
HERIOT-WATT UNIVERSITY

Machine learning methods for

uncertainty quantification in subsurface

reservoirs

by

Shing Cheng Chan Chang

A thesis submitted for the degree of Doctor of Philosophy

in the

School of Energy, Geoscience, Infrastructure and Society

December 2018

The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the
information contained in it must acknowledge this thesis as the source of the quotation or information.

Heriot-Watt University (https://www.hw.ac.uk/)
sc41@hw.ac.uk
EGIS (https://www.hw.ac.uk/schools/energy-geoscience-infrastructure-society.htm)

HERIOT-WATT UNIVERSITY

Abstract

School of Energy, Geoscience, Infrastructure and Society

Doctor of Philosophy

by Shing Cheng Chan Chang

We investigate current challenges in the reservoir engineering pipeline that can be ad-

dressed using recent machine learning techniques. Our emphasis is on improving the

performance of uncertainty quantification tasks which are ubiquitous in subsurface reser-

voir simulations. In one work, we accelerate multiscale methods by embedding a neural

network surrogate for the fast computation of the custom basis functions, replacing the

need to solve the local elliptic problems normally required to obtain them. In a different

work, we address current challenges in obtaining geological parametrizations that can

capture complex geological structures. We adopt a neural network parametrization us-

ing a recent unsupervised learning technique, obtaining an effective parametrization that

can reproduce high-order statistics of flow responses. In a follow-up work, we introduce

a method for post-hoc conditioning of the neural network parametrization to generate

conditional realizations by training a second neural network to sample from a Bayesian

posterior and coupling it with the original network. In our final work, we introduce

a framework for exemplar-based parametric synthesis of geological images based on a

recent kernel method, obtaining a neural network parametrization of the geology using

a single exemplar image.

Heriot-Watt University (https://www.hw.ac.uk/)
EGIS (https://www.hw.ac.uk/schools/energy-geoscience-infrastructure-society.htm)
sc41@hw.ac.uk

Dedicated to my family

“I have always believed that scientific research is another domain where a form of opti

mism is essential to success: I have yet to meet a successful scientist who lacks the ability

to exaggerate the importance of what he or she is doing, and I believe that someone who

lacks a delusional sense of significance will wilt in the face of repeated experiences of

multiple small failures and rare successes, the fate of most researchers.”

Daniel Kahneman, Thinking, Fast and Slow.

Acknowledgements

I would like to thank my professors at Instituto Universitario Aeronáutico: Mario Derrico

and Carlos Sacco for their constant and invaluable support; Roberto Guibert, Carlos

Kozameh, Pedro Pury, Gustavo Scarpin, Luis Serrano and Andres Liberatto for the

inspiring lectures during my undergraduate studies; and German Weht for being a guide

and a good friend.

I would like to thank Organización Multidisciplinaria de Apoyo a Profesores y Alumnos

del Paraguay for showing me the beauty of mathematics through awesome math contests,

where I learned that the hardest questions in science are often the easiest to understand,

and conversely, many seemingly difficult problems often contain simple solutions.

I am deeply grateful to my supervisor Ahmed H. Elsheikh for granting me this wonderful

opportunity to come and study in a First World quality institution, as well as for his

support throughout this journey – including being my guarantor when I was looking for

a flat, which was not a trivial thing to obtain. I also thank my colleague Nagoor Khan

for being a great flatmate and friend.

Last but not least, I would like to thank my mom for her relentless support in all stages

of my life – no achievements would have been possible without her; my grandparents for

teaching me the value of education; and my uncle, my sister, and of course my friends,

who despite the long distance and time zone manage to keep in constant touch with me.

Contents

List of Figures iii

List of Tables vi

1 Introduction 1

1.1 Why machine learning? . 2

1.1.1 Machine learning and physics . 3

1.1.2 Application examples . 4

1.2 Basic concepts . 5

1.3 Outline of the thesis . 7

2 A machine learning approach for efficient uncertainty quantification
using multiscale methods 11

2.1 Introduction . 12

2.2 Background . 13

2.2.1 Multiscale finite volume method 13

2.2.2 Feedforward neural networks for surrogate modeling 16

2.2.2.1 Neural network optimization 17

2.2.2.2 Regularization . 18

2.2.2.3 Architecture design and hyperparameter tuning 18

2.3 Methodology . 20

2.3.1 Implementation and computational aspects 21

2.3.2 Other machine learning techniques 22

2.4 Numerical experiments . 22

2.4.1 Learning process . 23

2.4.2 Hybrid model . 26

2.4.2.1 Comparison of errors . 30

2.4.2.2 Estimated distributions 32

2.4.3 Hyperparameter tuning . 34

2.4.4 Computational gains . 34

2.5 Conclusions and remarks . 37

3 Parametrization of stochastic inputs using generative adversarial net-
works with application in geology 38

3.1 Introduction . 39

3.2 Background . 42

i

Contents ii

3.2.1 Convolutional neural networks . 42

3.2.2 Generative adversarial networks 44

3.2.2.1 Wasserstein GAN . 45

3.3 Numerical experiments . 46

3.3.1 Implementation . 47

3.3.2 Assessment in uncertainty quantification 49

3.3.3 Assessment in parameter estimation 54

3.3.4 Honoring point conditioning . 58

3.4 Discussion and practical details . 60

3.4.1 Practical advantages of WGAN . 60

3.4.2 Network sizes under limited data 62

3.4.3 GAN for multipoint geostatistical simulations 64

3.5 Conclusions . 66

4 Parametric generation of conditional geological realizations using gen-
erative neural networks 67

4.1 Introduction . 67

4.2 Background . 69

4.2.1 Generative adversarial networks 69

4.2.2 Conditioning on observations . 71

4.3 Conditional generator for geological realizations 72

4.4 Numerical experiments . 74

4.5 Conclusion . 76

4.6 Appendix . 78

4.6.1 Implementation details . 78

4.6.2 Additional examples . 78

5 Exemplar-based parametric synthesis of geology using kernel discrep-
ancies and generative neural networks 81

5.1 Introduction . 81

5.2 Background . 84

5.2.1 Maximum mean discrepancy . 84

5.2.2 Generative neural network . 85

5.3 Methodology . 86

5.3.1 Kernel choice . 87

5.4 Numerical experiments . 88

5.4.1 Optimization-based synthesis . 91

5.4.2 Neural synthesis . 93

5.5 Related work . 94

5.6 Conclusion . 96

5.7 Appendix . 96

5.7.1 Implementation details . 96

5.7.2 Additional results . 97

6 Final conclusions 101

6.1 Remarks and future directions . 103

List of Figures

1.1 A dictionary provides all plausible arrangement of letters (top row). Sim-
ilarly, a geological parametrization provides all plausible realizations of
the subsurface (bottom row). 8

2.1 A square domain with a fine discretization of size 15×15 (grey thin lines).
A coarse primal grid of size 3× 3 is defined on top of the fine grid (black
bold lines). A primal cell ΩC

i is highlighted in green. The centers of each
primal cell are marked with red dots. From these centers, the dual grid
is defined (blue dashed lines). A dual cell ΩD

j is highlighted in light red. . 14

2.2 Shown in blue is the support region of basis function φ5 corresponding to
coarse node 5 (green cell). Basis function φ5 is obtained by solving the
local problems in Eq. (2.2) for i = 5, then φ5 =

∑ND
j=1 φ

5
j . In this example,

only φ5 is an interior basis function (see Section 2.3). 14

2.3 Illustration of a local solution (partial basis function) and a basis function
within its support region. 14

2.4 Representation of a 1-hidden layer neural network as a graph. The first
column of nodes (from left to right) is the input layer, taking inputs
x = (x1, · · · , xdin) of dimension din, and the last column is the output
layer with output y = (y1, · · · , ydout) of dimension dout. The intermediate
column is the hidden layer. Each line connecting two nodes represents a
multiplication by a scalar weight. 16

2.5 Workflow of the proposed method. 20

2.6 Performance of basis function predictor, case L = 0.1 24

2.7 Performance of basis function predictor, case L = 0.2 25

2.8 Performance of basis function predictor, case L = 0.4 26

2.9 Quarter-five spot problem: Sample solution for one realization based on
the reference (standard FVM), MsFV and MsFV-NN. 28

2.10 Uniform flow problem: Sample solution for one realization based on the
reference (standard FVM), MsFV and MsFV-NN. 29

2.11 Quarter five spot problem: Comparison of errors in MsFV and MsFV-NN. 30

2.12 Uniform flow problem: Comparison of errors in MsFV and MsFV-NN. . . 31

2.13 Quarter five spot problem: Estimated distributions by MsFV (orange
dashed line), MsFV-NN (green dotted line), and reference (blue line). . . 32

2.14 Uniform flow problem: Estimated distributions by MsFV (orange dashed
line), MsFV-NN (green dotted line), and reference (blue line). 33

2.15 Comparison of errors in MsFV and MsFV-NN (tuned model, L = 0.1).
Improvements can be seen with respect to Figures 2.11(a) and 2.12(a). . . 35

iii

List of Figures iv

2.16 Estimated distributions (tuned model, L = 0.1) by MsFV (orange dashed
line), MsFV-NN (green dotted line), and reference (blue line). Compare
with Figures 2.13(a) and 2.14(a). 35

3.1 Transformation matrix of a fully connected layer (a), and of a convolu-
tional layer (b). In this example, the convolutional layer has only 2 free
weights, whereas the fully connected layer has 12 free weights. 42

3.2 Illustration of a typical pyramid architecture used in generator networks. 44

3.3 Unconditional realizations . 47

3.4 Conditional realizations . 47

3.5 Histogram of permeability at 10 random locations based on snesim (first
row) and WGAN (second row) realizations. 48

3.6 Saturation statistics at t = 0.5 PVI for unconditional realizations. From
left to right: mean, variance, skewness and kurtosis of the saturation
map, and lastly the saturation histogram at a given point. The point
corresponds to the maximum variance in the reference. 50

3.7 Saturation statistics at t = 0.5 PVI for conditional realizations. From
left to right: mean, variance, skewness and kurtosis of the saturation
map, and lastly the saturation histogram at a given point. The point
corresponds to the maximum variance in the reference. 51

3.8 Production statistics for unconditional realizations. The top of each sub-
figure shows the mean and variance of the production curve. The bottom
shows the histogram of the water breakthrough time. Times are expressed
in pore volume injected. 52

3.9 Production statistics for conditional realizations. The top half of each
subfigure shows the mean and variance of the production curve. The
bottom show the histogram of the water breakthrough time. Times are
expressed in pore volume injected. 53

3.10 History matching results. Water level curves from the production wells in
different test cases. Blue solid lines denote the target responses. Orange
dotted lines are three matching solutions found in the inversion. The
black vertical dashed line in each plot marks the end of the observed
period. Times are expressed in pore volume injected. 55

3.11 History matching results. We experiment with three toy images as well as
unconditional and conditional snesim realizations. Each case contains one
injection well (black square) and five production wells (red circles). We
show three solutions that match the observed production period (see Fig-
ure 3.10). The last column contains image matching solutions. 56

3.12 Realizations where conditioning failed. Orange dots indicate points condi-
tioned to low permeability (0) and blue crosses indicate points conditioned
to high permeability (1). Mismatches are circled in red. 59

3.13 Convergence curves of a WGAN model (top) and a standard GAN model
(bottom). On the right, we show realizations along the training of the
corresponding models. We see that GAN loss is uninformative regarding
sample quality. 61

List of Figures v

3.14 Examples of missing modes in standard GAN. Second and third rows
show realizations generated by collapsing GAN models (left) and their
responses (right). First row shows the reference solutions. The standard
GAN was trained using the same generator architecture, but a ×4 larger
discriminator than the one used in WGAN. We did not manage to find
convergence with smaller discriminator sizes. 61

3.15 Performance of models with varying network sizes. 63

3.16 Examples of artificially expanding the input tensor to obtain a larger
output. 64

3.17 Artificially upscaled realizations by feeding an expanded input tensor.
Images (evidently) not at scale. 65

4.1 Overview of methodology, G ◦ I. 68

4.2 Results of Iφ trained to generate mixture of Gaussians. 75

4.3 Unconditional realizations . 76

4.4 Conditional realizations of G ◦ I. We show two conditioning test cases.
Blue dot indicates channel material (high permeability) and orange cross
indicates background material (low permeability). See Section 4.6.2 for
additional test cases. 77

4.5 Additional examples (1/2) . 79

4.6 Additional examples (2/2) . 80

5.1 Overview of methodology. 83

5.2 Exemplar image (by Strebelle [67]) of size 250× 250 depicting subsurface
channels (left), and a few patches of size 64×64 extracted from the image
(right). 88

5.3 Optimization-based synthesis using different kernels. 89

5.4 Results for optimization-based synthesis of realizations of size 256 × 256
with krq,encoder kernel. 90

5.5 Results for neural synthesis of realizations of size 256×256 with krq,encoder
kernel. 92

5.6 Linear interpolation of one coordinate of the latent vector. 94

5.7 Optimization-based synthesis using the kernel from [137], i.e. VGG en-
coder + polynomial kernel of second degree. Compare (a) with Fig-
ure 5.3a, Figure 5.3b, and Figure 5.4a. 95

5.8 Results for optimization-based synthesis of realizations of size 512 × 512
with krq,encoder kernel. 98

5.9 Results for neural synthesis of realizations of size 512×512 with krq,encoder
kernel. 99

List of Tables

2.1 R2-scores on different permeability types 23

2.2 Results of hyperparameter tuning. 33

2.3 Summary statistics and point estimates (L = 0.1). 36

2.4 Time to generate 1000 basis functions using different methods. 36

3.1 Point conditioning at 16 locations, indicated by cell indices (i, j), regularly
distributed across the domain. 47

3.2 Performance in honoring point conditioning. 59

5.1 Autoencoder architecture. Conv/ConvT=convolution/transposed convo-
lution, the triplet indicates (filter size, stride, padding), BN=batch nor-
malization. 97

5.2 Generator architecture. UpConv=×2 upsample + convolution, ConvT=transposed
convolution, the triplet indicates (filter size, stride, padding), BN=batch
normalization. 100

vi

Chapter 1

Introduction

In an ideal world, mathematical models do not contain simplifications, model param-

eters are fully known, and measurements are clean. In reality, the world is rife with

uncertainties. Reservoir engineering needs to account for incomplete descriptions of the

subsurface, sparse and noisy measurements, and model simplifications. Airplane design

needs to be robust to air conditions, distribution of passengers, and small differences in

manufactured parts. A restaurant needs to respond to changing demands based on the

time of the day, day of the week, and month. Many real-world problems do not have

a deterministic answer, instead they can only be answered effectively using a statistical

framework. For example, a sensical answer to “how many customers is a restaurant ex-

pecting tomorrow” should not be a single number, but a bound (“between 80 and 120”),

or even better, a probability distribution. In short, any actionable prediction should be

accompanied with a sense of the uncertainties in the information that it relied on.

Uncertainty quantification in an engineering setting typically relies on the evaluation

of expensive numerical simulations for a large number of realizations of the unknown

or uncertain parameters. This often entails the availability of large datasets of param-

eters, measurements and simulation results, which are ever growing while powered by

decreasing computational costs and increasing storage capacity, thus providing a fertile

environment for data-driven techniques. In this thesis, we study the application of dif-

ferent machine learning techniques in the uncertainty quantification pipeline in reservoir

simulations. In particular, we demonstrate applications of machine learning for acceler-

ation of subsurface flow simulations (Chapter 2), parametrization of geological models

(Chapters 3 and 4), and parametric synthesis of geology (Chapter 5).

1

Introduction 2

1.1 Why machine learning?

In the last two decades, the field of machine learning has seen a resurgence in interest

from both academia and industry. This resurgence can be explained by at least two

inevitable events in the history of computers: First, the incredible pace at which hard-

ware is developed resulted in an uninterrupted exponential growth in computing power

and storage capacity for several decades. This phenomena has been given the name of

“Moore’s law”, which roughly states that the number of transistors that can fit in a chip

doubles about every two years. To give an idea of its effects, a modern smartphone has

several times more computing power than the NASA supercomputers of 1960 used to

send humans to the moon. This in turn led to a second event: the inevitable widespread

adoption of personal computers – in particular of mobile phones – as hardware became

cheaper, leading to the explosion of data that we see today. For example, as of 2018,

we upload about 300 hours of video to YouTube per minute [1] – and this is just one

type of data in one platform. Since only about half the world population is currently

online [2], and only a few of those have access to broadband, it is fair to say that data

availability is nowhere near its peak.

The two events prepared the ground for many success stories in machine learning. The

increase in computational power prompted the reconsideration of previous techniques

that were once deemed impractical. Moreover, the boost in computational power came

hand in hand with the boost in data availability, enabling the use of data-hungry tech-

niques. Of all machine learning techniques that benefited from these events, the clear

winners have been those based on neural networks, which strive in the presence of very

large datasets and powerful computers. The success of neural networks comes from their

seemingly unlimited performance: Given enough data and computational resources, neu-

ral networks have repeatedly shown to perform better than other methods in a variety of

tasks. Indeed, many prominent achievements in the field are done using neural networks.

For example, Apple Siri [3] and Google Duplex [4] both use recurrent neural networks for

their voice recognition system. In computer vision, starting from the work of [5], pretty

much all of the best performing methods in object recognition use convolutional neural

networks, including those used in self-driving cars [6]. Finally, two recent examples are

Google AlphaZero and OpenAI Five, where neural networks are trained via self-play

(reinforcement learning) to beat humans in the board game Go [7], and in the popular

strategy video game Dota 2 [8]. These state-of-the-art examples require an enormous

amount of computing power and data, and would not have been possible without the

resources of our time.

It quickly became evident that machine learning was a topic that could not be avoided.

Industries were advised to embrace it in order to survive, data was branded “the new oil”,

Introduction 3

and machine learning was equated to “the new electricity” [9]. Research funding soared

in both academia and industry, resulting in a rate increase of ×9 in published papers in

the field compared to 1996 [10], and even the appearance of extreme application-specific

hardware such as TPUs [11] – note that the development of hardware to accommodate

one particular software application is rarely seen. The fast evolving literature together

with the involvement of the hardware sector to advance the field of machine learning

provide a dynamic ecosystem that is being leveraged in more traditional industries.

We should note, however, that the current trend does not come without skepticism.

As it often happens with transformative technologies, they are accompanied with wild

speculations, and recent concerns highlight similarities of the current trends with the

years predating the dotcom bubble. Nevertheless, the Internet did eventually change

industries as well as societies in very fundamental ways; similarly, machine learning is

likely to have a great impact in how industries operate in the future.

1.1.1 Machine learning and physics

The aforementioned application examples are instances of so-called AI-hard problems.

These are problems that cannot be described nor solved using a set of rules or laws, or

at least not so in a convenient manner. For example, there are currently no known set of

rules that fully describe vision or speech. In Chess and Go, the rules are known but it is

impossible to hard-code all the possible scenarios of a game. For these cases, data-driven

methods provide an alternative to tackle the absence of mathematical models. This

raises the question about the place of machine learning in the traditional engineering

setting where the laws of physics are available. Another concern regards the validity

and rigorousness of using data-driven approaches to modeling in place of mathematical

models derived from the laws of physics.

Here we would like to provide a philosophical argument: Regardless of whether the laws

of physics are invented or discovered, they originate from data. Hooke observed that

the extension of a spring is proportional to its load. Grimaldi and Riccioli observed

that the distance traveled by a free-falling object is proportional to the square of the

time. Darcy derived his law describing porous media flow based on experiments with

water and sand. Kepler derived his laws after many years of recording the motion of

planets. Finally, Newton established the laws that generalize these and other previous

observations. From Newton’s laws, several physical models were axiomatically derived

to describe different phenomena, and as the models stood the test of time, the laws

became validated. However, it is worth acknowledging that underlying these laws is a

data-driven learning process. As with any data-driven model, the models will be valid

Introduction 4

within the data distribution that they were “trained”. For example, Hooke’s law only

applies in the elastic range, Darcy’s law only applies in the laminar regime, and Newton’s

laws break down outside the classical realm. In the latter case, it took us more than

200 years until we were able to explore the very small (quantum realm) and the very

large and fast (relativistic realm) to discover the limits of the model – in particular,

classical physics are only an (excellent) approximation of relativistic physics. Notably, a

single model that can explain all realms (a theory of everything) remains one of the most

important unsolved problems in physics. Nevertheless, each model does an excellent job

in explaining the observations within their own scope. The bottom line is that a model

should be regarded as long as it does the job, or as George E. P. Box often said, “All

models are wrong, but some are useful”.

1.1.2 Application examples

We discuss the applicability of machine learning methods in engineering. First, machine

learning is hardly justified if the problem can already be solved by current physical

models in an efficient manner. For example, it is unnecessary to train a data-driven

model to describe the motion of a free-falling object using thousands of videos of free-

falling apples, since this can be coded in a simple algebraic equation. In contrast, a

much harder problem is to track arbitrary motions of arbitrary objects in a video, e.g.

to achieve scene understanding for self-driving cars – hard-coding all possible scenarios

becomes much more laborious. In some problems, a physical model needs to be evaluated

several times (e.g. in uncertainty quantification), making the procedure very expensive

when the physical model has a high computational cost; in these cases, a data-driven

surrogate with lower evaluation cost could be constructed to replace the physical model

– a large number of approximate solutions is sometimes preferred over a small number of

high-fidelity solutions. In other problems, the current mathematical model for a system

is inadequate or oversimplified, then a data-driven approach might provide an effective

alternative. Finally, when no mathematical models are available, data-driven methods

are often the only choice.

To summarize, engineering applications of machine learning are most effective when data

is available and:

• When a mathematical model would be too complex or impossible to implement in

practice.

• When current models are incomplete or inadequate. One recent example is the

prediction of aftershocks following an earthquake [12], in which it was found that

a neural network achieved higher accuracy than standard models.

Introduction 5

• When the predictive model needs to be evaluated several times, and a data-driven

model would be computationally cheaper. In effect, this is data-driven surrogate

modeling and is widely applied in engineering.

• When laborious human assessment is involved. One example is the inspection

of medical scans to detect tumors [13]. Another example is the interpretation of

seismic images, done by geologists, for identification of salt deposits [14].

1.2 Basic concepts

Machine learning consists of a set of techniques to build a computer system to accomplish

a task, without explicitly programming the necessary steps to achieve such task. This

vague definition can take several concrete forms, from simple linear regression to systems

trained using reinforcement learning. At a basic level, given a dataset of observations

and a task, a machine learning technique consists of a hypothesis space (the model

family, e.g. polynomials, neural networks, support vector machines, etc.) and a metric

to measure the task performance (the objective function to be optimized, e.g. least

square error, cross-entropy, distribution divergences, etc.). The objective is to infer

from the dataset the optimal hypothesis for the task, as measured by the performance

metric. The techniques are broadly classified into two groups according to the task:

• Supervised learning concerns the estimation of conditional distributions. Given a

dataset of paired observations {(x1, y1), · · · , (xn, yn)}, the goal is to model the con-

ditional probability p(y|x). In practice, we often settle for simpler objectives such

as estimating correlations, conditional means, maximum a posteriori, maximum

likelihood, etc. A simple example is the least squares approach to fit a polynomial

f to minimize
∑

i (yi − f(xi))
2 over the dataset, equivalent to a maximum like-

lihood estimation using a Gaussian noise model. Supervised learning is applied

in Chapter 2.

• Unsupervised learning concerns the full distribution of a dataset. Given a dataset

of observations {x1, · · · , xn}, the goal is to model the distribution p(x). In this

case, we often settle for the estimation of descriptive statistics (e.g. mean, median,

standard deviation, etc.), identification of clusters, principal axes of variation (e.g.

principal component analysis), anomaly detection, etc. Recent developments in

unsupervised learning focus on implicit modeling : In some applications, the real

interest does not lie in knowing the distribution p itself, but in efficiently sampling

realizations from such distribution. Implicit modeling therefore aims to construct

an efficient procedure to sample from p without explicit knowledge of p (unlike e.g.

Introduction 6

Monte Carlo methods). The emphasis here is on the construction of the sampling

procedure rather than modeling of the distribution, with the aim of obtaining

efficient samplers for complex and high-dimensional distributions. The evident

downside of this approach is the absence of p, which might be useful for sample

assessment. Unsupervised learning is applied in Chapters 3 to 5.

Occam’s razor

In contrast to the standard optimization setting where the goal is to find the global ex-

tremum of an objective function, the goal in machine learning is generalization, meaning

that the computer system should be able to perform effectively not only in the training

dataset, but also under new scenarios (that is, the model needs to be accurate for new

inputs not present in the training set).

For a concrete example, we can imagine the initial attempts towards learning the mo-

tion of free-falling objects, presumably from data consisting of paired measurements of

the distance and time. As we know, a line is not sufficient to fit this data, whereas a

quadratic polynomial can fit it perfectly (neglecting measurement noise and other ef-

fects). However, note that polynomials of higher degree could also fit the data; in fact,

for any finite set of points there exist infinitely many polynomials of sufficiently high

degree that fit the points perfectly. Nevertheless, a strong intuition tells us that the

quadratic polynomial is the correct hypothesis for this data, that polynomials of higher

degree are unnecessary, and that a line is insufficient. This intuition is at the heart of

the learning problem and is summarized in the principle of Occam’s razor: Among all

hypotheses that equally explain a phenomena, the simplest is often the correct one. This

principle can be thought of as analogous to the principle of least effort in physics; in-

deed, many notable physicists have given their own version of Occam’s razor including:

“Everything should be made as simple as possible, but not simpler” by Albert Einstein,

and “You can recognize truth by its beauty and simplicity” by Richard Feynman.

When a model performs well in the training data but poorly outside of it, we say

that the model simply “memorized” or “overfitted” the training data. As an extreme

example, consider a “database function” f defined as f(xi) = yi, (xi, yi) ∈ dataset, else

f(x) = 123, which would perform perfectly (have zero error) in any finite dataset. True

learning happens when the model performs well both inside and outside the training set;

in such case, we say that the model generalizes.

In simple cases where we only have one or two dependent variables, visualization aids

in detecting overfitting and choosing the correct hypothesis, hence the learning problem

becomes a trivial matter that can be resolved using our intuition. In more practical

Introduction 7

problems, however, we can encounter dozens or even millions of dependent variables and

therefore visualization becomes difficult; moreover, our intuition often fails in very high

dimensions (see e.g. [15]). For example, a house pricing model depends on the property

size, distance to the city center, number of rooms, number of windows, etc., easily

resulting in dozens of variables. An object recognition system trained on 1024 × 768

color images results in 3 × 1024 × 768 variables (in the RGB format). In such cases, it

becomes much more difficult to determine the right hypothesis. The essence of machine

learning is to apply the principle of Occam’s razor in an automated manner – without

this requirement, machine learning would be no different than curve-fitting.

