximum centre-to-peak pressure drop fluctuation and 

phase shift as a function of reactor’s length for runs #16 – 20 
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Figure 6.4. (continuation) Power density, maximum centre-to-peak pressure drop 

fluctuation and phase shift as a function of reactor’s length for runs #16 – 20 
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Figure 6.4. (continuation) Power density, maximum centre-to-peak pressure drop 

fluctuation and phase shift as a function of reactor’s length for runs #16 – 20 

While eddies formed during the forward and backward strokes within every baffle-cell 

are detached from the edge of the baffle constriction, eddy shedding leading to further 

dissipation into the bulk fluid only takes place within the missing baffle section; this is 

visually observed in Figure 6.5. Hence, the energy carried by eddies decreases before 

they interact and collide with those formed in the previous oscillatory stroke. This 

translates into local energy losses experienced by the fluid within these sections. Figure 

6.7 demonstrates how the increment in phase shift results in an almost reversed pressure 

drop profiles in comparison with those extracted across sections with baffle 

constrictions. Furthermore, it is observed that the maximum centre-to-peak pressure 

drop fluctuation undergoes an increase during the forward stroke of the oscillation at the 

following section (17) contiguous to the missing baffle section (16). Similarly, an 

increment in po during the backward stroke at the preceding section is also observed. 

This happens as a result of local fluid stalling within the missing baffle section; thus, a 

higher pressure drop is required to move this fluid element through the next baffle 

constriction during the forward stroke and through the previous baffle constriction 

during the backward stroke. . This phenomenon is reflected by the higher power  
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Figure 6.5. Velocity vector map of sections 14 – 18 at strokes 3 and 4 of simulated cycle 10 for run #16 (Q = 50ml min
-1

, f = 1Hz, xo = 14mm) 
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Figure 6.6. Velocity vector map of sections 14 – 19 at strokes 3 and 4 of simulated cycle 10 for run #17 (Q = 50ml min
-1

, f = 1Hz, xo = 14mm) 
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during the backward stroke backward stroke. This phenomenon is reflected by the 

higher power dissipation rates reported within the adjacent sections (15 and 17), thus 

showing slightly lower phase shift values. 

Results obtained for missing baffle sections distributed along the entire length of the 

device are very similar to those from run #16; every missing baffle section reports very 

similar εv, po and δ values. On the other hand, as the number of consecutive missing 

baffles increases, i.e. increase in the length of the missing baffle section, the region 

where local energy losses occur also increases. This is shown in Figure 6.6. Power 

dissipation rates and phase shift values obtained within longer missing baffle sections 

remain relatively constant; however, small changes in these variables led to a slightly 

more accentuated variation in po values. Additionally, in runs #17 and 18, regions 

experiencing a local increase in power density only occur at the single section preceding 

and following the set of consecutive missing baffles. 

 

Figure 6.7. Cycle-averaged pressure drop profiles measured at different sections for 

runs #16 and 17 (Q = 50ml min
-1

, f = 1Hz, xo = 14mm) 

It should be noted that the local decrement in power dissipation rates reported for 

sections missing a baffle constriction are much higher than the increment observed in 

the adjacent sections. Hence, the overall effect of these geometric events in COBRs is a 

reduction in power density. As the region experiencing local fluid energy losses 

increases, the overall impact on power density in a COBR also increases as reported 

earlier in Table 6.2. Results show that consecutive missing baffles present a larger 

impact on the overall εv of the system, leading to greater energy losses. Therefore, it is 

preferable to have multiple shorter sections missing baffle constrictions along the entire 

length of the reactor than having a long single section without the presence of baffles.  
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6.3.2 The Effect of Baffle Constrictions with Reduced Cross-sectional 

Area 

As aforementioned in Section 5.3.1, power density in COBRs proved to be inversely 

proportional to baffle diameter. Therefore, increases in power dissipation rates are 

expected with the presence of baffle constrictions with smaller cross-sectional area. This 

is reinforced by the results laid out in Table 6.3, which presents the information 

extracted from the simulated Δp(t) profiles over a total length of 0.658 m for runs #21 – 

25. Again, for the sake of comparison, results for from run #2 are included and used for 

the calculation of the percentage difference in εv, po and δ caused by narrower baffle 

constrictions. These results undeniably show an increment in εv and po, and a 

decrement in δ with the presence of narrower baffle constrictions. However, it is also 

observed that this phenomenon becomes more accentuated when narrower baffle 

constrictions are distributed along the reactor’s entire length as opposed to when they 

are placed consecutively.  

Table 6.3. Summary of results extracted from CFD simulations for runs #21 – 25 

Run 

# 

Δpnet 

(Pa) 

Δpo/L 

(Pa m
-1

) 

Δpo/L 

diff. (%) 

δ 

(rad) 

δ diff. 

(%) 

εv            

(W m
−3

) 

εv diff. 

(%) 
Reo St 

2 58.6 2264.6 – 0.791 – 88.1 – 1313 0.0853 

21 71.8 2463.0 8.8 0.757 -4.2 99.2 12.6 1313 0.0853 

22 77.7 2572.0 13.6 0.723 -8.6 107.1 21.5 1313 0.0853 

23 88.6 2666.1 17.7 0.689 -12.9 114.4 29.8 1313 0.0853 

24 81.6 2590.9 14.4 0.704 -10.9 109.6 24.4 1313 0.0853 

25 99.0 2727.1 20.4 0.677 -14.4 118.2 34.2 1313 0.0853 

 

Figure 6.8 displays the results obtained for consecutive 23.5 mm long sections of the 

reactor for runs #21 – 25, illustrating the evolution of power dissipation rate, the 

maximum centre-to-peak pressure drop fluctuation and phase shift with length. These 

variables experience very minimal change until a geometric event is encountered. 

Results from run #21 report a large increment in εv and po, and a decrement in δ within 

the narrower baffle constriction because higher energy is required to move the fluid 

through a reduced cross-sectional area, i.e. section (16). This translates into larger 

velocities as the fluids passes through this constriction, which is visually observed in 

Figure 6.9. The fluid leaves the narrower baffle constriction with high kinetic energy 

and then enters a contiguous normal baffle constriction (Db = 7 mm). This causes a 

decrease in power density, since less energy is required to move a volume of fluid that 
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is flowing at high velocity into these neighbouring sections with a standard cross-

sectional area.  

 

 

 

Figure 6.8. Power density, maximum centre-to-peak pressure drop fluctuation and 

phase shift as a function of reactor’s length for runs #21 – 25 

 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ε v
(k

 W
 m

-3
)

x (m)

Ren = 70.5

Reo = 1313

Reo
NEW = 2901

St = 0.0853

Run #21

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ε v
( k

W
 m

-3
)

x (m)

Run #22

Ren = 70.5

Reo = 1313

Reo
NEW = 2901

St = 0.0853

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Δ
p

o
/L

 (
kP

a 
m

-1
)

x (m)

Run #21

Event → 1B Db = 5

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Δ
p

o
/L

 (
kP

a 
m

-1
)

x (m)

Run #22

Event → 2B Db = 5: consecutive

0

0.4

0.8

1.2

1.6

2

2.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

δ
(r

ad
)

x (m)

Run #21

0

0.4

0.8

1.2

1.6

2

2.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

δ
(r

ad
)

x (m)

Run #22



 

96 

 

 

 

Figure 6.8. (continuation) Power density, maximum centre-to-peak pressure drop 

fluctuation and phase shift as a function of reactor’s length for runs #21 – 25 
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Figure 6.8. (continuation) Power density, maximum centre-to-peak pressure drop 

fluctuation and phase shift as a function of reactor’s length for runs #21 – 25 

This very phenomenon is observed at every narrower baffle constriction when they 

are distributed along the reactor’s entire length (runs #24 and 25), and their impact on 

the overall flow adds up as shown from the results in Table 6.3. On the other hand, if 

these geometric events occur consecutively, e.g. run #23, the power density required to 

move the fluid through the second or third narrower constriction, i.e. sections (17) and 

(18) is smaller than that required for section (16). This is because the fluid leaving the 

first baffle constriction with reduced cross-sectional area already possesses high kinetic 

energy, thus not requiring an increment in energy to flow through any of the 

consecutive narrower baffle constrictions. As a consequence, regions showing local 

energy losses experienced by the fluid, i.e. negative εv, only occur at the single section 

preceding and following the set of consecutive narrower baffle constrictions. 

The larger power dissipation rates reported for the sections containing a narrower 

baffle are also reflected by very small phase shifts. On the contrary, those sections 

reporting a decrease in εv also present an increase in δ. The effect of different δ values 

and large power densities on pressure profiles is observed in Figure 6.11. 
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Figure 6.9. Velocity vector map of sections 14 – 18 at strokes 3 and 4 of simulated cycle 10 for run #21 (Q = 50ml min
-1

, f = 1Hz, xo = 14mm) 
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Figure 6.10. Velocity vector map of sections 14 – 19 at strokes 3 and 4 of simulated cycle 10 for run #22 (Q = 50ml min
-1

, f = 1Hz, xo = 14mm) 
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Figure 6.11. Cycle-averaged pressure drop profiles measured at different sections for 

runs #21 and 22 (Q = 50ml min
-1

, f = 1Hz, xo = 14mm) 

It is preferable to have consecutive narrower constrictions in one region of the device 

than having multiple baffle constrictions with reduced cross-sectional area distributed 

along the entire length of the device. This is because each time the fluid has to 

overcome a narrower baffle constriction, it requires a higher amount of energy (εv). On 

the other hand, when narrower baffle constrictions are distributed consecutively, higher 

εv is only required in the first section. 

It should be noted that although local negative dissipation rates are reported, these 

decrements in εv are largely surpassed by the increment in power density reported at the 

baffle constrictions with reduced cross-sectional area. Therefore, the overall 

contribution to the flow of these geometric events leads to an increase in power density 

for COBRs. 

6.3.3 The Effect of Bend Joints 

Straight horizontal DN15 sections are commonly connected with bend joints in order to 

form a flow path. The effect of these bend joints on εv, po and δ was assessed under 

two operating conditions, refer to Table 6.1 by calculating the percentage difference in 

the variables reported. Information extracted from the simulated Δp(t) profiles over a 

total length of 0.6597 m for runs #26 and 27 is presented in Table 6.4 and compared 

with those from run #2 and #13, respectively. Note that for runs #2 and 13, Δp(t) 

profiles were obtained over a length of 0.658 m, as opposed to the 0.6597 m length of 

runs #26 and 27. This small difference, however, does not affect the comparison of 

results, since power density has units of watts per meter cube and the maximum centre-

to-peak pressure drop fluctuation is reported in Pascals per meter.  
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Table 6.4. Summary of results extracted from CFD simulations for runs #26 and 27 

Run 

# 

Δpnet 

(Pa) 

Δpo/L 

(Pa m
-1

) 

Δpo/L 

diff. (%) 

δ 

(rad) 

δ diff. 

(%) 

εv            

(W m
−3

) 

εv diff. 

(%) 
Reo St 

2 58.6 2264.6 – 0.791 – 88.1 – 1313 0.0853 

13 171.1 3192.6 – 0.803 – 125.0 – 1313 0.171 

26 78.3 2330.2 2.9 0.735 -7.1 95.2 8.0 1313 0.0853 

27 171.0 3193.4 0.023 0.804 0.1 124.1 -0.7 1313 0. 171 

 

Results clearly indicate an increase in the power density of the system for run #26. 

On the other hand, run #27 shows completely negligible changes in εv, po or δ in 

comparison with the results from run #13. Comparing the operating conditions between 

runs #26 and 27, the amplitude and frequency of the former are set, respectively, as 

double and half of the latter. From the results earlier reported in Section 5.3.1, it is 

known that an increment in oscillatory frequency causes a larger increase in εv than an 

increase in oscillatory amplitude does. However, this seems not applicable in the 

presence of bend joints, where a noticeable increase in power dissipation rates was 

attained by doubling the amplitude and halving the frequency. 

In order to further analyse this behaviour, the evolution of εv, po and δ along the 

length of the reactor for runs #26 and 27 is assessed and presented in Figure 6.12; 

results were obtained for each individual baffle constriction contained in the device. 

Results from run #26 show a minimal change in any of the three variables along the two 

straight horizontal sections modelled. However, values obtained for the baffle 

constrictions contained within the bend joint show a clear increment in power 

dissipation rates, which reaches its maximum value at section (20), i.e. perpendicular to 

the horizontal plane, and then decreases as it gets closer to the beginning of the second 

horizontal section. This increment in εv is simultaneous with a decrement in δ. Higher 

fluid velocities are thus reported within the bend joint, suggesting mixing enhancement; 

similar conclusions have been drawn from the work carried out by Taylor (1954) [146] 

and Brunold et al. (1989) [78] in curved pipes and 90 bends, respectively.. This is 

visually observed in the velocity vector map displayed in Figure 6.13. 
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Figure 6.12. Power density, maximum centre-to-peak pressure drop fluctuation and 

phase shift as a function of reactor’s length for runs #26 and 27 
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Figure 6.13. Velocity vector map of sections 14 – 26 at strokes 1 and 2 of simulated cycle 10 for run #26 (Q = 50ml min
-1

, f = 1Hz, xo = 14mm) 
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Figure 6.13. (continuation) Velocity vector map of sections 14 – 26 at strokes 1 and 2 of simulated cycle 10 for run #26  
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Figure 6.14. Velocity vector map of sections 14 – 26 at strokes 1 and 2 of simulated cycle 10 for run #27 (Q = 100ml min
-1

, f = 2Hz, xo = 7mm) 
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Figure 6.14. (continuation) Velocity vector map of sections 14 – 26 at strokes 1 and 2 of simulated cycle 10 for run #27 
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On the other hand, results from run #27 denote a more stable behaviour of the fluid 

as it passes through the bend joint. While values of εv, po and δ show fluctuations with 

length to a certain degree, they seem to revolve around a rather constant value. Only the 

results obtained for section (20) show a moderate increment in power dissipation rate 

and a slight decrement in phase shift, both values being the maximum and minimum 

reported for εv and δ respectively. 

