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Abstract 

The interplay between engineering and medical research plays a major role in advancing 

the healthcare technologies. Novel medical devices have been developed to improve the 

diagnosis and treatment plans for patients with pathological conditions such as prostate 

cancer (PCa). In this context, in silico modelling has been a valuable tool as it is 

complementary to traditional trial-and-error approaches, particularly in the area of nodule 

identification in soft tissue. The goal of this thesis is to develop a computational 

framework of detecting and characterizing the presence of PCa, based on instrumented 

probing. The proposed methodologies involve Finite-Element simulations, inverse 

analysis and probability-based methods, using models reconstructed from medical 

imaging and histological data. The proposed methods are later validated using 

experimental measurements from instrumented probing on ex-vivo prostates. It is 

expected that the in-silico framework can serve as a complementary tool to the medical 

devices and to improve the effectiveness of current methods for early PCa diagnosis. 
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1.1    Motivation 

Biomedical Engineering is a discipline which has the aim of combining the design and 

problem-solving skills of engineering with medical and biological sciences to advance 

healthcare treatment, including diagnosis, monitoring and therapy. Nowadays, the impact 

of the biomedical engineering in the scientific communities increases significantly with 

the strong development of the capacity of computational modelling [1].  However, the 

understanding of the mechanical bahaviour of biological tissues and their interaction at 

diverse scale levels is still a challenge. The reasons mainly reside in the inability or 

impracticality of carrying out experiments especially in many in vivo scenarios.  In 

contrast, computational modelling has the advantage of overcoming the aforementioned 

problems, in somewhat simplified but representative scenarios which would eventually 

help the experimental efforts. In the past decade, computational modelling has been 

exploited in research areas as biomechanics, biomaterial, artificial organs and medical 



2 
 

devices [2]–[5]. One example of using computational modelling in the biomechanics and 

medical device research areas will be validated in the thesis.  

Diagnosing prostate cancer (PCa) is not a trivial task. The current diagnostic techniques 

for PCa include the blood test for Prostate-Specific Antigen (PSA), Digital Rectal 

Examination (DRE), medical imaging methods including Magnetic Resonance Imaging 

(MRI) and transrectal ultrasound (TRUS) and biopsy [6]. The PSA is a protein which is 

produced by normal cells in the prostate and it raises due to the presence of cancer [7]. 

However, the test shows low specificity [8]. The DRE consists of palpating the posterior 

surface of the prostate through the rectum wall to detect abnormalities, a sign of PCa 

nodules [9]–[11]. However, the method provides a qualitative outcome, and it relies 

highly on the practitioners’ experience [12], [13]. MRI is frequently used for PCa 

detection and treatment planning. However, the method is incapable of detecting PCa 

nodules which are smaller than 10mm [14]. TRUS, although providing quantitative 

imaging for the clinicians [15], [16],  it has certain limitation in distinguishing between 

PCa nodules and benign condition such as benign prostatic hyperplasia (BPH) [17]. 

Biopsy allows the examination of the sample tissue from the prostate, however it is 

vulnerable to a high probability of false negative due to the random nature of sample 

locations [18]. To complement to the current early screening methods of PCa,  medical 

devices that could deploy instrumented DRE (iDRE) have been developed, with an aim 

of providing quantitative analysis to the PCa identification while maintaining the non-

invasive nature of the palpation procedure [19]. 

In addition to the development of the iDRE devices, there is a lack of a diagnostic 

framework, either mathematical or numerical, to interpret and make sense of the palpation 

feedback data. The palpation feedback, either static or dynamic, is heavily influenced by 

the cancer heterogeneity and the inter-patient differences such as the diverse anatomical 
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structures and the mechanical properties of the healthy tissue [20], [21]. In addition, the 

heterogeneities in the tissue structure could significantly increase the uncertainty in how 

the palpation data can be interpreted. Therefore, a mathematical and/or numerical 

framework that is capable of making sense of the palpation data with predictive capability 

is urgently needed. This thesis will address exactly this.  

1.2    Thesis scope and structure 

The main goal of this thesis is to develop a computational framework which is able to 

detect and characterize cancerous nodules in prostate and compatible to instrumented 

palpation device either ex-vivo or in-vivo, without a priori knowledge of the 

physiopathological condition of the patients.  

Specifically, the objectives of the thesis include 

• To develop a novel computational framework for evaluating force feedback and 

detecting cancerous nodules, without a priori knowledge of the tissue 

composition; 

• To perform a sensitivity analysis for assessing the influence of the cancer 

heterogeneity in the mechanical response of prostate tissue; 

• To develop a predictive model based on a probabilistic approach for identifying 

cancerous nodule(s) and estimating its position, depth, dispersion and volume 

within a confidence interval; 

• To evaluate the accuracy of the predicting model in classifying between cancerous 

and healthy prostate tissues and estimating the nodule depth, size and geometry, 

based on a large volume of histological data-set; 



4 
 

• To validate the novel predictive model using the ex-vivo experimental 

measurements on whole prostate using iDRE devices and assess the sensitivity 

and specificity of the proposed method. 