1.3 Outline of the thesis

Uncertainty quantification in reservoir simulations contains unique challenges that make

it computationally expensive. Due to the physical extent of the simulated domain to-

gether with the heterogeneity of the subsurface, subsurface simulations usually require

the use of extremely high grid resolutions in order to model the flow accurately. Ad-

ditionally, the impossibility of obtaining direct measurements of the whole subsurface

results in the need to perform the already expensive simulations for a very large num-

ber of times (in the order of thousands or even millions) for uncertainty quantification,

causing even higher computational costs.

A variety of methods have been proposed to reduce the computational cost of uncer-

tainty quantification in reservoir simulations. We can roughly categorize these methods

based on whether they aim to reduce the computational burden of the simulator itself

(run faster), or reduce the number of simulations required by refining the solution space

(run smarter). Diverse methods have been dedicated to the first group, from methods

that reduce the model complexity, to surrogate models, to methods amenable to paral-

lelization. In Chapter 2, we introduce a method belonging to this category, where we

embed a surrogate model into a model order reduction method in order to obtain further

speedups. The proposed method is therefore a hybrid between model order reduction

techniques and surrogate models.

Within the second category, parametrization is particularly useful in the context of sub-

surface simulations where the large number of uncertain variables are highly correlated

and redundantly represented as a consequence of the grid discretization. One useful

analogy to parametrization is an index of words or a dictionary (see Figure 1.1): Con-

sider the task of inferring the content of a book based solely on the frequency of letters.

A priori, this task would need to consider any possible arrangement of letters however

implausible. On the other hand, since most books consist of words, we know that most

Introduction 8

g(·)

eoijdkfjwndf

df f

fejieeeeoen-

mcw.,’dfe

aalkwjeoij

Roses are

red, and

Violets

are blue...

One Ring to

rule them

all, One

Ring to

find them...

Winter is

Coming.

They’ve all

said that

it would...

1: a
2: able
3: ace

4: accept

...

Figure 1.1: A dictionary provides all plausible arrangement of letters (top row). Sim-
ilarly, a geological parametrization provides all plausible realizations of the subsurface

(bottom row).

arrangements are unlikely and can be quickly discarded – such information can be con-

veyed via a dictionary. Likewise, real subsurface images are not completely random but

instead contain clear spatial correlations. By using a suitable parametrization of the

subsurface, we can narrow our focus on only plausible realizations, thus reducing the

number of simulations required in uncertainty quantification and inversion problems.

Parametrization is the subject of Chapters 3 to 5, where we parametrize the geology

using recent techniques in unsupervised learning.

The following is a summary of each of the remaining chapters. Note that each chapter

intends to be self-contained as they were initially written as separate papers.

Chapter 2: A machine learning approach for efficient uncertainty quantification using

multiscale methods

The multiscale finite volume method (MsFV) is a popular method that aims to

reduce the computational complexity of elliptic problems. It is particularly useful

for simulations on extremely high grid resolutions (a common scenario in subsur-

face simulations). It achieves this by using customized basis functions to solve

the problem on a much coarser grid. These custom basis functions are derived

from solving small localized elliptic problems over the domain. Thus, unlike finite

element methods where the basis functions are piecewise polynomials (e.g. linear,

quadratic, cubic, etc.), the basis functions in MsFV are numerically customized

with the aim of better capturing the heterogeneity in the underlying properties.

In the context of uncertainty quantification, the localized problems would need to

be computed several times for each realization of the properties to obtain the cor-

responding basis functions, after which they are used to solve the global problem

and then discarded from memory. We see this as free data that can be further

leveraged to build a surrogate model to obtain the basis functions more efficiently,

Introduction 9

replacing the need to repeatedly solve the localized problems in the subsequent

series of runs and further accelerating the uncertainty quantification task. We use

a neural network surrogate, motivated by the high expressive power as well as re-

cent advances in machine learning that greatly improve the effectiveness of neural

networks. In our experiments, the surrogate achieves a speedup of two orders of

magnitude in obtaining the basis functions without compromising the simulation

results.

Chapter 3: Parametrization of stochastic inputs using generative adversarial networks

with application in geology

In this and subsequent chapters, we direct our attention to the parametrization

of geological images. A historical challenge in the parametrization of geological

images is the preservation of visual patterns of the images, as well as high-order

spatial statistics. This is in part due to the simplifying assumptions in the math-

ematical modeling that are often necessary to make the implementation feasible.

For example, principal component analysis assumes a simple linear combination of

basis functions, which are in turn devised to preserve mere covariances. Here we

adopt a neural network parametrization, whose expressive power makes it one of

the most flexible forms of parametrization. Moreover, instead of explicitly defin-

ing the spatial statistics to be preserved, we let this be learned by a second neural

network. This approach is possible due to a very recent technique in machine learn-

ing called generative adversarial networks. The idea is to simultaneously train two

competing neural networks: the generator (parametrization) network is trained to

generate plausible images, while a discriminator network is trained to correctly

classify between “fake” (generated) images and “real” images (i.e. from a dataset

of prior images). In this manner, the generator is iteratively encouraged to gener-

ate better images in order to fool the discriminator. The appeal in this approach

is that no spatial statistics are hand-crafted, instead they are implicitly learned by

the discriminator. As such, the expressive power of neural networks are leveraged

twice: it is leveraged in the generator to reproduce complex images, and in the

discriminator to learn complex high-order statistics of the images. Our results

show that the neural parametrization is very effective in reproducing the visual

patterns, and more importantly, the high-order statistics of the flow responses in

an uncertainty propagation study.

Chapter 4: Parametric generation of conditional geological realizations using generative

neural networks

We extend the work in the previous chapter and introduce a method for post-hoc

conditioning of a pre-trained generator to new observations, i.e. given a generator

Introduction 10

trained on unconditional realizations, we wish to generate realizations conditioned

on new spatial observations. We begin by using a Bayesian framework to formu-

late the posterior distribution of the latent vector given observations. Next, we

train a neural network to sample from this posterior by minimizing the Kullback-

Leibler divergence between the network distribution and the posterior. Finally,

we couple this neural network with the original unconditional generator to obtain

the conditional generator, thus maintaining the parametrization of the sampling

process. In our experiments, the method shows very good results for several test

cases considered, honoring the conditioning while producing diverse realizations.

Chapter 5: Exemplar-based parametric synthesis of geology using kernel discrepancies

and generative neural networks

In this chapter, we look at a very different approach to obtain a parametrization

of the geology. So far we have considered parametrization methods that require

the availability of a large dataset of realizations that inform the spatial patterns

and variability of the subsurface, serving as the training set for the generative

neural network. Here we introduce a different approach that only requires a single

exemplar image to train the generator. We first introduce an energy function that

measures the plausibility of a geological image with respect to the exemplar. This

function evaluates the discrepancy in the patch distributions of the image and the

exemplar. The assumption is that geological images A and B are equivalent if

we cannot distinguish a bag of patches extracted from A from a bag of patches

extracted from B. Having defined the energy function, it is already possible to

synthesize new realizations by minimization using e.g. gradient-descent; however,

this approach is slow and non-parametric, therefore we introduce a method for

parametric synthesis by training a generative neural network to sample solutions

of the minimization problem. Our experiments show that the method obtains

very good synthesis results, reproducing the visual patterns of the exemplar and

showing good agreement in the spatial statistics.

We conclude our thesis in Chapter 6.

Chapter 2

A machine learning approach for

efficient uncertainty

quantification using multiscale

methods

Several multiscale methods account for sub-grid scale features using coarse scale basis

functions. For example, in the Multiscale Finite Volume method the coarse scale basis

functions are obtained by solving a set of local problems over dual-grid cells. We in-

troduce a data-driven approach for the estimation of these coarse scale basis functions.

Specifically, we employ a neural network predictor fitted using a set of solution samples

from which it learns to generate subsequent basis functions at a lower computational

cost than solving the local problems. The computational advantage of this approach is

realized for uncertainty quantification tasks where a large number of realizations has to

be evaluated. We attribute the ability to learn these basis functions to the modularity

of the local problems and the redundancy of the permeability patches between samples.

The proposed method is evaluated on elliptic problems yielding very promising results.

Published in Journal of Computational Physics (2017): https://doi.org/10.1016/j.jcp.2017.

10.034

11

https://doi.org/10.1016/j.jcp.2017.10.034
https://doi.org/10.1016/j.jcp.2017.10.034

A ML approach for efficient UQ using multiscale methods 12

2.1 Introduction

Uncertainty quantification is an important task in practical engineering where some

parameters are unknown or highly uncertain. After selecting adequate priors for the

uncertain parameters, simulations are performed for a large number of realizations. In

the particular case of reservoir simulations, the problem is further aggravated where

very fine details of the geological models are needed (large number of cells) for accurate

description of the flow. One traditional approach to address this problem is to upscale

the geological models. Another more recent approach is to use multiscale methods. In

these methods, the global fine scale problem is decomposed into many smaller local

problems. The solution of these smaller local problems results in a set of numerically

computed basis functions which are then used to build a coarse system of equations.

After solving the coarse system, an interpolation is performed with the basis functions

to obtain the fine scale solution.

We note that in multiscale methods, a large number of local problems are solved under

the same boundary conditions to obtain the required basis functions. This process is

repeated for each geological realization in uncertainty quantification tasks. Our aim

is to exploit the redundancy that may arise in solving these local problems for several

geological realizations by introducing a data-driven approach for estimating the basis

functions efficiently. Specifically, we exploit the large number of local problem solutions

that become available after a given number of full runs to construct a computationally

cheap function that generates approximate solutions to local problems, i.e. approximate

basis functions. In effect, what we propose is a type of hybrid surrogate model by

embedding a data-driven approach into the multiscale numerical method. In this work,

we focus on one multiscale method called the Multiscale Finite Volume method (MsFV)

introduced by Jenny et al. [16]. However, the proposed approach can be applied to any

multiscale method where the explicit construction of basis functions is performed such

as in the more recent multiscale method based on restriction-smoothed basis functions

(MsRSB) [17].

Aarnes and Efendiev [18] introduced a multiscale mixed finite element (MsMFE) method

for porous media flows with stochastic permeability field where a set of precomputed

basis functions is constructed based on selected set of realizations of the permeability

field. These basis functions are then used to build a low-dimensional approximation

space for the velocity field. We note that the cost of solving the upscaled problem

(i.e. coarse scale) in [18] increases with the number of selected set of realizations. In

contrast, in this manuscript we directly address the generation of basis functions via

a “black box” surrogate modeling approach using machine learning. The generated

basis functions are then directly employed in the multiscale formulation without any

A ML approach for efficient UQ using multiscale methods 13

further modification. Another major difference is that our method directly benefits

from increasing the number of realizations used to build the surrogate model without

any increase in the computational cost of solving the coarse scale problems for new

realizations.

This paper presents the first attempt to combine/embed machine learning techniques

within multiscale numerical methods with very promising results. The motivation for our

work comes from the observation that computational power and data storage capacity

are ever increasing. This trend is likely to continue for some time and results in an

increased ability to store and data-mine large volumes of simulation data. Another

source of motivation comes from the renewed interest in machine learning among the

research community, specially in the branch of deep learning to tackle AI-complete tasks

such as computer vision and natural language processing. Neural network models are

regarded as universal function approximators [19–21] with capacity to learn highly non-

linear maps. Therefore, they seem to be suitable for our current application.

The rest of this chapter is organized as follows: In Section 2.2, we give a brief description

of the multiscale finite volume method (MsFV) and neural networks (NN). In Section 2.3,

we present the methodology for the proposed approach for machine learning the basis.

In Section 2.4, we examine the effectiveness of the presented method for uncertainty

quantification in two test cases. Finally, in Section 2.5 we report the conclusions of this

work along with a brief discussion of future directions.

2.2 Background

In this section we briefly describe the two main components of the proposed method:

multiscale finite volume (MsFV) methods and neural networks (NN) for surrogate model-

ing. A number of variants of the MsFV method have been proposed since its introduction

in [16]. In this work, we employ the MsFV method as described in [22, 23].

2.2.1 Multiscale finite volume method

We consider an elliptic equation describing pressure

−∇ · (K∇p) = q (2.1)

where p denotes the fluid pressure, q denotes fluid sources, and K denotes the perme-

ability tensor. Discretizing Eq. (2.1) by the finite volume method results in a system of

A ML approach for efficient UQ using multiscale methods 14

•

•

•

•

•

•

•

•

•
ΩC
i

ΩD
j

Figure 2.1: A square domain with a fine discretization of size 15×15 (grey thin lines).
A coarse primal grid of size 3 × 3 is defined on top of the fine grid (black bold lines).
A primal cell ΩCi is highlighted in green. The centers of each primal cell are marked
with red dots. From these centers, the dual grid is defined (blue dashed lines). A dual

cell ΩDj is highlighted in light red.

•1 •2 •3

•4 •5 •6

•7 •8 •9

Figure 2.2: Shown in blue is the support region of basis function φ5 corresponding to
coarse node 5 (green cell). Basis function φ5 is obtained by solving the local problems

in Eq. (2.2) for i = 5, then φ5 =
∑ND

j=1 φ
5
j . In this example, only φ5 is an interior basis

function (see Section 2.3).

(a) A partial basis function. (b) A complete basis function.

Figure 2.3: Illustration of a local solution (partial basis function) and a basis function
within its support region.

A ML approach for efficient UQ using multiscale methods 15

equations of the form Ap = q, which for some applications (such as reservoir simulation)

tends to be extremely large. The MsFV method tackles this problem by constructing

and solving a much coarser system of equations ACpC = rC , the solution of which is

then used to obtain an approximation of p by interpolation. For this, it relies on a set of

basis functions which are obtained by solving local problems. In this sense, the method

slightly resembles the finite element method, except that the basis functions employed

are not piecewise polynomials but numerically computed functions.

The method begins with the definition of a pair of overlapping coarse grids, namely the

primal grid and the dual grid, as shown in Figure 2.1. In principle, the primal grid can

be any coarse partition defined over the fine grid. Next, we define the coarse nodes as the

fine cells at the centers of each primal cell. Lastly, the dual grid is defined by the lines

connecting these coarse nodes. We denote the primal cells with ΩC
i , i ∈ {1, · · · , NC},

and the dual cells with ΩD
j , j ∈ {1, · · · , ND}.

A set of (partial) basis functions are obtained by solving the local problems

∇ · (K · ∇φij) = 0 in ΩD
j

∇ · ‖(K · ∇φij)‖ = 0 on ∂ΩD
j

φij(xk) = δik k ∈ {1, · · · , NC},

(2.2)

where φij denotes the (partial) basis function on dual cell ΩD
j (see Figure 2.3a) associated

with coarse node i, xk denotes the coordinate of coarse node k, and ‖ · ‖ denotes the

tangential component over the dual cell boundary ∂ΩD
j . In the 2D case, this means

solving 1D problems over ∂ΩD
j , the solutions of which become the boundary conditions

for the 2D problem on ΩD
j .

Another component of the MsFV formulation employed are the correction functions,

obtained by solving the local problems

∇ · (K · ∇φ̂j) = q in ΩD
j

∇ · ‖(K · ∇φ̂j)‖ = q on ∂ΩD
j

φ̂j(xk) = 0 k ∈ {1, · · · , NC},

(2.3)

where φ̂j denotes the correction function on dual cell ΩD
j .

Once the basis and correction functions are obtained, we approximate the fine scale

pressure p as an interpolation of coarse scale pressure values pC plus a correction term

p ≈
ND∑
j=1

(

NC∑
i=1

φijp
i
C + φ̂j) (2.4)

A ML approach for efficient UQ using multiscale methods 16

... ...
...

x1

x2

xdin

y1

y2

ydout

Input

Layer

Hidden

Layer

Output

Layer

Figure 2.4: Representation of a 1-hidden layer neural network as a graph. The first
column of nodes (from left to right) is the input layer, taking inputs x = (x1, · · · , xdin)
of dimension din, and the last column is the output layer with output y = (y1, · · · , ydout

)
of dimension dout. The intermediate column is the hidden layer. Each line connecting

two nodes represents a multiplication by a scalar weight.

Substituting Eq. (2.4) in Eq. (2.1), and applying finite volume discretization over the

primal grid, we get the coarse system of equations ACpC = rC .

In the current work, it is more convenient to express the basis and correction functions

in a global point of view (see Figure 2.3b) by writing φi =
∑ND

j=1 φ
i
j and φ̂ =

∑ND
j=1 φ̂j (for

the basis functions, we actually only need to sum over supporting dual cells, i.e. dual

cells that are associated with the corresponding node). Then, Eq. (2.4) has a simpler

interpolation expression of the form:

p ≈
NC∑
i=1

φipiC + φ̂ (2.5)

In the case that the pressure solution will be utilised to drive a transport problem at

the fine scale, a flux reconstruction step consisting of solving additional local Neumann

problems is necessary [22].

2.2.2 Feedforward neural networks for surrogate modeling

A feedforward neural network f is a function consisting of a compositional chain of

simpler functions, i.e. f(x) = f (n)(f (n−1)(· · · (f (1)(x)) · · ·)). Here, f is said to have n

layers, where f (1) is the first layer, f (2) the second layer, etc. The first layer is also

called the input layer, the last layer the output layer, and the layers in between are

called hidden layers. The size or number of units of a layer f (i) : Rdiin → Rdiout refers to

its output dimension, i.e. diout. Neural networks are typically represented as a graph as

shown in Figure 2.4.

A ML approach for efficient UQ using multiscale methods 17

The input layer encompasses any pre-processing of the data, while the output layer may

take many forms depending on the learning task. For example, in classification tasks,

the softmax function is normally employed where the output layer size (number of units)

equals the number of classes, and the softmax output represents the probability of the

input sample belonging to each class. This is a way of embedding prior information of

the learning task into the model. For regression tasks, the identity function is normally

employed, but other functions can also be chosen to embed any prior information of the

output space.

A conventional hidden layer is an affine transformation followed by an element-wise

nonlinear function or activation, i.e. f (i)(x) = σi(Wix + bi). Some popular choices

for σi are the hyperbolic tangent, the sigmoid function, and more recently, the rectified

linear unit [24].

2.2.2.1 Neural network optimization

Once the network architecture is defined (number of layers n, layer sizes diout, activation

functions σi, etc.), the optimization problem is to find θ = [W1; b1, · · · ,Wn; bn] such

that f best describes the observations. Let {(x1,y1), · · · , (xN ,yN)} be the set of ob-

servations used to train the model (the training set), then the minimization problem is

formulated as:

arg min
θ

1

N

N∑
i=1

||yi − f(xi;θ)||22 (2.6)

where J(θ) := 1
N

∑N
i=1 ||yi− f(xi;θ)||22 is the cost function. This problem can be solved

using gradient-based algorithms such as gradient descent:

θk+1 = θk − ε∇θJ(θ) (2.7)

where ε is the learning rate. The derivative∇θJ can be obtained with numerical differen-

tiation schemes. In neural networks, this is typically the backpropagation algorithm [25].

More recent gradient-based algorithms improve over gradient descent by offering adap-

tive learning rates such as AdaGrad [26], RMSProp [27] and Adam [28]. The basic

idea in these methods is to use a separate learning rate for each scalar parameter, and

adapt these rates throughout the training process based on the historical values of the

partial derivatives with respect to each parameter. The initial global learning rate ε0 is

a tunable hyperparameter.

A recent important development regarding neural network optimization is batch normal-

ization [29], which has shown to significantly speed up the optimization process. The

A ML approach for efficient UQ using multiscale methods 18

method consists of adaptive reparametrization of inputs to each activation function. In

essence, the values after the affine transformation in a layer are normalized by the mean

and standard deviation before being fed into the layer activation function.

2.2.2.2 Regularization

The optimization of θ from Eq. (2.6) alone yields a model that is prone to overfitting,

i.e. it does not necessarily perform well for samples not seen in the training set. Hence,

validation assessment is necessary where a separate set of samples that are not used

in optimizing Eq. (2.6), called the validation set, is employed to assess the accuracy

of the model. One simple regularization technique is early stopping, where the model

is assessed after each update (or number of updates) of θ in Eq. (2.7); when the cost

function on the validation set begins to increase, the optimization is early stopped. This

is the stopping criteria in neural network optimization, which differs from conventional

optimization where the criteria is generally based on the gradient norm. Another set

of regularization techniques are parameter norm penalties, where an additional term is

added to the cost function:

Jreg(θ) :=
1

N

N∑
i=1

||yi − f(xi;θ)||22 + αΩ(θ) (2.8)

For example, for L2 parameter norm, Ω(θ) = 1
2 ||θ||

2
2. The additional parameter α is a

regularization hyperparameter that is chosen using the validation set.

More recently, Dropout [30] has shown to be a very effective regularization technique

that approximates model averaging in neural networks. The technique consists of ran-

domly dropping out units of the network during the optimization iteration, by which

the optimizer “sees” a number of different “models” in the process. Since traditional

model averaging in neural networks is usually extremely expensive, this approach serves

as a proxy for averaging an exponential number of models. In practice, a dropout rate is

chosen which indicates the probability of a unit being dropped out. This hyperparam-

eter is tuned using a validation set. The authors in [30] suggested using a max-norm

constraint along with dropout, which consists of constraining the norm of some of the

weights by a fixed constant c, tuned with a validation set. This allows for more aggressive

optimization search without the possibility of weights blowing up.

2.2.2.3 Architecture design and hyperparameter tuning

The design of the network architecture, i.e. defining the number of layers, the number

of units for each layer, activation functions, regularizers, etc. is not a straightforward

A ML approach for efficient UQ using multiscale methods 19

task. In principle, one can consider these parameters as additional hyperparameters

and tune them using a validation set. However, hyperparameter optimization is an

expensive task given that the objective function (performance on the validation set)

is non-linear and non-differentiable with respect to the hyperparameters. In practice,

heuristics and expertise are heavily employed in the design process to reduce the number

of hyperparameters. Nevertheless, general guidelines do exist for the design of neural

network models. The following is a compilation of guidelines extracted from [31, 32]:

– Begin with a few number of layers and units, and well-tested optimizers and reg-

ularizers.

– Start with as few hyperparameters as possible to enable quick manual search to

obtain some insight of the learning task.

– Overfit, then regularize: increase the number of layers/units to overfit the training

set, then apply regularization techniques to improve generalization. That is, we

first want the network to be complex enough to approximate the target function,

and then regularize it to perform well outside the training set.

– Regarding the choice of activation functions, the current default recommendation

is to use rectified linear units (ReLUs). These have beneficial properties for the

optimization such as non-vanishing gradients.

– Whether to use few large layers, or many small layers is an open debate. It is

generally believed that many small layers generalize better, although the ultimate

decision will largely depend on implementation and trial and error.

– Early stopping should almost always be employed.

– The learning rate ε0 is very influential in the model performance and should be

fine-tuned.

– If there is an architecture that performs well for a similar task, use it as the base

architecture.

Once the general architecture is selected, key hyperparameters should be optimized.

Traditional techniques such as grid search and random search are normally prohibitive.

In the current manuscript we employed the Tree-Parzen Estimator [33], a sequential

model-based hyperparameter optimization approach where a model is sequentially con-

structed to approximate the performance of hyperparameters based on historical mea-

surements, and then subsequently choose new hyperparameters to test based on this

model. Other hyperparameter optimization techniques include Bayesian optimization

for neural networks [34] and Hyperband [35].

A ML approach for efficient UQ using multiscale methods 20

Generate a set of realizations K1, · · · ,KM

Run MsFV for K1, · · · ,Km, where
m � M to obtain (κ1, φ1), · · · , (κN , φN)

Use (κ1, φ1), · · · , (κN , φN) to train basis predictor

Use hybrid model to solve for Km+1, · · · ,KM

Evaluate statistical distribu-
tions for quantities of interest

Figure 2.5: Workflow of the proposed method.

2.3 Methodology

We first introduce some terminology to simplify the presentation. A basis function is

interior if its support region does not touch the domain boundary (see Figure 2.2). For

practical purposes, we limit the learning process to interior basis functions, i.e. we build

a predictor to generate interior basis functions while computing the remaining basis

functions as usual from the local problems defined by Eq. (2.2). In practice, this should

not be a major concern given that the number of interior basis functions is normally

much larger than the number of non-interior basis functions (basis functions on the edges

and vertices of the domain). In any case, it is pretty straightforward to train additional

predictors for the remaining types of basis functions.

We define a permeability patch κi as the cropped region of the permeability field K that

corresponds to the support region of a basis function φi. In the learning framework,

the permeability patches κ1, κ2, · · · , κN are our inputs, and the corresponding basis

functions φ1, φ2, · · · , φN are our outputs. In practice, it is more convenient to work with

the log-permeabilities, i.e. log κ1, · · · log κN .

For clarification, suppose we have an 81 × 81 Cartesian grid, over which we defined a

9 × 9 primal grid. Then there are 7 × 7 = 49 interior basis functions, each with array

size (number of fine cells in the support region) of 19× 19. The array size of each input

A ML approach for efficient UQ using multiscale methods 21

permeability patch is 19 × 19 × d, where d = 1 for isotropic fields, and d = 2 in the

anisotropic case.

The method we propose aims to speedup uncertainty quantification studies where mul-

tiscale methods are employed in the propagation task. In particular, we focus on the use

of the MsFV method to solve Eq. (2.1) for large number of realizations of the permeabil-

ity field K. Our method however could be applied to any multiscale method where the

explicit generation of the basis functions is performed. Consider an uncertainty propaga-

tion task of solving Eq. (2.1) for K1, · · · ,KM . Let m�M be the number of full MsFV

runs that we can afford. For each Ki where i = 1, · · · ,m, the MsFV simulation delivers

a set of basis functions with their corresponding permeability patches. The union of

these sets provides the learning dataset {(κ1, φ1), · · · , (κN , φN)}. This dataset is used

to train a predictor model that maps from permeability patches κ to basis functions

φ that has an evaluation cost that is much cheaper than solving the local problems.

The model we employed here is a neural network. Once the model is trained, it is used

to predict the basis functions in the subsequent runs for Km+1,Km+2, · · · ,KM . The

end result is a hybrid approach where the MsFV formulation is modified to obtain the

basis functions through a data-driven model instead of being computed from the local

problems. Figure 2.5 summarises the workflow of the proposed method.

To ensure the partition of unity property of the basis functions (which is not necessarily

fulfilled in the learning model), we perform a post-processing step on the generated basis

functions as follows:

φinew(x) =
φi(x)∑
k φ

k(x)

We note that the presented method benefits from the use of structured grids with coarse

cells of same size. In the case of structured grids with cells of different sizes, the patches

could be scaled to a unique input size. This is a standard preprocessing step in computer

vision to handle images of different sizes. We also note that handling unstructured grids

is not a straightforward task and is beyond the scope of the current manuscript.