The velocity vector map for the forward stroke of run #26 can be compared with that 

of run #27; refer to Figure 6.14. It is interesting to see how fluid velocities throughout 

the bend joint are higher than those experienced in the straight horizontal sections for 

run #26. However, this is not the case for run #27, where velocities of very similar 

magnitude are reported throughout all the baffle constrictions of the domain, including 

those in the bend joint. In order to further evaluate this behaviour, temporal pressure 

drop profiles were extracted over the length of the seven baffle constrictions preceding 

the bend joint, the seven baffles contained in the bend joint and the seven baffles 

following the bend joint, i.e. p9-16(t), p16-23(t) and p23-30(t). The results extracted 

from these pressure drop profiles for both runs are presented in Table 6.5. Results 

obtained for the bend joint and the following seven baffle constrictions, i.e. second 

straight section, are compared with those obtained for the seven baffles preceding the 

bend joint. This is done by calculating the percentage difference of the reported 

variables. 

Table 6.5. Summary of results extracted from three sections of seven baffle constrictions 

for runs #26 and 27 

Run # 
Δpnet 

(Pa) 

Δpo/L 

(Pa m
-1

) 

Δpo/L diff. 

(%) 

δ 

(rad) 

δ diff. 

(%) 

εv            

(W m
−3

) 

εv diff. 

(%) 

26: 9-16 7.3 2256.8 – 0.812 – 85.6 – 

26: 16-23 28.8 2616.9 16.0 0.521 -35.9 122.7 43.2 

26: 23-30 15.4 2312.3 2.5 0.815 0.4 87.7 2.4 

        

27: 9-16 36.6 3123.4 – 0.806 – 121.5 – 

27: 16-23 62.1 3348.4 7.2 0.780 -3.3 131.9 8.6 

27: 23-30 38.0 3144.9 0.7 0.800 -0.8 123.2 1.4 

 

Undoubtedly, the flow through the bend joint undergoes an increase in power 

dissipation rate and the maximum centre-to-peak pressure drop fluctuation, and a 

decrement in phase shift. These findings are in agreement with the work of Brunold et 
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al. (1989) [78], where angled bends proved to enhance mixing in oscillatory flow 

reactors, thus increasing the kinetic energy of the fluid as it passes through them. 

Furthermore, similar results were reported by Taylor (1954), who demonstrated an 

increase in diffusion as a fluid flows through a curved pipe, enhancing mixing [146]. 

However, these changes are of a much larger magnitude for run #26 than #27, the 

former requiring five times higher increment in εv and experiencing ten times greater 

decrement in δ than the latter. This is visually appreciated in the cycle-averaged p(t) 

profiles shown in Figure 6.15. 

 

Figure 6.15. Cycle-averaged pressure drop profiles measured at three sections of seven 

baffle constrictions for runs #26 (Q = 50ml min
-1

, f = 1Hz, xo = 14mm) and 27 (Q = 

100ml min
-1

, f = 2Hz, xo = 7mm) 

These findings suggest that while increases in oscillatory frequency are the primary 

reason for the overall COBR power density to increase, oscillatory amplitude is the 

parameter with the biggest impact on the magnitude of local power dissipation rates in 

bend joints. The reason behind this phenomenon is the change in direction of the flow 

and the amount of fluid moved during each forward and backward stroke of the 

oscillation, the latter being dependent on the oscillatory amplitude and not on 

frequency. Figure 6.13 shows that as amplitude decreases, so does the effect of bend 

joints on power dissipation rates and pressure drop profiles in COBRs. 

Both simulated conditions did show a maximum and minimum value in εv and δ, 

respectively, for section (20) as reflected by the cycle-averaged p(t) profiles shown in 

Figure 6.16. This does not come as a surprise, since section (20) is perpendicular to the 

horizontal plane and is precisely where the fluid experiences a complete change in 

direction, i.e. from moving positively in the axial axis due to the net flow, to moving 
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forward in the opposite direction. As a result, a local increment in power density is 

experienced in this section. 

 

Figure 6.16. Cycle-averaged pressure drop profiles measured at different sections for 

runs #26 (Q = 50ml min
-1

, f = 1Hz, xo = 14mm) and 27 (Q = 100ml min
-1

, f = 2Hz, xo = 

7mm) 

While local increments in εv were observed as a consequence of the presence of bend 

joints, these geometric events did not report any sign of energy losses for the conditions 

studied. 

6.4 Conclusions  

This chapter studied the impact of three different types of geometric events, which 

disrupt the axial symmetry of the device, on power density and pressure drop in 

COBRs. Furthermore, their effect on the flow throughout the length of the reactor was 

evaluated by analysing local flow patterns and monitoring power dissipation rates, the 

maximum centre-to-peak pressure drop fluctuation and phase shift along consecutive 

sections. Velocity vector maps at strokes 1 – 4 of oscillatory cycle 10 for all simulated 

conditions are presented in Appendix 7. 

Results show an increment in power dissipation rates caused by the presence of bend 

joints, agreeing with the early work in bends carried out by Brunold et al. (1989) [78]. 

Higher power dissipations rates are reported with the presence of baffle constrictions 

with reduced cross-sectional area, leading to an increment in the velocity experienced 

by the fluid while passing through these geometric events. This, however, also increases 

the power density of the system. Hence, one should be mindful of the number of bend 

joints comprised in the configuration of a COBR and the number of potential sections 
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with narrower baffle constrictions, and ensure the motor of the piston is able to provide 

the energy demanded by the system. 

Additionally, findings suggest that sections of the device missing one or multiple 

baffle constrictions lead to a decrement in power dissipation rates, causing a reduction 

in the kinetic energy experienced by the fluid due to eddy shedding and dissipating 

within the missing baffle sections. While these phenomena yield local energy losses, the 

effects add up to an overall decrement in power density when multiple baffle 

constrictions are missing, thus increasing the risk of potential particle settling in the 

presence of solids. Hence, in order to ensure good mixing and suspension throughout 

the whole length of the reactor, this type of geometric event must be avoided.  
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Chapter 7        The Effect of Particle Size on Flow in a COBR 

7.1 Introduction 

Oscillatory Baffled Reactors (OBRs) offer uniform mixing [69] and linear scale up 

[70], making them an attractive alternative to stirred tank reactors for research and 

industrial applications in reaction [18, 20, 21, 23, 147] and crystallisation processes [2, 

6, 9-11, 16, 17, 94, 148]. Residence time distribution (RTD) profiles of tracer 

concentration have widely been used to characterise flows in COBR in both 

experimental and numerical studies, see for examples in the quantification of plug flow 

efficiency [30, 31], the analysis of flow patterns [28, 36], the optimization of operating 

oscillatory conditions [27, 29, 37, 43] and geometric design features [32, 33, 44], in the 

assessment of fluid density impact on axial dispersion [34, 35] and in the development 

of meso-scale COBRs [38-42, 45]. All these studies were performed in single phase 

using trackable liquid tracers. An early study involving a secondary solid phase was 

conducted by Baptista et al. (1996) [128] to analyse the behaviour of suspended solid 

particles of different sizes and densities in a baffled reactor; however, their system did 

not have oscillatory flow and their findings were inconclusive, as the interactions 

among particles were too significant for the effects of sizes and densities to be 

evaluated. Mazubert et al. [65] employed numerical discrete particle tracking of a 

secondary phase to measure concentration profiles and analyse the performance of 

different geometric designs; however, their secondary phase consisted of massless 

particles that essentially followed the velocity field of the continuous Eulerian phase. 

Recent work by Ejim et al. [46] highlighted the differences and the knowledge gap in 

the design of COBRs for multi-phase flow processes using correlations obtained from 

single phase studies; this was further emphasized by Kacker et al. [47] who reported 

that not only the optimal operating conditions for minimal axial dispersion involving 

solids were different from that of single phase, but also longer times were spent by 

solids in a COBR, underlining the need to properly address the effect of different solid 

particles on axial dispersion and mean residence times.  

The present CFD work solves two phases concurrently, investigates the effect of 

particle size on axial dispersion and evaluates the residence times and velocities 

experienced by solid particles and their impact on solids suspension in a COBR. To 

authors’ best knowledge, this is the first study of its kind in the area of COBR research 

and development where a continuous Eulerian phase is coupled with a discrete 
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Lagrangian (solid) phase. This chapter is submitted to the Computers & Chemical 

Engineering in April 2019. 

7.2 Geometry & Operating Conditions  

The target device of this study is the NiTech DN15 COBR reactor, as earlier described 

in Section 3.1. The operating oscillatory conditions were chosen partially based on the 

characteristics of the simulated particles, the simulated domain and literature, in 

particular, the work of Kacker et al. [47] who used a net flow rate of 100 ml min
-1

 and 

identified an oscillatory amplitude of 2 mm and frequency of 2 Hz as optimal conditions 

for solid suspension and near plug flow behaviour of melamine crystals (mean particle 

size = 100 μm). Hence, Q = 100 ml min
-1

 and f = 2 Hz were selected for this study. 

Extensive literature has reported a proportional relationship between oscillatory 

amplitude and axial dispersion [27, 29, 37, 39, 47, 123]. However, while minimal 

dispersion and near plug flow behaviour are desirable, Oliva et al. [125] stated that the 

minimal energy required to ensure solid suspension should be considered. For this 

reason and considering paracetamol particles of up to 150 μm in diameter were 

simulated in this work, a moderate oscillatory amplitude of xo = Db (7 mm) was selected 

based on the work by González-Juárez et al. [44]. This is within the ranges suggested in 

literature for optimal plug flow behaviour, e.g. Gough et al. (1997) advised the 

utilisation of a centre-to-peak amplitude as one-quarter of the baffle spacing [106].  It 

should be noted that while the chosen 7 mm amplitude is within the reported range for 

RTD studies in DN15 [47, 125], it is lower than that used in crystallisation processes 

where it commonly ranged between 12 and 30 mm [15, 91, 94, 148, 149]. 

7.3 Computational Simulation Setup 

All numerical simulations were performed using ANSYS
®
 Fluent 15.0 CFD package, 

which discretises the computational domain using finite volume to solve the flow field 

of a continuous phase. Additionally, Fluent allows for Lagrangian particle tracking by 

implementing a so-called Discrete Phase Model (DPM) as an add-on to an existing 

Eulerian phase, this capability was utilised to model tracer and solid particles. 
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7.3.1 Numerical Model for Eulerian Phase  

The fluid selected for this study was water (ρ = 998.2 kg m
-3

, μ = 1.003∙10
-3

 kg m
-1

 s
-1

). 

The equations of the model, the solver, the discretisation schemes, the boundary 

conditions and the mesh used in this study are as earlier described in Chapter 3. 

7.3.2 Numerical Model for Lagrangian Phase  

In order for this numerical study to closely link with research work in crystallisation 

from the Centre for Continuous Manufacturing and Crystallisation (CMAC) as well as 

other parts of the world [1, 3, 4, 94, 95, 150-153], paracetamol (ρ = 1263 kg m
-3

) was 

selected as the discrete solid phase. While the shape of paracetamol crystals ranges from 

needle-like to plate-like to octahedral blocks [94, 150, 154], the discrete solid phase was 

modelled as mono-sized spherical particles of diameters, Dp = 50, 100 and 150 μm for 

the purpose of simplicity. Liquid phase information was obtained from discrete 

massless particles that act as a perfect tracer as they move according to the flow field of 

the continuous liquid phase. The trajectory of each discrete particle is predicted by 

integrating the force balance on the particle as [139]: 

p p

p D p

p

du
m F m g F

dt

 



 
    

 

          (7.1) 

where mp, pu  and 
p  are, respectively, the mass, velocity and density of the particle. 

The second term in the right-hand side of Equation (7.1) accounts for the force due to 

the weight of the particle and the buoyancy effect, the first term
DF  is the drag force 

defined as [139]: 

 
1

2
D d p p pF C A u u u u             (7.2) 

where Ap is the cross-sectional area of the particle and Cd is the drag force coefficient, 

calculated as the spherical drag law proposed by Morsi and Alexander [155]. The third 

term, F , includes the so-called “virtual mass”, 
VMF , and the pressure gradient force, 

PGF , the former accounts for the force required to accelerate the fluid surrounding the 

particle and the latter is the resultant force from the pressure gradient along the fluid 

flow around the particle [139]: 
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PG p

p
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F m

Dt




            (7.4) 

where 
D

Dt
 is the material derivative. The position of each particle, px , is governed by: 

p

p

dx
u

dt
             (7.5) 

Equations (7.1) and (7.5) are integrated using a trapezoidal discretisation scheme with 

the same time-step as the Eulerian phase (2 ms). When particles are defined as massless, 

the particle velocity equals to the velocity of the continuous phase, pu u , hence only 

Equation (7.5) is required to predict their trajectories [139]. Note that the 

implementation of ANSYS
®
 Fluent Discrete Phase Model for the modelling of solid 

particles does not alter or influence the velocity field of the Eulerian phase. This model 

is appropriate for concentrations of a secondary phase below 10% in volume fraction, 

according to ANSYS
®

 Fluent User's Guide [156]; the highest volume fraction of solids 

injected in this work is 0.007% (paracetamol particles of Dp = 150 μm). All particles 

were modelled as perfect spheres and were released along a cross-sectional plane at the 

middle of a pre-defined baffle-cell; this is known as “surface injection”. In order to cope 

with the potential computational limitation of modelling too many particles, ANSYS
®
 

Fluent tracks so-called “parcels”. A parcel may contain multiple particles; its position is 

defined by a tracked representative particle and its diameter is that of a sphere whose 

volume is the ratio of the total parcel mass to particle density. However, in this work, in 

order to model and predict the behaviour of individual particles, the mass of each parcel 

was set as that of a single particle, i.e. each parcel contained one particle and thus the 

concept of parcel and particle are interchangeable in this study. The number of particles 

released in the system was set to 4050; further analysis on the sensitivity of the number 

of tracked particles on results will be discussed on Section 7.5.1. No particle – particle 

interaction or particle diffusion in the liquid phase were included in the model. 