The rest of this thesis is structured to elaborate how these objectives are met, as follows: 

Chapter 2: Mechanics-based Quantitative Tissue Diagnosis and Nodule 

Identification: State of the Art 

This chapter contains a literature survey of all major topics relevant to the thesis, 

including i) a review on the tissue morphology and microstructure given rise by the 

presence of physiopathological conditions such as cancer; ii) a description of the 

biological tissues mechanical characterization exploiting non-linear elasticity theory and 

modelling; iii) a review on the limitations in cancer detection of current diagnostic 

techniques for various types of soft tissues; iv) a justification of the need of developing a 

novel diagnostic framework for identifying and characterizing the presence/absence of 

cancer in soft tissue based on mechanical palpation measurements; v) a review of the 

challenges which the thesis will address; and finally vi) a summary of the potential impact 

of the thesis.  

Chapter 3: Identification of Tumor Nodules in Soft Tissue – An Inverse Finite-

Element Framework based on Mechanical Characterization  

In this chapter, a novel computational diagnostic framework is developed for detecting 

the presence of a tumor nodule in soft tissue using quasi-static palpation. The 

methodology relies on solving an inverse FE problem with the purpose of estimating the 

volume of the examined prostate (target). Therefore, an error function between the 

reaction force values obtained by probing the target and the synthetic model is minimized. 

The methodology has been hypothesized and later validated using simplified 2D models. 
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A sensitivity analysis for quantifying the accuracy of the method for a diverse range of 

initial guesses and number of parameters is performed. To validate the model, the 

methodology is tested using a feasibility study where a prostatic tissue is reconstructed 

from an MRI image with and without the presence of a tumor nodule. The results show 

how the estimated target volumes, which are obtained performing multiple probing 

depths, can be used as an indicator for tumor nodule detection without the a priori 

knowledge of its presence in the soft tissue. A sensitivity analysis for evaluating the 

influence of the cancer heterogeneity, when the methodology is applied, will be 

investigated in the next chapter. 

Chapter 4: Sensitivity Analysis of Inverse FE Framework  

This chapter further carried out the sensitivity analysis, regarding the influence of 

heterogeneity in tumor nodule in the instrumented palpation procedure when the novel 

computational framework developed in Chapter 3 is applied. The inverse FE method is 

tested using a simplified 2D target model characterized by the presence of tumor nodule 

with diverse combinations of size, depth and stiffness. Therefore, the limits in the 

detectability are quantified as a function of the nodule parameters such as size, depth and 

stiffness ratio.  The method is validated using a feasibility study where MRI-reconstructed 

prostate models with cancerous nodules are used. The cancerous nodules have diverse 

ranges of location, depth, geometry and size in the prostate slices. The results confirm the 

capability of the framework in detecting the presence of cancerous nodule using the 

estimated target volumes and multiple probing depths without a priori knowledge of the 

physiopathological conditions of the patient. However, the detectability depends on the 

interplay between the size, depth and stiffness of the cancerous nodule. Decoupling the 

effect of those parameters using elasticity as biomarker remains challenging. Therefore, 

a probabilistic approach will be proposed in the following chapter. 
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Chapter 5: Probability-based Predictive Methods for PCa Nodule Identification  

In this chapter, a predictive model based on a probabilistic approach is developed for 

tumor identification purpose. The clinical outcomes are the identification of the 

presence/absence of tumor nodule and the estimation of the position, depth, dispersion 

and suspicious area of the cancerous regions in the soft tissue. The proposed method 

utilises a probabilistic approach in order to decouple the influence of the nodule 

parameters, i.e. size and depth, in the force feedback. The prostate is probed first at several 

probing points so that a reaction force profile is obtained. An identifiable peak in the force 

profile occurs due to the presence of one or more cancerous nodules. A large dataset of 

force profiles is generated using a simplified model with a tumor nodule of random 

position, depth and size. The statistical analysis of the data shows how the shape of the 

peak is sensitive to the nodule depth and size. Therefore, the features of the peak are 

exploited as a diagnostic index. There are some limitations in the proposed model which 

are also identified and quantified. The capability of the method is first tested using 

synthetic reaction force profiles generated from finite element modelling of random 

prostate models. The prediction shows promising accuracy in the nodule features 

estimation. However, the simplified 2D FE models may not represent, in reality, the 

cancer heterogeneity and the diverse anatomical details of the prostates. Therefore, the 

proposed model will be further tested using prostate models reconstructed from prostatic 

histological slices in the next chapter.  
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Chapter 6: Validation of Predictive Methods – Stage 1: Models Reconstructed from 

Histological Images and FE-Simulated Instrumented Probing  

This chapter further explores the capability of the predictive model proposed in Chapter 