2.3.1 Implementation and computational aspects

The computational gain of the proposed method is achieved by replacing the solution

of local problems by a constant number of matrix-vector multiplications followed by

element-wise function evaluations. For a network of input and output sizes n and hid-

den layers of size m, this means an evaluation complexity of O(mn). The constants

associated with the evaluation cost will depend on the number of layers of the network.

A ML approach for efficient UQ using multiscale methods 22

Efficient algorithms for solving systems of n linear equations exist where complexities

of O(n log n) (FFT) or even O(n) (multigrid methods) are achieved, however the con-

stants associated with these algorithms are large, usually requiring a large value of n to

be economical. This is in contrast to the MsFV approach where small local problems

are preferred. Likewise, there exist efficient algorithms to perform matrix-vector mul-

tiplications that are only justified in practice when the matrices and vectors are very

large.

Regarding the training of the neural network, this is performed in an offline phase as

with other surrogate modeling techniques, and the justification of the cost will depend

on the particular uncertainty quantification task at hand. The larger the uncertainty

quantification task, the larger the time budget that can be assigned to the surrogate

modeling process. As a practical note, it is worth mentioning that due to the surge

of interest in neural networks and AI in general, efficient implementations have been

intensively developed in recent years, both from the software and hardware sectors. In-

deed, dedicated hardware devices are currently being released for various neural network

implementations.

2.3.2 Other machine learning techniques

The proposed algorithm is not limited to neural networks and other traditional machine

learning techniques are indeed applicable such as Gaussian processes and support vector

machines to model the basis function predictor. A number of reasons led us to choose the

neural network model. First, neural networks are universal approximators [19], meaning

that they can fit any measurable function with arbitrary accuracy. This practically

covers any function encountered in engineering applications. Secondly, neural networks

scale very well with the size of the dataset, in contrast to Gaussian processes and support

vector machines. This is desirable where the trends of the cost of numerical simulations

and data storage are ever decreasing. Lastly, research in neural networks is characterized

by a remarkably large and evolving body of literature from which we can benefit in the

near future. Advances in the field is specially strong in problems related to computer

vision, which shares a lot of features with our work.

2.4 Numerical experiments

We consider the task of solving Eq. (2.1) over a unit square [0, 1]2 ⊂ R2. The domain is

discretized into 81× 81 fine grid, with a primal coarse grid of 9× 9. For estimating the

statistical distributions, we utilize M = 1000 realizations of isotropic log-permeability

A ML approach for efficient UQ using multiscale methods 23

Table 2.1: R2-scores on different permeability types

Correlation length R2-score

L = 0.1 0.927
L = 0.2 0.953
L = 0.4 0.964

fields generated assuming a zero mean gaussian random field with an exponential co-

variance of the form

Cov(x1,x2) = σ2 exp

(
−‖x1 − x2‖

L

)
where ‖·‖ denotes the Euclidean norm. We choose σ = 1.0, and we investigate three

values for the correlation length: L = 0.1, 0.2, and 0.4.

2.4.1 Learning process

We assume a budget of m = 20 full MsFV runs, obtaining a dataset of 980 samples

(since each run yields 49 samples). The array sizes of the inputs (permeability patches)

and outputs (basis functions) are 19×19. We set aside 20% of the dataset for validation

(this should be done at the level of the realizations, i.e. samples generated from 4 full

MsFV runs).

The architecture employed is a fully connected network with 1-hidden layer of size 1024

and ReLU activation function. Naturally, the input and output layers are of size 19×19

= 361, matching the size of the permeability patch and basis function. Additionally, we

employ the hard sigmoid function as the activation of the output layer. This is to embed

the prior knowledge that basis functions take values between 0 and 1. The hard sigmoid

is the function x ∈ R 7→ max(0,min(1, 0.2x+ 0.5)). This choice of output activation,

despite usually being problematic for gradient-based optimizations, gave good results

when coupled with dropout and batch normalization.

To train the network, the gradient-based optimizer Adam [28] seemed more robust during

our trials. The initial learning rate was set to ε0 = 10−3. For regularization, a dropout

rate of 5% after the hidden layer, and a max-norm constraint of 4 have proven useful.

Additionally, early stopping is employed. All these hyperparameter values were chosen

based on default recommendations along with some manual explorations.

A convenient metric employed to report the performance of a trained model is the

coefficient of determination (or R2-score):

R2(f) = 1−
∑
‖φi − φ̂i‖2∑
‖φi − φ̄‖2

A ML approach for efficient UQ using multiscale methods 24

(a) Input log κ

(b) Target φ

(c) Predicted φ̂

(d) Difference φ− φ̂

Figure 2.6: Performance of basis function predictor, case L = 0.1

where ‖·‖ denotes the L2 norm, f is the trained model, φ̂i = f(log κi), i = 1, 2, · · · , Nval

are the predicted basis functions, φ1, φ2, · · · , φNval are the true basis functions, and

φ̄ = 1
Nval

∑
φi is the sample mean of the true basis functions. A score of 1.0 corresponds

to perfect prediction, while a score below 0 means that the predictor performance is worse

than a model that always predicts the sample mean. Table 2.1 shows the validation scores

obtained on the three permeability types considered, i.e. correlation lengths L = 0.1,

0.2 and 0.4. Figures 2.6, 2.7 and 2.8 show some of the predicted basis functions for cases

L = 0.1, 0.2 and 0.4, respectively. We see that the prediction is more challenging for

the case of shortest correlation length. This is likely due to the permeability field being

more heterogeneous for shorter correlation lengths.

A ML approach for efficient UQ using multiscale methods 25

(a) Input log κ

(b) Target φ

(c) Predicted φ̂

(d) Difference φ− φ̂

Figure 2.7: Performance of basis function predictor, case L = 0.2

Predictor uncertainty Error estimations of the predicted basis functions might be

of interest to fully quantify the uncertainties in the results. Such estimations are readily

available in machine learning models such as Gaussian processes. For neural networks,

a number of methods such as Bootstrap aggregating (bagging) and others as discussed

in [36] could be employed. Another possibility is to employ the dropout technique as

a Bayesian approximation method [37]. In our work, we consider the uncertainties in

the predicted basis functions to be of second order and the presented numerical results

support this assumption.

A ML approach for efficient UQ using multiscale methods 26

(a) Input log κ

(b) Target φ

(c) Predicted φ̂

(d) Difference φ− φ̂

Figure 2.8: Performance of basis function predictor, case L = 0.4

2.4.2 Hybrid model

Once the neural network model is trained, we can use it to compute the basis functions in

the MsFV formulation. To assess the effectiveness of this hybrid approach (MsFV-NN),

we consider two test cases:

Quarter-five spot problem: In this problem, injection and production points are located

at (0, 0) and (1, 1) of the unit square, respectively. No-flow boundary conditions

are imposed. We assume unit injection/production rates, i.e. q(0, 0) = 1 and

q(1, 1) = −1.

A ML approach for efficient UQ using multiscale methods 27

Uniform flow problem: Here, uniformly distributed inflow and outflow conditions are

imposed on the left and right sides of the unit square, respectively. No-flow bound-

ary conditions are imposed on the remaining top and bottom sides. A total in-

flow/outflow rate of 1 is assumed. For the unit square, this means v · n̂ = −1 and

v · n̂ = 1 on the left and right sides, respectively, where n̂ denotes the outward-

pointing unit normal to the boundary.

In both cases, a pressure value of 0 is imposed at the center of the square to close

the problem. The pressure Eq. (2.1) is solved using three methods: a standard cell-

centered finite volume method at the fine-scale level which is taken as the reference

“true” solution, the standard MsFV method, and the proposed hybrid method (MsFV-

NN). Additionally, we also compute and compare the total velocities, which can be

derived from the corresponding pressure solutions. In the reference solution, the total

velocity can be derived using Darcy’s law (v = −λK∇p where λ is the total mobility, here

assumed as λ = 1), whereas in the MsFV and MsFV-NN methods, the total velocities

are derived via a flux reconstruction step, as mentioned before. We take a further step

and use the total velocity to solve a tracer flow problem. In this case, we solve the

following advection equation:

ϕ
∂c

∂t
+∇ · (cv) =

qw
ρw

(2.9)

where c denotes the concentration of the injected fluid (in this case water), ϕ denotes

the domain porosity, qw denotes sources/sinks of the injected fluid, and ρw denotes the

density of the injected fluid. In all cases, we assume water with dimensionless density

of ρw = 1 that is injected into a reservoir with constant porosity ϕ = 0.2 initially

containing only oil, i.e. c(x, t = 0) = 0, which we assume to have the same viscosity

as the injected fluid. Under these conditions the total velocity v does not change in

time. The simulation time for both test cases is from t = 0 until t = 0.4. In reservoir

engineering, it is more convenient to work with pore volume injected (PVI) as the time

unit, which expresses the ratio of the total volume of fluid injected until time t and

the reservoir pore volume (for constant injection, tPV I = qint/Vϕ where Vϕ is the pore

volume).

Figures 2.9 and 2.10 show sample solutions for one realization of correlation length

L = 0.1, for the two test cases considered. We also show the contour plot of the

difference between the reference and MsFV, the reference and MsFV-NN, and MsFV

and MsFV-NN.

A ML approach for efficient UQ using multiscale methods 28

(a) Pressure solution for one realization.

(b) Concentration solution at t = 0.5 PVI for one realization.

Figure 2.9: Quarter-five spot problem: Sample solution for one realization based on
the reference (standard FVM), MsFV and MsFV-NN.

A ML approach for efficient UQ using multiscale methods 29

(a) Pressure solution for one realization.

(b) Concentration solution at t = 0.5 PVI for one realization.

Figure 2.10: Uniform flow problem: Sample solution for one realization based on the
reference (standard FVM), MsFV and MsFV-NN.

A ML approach for efficient UQ using multiscale methods 30

(a) Case L = 0.1

(b) Case L = 0.2

(c) Case L = 0.4

Figure 2.11: Quarter five spot problem: Comparison of errors in MsFV and MsFV-
NN.

2.4.2.1 Comparison of errors

The errors of the solutions (pressure, velocity, concentration) of MsFV and MsFV-NN

are measured with respect to the reference solution using an area weighted norm. Let

u = (u1, · · · , un) be a vector of values corresponding to cells Ω1, · · · ,Ωn and let |Ωi| be

the area of cell i, we define the area weighted norm as ‖u‖ = (
∑

i |ui|2|Ωi|)1/2. Using

this notation, the pressure error (ep), the velocity error (ev), and the concentration error

A ML approach for efficient UQ using multiscale methods 31

(a) Case L = 0.1

(b) Case L = 0.2

(c) Case L = 0.4

Figure 2.12: Uniform flow problem: Comparison of errors in MsFV and MsFV-NN.

(ec) are:

ep =
‖pref − p‖
‖pref‖

(2.10)

ev =
‖vrefx − vx‖
‖vrefx ‖

+
‖vrefy − vy‖
‖vrefy ‖

(2.11)

ec =
1

T

∫ T

0

‖cref (·, t)− c(·, t)‖
‖cref (·, t)‖

dt (2.12)

Figures 2.11 and 2.12 show scatter plots of the errors obtained by the MsFV and MsFV-

NN. As expected, a better predictor performance (in terms of the R2-score) corresponded

to a better correlation between both errors.

A ML approach for efficient UQ using multiscale methods 32

(a) Case L = 0.1

(b) Case L = 0.2

(c) Case L = 0.4

Figure 2.13: Quarter five spot problem: Estimated distributions by MsFV (orange
dashed line), MsFV-NN (green dotted line), and reference (blue line).

2.4.2.2 Estimated distributions

Finally, we compare all three methods in an uncertainty quantification task where we

estimate the pressure p at (1/4, 1/4), the total productionQ, and the water breakthrough

time twb (time when water fraction reaches 1% at the production well).

Figures 2.13 and 2.14 show the estimated distributions according to each method. We

can see that the distributions given by MsFV and MsFV-NN are almost indistinguishable

even for the less accurate predictor (L = 0.1). From these results, it is clear that the

effectiveness of the hybrid model is attached to the effectiveness of the target model

A ML approach for efficient UQ using multiscale methods 33

(a) Case L = 0.1

(b) Case L = 0.2

(c) Case L = 0.4

Figure 2.14: Uniform flow problem: Estimated distributions by MsFV (orange dashed
line), MsFV-NN (green dotted line), and reference (blue line).

Table 2.2: Results of hyperparameter tuning.

Dropout rate 5.4%
Learning rate 3.1× 10−3

R2-score 0.97

(MsFV). The hybrid model is expected to perform well as long as the target model itself

serves as a good proxy to the “true” solution.

A ML approach for efficient UQ using multiscale methods 34

2.4.3 Hyperparameter tuning

In this section, we show how to further improve the learning performance by fine-tuning

the model with a hyperparameter optimization algorithm. Specifically, we employ the

Tree-Parzen Estimator algorithm. We shall consider the case of L = 0.1 where the

trained predictor performed with a score of 0.927.

Previously, a dropout rate of 5% and a default learning rate of 10−3 have been fixed.

Here we let the hyperparameter optimization algorithm tune the values for the dropout

rate and the learning rate. Moreover, we also employ batch normalization to enhance

the optimization process.

Table 2.2 summarizes the hyperparameter optimization results under a budget of 20

iterations where we observe significant improvement in the R2-score. Figure 2.15 shows

the error scatter plot for the resulting hybrid model. An improvement in the correlation

is observed (please compare with Figures 2.11 and 2.12). Figure 2.16 compares the esti-

mated distributions for the quantities of interest where a strong agreement between the

data-driven approach and the MsFV is observed. Finally, Table 2.3 presents summary

statistics of the results obtained. Overall, we see that there are improvements in both

the errors and the estimated distributions when the learning performance increases, as

is expected. Of course, even more improvements can be achieved by further tuning

the model, for example by increasing the number of iterations of the hyperparameter

optimization, or by employing additional tools such as L1 and L2 regularizers.

2.4.4 Computational gains

For an estimate of the computational speedup provided by the proposed method, we

compared the time taken to generate 1000 basis functions using the predictor vs. the

standard approach of solving local problems. Since the MsFV method obtains the basis

functions by solving local problems which involve many intermediary steps, and this

could lead to data-derived overheads which are implementation-dependent, we decided

to measure the time of solving the four local 2D problems only, i.e. without accounting

for the overheads of getting the local boundary conditions (which are obtained by solving

the 1D problems) and assembling the local matrices. We employed two solvers for the

local problems: GMRES iterative solver and UMFPACK direct solver, both highly

optimized C-compiled packages provided in numpy/scipy.

Table 2.4 summarises the run times obtained. These results were obtained using one

thread (except for the last row which is run on GPU). Here, “batch eval” refers to

the prediction of the N basis functions “at once”: for a given input vector κi, i =

A ML approach for efficient UQ using multiscale methods 35

(a) Quarter five spot problem (L = 0.1)

(b) Uniform flow problem (L = 0.1)

Figure 2.15: Comparison of errors in MsFV and MsFV-NN (tuned model, L = 0.1).
Improvements can be seen with respect to Figures 2.11(a) and 2.12(a).

(a) Quarter five spot problem (L = 0.1)

(b) Uniform flow problem (L = 0.1)

Figure 2.16: Estimated distributions (tuned model, L = 0.1) by MsFV (orange
dashed line), MsFV-NN (green dotted line), and reference (blue line). Compare with

Figures 2.13(a) and 2.14(a).

A ML approach for efficient UQ using multiscale methods 36

Table 2.3: Summary statistics and point estimates (L = 0.1).

(a) Quarter five spot problem

Reference MsFV MsFV-NN Untuned

ēp - 0.0525 0.0560 0.0586
sep - 0.0228 0.0226 0.0232
ēv - 0.1312 0.1463 0.1654
sev - 0.0216 0.0243 0.0231
ēc - 0.0268 0.0298 0.0326
sec - 0.0053 0.0068 0.0058
p̄(1/4,1/4) 0.5283 0.5297 0.5303 0.5240

sp(1/4,1/4)
0.2075 0.2081 0.2092 0.2036

Q̄ 0.1910 0.1906 0.1906 0.1904
sQ 0.0060 0.0062 0.0063 0.0062
t̄wb 0.4488 0.4404 0.4406 0.4402
stwb 0.0639 0.0646 0.0650 0.0639

(b) Uniform flow problem

Reference MsFV MsFV-NN Untuned

ēp - 0.0301 0.0357 0.0408
sep - 0.0093 0.0105 0.0141
ēv - 0.2412 0.2876 0.3504
sev - 0.0267 0.0338 0.0420
ēc - 0.0205 0.0228 0.0267
sec - 0.0039 0.0043 0.0050
p̄(1/4,1/4) 0.2724 0.2722 0.2732 0.2677

sp(1/4,1/4)
0.1160 0.1162 0.1181 0.1135

Q̄ 0.2339 0.2345 0.2352 0.2365
sQ 0.0589 0.059 0.0590 0.0591
t̄wb 0.7460 0.7423 0.7436 0.7479
stwb 0.1746 0.1743 0.1738 0.1737

Table 2.4: Time to generate 1000 basis functions using different methods.

Method Time [sec]

Sparse direct solver (UMFPACK) 2.14
GMRES (tol=1e-5) 7.21
GMRES (tol=1e-16) 23.77
NN prediction 0.389
NN (batch eval) 0.083
NN (batch eval) (GPU) 0.017

A ML approach for efficient UQ using multiscale methods 37

1, 2, ..., N , the predictor performs a matrix-vector multiplication on κi. But this can be

implemented as a matrix-matrix multiplication simply by building the matrix K whose

columns are the vectors κi, allowing for additional numerical optimizations.

In this case, we see that the direct solver outperformed the iterative solver for the local

problems since the local matrices are small, which is the common scenario in multiscale

methods. We also see that the data-driven approach clearly outperforms the solver

component, and if we add the overheads of solving the 1D problems plus the local matrix

assembly, the computational advantage will be amplified. We note however that these

times can vary depending on the implementation. In particular, different neural network

architectures and different solvers for the system of equations may yield different times.

Nevertheless, it is unlikely that solving the local problems will outperform a forward

pass of a neural network, i.e. direct matrix-vector computations.

2.5 Conclusions and remarks

We have seen that for the presented subsurface flow problems, shallow neural networks

performed very well as a simple surrogate for the computation of basis functions in the

multiscale finite volume method. Further, we draw the following remarks:

– Results obtained for uncertainty propagation using MsFV and the proposed MsFV-

NN method were practically indistinguishable.

– The proposed method is applicable to any multiscale method where the sub-grid

scales are captured numerically by solving local problems.

– The proposed method is scalable with large coarse partitions (since more data

samples are obtained per simulation run).

In addition, we note that if the data distribution remains unchanged (or is similar to

that of the training data), then the same trained predictor can be used for different

problem conditions (for example, to perform well location optimization), and further

computational gains can be achieved since we avoid training a new predictor. This is

the situation in cases such as steady state flow or tracer flow.

We have presented the first application of machine learning to capture sub-grid scale

heterogeneities within a multiscale method. As our next step, we aim to study the

application of the presented method for multiphase flow in porous media. Other possible

research directions include extensions to more general permeability fields with anisotropy

and channelized structures.

Chapter 3

Parametrization of stochastic

inputs using generative

adversarial networks with

application in geology

We investigate generative adversarial networks as a tool for sample-based parametriza-

tion of stochastic inputs in numerical simulations. We address parametrization from

the point of view of emulating the data generating process, instead of explicitly con-

structing a parametric form to preserve statistics of the data. By emulating the data

generating process, we replicate the statistics of the data. This is done by training a

neural network to generate samples that follow the data distribution using a recent tech-

nique called generative adversarial networks. The method is assessed in subsurface flow

problems, where the effective parametrization of underground properties is important

due to the high dimensionality and presence of high spatial correlations. We experiment

with unconditional and conditional realizations of binary channelized geological models,

and perform uncertainty quantification and parameter estimation. Results show that

the parametrization using generative adversarial networks is very effective in preserving

visual realism as well as high order statistics of the flow responses, while achieving a

dimensionality reduction of two orders of magnitude.

In preparation for submission to journal.

38

Parametrization of stochastic inputs using GAN with application in geology 39

3.1 Introduction

Many problem scenarios such as uncertainty quantification and parameter estimation

involve the solution of partial differential equations with a stochastic input. Input in this

context is understood as any system property that affects the system response, e.g. the

conductivity tensor in the heat equation. This is because in many real applications, some

properties of the system are uncertain or simply unknown. The general approach is to

set a probabilistic framework where we represent such uncertainties as random variables

with a distribution predefined using domain knowledge. In some cases where both the

distribution and the forward map are trivial, a closed-form solution could be obtained;

however this is very rarely the case. Often in practice, we can only resort to a brute-force

approach where we draw several realizations of the random variables and fully solve the

partial differential equations for each realization in an effort to estimate distributions or

bounds of the system’s response. This approach suffers from slow convergence and the

need to perform a large number of forward simulations, which led to the development

of several methods to reduce the computational burden of this task.

A straightforward solution is to reduce the computational cost of the forward map itself

– a large number of methods have been developed in this direction. Another different

direction is focused on reducing or refining the search space or distribution of the random

variables, for example by regularization or parametrization, thus reducing the number of

simulations required. Parametrization is specially useful in problems where the number

of random variables is huge but the variables are highly redundant and correlated. This is

generally the case in subsurface flow problems: Complete prior knowledge of subsurface

properties (e.g. porosity or permeability) is impossible, yet is very influential in the flow

responses. At the same time, accurate flow modeling often requires the use of extremely

large simulation grids. When the subsurface property is discretized, the number of free

variables is naively associated with the number of grid cells. The random variables

thus obtained are hardly independent, whose assumption during the modeling leads to

unnecessary computations over unrealistic realizations. The goal of parametrization is

to discover statistical relationships between the random variables in order to obtain a

reduced and more effective representation.

The importance of parametrization in subsurface simulations resulted in a variety of

methods in the literature including zonation [38, 39] and zonation-based methods [40–

45], PCA-based methods [46–51], SVD-based methods [52–55], discrete wavelet trans-

form [56–58], discrete cosine transform [59–61], level set methods [62–64], and dictionary

learning [65, 66]. Many current methods begin by proposing parametric forms for the

random vector to be modeled which are then explicitly fitted to preserve certain statistics

Parametrization of stochastic inputs using GAN with application in geology 40

of the random vector. Many methods inevitably adopt some oversimplifying assump-

tions during the modeling process, either on the parametric form to be employed or

the statistics to be reproduced, which are often necessary for the method to be actually

feasible. In this work, we consider the use of neural networks for both parametrization of

the random vector and definition of its relevant statistics. This is motivated by recent

advances in the field of machine learning, as well as the high expressive power of neural

networks that makes them one of the least constraining forms of parametrization and

very suitable to model complex data.

The idea is to view parametrization as emulating the data generating process itself – by

emulating the data generating process, we replicate the statistics of the random vector.

We seek to construct a deterministic function called the generator – in this case, a neural

network – that takes a low-dimensional vector as input (the reduced representation), and

aims to output a realization of the target random vector. The low-dimensional vector

is assumed to come from an easy-to-sample distribution, e.g. a multivariate normal or

an uniform distribution, and is what provides the element of stochasticity. Generating

a new realization then only requires sampling the low-dimensional vector and a forward

pass of the generator network. The neural network is trained using a dataset of prior

realizations that inform the patterns and variability of the random vector (e.g. geological

realizations from a database or from multipoint geostatistical simulations [67, 68]).

The component missing in the description above is the definition of an objective func-

tion to actually train such generator; in particular, how do we quantify the discrepancy

between generated samples and actual samples? This is resolved using a recent tech-

nique in machine learning called generative adversarial networks [69] (GAN). The idea

in GANs is to let a second classifier neural network, called the discriminator, define the

objective function. The discriminator takes the role of an adversary against the gen-

erator where both are trained alternately following a minmax game: the discriminator

is trained to maximize a classification performance where it needs to discern between

“fake” (from the generator) and “real” (from the dataset) samples, while the generator

is trained to minimize it. Hence, the generator is iteratively encouraged to generate

good realizations in order to fool the discriminator, while the discriminator is in turn

iteratively encouraged to improve its ability to classify correctly. Equilibrium of this

adversarial game occurs when the generator effectively learns the data distribution, and

the discriminator is 1
2 (coin toss scenario).

The benefit of this approach is that we do not need to manually specify which statistics

need to be preserved, instead we let the discriminator network implicitly learn the rele-

vant statistics from data. We can see that the high expressive power of neural networks

is leveraged twice: on one hand, the expressive power of neural networks is used in the

Parametrization of stochastic inputs using GAN with application in geology 41

parametrization (generator) to be able to generate complex realizations; on the other

hand, it is used in the discriminator to learn the complex high-order statistics of the

data.

In this work, we parametrize binary channelized permeability models based on the clas-

sical Strebelle training image [67], a benchmark problem often employed due to the

difficulty in obtaining a parametrization that preserves the visual realism and spatial

and flow statistics. To assess the method, we consider uncertainty propagation in sub-

surface flow problems for a large number of realizations of the permeability and compare

the statistics in their flow responses. We also perform parameter estimation using natu-

ral evolution strategies [70, 71], a general black-box optimization method that is suitable

for the obtained reduced representation. We further discuss training difficulties of GANs

encountered during our implementation such as working with small datasets and inher-

ent issues of the standard formulation of GAN [69].

In the field of geology, the motivation to adopt a sample-based parametrization approach

comes from the trend of increasing data availability, in particular realistic geological

models, supported by decreasing computational costs, improvements in sensing methods,

and the increasing interest in multipoint geostatistical simulations [68, 72, 73]. The

interest in the latter stems from the increasing desire to obtain more realistic geological

models that captures complex features of the geology, which is often lacking in more

traditional methods based on two-point statistics. Multipoint geostatistical simulations

can also serve as an unlimited source of realistic geological models to train our neural

networks.

This work is an extension of our preliminary work in [74]. There are a number of recent

works in geology-related fields where GANs have been studied. In [75, 76], the authors

train a GAN to generate images of porous media for image reconstruction. In [77], the

authors train a GAN to generate geological models and apply it for history matching.

In [78, 79], the authors study ways to generate conditional realizations using a generator

trained on unconditional realizations. In this work, we focus on the capabilities of GANs

as a parametrization tool to preserve high order statistics of the flow responses as well

as visual realism.

The rest of this chapter is organized as follows: In Section 3.2, we briefly describe

convolutional neural networks – an architecture that is widely employed for modern

neural networks – and the method of generative adversarial networks. In Section 3.3, we

present our numerical results for uncertainty quantification and parameter estimation

experiments. In Section 3.4, we provide further discussions for practical implementation.

Finally, we draw our conclusions in Section 3.5.