The terminal (or settling) velocity, ut, of a particle is achieved when drag forces 

balance the weight of the particle and the buoyancy force [138]; solving for velocity in 

spherical particles ut is determined as: 
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          (7.6) 

The drag force coefficient of spherical particles at Re = 1000, i.e. Cd = 0.46 [155], was 

used in this work for the estimation of the terminal velocities reported in Table 7.1. 

7.4 Analysis Method 

7.4.1 Injection of Discrete Particles 

Due to the nature of oscillatory flow in COBRs, forward and backward mixing are 

generated during oscillations, resulting in particles flowing in and out of a control 

domain. It is thus crucial to select the injection point for the solid phase particles as well 

as subsequent location of measuring points to ensure that open boundary effects on 

particles, due to the inlet and outlet, are minimized. In terms of the particles injection 

point, it was set at baffle-cell number 15, i.e. 352.5 mm from the inlet, to ensured that 

less than 0.1% of the injected particles leave the system through the inlet for all the 

simulated conditions, see Table 7.1. Figure 7.1 displays a sketch of the injection point 

and measuring cells in the control zone of this work. The position and velocity of every 

injected particle are extracted and stored at every simulated time-step; this information 

is post-processed to calculate concentration profiles at any given measuring point. 

Effectively, measuring cells act as laboratory concentration probes, monitoring the 

number of particles present within their baffle-cells. For example, a measuring point 

(M) accounts for the particles contained within a distance of  2b bL M L , where M 

ranges from 0 to 32. Collectively, concentration of particles (#particles m
-3

) is 

monitored over the whole domain, i.e. the total number of monitored particles coincides 

with the total number of particles present in the system at all times. The optimal 

measuring points for the conditions tested in this study were identified baffle-cell 

numbers between 17 and 27 (Figure 7.1), ensuring that over 99.9% of the injected 

particles pass through these points as they propagate downstream; further discussion on 

the selection of measuring points is available in Section 7.5.2.  
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Figure 7.1. Definition of the injection and measuring points across the NiTech DN15 

Table 7.1. List of all simulated conditions 

Run 

# 

Q          

(ml min
-1

) 

f 

(Hz) 

xo 

(mm) 
Ren Reo St Material injected 

Dp 

(μm) 

ut       

(m s
-1

) 

1 100 2 5 141 938 0.239 Tracer (massless) – – 

2 100 2 7 141 1313 0.171 Tracer (massless) – – 

3 100 2 7 141 1313 0.171 Paracetamol 50 0.019 

4 100 2 7 141 1313 0.171 Paracetamol 100 0.027 

5 100 2 7 141 1313 0.171 Paracetamol 150 0.034 

 

7.4.2 Determination of Axial Dispersion 

In a tubular reactor, mixing is commonly quantified by the axial dispersion coefficient 

(Da), which describes the degree of spreading (in the axial direction) of a tracer injected 

upstream as a pulse (ideally). Analogous to the molecular diffusion model given by 

Fick’s law, Levenspiel and Smith [122] proposed the following equation to evaluate the 

axial dispersion coefficient: 

2

2a

C C C
D U

t x x

  
 

  
           (7.7) 

where C is the tracer concentration as a function of time, t, and position, x, and U is the 

mean net flow velocity of the system (U = QL/V). Although equation (7.7) was 

originally derived for a single phase flow, it can also be used for two phase (solid-

liquid) cases. When the concentration of a liquid tracer is defined as CL = mL/VL and the 

concentration of solids as CS = mS/(VL + VS), Equation (7.7) becomes independent of the 

volume of the secondary solid phase (VL + VS ≈ VL) when VS << VL, which is the case in 

the present study. This is also consistent with literature, e.g. the work of Ejim et al. [46] 

and Kacker et al. [47], who applied this model to measured concentrations of PVC and 

solid melamine particles, respectively, in order to assess their axial dispersion 

352.5 mm

Injection Point 

(15)

Measuring Points 

17 

Inlet 

(0)

Outlet 

(32)

uinlet (t)
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coefficients in water. If a perfect input pulse injection is assumed, typical boundary 

conditions for Equation (7.7) are: 

   ,0
n

C x x
A
            (7.8) 

 lim , t 0x C x             (7.9) 

where n is the volume of tracer/secondary phase injected, A the cross-sectional area of 

the device and δ(x) a Dirac delta function. Thus, the analytical solution to Equation 

(7.7) at fixed values of Da and U is given by: 

 
 

2

1
, exp

44 aa

x Ut
C x t

D tD t

 
  

 
 

       (7.10) 

Under the assumption of a perfect pulse injection, the plug flow with axial dispersion 

model can be re-derived and solved based on an inverse Peclet number (Pe = UL/Da) as 

[122]: 

22
2

2

1 1
2 8

t Pe Pe





 
    

 
        (7.11) 

where σθ
2
 is the dimensionless variance, σ

2
 the variance and t the mean residence time 

of the tracer concentration defined as: 
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where N is the total number of measured concentration data and Cw is the concentration 

of particles (#particles m
-3

) at time t, weighted by particles’ initial velocity (unet) and 

normalised by the maximum velocity in the device (ωxo); this approach has successfully 

been implemented for the analysis of RTD profiles in micro-channels by Aubin et al. 
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[157] and in COBRs by Mazubert et al. [65]. Equation (7.11) is used to evaluate the 

axial dispersion coefficient under the perfect pulse method (PPM).  

A perfect input pulse is unachievable in practice and unmeasurable experimentally. 

Hence, Aris (1959) proposed an imperfect pulse method (IPM) [158] where the 

concentration profile of the tracer/secondary phase is measured at two points 

downstream of the tracer injection, i.e. C1(t) and C2(t); thus the form of the impulse 

becomes irrelevant. This method is implicitly more accurate, since no assumption is 

made regarding the nature of the tracer/secondary phase injection and upstream RTD 

data are used to predict the downstream response. This method was firstly implemented 

in OBRs by Mackley and Ni [69], who adopted the solution of Göeble et al. [159] and 

used a normalised concentration E(t) [160] for better comparison among results: 

 
 

 

 

 0

1

w w i
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w w i i

i

C t C t
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C t dt C t t




 
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       (7.14) 

Mackley and Ni [69] suggested that the normalised concentration measured at an 

upstream point (1) during a short time interval, Δt, can be regarded as a perfect pulse 

injection with an injected volume E(t1)Δt at time t = t1. Taking the limit Δt → 0 and 

integrating over all possible injection times, t1, the normalised concentration at point (2) 

can be estimated by the convolution integral equation below: 

     2 1 1 1 1 1 1, 1, 1,
0

1

( ) ( )
Nt

i i i

i

E t E t TR t t dt E t TR t t t


          (7.15) 

where TR(t) is the transfer function for “open-open” boundary conditions. The 

formulation of the transfer function reported by Mackley and Ni was in disagreement 

with the one proposed by Westerterp et al. [161]. However, later work by Smith [162] 

proved that the formulation of Westerterp et al. was the most accurate, hence it is used 

in the current work as: 
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      (7.16) 

where the distance from the injection point, L, is essentially the distance between 

measuring points (1) and (2). The normalised concentration predicted at point (2), E2′(t), 
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is compared with the measured normalised concentration at such point, E2(t), and the 

axial dispersion coefficient is fitted in order to satisfy the target function: 

    
2

2 2

1

N

i i

i

E E t E t


           (7.17) 

where N is the total number of normalised concentration data. The optimal axial 

dispersion coefficient is obtained when the target function (10) is minimized. While the 

value of the mean net flow velocity, U, as aforementioned, can be assumed as U = 

QL/V, a more accurate method, making use of the available upstream and downstream 

RTD profiles, is to calculate the time it takes for the tracer/secondary phase to travel 

from measuring points (1) to (2) as [162]: 
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    (7.18) 

Equation (7.18) significantly increases the accuracy of results, especially for RTD 

analysis of tracer and solids whose velocity may differ from that of the primary liquid 

phase (QL/V); this is clearly evident in Sections 7.5.3 and 7.6.2, and in Figures 7.5 and 

7.12 respectively, where a decrease in net velocity is observed as particle size increases. 

The imperfect pulse method [29, 34, 38, 45, 123, 124] as well as the perfect pulse 

method [44, 47, 65, 125] have been used to quantify axial dispersion in COBRs. 

Consequently, both methods (PPM and IPM) are used in this work, enabling 

comparison and assessment of the impact of length (from injection to measuring point) 

on their accuracy. For better comparison, most of the RTD curves reported in this work 

are presented in their normalised form as E(θ) vs θ, where    E t E t   and t t  . 

7.5 Method Validation 

7.5.1 Effect on Number of Simulated Particles  

Discrete particles were injected into a cross-sectional plane in the middle of a baffle-cell 

containing 4050 computational cells; the “surface” injection type releases one particle 

per computational cell, thus 4050 particles were injected. This number is significantly 

larger than what is reported in literature, e.g. Mazubert et al. [65] used 2484 massless 

particles to characterise axial dispersion, mean residence times and fluid stretch rates of 
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a single liquid phase in a COBR. In the present study, the sensitivity of results on the 

number of particles injected was tested by examining and comparing two injections of 

4050 and 8100 particles, respectively. The injection releasing 8100 particles was 

implemented by performing a “surface” injection simultaneously at two cross-sectional 

planes (4050 computational cells each) placed in the middle of the 15
th

 baffle-cell; these 

two planes were 0.75 mm apart from one another. This analysis was performed for 

massless particles under the operating conditions of run #2 (see Table 7.1). Figure 7.2 

(left) displays the profiles of E(θ) vs θ measured at the baffle-cell (27) for both numbers 

of particles injected; the degree of agreement between profiles is very good as both 

profiles overlap one another. Additionally, the axial dispersion coefficients calculated 

using the PPM, Equation (7.11), and the IPM, Equations (7.15) – (7.18), at different 

lengths of the reactor for both numbers of injected particles are presented in Figure 7.2 

(right). Again, the agreement between results is remarkable, reporting an average 

percentage error of 2.8%. Results obtained with the IPM were calculated using baffle-

cell (17) for C1 and baffle-cells (19) – (27) for C2. On the balance of accuracy and 

computing time, it was determined that a “surface” injection of 4050 particles is 

sufficient for reproducing the flow patterns in the COBR.   

 

Figure 7.2. E(θ) vs θ profiles (left) and Da vs L (right) for two numbers of injected 

discrete phase particles at operating conditions of run #2 (Q = 100ml min
-1

, f = 2Hz, xo 

= 7mm) 

7.5.2 Measuring Points 

While CFD simulated RTD curves can be monitored at any length of the reactor, the 

effect of “open-open” boundary conditions at the inlet and outlet of the baffled reactor 

must be taken into account. Due to the oscillatory nature of the flow, particles would 

pass through a certain section of the domain multiple times, since the oscillatory 
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velocities are considerably higher than the net flow velocity; for this reason, measuring 

points must cautiously be selected. If a measuring point is too close to an open 

boundary, particles would escape the system prematurely. In order to select appropriate 

measuring points, RTD curves were monitored for all baffle-cells of the modelled 

device. The area under the curves of these RTD profiles is then calculated as 

   
0

1

N

o i i

i

C C t dt C t t




   , and plotted as a function of length (from the injection 

point) in Figure 7.3 (right); RTD curves measured at three different baffle-cells during 

run #2 are presented in Figure 7.3 (left).  

 

Figure 7.3. RTD curves measured at different baffle-cells at operating conditions of run 

#2 (left) (Q = 100ml min
-1

, f = 2Hz, xo = 7mm) and RTD area under the curve (Co) with 

length for all simulated conditions (right) 

When particles leave the system and disappear pre-maturely, via an opening 

boundary, it results in a lower value of the area under the RTD curve measured at a 

certain baffle-cell, Co. A constant Co value along the reactor’s length for each simulated 

run is hence a good guide for selecting measuring points, as indicated by the squared 

region in Figure 7.3 (right). Consequently, RTD data obtained from baffle-cells (17) to 

(27) (0.047 – 0.282 m from the injection point) was selected for analysis, while the 

remaining concentration profiles measured at baffle-cells (28) to (32) were discarded as 

the effect of open boundaries on the number of particles escaping the system pre-

maturely was too large for reliable C(t) curves to be measured. 

Note that Co values reported for particles of 100 and 150 μm diameter are 

approximately 30% and 110% higher than those of the tracer (xo = 7 mm), respectively. 

This is due to the fact that Co has units of (#particles m
-3

 s) and particles of larger size 
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spend more time in the reactor, resulting in wider RTD profiles, i.e. larger area under 

the profiles’ curve; this is further explored and commented in Section 7.6.1. 

7.5.3 Perfect & Imperfect Pulse Method 

Figure 7.4 shows the axial dispersion coefficients obtained from both the PPM and IPM 

methods as a function of length for all runs (refer to Table 7.1). Results provided by 

IPM were calculated with baffle-cell (17) as C1 and baffle-cells (19) – (27) as C2.  