5. A clinical study of 30 patients, who are diagnosed with PCa and treated with radical 

proctectomy, provides a large data-set of histological examinations where the outlines of 

the cancerous nodules are underlined by a consultant pathologist. They are converted into 

FE models where the outlines of the prostate and cancerous nodules are preserved. The 

reaction force profiles are obtained by probing the posterior surface of the prostate 

models. A peak occurs as consequence of the presence of a stiffer nodule and the 

predicted model provides a diagnosis based on the characterization of the peak shape. The 

sensitivity and specificity are evaluated at three different levels, i.e. patient, slice and 

nodule levels. A quantification of the limitations of the predicted model in the cancer 

identification is evaluated. The statistical analysis of the accuracy in predicting the 

nodule(s) location and suspicious area(s) is carried out. The conclusions suggest a 

promising sensitivity and specificity of the predicted model at the patient and slice scale. 

However, it is still challenging detecting cancerous nodule in the anterior surface of the 

prostate and when the tumor volume fraction is too small to have detectable influence in 

the stress field. This model will be further validated, and its capability explored in the 

next chapter using ex-vivo experimental data. 
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Chapter 7: Validation of Predictive Methods – Stage 2: Measurements on Ex-vivo 

Prostate  

In this chapter, the proposed model is assessed using ex-vivo experimental measurements, 

where a palpation device is deployed on the posterior surface of the prostate following 

the removal of the prostate in a radical proctectomy surgery. The proposed model is 

applied to the measurement data, specifically, to the peak of the force profile.  The results 

show that the proposed method is capable of predicting the presence and location of the 

cancerous nodules with promising accuracy. Similar levels of sensitivity and specificity 

are found, consistent with the results shown in Chapter 6. Therefore, the proposed model 

could be used as a computational tool for PCa identification and characterization, 

complementary to the iDRE measurements, with the ultimate aim of improving the 

diagnosis accuracy and may serve to decrease the number of unnecessary biopsies.  

Chapter 8: Looking back / working forward  

In this chapter, the main conclusions obtained in this thesis are summarized, and the 

contribution and impact of the research are highlighted. The limitations of the current 

work are also discussed. Furthermore, a research proposal is suggested as future work.  
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2.1    Summary 

Section title Objectives 

2.2 Microstructure 

heterogeneity in soft tissue 

Explore the variation in the microstructure of the 

biological soft tissues due to the presence of 

physiopathological conditions and how this 

influence their mechanical behaviour  

2.3 Mechanical characterization 

and modelling of soft tissue 

 

Review the material properties and the models 

exploited for characterizing the biological soft 

tissues particularly the hyperelastic theory and 

the prostatic tissue 

2.4 Tumour detection – current 

diagnostic techniques 

 

Survey of the diagnostic techniques exploited 

for detection of PCa and their limitations in PCa 

diagnosis  

2.5 Instrumented palpation– 

using elasticity as biomarker 

 

Illustrate the characteristics of the instrumented 

palpation devices and their advantages in the 

tumour detection using mechanical probing  

2.6 Computational framework 

for diagnosis purpose based on 

instrumented palpation  

Review the diagnostic frameworks developed in 

the literature for identifying and characterizing 

tumor nodule(s) in soft tissue based on 

palpation; their limitations in providing an 

accurate detection and diagnosis for the patients 

2.7 Concluding remarks Identify the challenges that this thesis will 

address  
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2.2    Microstructure heterogeneity in soft tissue  

All biological tissues have heterogeneous and hierarchical microstructures [22]. 

Moreover, the microscopic morphology of tissue can be varied by the presence of certain 

pathological conditions. As a result, their mechanical properties may change, across both 

spatial (nm ~ m) and temporal (seconds ~ years) length scales.  

There are numerous experimental evidence which emphasized how the mechanical 

properties of soft tissue, e.g. elasticity, can be varied due to the presence of, for example, 

solid tumour or other pathological conditions. In the breast tissue, when breast cancer 

occurs, there occurs solid lesions in the microstructure which are usually stiffer than the 

healthy counterpart [23], [24].In the recently published studies has been shown that these 

different elasticity moduli help differentiate between healthy, benign and malignant solid 

breast lesions [25], [26]. For the brain tissue, evidence has shown that the tissue 

morphology can be greatly affected by such conditions as multiple sclerosis [27]. 

Furthermore, Chauvet et al. have proven how elasticity can be exploited as a biomarker 

to distinguish between tumor and benign brain tissue [28]. In addition, the fibrosis, could 

vary the mechanical response of the liver. Physiologically, fibrosis acts to deposit 

connective tissue, which can interfere with or totally inhibit the normal architecture and 

function of the underlying organ or tissue [29]. Therefore, the diseases can be identified 

measuring the variation of the elasticity values [30]. For human artery, it has been shown 

that the mechanical properties and distensibility of the arteries can vary due to ageing as 

the vessel is affected by the decrease of elastin leading to a reduced load bearing capacity 

[31], [32]. Furthermore, the stiffness of the artery changes too due to pathological 

condition as the atherosclerosis [33]. The microstructure of the muscles presents (hyper)-

elastic components and Basford et al. [34]  described how the increasing of the stiffness 

in the muscles is caused by neuromuscular disease. Bensamoun et al. [35] described how 
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stiffness measurements can be an index for the characterization in the renal damage in 

order to detect malignant tumors.  