Parametrization of stochastic inputs using GAN with application in geology 42

u1

u2

u3

u4

v1

v2

v3

w11

w21

w34

W =

w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

(a) A fully connected layer.

u1

u2

u3

u4

v1

v2

v3

w1

w2

w1

w2

w1

w2

W =

w1 w2 0 0
0 w1 w2 0
0 0 w1 w2

(b) A convolutional layer.

Figure 3.1: Transformation matrix of a fully connected layer (a), and of a convo-
lutional layer (b). In this example, the convolutional layer has only 2 free weights,

whereas the fully connected layer has 12 free weights.

3.2 Background

3.2.1 Convolutional neural networks

A (feedforward) neural network is a composition of functions f(x) = fL(fL−1(· · · (f1(x))))

where each function f l(x), called a layer, is of the form σl(Wlx+bl), i.e. a linear trans-

form followed by a component-wise non-linearity. The choice of the number of layers L,

the non-linear functions σl, and the sizes of Wl,bl are part of the architecture design pro-

cess, which is largely problem-dependent and led by heavy use of heuristics and domain

knowledge. Modern architectures use non-linearities such as rectifier linear units (ReLU,

σ(x) = x+ = max(0, x)), leaky rectifier linear units (leaky ReLU, σ(x) = x+ + 0.01x−),

tanh, sigmoid, and others; and can have as much as 100 layers [80, 81]. After an archi-

tecture is assumed, the weights of Wl,bl are optimized following an objective function.

A major architectural choice that led to huge advances in computer vision is the use

of convolutional layers [82]. An example of a convolution is the following: Let u =

(u1, · · · , um) be an input vector and k = (w1, w2) be a filter. The output of convolving

the filter k on u is v = (v1, · · · , vp) where vi = w1ui+w2ui+1 (using stride 1). A benefit

of using convolutional layers is that the associated matrix is sparse and with repeated

weights, resulting in a huge reduction of the number of free weights for optimization.

A second benefit comes from the type of regularization that this operator inherently

Parametrization of stochastic inputs using GAN with application in geology 43

imposes that is often useful in applications where there is a spatial or temporal extent

and the assumption of data locality is valid, e.g. natural images and speech. Informally,

closer points have a higher influence than farther points. A convolution is illustrated

in Figure 3.1: In a traditional fully connected layer, the associated matrix is dense

and all its weights are to be determined in optimization. In a convolutional layer, the

connections are constrained in such a way that each output component only depends on

a neighborhood of the input using a same set of weights, and as a result the associated

matrix is a sparse diagonal-constant matrix.

The convolution as described above has a contracting effect, i.e. the output size is always

smaller or equal to the input size, which can be controlled by the filter stride. Modern

classifier networks consist of a series of multiple convolutional layers that successively

contract an image to a single number (binary classification) or a vector of numbers

(multiclass classification). However, in some cases such as in decoder and generative

networks, we wish to achieve the opposite effect to get an output that is larger than the

input (e.g. to reconstruct an image given a compressed code). This can be achieved by

simply transposing the convolutions: Following the example in Figure 3.1b, to convert

from v to u, we can consider weight matrices of the form W>, i.e. the transpose of

the convolution matrix from u to v. Modern decoders and generators consist of a series

of multiple transposed convolutions that successively upscale a small vector to a large

output such as an image or audio.

The operations and properties discussed so far extend naturally to 2D and 3D tensors.

For a 2D or 3D input tensor, the filter is also a 2D or 3D tensor, respectively. Note

however that in the 3D case, the filter tensor is such that the depth (orthogonal to the

spatial extent) is always equal to the depth of the 3D input tensor, therefore the output

is always a 2D tensor, and the striding is done in the spatial extent (width and height).

On the other hand, we allow the application of multiple filters to the same input, thereby

producing a 3D output tensor if required, consisting of the stack of multiple convolution

outputs. This way of operating with convolutions is inherited from image processing:

Color images are 3D tensors consisting of three 2D tensors indicating the red, green, and

blue intensities (RGB format). Image filtering normally operates on all three values, e.g.

the greyscale filter is vij = 0.299 · uij,red + 0.587 · uij,green + 0.114 · uij,blue. The output of

a convolution filter is also called a feature map.

Finally, we show in Figure 3.2 a popular pyramid architecture used in generator net-

works [83] for image synthesis. The blocks shown represent the state shapes (stack of

feature maps) as the input vector is passed through the network. The input vector z

is first treated as a “1-pixel image” (with many “feature maps”). The blocks are sub-

sequently expanded in the spatial extent (width and height) while thinned in depth: A

Parametrization of stochastic inputs using GAN with application in geology 44

z

y

Figure 3.2: Illustration of a typical pyramid architecture used in generator networks.

series of transposed convolutions is used to upsample the spatial extent until reaching

the desired size; at the same time, the number of convolution filters is initially large,

but it is subsequently reduced in the following layers. For classifier networks, usually

the inverted architecture is used where the transposed convolutions are replaced with

normal convolutions. Further notes on modern convolutional neural networks can be

found in [84].

3.2.2 Generative adversarial networks

Let z ∼ pz, y ∼ Py, where pz is a known, easy-to-sample distribution (e.g. multivariate

normal or uniform distribution), and Py is the unknown distribution of interest (e.g. the

distribution of all possible geomodels in a particular zone). The distribution Py is only

known through realizations {y1,y2, · · · ,yn} (e.g. realizations provided by multipoint

geostatistical simulations). Let Gθ : Z → Y be a neural network – called the generator –

parametrized by weights θ to be determined. Given pz fixed, this neural network induces

a distribution Gθ(z) ∼ Pθ that depends on θ, and whose explicit form is complicated or

intractable (since neural networks contain multiple non-linearities). On the other hand,

sampling from this distribution is easy since it only involves sampling z and a forward

evaluation of Gθ. The goal is to find θ such that Pθ = Py.

Generative adversarial networks (GAN) [69] approach this problem by considering a

second classifier neural network –called the discriminator– to classify between “fake”

samples (generated by the generator) and “real” samples (coming from the dataset of

realizations). Let Dψ : Y → [0, 1] be the discriminator network parametrized by weights

ψ to be determined. The training of the generator and discriminator uses the following

loss function:

L(ψ, θ) := E
y∼Py

logDψ(y) + E
ỹ∼Pθ

log(1−Dψ(ỹ)) (3.1)

Parametrization of stochastic inputs using GAN with application in geology 45

where ỹ = Gθ(z) ∼ Pθ. In effect, this loss is the classification score of the discriminator,

therefore we train Dψ to maximize this function, and Gθ to minimize it:

min
θ

max
ψ
L(ψ, θ) (3.2)

In practice, optimization of this minmax game is done alternately using some variant of

stochastic gradient descent, where the gradient can be obtained using automatic differ-

entiation algorithms. It is shown in [69] that in the infinite capacity setting, optimization

of this minmax game amounts to minimizing the Jensen-Shannon divergence between

Py and Pθ. Equilibrium of the game occurs when Py = Pθ and Dψ = 1
2 in the support

of Py (coin toss scenario).

3.2.2.1 Wasserstein GAN

In practice, optimization of the minmax game (3.2) is known to be very unstable,

prompting numerous works to understand and address this issue [83, 85–91]. Of the

many works, we find that the Wasserstein formulation of GAN (WGAN) [90, 91] is

well-suited for our application. This formulation proposes the objective function

L(ψ, θ) := E
y∼Py

Dψ(y)− E
ỹ∼Pθ

Dψ(ỹ) (3.3)

and a constraint in the search space of Dψ,

min
θ

max
ψ:Dψ∈D

L(ψ, θ) (3.4)

where now Dψ : Y → R and D is the set of 1-Lipschitz functions. This constraint can

be loosely enforced by constraining the weights ψ to a compact space, e.g. by clipping

the values of the weights in an interval [−c, c]. In practice, D is a set of k-Lipschitz

functions for a constant k that is irrelevant for optimization. Although the modifications

in Equations (3.3) and (3.4) over Equations (3.1) and (3.2) seem trivial, the derivation of

this formulation is rather involved and can be found in [90]. In essence, this formulation

aims to minimize the Wasserstein distance between two distributions, instead of the

Jensen-Shannon divergence. Here we only highlight important consequences of this

formulation:

• Access to a meaningful loss metric. This is because

W (Py,Pθ) ≈ max
ψ:Dψ∈D

L(ψ, θ) (3.5)

Parametrization of stochastic inputs using GAN with application in geology 46

where W denotes the Wasserstein distance.

• Better stability. In particular, mode collapse is drastically reduced (see Sec-

tion 3.4.1).

• Robustness to architectural choices and optimization parameters.

We experimentally verify these points in Section 3.4.1 and discuss their implications for

our current application.

A pseudo-code of the training process is shown in Algorithm 1. Note that D is trained

multiple times (nD) per each iteration of G. This is to keep D near optimality so that

the Wasserstein estimate in Equation (3.5) is accurate before every update of G. We

also note that even though we show a simple gradient ascent/descent in the update steps

(lines 6 and 11), it is more common to use update schemes such as RMSProp [27] and

Adam [28] that are better suited for neural network optimization.

Algorithm 1 The WGAN algorithm

Require: nD iterations of D per iteration of G, initial guesses θinit, ψinit, step size η,
batch size m, clipping interval c.

1: while θ has not converged do
. Train D

2: for t = 1, ..., nD do
3: Sample {z1, · · · , zm} ∼ Pz to get {ỹ1, · · · , ỹm}, ỹi = Gθ(zi)
4: Sample {y1, · · · ,ym} ∼ Py (draw a subset of the dataset)
5: ∇ψL(ψ, θ)← ∇ψ

[
1
m

∑m
i=1Dψ(yi)− 1

m

∑m
i=1Dψ(ỹi)

]
6: ψ ← ψ + η∇ψL(ψ, θ)
7: ψ ← clip(ψ,−c, c)
8: end for

. Train G
9: Sample {z1, · · · , zm} ∼ Pz to get {ỹ1, · · · , ỹm}, ỹi = Gθ(zi)

10: ∇θL(ψ, θ)← −∇θ 1
m

∑m
i=1Dψ(ỹi)

11: θ ← θ − η∇θL(ψ, θ)
12: end while

3.3 Numerical experiments

We perform parametrization of unconditional and conditional realizations (conditioned

on points over the domain) of a binary channelized permeability using 1000 prior real-

izations of each. The training image is the classical 250 × 250 image by Strebelle [67]

containing meandering left-to-right channels. The channels have a log-permeability of 1

and the background has a log-permeability of 0. The conditioning is done at 16 points,

summarized in Table 3.1, containing 13 points of high permeability (channel material)

Parametrization of stochastic inputs using GAN with application in geology 47

j = 12 j = 25 j = 38 j = 51

i = 12 1 1 1 1
i = 25 1 1 0 0
i = 38 1 0 1 1
i = 51 1 1 1 1

Table 3.1: Point conditioning at 16 locations, indicated by cell indices (i, j), regularly
distributed across the domain.

Reference

WGAN

PCA

Figure 3.3: Unconditional real-
izations

Reference

WGAN

PCA

Figure 3.4: Conditional realiza-
tions

and 3 points of low permeability (background material). The prior realizations are

generated using the snesim algorithm [67]. The size of the realizations is 64× 64.

3.3.1 Implementation

We train separate WGAN models for unconditional and conditional realizations. The

same network architecture was used in both cases but trained on their respective prior

realizations. The architectures follow the pyramid structure described in Figure 3.2: In

the generator, the input tensor is initially upscaled to 4 × 4 in the spatial extent. The

initial number of feature maps is 512. The block is successively upscaled in the spatial

extent and reduced in the number of feature maps by a factor of 2, until the spatial

extent reaches 32 × 32. A final transposed convolution upscales the block to 64 × 64.

The non-linearities are ReLUs for all layers except the last layer where we use tanh(·)
(so that output is bounded in [−1, 1]). In the discriminator the architecture is inverted,

where the initial number of feature maps is 8. The block is successively downscaled in

the spatial extent and increased in the number of feature maps by a factor of 2, until

Parametrization of stochastic inputs using GAN with application in geology 48

0 1
0

2.5

5

7.5

0 1
0

2.5

5

7.5 0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

log-permeability

fr
eq

ue
nc

y

(a) Unconditional case

0 1
0

5

10

0 1
0

5

10 0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

log-permeability

fr
eq

ue
nc

y

(b) Conditional case

Figure 3.5: Histogram of permeability at 10 random locations based on snesim (first
row) and WGAN (second row) realizations.

the spatial extent reaches 4×4. A final convolutional filter reduces this block to a single

real value. Note that the size of the discriminator (in terms of total number of weights)

is 1/8 times smaller than the generator, which is justified below in Section 3.4.2. All

layers except the last use leaky ReLUs. The last layer does not use a non-linearity. We

use z ∼ N (0, I) of dimension 30. This was chosen using principal component analysis as

a rule of thumb: to retain 75% of the energy, 54 and 94 eigencomponents are required

in the unconditional and conditional cases, respectively. We chose a smaller number

to futher investigate the limits of the parametrization. The result is a dimensionality

reduction of two orders of magnitude, from 4096 = 64× 64 to 30.

The network is trained using a popular gradient update scheme called Adam, with

β1 = 0.5, β2 = 0.999 (see [28]). We use a step size of 10−4, batch size of 32, and clipping

interval [−0.01, 0.01]. We perform 5 discriminator iterations per generator iteration. In

our experiments, convergence was achieved in around 20,000 generator iterations. The

total training time was around 30 minutes using an Nvidia GeForce GTX Titan X GPU.

During deployment, the model can generate realizations of 64 × 64 size at the rate of

about 5500 realizations per second.

In Figures 3.3 and 3.4 we show unconditional and conditional realizations generated

by our trained models, and realizations generated by snesim (reference). We also show

realizations generated with principal component analysis (PCA), retaining 75% of the

energy. We see that our model clearly reproduces the visual patterns present in the

prior realizations. In Figure 3.5 we show histograms of the permeability at 10 randomly

selected locations, based on sets of 5000 fresh realizations generated by snesim (i.e. not

Parametrization of stochastic inputs using GAN with application in geology 49

from the prior set) and by WGAN. We find that our model generates values that are

very close to either 0 or 1, and almost no value in between (no thresholding has been

performed at this stage, only shifting and scaling to move the tanh interval [−1, 1] to

[0, 1], i.e. (x+ 1)/2). The histograms are remarkably close.

3.3.2 Assessment in uncertainty quantification

Our ultimate goal is to achieve a parametrization that preserves not only the visual

patterns and spatial statistics but also the flow responses of the prior realizations in

flow simulations. In this section, we perform uncertainty quantification and compute

flow statistics of interest in practice. We borrow test cases from [50], where the authors

parametrize the same type of permeability using Kernel PCA. Thus, we refer the inter-

ested reader to such work for results using Kernel PCA. Note that here we use a larger

grid (64× 64 vs 45× 45) and provide an additional flow test case.

We propagate 5000 realizations of the permeability field in 2D single-phase subsurface

flow. We consider injection of water for the purpose of displacing oil inside a reservoir

(water and oil in this case have the same fluid properties since we consider single-phase

flow). The system of equations for this problem is

−∇ · (a∇p) = q (3.6)

ϕ
∂s

∂t
+∇ · (sv) = qw (3.7)

where p is the fluid pressure, q = qw + qo denotes (total) fluid sources and sinks, qw and

qo are the water and oil sources and sinks, respectively, a is the permeability, ϕ is the

porosity, s is the saturation of water, and v is the Darcy velocity.

Our simulation domain is the unit square with 64×64 discretization grid. The reservoir

initially contains only oil, i.e. s(x, t = 0) = 0, and we simulate from t = 0 until

t = 0.4. We assume an uniform porosity of ϕ = 0.2. We consider two boundary and

injection/production conditions:

Uniform flow: We impose uniformly distributed inflow and outflow conditions on the

left and right sides of the unit square, respectively, and no-flow boundary condi-

tions on the remaining top and bottom sides. The total injection/production rate

is 1. For the unit square, this means v · n̂ = −1 and v · n̂ = 1 on the left and

right sides, respectively, where n̂ denotes the outward-pointing unit normal to the

boundary.

Parametrization of stochastic inputs using GAN with application in geology 50

R
ef

er
en

ce

0.0 0.5 1.0 0.00 0.06 0.12 70 30 10 800 2000 4800

W
G

AN
PC

A

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

s

0

2

4

fr
eq

ue
nc

y

(a) Uniform flow, unconditional realizations

R
ef

er
en

ce

0.0 0.5 1.0 0.00 0.06 0.12 75 15 45 800 2400 5600

W
G

AN
PC

A

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

s

0

2

4

fr
eq

ue
nc

y

(b) Quarter five, unconditional realizations

Figure 3.6: Saturation statistics at t = 0.5 PVI for unconditional realizations. From
left to right: mean, variance, skewness and kurtosis of the saturation map, and lastly
the saturation histogram at a given point. The point corresponds to the maximum

variance in the reference.

Parametrization of stochastic inputs using GAN with application in geology 51

R
ef

er
en

ce

0.0 0.5 1.0 0.0000 0.0525 0.1050 75 15 45 800 2400 5600

W
G

AN
PC

A

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

s

0

1

2

fr
eq

ue
nc

y

(a) Uniform flow, conditional realizations

R
ef

er
en

ce

0.0 0.5 1.0 0.000 0.045 0.090 75.0 7.5 60.0 600 2100 4800

W
G

AN
PC

A

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

s

0

1

2

fr
eq

ue
nc

y

(b) Quarter five, conditional realizations

Figure 3.7: Saturation statistics at t = 0.5 PVI for conditional realizations. From left
to right: mean, variance, skewness and kurtosis of the saturation map, and lastly the
saturation histogram at a given point. The point corresponds to the maximum variance

in the reference.

Parametrization of stochastic inputs using GAN with application in geology 52

0 1 2

t

0.00

0.25

0.50

0.75

1.00

q o
il

Ref
WGAN
PCA

0 1 2

t

0.000

0.025

0.050

0.075

0.100

va
r(q

oi
l) Ref

WGAN
PCA

0.4 0.6 0.8 1.0

t

0

1

2

3

fr
eq

ue
nc

y

Ref

0.4 0.6 0.8 1.0

t

0

1

2

3 WGAN

0.4 0.6 0.8 1.0

t

0

1

2

3 PCA

(a) Uniform flow, unconditional realizations

0 1 2

t

0.00

0.25

0.50

0.75

1.00

q o
il

Ref
WGAN
PCA

0 1 2

t

0.000

0.002

0.004

va
r(q

oi
l)

Ref
WGAN
PCA

0.4 0.5 0.6

t

0

5

10

fr
eq

ue
nc

y

Ref

0.4 0.5 0.6

t

0

5

10
WGAN

0.4 0.5 0.6

t

0

5

10
PCA

(b) Quarter five, unconditional realizations

Figure 3.8: Production statistics for unconditional realizations. The top of each
subfigure shows the mean and variance of the production curve. The bottom shows
the histogram of the water breakthrough time. Times are expressed in pore volume

injected.

Parametrization of stochastic inputs using GAN with application in geology 53

0 1 2

t

0.00

0.25

0.50

0.75

1.00

q o
il

Ref
WGAN
PCA

0 1 2

t

0.00

0.02

0.04

va
r(q

oi
l)

Ref
WGAN
PCA

0.6 0.8 1.0

t

0

2

4

fr
eq

ue
nc

y

Ref

0.6 0.8 1.0

t

0

2

4

WGAN

0.6 0.8 1.0

t

0

2

4

PCA

(a) Uniform flow, conditional realizations

0 1 2

t

0.25

0.50

0.75

1.00

q o
il

Ref
WGAN
PCA

0 1 2

t

0.0000

0.0005

0.0010

0.0015

0.0020

va
r(q

oi
l)

Ref
WGAN
PCA

0.40 0.45 0.50 0.55 0.60

t

0

5

10

15

fr
eq

ue
nc

y

Ref

0.40 0.45 0.50 0.55 0.60

t

0

5

10

15
WGAN

0.40 0.45 0.50 0.55 0.60

t

0

5

10

15
PCA

(b) Quarter five, conditional realizations

Figure 3.9: Production statistics for conditional realizations. The top half of each
subfigure shows the mean and variance of the production curve. The bottom show
the histogram of the water breakthrough time. Times are expressed in pore volume

injected.

Parametrization of stochastic inputs using GAN with application in geology 54

Quarter-five spot: We impose injection and production points at (0, 0) and (1, 1) of the

unit square, respectively. No-flow boundary conditions are imposed on all sides

of the square. The absolute injection/production rate is 1, i.e. q(0, 0) = 1 and

q(1, 1) = −1.

The propagation is done on sets of realizations generated by WGAN and by snesim for

comparison. Note that these are fresh realizations not used to train the WGAN models.

We also add results using PCA for additional comparison.

Statistics of the saturation map based on 5000 realizations are summarized in Figures 3.6

and 3.7. We plot the saturation at time t = 0.1, which corresponds to 0.5 pore volume

injected (PVI). From left to right, we plot the mean, variance, skewness and kurtosis of

the saturation map. We see that the statistics from realizations generated by WGAN

correspond very well with the statistics from realizations generated by snesim (reference).

We also see that the PCA parametrization performs very well in the mean and variance,

however the discrepancies increase as we move to higher order moments. The discrepancy

becomes clearer by plotting the histogram of the 5000 saturations at a fixed point in

the domain, shown on the far right of Figures 3.6 and 3.7. We choose the point where

reference saturation had the most variance. We see that the histograms by WGAN

match the reference remarkably well even for multimodal distributions. The reader may

compare our results with [50]. The results suggest that the generator effectively learned

to replicate the data generating process.

Statistics of the production curve are summarized in Figures 3.8 and 3.9. On the top half

of each subfigure, we show the mean and variance of the production curve based on 5000

realizations. These can in general be approximated well enough by using only the PCA

parametrization. We find that the performance of our models are also comparable for

this task. To further contrast the ability to preserve higher order statistics, we plot the

histogram of the 5000 water breakthrough time results, for which an accurate quantifi-

cation is of importance in practice. Here we define the water breakthrough time as the

time that water level reaches 1% of production. Results are shown on the bottom half

of each subfigure in Figures 3.8 and 3.9. In all cases, we find a very good approximation

to the reference distribution by WGAN, performing better than a PCA parametrization

even for Gaussian-like distributions. Unlike PCA, the responses predicted by WGAN

do not have a tendency to be normally distributed (see e.g. Figure 3.9a).

3.3.3 Assessment in parameter estimation

We now assess our models for parameter estimation where we reconstruct the subsurface

permeability based on historical data of the oil production stage, also known as history

Parametrization of stochastic inputs using GAN with application in geology 55

0.0

0.2

0.4

0.6

0.8

1.0

to
y

E

well #1 well #2 well #3 well #4 well #5

0.0

0.2

0.4

0.6

0.8

1.0

to
y

X

0.0

0.2

0.4

0.6

0.8

1.0

to
y

Z

0.0

0.2

0.4

0.6

0.8

1.0

un
co

nd
iti

on
al

0.0 0.5 1.0 1.5

t

0.0

0.2

0.4

0.6

0.8

1.0

co
nd

iti
on

al

0.0 0.5 1.0 1.5

t
0.0 0.5 1.0 1.5

t
0.0 0.5 1.0 1.5

t
0.0 0.5 1.0 1.5

t

Figure 3.10: History matching results. Water level curves from the production wells
in different test cases. Blue solid lines denote the target responses. Orange dotted lines
are three matching solutions found in the inversion. The black vertical dashed line in
each plot marks the end of the observed period. Times are expressed in pore volume

injected.

matching. Following the general problem setting from before, we aim to find realizations

of the permeability that match the production curves observed at the production wells.

Inversion using natural evolution strategies

Let d =M(a) whereM is the forward map, mapping from permeability a to the output

d being monitored (in our case, the water level curve at the production wells). Given

observations dobs and assuming i.i.d. Gaussian measurement noise (we use σ = 0.01),

Parametrization of stochastic inputs using GAN with application in geology 56

to
y

E

1 2

3

4 5

target

to
y

X

1

2 3

4 5

to
y

Z

1

2 3

4 5

un
co

nd
iti

on
al

1

2

3

4

5

co
nd

iti
on

al

1

2

3

4 5

image matching

1 2

3

4 5

realization #1

1 2

3

4 5

realization #2

1 2

3

4 5

realization #3

1

2 3

4 5

1

2 3

4 5

1

2 3

4 5

1

2 3

4 5

1

2 3

4 5

1

2 3

4 5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4 5

1

2

3

4 5

1

2

3

4 5

Figure 3.11: History matching results. We experiment with three toy images as well
as unconditional and conditional snesim realizations. Each case contains one injection
well (black square) and five production wells (red circles). We show three solutions
that match the observed production period (see Figure 3.10). The last column contains

image matching solutions.

and prior z ∼ N (0, I), the objective function to be maximized is

f(z) = − 1

σ2
(d− dobs)

T (d− dobs)− zT z (3.8)

= − 1

σ2
(M(G(z))− dobs)

T (M(G(z))− dobs)− zT z (3.9)

To maximize this function, we use natural evolution strategies (NES) [70, 71], a black-

box optimization method suitable for the low-dimensional parametrization achieved.

Another reasonable alternative is to use gradient-based methods exploiting the differen-

tiability of our generator. This would require adjoint procedures to get the gradient of the

Parametrization of stochastic inputs using GAN with application in geology 57

forward map M. We adopted NES due to its generality and easy implementation that

does not involve the gradient of f (norM). NES maximizes f by maximizing an average

of f instead, J(φ) := Eπ(z|φ)f(z), where π(z|φ) is some distribution parametrized by φ

(e.g. we used the family of Gaussian distributions, in which case φ involves the mean and

covariance matrix). This is based on the observation that maxφ Eπ(z|φ)f(z) ≤ maxz f(z).

Optimizing the expectation Eπ(z|φ)f(z) (instead of optimizing f directly) has the benefit

of not requiring the gradient of f (and therefore of the simulator) since

∇φJ(φ) = Eπ(z|φ)f(z)∇φlog π(z|φ)

We can be approximated this as

∇φJ(φ) ≈ 1

N

N∑
k=1

f(zk)∇φ log π(zk|φ)

by drawing realizations z1, · · · , zN ∼ π(z|φ). Optimization proceeds by simple gradient

ascent, φ ← φ + η∇φJ(φ) where η is a step size. Note that we optimize the parameter

of the search distribution φ, rather than z. As the optimization converges, the search

distribution collapses to an optimal value of z. In our implementation, we actually use

an improved version of NES which uses the Fisher matrix and natural coordinates, as

detailed in [71].

History matching

We consider five target images of the permeability: one unconditional realization and

one conditional realization (both using snesim), and three hand-crafted images (see

first column in Figure 3.11). The latter were specifically designed to test the limits of

the parametrization. For the conditional realization, we use the generator trained on

conditional realizations. For the remaining cases, we use the unconditional generator.