The axial dispersion coefficient (Da) of a fluid material or a secondary phase, at 

given operating conditions, is expected to be constant from the governing equation 

(7.7), but in reality changes slightly with time as the trace/secondary phase travels 

downstream the device [29, 69]. The results obtained by PPM are undoubtedly 

dependent on the length at which RTD curves were measured; as a matter of fact, the 

length of the device over which this analysis has been performed is not sufficient for 

PPM to reach a completely asymptotic Da value. On the other hand, IPM reaches an 

asymptotic Da value at a very early stage for all simulated runs, reporting nearly 

constant values around this asymptotic Da with length. Figure 7.4 shows the results 

obtained with the IPM by assuming U = QL/V and by calculating U as per Equation 

(7.18); both provided very similar results and trends of Da vs L. However, the residual 

errors from IPM’s target function, Equation (7.17), were consistently higher when U 

was assumed to be equal to QL/V; the average residual error reported for each simulated 

run are presented in Table 7.2. Hence, the IPM’s asymptotic values of Da were 

calculated by averaging the coefficients (Da) obtained when baffle-cells (20) to (27) 

were set as C2 and when U was estimated with Equation (7.18). A straight horizontal 

line is used to represent the asymptotic Da values in Figure 7.4. Although Da values 

computed via IPM fluctuate around the asymptotic value, they are much more stable 

than those obtained with PPM and are thus chosen as the final results in this study. 
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Figure 7.4. Da calculated from RTD curves measured at different lengths (from the 

injection point) using the imperfect (IPM) and the perfect pulse (PPM) methods for all 

runs simulated 

Table 7.2. Average residual errors from IPM’s target function, Equation (7.17) 

Run #  Eq. 7.17

E (U = QL/V)  
 Eq. 7.17

E (U = Eq. 7.18)  

1 3.5 x10
3
 3.2 x10

3
 

2 3.9 x10
3
 3.6 x10

3
 

3 4.4 x10
3
 4.1 x10

3
 

4 1.1 x10
2
 5.2 x10

3
 

5 2.1 x10
2
 5.4 x10

3
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As aforementioned, Equation (7.18) provides a more accurate estimation of the mean 

net velocity of particles that travel from point (1) to point (2), since it uses RTD profiles 

measured at both points. Figure 7.5 supports this argument by showing the velocity 

values obtained during the fitting process of IPM, calculated via Equation (7.18) at 

different lengths of the reactor, and comparing it to U = QL/V. In reality, U from 

Equation (7.18) represents the mean net velocity of particles experienced while 

travelling from the measuring point (1) to point (2). As one could have anticipated, the 

results clearly indicate that while U = QL/V is a fair estimation of liquid phase velocity, 

the velocity of a secondary solid phase is dependent on particle size, with velocity of 

small particles (50 μm diameter) close to that of the liquid phase and that of larger 

particles being significantly smaller. These trends are in agreement with results 

presented later in Section 7.6.2, see Figure 7.12 (left). Based on the current findings, 

Equation (7.18) was employed for the calculation of U in the IPM for all results 

presented on this study. 

It should be noted that the PPM does not allow for the implementation of Equation 

(7.18), since it only uses information of one RTD profile measured at the reactor length 

under investigation. Hence, U = QL/V is assumed when calculating axial dispersion 

coefficients via PPM, which evidently leads to less accurate results. It is worth pointing 

out that the accuracy of Equation (7.18) may vary depending on the distance between 

point (1) and point (2). This velocity is smoothed out further as the measuring point (2) 

is moved along the length of the device while keeping the measuring point (1) fixed, 

thereby increasing the length over which RTD curves are examined. 
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Figure 7.5. Velocity calculated with Equation (7.18) with measuring point (1) fix at 

baffle-cell (17) and measuring point ranging from baffle-cell (19) to (27) (Q = 100ml 

min
-1

, f = 2Hz, xo = 7mm) 

7.5.4 Validation of Simulated Results 

For the validation of the CFD methodology and the estimation of axial dispersion 

coefficients, results of Kacker et al.’s work [47] are compared with those obtained in 

this study. Kacker et al. undertook their experimental investigation in a DN15 and 

analysed axial dispersion for a wide range of operating conditions using a homogenous 

tracer (methylene blue) and a heterogeneous phase (melamine). The results of their 

homogenous tracer are compared with that of the present massless particles analysis 

(asymptotic values from Figure 7.4) and are plotted in Figure 7.6 (left). It shows that the 

order of magnitude and the trend of Da vs xo bear great similarity to those of Kacker et 

al., thus validating the proposed model developed here. 
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Figure 7.6. Comparison of axial dispersion coefficients and RTD profiles with those 

reported by Kacker et al. [47] 

Figure 7.6 (left) also shows the axial dispersion coefficient obtained by Kacker et al. 

using melamine (ρ = 1575 kg m
-3

) particles of 100 μm mean particle size at different 

solid concentrations. While the effect of concentration on axial dispersion was not clear 

from the work of Kacker et al., their results pointed to an axial dispersion coefficient of 

around 0.0006 – 0.001 m
2
 s

-1
 at oscillatory amplitude of 7mm. In the current study, a Da 

of 0.0006 m
2
 s

-1
 (asymptotic value from Figure 7.4) was obtained from run #4. By 

taking the density difference between the two studies into consideration and using the 

correlation from Ni et al. [35], Da is multiplied by a density ratio (ρmelamine / ρparacetamol), 

giving a value of Da = 0.000748 m
2
 s

-1
, which is within the range suggested by Kacker 

et al. 

Additionally, comparison with the RTD curves reported by Kacker et at. was 

performed by plotting E(θ) vs θ profiles of their heterogeneous tracer along with that 

from run #4 of this work in Figure 7.6 (right). The results they obtained from injection 

port 1 and measuring port 1 (L ≈ 0.72 m) were chosen as the basis for comparison; the 

profile measured at baffle-cell (27) of our device (L = 0.282 m) shown in Figure 7.6 

(right) exhibits a remarkable similarity both in magnitude and shape, which further 

verified the appropriateness of the proposed model. 

The validity of ANSYS
®
 Fluent’s DPM model was also tested by comparing axial 

velocity of the continuous liquid phase with that of the tracer (massless particles). The 

velocity of the Eulerian liquid phase (ELP) was calculated as the volume-weighted 

average, x ELPu  , of the whole simulated domain, and the average velocity in the axial 
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direction, xu , experienced by particles (tracer and/or solid) at any given time, t, was 

calculated as: 

 
 

 

 

,

1

N t

x i

i
x

u t

u t
N t




         (7.19) 

where the index i represents a specific particle and N(t) the total number of particles 

present in the system at time t. Figure 7.7 plots the velocity profiles of the Eulerian and 

Lagrangian phases side by side at a given time range. The degree of agreement between 

profiles is exceptional, overlapping one another to the point that distinguishing them is 

nearly impossible. 

 

Figure 7.7. Axial velocity of the liquid Eulerian phase and the Lagrangian tracer for a 

certain time range (Q = 100ml min
-1

, f = 2Hz, xo = 7mm) 

7.6 Results & Discussion 

7.6.1 Effect of Size of Particle on Axial Dispersion and Residence Time 

The effect of particle size on axial dispersion is graphically presented in Figure 7.8 
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Table 7.1). While the impact of particle size on axial dispersion of the secondary phase 

is qualitatively minimal (Figure 7.8 left), the asymptotic Da values from Figure (7.4) 

decrease with the increase of particle size (Table 7.3). Additionally, Table 7.3 presents 

the percentage difference of Da and t  in comparison with the liquid phase, labelled as 

ΔDa and t  respectively. The mean residence time required for particles to reach 

baffle-cell (27) from the injection cell (15) becomes longer as particle size increases, 

displaying a noticeable shift in the profiles of E(θ) vs t (Figure 7.8 right). It is observed 

that the residence time for particles of 50 μm diameter barely changes in comparison to 

that of the liquid phase (represented by massless particles), the degree of agreement 

between both E(θ) vs t profiles is very good as they overlap one another, suggesting that 

small solid particles (50 μm) follow the liquid phase flow. On the contrary, particles of 

100 or 150 μm diameters undergo an increase in residence time of up to 139% (Table 

7.3), thus displaying a noticeable shift in time in their E(θ) vs t profiles. 

 

Figure 7.8. E(θ) vs θ (left) and E(θ) vs t (right) profiles for different particle sizes (Q = 

100 ml min
-1

, f = 2Hz, xo = 7mm) 

Table 7.3. Da and t  values for different particle sizes (Q = 100ml min
-1

, f = 2Hz, xo = 

7mm) 

 
Da (m

2
 s

-1
) ΔDa

††
 (%) t **

 (s) Δ t ††
 (%) 

Tracer (massless) 6.24 x10
4
 – 29.3 – 

Paracetamol 50 μm 6.10 x10
4
 -2.2 29.6 0.9 

Paracetamol 100 μm 6.00 x10
4
 -3.9 38.1 29.9 

Paracetamol 150 μm 5.55 x10
4
 -11.1 70.1 138.9 

**
Mean residence time at baffle-cell (27), where L (from injection point) = 0.282 m 

††
With respect to the values provided by the liquid phase (massless tracer) 
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Figure 7.9. Mean residence time as a function of length (from the injection point) for 

different particle sizes (Q = 100 ml min
-1

, f = 2Hz, xo = 7mm) 

Figure 7.9 (left) shows the mean residence time, t , spent by particles from baffle-cell 

(15) to (27) calculated via Equation (7.13), with τ = V/Qnet as the basis for comparison. 

A significant increase in mean residence times is observed as particles grow in size. 

This is due to decay in oscillatory axial velocity with the presence of particles, leading 

to smaller axial dispersion and longer residence times. These findings are consistent 

with the work of Ejim et al. and Kacker et al. [46, 47] and should be considered when 

designing COBRs for crystallisation processes where particles’ residence time is a key 

factor affecting crystal growth. 

It is also seen from Figure 7.9 that the slopes of increasing residence times for liquid 

phase and for solid phase (paracetamol of 50 µm diameter) are the same, indicating that 

both move axially at a constant mean net velocity. The slopes for particles of 100 and 

150 µm diameter are moderately higher, denoting an increasing decay in their mean net 

velocities with length. At constant solid particles’ density, an increase in particle size 

translates into bigger volume of each particle, thus larger a cross-sectional area, Ap. This 

has a direct impact on the drag force experienced by each particle; larger drag forces 

result in more stressed particle deceleration, i.e. negative pdu

dt
, leading to a decay in the 

net velocity of the particle. This reduction in velocity experienced by particles of bigger 

size is further analysed and discussed in the next subsection. 

It is also observed that the overall mean residence times experienced by massless 

particles are higher than τ = V/Qnet, which is interesting. These results could be 

deceiving, as one may infer that particles’ mean net velocity is lower than QL/V, 

however this is only true for solid particles, not for the single phase, as revealed in the 
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next subsection. The reason for the overall high values of mean residence time is a small 

degree of skewness displayed by the RTD profiles for the oscillatory conditions 

simulated, thus deviating slightly from a Gaussian function (Figure 7.3 left). This 

translates into a shifted mean value, as opposed to the 50
th

 percentile, i.e. statistical 

median. For the sake of comparison and in order to support this argument, Figure 7.9 

(right) shows the median residence times, tmedian, as the function of length. Note that 

both mean and median residence times display identical trends. 

7.6.2 Effect of Particle Size on their Velocity – the Dampening 

Phenomenon 

The average velocity magnitude, mu ,and the average velocity in the axial direction, xu , 

experienced by tracer and/or solid particles at any given time, t, were calculated as per 

Equation (7.19). Because the total number of particles is a function of time, results for 

each simulated run are only reported until the mean residence time measured at baffle-

cell (27) is reached, i.e. 27baffle cellt t    (see Table 7.3), ensuring that no effects from the 

open boundary outlet are present. Figure 7.10 displays the mean axial velocity profiles 

experienced by particles of different sizes over a certain time frame, along with the inlet 

velocity profile as a basis of reference. A dampening on the oscillation amplitude 

experienced by particles as they increase in size is clearly observed; the percentage of 

oscillatory velocity lost by solid particles at the peaks of the oscillation in comparison to 

the velocity of the liquid phase is reported in Table 7.4 as x peaksu  . As aforementioned, 

this reduction in velocity experienced by solid particles is due to an increase of the drag 

force they undergo as their sizes increase. 

Figure 7.11 plots xu  with time for particles of different sizes. The liquid phase and 

small particles (50 µm) show a nearly constant trend of their oscillatory axial velocity 

peaks with time, while a decreasing trend in the magnitudes of oscillatory axial peaks is 

evident for paracetamol solids of 100 µm (left) and 150 µm (right) diameter.  

Note that the velocity profiles presented in Figures 7.10 and 7.11 are the mean axial 

velocity averaged over all particles present in the entirety of the system at any time.  
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Figure 7.10. Axial velocity of particles of different sizes for a certain time range (Q = 

100 ml min
-1

, f = 2Hz, xo = 7mm) 

 

 

Figure 7.11. Axial velocity evolution with time for particles of different sizes (Q = 100 

ml min
-1

, f = 2Hz, xo = 7mm) 
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The dampening effect of oscillatory velocity, occurring as either particles grow in 

size or particles of a certain size (100 and 150) move along the reactor, should not be 

confused with an overall decay in the net axial velocity. While particles of different 

sizes may experience different oscillatory velocity peaks, their net axial velocities can 

be identical. Similarly, particles may experience a decrease in oscillatory axial velocity 

with time, yet maintain a net axial velocity. For this reason, the evolution of the net 

axial velocity with time is also analysed, but displaying the evolution of xu  with time for 

different particle sizes in the same figure is too complex, as the oscillatory velocity 

peaks from different profiles overlap, preventing the ability to distinguish one from 

another. To avoid this, the axial velocities and velocity magnitudes obtained from 

Equation (7.19) – and its analogous for velocity magnitude – were averaged for each 

oscillatory cycle and plotted with time in Figure 7.12. It shows that the liquid phase and 

small solid particles (50 µm) experience a rather constant trend of net velocity in the 

axial direction with time, the former fluctuating at around the expected QL/V value. On 

the contrary, paracetamol solids of 100 and 150 µm diameter have an overall lower net 

axial velocity, which moderately decays with time. The kinetic energy losses 

experienced by particles of 100 and 150 µm as they move downstream, whether it is by 

the dampening of oscillatory velocity or by the reduction of net axial velocity, have a 

visible impact on the overall velocity magnitude that particles are subjected to, see 

Figure 7.12 (right). These findings highlight a potential need of adjusting oscillation 

conditions, e.g. increasing oscillation amplitude in order to prevent solids settling, 

depending on the size and terminal velocities of the solids involved. The percentages of 

the reduction in the net axial velocity, xu , undergone by solid particles of difference 

size are gathered in Table 7.4, along with the percentage reduction in the mean velocity 

magnitude, mu ; all of which in comparison to the velocity of the liquid phase. 
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Figure 7.12. Average (per cycle) axial velocity (left) and velocity magnitude (right) 

evolution with time for particles of different sizes (Q = 100 ml min
-1

, f = 2Hz, xo = 

7mm) 

The minimum transport velocity required for the suspension of slurry in a horizontal 

tube (umin-h) is given by the modified Durand equation [163, 164]: 

1 6

2 1
p p

min h mh

d
u C g D

D






    
     

    
        (7.20) 

where D is the diameter of the tube, dp the diameter of the particle and Cmh an empirical 

constant that ranges from 0.4 to 1.5 [163]. A Cmh of 1.5 utilised in recent literature [164] 

was used in the present study. Table 7.4 shows the umin-h required by each set of 

simulated solid particles, along with the percentage of the time that the oscillatory axial 

velocity at the inlet and in the tube are higher than the minimum transport velocity, i.e. 

 x inlet min hu t u   and  x ELP min hu t u  . 