The thesis is focused mainly around the topic of detection and characterization of the 

prostatic tissue and PCa, which presents an excellent exemplar system for studying the 

tissue mechanics and its application in clinical cancer diagnosis. The mechanical 

properties could vary when a benign condition occurs, for instance an inflammation, 

calcification or when there is an enlargement of the prostatic tissue, benign condition 

called Benign Prostate Hyperplasia (BPH) [36], [37]. Moreover, the mechanical response 

could be significantly altered due to the presence of PCa. Fig. 1 compares two prostatic 

histological slices. In Fig. 1a the prostatic tissue is healthy so that a normal morphology 

is showed. There are visible gland units (characterized by lumens and epithelial cells) 

which are surrounding by the stroma. The lumens (or acini) are small, fluid-filled cavities 

surrounded by epithelial cells. There are approximately half a million acini in the prostate. 

The acini are lined by secretory epithelial cells. Each cell secretes a small amount of fluid 

which is about 20% of the ejaculatory volume. The prostatic stroma is composed of 

collagen fibres (type I), fibroblast and smooth muscle [38]. The size of the lumens for a 

healthy prostate can vary between 15000 and 18000 𝜇𝑚2 [39]. However, Fig. 1b shows 

a prostatic tissue with cancer as the lumens are smaller and distance between each other 

increased and replaced by the stroma tissue [38], [40]. The size of the lumens for tissues 

which show presence of PCa can drop to as low as 7000 𝜇𝑚2 [39]. In Fig. 1c is showed 

an example of PCa which is more aggressiveness of the one in Fig. 1b. In this case, the 

lumens been filled with cancer epithelial cells and the stroma almost disappears by the 

prostatic structure composition [41]. Clinically, PCa is classified using the Gleason Score 

system [42]. In the system, the tissue is classified into five grades, numbered 1 through 

5. Gleason grade characterizes tumor differentiation, i.e. the degree of tumor which 
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resembles to a normal tissue. Grade 1 corresponds to well-differentiation tissue, while 

grade 5 corresponds to poorly differentiated tissue and indicates a more aggressive cancer. 

In conclusion, when PCa occurs, there is a stroma reaction which causes an increasing of 

collagen deposition in the stroma surrounding the prostate. When the cancer becomes 

more aggressive, the epithelial cells replicate in an uncontrolled way so that the regular 

glandular structure no longer exist, replaced by a highly irregular structure with little sign 

of prostatic glands. More importantly, these morphology variations such as the decrease 

of the acini, replaced by the stroma and/or the cancer epithelial  cells at various cancer 

stages, may lead to increase in the prostate elasticity [39]. For instance, such changes in 

the acini size would influence the amount of fluid within the prostatic tissue. Therefore, 

the variation of the acini distribution, the amount and the size could be closely related to 

the variation of the mechanical properties. Palacio-Torralba and co-workers [43] 

quantified the relationship between tissue microstructure and its apparent mechanical 

properties. The stiffness values were higher for a cancerous tissue compared with the non-

cancerous tissue. As hypothesized, the acini area in the cancerous tissue is less, smaller 

and less recognisable compared with the non-cancerous tissue. Therefore, the mechanical 

properties of the prostate tissue may be exploited as a biomarker index to help identify 

the PCa nodules in the prostate. This will be further discussed below in the following 

sections.  
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Fig. 2-1. Histological prostatic slices with which describe the morphology variation in the 

microstructure due to the presence of cancer. The tissue samples were stained using H&E. The 

images were captured using a light microscope at 20x magnification. 1a) Healthy tissue 

characterized by normal gland units. 2b) Prostatic tissue characterized by the presence of PCa 

with Gleason grade 2. The lumens are smaller due to the increment of the stroma tissue. 2c) PCa 

with Gleason score 5 where the normal arrangements of the gland units are lost due to an 

increment of the cancer cells density [44]. 