Note that this poses a difficulty on the hand-crafted toy problems as these have low

probability under the generator’s distribution.

In each test case, we set one injection well with fixed flow rate of 1, and five production

wells with flow rate of −0.2 (locations marked on each image, see Figure 3.11). Our

only observed data are the water level curves at the production wells from t = 0 to

t = 0.5 PVI, induced by the target permeabilities. We do not include knowledge of

the permeability at the “drilled” wells (as normally done in real applications) in the

parameter estimation. For these experiments, we scaled the log-permeability values of

0 and 1 to 0 and 5, emulating a shale and sand scenario. We have done this in part to

Parametrization of stochastic inputs using GAN with application in geology 58

allow for a less underdetermined system (i.e. so that a different flow response can be

better corresponded to a different permeability pattern).

Results for history matching are shown in Figures 3.10 and 3.11. For each test case, we

find three solutions of the inversion problem using different seeds (initial guess). For

the conditional and unconditional realizations, we obtain virtually perfect match of the

observed period (Figure 3.10). Beyond the observed period, the responses naturally

diverge. As is expected, the matching is more difficult for some of the toy problems, in

particular toy problem E and toy problem Z. Toy problem X, however, does particularly

well.

In Figure 3.11 we show the reconstructed permeabilities for each test case. We also

show, in the last column, image matching solutions (we invert conditioning on the whole

image using NES). For the conditional and unconditional cases, we see a good visual

correspondence between target and solution realizations in the history matching, as well

as good visual match in the image matching solutions. This shows that the target image

is in the solution space of the parametrization and therefore the history matching can

be further improved by supplying more information (e.g. permeability values at wells).

This applies to toy problem X as well, where the target seems to have a high probability

under the generator’s distribution. The reconstruction is more difficult for toy problems

E and Z, where the targets seem to have a low probability as suggested by the image

matching solutions (and as one could have visually guessed). For these cases, history

matching the production data will only improve up to certain point. Note that this is not

a failure of the parametrization method; after all, the parametrization is informed by the

provided training dataset. In short, the target in question must be a likely realization of

the generator’s distribution, or rather, the parametrization must be done using samples

deemed representative of the geology under study.

3.3.4 Honoring point conditioning

We assess the ability of the generator trained on conditional realizations to reproduce the

point conditioning. We analyze 5000 realizations and report in Table 3.2a the percentage

of mismatches at each of the 16 conditioning points. We find that mismatches do occur

at frequencies of less than 5% at each conditioning point. Next, we count the overall

number of realizations with at least 1 mismatch, at least 2 mismatches, and exactly 3

mismatches (there were no realizations with more than 3 mismatches). The result is

reported in Table 3.2b. The first row shows the percentage of realizations that contain

mismatches. We see that 82.4% of realizations honor all conditioning points. A sizable

Parametrization of stochastic inputs using GAN with application in geology 59

j = 12 j = 25 j = 38 j = 51

i = 12 0.38 0.48 1.78 1.82
i = 25 0.06 0.34 0.54 0.02
i = 38 4.46 1.3 3.0 0.8
i = 51 2.06 1.16 1.2 0.26

(a) Percentage of mismatches at each conditioning point.

one or more two or more three

exact 17.6 1.82 0.12
1 cell away 1.8 0.02 0.0

2 cells away 0.46 0.0 0.0
3 cells away 0.24 0.0 0.0
4 cells away 0.08 0.0 0.0

(b) Percentage of realizations with mismatches.

Table 3.2: Performance in honoring point conditioning.

(a) Realizations containing 3 mismatches.

(b) Realizations with large misplacements (4 cells away).

Figure 3.12: Realizations where conditioning failed. Orange dots indicate points
conditioned to low permeability (0) and blue crosses indicate points conditioned to

high permeability (1). Mismatches are circled in red.

Parametrization of stochastic inputs using GAN with application in geology 60

portion (17.6%), however, contains mismatches, although most of them only have 1 mis-

match. In particular, we find only 6 (0.12%) realizations containing three mismatches,

shown in Figure 3.12a. From the figure, we notice that most mismatches were misplaced

by a few cells. A closer look reveals that this is generally the case: In Table 3.2b, we

also report the percentage of realizations that contain mismatches with misplacements

of 1, 2, 3, and 4 cells (there were no larger misplacements). We find that if we allow a

tolerance of 1 cell, the percentage of wrong realizations drops to less than 2%. That is,

98.2% of realizations honor all conditioning points within a 1 cell distance, and 82.4%

do so exactly. This could explain the yet good results in flow experiments. Finally, we

show in Figure 3.12b the only 4 (0.08%) realizations containing large misplacements of

4 cells.

Note that mismatches do not occur using PCA parametrization (assuming an exact

method for the eigendecomposition is used) as it is derived to explicitly preserve the

spatial covariances. The presence of mismatches in our method reflects the approach

that we take to parametrization: We formulate the parametrization by addressing the

data generating process rather than the spatial statistics of the data, resulting in a

parametrization that extrapolates to new realizations that, except for a few pixels/cells,

are otherwise indistinguishable from data. In view of the good results in our flow experi-

ments, the importance of honoring point conditioning precisely to the cell level could be

argued. On the other hand, since conditioning points are normally scarce and obtained

from expensive measurements, it is often desirable that these be well honored in the

realizations.

3.4 Discussion and practical details

3.4.1 Practical advantages of WGAN

An issue with the standard formulation of GAN is the lack of a convergence curve, or

even a loss function that is informative about the sample quality. We illustrate this

in Figure 3.13 where we show the convergence curve of our trained WGAN model, and a

convergence curve of a GAN using the standard formulation. We also show realizations

generated by the models along the training process. The curve of WGAN follows the

ideal behavior that is expected in an optimization process, whereas the curve of standard

GAN is erratic and shows no correlation with the quality of the generated samples. We

can also see another well-known issue of standard GAN which is the tendency to mode

collapse, i.e. a lack of sample diversity expressed in the repetition of only one or few

image modes. We see that the standard GAN generator jumps from one mode solution

Parametrization of stochastic inputs using GAN with application in geology 61

0 10000 20000 30000

iteration

0.00

0.02

0.04

0.06

0.08
W

G
AN

 lo
ss

1

2

3
4

5 6 7

1
2

3
4

5
6

7

0 10000 20000 30000

iteration

0.00

0.05

0.10

0.15

0.20

0.25

G
AN

 lo
ss

1 2

3

4
5

6

7

1
2

3
4

5
6

7

Figure 3.13: Convergence curves of a WGAN model (top) and a standard GAN model
(bottom). On the right, we show realizations along the training of the corresponding

models. We see that GAN loss is uninformative regarding sample quality.

R
ef

er
en

ce

s
0.0 0.5 1.0

0

1

2

3

4

fr
eq

ue
nc

y

0

1

2

3

4

fr
eq

ue
nc

y

0.4 0.6 0.8 1.0 1.2

t

0

1

2

3

4

fr
eq

ue
nc

y

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

0 10 20 30

x-lag

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

Figure 3.14: Examples of missing modes in standard GAN. Second and third rows
show realizations generated by collapsing GAN models (left) and their responses (right).
First row shows the reference solutions. The standard GAN was trained using the same
generator architecture, but a ×4 larger discriminator than the one used in WGAN. We

did not manage to find convergence with smaller discriminator sizes.

Parametrization of stochastic inputs using GAN with application in geology 62

to another. Note that in some cases, however, mode collapse is more subtle and not

easily detectable. This is very problematic to our application since it can lead to biases

in uncertainty quantification and unsuccessful history matching due to the absence of

some modes in the generator.

Given the lack of an informative convergence metric in standard GAN, the training

process would involve a human judge serving as the actual loss function to track the

visual quality along the training (in practice, weights are saved at several checkpoints

and assessed after the fact). On top of this, the human operator would need to look

at multiple realizations at once in an attempt to detect mode collapse. Clearly, this

subjective process is error prone, not to mention labor intensive. In Figure 3.14 we

show two standard GAN models and their flow responses in the unconditional uniform

flow test case, based again on 5000 realizations. On the top row, we show again the

reference results (mean saturation and water breakthrough time) for comparison. We

also compute the two-point probability function [92] of the generated realizations (last

column; we show the mean and one standard deviation). We see that in some cases,

mode collapse is very evident and the model can be quickly discarded (second row).

In other cases (last row), mode collapse is harder to detect and can lead to misleading

predictions. We also see that the two-point probability function is not sufficient to detect

mode collapse as this function does not measure the overall sample diversity.

The Wasserstein formulation circumvents these issues by actually allowing the generator

to minimize the Wasserstein distance between its distribution and the target distribution

(Equation (3.5)), therefore reducing mode collapse. Moreover, the Wasserstein distance

is readily available in-training and can be used to assess convergence. Therefore, the

Wasserstein formulation is better suited for automated applications, where robustness

and a convergence criteria would be necessary.

3.4.2 Network sizes under limited data

As mentioned earlier, architecture design is largely problem-dependent and led by heavy

use of heuristics and domain knowledge. The general approach is to start with a base-

line architecture from a similar problem domain and tune it to accommodate for the

present problem. Current computer vision applications use the pyramid architecture

shown in Figure 3.2. These applications benefit from very large datasets of images. In

contrast, our application uses a relatively small dataset. Recall that the discriminator

D is trained using a limited dataset, therefore D can overfit if it is too large for this

dataset. This creates an issue where the Wasserstein estimate in Equation (3.5) is no

longer accurate, making the gradients to the generator unreliable. We show the effect

Parametrization of stochastic inputs using GAN with application in geology 63

0 2 4

iteration 1e4

0.000

0.025

0.050

0.075

0.100

W
as

se
rs

te
in

 e
st

im
at

e

×1

0 2 4

iteration 1e4

0.0

0.1

0.2
×2

0 2 4

iteration 1e4

0.0

0.2

0.4

0.6 ×4

0 2 4

iteration 1e4

0.5

1.0

1.5 ×8

(a) Convergence curve for different sizes of D (and fixed G). Solid blue lines indicate the
training loss, and orange dotted lines indicate the validation loss. Note that the losses cannot

be compared since the Lipschitz constants are different.

0 5000 10000 15000 20000 25000

iteration

0.00

0.02

0.04

0.06

0.08

0.10

W
as

se
rs

te
in

 e
st

im
at

e ×1/32
×1/16
×1/8
×1
×4

×1
/3

2
×1

/1
6

×1
/8

×1
×4

(b) Left: Convergence curve for different sizes of G (and fixed D). Right: Realizations by
generators of different sizes (at 15,000 iterations).

Figure 3.15: Performance of models with varying network sizes.

of overfitting in Figure 3.15a by training models with different discriminator sizes, and

fixed generator architecture. We train discriminators of 2, 4, and 8 times the size of the

discriminator used in our previous experiments. The way we increase the model sizes

is by increasing the number of filters in each layer of the discriminator, while keeping

everything else constant. Another possibility is to add extra layers to the architecture.

To detect overfitting, we evaluate the Wasserstein estimate using a separate validation

set of 200 snesim realizations. We see that for an adequate size of the discriminator,

the Wasserstein estimate as evaluated on either training or validation set are similar.

However for larger models, the Wasserstein estimates on the training and validation sets

start to wildly diverge as the optimization progresses, suggesting that the discriminator

is overfitting and the estimates are no longer reliable. It is therefore necessary to adjust

the size of the discriminator or use regularization techniques when data is very limited.

Regarding generator architectures, network sizes will in general be limited by compute

and time resources; on the other hand, we only need just enough network capacity to

be able to model complex structures. We illustrate this in Figure 3.15b where we train

generators of different sizes (like before, we vary the number of filters in each layer) and

Parametrization of stochastic inputs using GAN with application in geology 64

z

y

(a) Illustration of artificially expanding the input tensor in the generator network. Blue blocks
represent the original state shapes that a normal input tensor follows in the generator. Light

red blocks represent the new state shapes of an expanded input tensor.

u1

u2

u3

u4

v1

v2

v3

w∗
1

w∗
2

w∗
1

w∗
2

w∗
1

w∗
2

u5

v4

w∗
1

w∗
2

W =

w∗1 w∗2 0 0 0
0 w∗1 w∗2 0 0
0 0 w∗1 w∗2 0
0 0 0 w∗1 w∗2

(b) 1D example of the artificial expansion and its associated matrix modification. Weights
w∗

1 , w
∗
2 are already trained. The expanded matrix can be obtained by appending an additional

row and column.

Figure 3.16: Examples of artificially expanding the input tensor to obtain a larger
output.

fixed discriminator architecture. We train generators of 1
32 , 1

16 , 1
8 , and 4 times the size of

the generator used in previous experiments. We also show realizations generated by each

generator model after 15,000 training iterations. We see that for a very small network

model (1
32), convergence is slow (as measured by iterations). Convergence is faster as

the network size increases since it is easier to fit a larger network. Note, however, that

iterations of larger networks are more expensive, possibly making convergence actually

slower in terms of compute time. Moreover, a larger generator has a higher forward eval-

uation cost, impacting the performance in deployment. Therefore, it becomes ineffective

to keep increasing the network size after certain point.

3.4.3 GAN for multipoint geostatistical simulations

In the domain of geology, a natural question is whether GANs can be applied directly

as multipoint geostatistical simulators. This has been studied in a number of recent

Parametrization of stochastic inputs using GAN with application in geology 65

(a) 128× 128, nx = 5 (b) 368× 368, nx = 20 (c) 848× 848, nx = 50

Figure 3.17: Artificially upscaled realizations by feeding an expanded input tensor.
Images (evidently) not at scale.

works [75–77]. The idea here is to use a single large training image and train a GAN

model on patches of this image. The result is a generator capable of generating images

that resemble the patches of the training image. This simple approach circumvents

the usual requirement of large datasets in deep learning techniques. If the generator is

solely composed of convolutional layers, we can recover the original size of the training

image or generate a larger image by feeding an artificially expanded input tensor to

the generator. This is illustrated in Figure 3.17: If a generator has been trained with

z of shape (nz, 1, 1), we can feed the generator with new tensors of shape (nz, ny, nx)

(sampled from the higher dimensional analogue of the same distribution) to obtain

larger outputs (Figure 3.16a). This is possible since we can still apply a convolving

filter regardless of the input size. This is better illustrated with the 1D example shown

in Figure 3.16b. In Figure 3.17, we show some examples using this trick on our trained

WGAN model. Whether this trick generalizes to arbitrarily large domains is unclear;

in Chapter 5, we introduce a new method to obtain a generative neural network directly

from a single exemplar image that avoids this trick.

A possible use case in geomodeling and parametrization is to use a generator that has

been trained on unconditional realizations to generate conditional realizations. This has

been the focus of recent works in [78, 79] where conditional realizations are obtained

from an unconditional generator by performing an optimization in the latent space us-

ing an image inpainting technique [93]. In Chapter 4, we propose a method to generate

conditional realizations using the pre-trained unconditional generator without sacrific-

ing the parametrization of the generation process. It is worth emphasizing, however,

that post-conditioning using an unconditionally trained generator is feasible only if the

conditioning is reasonable under the distribution of the training set used to train the

generator. As seen in Section 3.3.3, if a target realization has a low probability un-

der the generator’s distribution, it is very difficult to reconstruct this realization using

Parametrization of stochastic inputs using GAN with application in geology 66

such generator. Likewise, if a conditioning has a low probability under the generator’s

distribution, it might be very difficult to obtain a realization honoring this conditioning.

3.5 Conclusions

We investigated generative adversarial networks (GAN) as a sample-based parametriza-

tion method for geological properties. We parametrized conditional and unconditional

permeability, and used the parametrization to perform uncertainty quantification and

parameter estimation (history matching). Overall, the method shows very good results

in reproducing the spatial statistics and flow responses, as well as preserving visual

realism while achieving a dimensionality reduction of two orders of magnitude, from

64× 64 to 30. In uncertainty quantification, we found that the method reproduces the

high order statistics of the flow responses as evidenced by the estimated distributions

of the saturation and the production – in particular, the modality of the distributions

are preserved. In parameter estimation, we found successful inversion results in both

conditional and unconditional settings, and reasonable inversion results for challenging

hand-crafted images that are not plausible. We also compared implementations of the

standard formulation of GAN with the Wasserstein formulation, finding the latter to be

more suitable for our applications. We discussed issues regarding network size under

limited data, finding that the size of the discriminator is important and should be care-

fully tuned to prevent overfitting. Finally, we discussed current trends in using GANs

for multipoint geostatistical simulations. Possible directions to extend this work include

improving current GAN methods for limited data, and further assessments in other test

cases.

Chapter 4

Parametric generation of

conditional geological realizations

using generative neural networks

We introduce a method for parametric generation of conditional geological realizations

using generative neural networks. We build upon our work in Chapter 3 where we trained

a neural network to generate unconditional geological realizations using generative ad-

versarial networks. Here we propose a method for post-hoc conditioning of pre-trained

generator networks to generate conditional realizations. We frame the problem in the

Bayesian setting and model the posterior distribution of the latent vector given ob-

servations. We then train an inference neural network to sample from the posterior

distribution. Once trained, the inference network is coupled with the unconditional gen-

erator to obtain the conditional generator, thus also maintaining a parametrization of

the conditional generation process.

4.1 Introduction

The large scale nature of geological models makes reservoir simulations an expensive

task, prompting numerous works that aim for a reduced representation of the geological

properties that can preserve the heterogeneous characteristics required for accurate flow

modeling. Very recently, a new method from the machine learning community called

In preparation for submission to journal.

67

Parametric generation of conditional geological realizations 68

... ...

...
...

...
...

w ∼ pw z|dobs

y|dobs

inference network I pre-trained generator G

Figure 4.1: Overview of methodology, G ◦ I.

generative adversarial networks [69] has been investigated (see [75–79] as well as Chap-

ter 3) for the purpose of parametrization, reconstruction, and synthesis of geological

properties; showing very promising results. This adds to the recent trend in applying

machine learning techniques to leverage the increasing availability of data as well as

rapid advances in the field [94–100].

Generative adversarial networks is a novel technique for training a neural network to

sample from a distribution that is unknown and intractable, by only using samples

from this distribution. The result is a generator network that is capable of generating

realizations from the target distribution –in our case, geological realizations– using a very

reduced number of parameters. This is possible thanks to the high expressive power of

neural networks. In particular, the method has shown to preserve visual realism as well

as flow statistics of the training data in experiments parametrizing geological images.

Recent works [78, 79] focused on the problem of post-hoc conditioning of the generator

network: given a generator trained on unconditional realizations, the task is to generate

realizations conditioned on new spatial observations (hard data). Current approaches

are based on a recent inpainting technique introduced in [93] that requires solving an

optimization problem for each conditional realization, which can be expensive if sev-

eral realizations are required, e.g. for history matching or uncertainty quantification.

Moreover, the parametrization of the generation process is sacrificed.

In this work, we propose a method to obtain a conditional generator to directly sam-

ple conditional realizations. Our emphasis here is on parametric sampling, that is, we

want to generate conditional realizations without sacrificing the parametrization of the

sampling process. To this end, we begin by formulating the posterior distribution of the

latent vector conditioned on the new observations using a Bayesian framework. A com-

parison of this formulation to the recent inpainting technique in [78, 79] is discussed.

Thereafter, we train an inference network to sample from this posterior distribution

Parametric generation of conditional geological realizations 69

by minimizing the Kullback-Leibler divergence between the inference network’s distri-

bution and the posterior. Finally, this inference network is coupled with the original

unconditional generator to obtain the conditional generator, as illustrated in Figure 4.1.

Sampling new conditional realizations can be done very efficiently and the parametriza-

tion of the generation process is maintained. The inference network is usually small

since it is a low-to-low dimensional mapping, thus it is relatively easy to train and the

increase in complexity of the resulting parametrization is negligible.

The rest of this chapter is organized as follows: In Section 4.2, we briefly describe gener-

ative adversarial networks and the Bayesian framework. In Section 4.3, we introduce a

method to train an inference neural network to sample from the posterior distribution.

In Section 4.4, we show results for geological realizations conditioned on several test

cases. Finally, in Section 4.5 we discuss alternatives to the current work and possible

directions.

4.2 Background

We briefly describe generative adversarial networks (GAN) and the Bayesian framework

for conditioning of geological realizations. Although not central to the method presented

here, GAN was used to obtain the unconditional geomodel generator.

4.2.1 Generative adversarial networks

We represent the uncertain subsurface property of interest as a random vector y ∈ Rny

where ny is very large (e.g. permeability discretized by the simulation grid). This

random vector follows a distribution y ∼ Py that is unknown and intractable (e.g. dis-

tribution of permeability with channels), and instead we are given a set of realizations

{y1, · · · , yN} of the random vector (e.g. a set of permeability models deemed representa-

tive of the area under study). Using this training set, the hope is to find a representation

of y in terms of a reduced number of free parameters. The approach taken here and in

recent works is to consider a latent random vector z ∈ Rnz with nz � ny and z ∼ pz

where pz is manually chosen to be easy to sample from (e.g. a multivariate normal

or uniform distribution); and a deterministic neural network Gθ : Rnz → Rny , called a

generator, parametrized by weights θ to be determined. Given pz fixed, Gθ induces a

distribution Gθ(z) ∼ Pθ which is now unknown and possibly intractable (since Gθ is

a neural network with many nonlinearities). On the other hand, sampling from this

distribution is easy since it only requires sampling z ∼ pz and forward-passing through

Gθ. The goal is to optimize θ so that Pθ = Py.

Parametric generation of conditional geological realizations 70

A difficulty in this problem is that both Py and Pθ are unknown and intractable. Nev-

ertheless, sampling from these distributions is easy (for Py, one draws a batch of re-

alizations from the training set, assuming the set is big enough). Following this ob-

servation, the seminal work in [69] introduces the idea of using a classifier function

Dψ : Rny → [0, 1], called a discriminator, to assess whether a generated realization

ỹi = Gθ(zi) “looks real”, i.e. is similar to realizations from the training set. The

discriminator is also typically a neural network with weight parameters ψ to be deter-

mined. The discriminator is trained to solve a binary classification problem, maximizing

the following loss

L(ψ, θ) := E
y∼Py

logDψ(y) + E
ỹ∼Pθ

log(1−Dψ(ỹ)) (4.1)

≈ 1

M

M∑
i=1

logDψ(yi) +
1

M

M∑
i=1

log(1−Dψ(Gθ(zi)) (4.2)

which is in essence a binary classification score. The approximation is done by taking a

batch of M ≤ N realizations from the training set for the first term, and sampling M

realizations z1, · · · , zM from pz for the second term.

The generator on the other hand is trained to minimize the same loss, thus an adversarial

game is created where G and D optimize the loss in opposite directions,

min
θ

max
ψ
L(ψ, θ) (4.3)

In practice, this optimization is performed alternately using gradient-based methods,

where the gradients with respect to θ and ψ are obtained using automatic differentiation

algorithms. The equilibrium is reached when G effectively learns to approximate Py and

D is 1
2 in the support of Py (coin toss scenario). It is shown in [69] that in the limiting

case, this process minimizes the Jensen-Shannon divergence between Pθ and Py.

Variations of GAN Stability issues with the original formulation of GAN has led to

numerous works to improve stability and generalize the method (e.g. see [83, 85, 89, 101]

and references therein). One line of research generalizes GAN in the framework of

integral probability metrics [102]. Given two distributions P and Q, and a set of real

valued functions D, an integral probability metric measures the discrepancy between P
and Q as follows,

dD(P,Q) = sup
D∈D
{ E
y∼P

D(y)− E
ỹ∼Q

D(ỹ)} (4.4)

Note the slight similarity with Equation (4.1). The choice of set D is important and

leads to several formulations of GAN. When D is a ball in a Reproducing Kernel Hilbert

Space, dD is the Maximum Mean Discrepancy (MMD GAN) [103, 104]. When D is a

Parametric generation of conditional geological realizations 71

set of 1-Lipschitz functions, dD is the Wasserstein distance (WGAN) [90, 91]. When

D is a Lebesgue ball, we obtain Fisher GAN [105], and when D is a Sobolev ball, we

obtain Sobolev GAN [106]. See [106, 107] for an in-depth discussion. Our unconditional

geomodel generator was trained using the Wasserstein formulation (see Chapter 3).

4.2.2 Conditioning on observations

Given a pre-trained generator G, one possible use case is to obtain realizations condi-

tioned on new spatial observations (hard data), that is, we need to find z such that G(z)

honors the observations. Let dobs denote the observations and d(z) = G(z)obs the values

at the observed locations given G(z). Under the probabilistic framework, the problem

is to find z∗ that maximizes its posterior probability given observations,

z∗ = arg max
z

p(z|dobs) (4.5)

From Bayes’ rule and applying logarithms,

p(z|dobs) ∝ p(dobs|z)p(z) (4.6)

− log p(z|dobs) = − log p(dobs|z)− log p(z) + const. (4.7)

For the prior p(z), a natural choice is pz for which the generator has been trained. In

most applications (and in ours), this is the multivariate standard normal distribution.

For the likelihood p(dobs|z), we take the general assumption of i.i.d. Gaussian measure-

ment noise, p(dobs|z) ∝ exp(− 1
2σ2 ‖d(z)− dobs‖2) where σ is the measurement standard

deviation. Then the optimization in Equation (4.5) can be written as

z∗ = arg min
z
L(z) (4.8)

L(z) := − log p(z|dobs) (4.9)

(×2λ)
= ‖d(z)− dobs‖2 + λ‖z‖2 (4.10)

= ‖G(z)obs − dobs‖2 + λ‖z‖2 (4.11)

where we multiplied everything by λ = σ2 and discarded the irrelevant constant. One

way to draw different conditional realizations is to optimize Equation (4.8) using a local

optimizer and different initial guesses for z.

Comparison to GAN-based inpainting techniques In image processing, image

inpaiting is used to fill incomplete images or replace a subregion of an image (e.g. a face

with eyes covered). The recent GAN-based inpainting technique by Yeh et al. [93] and

Parametric generation of conditional geological realizations 72

employed in [78, 79] uses an optimization procedure with the following loss

L(z) = ‖G(z)obs − dobs‖2 + λ log(1−D(G(z))) (4.12)

The second term in this equation is referred as the perceptual loss and is the same second

term in the GAN loss in Equation (4.1), which is the classification score on synthetic

realizations. We can expect the perceptual loss to act as a regularization that drives z

towards a region of high density, or at least towards the support of pz, assuming that G

and D have been trained to convergence, since then D is at an optima for any realization

of G(z) for z ∼ pz. We should then expect the perceptual loss to have the same effect

as the Bayesian prior pz. For example, let z ∼ U [0, 1] and y ∼ U [1, 3]. Then an optimal

generator is G(z) = 2z+ 1 and an optimal discriminator is D(y) = 1/2 for y ∈ [1, 3] and

D(y) = 0 otherwise. Then D(G(z)) = 1/2 for z ∈ [0, 1], and D(G(z)) = 0 otherwise,

which is precisely the density function of z ∼ U [0, 1] scaled by 1/2. Nevertheless, the

perceptual loss can be very useful in practice when G and D are not exactly optimal

and there exist realizations G(z) of bad quality. In that case, the perceptual loss can

help the optimization to find good quality solutions. In our work, we found the Bayesian

prior to be sufficient while removing a layer of complexity in the optimization.