Table 7.4. Percentage of oscillatory dampening and minimum transport velocity for 

paracetamol solids of different sizes (Q = 100ml min
-1

, f = 2Hz, xo = 7mm) 

 

 

x peaksu  †
 

(%) 

xu †
 

(%) 

mu †
 

(%) 

umin-h 

(m s
-1

) 

 x inlet min hu t u 

(%) 

 x ELP min hu t u 

(%) 

Paracetamol 

50 μm 
-10 -4 -5 0.045 65.3 72.8 

Paracetamol 

100 μm 
-21 -26 -21 0.051 60.4 68.8 

Paracetamol 

150 μm 
-45 -54 -46 0.054 57.1 67.2 

†
With respect to the values provided by the liquid phase (massless tracer) 
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The minimum transport velocity required for slurry suspension in a horizontal tube 

increases by 20% as particles grow from 50 µm to 150 µm of diameter. The inlet 

oscillatory velocity is greater in magnitude than umin-h more than 50% of time for all 

simulated particles; hence, it is expected for all particles to stay suspended throughout 

their journey downstream the reactor. However, the results also point to a reduction in 

the degree of suspension as particles grow in size.  

7.6.3 Effect of Particle Size on their Suspension 

Suspension of particles was qualitative assessed by visually observing their position as 

they travel downstream the reactor; this is displayed in Figures 7.13 to 7.16. The first 

sign of a reduction in the degree of suspension is given by the distribution of particles 

displayed after the first oscillatory cycle, t = 0.5 s. At this time, massless particles 

display a perfectly symmetrical distribution; this symmetry gets however disrupted as 

particles increase in size, with subtle changes observed in particles of 50 μm diameter to 

very noticeable and drastic changes in particles of 100 and 150 μm diameter, 

respectively. As time passes, the effect of the axial dispersion becomes evident for all 

simulated runs and particles are spread throughout the length of the device. It is 

however detected how solid particles of larger size (100 and 150 μm diameter) present a 

higher concentration of particles towards the bottom wall of the reactor, i.e. particles 

seem to gather around the bottom area, this becomes especially acute for particles of 

150 μm diameter. 
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Figure 7.13. Position of massless particles (tracer) at different times (Q = 100 ml min
-1

, f = 2Hz, xo = 7mm) 
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Figure 7.14. Position of paracetamol particles (Dp = 50 μm) at different times (Q = 100 ml min
-1

, f = 2Hz, xo = 7mm) 
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Figure 7.15. Position of paracetamol particles (Dp = 100 μm) at different times (Q = 100 ml min
-1

, f = 2Hz, xo = 7mm) 
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Figure 7.16. Position of paracetamol particles (Dp = 150 μm) at different times (Q = 100 ml min
-1

, f = 2Hz, xo = 7mm) 
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Quantitatively, the suspension of particles was analysed by monitoring their positions 

in the vertical axis, y, throughout all simulated time-steps and averaging it over the total 

number of particles present in the entirety of the system, N, for each condition as: 

 
 

 

 
1

N t

i

i

y t

y t
N t




         (7.21) 

As expected, Figure 7.17 shows that the average vertical position, y , decreases as 

particle size increases. While the average position of liquid phase particles and small 

solid particles (50 µm) stays at the centre of the device (y = 0), particles of 100 and 150 

µm lose their height and tended to stay closer to the bottom wall of the reactor (y = -7.5 

mm) as they move axially downstream. However, complete settlement of particles was 

not observed even for the largest particles considered in this study. The reduction in the 

degree of suspension experienced by solid particles is due to the effect of the 

gravitational force; particles of bigger size contain more mass, mp, which increases their 

downwards acceleration as a result of their weight, thus decreasing their suspension 

altitude with respect to the horizontal plane. 

 

Figure 7.17. Position in the y-axis evolution with time for particles of different sizes (Q 

= 100 ml min
-1

, f = 2Hz, xo = 7mm) 
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In view of the current findings, the fraction of the number of particles present at the 

top, middle and bottom regions of the devices, x1, x2 and x3, respectively, was 

monitored. Figure 7.18 displays a sketch describing the dimensions of these regions in 

the DN15. The fraction of particles is then monitored and plotted with time in Figure 

7.19. For the liquid phase (massless tracer), around 45% of the particles stay 

consistently in the middle region, while the rest stay in the top (27.5%) and bottom 

(27.5%) of the device. While all particles, massless and solid, start off with the same 

distribution along a cross-sectional plane, they re-arrange themselves as they move 

downstream according to the drag and gravitational forces they experience, which are 

heavily influenced by the sizes of particles. Small particles (50 μm diameter) show a 

minute reduction in the number of particles present in the middle and top regions, 43% 

and 26% respectively, and a slight increment in those gathered at the bottom (31%). As 

particles increase in size, these patterns become more noticeable, e.g. approximately, 

35% of 100 μm diameter particles stay in the middle region, only 19% in the top and up 

to 46% in the bottom region. This behaviour is highly exacerbated for particles of 150 

μm, whose fractions of particles present in the middle and top regions are reduced down 

to 24% and 11%, respectively, and up to 65% of the particles gather down the bottom of 

the device. While complete settlement of particles was not observed, there is a clear 

potential for this phenomenon to fulfil when a certain particle size has been reached. 

This should be accounted for in experimental and industrial processes by adjusting the 

intensity of the oscillatory velocity according to the target particle size, in order to 

maintain solids suspended and avoid settling. 

For convenience, the asymptotic values of the fraction of particles presented in each 

region are gathered in Table 7.5. 

 

Figure 7.18. Definition of the top, middle and bottom region for the monitoring of 

fraction of particles present in the system 

(1) Top region

(2) Middle region

(3) Bottom region

y = 7.5 mm

y = 2.5 mm

y = -2.5 mm

y = -7.5 mm

x1(t)

x2(t)

x3(t)
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Figure 7.19. Fraction of particles present at different regions of the DN15 as a function 

of time (Q = 100 ml min
-1

, f = 2Hz, xo = 7mm) 

Table 7.5. Asymptotic values for the fraction of particles present at different regions of 

the DN15 (Q = 100ml min
-1

, f = 2Hz, xo = 7mm) 

 
x1 (%) x2 (%) x3 (%) 

Tracer (massless) 27.5 45 27.5 

Paracetamol 50 μm 26 43 31 

Paracetamol 100 μm 19 35 46 

Paracetamol 150 μm 11 24 65 

 

7.7 Conclusions 

For the first time, a primary Eulerian liquid phase was coupled with a secondary 

discrete Lagrangian phase in the modelling of solid-liquid fluid flow in a continuous 

oscillatory baffled reactor; ANSYS
®
 Fluent’s Discrete Phase Model is proved as a 

viable methodology for this purpose. This work, for the first time, reports a detailed 

analysis on the effect of particle size on axial dispersion, evaluates residence times and 

velocities experienced by solid particles in a COBR, as well as their impact on solid 
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suspension. Results show a decreasing trend in oscillatory axial velocity as particle size 

increases, leading to smaller axial dispersion and longer residence times. These findings 

agree with the work by Ejim et al. and Kacker et al. [46, 47]. This work has also 

provided qualitative and quantitative analysis between particle size and the oscillation 

dampening effect experienced by solids.  

On the determination of axial dispersion of secondary phase, two methodologies 

were utilised in this study: the perfect pulse method (PPM) and the imperfect pulse 

method (IMP). The latter provided constant results at different lengths of the device for 

all the simulated cases, while the former did not. This is most certainly due to the 

formulation of the IPM that avoids the assumption of a perfect pulse injection of the 

secondary phase; IPM calculates axial dispersion through a convolution integral 

equation to minimize a target function, utilising data from two RTD profiles measured 

at two points along the length of the reactor. By doing so, it also allows the IMP to give 

a better estimation of the mean net velocity of the secondary phase travelling from one 

measuring point to another, unlike the PPM, which assumes a constant velocity of 

QL/V.  

While this work involves mono-size spherical particles simulated at smaller 

oscillatory amplitudes than those commonly used in crystallisation processes, the 

understanding of dispersion of a solid phase in liquid is much needed in order to fill the 

knowledge gap in the area of COBR research and development, where there has been 

exclusive reliance on correlations obtained from single phase studies. 
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Chapter 8        Smoothed Particle Hydrodynamics - A New 

Approach for Modelling Flow in OBRs 

8.1 Introduction  

As aforementioned, uniform mixing and linear scale up offered by Oscillatory Baffled 

Reactors (OBR) are the key drivers for research and industrial applications in reactions 

[18, 165-168] and crystallisation [2, 6, 10, 11, 148, 169-173]. From a modelling 

viewpoint, Computational Fluid Dynamic (CFD) solvers have been employed to 

simulate hydrodynamic flow profiles in OBR from initially 2-dimensional in the 1990s 

[28, 48-53] to 3-D in the following decades [36, 40, 54-64], however the majority of the 

numerical modelling work was Eulerian based [43, 44] mostly for single phase. The 

validation of these numerical models with experimental data has mostly been limited to 

qualitative comparison of eddy formation patterns. There were few modelling work 

involving two phases, e.g. massless tracer and liquid [65], which is largely limited by 

the expensive computational costs of coupling continuous Eulerian-Lagrangian phases 

for dynamic fluid-solids modelling and their complex interactions. Coupling CFD with 

the Population Balance Equation (PBE) to model crystallisation processes in stirred tank 

crystallisers is a well-documented example [137]. The question remains if the 

complexity of these coupled methodologies can be avoided and if all phases can be 

modelled using a Lagrangian scheme; the Smoothed-Particle Hydrodynamics (SPH) is 

thus the one considered in the current study. The SPH methodology provides historical 

information of individual fluid packets or particles in the domain of interest by tracking 

these particles; this implicit SPH capability opens up opportunities for better 

understanding of flow rheology behaviour. This is of special interest in complex 

processes where L-L and S-L interactions play a key role, such as the chemical 

processes commonly undertaken in OBRs, e.g. crystallisation. This can greatly improve 

the accuracy in the prediction of mixing, since historical information of particles allows 

for alternative ways to quantify mixing, as opposed to residence time distributions and 

axial dispersion assessments traditionally used in OBRs. The quantification of mixing 

efficiency in OBRs is of great interest and has been a hot topic of research since the 

1990s in both experimental [29-31, 33, 37-39, 42, 123] and numerical studies [28, 36, 

40, 43-45, 109], since both uniform mixing and heat transfer control in OBRs are the 

essential elements for achieving consistent product properties in these undertaken 

processes, e.g. narrow crystal size distribution, constant polymorph. In addition, SPH 
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allows for the implementation of new physics based on particle-particle interaction, 

which has great potential for modelling solids formation and growth in crystallisation 

processes.  

SPH was first developed in 1977 by Gingold and Monaghan [174] for astrophysical 

applications where no restrictions or boundaries are imposed by a numerical mesh, such 

as galaxy formation. The application of SPH into fluid flow problems was proposed by 

Monaghan in the early 1990s [175]. In SPH methodology, a continuous fluid domain is 

defined as a set of discrete Lagrangian particles and its continuum properties are 

approximated by local quantities that are smoothed with a mathematical kernel. This 

methodology, despite being less popular than traditional standard CFD approaches, is 

well documented [176, 177], and has augmented vast research attention in recent years 

in solving complex fluid flow problems [178-183] in micro and macro-scales. To the 

authors’ knowledge there has been no reported work on the application of SPH for 

modelling fluid flows in tubular baffled reactors. The aims of this work are to explore 

and investigate the feasibility of SPH in OBR by developing a bespoke solver; to 

compare flow characteristics of single phase flow predicted by SPH with those obtained 

with an Eulerian based model, e.g. Finite Volume (FV), via a commercial software 

package (ANSYS
®
 Fluent 15) and to provide quantitative assessment of mixing 

efficiency using the proposed methodology. This chapter has been published in the 

Journal of Computers & Chemical Engineering, Vol. 124, 2019, pages 14-27 [68]. 

8.2 Geometry & Operating Conditions  

The target device of this study is a simplified two-dimensional version of the NiTech 

DN15 COBR reactor described in Section 3.1. The schematic and geometry of the 

oscillatory baffled reactor modelled in this study are presented in Figure 8.1 and Table 

8.1. 
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Figure 8.1. Schematic of the modelled OBR; all dimensions are in mm [68] 

Table 8.1. Geometry dimensions of the OBR 

D (mm) 15 

Db (mm) 7 

Lb (mm) 24 

L (mm) 48 

Baffled cells in reactor (#) 2  

 

Water (ρ = 998.2 kg m
-3

, μ = 1.003∙10
-3

 kg m
-1

 s
-1

) is used as the working fluid with 

oscillatory conditions of xo = 5 mm and f = 1 Hz (Reo = 471 and St = 0.239); these 

conditions are chosen to avoid interactions among eddies generated during the forward 

and backward strokes so that symmetrical flow patterns are expected. 