 

2.3    Soft tissue mechanical characterization and modelling 

The knowledge of mechanical behaviour of biological tissues have been utilised in 

clinical practice for many purposes, including surgical planning, design and optimization 

of prothesis implant or a point-of-care medical devices, and diagnostic methods for 

tissues such as prostate [45]–[48]. However, the biological tissues are non-linear, 

heterogeneous, anisotropic, time-dependent materials and the characterization of their 

mechanical behaviour is not a trivial task.  
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2.3.1    Non-linearity of the biological tissue under large displacement 

Significant experimental results showed that the elasticity alone is not adequate to fit the 

stress-strain relationship obtained testing mechanically a biological tissue. In order to 

characterise the non-linear response of the tissue, as illustrated in Fig. 2, particularly the 

responses under large strain deformation, the theory of the nonlinear elasticity was 

developed. The pioneers of such theories include Fung, Veronda and Westmann  [49], 

[50], who demonstrated the theoretical basis for characterizing the non-linear elasticity in 

elastomers, which show similar characteristics with the biological tissue. Their theories 

were later used in the applications of soft tissue mechanics [51]. Such nonlinear 

behaviour, often referred to as ‘hyper-elasticity’, is commonly seen in most soft tissues 

such as prostate, breast and liver [52]. 

 

 

Fig. 2-2. Mechanical behaviour of the cartilage solid matrix undergoing to uniaxial test. The stress 

and strain values show a non-linear elastic response which is determined by the amount of solid 

matrix and crimp of collagen in the matrix1. 

                                                           
1 http://sites.bsyse.wsu.edu/pitts/be120/Handouts/animal%20tssue%20descriptions%20and%20mechanical%20proprties.htm 
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2.3.2    Strain energy functions for hyperelastic materials 

Hyperelastic materials rely on strain energy functions (𝑈 ) of the deviatoric strain 

invariants 𝐼1̅, 𝐼2̅ 𝑎𝑛𝑑 𝐼3̅  as described below  

𝐼1̅ = 𝑡𝑟(𝑩) =  𝜆̅1
2 + 𝜆̅2

2  +  𝜆̅3
2                                                                                                              (2.1)                      

𝐼2̅ = 
1

2
 (𝐼2̅

1 − 𝑡𝑟(𝑩2)) =  𝜆̅1
2𝜆̅2

2  +  𝜆̅1
2𝜆̅3

2  +   𝜆̅2
2𝜆̅3

2                                                                   (2.2)                                                                                                     

𝐼3̅ = det(𝑩) =  𝜆̅1
2 𝜆̅2

2 𝜆̅3
2                                                                                                          (2.3)                                                                                                                

𝑩 = 𝑭 ∙  𝑭𝑇                                                                                                                      (2.4) 

where 𝜆𝑖 are the principal stretches, 𝐵 is the left Cauchy-Green deformation tensor and 𝐹 

is the deformation gradient. 

Assuming an isotropic, homogenous and hyperelastic material [53], the constitutive 

equation, for finite strain, is defined as follows 

𝜎 =  
2 

𝐼3̅
 [ (

𝜕𝑈

𝜕𝐼1̅
 +  𝐼1̅  

𝜕𝑈

𝜕𝐼2̅
)  𝑩 − 

𝜕𝑈

𝜕𝐼2̅
 𝑩 ∙ 𝑩 − 𝐼3̅  

𝜕𝑈

𝜕𝐼3
 𝐼]                                                     (2-5)                      

where 𝜎 is the Cauchy stress tensor and 𝐼 is the identity matrix. A range of strain energy 

models have been developed with the aim of characterizing the hyperelasticity of 

biological soft tissue and they will be briefly introduced below.  

• The neo-Hookean model [54] can predict the mechanical behaviour of material 

such as plastics and rubber-like substances, which show a non-linear stress-strain 

behaviour undergoing large deformations. However, the model only shows high 

accuracy for predicting the increase in the modulus of the material within a strain 

less than 20%. Furthermore, the method shows poor accuracy in predicting the 

mechanical behaviour of hyperelastic materials undergoing biaxial stress of states.  
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𝑈 = 𝐶1(𝐼1̅ − 3) +
1

𝐷1
 (𝐽 − 1)2                                                                                       (2.6) 

where  𝐶1 represents the hyperelastic parameter of interest, 𝐽 is the total volume ratio, and 

𝐷1 is a compressibility coefficient. 

𝐼1̅ = 𝐽−
2

3 𝐼1 ,    𝐶1 =  
𝜇0

2
  ,      𝐷1 = 

2

𝐾0
                                                                                       (2.7) 

where 𝐼1 is the first strain invariant of the left Cauchy-Green deformation tensor, 𝜇0 is the 

initial shear modulus and 𝐾0 is the initial bulk modulus. For incompressible materials the 

function is dependent by only the hyperelastic parameters.  

• The Mooney-Rivlin [55], [56] model shows high accuracy in predicting the 

nonlinear behaviour of isotropic rubber-like material. The model can predict the 

non-linear behaviour for deformations which are higher in comparison with the 

limits mentioned for the neo-Hookean model. Furthermore, the strain energy 

function contains a second invariant which guarantees an improvement in the 

prediction of the mechanical behaviour for material undergoing biaxial and shear 

stress of states.   