Finally, we also note that both L1 and L2 norms are explored in [93] for the likelihood

term, with L1 corresponding to the likelihood ∝ exp(− 1
λ‖d(z)− dobs‖).

4.3 Conditional generator for geological realizations

As mentioned in Section 4.2.2, one way to sample multiple realizations conditioned

on observations is to solve Equation (4.8) using a local optimizer with different initial

guesses. This approach, however, can be expensive and may not capture the full solution

space. A better approach could be to use Markov chain Monte Carlo methods, given

the latent vector is of moderate size, to better capture the full posterior distribution.

Neither approach, however, maintains the parametrization of the sampling process.

We propose constructing a neural network that learns to sample from the posterior dis-

tribution. This inference network Iφ : Rnw → Rnz is yet another generator network that

maps from realizations of a random vector w ∼ pw with chosen pw (we naturally chose

pw = pz and nz = nw) to realizations of z|dobs ∼ p(z|dobs). Let Iφ(w) ∼ qφ(z) be the

distribution density induced by Iφ. This distribution is now unknown and intractable,

but is easy to sample from since it only requires sampling w ∼ pw and forward-passing

Parametric generation of conditional geological realizations 73

through Iφ. The Kullback-Leibler divergence from p(·|dobs) to qφ gives us

DKL(qφ ‖ p(·|dobs)) = E
z∼qφ

log
qφ(z)

p(z|dobs)
(4.13)

= E
z∼qφ
− log p(z|dobs) + E

z∼qφ
log qφ(z) (4.14)

= E
z∼qφ
L(z) + E

z∼qφ
log qφ(z) (4.15)

The first term is the expected loss under the induced distribution qφ, with the loss

defined in Equation (4.9). It can be approximated as

E
z∼qφ
L(z) ≈ 1

M

M∑
i=1

L(Iφ(wi)) (4.16)

by sampling M realizations w1, · · · , wM from pw. The second term, however, is more

difficult to evaluate since we lack the analytic expression of qφ. The second term is also

called the (negative) entropy of qφ, usually denoted H(qφ) := −Ez∼qφ log qφ(z). On the

other hand, it is easy to obtain realizations z1 = Iφ(w1), · · · , zM = Iφ(wM). We therefore

use a sample entropy estimator such as the Kozachenko-Leonenko estimator [108, 109],

Ĥ({zi, · · · , zM}) =
nz
M

M∑
i=1

log ρi + const. (4.17)

where ρi is the distance between zi and its kth nearest neighbor. A good rule of thumb

is k ≈
√
M as reported in [109]. Thus, the entropy estimator measures how spread the

sample points are.

To train the inference network Iφ, we minimize DKL(qφ ‖ p(·|dobs)), where both the

estimator and the expected loss can be differentiated with respect to φ using auto-

matic differentiation algorithms. Once the inference network is trained, the conditional

generator is the new neural network G ◦ I : Rnw → Rny , i.e. the composition of the

unconditional generator and the inference network, as shown in Figure 4.1. Sampling

conditional realizations can then be done very efficiently by directly sampling w ∼ pw

and forward-passing through G ◦ I, and the parametrization of the generation process is

maintained. We summarize the training steps of the inference network in Algorithm 3.

Note that we show a simple gradient descent update (line 7), however it is more common

to use dedicated update schemes for neural networks such as Adam [28] or RMSProp [27].

Note that since nz is small in general, the inference network is also small and the network

is easy to train relative to the generator. This also means that the relative increase in

evaluation cost of the coupling G ◦ I is not significant. We find this to be the case in

our experiments.

Parametric generation of conditional geological realizations 74

Algorithm 2 Inference network Iφ training

Require: Negative log-posterior L(z) = − log p(z|dobs). In our case (Equation (4.11)),
L(z) = ‖G(z)obs− dobs‖2 +λ‖z‖2, batch size M , learning rate η, source distribution
pw (usually equal to pz).

1: while φ has not converged do
2: Sample {w1, · · · , wM} ∼ pw
3: Get {z1, · · · , zM}, zi = Iφ(wi)
4: Get {ρ1, · · · , ρM}, ρi = distance from zi to its kth nearest neighbor
5: ∇φEL ← 1

M

∑M
i=1∇φL(zi)

6: ∇φĤ ← nz
M

∑M
i=1∇φlog ρi

7: φ← φ− η(∇φEL −∇φĤ)
8: end while

4.4 Numerical experiments

As a sanity check, we first assess the method for two simple test cases where the target

distributions are mixture of Gaussians. We later present our main results for condition-

ing a generator that was pre-trained to generate unconditional realizations of size 64×64.

All our numerical experiments are implemented using PyTorch2 [110], a python package

for automatic differentiation. The source code of our implementation is available in our

repository3. We use the same network architecture for the inference network (except

input and output sizes) in all our test cases, consisting of a fully connected network

with 3 hidden layers of size 512, and leaky ReLU activation. More details are described

in Section 4.6.1.

Mixture of Gaussians

We train a neural network Iφ : Rnw → Rnz to sample simple 1D and 2D mixture of

Gaussians. Results are summarized in Figure 4.2, with nz = nw = 1 in the 1D case, and

nz = nw = 2 in the 2D case. The source distribution pw is the standard normal in both

cases.

The first example, Figure 4.2a, is a mixture of three 1D Gaussians, with centers µ1 = −1,

µ2 = 2 and µ3 = 6, and standard deviations σ1 = 1, σ2 = 2, σ3 = 0.5, respectively;

indicated with blue lines. The orange bars are the normalized histogram of 1000 sample

points generated by the neural network. The second example, Figure 4.2b, is a mixture

of three 2D Gaussians, with centers µ1 = (−1,−1), µ2 = (1, 2) and µ3 = (2,−1), and

covariances Σ1 =
(

1 −0.5
−0.5 1

)
, Σ2 =

(
1.5 0.6
0.6 0.8

)
, and Σ3 =

(
1 0
0 1

)
, respectively. We plot the

contour lines of the mixture of 2D Gaussians, and also scatter plot 4000 sample points

2https://pytorch.org/
3https://github.com/chanshing/geocondition

https://pytorch.org/
https://github.com/chanshing/geocondition

Parametric generation of conditional geological realizations 75

4 2 0 2 4 6 8

z

0.00

0.05

0.10

0.15

0.20

0.25

0.30

q z
 a

nd
 p

z

~100 iterations

4 2 0 2 4 6 8

z

0.00

0.05

0.10

0.15

0.20

0.25

0.30

q z
 a

nd
 p

z

~1000 iterations

(a) Mixture of three 1D Gaussians. The blue line indicates the target distri-
bution, and the normalized histogram corresponds to generated values.

4 3 2 1 0 1 2 3 4 5

z-1st component

4

3

2

1

0

1

2

3

4

5

z-
2n

d
co

m
po

ne
nt

~20 iterations

4 3 2 1 0 1 2 3 4 5

z-1st component

4

3

2

1

0

1

2

3

4

5

z-
2n

d
co

m
po

ne
nt

~1000 iterations

(b) Mixture of three 2D Gaussians. The contour lines indicate the target
distribution, and the scattered points correspond to generated values.

Figure 4.2: Results of Iφ trained to generate mixture of Gaussians.

generated by the inference network. In both test cases, we can see that the neural

network effectively learns to transport points from the standard normal distribution to

the mixture of Gaussians.

Conditional geological realizations

Our unconditional generator is a neural network G : R30 → R64×64 previously trained

using the method of generative adversarial networks to generate unconditional realiza-

tions of 2D channelized permeability of size 64 × 64. The input latent vector is of

size 30 with standard normal distribution. Details of the implementation is described

in Section 4.6.1. Examples of unconditional realizations from the pre-trained genera-

tor is shown in Figure 4.3. Note that the conditioning method can be applied to any

pre-trained generator network.

We formulate the conditional sampling problem in the Bayesian framework as described

in Section 4.2.2, and train an inference network to sample the posterior p(z|dobs). We

assume λ = 0.1 in all our test cases. We use nw = nz = 30 and pw = pz (i.e. Iφ : R30 →
R30, so that if no conditioning were present, Iφ should learn the identity function).

Parametric generation of conditional geological realizations 76

Figure 4.3: Unconditional realizations

We experiment with several conditioning test cases, conditioning on the presence of

channel (high permeability) or background material (low permeability) at locations in

the domain. We train an inference network Iφ for each test case and then generate

conditional realizations using the coupled network G ◦ I. Here we use the same hyper-

parameters to train the inference network in all test cases, although one could fine-tune

the optimization for each test case to improve the results.

We show samples of the resulting conditional generator for two conditioning cases in Fig-

ure 4.4. We see that the generated realizations honor the conditioning points while main-

taining the quality of the original generator. In Figure 4.4b, we deliberately enforce a

conditioning setting to obtain a specific channel passing through the domain, and see

that the generator is capable of generating multiple realizations reproducing this enforced

channel while providing enough variability in the rest of the domain. This could be use-

ful in practice when we know the presence of specific structures in the area. Additional

test cases are shown in Section 4.6.2. Although not performed here, a straightforward

improvement could be to adopt a safe margin by conditioning a neighborhood of the

observed points.

In our experiments, the inference network takes a few seconds to train for each test case

using a Nvidia GeForce GTX Titan X GPU. During deployment, G ◦ I can generate

conditional realizations at the rate of about 5500 realizations per second. We did not find

noticeable increase in computational time between G and G ◦ I. In fact, the bottleneck

in the GPU was due to memory operations.

4.5 Conclusion

We presented a method to generate conditional realizations using a pre-trained un-

conditional generator without sacrificing the parametrization of the generation process,

building upon our work in Chapter 3. The method consists of conditioning a pre-trained

Parametric generation of conditional geological realizations 77

(a) Examples A

(b) Examples B

Figure 4.4: Conditional realizations of G ◦ I. We show two conditioning test cases.
Blue dot indicates channel material (high permeability) and orange cross indicates

background material (low permeability). See Section 4.6.2 for additional test cases.

unconditional generator by stacking an inference network that is trained to sample the

posterior distribution of the latent vector given observations. We found the method to be

very effective in generating conditional realizations in the several test cases considered,

honoring the observations while also producing diverse realizations. The method is based

on minimizing a Kullback-Leibler divergence and involves a sample entropy estimation.

The sample entropy estimator based on the nearest neighbor (k = 1 in Equation (5.5))

was first applied in [111] to improve diversity in the context of neural style. In the

same context, [112] used a similar estimator but based on random neighbors. Finally,

in the context of generative modeling, [113] used a closed-form expression of the en-

tropy term when using batch normalization [29]. The estimator used in this work is the

generalization of the entropy estimator using kth nearest neighbors introduced in [109].

Other alternatives to train neural samplers include normalizing flow [114], autoregres-

sive flow [115], and Stein discrepancy [116]. These are all alternatives worth exploring

Parametric generation of conditional geological realizations 78

in future work. Also related to our work include [117, 118] where the authors optimize

the latent space to condition on labels/classes.

4.6 Appendix

4.6.1 Implementation details

We use the same architecture for the inference network in all our experiments, namely, a

fully connected network with 3 hidden layers of size 512, and component-wise leaky ReLU

activation σ(x) = x if x > 0, σ(x) = 0.5x otherwise. More specifically, I : Rnw → Rnz ,
I(w) = Af3(f2(f1(w))) where fi(x) = σ(Aix), and A2, A3 ∈ R512×512, A1 ∈ R512×nw ,

A ∈ Rnz×512. The weights [A,A1, A2, A3] are optimized using the gradient descent

scheme Adam with learning rate 1e−4 and default optimizer parameters (β1 = 0.5, β2 =

0.999, see [28]). We use a batch size of 64 sample points in the geological conditioning

problem. In the toy problems concerning the mixture of Gaussians, we use a batch size

of 256. In all test cases, the inference network converges in between 1000 and 3000

iterations.

The pre-trained generator was obtained following the work presented in Chapter 3, where

a convolutional neural network was trained on a set of 1000 realizations of size 64× 64

generated by the snesim algorithm [67, 119]. During deployment, both the conditional

and unconditional generators generate approximately 5500 realizations per second of

size 64× 64 using the GPU (we do not find noticeable increase in compute time from G

to G ◦ I).

4.6.2 Additional examples

Parametric generation of conditional geological realizations 79

(a) Examples A

(b) Examples B

(c) Examples C

Figure 4.5: Additional examples (1/2)

Parametric generation of conditional geological realizations 80

(a) Examples A

(b) Examples B

(c) Examples C

Figure 4.6: Additional examples (2/2)

Chapter 5

Exemplar-based parametric

synthesis of geology using kernel

discrepancies and generative

neural networks

We propose a framework for parametric synthesis of geological images based on an

exemplar image. We synthesize new realizations such that the discrepancy in the patch

distributions of the new realizations and the exemplar is minimized. Such discrepancy is

quantified using a kernel method for two-sample test called maximum mean discrepancy.

In order to obtain a parametrization of the synthesis process, we train a generative

neural network to sample solutions of the minimization problem, thus providing an

efficient and parametric way of generating realizations during deployment. We assess the

framework on a classical benchmark binary image representing channelized subsurface

reservoirs, finding that the method is effective in reproducing the visual patterns and

spatial statistics (image histogram and two-point probability functions) of the exemplar

image.

5.1 Introduction

A challenge in subsurface flow simulations is to obtain a complete and accurate descrip-

tion of subsurface properties, such as permeability and porosity, that are crucial for

In preparation for submission to journal.

81

Exemplar-based parametric synthesis of geology 82

accurate flow modeling. Since it is virtually impossible to obtain direct measurements

at every point in the domain under study, engineers can only rely on indirect estimations

of the subsurface, e.g. from seismic images and sparse measurements obtained from a

few wells. Traditionally, the properties are modeled based on their two-point statistics;

however, this tends to produce overly smooth Gaussian-like images of the subsurface

that are far from realistic. In many scenarios, such as in channelized systems where the

properties follow an almost binary distribution and contain strong spatial correlations,

two-point statistics are not enough to describe the subsurface.

This shortcoming led to the development of alternative algorithmic approaches to syn-

thesize subsurface images that can capture multipoint statistics. These methods start

from an exemplar image (also called training image in the geology literature) that is

deemed representative of the subsurface under study, meaning that the spatial statistics

of this exemplar is believed to be similar to that of the subsurface under study. There-

after, a new image is synthesized by querying the exemplar image or deriving statistics

from it, and employing some form of randomness during the synthesis process to gen-

erate diverse outcomes. In [67], empirical conditional probabilities are derived from the

exemplar and used to synthesize the new image each pixel at a time. In [72], a pixel

is synthesized by simply querying the exemplar and selecting pixels whose neighboring

pixels match that of the current synthesized domain. In [73], the synthesis is based

on carefully copying and pasting patches extracted from the exemplar. As seen from

the mentioned works, these approaches share many similarities with texture synthesis

techniques in image processing [120–122]. These methods, although less theoretically

grounded, tend to produce subsurface images that are much more realistic than those

obtained in traditional methods based on two-point statistics.

A further challenge in subsurface flow simulations is the need to account for inherent

uncertainties in the subsurface. For uncertainty quantification and history matching, it

is often necessary to explore multiple plausible solutions by performing simulations for a

large number of image realizations. For computational efficiency, it is also desirable that

such exploration be smooth in the sense that small changes in the inputs of the simulator

results in small changes in the output. For this we need a smooth parametrization

of the synthesis process. This is not the case in most current synthesis algorithms

where the element of stochasticity is intrinsically attached to pseudo-random number

generators which are non-smooth by design. For this reason, current approaches take a

two-stage process (see e.g. Chapter 3): First, a large number of realizations is synthesized

using one of the many synthesis algorithms available, providing a dataset informing the

patterns and variability of the subsurface; thereafter, parametrization [49, 50, 65, 123]

is performed using the dataset in a way that retains the visual realism and statistics

Exemplar-based parametric synthesis of geology 83

?

MMD2[X̃, X̃0]

{
, , , · · ·

}
= X̃0X̃ =

{
? , ? , ? , · · ·

}
gθ(Z)

Z ∼ pZ

Figure 5.1: Overview of methodology.

of the realizations. It is then worth asking whether it is possible to achieve parametric

synthesis directly from the exemplar.

Recent examples of parametric synthesis of geology from a single exemplar include [75,

77] where the authors train generative adversarial networks [69] on patches extracted

from the exemplar image. Once trained, given that the neural networks employed are

convolutional, one can artificially increase the size of the input vector to generate larger

images (see discussion in Section 3.4.3). However, it remains unclear if this approach

generalizes to arbitrary sizes.

In this work, we propose a new parametric synthesis method using a single exemplar

image. We assume that the spatial statistics of a geological image can be sufficiently

described by the distribution of the patches extracted from it. Informally, we consider

two geological images A and B to be equivalent if a bag of patches extracted from A

is indistinguishable from a bag of patches extracted from B. Note that this assumption

is implicit in most exemplar-based synthesis algorithms. Given a reference exemplar

image, a new realization is synthesized in a way that its patch distribution match that

of the exemplar. The discrepancy in distributions is measured using a kernel method

for two-sample test called maximum mean discrepancy (MMD) [124], which through

the kernel trick is suitable for high-dimensional data. New realizations can be obtained

by minimizing this discrepancy using e.g. gradient-based optimization, although such

approach is slow and non-parametric. To obtain a parametrization of the synthesis

process, as well as improved synthesis speed during deployment (e.g. for uncertainty

quantification or history matching), a generative neural network is trained to sample

solutions of the minimization problem.

The proposed method is superficially similar to those in previous chapters as well as in

other works [75, 77], but is in fact substantially different: using a single exemplar image,

we generate global images so as to maintain the patch distribution of the exemplar,

rather than generating the patches themselves and then using the artificial expansion

Exemplar-based parametric synthesis of geology 84

trick (Section 3.4.3); moreover, the spatial statistics are derived using a kernel method.

An illustration of the framework is shown in Figure 5.1.

In this study, we limit ourselves to the synthesis of unconditional realizations and leave

the conditioning case for future work (examples of conditioning to hard data can be

found in [78, 79] as well as our work in Chapter 4). We assess our method using the

classical binary channelized image by Strebelle [67] of size 250× 250, and we synthesize

images of size 256× 256 and 512× 512. We also study the influence of different kernels

in the quality of the synthesis and discuss alternatives for improvement. Although

not considered here, we mention that the framework is dimension-agnostic and can be

directly applied to 3D images.

The rest of this chapter is organized as follows: In Section 5.2, we describe the maximum

mean discrepancy [124], and an approach to train a generative neural network [111]. Our

main idea is presented in Section 5.3: new realizations are formulated as solutions to

an optimization problem (minimize the discrepancy in patch distributions); thereafter,

a generative neural network can be trained for fast parametric synthesis. In Section 5.4,

we present results for the synthesis of binary channelized subsurface images based on

the classical Strebelle exemplar image. In Section 5.5, we discuss how our framework

relates to other works and potential ideas to improve this work. Finally, we state our

conclusions and future directions in Section 5.6.

5.2 Background

5.2.1 Maximum mean discrepancy

Our main tool is a kernel method for two-sample test called maximum mean discrep-

ancy [103, 124]. Given two samples X = {x1, · · · , xm} and Y = {y1, · · · , yn}, the goal

is to determine whether both samples come from the same distribution. The maximum

mean discrepancy (MMD) addresses this problem by comparing the sample mean in a

feature space,

MMD2[X,Y] =

∥∥∥∥∥∥ 1

m

m∑
i=1

φ(xi)−
1

n

n∑
j=1

φ(yj)

∥∥∥∥∥∥
2

H

=
1

m2

m∑
i=1

m∑
i′=1

k(xi, xi′) +
1

n2

n∑
j=1

m∑
j′=1

k(yj , yj′)−
2

mn

m∑
i=1

n∑
j=1

k(xi, yj)

(5.1)

Exemplar-based parametric synthesis of geology 85

where φ : X → H is a mapping to the feature space H, and k(x, y) := 〈φ(x), φ(y)〉H.

The useful aspect in this formulation is that we do not need to compute φ(·) – which

can be infinite dimensional – as long as we can compute the function k(·, ·), called the

kernel. The kernel operator can be thought of as a similarity measure, and it must

satisfy certain properties in which case it is guaranteed to be associated to some feature

mapping/space. For an in-depth treatment, see [124].

Examples Let x, y ∈ R2. For the linear kernel k(x, y) = xT y, an associated feature

map is φ(x) = x, then the MMD is simply the difference in the sample mean. For

the polynomial kernel of degree two k(x, y) = (xT y + 1)2, an associated feature map is

φ(x) = (x2(2), x
2
(1),
√

2x(2)x(1),
√

2x(2),
√

2x(1), 1) where x = (x(1), x(2)), then the MMD

captures differences in both mean and covariance. Finally, the Gaussian radial basis

function k(x, y) = exp {−γ||x− y||2} is associated with a mapping to infinitely many

components (obtained by Taylor expansion) and the corresponding MMD captures all

the moments of the distribution.

5.2.2 Generative neural network

We now describe a method to train a generative neural network as proposed in [111]. Let

gθ : Z → X be a neural network parametrized by weights θ to be determined. The input

to the neural network are realizations of a random latent vector Z ∼ pZ that provides

the source of stochasticity so that gθ(Z) is a stochastic simulator. The distribution pZ

is a design choice and is usually an easy-to-sample distribution (e.g. standard normal

distribution) so that the cost of sampling gθ(Z) is mostly given by the evaluation cost

of gθ. Given a target probability density function p, and a fixed pZ , the goal is to

determine θ such that gθ(Z) ∼ p. Let us denote the density of gθ(Z) under θ by qθ. The

Kullback-Leibler (KL) divergence from p to qθ is

DKL(qθ ‖ p) = E
X∼qθ

log
qθ(X)

p(X)
(5.2)

= E
X∼qθ

− log p(X) + E
X∼qθ

log qθ(X) (5.3)

We therefore wish to find θ that minimizes this divergence. The first term of the sum

can be approximated as

E
X∼qθ

− log p(X) ≈ 1

N

N∑
i=1

− log p(Xi) (5.4)

Exemplar-based parametric synthesis of geology 86

where Xi = gθ(Zi), by drawing N realizations of Z ∼ pZ . The second term of the sum,

called the (negative) entropy, is problematic since we do not have the analytic form

of the density qθ (gθ normally contains multiple non-linearities). We circumvent this

issue by using a sample entropy estimator [108, 109] over a set of generated realizations

{X1, · · · , XN},

E
X∼qθ

log qθ(X) ≈ −Ĥ({Xi, · · · , XN}) := − 1

N

N∑
i=1

c log ρ(Xi) + const. (5.5)

where c is the number of components of X, and ρ(Xi) is the distance from Xi to its

kth-nearest neighbor (with k ≈
√
N as a good rule of thumb [109]). Essentially, Ĥ

quantifies how spread the realizations are. Putting all together, Equation (5.2) can be

approximated as

DKL(qθ ‖ p) ≈
1

N

N∑
i=1

− log p(Xi)−
1

N

N∑
i=1

c log ρ(Xi) + const. (5.6)

Minimizing this expression can be done using gradient-based optimization, where the

gradients with respect to θ can be obtained using automatic differentiation algorithms.

Intuitively, the first term ensures that the generated samples are in the regions of high

probability of p, whereas the second term ensures that the samples are diverse.

5.3 Methodology

We denote by X an image realization and X̃ = {x1, · · · , xm} the corresponding set of

patches extracted from X. Given a reference exemplar image X0, we aim to match

the patch distribution inferred by the set X̃0. Concretely, for a new realization X,

the sets X̃ and X̃0 must be indistinguishable in the sense that their distributions are

close. For example, matching the distribution of “1 × 1 patches” reduces to matching

the pixel histogram of the exemplar image. For patches of size l1 × l2, the distribution

to be matched is given by the multidimensional joint histogram of l1l2 variables. The

discrepancy in distributions is measured using the maximum mean discrepancy (MMD,

Section 5.2.1), which is suitable for high-dimensional distributions via the kernel trick.

New realizations can then be obtained by solving a minimization problem,

arg min
X

MMD2[X̃, X̃0] (5.7)

with MMD2 defined in Equation (5.1). Note that a patch xi of an image X is the result

of a projection operator, therefore the optimization can be done using gradient-based

Exemplar-based parametric synthesis of geology 87

methods. Multiple realizations can be obtained by using a local optimizer and different

initial guesses for X.

Optimization-based synthesis, however, can be expensive if a large number of realizations

is continuously required in the online phase (e.g. for uncertainty quantification or history

matching); moreover, it does not provide a smooth parametric way to explore the solu-

tion space. We therefore train a generator in an offline phase to sample solutions of the

minimization problem efficiently online. We train the generator following the approach

described in Section 5.2.2, which requires us to define a target density p. To this end, we

adopt a Gibbs distribution model p(X) ∝ exp{− 1
λL(X)} where L(X) := MMD2[X̃, X̃0]

and λ is an unknown “temperature” constant (see [125] or Section 4.1 of [68] for a jus-

tification of this choice). This conveniently sets the KL divergence in Equation (5.2)

to

DKL(qθ ‖ p) ∝
1

N

N∑
i=1

L(Xi)−
λ

N

N∑
i=1

c log ρ(Xi) (5.8)

where we multiplied everything by λ and omitted the irrelevant constants. The first

term ensures that the samples minimize the MMD, while the second term ensures that

the samples are diverse. Since we do not know the constant λ, in this work we treat it as

a hyperparameter to be tuned in the offline training. In practice, λ acts as the trade-off

between sample quality and diversity. We summarize the steps to train the generator

in Algorithm 3.

Algorithm 3 Generator training gθ

Require: Exemplar image X0, kernel k(·, ·) of MMD, “temperature” λ, source distri-
bution pZ , batch size N .

1: while θ has not converged do
2: Sample {Z1, · · · , ZN} ∼ pZ
3: Obtain {X1, · · · , XN}, Xi = gθ(Zi)
4: EL ← 1

N

∑N
i=1 MMD2[X̃i, X̃0] . Equation (5.1)

5: λĤ ← λ
N

∑N
i=1 clog ρ(Xi)

6: θ ← Update(θ;∇θ(EL − λĤ))
7: end while

5.3.1 Kernel choice

As in other kernel methods, the kernel choice is critical in the performance of the MMD;

specifically, it defines its discriminative power. For characteristic kernels [126, 127], the

MMD can distinguish two distributions in the infinite setting [124]. These include the

Gaussian radial basis function, the Laplace kernel, and the rational quadratic kernel.