8.3 Numerical Formulation 

The simulated system comprises a 2-dimensional domain and it is assumed iso-thermal. 

Navier-Stokes equations for mass and momentum conservation are solved as per 

Equations (3.1) and (3.2), which are discretised and solved separated using SPH and FV 

in their respective solvers. Note that the governing equations have been solved in a 2-

dimensional form, neither for FV nor SPH were these solved axi-symmetrically. 

8.3.1 Smoothed-Particle Hydrodynamic  

SPH discretises the fluid domain using a fixed number of infinitesimal particles that are 

tracked individually. Assuming that the system is fully flooded with a single-phase 
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fluid, no external forces are considered; hence Equations (3.1) and (3.2) can be written 

in their Lagrangian form as: 

D
u

Dt


               (8.1) 

1 1Du
p

Dt


 
               (8.2) 

and the position of each infinitesimal particle r  is governed by: 

dr
u

dt
             (8.3) 

This system of equations is closed using the relationship between density and pressure. 

Here, the fluid domain is treated as weakly compressible, for which this relationship is 

given by the Equation-Of-State (EOS) [175]. The most common EOS was proposed by 

Batchelor [184], the so-called Tait’s equation: 

0

1p B







  
   
   

           (8.4) 

where γ usually takes a value of 7 for water, ρ0 is the reference density of the fluid at 

atmospheric pressure and the constant B is defined as 
2

0 0c
B




 ; c0 is the reference 

speed of sound. The use of Tait’s equation as EOS highly reduces computational time, 

as oppose to solving the Poisson’s equation for incompressible flows [185]. The 

compressibility of the fluid in the SPH’s weakly compressible approach is controlled by 

co, which also determines the size of the time-step based on the Courant–Friedrichs–

Lewy condition [141], refer to Equation (8.30). High values of speed of sound result in 

both incompressible behaviour and very small time-steps. However, Monaghan [186] 

demonstrated that c0 values of ten to a hundred times the maximum velocity in the 

system, corresponding to a Mach number of less than 0.1, replicate incompressible flow 

with density fluctuations within 1%. A value of c0 = 10 m s
-1

 was then chosen for the 

simulations performed in this study. 
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8.3.1.1 Discretisation 

SPH treats a continuous medium as a discrete set of particles. At time zero, particles are 

uniformly distributed and are equidistantly spaced from each other, i.e. a distance x  in 

all directions. Hence, all particles have an initial volume of nx  where n is the 

dimensions of the domain. The discretisation of Equations (3.1) and (3.2) is derived 

from the Dirac distribution δ. Thus, the value of a function at a certain time and space of 

the domain can be written as: 

     , , nf r t f r t r r d r


             (8.5) 

where Ω denotes the domain, f is a function of position vectors r  and r  – the former 

refers to the particle of interestes and the latter to each of its neighouring particles – and 

the Dirac distribution takes a value of 1 and 0 when r r  and r r , respectively. The 

use of a kernel, W, to approximate the Dirac delta function results in:  

     , , , nf r t f r t W r r h d r


   
r

        (8.6) 

where h is the smoothing length of the chosen kernel function and is defined as h x 

; η typically takes a value of 1.2 – 1.3, the latter is chosen for this work, and Ωr denotes 

the r  point-centred continuous domain. For the  ,W r r h  function to be considered 

a kernel function, it must satisfy the following set of conditions [176, 177]: 

 The Delta function property that the kernel function must exhibit when 

smoothing length approaches zero:  

   
0

lim ,
h

W r r h r r


             (8.7) 

 The compact condition, which defines the area under which the kernel function 

operates: 

 , 0 when KW r r h r r h            (8.8) 

where K is a smoothing length related constant, and Kh defines the effective area 

of the kernel function, this area is commonly referred to as support domain (see 

Figure 8.2). 
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 The normalisation condition, also known as unity condition, since the 

integration of the kernel function should be equal to one: 

 , 1nW r r h d r


            (8.9) 

 The symmetry condition, as  ,W r r h  must be an even function: 

   , ,W r r h W r r h           (8.10) 

 Hence, the kernel gradient must be an odd function: 

   , ,W r r h W r r h            (8.11) 

 This yields to: 

 , 0nW r r h d r


           (8.12) 

Equation (8.6), which denotes the function of an arbitrary point or particle, i, can then 

be re-written using the integral or summation of contributions from its neighbouring 

particles, j. The contribution of each neighbouring particle is weighted by the use of the 

kernel function, based on the distance between particles i and j: 

     
1

, , ,
N

n

i j i j j

j

f r t f r t W r r h r


          (8.13) 

where N is the number of neighbouring particles within the kernel domain and 
n

jd r  is 

the infinitesimal volume of j, which can be notated as jr  and is described by the 

relationship: 

j j jm r             (8.14) 

Equation (8.13) hence overtakes the form of: 

     
1

, , ,
N

j

i j i j

j j

m
f r t f r t W r r h



         (8.15) 
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From this point onwards, for simplicity purposes  ,i jW r r h  will be denoted as Wij 

and  i jr r  as ijr . Following the same argument that led to Equation (8.15), 

mathematical expressions for a function’s spatial derivative, i.e. gradient, and 

divergence are given by Equations (8.16) and (8.17), respectively: 

   
1

, ,
N

j

i j i ij

j j

m
f r t f r t W



          (8.16) 

   
1

, ,
N

j

i j i ij

j j

m
f r t f r t W



          (8.17) 

The derivation of Equations (8.16) and (8.17) is further explained in Appendix 4. As in 

finite-difference methods, the gradients in Equation (8.16) and (8.17) can be written in 

several ways in SPH formalism. Among them are symmetric and anti-symmetric ones, 

more details of which can be found in the work by Liu and Liu [177] and Violeau [176]. 

In the same way, several SPH forms for the divergence field can be established. The 

two most commonly used forms for the gradient and divergence of a function were 

proposed by Monaghan (1992) [175], who suggested to include the scalar density, ρ, 

within the gradient operator as: 

 
1

 


f f f               (8.18) 

or 
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f f
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 

  
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  
        (8.19) 

Equation (8.18) can be re-written as: 
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where  ,i if f r t . This expansion of Equation (8.18) results in Equation (8.20a); in a 

similar way, the particle approximation for the divergence of a function is given by 

Equation (8.20b): 

   
1

1
, ,

N

i j ij i ij

ji

f r t m f r t W
 

                    (8.20a) 
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Following the same logic, Equation (8.19) can be re-written as: 
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Hence, Equation (8.19) yields Equation (8.21a). Analogously, Equation (8.21b) gives 

the particle approximation for the divergence of a function: 
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Figure 8.2 displays a schematic the particle approximation using neighbouring particles 

within the support domain of the kernel function, which is defined as Kh, in a two-

dimensional problem domain Ω with a surface S.  
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Figure 8.2. Particle approximation using neighbouring particles within the supporting 

domain of the kernel function W for particle i 

8.3.1.2 Kernel Approximation 

The kernel function Wij and its gradient ∇iWij, for smoothing length h, depend on the 

magnitude of the position vector ijr  as: 
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where αw,n is the kernel renormalisation term that depends on the kernel and 

dimensionality of the problem, W’ij is the kernel derivative and fw(q) represents the 

kernel function that is a positive, symmetric and at least once continuously derivable 

function with 
ijr

q
h

 . In this study, the Wendland is employed, as it provides high 

order of interpolation with reasonable computational cost [181]; a high order of 

interpolation is required to capture complex fluid flow phenomena, leading to high 
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degrees of accuracy and stability of the SPH scheme [187]. The Wendland kernel [188] 

is defined as: 

 
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where 
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16
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
  for 1, 2 and 3 dimensions respectively. 

 

Figure 8.3. Wendland kernel function, f(q), and its first derivative, f’(q)Position of lines 

at which results are extracted and evaluated 
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8.3.1.3 Continuity Equation 

The continuity equation, in its SPH formulation, is discretised in this work as proposed 

by Monaghan (1992). The divergence of the velocity function is implemented as per 

Equation (8.20b); substituting this into Equation (8.1) yields [175]: 

 
1

N
i

j ij i ij

j

D
m u W

Dt





           (8.25) 

where i is the interested particle, j any neighbouring particle within the kernel domain, 

i.e. 2ijr h  for the Wendland kernel, ∇i  the gradient of the kernel function with respect 

to the position vector ijr  and ij i ju u u   is the relative velocity between the particles. 

8.3.1.4 Momentum Equation 

The momentum equation, in its SPH formulation, was proposed by Monaghan (1992), 

where the gradient of pressure is implemented as per Equation (8.21a) [175]. Similarly, 

if the divergence of the viscus stress tensor is taken as per Equation (8.21b); substituting 

these into Equation (8.2) yields: 
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The particle approximation of the viscus stress tensor is given in SPH literature as 

[189]: 
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The viscus forces in Equations (8.26) and (8.27) were estimated by Morris et al. (1997) 

[190] based on an expression proposed by Monaghan (1995) [191] to model heat 

conduction. This work made use of Morris et al.’s formulation of viscosity, thus the 

momentum equation was discretised as [190]: 
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8.3.1.5 Density-Smoothing Method 

Equations (8.25) and (8.28) are solved and regarded as the standard weakly 

compressible SPH method. However, while kinematics in SPH is well understood, the 

weakly compressible approach can result in pressure fluctuations between particles, 

translating into numerical noise in the velocity field, which may exacerbate disorder and 

erratic motions of the fluid particles. One of the most straightforward and 

computationally least expensive approaches to tackle this issue is to perform a 

smoothing filter over the density of the particles [181]. In the past, this has commonly 

been done by re-assigning a reference density value to each particle at set time intervals 

[192-194]. A more elegant approach, utilised in this work, is to implement a simple 

density-smoothing model, analogous to the α–XSPH model as proposed by Violeau 

[176]: 

1

ˆ
N

ij

i i j ij

j ij

m W


  


           (8.29) 

where ε is a dimensionless coefficient, ij i j     and ij  is the harmonic average. 

Values of the order of 10
-2

 are often recommended for the constant ε of the density-

smoothing function [176]; ε = 0.01 is chosen in the present study. When this density-

smoothing method is implemented, Equation (8.29) is solved immediately after solving 

Equation (8.25). 

8.3.1.6 Time Integration 

An adaptive time-stepping algorithm is used for calculating time-steps Δt. Here, three 

criteria are used which include the Courant–Friedrichs–Lewy condition [141]: 

0

CFL CFL

h
t C

c
           (8.30) 

a constraint based on the force per unit mass of each particle [175], which is essentially 

the magnitude of particle acceleration if : 

minforce force
i

i

h
t C

f

 
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 
 

        (8.31) 

and an additional constraint due to viscous diffusion [190]: 
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2

minvisc visc
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h
t C



 
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 
         (8.32) 

where the kinematic viscosity 0i i    and μ0 is the reference viscosity of the fluid. 

Values for CCFL, Cforce and Cvisc of 0.01, 0.0125 and 0.0125, respectively, are 

conservatively chosen to ensure stability of the solution. The final time-step was chosen 

as the minimum of these three conditions: 

 min , ,CFL force visct t t t             (8.33) 

Time was integrated explicitly using the second order accurate Verlet algorithm [195]: 
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where the past, current and future temporal steps are represented by n-1, n and n+1, 

respectively. Note that the use of Equations (8.34) and (8.35) will eventually lead to a 

decoupled system. In order to prevent the solution at odd and even time-steps from 

diverging, an Euler upwind integration:  

, 1 ,
i

i n i n n

n

D
t

Dt


 

 
   

 
        (8.37) 

, 1 ,
i

i n i n n

n

Du
u u t

Dt


 
   

 
        (8.38) 

is performed at every M time steps; a value of M of 50 is presently used. 

8.3.1.7 Boundary Conditions 

The walls that define the limits of the fluid domain were simulated using dynamic 

boundary conditions [179], chosen for its computational simplicity. Particles comprising 

dynamic boundaries are solved like any other fluid particles following the solution of 
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Equations (8.4), (8.25) and (8.28). However, the particle positions remain fixed and are 

not updated in subsequent iterations in time. In order to ensure all fluid particles have 

consistently the same number of neighbouring particles at all times, solid wall 

boundaries were modelled with three consecutive rows of dynamic particles. 

In order to model the oscillatory behaviour of the fluid, two pistons, one on the left 

and another one on the right, are defined on both ends of the OBR, as shown in Figure 

8.4, using dynamic particles whose positions and velocities are controlled by Equations 

(2.1) and (2.2).  

 

Figure 8.4. SPH OBR model for Δx = 0.0005m 

8.3.1.8 Post-Processing Monitors 

The velocity profiles of the flow in the OBR are evaluated along three different lines as 

depicted in Figure 8.5: a vertical line at the middle of the left baffle (Line 1) – the 

section experiencing the highest velocity; a centred vertical line (Line 2) – the area 

where the strongest eddy dissipation occurs; and a centre horizontal line (Line 3) – the 

area with the weakest eddy interaction as aforementioned. The velocity magnitude um at 

each point of a line, defined at equidistance intervals of Δx along the monitor lines, is 

calculated analogously to Equation (8.15), given by: 
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where i is the interpolated monitor point that utilises information from surrounding 

particles within the kernel smoothing length. 
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Figure 8.5. Position of lines at which results are extracted and evaluated [68] 

8.3.2 Finite Volume Method 

For the purpose of comparison, the Eulerian based Finite Volume (FV) method is also 

applied to the same geometry and operational conditions as given in Table 8.1 and 

Figure 8.1. The following Navier Stokes for continuity and momentum conservation 

equations, given by Equations (3.1) and (3.2), are simplified and solved for 

incompressible flow as per Equations (3.6) and (3.7)  

8.3.2.1 Numerical Setup 

All the numerical FV modelling is performed using the ANSYS
®
 Fluent 15.0 CFD 

package. Simulations are done by the pressure-based segregated solver, using the 

SIMPLE pressure-velocity coupling algorithm. A second order upwind scheme was 

utilised for the spatial discretisation of the momentum equation; a second order scheme 

for the interpolation of pressure at the faces of the grid and a second order implicit 

scheme for time discretisation. The time-step employed is 0.001 seconds throughout all 

simulations and the convergence criteria is set to residuals of 10
-5

 for solving both 

Equations (3.6) and (3.7) to ensure accuracy. The average value of the Courant–

Friedrichs–Lewy (CFL) coefficient was kept below 0.6 and the maximum CLF value 

below 4.1. 