𝑈 =
𝐶1

2
(𝐼1̅ − 3) + 

𝐶2

2
 (𝐼2̅ − 3) + 

1

𝐷1
 (𝐽 − 1)2                                                                 (2.8) 

𝐼2̅ = 𝐽−
4

5 𝐼2 ,    𝐶1 + 𝐶2 = 𝜇0                                                                                            (2.9) 

where 𝐼2 is the second strain invariant of the left Cauchy-Green deformation tensor, 𝐶1 

and 𝐶2 are the material constants. 

• The Ogden model [57] is used to describe the non-linear stress-strain behaviour 

of complex materials such as rubbers, polymers and biological tissues. From 

experiments, to model rubber at strain which is higher 70%, the Ogden model 

shows a good accuracy in predicting the non-linearity of the material in a higher 
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strain range in comparison with the accuracy achieved using the neo-Hookean and 

Mooney-Rivlin models. In the Ogden material model, the strain energy density is 

expressed in terms of the principal stretches. 

𝑈 = ∑
2𝜇𝑖

𝛼𝑖
2

𝑁
𝑖=1  (𝜆̅1

𝛼𝑖 + 𝜆̅2
𝛼𝑖 + 𝜆̅3

𝛼𝑖 − 3) + ∑
1

𝐷𝑖

𝑁
𝑖=1  (𝐽 − 1)2𝑖                                       (2-10) 

2𝜇 =  ∑ 𝜇𝑖
𝑁
1 𝛼𝑖                                                                                                                 (2.11) 

where 𝑁, 𝜇 and α are material constants. 

• The Arruda-Boyce model [58] is based on the statistical mechanics of a material 

characterized by a representative network structure. The primary element of the 

network is a unit cell containing eight chains. The chains are located along the 

diagonals of the cell. The eight chains model accurately captures the cooperative 

nature of the network deformation of a soft material. For an incompressible 

material the strain energy function of the Arruda-Boyce model assumes the 

following expression 

𝑈 =  𝑁𝑘𝐵𝜃√𝑛  [𝛽𝜆𝑐ℎ𝑎𝑖𝑛 − √𝑛  𝑙𝑛 (
sinh𝛽

𝛽
)]                                                              (2-12) 

where 𝑛  is the number of chain segments, 𝑘𝐵  is the Boltzmann constant, 𝜃  is the 

temperature in kelvins, 𝑁  is the number of chains in the network of a cross-linked 

polymer. 

 𝜆𝑐ℎ𝑎𝑖𝑛 = √
𝐼1

3
 ,    𝛽 =  ℒ−1  (

𝜆𝑐ℎ𝑎𝑖𝑛

√𝑛
)                                                                                (2.13) 

where ℒ−1 in the inverse Langevin function which can be approximated by 

ℒ−1 (𝑥) {
   1.31 tan(1.59𝑥) + 0.91𝑥     𝑓𝑜𝑟 |𝑥|  < 0.841                                          

1

𝑠𝑔𝑛(𝑥)−𝑥
                           𝑓𝑜𝑟 0.841 ≤ 𝑥 < 1                                

   (2.14) 
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For further details of the formulation and application of the mentioned hyperelastic 

models see Millard [59], Boyce [60], Ali [52], Beda [61], Bergström [58] and co-workers. 

2.3.3    Mechanical behaviour of prostatic tissue 

In the literature, there are studies which have attempted to characterize the material 

properties of the prostatic tissue and quantitatively classify the statistical variations 

between different tissue conditions with the aim of distinguish between normal and 

pathological conditions. However, it is worth pointing out that the mechanical parameters 

can vary, sometimes greatly, based on the mechanical test performed, boundary 

conditions, tissue size and the source of the tissue samples etc, and these factors will be 

reviewed and discussed below.  

Carson et al.  [62] performed mechanical characterisation for 26 prostate specimens 

obtained by prostatectomy and 6 specimens from autopsy. The system included a 

spherical indenter (whose tip is 12 mm in diameter) which can load up to 30% of the 

prostatic tissue thickness with an indentation velocity of 1mm/s. The force-displacement 

data were recorded and the Oliver–Pharr method was exploited for estimating the elastic 

moduli of the cancerous and healthy regions of the prostate. The force-displacement 

curves showed the nonlinear response of the prostatic tissue under large deformation. 

More importantly, this study suggested a significant difference between the Young’s 

modulus of cancerous tissue compared with the healthy - the stiffness increased with the 

pathological stage of the cancer (T2 and T3). Details of the pathological stage of PCa will 

be provided later. Furthermore, a large variability in the Young’s modulus between the 

samples can be found, which indicated a high degree of heterogeneity in both cancer and 

healthy tissues. Ahn et al.  [63] developed an indentation device which was exploited for 

measuring the elastic moduli of the prostatic regions which showed the presence/absence 
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of cancer. The samples were obtained from 46 patients who underwent prostatectomy. A 

total of 552 sites were probed with an indentation depth of 3 mm and a velocity of 1mm/s. 