In this work, we use the rational quadratic kernel krq(x, y) = (1 + ||x−y||2
2αl2

)−α due to its

Exemplar-based parametric synthesis of geology 88

Figure 5.2: Exemplar image (by Strebelle [67]) of size 250× 250 depicting subsurface
channels (left), and a few patches of size 64× 64 extracted from the image (right).

better gradient behavior, where α and l are hyperparameters to be tuned during the

offline phase (see Section 4.2 of [128] for properties of this and other kernels).

Measuring similarities using kernels, however, can be challenging when the data is very

high dimensional [129]. Moreover, distance-based kernels (as functions of ||x − y||) are

not well-suited when applied on the raw pixel representation of images, since differences

in pixel values are of little meaning in conveying similarity (e.g. small shifts in pixels

would imply large differences while remaining virtually the same). On the other hand, it

is often the case that the intrinsic dimensionality of the data is low, albeit embedded in a

high dimensional space. For example, geological structures of interest such as channels

can be accurately described regardless of the grid resolution, once it is above certain

threshold. This suggests us to first project the data to a low dimensional space, e.g.

using principal component analysis or even random projections [130], before applying

the distance-based kernel. In this work, we use the encoder of an autoencoder trained

on patches of the exemplar. The autoencoder [131] is a generalization of principal

component analysis using a non-linear combination of basis functions (represented by

neural networks). The idea here is to measure distances between patches using their

code representations instead of their raw pixel representations. The resulting kernel

is k(·, ·) = krq(h(·), h(·)) where h(·) denotes the encoder (note that krq(h(·), h(·)) is a

kernel).

5.4 Numerical experiments

We consider the synthesis of geological realizations containing subsurface channels using

the classical exemplar image of Strebelle [67] shown in Figure 5.2. Note that our target

distribution is discrete (the image is binary); nevertheless, we found good results using

a continuous framework. For convenience, we pre-process the image and work in the

[−1, 1] range, so that −1 represents the background material (blue) and 1 represents

the channel material (yellow). The size of the exemplar image is 250× 250, and we use

patches of size 64× 64. Naturally, the patch size has to be large enough to capture the

Exemplar-based parametric synthesis of geology 89

(a) krq,randproj

(b) krq,pca

Figure 5.3: Optimization-based synthesis using different kernels.

relevant patterns of interest in the exemplar image; however, it should not be too large

since this determines the amount and variability of patches given that our exemplar is

of finite size in practice. We synthesize images of size 256× 256 and 512× 512.

For the MMD, we use a kernel of the form k(·, ·) = krq(h(·), h(·)) where h is a map-

ping to a lower dimensional space, and krq is the rational quadratic kernel krq(x, y) =

1 + ||x−y||2
2αl2

)−α. We use α = 0.5, and for l (length scale parameter) we use a median

heuristic [124]: we use the median distance between the patches in the combined sample

– note that this means that our kernel adapts during the training iterations. As for h, we

experiment with three choices: a random projection matrix [130], principal component

analysis (PCA) trained on patches of the exemplar, and the encoder of an autoencoder

trained on patches of the exemplar.

Note that the MMD in Equation (5.1) has a quadratic cost with respect to the sample

size (although linear estimates exist [124]) making it expensive to evaluate in the whole

set of patches. Since we compute the MMD iteratively, we instead evaluate on a random

subset of patches drawn during the iterations. We draw a subset of 128 patches. As a

consequence, we found that this procedure tends to undersample patches at the boundary

of the domain, so we perform reflection padding on the synthesis domain equal to half a

patch width before sampling patches – this may introduce some biases at the synthesis

boundaries.

Our implementation is done using Pytorch [110], a python package for automatic differ-

entiation.

Exemplar-based parametric synthesis of geology 90

(a) Random realizations (256× 256, optimization-based synthesis).

0

5

10

15

1 0 1
0

5

10

15

1 0 1 1 0 1 1 0 1 1 0 1

(b) Image histogram of 9 random realizations. The first histogram (top left)
corresponds to the exemplar image.

0 25 50 75 100 125 150

x-lag

0.5

0.6

0.7

0.8

0.9

pr
ob

ab
ili

ty

(c) Two-point probability in the x direction
of 100 realizations.

0 25 50 75 100 125 150

y-lag

0.5

0.6

0.7

0.8

0.9

pr
ob

ab
ili

ty

(d) Two-point probability in the y direction
of 100 realizations.

Figure 5.4: Results for optimization-based synthesis of realizations of size 256 × 256
with krq,encoder kernel.

Exemplar-based parametric synthesis of geology 91

5.4.1 Optimization-based synthesis

We start by synthesizing realizations using an optimization approach (Equation (5.7)).

Since the pixel values are bounded in [−1, 1], rather than using a constrained optimiza-

tion method, here we simply reparametrize the pixels by X = tanh(X ′) and solve for X ′

instead. We use the Adam optimizer [28, 132] (a variant of stochastic gradient descent).

We test different kernels for the MMD: For krq + random projection (krq,randproj), we

use a low-rank random matrix to project each 64× 64 patch to a vector of 512 compo-

nents. For krq + principal component analysis (PCA) (krq,pca), we project each patch

to 64 eigencomponents (retaining over 75% of the variance). Synthesis results for size

256 × 256 are shown in Figures 5.3a and 5.3b. We can see that both random projec-

tion and PCA kernels already capture key spatial statistics of the exemplar such as the

horizontal correlations defining the channels and the correct pixel values; however, the

visual quality of the realizations are still rather poor.

Next, we use the encoder of an autoencoder trained on the patches of the exemplar

image (krq,encoder). The autoencoder is trained to encode each patch into a small code

vector of size 8, a number found via experimentation. We experimentally found that

smaller codes tend to produce better results (as long as the autoencoder can be trained

successfully), presumably by making the distance-based kernel more accurate. Details

of the autoencoder implementation are described in Section 5.7.1.

Synthesis results for size 256 × 256 using the krq + encoder kernel are summarized

in Figure 5.4. Compared to the previous kernels, we see that the visual quality of the

realizations are significantly improved, highlighting the impact of the kernel choice. The

synthesized images, however, still contain some spurious values such as isolated pixels

that the optimization did not manage to remove within the iterations. If required, these

could be removed using one of many available image post-processing methods [133]. We

show in Figure 5.4b the normalized histogram of pixel values of nine random realizations

without thresholding, finding good correspondence with the exemplar histogram. We

show the two-point probability functions (PF) [92] in the horizontal and vertical direc-

tions in Figures 5.4c and 5.4d, respectively. The dashed black lines indicate the PFs of

the exemplar image, and the dotted blue lines are PFs for 100 random realizations. We

do perform thresholding in this evaluation to compute the PFs. To compute the PFs

on the realizations, we randomly crop a region of size 250 × 250 from each realization

in order to match the exemplar size, and compute the PF in this region. Note that

before cropping, we first perform a reflection padding as used in the optimization to

reduce potential biases at the boundaries. Overall, we find good agreement between the

synthesized images and the exemplar. We show additional results for synthesis of size

512× 512 in Section 5.7.2.

Exemplar-based parametric synthesis of geology 92

(a) Random realizations (256× 256, generated by neural network).

0

5

10

15

1 0 1
0

5

10

15

1 0 1 1 0 1 1 0 1 1 0 1

(b) Image histogram of 9 random realizations. The first histogram (top left)
corresponds to the exemplar image.

0 25 50 75 100 125 150

x-lag

0.5

0.6

0.7

0.8

0.9

pr
ob

ab
ili

ty

(c) Two-point probability in the x direction
of 100 realizations.

0 25 50 75 100 125 150

y-lag

0.4

0.5

0.6

0.7

0.8

0.9

pr
ob

ab
ili

ty

(d) Two-point probability in the y direction
of 100 realizations.

Figure 5.5: Results for neural synthesis of realizations of size 256×256 with krq,encoder
kernel.

Exemplar-based parametric synthesis of geology 93

5.4.2 Neural synthesis

We next train a generative neural network to synthesize realizations efficiently. Here

we only consider the kernel with the encoder of the autoencoder (krq,encoder). The

generator is a convolutional neural network designed following the template provided

in [83], which works well for most computer vision tasks. Details of the architecture are

given in Section 5.7.1. To synthesize 256×256 images, the generator gθ : R256 → R256×256

maps from realizations of a latent vector of size 256 sampled from the standard normal

distribution, to image realizations of size 256 × 256. The size of the latent vector was

chosen using a simple heuristic: proportional to the number of non-overlapping patches

in the synthesis domain times the encoding size. We train gθ to minimize the KL

divergence in Equation (5.8), where we use a batch size of N = 4 and temperature

hyperparameter λ = 10−8. We found that a good initial guess for λ is a number such

that the value of the first and second terms in the KL (expected loss and entropy,

respectively) stay within the same order of magnitude in the latter iterations of the

training, so that the KL is eventually allowed to go to zero. In fact, here we tuned λ

from {10−7, 10−8, 10−9}, although finer tuning is encouraged.

Results of the neural synthesis are summarized in Figure 5.5. Notably, we find that the

results using neural synthesis are visually better, e.g. we do not find isolated pixels as

in the optimization approach. This can be explained by the locality prior imposed by

the convolutional architecture [134, 135]: since the image is parametrized by a neural

network, updates in the weights of the neural network affects a whole neighborhood

of the output image, in contrast to optimization in the pixel space where pixels are

updated individually; moreover, this influence is hierarchical due to the convolutional

architecture, since layers closer to the output have a more local influence while layers

closer to the input affect the output more globally. Regarding the normalized image

histogram (again without thresholding) in Figure 5.5b, we find that it more closely

matches the true binary shape of the exemplar histogram. Finally, we show the two-

point probability functions for the neural synthesis (computed as in the previous section)

in Figures 5.5c and 5.5d. We find a slight bias in the trend of the curves, which may

suggest that further tuning of the neural network is necessary. Nonetheless, the results

remain close in relative value.

We additionally train a generator gθ : R512 → R512×512 to synthesize realizations of size

512 × 512. For this case, we use a latent vector of size 512 (also with standard normal

distribution) and λ = 10−9. The results are summarized in Section 5.7.2.

Exemplar-based parametric synthesis of geology 94

Figure 5.6: Linear interpolation of one coordinate of the latent vector.

Smooth transitions Since gθ is continuous by construction, small changes in the

input results in small changes in the output. We verify this in Figure 5.6 where we

show the outputs of the generator of size 256 × 256. Starting from an initial random

realization of the latent vector Z, we linearly vary one of its coordinates while fixing the

remaining coordinates. Note that unlike methods such as principal component analysis

where the latent vector represents the coefficients of the eigenvectors, the latent vector of

generative neural networks lacks interpretability. Learning interpretable latent vectors

is an ongoing area of research, see e.g. [136].

5.5 Related work

Neural kernels The seminal work in [137] showed that it is possible to synthesize

textures from an exemplar by matching statistics of feature responses of a pre-trained

neural network evaluated on the exemplar. Briefly, the exemplar is fed into the VGG-

net [81] – a very large neural network trained on natural images for classification –

and a matrix is formed containing the correlations of feature responses at layers of the

neural network. Then, new realizations are synthesized such that their corresponding

matrices are close to that of the exemplar. It was later shown in [138] that this is

equivalent to computing the maximum mean discrepancy on the feature responses using

the polynomial kernel k(x, y) = (xT y)2. Finally, by noting that each feature response

corresponds to a patch of the domain (defined by its receptive field), we conclude that

this is an instance of our framework where the kernel is composed of a polynomial

kernel and the VGG-net as “encoder”. Note that in this case, the encoder is trained

on a different task (classification) using large sets of other images, making the approach

an example of transfer learning [139, 140]. We show synthesis results using this kernel

in Figures 5.7a and 5.7b for our geological image and for a natural texture (peppers;

first image in the row), respectively. We see that the kernel performs very well for the

image of peppers, but not so well for our binary geological image – presumably because

the VGG-net is trained on natural color images.

Exemplar-based parametric synthesis of geology 95

(a) kpoly,vgg

(b) kpoly,vgg

Figure 5.7: Optimization-based synthesis using the kernel from [137], i.e. VGG en-
coder + polynomial kernel of second degree. Compare (a) with Figure 5.3a, Figure 5.3b,

and Figure 5.4a.

Neural generators The present approach to train a generator is based on [111] where

a sample entropy estimator based on the nearest neighbor is used. Here we use a kth

nearest neighbor [109] estimation which we found to be numerically more stable. These

estimators, however, measure the distance between realizations in the raw representation,

which for images may not be well suited. An ad-hoc alternative can be found in [112]

where distances are instead computed on the feature responses of a neural network eval-

uated on the images. Other alternatives include normalizing flow [114], autoregressive

flow [115], and Stein variational gradient descent [141]. The latter is an interesting alter-

native which involves yet another kernel to estimate the average diversity in the sample,

making it useful for embedding prior knowledge about the geology.

Adaptive kernels The kernel has a big influence on the quality of the synthesis since

it defines the discriminative power of the MMD. In this work, we first reduce the data

using a fixed encoder of an autoencoder previously trained on patches of the exemplar

image. The same approach is employed in [142] in the context of generative modeling

of natural images [104]. This is done following the intuition that distances in the code

representation of an autoencoder are more suitable than in the raw pixel representation

of images and spatial data. This manual kernel engineering can be circumvented by

considering adaptive kernels [143]. The idea here is to iteratively update the kernel

encoder during the training iterations, thus serving as an adversary maximizing the

MMD whereas the generator is trained to minimize it. This idea can be taken further by

considering other functions aside from kernels, e.g. parametrized by neural networks [69].

All these methods involve adversarial training of an additional neural network as well

Exemplar-based parametric synthesis of geology 96

as dynamic target loss functions, involving numerical challenges in terms of stability as

well as computational cost. On the upside, they tend to produce state-of-the-art results

in computer vision.

5.6 Conclusion

We introduced a parametric synthesis method for geological images that consists of

preserving the patch distribution of a reference exemplar image. An energy function was

defined that measures the discrepancy in the patch distributions of new realizations with

respect to the exemplar. Parametrization was achieved by training a generative neural

network to solve the energy minimization problem. Contrary to the parametrization

presented in previous chapters, this parametrization requires only a single exemplar

image for training, and it is trained to generate global images rather than patches

of the exemplar. We assessed the framework using the classical exemplar image by

Strebelle of size 250 × 250, and synthesized images of sizes 256 × 256 and 512 × 512.

We found that with an adequate kernel, the visual patterns from the exemplar image

are clearly reproduced, and the spatial statistics as measured by the image histogram

and the two-point probability functions show very good agreement with respect to the

exemplar. Our framework depends on the discriminative power of the MMD, which

is highly influenced by the kernel choice, as verified in the comparison using different

kernels. Also, the generator is currently trained using a sample entropy estimator that

is based on distances in pixel space, which might not be ideal for spatial data. We

discussed possible future alternatives to the current approach such as adaptive kernels

to avoid manual kernel tuning, and the Stein discrepancy to train the generator.

5.7 Appendix

5.7.1 Implementation details

Autoencoder

The architecture of the autoencoder is designed based on the template provided in [83]:

The encoder h : X̃ → R8 is a chain of convolutions with leaky ReLU activations, with

tanh activation in the last layer. The decoder d : R8 → X̃ is a chain of transposed

convolutions with ReLU activations, also with tanh in the final layer. The code size is 8.

The architecture is detailed in Table 5.1. We train to minimize arg mind,h ||x− d(h(x))||2

on patches of the exemplar image. To reduce overfitting, we data-augment by performing

Exemplar-based parametric synthesis of geology 97

State size Layer

1× 64× 64 Conv(4,2,1), BN, lReLU

32× 32× 32 Conv(4,2,1), BN, lReLU

64× 16× 16 Conv(4,2,1), BN, lReLU

128× 8× 8 Conv(4,2,1), BN, lReLU

256× 4× 4 Conv(4,1,0), Tanh

8× 1× 1 –

(a) Encoder

State size Layer

8× 1× 1 ConvT(4,1,0), BN, ReLU

256× 4× 4 ConvT(4,2,1), BN, ReLU

128× 8× 8 ConvT(4,2,1), BN, ReLU

64× 16× 16 ConvT(4,2,1), BN, ReLU

32× 32× 32 ConvT(4,2,1), Tanh

1× 64× 64 –

(b) Decoder

Table 5.1: Autoencoder architecture. Conv/ConvT=convolution/transposed convolu-
tion, the triplet indicates (filter size, stride, padding), BN=batch normalization.

horizontal and vertical flips on the patches, as well as smoothing by adding a small

amount of Gaussian noise (with 0.05 standard deviation). We use the Adam optimizer

with default parameters and learning rate 10−3, and train for 2000 iterations using a

batch size of 32. The model takes a few seconds to train using a GTX Titan X. The

decoder is discarded after training and we keep the encoder for the MMD kernel.

Generator

The generator is also designed based on the template provided in [83], but we re-

place most of the transposed convolutions with upsampling + convolution (motivated

by [144]), and add an additional convolving layer before the output. Specifically, the

transposed convolutions are replaced by a ×2 nearest neighbor upsampling followed by

a convolution. The activation in the last layer is tanh. The architecture is detailed

in Table 5.2. We use the Adam optimizer with default parameters and learning rate

10−3, and train for 50,000 iterations for both the 256 × 256 and 512 × 512 generators.

Using a GTX Titan X, training takes about 2.5 and 5 hours for sizes 256 × 256 and

512 × 512, respectively 2. In the online phase, the generators can synthesize images at

the rate of approximately 150/s and 50/s for sizes 256×256 and 512×512, respectively.

5.7.2 Additional results

2The training is slow in our current implementation due to the way the patches are being extracted.

Exemplar-based parametric synthesis of geology 98

(a) Random realizations (512× 512, optimization-based synthesis).

0

5

10

15

1 0 1
0

5

10

15

1 0 1 1 0 1 1 0 1 1 0 1

(b) Image histogram of 9 random realizations. The first histogram (top left)
corresponds to the exemplar image.

0 25 50 75 100 125 150

x-lag

0.5

0.6

0.7

0.8

0.9

pr
ob

ab
ili

ty

(c) Two-point probability in the x direction
of 100 realizations.

0 25 50 75 100 125 150

y-lag

0.5

0.6

0.7

0.8

0.9

pr
ob

ab
ili

ty

(d) Two-point probability in the y direction
of 100 realizations.

Figure 5.8: Results for optimization-based synthesis of realizations of size 512 × 512
with krq,encoder kernel.

Exemplar-based parametric synthesis of geology 99

(a) Random realizations (512× 512, generated by neural network).

0

5

10

15

1 0 1
0

5

10

15

1 0 1 1 0 1 1 0 1 1 0 1

(b) Image histogram of 9 random realizations. The first histogram (top left)
corresponds to the exemplar image.

0 25 50 75 100 125 150

x-lag

0.5

0.6

0.7

0.8

0.9

pr
ob

ab
ili

ty

(c) Two-point probability in the x direction
of 100 realizations.

0 25 50 75 100 125 150

y-lag

0.5

0.6

0.7

0.8

0.9

pr
ob

ab
ili

ty

(d) Two-point probability in the y direction
of 100 realizations.

Figure 5.9: Results for neural synthesis of realizations of size 512×512 with krq,encoder
kernel.

Exemplar-based parametric synthesis of geology 100

State size Layer

256× 1× 1 ConvT(4,1,0), BN, ReLU

2048× 4× 4 UpConv(3,1,1), BN, ReLU

1024× 8× 8 UpConv(3,1,1), BN, ReLU

512× 16× 16 UpConv(3,1,1), BN, ReLU

256× 32× 32 UpConv(3,1,1), BN, ReLU

128× 64× 64 UpConv(3,1,1), BN, ReLU

64× 128× 128 UpConv(3,1,1), BN, ReLU

64× 256× 256 Conv(3,1,1), Tanh

1× 256× 256 –

(a) 256× 256 generator.

State size Layer

512× 1× 1 ConvT(4,1,0), BN, ReLU

4096× 4× 4 UpConv(3,1,1), BN, ReLU

2048× 8× 8 UpConv(3,1,1), BN, ReLU

1024× 16× 16 UpConv(3,1,1), BN, ReLU

512× 32× 32 UpConv(3,1,1), BN, ReLU

256× 64× 64 UpConv(3,1,1), BN, ReLU

128× 128× 128 UpConv(3,1,1), BN, ReLU

64× 256× 256 UpConv(3,1,1), BN, ReLU

64× 512× 512 Conv(3,1,1), Tanh

1× 512× 512 –

(b) 512× 512 generator.

Table 5.2: Generator architecture. UpConv=×2 upsample + convolution,
ConvT=transposed convolution, the triplet indicates (filter size, stride, padding),

BN=batch normalization.

Chapter 6

Final conclusions

In this thesis, we explored the application of machine learning techniques to enhance

uncertainty quantification tasks in reservoir simulation. In Chapter 2, we used super-

vised learning techniques to accelerate subsurface flow simulations. In Chapters 3 to 5,

we focused on improving the simulation results through parametrization using recent

unsupervised learning techniques. In the following, we recapitulate the main findings in

our study along with possible extensions.

Chapter 2: A machine learning approach for efficient uncertainty quantification using

multiscale methods

We performed an image-to-image regression using neural networks to surrogate

the computation of localized elliptic problems inside the multiscale finite volume

method that are needed to obtain the custom basis functions. This resulted in

a speedup of two orders of magnitude in obtaining the basis functions without

compromising the simulation results; in fact, for the test cases of the experiment,

the results were indistinguishable for the estimated quantities of interest. Possible

directions to extend this work include the assessment in more general permeability

fields, and studies in multiphase flow.

Chapter 3: Parametrization of stochastic inputs using generative adversarial networks

with application in geology

A parametrization based on deep convolutional neural networks was considered

to capture the challenging spatial patterns of typical geological models. The

parametrization was able to reproduce realizations with very high visual qual-

ity which were sometimes indistinguishable from data. More importantly, the

parametrization reproduced the reference flow statistics in an uncertainty propa-

gation study – in particular, it was able to match complex multimodal distributions

101

Final conclusions 102

very well. The parametrization also showed very good results for inversion in pa-

rameter estimation, always providing reasonable and plausible realizations even for

challenging target images. For limited datasets, we found that the discriminator

size needs to be tuned to avoid overfitting. Finally, we verified well-known issues

with the standard formulation of GAN such as mode collapse and training instabil-

ity, and found the Wasserstein formulation to be better suited for our application.

Possible directions to extend this work include improving current GAN methods

for limited data, and further assessments in other test cases.

Chapter 4: Parametric generation of conditional geological realizations using genera-

tive neural networks

We built upon the work in the previous chapter and considered the problem of

post-hoc conditioning of a pre-trained generator. The idea was to generate real-

izations conditioned on new gathered observations using an already trained gen-

erator, putting emphasis on parametric generation without having to train a gen-

erator from scratch. We used a simple approach that consists of training a small

neural network to sample from the Bayesian posterior distribution of the latent

vector. This small neural network is later stacked to the original generator, thus

obtaining a conditional generator and maintaining the parametrization. This sim-

ple approach obtained very good results where the conditional generator was able

to honor the conditioning for a variety of test cases considered, maintaining the

visual quality and producing diverse realizations. Finally, we discussed several

other alternatives to our current approach that differ in the way that the inference

network could be obtained.

Chapter 5: Exemplar-based parametric synthesis of geology using kernel discrepancies

and generative neural networks

We introduced a different approach to obtain a parametrization of the geology. In

contrast to the parametrization considered in the previous chapters that required a

large dataset of realizations to inform the patterns and variability of the subsurface,

here we used a single exemplar image and derived a parametrization that is based

on preserving the distribution of the patches of the exemplar. The presumably

high-dimensional distribution is captured using a kernel method that is suitable

in high dimensions. We assessed the method using the benchmark Strebelle image

of size 250× 250 and synthesized images of size 256× 256 and 512× 512, finding

very good performance in both cases for preserving the spatial statistics as given

by the image histogram and two point probability functions, as well as producing

realizations with high visual quality. We found the method to be sensitive to

the kernel choice, as it happens with any kernel method, and discussed a future

Bibliography 103

alternative based on adaptive kernels. We also indicated the Stein discrepancy

as a future alternative to train the neural network that might be more suited for

spatial data.

6.1 Remarks and future directions

In our study, we placed a lot of emphasis on neural network models. This was mo-

tivated by the high expressive power of neural networks as well as recent advances in

machine learning – and computer vision in particular, assisted by current trends where

we see increasing data availability and computing resources. Computer vision was of

special interest to our study due to many similarities in this field, containing several

interesting ideas that could be further investigated – specifically, we argue that many

techniques in pattern recognition could be leveraged in geomodeling. More generally, the

field of machine learning and subsurface reservoir engineering both share many of the

same challenges such as dealing with high-dimensional spatial data (whether they are

natural photos or geological images) with non-linear features, unknown or intractable

likelihoods and distributions, and sampling complex and high-dimensional distributions.

The main difference resides in the availability of data, which dictates the research di-

rections in each field. For example, the emphasis in computer vision is on models for

natural images for which the Internet serves as an unlimited source of data. In contrast,

the amount of real geological images are still rather limited and expensive to obtain. As

a consequence, recent techniques in computer vision can afford extremely large neural

network models without much concern about data availability. Another difference is

driven by the intended applications. For example, a method for recommender systems

puts a lot of emphasis on performance and less emphasis on the interpretability of the

model. In contrast, critical engineering applications often require a level of interpretabil-

ity of the predictive model that is not easily provided in deep neural network models.

These are important challenges that are worth addressing to facilitate the wide adoption

of machine learning in engineering.

Bibliography

[1] Omnicore Agency. Youtube by the numbers: Stats, demographics & fun facts.

https://www.omnicoreagency.com/youtube-statistics/, 2018.

[2] Internet World Stats. World internet users statistics and 2016 world population

stats. https://www.internetworldstats.com/stats.htm, 2017.

[3] Siri Team. Hey siri: An on-device dnn-powered voice trigger for apples personal

assistant. https://machinelearning.apple.com/2017/10/01/hey-siri.html,

2017.

[4] Google AI. Google duplex: An ai system for accomplishing real-

world tasks over the phone. https://ai.googleblog.com/2018/05/

duplex-ai-system-for-natural-conversation.html, 2018.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information pro-

cessing systems, pages 1097–1105, 2012.

[6] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,

Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller,

and Jiakai Zhang. End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316, 2016.

[7] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, and Adrian

Bolton. Mastering the game of go without human knowledge. Nature, 550(7676):

354, 2017.

[8] OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

[9] Insights by Stanford Business. Andrew ng: Why ai is the new electricity. http:

//stanford.io/2mwODQU, 2017.