To replicate the OBR with the double piston in the SPH approach, flat velocity 

profiles are defined on both ends of the OBR using a customized User Defined Function 

(UDF) in ANSYS
®
 Fluent given by Equation (2.2); walls were model as no-slip 

boundaries. Equations (3.6) and (3.7) were solved as laminar, i.e. no turbulence model 

was implemented. This is in agreement with literature, where laminar solver has been 

the norm for simulating flows in oscillatory baffled reactors in the past [54, 57, 59] and 
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present decade [44, 45, 64, 65, 109] under a FV framework, including flows with Reo 

values up to 8043 [43, 58]. 

8.3.2.2 Mesh 

A mesh sensitivity analysis is performed using a selection of computational nodes per 

baffled cell. Meshes of the two baffled-cell domain of five different resolutions are 

analysed for ten oscillatory cycles. Profiles of velocity magnitude extracted at Lines 1, 2 

and 3, as shown in Figure 8.5, are then cycle-averaged over all ten oscillatory cycles and 

compared for strokes 1 to 4 (refer to Figure 2.1) for various mesh densities. The 

coefficient of determination, R
2
, was selected for comparison between meshes, as 

described in Section 3.3. A summary of the mesh independency analysis is shown in 

Table 8.2, clearly indicating that the resolution of mesh #2 is the desired choice on the 

balance between accuracy and computation time, which is selected for this work.  

Figure 8.6 illustrates the resolution and distribution of mesh #2, which is generated 

using ANSYS
®
 ICEM containing only hexahedral elements. 

Table 8.2. Mesh sensitivity analysis results (R
2
) where results from mesh #1 are used as 

the based for comparison 

Line 1 

Mesh # # Nodes
*
 Stroke 1 Stroke 2 Stroke 3 Stroke 4 

1 38 k  – – – – 

2 17 k 0.999 0.997 0.999 0.945 

3 10 k 0.999 0.997 0.997 0.896 

4 6 k 0.994 0.989 0.999 0.948 

5 3 k 0.982 0.952 0.993 0.953 

      
Line 2 

Mesh # # Nodes
*
 Stroke 1 Stroke 2 Stroke 3 Stroke 4 

1 38 k  – – – – 

2 17 k 0.988 0.988 0.966 0.972 

3 10 k 0.986 0.994 0.948 0.933 

4 6 k 0.968 0.925 0.893 0.867 

5 3 k 0.971 0.760 0.918 0.621 

      
Line 3 

Mesh # # Nodes
*
 Stroke 1 Stroke 2 Stroke 3 Stroke 4 

1 38 k  – – – – 

2 17 k 0.997 0.983 0.994 0.983 
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3 10 k 0.996 0.989 0.989 0.962 

4 6 k 0.984 0.978 0.975 0.965 

5 3 k 0.924 0.952 0.911 0.922 
* 
The values of number of nodes are per baffled cell.

  

 

 

Figure 8.6. Finite volume chosen mesh (#2): 17k nodes per baffled cell [68] 

8.4 Results & Discussions 

8.4.1 Profile Development 

Previous CFD work on oscillatory baffled reactors by Jian [144] showed that flow 

patterns in an OBR become repeatable and achieved a quasi-steady-state after 5-7 

oscillation cycles. Following the same methodology, the volume-weighted averaged 

strain rate as a function of time is shown in Figure 8.7, displaying a similar quasi-steady 

state after cycle 4. In this work, cycle-averaged parameters generated between cycles 6 

to 10 are used for comparison.  
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Figure 8.7. Convergence of strain rate with time in Fluent [68] 

8.4.2 Sensitivity Test of SPH Particles  

Figure 8.8 shows the cycle-averaged velocity magnitude profiles of Line 3 (see Figure 

8.5), generated by SPH, at strokes 1 and 3 (see Figure 8.2.1) for three different 

resolutions in terms of the initial particle distribution spacing, Δx. Strokes 1 and 3 were 

chosen because the flow at these instances experiences the maximum local velocities, 

leading to potential lower rates of convergence. A clear convergence in the cycle-

averaged velocities is observed with decreasing Δx, and the results become resolution 

independent at Δx = 0.00025 m, which is therefore chosen for the investigation. 
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Figure 8.8. SPH cycle-averaged velocity magnitude profiles of Line 3 for different Δx 

values [68] 

 

8.4.3 Flow Patterns & Velocity Profiles 

8.4.3.1 Flow Patterns 

Figure 8.9 shows the cycle-averaged flow patterns modelled by both the FV and the 

SPH with an additional density-smoothing function (SPH D-S for short) at strokes 1 to 

4 of an oscillation cycle (see Figure 8.2.1). Both methods predict similar eddy formation 

throughout the oscillation, leading to good comparison. The subtle differences between 

the two models are the relative size and the intensity (by colour) of eddies. The intensity 

of flow restriction in strokes 1 and 3 is higher for SPH D-S than that for FV, resulting in 

larger recirculating velocities at the top and bottom of the baffled cell, causing the eddy 

structures generated during strokes 2 and 4 to remain closer to the baffle’s walls. On the 

contrary, results generated by the FV have slightly larger velocities along the centre of 

the baffled domain, enhancing a small displacement of eddies towards the centre of the 

baffled cell. This slight difference in eddy displacement is reflected in the velocity 

profiles presented in the next sub-section and the maximum velocities listed in Table 

8.3. Flow patterns observed during strokes 1 and 2 and eddy structures formed in 

strokes 2 and 4 are of high resemblance for the two methodologies nonetheless. Overall, 

the results show that the SPH D-S is a viable method in modelling flows in OBR. 
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Figure 8.9. Cycle-averaged velocity magnitude contours at strokes 1 to 4 for FV and 

SPH D-S [68] 
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Figure 8.9. (continuation) Cycle-averaged velocity magnitude contours at strokes 1 to 

4 for FV and SPH D-S [68] 
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Table 8.3. umax for different strokes and methodologies 

 
Strokes 1 & 3 Strokes 2 & 4 

Finite Volume Method 0.1476 m s
-1

 0.0897 m s
-1

 

SPH with Density-Smoothing model 0.1127 m s
-1

 0.0531 m s
-1

 

 

8.4.3.2 Velocity Profiles 

The cycle-averaged velocity magnitude profiles at Lines 1, 2 and 3 computed by the FV, 

the standard SPH and SPH D-S methodologies are shown in Figures 8.10 – 8.12, 

respectively; the density-smoothing function was added in a separate simulation to 

assess its effect individually.  

Figure 8.9 neatly displays how two noticeable high velocity regions (red colour) 

occur through the baffle constriction during strokes 1 and 3, which is shown in Figure 

8.10 as a double-peak velocity profile across Line 1. The velocities obtained with the 

SPH methodology alone do not display the expected double-peak pattern as the FV did 

in the forward (1) and reverse (3) strokes, but exhibit parabolic-like characteristics 

which indicate excessive localized density fluctuations due to the weakly compressible 

limitation across the constriction of the baffle. This effect is then minimized when the 

density-smoothing (D-S) function is introduced to limit the “noise” in density 

distribution. In doing so, the double-peak velocity profiles are reproduced during 

strokes 1 and 3, highly resembling those modelled by the FV method. Figure 8.9 also 

provides qualitative evidence of how, during strokes 2 and 4, the changes in direction of 

the flow lead to local stalling across the baffle constriction, which translates into lower 

and more uniform velocity components in the baffle constriction area as shown in 

Figure 8.10. The results from the SPH simulation echo the above nonetheless; again the 

results from the SPH D-S improve the accuracy of the velocity field and are similar to 

those provided by the FV method. 

For the given geometry and operating conditions, symmetrical-mirrored flow 

patterns and similar velocity magnitudes between the peak and trough are expected (see 

Figure 8.9). The velocity profiles predicted by SPH D-S (in Figure 8.10) at strokes 1 

and 3 are indeed very similar in both shape and magnitude with a maximum difference 

of 4.7%, while the results computed by the FV approach at the same strokes have a 

larger discrepancy, of 18.5%. A similar outcome is likewise seen for strokes 2 and 4. 
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Figure 8.10. Cycle-averaged velocity magnitude profiles of Line 1 for SPH, SPH D-S 

and FV methods [68] 

The cycle-averaged velocity magnitude profiles across Line 2 (in the middle of the 

baffled cell, see Figure 8.5) are shown in Figure 8.11 for the FV, SPH and SPH D-S 

approaches. It is seen that the velocity profiles at the strokes 1 and 3 by the FV not only 

differ in velocity amplitude with a maximum error of 8.7%, but also differ in shape. 

Conversely, the velocity profiles by the SPH D-S method display repeatable cyclic flow 

with a maximum error of 0.5% at the same strokes. It demonstrates again that a density-

smoothing method is essential to provide regular and predictable flow patterns with 

SPH, showing good reproducibility and consistency for modelling oscillatory transient 

problems. 

For strokes 2 and 4 representing the end of both the forward and backward strokes 

respectively, the comparisons of velocity profiles are better for both the FV and SPH D-

S methods; however the magnitudes for the former are larger than for the latter. 

These differences in the magnitude and shape of velocity profiles among FV strokes, 

and between FV and SPH D-S, at Line 2, are due to the earlier mentioned phenomenon: 

Figure 8.9 showed that while eddy structures generated by SPH D-S remain close to the 
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walls of the baffles, eddies observed in FV solutions are slightly displaced towards the 

centre of the baffled cell. This leads to an increment in velocity magnitude at Line 2, in 

comparison with those obtained with SPH D-S. This eddy displacement shown in FV 

results occurs at every cycle; the distance travelled by the eddies remains significantly 

constant throughout cycles, leading to a quasi-steady-state, hence a stable cycle-

averaged velocity field is obtained (Figure 8.9). However, subtle alterations in the 

distances travelled by eddies from cycle to cycle manifest into significant differences in 

the magnitude of velocity and the shape of velocity profiles at Line 2 among FV 

strokes. This is clearly observed in Figure 8.13, where velocity magnitude profiles, 

obtained with FV and extracted at Line 2, are presented at strokes 1 to 4 for different 

oscillatory cycles. Likewise, Figure 8.14 shows the analogous for SPH D-S. 

Undoubtedly, SPH D-S does a better job at producing cycle-repeatable results than FV, 

especially for velocity profiles at a vertical centred line (at the middle of the baffled 

cell). Nonetheless, despite this phenomenon and its impact on velocity profiles at Line 

2, both methodologies present very similar cycle-repeatable velocity fields across the 

entire domain, capturing almost identical eddy generation patterns, as stated in section 

4.3.1. 

 

 

Figure 8.11. Cycle-averaged velocity magnitude profiles of Line 2 for SPH, SPH D-S 

and FV methods [68] 
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The cycle-averaged velocity magnitude profiles shown in Figure 8.12 are measured 

across a horizontal centre line (Line 3 in Figure 8.5). Again, the standard SPH approach 

suffers from noise arising from its density distribution, consequently, the velocity 

magnitudes for all strokes display small fluctuations that have a dampening effect on the 

overall flow profile, in particular in strokes 2 and 4 where the velocity components are 

small. These density fluctuations and the associated velocity dampening effect are 

eliminated by the use of SPH D-S. As earlier mentioned, the numerical solution for 

strokes 1 and 3, and strokes 2 and 4, should ideally yield a profile that mirrors one 

another; this is especially expected at Line 3, as it is positioned across the axial 

direction. Both FV and SPH D-S methodologies successfully predict mirror-shaped 

velocity profiles among strokes, and show good agreement and resemblance among one 

another. Local differences in velocity magnitude are the results of the aforementioned 

eddy displacement produced by FV. 

 

 

Figure 8.12. Cycle-averaged velocity magnitude profiles of Line 3 for SPH, SPH D-S 

and FV methods [68] 
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Figure 8.13. Velocity magnitude profiles of Line 2 obtained with Finite Volume (FV) 

method for different oscillatory cycles [68] 
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Figure 8.14. Velocity magnitude profiles of Line 2 obtained with SPH Density-

Smoothing (SPH D-S) method for different oscillatory cycles [68] 

8.4.4 Mixing Assessment 

Diverse methods and indexes have been used in the past in order to quantitatively assess 

mixing efficiency in OBR, for example, the velocity ratio [43, 57, 58] and stretch rates 

[50, 53]. Simulated data obtained with the SPH can directly be utilised to do the same 

analysis.  

8.4.4.1 Velocity Ratio 

The axial to radial velocity ratio (RV) was proposed by Ni et al. (2003) [55] in order to 

correlate results between those obtained from a three-dimensional numerical simulation 

and the two-dimensional experimental measurements from digital particle image 

velocimetry (DPIV) in a OBR. The axial to radial velocity ratio was defined as:  
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where ux,i and uy,i are, respectively, the axial and radial velocity components of a 

particle i, and NT is the total number of fluid particles in the domain. By directly 

utilising the velocity data generated by the SPH D-S method, the cycle-averaged 

velocity ratio is obtained and plotted against the period of an oscillatory cycle in Figure 

8.15; the shape of which is the same as that reported by Jian and Ni [58]. Past work [43, 

57, 58] correlated RV as a function of oscillatory Reynolds number (Reo) for fluids of 

different viscosities in OBRs and an inversely proportional relationship was established 

for Reo < 1000. The average RV value of 3.18 in this work is slightly higher than in the 

aforementioned work [58], due to the lower oscillatory Reynolds number (Reo = 471) 

under which the current study was performed. 