The elastic moduli were estimated by the force values and the Hertz-Sneddon equation. 

The results again showed the Young’s modulus variation between cancerous and healthy 

regions. Furthermore, the modulus was higher for cancer with Gleason score 8 and with 

a volume greater than 5 mm3.  

Dynamic indentation tests were also performed with the aim of improve the mechanical 

characterization of the prostatic tissue. Krouskop et al. [64] evaluated the mechanical 

response of a prostate specimen when a compression loading was applied. The indenter 

size was 4.83mm, the pre-compression of 2 and 4% with excitation frequency of 0.1-4Hz. 

The results suggested a non-significant variation between the Young’s modulus of the 

anterior and posterior parts of the prostate. However, once again, the cancerous regions 

have higher Young’s modulus compared with the healthy. The BPH regions are softer 

comparing with the normal tissue. Phipps et al. [39] also proved the variation of the 

mechanical properties between healthy and cancerous prostatic tissues and a correlation 

with the tissue morphology. The tissues evaluated in the study were collected from 22 

patients who underwent transrectal resection of the prostate (TRUS). Individual TRUS 

chipping were analysed performing dynamic measurements with excitation frequencies 

ranging between 5-10Hz. The mechanical test allowed the measurements of the dynamic 

modulus, which is defined by the amplitude ratio and the phase difference. The results 

showed a slight variation of the amplitude ratio for cancerous samples compared with 

healthy. Hoyt et al. [65] claimed the stiffness ratio between cancerous and healthy 

prostatic tissue to be 2.5. A stress relaxation test was performed in 8 prostates and the 

data were fitted using a viscoelastic tissue model method, Kelvin–Voigt fractional 

derivative (KVFD). The frequency range was between 0.1 and 250Hz and the results 
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showed an increasing Young’s modulus between cancerous and healthy tissues with 

respect to increasing frequency values. Zhang et al. [66] performed a stress relaxation test 

in 17 cylindrical samples, which underwent a compression rate and strain value of 5mm/s 

and 5%, respectively. The relaxation data were fitted using KVFD method. The statistical 

analysis of the results showed a significant difference in the Young’s moduli between 

cancerous and healthy prostatic tissues. Hammer [19] at al. developed a deployable 

palpation device which is able to distinguish between cancerous and healthy prostatic 

tissues performing a dynamic palpation with the aim of measuring the quasi-static and 

dynamic modulus values. The mechanical measurements were performed using multiple 

indentation depths and a frequency of 1 and 5Hz. The probe has a size of 6 mm and the 

distance between the indentation points was set up at 6 mm for avoid overlapping in the 

measurements. The number of whole ex-vivo prostates and indentation points assessed in 

the experiment were 11 and 359, respectively. 

In conclusion, the mechanical properties of the prostatic tissue could vary with the 

presence of cancer. Furthermore, the stage and aggressiveness of the disease also 

influence the mechanical response. In Table 2-1 summarises those studies mentioned 

above and the elasticity values measured for healthy, BPH and PCa tissues. The 

quantification of the material properties promotes the development of diagnostic tools, 

which are based on the tissue elasticity, for distinguishing cancerous and healthy prostate 

tissues. 
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Table 2-1. Summary of the studies which measured the prostatic tissue stiffness characterized by 

diverse physiopathological conditions [6].  

Authors Yea

r 

Ex/in 

vivo 

Study design Patient/Specime

n number 

Mechanical 

properties 

Carson et al. 

[62] 

2010 Ex vivo Spherical indentation 

device (12 mm 

diameter tip), 

indentation of 30% 

depth and 0.1mm/s 

velocity 

23 prostatectomy 

specimens,  

6 autopsies 

Young’s 

modulus (kPa) 

 

Normal 41.1 

BPH 36.8  

PCa 135 

PCa(T2) 30.09 

PCa(T3) 71.0 

 

Ahn et al. [63] 2010 Ex vivo Indentation device, 

3mm and 1mm/s 

indentation depth and 

velocity 

46 prostatectomy 

specimens 

Young’s 

modulus (kPa) 

 

Normal 17±9 

PCa 24±14.5 

 

Krouskopet 

al. [64] 

1998 Ex vivo Indenter method, pre-

compression 2-4%, 

excitation 0.1-4Hz  

1 prostate 

specimen  

Young’s 

modulus (kPa) 

 

Normal 55-71 

BPH 36-41 

PCa 96-241 

 

Phipps et al. 

[39] 

2005 In vitro TURP chipping 

specimens 

83 samples from 

22 patients 

Dynamic 

modulus (kPa) 

 

BPH 100  

PCa 118 

 

Hoyt et al. 

[65] 

2008 In vitro Mechanical testing 

device, excitation 

frequency 0.1-250Hz, 

5% pre-compression 

8 prostate 

specimens,  

17 cylinders 

samples 

Young’s 

modulus (kPa) 

 

Normal 3.8-25 

PCa 7.8-40.6 

(frequency 

dependent) 

 

Zhang et al. 