[10] AI Index. Artificial Inteligence Index, 2017 Annual Report. http://aiindex.

org/2017-report.pdf, 2017.

104

https://www.omnicoreagency.com/youtube-statistics/
https://www.internetworldstats.com/stats.htm
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html
https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html
https://blog.openai.com/openai-five/
http://stanford.io/2mwODQU
http://stanford.io/2mwODQU
http://aiindex.org/2017-report.pdf
http://aiindex.org/2017-report.pdf

Bibliography 105

[11] Google Cloud Platform Blog. Google supercharges machine learning tasks

with TPU custom chip. https://cloudplatform.googleblog.com/2016/05/

Google-supercharges-machine-learning-tasks-with-custom-chip.html,

2016.

[12] Phoebe MR DeVries, Fernanda Viégas, Martin Wattenberg, and Brendan J Meade.

Deep learning of aftershock patterns following large earthquakes. Nature, 560

(7720):632, 2018.

[13] Angel Cruz-Roa, Hannah Gilmore, Ajay Basavanhally, Michael Feldman, Shridar

Ganesan, Natalie NC Shih, John Tomaszewski, Fabio A González, and Anant

Madabhushi. Accurate and reproducible invasive breast cancer detection in whole-

slide images: A deep learning approach for quantifying tumor extent. Scientific

reports, 7:46450, 2017.

[14] TGS. TGS Salt Identification Challenge. https://www.kaggle.com/c/

tgs-salt-identification-challenge, 2018.

[15] Thomas Strohmer. Surprises in high dimensions. https://www.math.ucdavis.

edu/~strohmer/courses/180BigData/180lecture1.pdf, 2017.

[16] P Jenny, SH Lee, and HA Tchelepi. Multi-scale finite-volume method for elliptic

problems in subsurface flow simulation. Journal of Computational Physics, 187

(1):47–67, 2003.

[17] Olav Møyner and Knut-Andreas Lie. A multiscale method based on restriction-

smoothed basis functions suitable for general grids in high contrast media. In SPE

Reservoir Simulation Symposium. Society of Petroleum Engineers, 2015.

[18] Jørg E Aarnes and Yalchin Efendiev. Mixed multiscale finite element methods

for stochastic porous media flows. SIAM Journal on Scientific Computing, 30(5):

2319–2339, 2008.

[19] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward

networks are universal approximators. Neural networks, 2(5):359–366, 1989.

[20] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Universal approximation

of an unknown mapping and its derivatives using multilayer feedforward networks.

Neural networks, 3(5):551–560, 1990.

[21] George Cybenko. Approximation by superpositions of a sigmoidal function. Math-

ematics of control, signals and systems, 2(4):303–314, 1989.

https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://www.kaggle.com/c/tgs-salt-identification-challenge
https://www.kaggle.com/c/tgs-salt-identification-challenge
https://www.math.ucdavis.edu/~strohmer/courses/180BigData/180lecture1.pdf
https://www.math.ucdavis.edu/~strohmer/courses/180BigData/180lecture1.pdf

Bibliography 106

[22] Ivan Lunati and Patrick Jenny. Multiscale finite-volume method for compressible

multiphase flow in porous media. Journal of Computational Physics, 216(2):616–

636, 2006.

[23] Ivan Lunati and Patrick Jenny. Multiscale finite-volume method for density-driven

flow in porous media. Computational Geosciences, 12(3):337–350, 2008.

[24] Kevin Jarrett, Koray Kavukcuoglu, and Yann Lecun. What is the best multi-stage

architecture for object recognition? In 2009 IEEE 12th International Conference

on Computer Vision, pages 2146–2153. IEEE, 2009.

[25] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning repre-

sentations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[26] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for on-

line learning and stochastic optimization. Journal of Machine Learning Research,

12(Jul):2121–2159, 2011.

[27] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient

by a running average of its recent magnitude. COURSERA: Neural Networks for

Machine Learning, 4(2), 2012.

[28] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[29] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015.

[30] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[31] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[32] Yoshua Bengio. Practical recommendations for gradient-based training of deep

architectures. In Neural networks: Tricks of the trade, pages 437–478. Springer,

2012.

[33] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms

for hyper-parameter optimization. In Advances in Neural Information Processing

Systems, pages 2546–2554, 2011.

http://www.deeplearningbook.org

Bibliography 107

[34] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimiza-

tion of machine learning algorithms. In Advances in neural information processing

systems, pages 2951–2959, 2012.

[35] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-

walkar. Hyperband: A novel bandit-based approach to hyperparameter optimiza-

tion. arXiv preprint arXiv:1603.06560, 2016.

[36] Robert Tibshirani. A comparison of some error estimates for neural network mod-

els. Neural Computation, 8(1):152–163, 1996.

[37] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Rep-

resenting model uncertainty in deep learning. In International Conference on

Machine Learning, pages 1050–1059, 2016.

[38] P. Jacquard. Permeability distribution from field pressure data. Society of

Petroleum Engineers, Dec 1965. doi: 10.2118/1307-PA.

[39] H. O. Jahns. A rapid method for obtaining a two-dimensional reservoir description

from well pressure response data. Society of Petroleum Engineers, Dec 1966. doi:

10.2118/1473-PA.

[40] Robert Bissell. Calculating optimal parameters for history matching. In ECMOR

IV-4th European Conference on the Mathematics of Oil Recovery, 1994.

[41] Guy Chavent and Robert Bissell. Indicator for the refinement of parameterization.

In Inverse problems in engineering mechanics, pages 309–314. Elsevier, 1998.

[42] AA Grimstad, T Mannseth, G Nævdal, and H Urkedal. Scale splitting approach

to reservoir characterization. In SPE reservoir simulation symposium. Society of

Petroleum Engineers, 2001.

[43] Alv-Arne Grimstad, Trond Mannseth, Sigurd Ivar Aanonsen, Ivar Aavatsmark,

Alberto Cominelli, and Stefano Mantica. Identification of unknown permeabil-

ity trends from history matching of production data. In SPE Annual Technical

Conference and Exhibition. Society of Petroleum Engineers, 2002.

[44] Alv-Arne Grimstad, Trond Mannseth, Geir Nævdal, and Hege Urkedal. Adaptive

multiscale permeability estimation. Computational Geosciences, 7(1):1–25, 2003.

[45] Sigurd Ivar Aanonsen. Efficient history matching using a multiscale technique. In

SPE reservoir simulation symposium. Society of Petroleum Engineers, 2005.

[46] GR Gavalas, PC Shah, and John H Seinfeld. Reservoir history matching by

bayesian estimation. Society of Petroleum Engineers Journal, 16(06):337–350,

1976.

Bibliography 108

[47] Dean S Oliver. Multiple realizations of the permeability field from well test data.

SPE Journal, 1(02):145–154, 1996.

[48] Albert C Reynolds, Nanqun He, Lifu Chu, and Dean S Oliver. Reparameteri-

zation techniques for generating reservoir descriptions conditioned to variograms

and well-test pressure data. SPE Journal, 1(04):413–426, 1996.

[49] Pallav Sarma, Louis J Durlofsky, and Khalid Aziz. Kernel principal component

analysis for efficient, differentiable parameterization of multipoint geostatistics.

Mathematical Geosciences, 40(1):3–32, 2008.

[50] Xiang Ma and Nicholas Zabaras. Kernel principal component analysis for stochas-

tic input model generation. Journal of Computational Physics, 230(19):7311–7331,

2011.

[51] Hai X Vo and Louis J Durlofsky. Regularized kernel PCA for the efficient param-

eterization of complex geological models. Journal of Computational Physics, 322:

859–881, 2016.

[52] Mehrdad Gharib Shirangi. History matching production data and uncertainty

assessment with an efficient tsvd parameterization algorithm. Journal of Petroleum

Science and Engineering, 113:54–71, 2014.

[53] Mehrdad G Shirangi and Alexandre A Emerick. An improved tsvd-based

levenberg–marquardt algorithm for history matching and comparison with gauss–

newton. Journal of Petroleum Science and Engineering, 143:258–271, 2016.

[54] Reza Tavakoli and Albert Coburn Reynolds. History matching with parametriza-

tion based on the svd of a dimensionless sensitivity matrix. In SPE reservoir

simulation symposium. Society of Petroleum Engineers, 2009.

[55] Reza Tavakoli and Albert C Reynolds. Monte carlo simulation of permeability

fields and reservoir performance predictions with svd parameterization in rml com-

pared with enkf. Computational Geosciences, 15(1):99–116, 2011.

[56] Stephane G Mallat. Multiresolution approximations and wavelet orthonormal

bases of 2 (). Transactions of the American mathematical society, 315(1):69–87,

1989.

[57] Pengbo Lu and Roland N Horne. A multiresolution approach to reservoir param-

eter estimation using wavelet analysis. In SPE annual technical conference and

exhibition. Society of Petroleum Engineers, 2000.

[58] Isha Sahni and Roland N Horne. Multiresolution wavelet analysis for improved

reservoir description. SPE Reservoir Evaluation & Engineering, 8(01):53–69, 2005.

Bibliography 109

[59] Behnam Jafarpour and Dennis B. McLaughlin. Efficient permeability parame-

terization with the discrete cosine transform. Society of Petroleum Engineers,

February 2007. doi: 10.2118/106453-MS.

[60] Behnam Jafarpour and Dennis B. McLaughlin. Reservoir characterization with

the discrete cosine transform. Society of Petroleum Engineers, March 2009. doi:

10.2118/106453-PA.

[61] Behnam Jafarpour, Vivek K. Goyal, Dennis B. McLaughlin, and William T. Free-

man. Compressed history matching: Exploiting transform-domain sparsity for

regularization ofnonlinear dynamic data integration problems. Mathematical Geo-

sciences, 42(1):1–27, Jan 2010. ISSN 1874-8953. doi: 10.1007/s11004-009-9247-z.

URL https://doi.org/10.1007/s11004-009-9247-z.

[62] David Moreno and Sigurd Ivar Aanonsen. Stochastic facies modelling using the

level set method. In EAGE Conference on Petroleum Geostatistics, 2007.

[63] Oliver Dorn and Rossmary Villegas. History matching of petroleum reservoirs

using a level set technique. Inverse Problems, 24(3):035015, 2008. URL http:

//stacks.iop.org/0266-5611/24/i=3/a=035015.

[64] Haibin Chang, Dongxiao Zhang, and Zhiming Lu. History matching of facies

distribution with the enkf and level set parameterization. Journal of Computa-

tional Physics, 229(20):8011 – 8030, 2010. ISSN 0021-9991. doi: https://doi.

org/10.1016/j.jcp.2010.07.005. URL http://www.sciencedirect.com/science/

article/pii/S0021999110003748.

[65] Mohammadreza Mohammad Khaninezhad, Behnam Jafarpour, and Lianlin Li.

Sparse geologic dictionaries for subsurface flow model calibration: Part i. inversion

formulation. Advances in Water Resources, 39:106–121, 2012.

[66] Mohammadreza Mohammad Khaninezhad, Behnam Jafarpour, and Lianlin Li.

Sparse geologic dictionaries for subsurface flow model calibration: Part ii. robust-

ness to uncertainty. Advances in water resources, 39:122–136, 2012.

[67] Sebastien B Strebelle and Andre G Journel. Reservoir modeling using multiple-

point statistics. In SPE Annual Technical Conference and Exhibition. Society of

Petroleum Engineers, 2001.

[68] Gregoire Mariethoz and Jef Caers. Multiple-point geostatistics: stochastic modeling

with training images. John Wiley & Sons, 2014.

[69] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

In Advances in neural information processing systems, pages 2672–2680, 2014.

https://doi.org/10.1007/s11004-009-9247-z
http://stacks.iop.org/0266-5611/24/i=3/a=035015
http://stacks.iop.org/0266-5611/24/i=3/a=035015
http://www.sciencedirect.com/science/article/pii/S0021999110003748
http://www.sciencedirect.com/science/article/pii/S0021999110003748

Bibliography 110

[70] Daan Wierstra, Tom Schaul, Jan Peters, and Juergen Schmidhuber. Natural evo-

lution strategies. In Evolutionary Computation, 2008. CEC 2008.(IEEE World

Congress on Computational Intelligence). IEEE Congress on, pages 3381–3387.

IEEE, 2008.

[71] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen

Schmidhuber. Natural evolution strategies. Journal of Machine Learning Research,

15(1):949–980, 2014.

[72] Gregoire Mariethoz, Philippe Renard, and Julien Straubhaar. The direct sampling

method to perform multiple-point geostatistical simulations. Water Resources

Research, 46(11), 2010.

[73] Pejman Tahmasebi, Ardeshir Hezarkhani, and Muhammad Sahimi. Multiple-point

geostatistical modeling based on the cross-correlation functions. Computational

Geosciences, 16(3):779–797, 2012.

[74] Shing Chan and Ahmed H Elsheikh. Parametrization and generation of geological

models with generative adversarial networks. arXiv preprint arXiv:1708.01810,

2017.

[75] Lukas Mosser, Olivier Dubrule, and Martin J Blunt. Reconstruction of three-

dimensional porous media using generative adversarial neural networks. arXiv

preprint arXiv:1704.03225, 2017.

[76] Lukas Mosser, Olivier Dubrule, and Martin J Blunt. Stochastic reconstruc-

tion of an oolitic limestone by generative adversarial networks. arXiv preprint

arXiv:1712.02854, 2017.

[77] Eric Laloy, Romain Hérault, Diederik Jacques, and Niklas Linde. Efficient training-

image based geostatistical simulation and inversion using a spatial generative ad-

versarial neural network. arXiv preprint arXiv:1708.04975, 2017.

[78] Emilien Dupont, Tuanfeng Zhang, Peter Tilke, Lin Liang, and William Bailey.

Generating realistic geology conditioned on physical measurements with generative

adversarial networks. arXiv preprint arXiv:1802.03065, 2018.

[79] Lukas Mosser, Olivier Dubrule, and Martin J Blunt. Conditioning of three-

dimensional generative adversarial networks for pore and reservoir-scale models.

arXiv preprint arXiv:1802.05622, 2018.

[80] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

Bibliography 111

[81] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[82] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural

network model for a mechanism of visual pattern recognition. In Competition and

cooperation in neural nets, pages 267–285. Springer, 1982.

[83] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

[84] Andrej Karpathy. CS231n convolutional neural networks for visual recognition.

http://cs231n.github.io/convolutional-networks/.

[85] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,

and Xi Chen. Improved techniques for training gans. In Advances in Neural

Information Processing Systems, pages 2234–2242, 2016.

[86] David Berthelot, Tom Schumm, and Luke Metz. Began: Boundary equilibrium

generative adversarial networks. arXiv preprint arXiv:1703.10717, 2017.

[87] Guo-Jun Qi. Loss-sensitive generative adversarial networks on lipschitz densities.

arXiv preprint arXiv:1701.06264, 2017.

[88] Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. How to train your

dragan. arXiv preprint arXiv:1705.07215, 2017.

[89] Martin Arjovsky and Léon Bottou. Towards principled methods for training gen-

erative adversarial networks. arXiv preprint arXiv:1701.04862, 2017.

[90] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv

preprint arXiv:1701.07875, 2017.

[91] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and

Aaron C Courville. Improved training of wasserstein gans. In Advances in Neural

Information Processing Systems, pages 5769–5779, 2017.

[92] S. Torquato and G. Stell. Microstructure of twophase random media. i. the npoint

probability functions. The Journal of Chemical Physics, 77(4):2071–2077, 1982.

doi: 10.1063/1.444011.

[93] Raymond Yeh, Chen Chen, Teck Yian Lim, Mark Hasegawa-Johnson, and Minh N

Do. Semantic image inpainting with perceptual and contextual losses. arXiv

preprint arXiv:1607.07539, 2016.

http://cs231n.github.io/convolutional-networks/

Bibliography 112

[94] Jean Marçais and Jean-Raynald de Dreuzy. Prospective interest of deep learning

for hydrological inference. Groundwater, 55(5):688–692, 2017.

[95] J Nagoor Kani and Ahmed H Elsheikh. Dr-rnn: A deep residual recurrent neural

network for model reduction. arXiv preprint arXiv:1709.00939, 2017.

[96] Hector Klie. Physics-based and data-driven surrogates for production forecasting.

In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2015.

[97] Valentin G Stanev, Filip L Iliev, Scott Hansen, Velimir V Vesselinov, and Boian S

Alexandrov. Identification of release sources in advection–diffusion system by ma-

chine learning combined with greens function inverse method. Applied Mathemat-

ical Modelling, 60:64–76, 2018.

[98] Wenyue Sun and Louis J Durlofsky. A new data-space inversion procedure for ef-

ficient uncertainty quantification in subsurface flow problems. Mathematical Geo-

sciences, 49(6):679–715, 2017.

[99] Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder-decoder

networks for surrogate modeling and uncertainty quantification. Journal of Com-

putational Physics, 2018.

[100] Manuel Valera, Zhengyang Guo, Priscilla Kelly, Sean Matz, Adrian Cantu, Allon G

Percus, Jeffrey D Hyman, Gowri Srinivasan, and Hari S Viswanathan. Machine

learning for graph-based representations of three-dimensional discrete fracture net-

works. arXiv preprint arXiv:1705.09866, 2017.

[101] Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Gener-

alization and equilibrium in generative adversarial nets (gans). arXiv preprint

arXiv:1703.00573, 2017.

[102] Alfred Müller. Integral probability metrics and their generating classes of func-

tions. Advances in Applied Probability, 29(2):429–443, 1997.

[103] Arthur Gretton, Karsten M Borgwardt, Malte Rasch, Bernhard Schölkopf, and

Alex J Smola. A kernel method for the two-sample-problem. In Advances in

neural information processing systems, pages 513–520, 2007.

[104] Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Training

generative neural networks via maximum mean discrepancy optimization. arXiv

preprint arXiv:1505.03906, 2015.

[105] Youssef Mroueh and Tom Sercu. Fisher gan. In Advances in Neural Information

Processing Systems, pages 2510–2520, 2017.

Bibliography 113

[106] Youssef Mroueh, Chun-Liang Li, Tom Sercu, Anant Raj, and Yu Cheng. Sobolev

gan. arXiv preprint arXiv:1711.04894, 2017.

[107] Youssef Mroueh, Tom Sercu, and Vaibhava Goel. Mcgan: Mean and covariance

feature matching gan. arXiv preprint arXiv:1702.08398, 2017.

[108] LF Kozachenko and Nikolai N Leonenko. Sample estimate of the entropy of a

random vector. Problemy Peredachi Informatsii, 23(2):9–16, 1987.

[109] Mohammed Nawaz Goria, Nikolai N Leonenko, Victor V Mergel, and Pier Luigi

Novi Inverardi. A new class of random vector entropy estimators and its applica-

tions in testing statistical hypotheses. Journal of Nonparametric Statistics, 17(3):

277–297, 2005.

[110] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

Automatic differentiation in pytorch. 2017.

[111] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Improved texture net-

works: Maximizing quality and diversity in feed-forward stylization and texture

synthesis. In Proc. CVPR, 2017.

[112] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang.

Diversified texture synthesis with feed-forward networks. In Proc. CVPR, 2017.

[113] Taesup Kim and Yoshua Bengio. Deep directed generative models with energy-

based probability estimation. arXiv preprint arXiv:1606.03439, 2016.

[114] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normal-

izing flows. arXiv preprint arXiv:1505.05770, 2015.

[115] Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and

Max Welling. Improved variational inference with inverse autoregressive flow. In

Advances in Neural Information Processing Systems, pages 4743–4751, 2016.

[116] Dilin Wang and Qiang Liu. Learning to draw samples: With application to amor-

tized mle for generative adversarial learning. arXiv preprint arXiv:1611.01722,

2016.

[117] Anh Nguyen, Jason Yosinski, Yoshua Bengio, Alexey Dosovitskiy, and Jeff Clune.

Plug & play generative networks: Conditional iterative generation of images in

latent space. arXiv preprint arXiv:1612.00005, 2016.

[118] Jesse Engel, Matthew Hoffman, and Adam Roberts. Latent constraints: Learning

to generate conditionally from unconditional generative models. arXiv preprint

arXiv:1711.05772, 2017.

Bibliography 114

[119] N Remy, A BOUCHER, and J WU. Sgems: Stanford geostatistical modeling

software. Software Manual, 2004.

[120] Alexei A Efros and Thomas K Leung. Texture synthesis by non-parametric sam-

pling. In iccv, page 1033. IEEE, 1999.

[121] Alexei A Efros and William T Freeman. Image quilting for texture synthesis and

transfer. In Proceedings of the 28th annual conference on Computer graphics and

interactive techniques, pages 341–346. ACM, 2001.

[122] Gregoire Mariethoz and Sylvain Lefebvre. Bridges between multiple-point geo-

statistics and texture synthesis: Review and guidelines for future research. Com-

puters & Geosciences, 66:66–80, 2014.

[123] Hai X Vo and Louis J Durlofsky. A new differentiable parameterization based on

principal component analysis for the low-dimensional representation of complex

geological models. Mathematical Geosciences, 46(7):775–813, 2014.

[124] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and

Alexander Smola. A kernel two-sample test. Journal of Machine Learning Re-

search, 13(Mar):723–773, 2012.

[125] Ying Nian Wu, Song Chun Zhu, and Xiuwen Liu. Equivalence of julesz and gibbs

texture ensembles. In Computer Vision, 1999. The Proceedings of the Seventh

IEEE International Conference on, volume 2, pages 1025–1032. IEEE, 1999.

[126] Bharath K Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf,

and Gert RG Lanckriet. Hilbert space embeddings and metrics on probability

measures. Journal of Machine Learning Research, 11(Apr):1517–1561, 2010.

[127] Bharath K Sriperumbudur, Kenji Fukumizu, and Gert RG Lanckriet. Universal-

ity, characteristic kernels and rkhs embedding of measures. Journal of Machine

Learning Research, 12(Jul):2389–2410, 2011.

[128] Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced

lectures on machine learning, pages 63–71. Springer, 2004.

[129] Aaditya Ramdas, Sashank Jakkam Reddi, Barnabás Póczos, Aarti Singh, and

Larry A Wasserman. On the decreasing power of kernel and distance based non-

parametric hypothesis tests in high dimensions. In AAAI, pages 3571–3577, 2015.

[130] Ella Bingham and Heikki Mannila. Random projection in dimensionality reduc-

tion: applications to image and text data. In Proceedings of the seventh ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

245–250. ACM, 2001.

Bibliography 115

[131] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of

data with neural networks. science, 313(5786):504–507, 2006.

[132] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam

and beyond. 2018.

[133] Mehmet Sezgin and Bülent Sankur. Survey over image thresholding techniques

and quantitative performance evaluation. Journal of Electronic imaging, 13(1):

146–166, 2004.

[134] Andrew M Saxe, Pang Wei Koh, Zhenghao Chen, Maneesh Bhand, Bipin Suresh,

and Andrew Y Ng. On random weights and unsupervised feature learning. In

ICML, pages 1089–1096, 2011.

[135] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. arXiv

preprint arXiv:1711.10925, 2017.

[136] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter

Abbeel. Infogan: Interpretable representation learning by information maximizing

generative adversarial nets. In Advances in neural information processing systems,

pages 2172–2180, 2016.

[137] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of

artistic style. arXiv preprint arXiv:1508.06576, 2015.

[138] Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. Demystifying neural

style transfer. arXiv preprint arXiv:1701.01036, 2017.

[139] Lorien Y Pratt. Discriminability-based transfer between neural networks. In Ad-

vances in neural information processing systems, pages 204–211, 1993.

[140] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transac-

tions on knowledge and data engineering, 22(10):1345–1359, 2010.

[141] Yihao Feng, Dilin Wang, and Qiang Liu. Learning to draw samples with amortized

stein variational gradient descent. arXiv preprint arXiv:1707.06626, 2017.

[142] Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching networks.

In International Conference on Machine Learning, pages 1718–1727, 2015.

[143] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos.

Mmd gan: Towards deeper understanding of moment matching network. In Ad-

vances in Neural Information Processing Systems, pages 2203–2213, 2017.

Bibliography 116

[144] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checker-

board artifacts. Distill, 2016. doi: 10.23915/distill.00003. URL http://distill.

pub/2016/deconv-checkerboard.

http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard

	List of Figures
	List of Tables
	1 Introduction
	1.1 Why machine learning?
	1.1.1 Machine learning and physics
	1.1.2 Application examples

	1.2 Basic concepts
	1.3 Outline of the thesis

	2 A machine learning approach for efficient uncertainty quantification using multiscale methods
	2.1 Introduction
	2.2 Background
	2.2.1 Multiscale finite volume method
	2.2.2 Feedforward neural networks for surrogate modeling
	2.2.2.1 Neural network optimization
	2.2.2.2 Regularization
	2.2.2.3 Architecture design and hyperparameter tuning

	2.3 Methodology
	2.3.1 Implementation and computational aspects
	2.3.2 Other machine learning techniques

	2.4 Numerical experiments
	2.4.1 Learning process
	2.4.2 Hybrid model
	2.4.2.1 Comparison of errors
	2.4.2.2 Estimated distributions

	2.4.3 Hyperparameter tuning
	2.4.4 Computational gains

	2.5 Conclusions and remarks

	3 Parametrization of stochastic inputs using generative adversarial networks with application in geology
	3.1 Introduction
	3.2 Background
	3.2.1 Convolutional neural networks
	3.2.2 Generative adversarial networks
	3.2.2.1 Wasserstein GAN

	3.3 Numerical experiments
	3.3.1 Implementation
	3.3.2 Assessment in uncertainty quantification
	3.3.3 Assessment in parameter estimation
	3.3.4 Honoring point conditioning

	3.4 Discussion and practical details
	3.4.1 Practical advantages of WGAN
	3.4.2 Network sizes under limited data
	3.4.3 GAN for multipoint geostatistical simulations

	3.5 Conclusions

	4 Parametric generation of conditional geological realizations using generative neural networks
	4.1 Introduction
	4.2 Background
	4.2.1 Generative adversarial networks
	4.2.2 Conditioning on observations

	4.3 Conditional generator for geological realizations
	4.4 Numerical experiments
	4.5 Conclusion
	4.6 Appendix
	4.6.1 Implementation details
	4.6.2 Additional examples

	5 Exemplar-based parametric synthesis of geology using kernel discrepancies and generative neural networks
	5.1 Introduction
	5.2 Background
	5.2.1 Maximum mean discrepancy
	5.2.2 Generative neural network

	5.3 Methodology
	5.3.1 Kernel choice

	5.4 Numerical experiments
	5.4.1 Optimization-based synthesis
	5.4.2 Neural synthesis

	5.5 Related work
	5.6 Conclusion
	5.7 Appendix
	5.7.1 Implementation details
	5.7.2 Additional results

	6 Final conclusions
	6.1 Remarks and future directions