 

Figure 8.15. Cycle-averaged velocity ratio for the period of an oscillatory cycle [68] 

8.4.4.2 Stretch Rates 

Another way of quantifying the rates of mixing in a system, due to its fluid dynamics, is 

by analysing the rates at which infinitesimal lines of the fluid domain are stretched 

[196]. Fluid motion may imply stretching and folding actions, which are characteristic 

of chaotic advection; thus its analysis is key to the understanding of the mixing 

mechanism in chaotic flows. The examination of stretch rates requires Lagrangian 

tracking of these infintesimal lines that compose the domain under evaluation and was 

for the first time utilised for the assessment of mixing efficiency in oscillatory baffled 
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field with SPH, the necessity of superimpossing a Largrangian tracer whose movement 

is integrated based on an Eulerian velocity field [50, 53] is avoided. It is an easy task to 

assign an infinitesimal line to each fluid particle that comprises the domain in SPH; 

these lines are then ascribed an initial orientation (at time = 0 s) relative to the axis in 

the x-direction, defined by the anticlokwise angle θ. (see Figure 8.16).  

 

Figure 8.16. Schematic showing the change in orientation of a lime element assigned to 

a fluid particle 

The rate of rotation is thus given by: 
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    (8.41) 

and the instantaneous exponential stretch rate of an infitesimal line is defined as:  
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    (8.42) 

The derivation of the rate of rotation and the exponential stretch rate of a line element, 

Equations (8.41) and (8.42) respectively, is explained in Appendix 5. The time-averaged 

exponentatial stretch rate S(t) of a line can be integrated as: 

 
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The above is then volume-averaged for all the lines comprising the system – S̅(t) – and 

plotted with time, giving an asymptotic value S̅as. Exponential stretch rates have units of 

s
-1

, and are scaled with the frequency of the oscillation (f) in order to obtain 

dimensionless values. Roberts and Mackley (1995) [50] obtained S̅(t) – Re and S̅(t) – St 

relations, while the effect of Reo on S̅(t) was later established by Mackley and Neves 

Saraiva (1999) [53]. Based on their findings, S̅as values between 0.5 and 1 are expected 

for the operational conditions of the current system under evaluation; the asymptotic 

values in Table 8.4 fall within the range. Figure 8.17 shows the evolution of S̅(t) for 

different initial values of θ; the profiles and trends are identical to those of the 

aforementioned research works. 

Table 8.4. Effect of the initial orientation of the infinitesimal lines on the asymptotic 

value of the systems exponential stretch rate 

θinitial S̅as 

0° 0.83 

45° 0.98 

90° 0.97 

135° 0.94 

 

 

Figure 8.17. Effect of the initial orientation of the infinitesimal lines on the time 

evolution of the time-averaged exponentatial stretch rate [68] 
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8.4.4.3 Distribution of Neighbouring Fluid Particles 

Using the SPH approach, an alternative mixing assessment can be proposed by defining 

the domain as two identical immiscible fluids; these fluids can initially be displayed in 

serial or in parallel, as shown in Figures 8.18 and 8.16 (time = 0 s). As the simulation 

advances with time, visual and qualitative assessment of axial and radial mixing 

efficiency are observed in Figures 8.18 and 8.19, respectively. 

 

Figure 8.18. Qualitative axial mixing assessment for SPH D-S and Δx = 0.0005m [68] 
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Figure 8.19. Qualitative radial mixing assessment for SPH D-S and Δx = 0.0005m [68] 

The evolution of mixing efficiency with time can be obtained by quantifying, for 

each particle, how many of its neighbouring particles are of Fluid A, and how many of 

its neighbours are of fluid B. Numerically, this is done as follows. Let each particle i 

carry a dimensionless binary variable Ji, whose value can be 0 (if it is a Fluid A particle) 

or 1 (Fluid B). By doing so, a time-dependent dimensionless “neighbouring mixing 

index”, NM(t), is defined for each particle as: 
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where the kernel Wij has been corrected using the Shepard filter [197], in order to avoid 

irregularities with particles close to the boundaries, as those will have a lower number 

of neighbouring fluid particles than particles in the bulk. ijW  is defined as: 
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The neighbouring mixing index is averaged over all the particles comprissing the fluid 

domain. At time zero, every Fluid A particle has a certain number of neighbouring 

particles, all of which are of Fluid A; likewise, every Fluid B particle only has Fluid B 

neighbours. This will be true for all particles, except those at the interface that separates 

the two types of fluids, hence yielding a NM(t=0s) ≈ 0. On the contrary, a fully mixed 

system is achieved when each particle has an equal number of neighbours of Fluid A 

and Fluid B, resulting in NM = 1. 

 

Figure 8.20. Effect of the initial display of fluids A and B on the time evolution of NM 

for Δx = 0.001m (left) and Δx = 0.00025m (right) [68] 

Figure 8.20 plots the NM as a function of time for both fluid placements as shown in 

Figures 8.18 and 8.19, for two initial particle distribution spacing (Δx). It is seen that 

both the axial and radial neighbouring mixing indices increase with time and level off at 

about 0.6 (Figure 8.20 left). This is expected, as there is no interaction between eddies 

at the selected operational conditions. Using a smaller Δx (higher resolution), 

increments of both axial and radial neighbouring mixing indices with time are slower, 

as the domain is composed by a larger number of particles, taking longer times for them 

to intermix. Figure 8.20 also shows a better mixing performance in the radial than in the 

axial direction as the asymptotic value is reached faster when fluids A and B are 

initially displayed in parallel. Using the rate at which NM changes with time (i.e. 

dMN/dt) during the first oscillatory cycles for both initial fluid placements, a new index 

for plug flow (PF) can be defined as: 
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The lower the value of PF, the better the plug flow behavior the system can achieve. 

The slopes in Figure 8.20 together with PF values are listed in Table 8.5 where a small 

PF value (0.31) is consistently obtained regardless of Δx, indicating near plug flow 

performance. Note that computational time constrictions prevented simulaitions with 

small Δx values from running long enough for an asymptotic NM(t) value to be 

achieved. However, for the sake of demonstration, the results for Δx = 0.001 m are 

presented here, which accurately predict the ratio of axial to radial NM change with 

time. 

Table 8.5. Change rates of NM and PF values for different flow field resolutions (Δx) 

Δx (m) (dNM/dt)axial (dNM/dt)radial PF 

0.001 0.0084 0.0274 0.31 

0.00025 0.0219 0.0718 0.31 

 

It should be noted that a more complex and computationally expensive Eulerian-

Lagrangian coupled solver (Discrete Phase Model) is required by the FV methodology 

to provide similar information of individual particles as the one obtained with the SPH. 

8.5 Conclusions 

In this study, SPH, a relatively new Lagrangian approach, has successfully been 

implemented and utilised for the first time to model and predict symmetrical flow 

patterns and to assess mixing efficiency in a 2-dimensional OBR system.  

The SPH has effectively captured the expected flow characteristics in an oscillatory 

baffled reactor and produced clear higher velocity regions at the baffle constriction 

during strokes 1 and 3, and eddy formation during the change in direction at strokes 2 

and 4. The density-smoothing function in SPH is important to offset density fluctuations 

stemmed from the weakly compressible model. The results from SPH D-S provide a 

more consistent quasi-steady-state flow and show a higher degree of cycle-repeatability 

than that from its Eulerian counterpart.  

An added advantage of SPH is that it allows quantitative assessments of mixing 

without the need for additional models like Eulerian based methods, due to its readily 

available information of individual fluid particles. This work has not only demonstrated 

its potential to easily implement the existing methods to quantify mixing, such as 
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velocity ratio and stretch rates, but also proposed new indexes for assessing mixing and 

plug flow efficiency by making full use of SPH’s capabilities. The proposed SPH 

methodology has great potential for modelling flows when two phases are involved, e.g. 

solids in liquid in crystallisation processes, as the flow in SPH is driven by particle-

particle interaction, allowing for the implementation of new physics based on these 

interactions; successfully modelling single phase flow is an essential first step forward 

for multiphase cases. 

 



 

178 
 

Chapter 9        Conclusions & Recommendation of Future Work 

This chapter presents a summary of the conclusions reached by analysing the findings 

of this PhD research and lists out some potential future work. 

In the area of power density estimation in oscillatory baffled reactors, this work for 

the first time conducts a detailed analysis and examination of the applicability, 

capability and deficiencies of two existing models using CFD methodology. The “quasi-

steady” model (QSM) [115] over-estimates power dissipation rates due to the inaccurate 

formulation of two of its geometric parameters for modern COBRs. By using a revised 

power law dependency on the number-of-baffles term (n
x
) and an appropriate orifice 

discharge coefficient (CD), it was demonstrated that the updated QSM can not only be 

used for a much wider application range than previously outlined, but also for both 

batch and continuous operations. The “eddy enhancement” model (EEM) [116, 117]; 

generally provides better predictions of power density for the conditions tested; 

however, its accuracy can substantially be enhanced by applying the aforementioned 

power law dependency on n and by using an empirical correlation proposed in this work 

to estimate EEM’s “mixing length”. After full validation, both models give very similar 

power density estimations and can be used interchangeably with high confidence. 

The causes of energy losses reported by a liquid phase in a COBR, as reported in 

previous studies [14, 121] and confidential industrial trials, have been analysed by 

examining power dissipation rates for a wide range of operational and geometrical 

conditions. This study provides detailed insights into the relationship between power 

dissipation and pressure drop profiles and reveals that geometries that are perfectly 

symmetric in the axial direction, i.e. periodically repeatable, do not present signs of 

energy losses. This was the case even under fully compressible conditions, therefore 

disregarding the potential energy losses caused by the presence of air bubbles in the 

system. These findings led to the analysis of the effect of different geometric events that 

disrupt the axial symmetry of the system, i.e. joints without baffle constriction, sections 

with a reduced cross-sectional area of the baffle constriction and bend joints. The results 

revealed that the presence of sections missing one or multiple baffle constrictions led to 

a decrement in power dissipation rates, which is caused by the eddy shedding 

phenomenon within the missing baffle sections. Inevitably, this translates in lower 

velocities experienced by the fluid within certain sections of the device. On the other 

hand, sections with a reduced cross-sectional area of the baffle constriction and bend 
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joints do not yield energy losses in the device; as a matter in fact, they require a higher 

power density for the flow to overcome these constraints. This is in agreement with the 

early work of Brunold et al. (1989) [78] on energy losses for oscillatory flow in ducts 

containing sharp edges. 

In the area of multiphase (S-L) flow in COBR, this work, for the first time, 

investigates the effects of particle size on axial dispersion, evaluates particles’ residence 

times and velocities and quantifies the oscillation dampening experienced by solid 

particles in a COBR. A primary Eulerian liquid phase is coupled with a secondary 

discrete Lagrangian phase consisting of solid particles of given density and size, 

providing insights on how particles behave in a COBR. It was observed that as particles 

increases in size, dampening of their oscillatory velocity occurred, translating into 

smaller axial dispersion and longer residence times; this agrees with experimental 

observation reported by Ejim et al. and Kacker et al. [46, 47]. This phenomenon 

inevitably translates into reduction of particles’ suspension, which was quantified in this 

work. Additionally, both perfect and imperfect pulse methods are used to determine 

axial dispersion, the latter providing more reliable results. 

Finally, in the front of numerical modelling, this PhD research presents an alternative 

Lagrangian based methodology, Smoothed-Particle Hydrodynamics (SPH), for the 

numerical prediction of flow patterns in OBRs and for the assessment of their mixing 

performance. An SPH solver is hence developed and employed, for the first time, in the 

modelling of single phase flow in a two-dimensional OBR. The results obtained were 

compared with those from Eulerian modelling, i.e. Finite Volume (FV) method. SPH 

has successfully captured the expected flow characteristics in OBR as clearly and 

equally as its Eulerian counterpart, thereby validating the SPH method. Since SPH 

provides historical information of individually tracked fluid packets/particles in the 

domain of interest, it allows for readily quantitative assessments of mixing without 

additional models. Two new indexes to assess mixing and plug flow efficiency have 

been proposed by making full use of SPH’s capabilities. 

Here is by no means an exhaustive list for some potential future work: 

 In the area of energy loss assessment for single liquid phase, the current work 

presented the impact that some geometric events may have. However, the effect 

of common foreign geometries in experimental setups, such as PAT probes, on 

energy lose is worth investigating. Moreover, the current research was 
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conducted exclusively in DN15 COBRs; future research could broaden this area 

of knowledge by examining different operating and geometric conditions in 

reactors of different scales. 

 This research set the basis for understanding the behaviour of solid particles of 

different sizes for multiphase flows in COBRs. However, other features that 

should be considered in future research are: collision between particles of the 

same size, collision between particles of different size, breakage and 

agglomeration of particles.  

 The current research presented Smoothed-Particle Hydrodynamics (SPH) as a 

viable methodology for the simulation of fluid flow in OBRs. While this work 

was exclusively carried out for a single liquid phase, it was a necessary step 

towards multiphase modelling. SPH, due to its Lagrangian implicit nature, offers 

a wide range of possibilities for the inclusion of new physics, e.g. nucleation and 

growth kinetics of solids, rules for agglomeration and breakage, and the 

inclusion of population balance equations; all this is based on particle-particle 

interaction, since it is the driving force behind SPH methodology. Therefore, a 

new door has been opened into the future for multiphase flow modelling in 

OBRs. Additionally, future work may consider more complex geometries in 

three dimensions, which will demand higher computational power. Thus, the 

self-written SPH solver should be parallelised; this will permit running 

simulations in multiple cores, enhancing its computational efficiency. 
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