[66] 

2008 In vitro 5% pre-compression, 

150Hz excitation 

frequency 

8 proctectomy 

prostate 

(posterior 

region), 17 

cylinders 

samples  

Young’s 

modulus (kPa) 

 

Normal 

15.9±5.9  

PCa 40±15.7 

Hammer et al. 

[19] 

2017 Ex vivo Sinusoidal indentation, 

frequency of 

oscillation 1 and 5Hz, 

indentation depth 3, 5 

and 8mm  

11 prostate 

specimens 

Dynamic 

modulus (kPa) 

 

Normal 

14.2±0.2 

PCa 14.4±0.2 
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2.4    PCa – current diagnostic techniques  

The current screening protocols for PCa include techniques such as medical imaging, 

blood test and biopsy. However, the protocol is not optimized and consistent between 

healthcare sectors, and is severely limited by the funding, equipment and practitioners 

available. Typically, the screening procedures for PCa diagnosis include Prostate Specific 

Antigen (PSA) blood test, Digital Rectal Examination (DRE), Magnetic Resonance 

Imaging (MRI) and biopsy. This section will review the current diagnostic framework for 

PCa, with a focus on mechanics-related techniques that are relevant to this thesis work. 

2.4.1    Prostate – Anatomical Structure 

The classical description of a healthy human prostate portrays it as slightly larger than a 

walnut. The mean weight of the normal prostate in adult males is about 11 grams, usually 

ranging between 7 and 16 grams [67]. The prostate resides in the male pelvic cavity which 

contains the end part of the large intestine, the urinary bladder, the seminal vesicles and 

the pelvic bone plus some other minor structures (Fig. 2-3).  

Traditionally, the prostate is divided into anatomical lobes (anterior, posterior, right and 

left laterals and median) by the urethra, which runs through the centre of the prostate. 

However, more important clinically is the histological division of the prostate into three 

zones: 

Central zone (CZ) – surrounds the ejaculatory ducts, comprising approximately 25% of 

normal prostate volume. 

Transitional zone (TZ) – located centrally and surrounds the urethra, comprising 

approximately 5-10% of normal prostate volume. The glands of the transitional zone are 

those that typically undergo benign hyperplasia (BPH).  
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Peripheral zone (PZ) – makes up the main body of the gland (approximately 65%) and is 

located posteriorly. The compartment shows a high incidence of acute and chronic 

inflammation which may link to the high incidence of prostate carcinoma at the peripheral 

zone. The peripheral zone is mainly the area felt against the rectum on digital rectal 

examination. 

 

  

Fig. 2-3. The image illustrates organs which surrounding the prostate and the histological 

division which are important clinically (3D posterolateral view) [68].  

 

2.4.2    Blood Test 

A significant improvement in the detection and decreasing in the deaths due to prostate 

cancer has been made in the last years. The major reason has to be found in the 

introduction, in the screening protocol, of the PSA blood test. The prostate specific 

antigen (PSA) is a not invasive test and inexpensive which is applied to large scale of 

patients [69]. Therefore, the clinician often is guided by the PSA results at the first 

instance to decide if further investigations are needed. The test expects measuring the 

amount of PSA in the blood. PSA is a protein produced by normal cells in the prostate 
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and also by prostate cancer cells. It is normal to have a small amount of PSA in the blood; 

however, a raised PSA level may suggest a problem with the prostate, but not necessarily 

cancer. Therefore, The PSA presents a low specificity which will lead to misdiagnosis 

due to the detection of false positive [8]. The major causes for false positive detection 

using PSA test are the presence in the prostatic tissue of calcifications, inflammations and 

BPH. These symptoms can increase the value in the blood of the PSA protein which is 

released generally in more quantities when there is the presence of cancer [7]. The 

chances of showing these symptoms also increase significantly with the age of the patients 

[70]. The PSA is a protein which can have two basic states, it might be bound to another 

protein or float freely. Besides, the quantification of the free percentage of PSA might 

increase the specificity for prostate cancer detection [71].  

2.4.3    Digital Rectal Examination (DRE) 

In clinical practice, the elasticity as a biomarker can be defined as an old method as the 

DRE performed by the practitioners to detect PCa since decades ago. The DRE consists 

of palpating the tissue with the aim of identifying abnormalities and stiff nodules in the 

prostatic tissue which could be the signs of PCa [9]. As mentioned above, the cancerous 

tissue becomes stiffer than the surrounding healthy due to a variation in the morphology. 

The DRE shows many advantages such as the less-invasive nature of the procedure, 

painlessness, ease to perform and less cost compared to other early diagnosis methods. 

However, it has limitations such as the lack of quantitative assessment of the tissue quality 

and the subjectivity in the diagnosis [12]. Therefore, novel mechanical palpation devices 

have been developed with the aim of overcoming the limitations of the DRE. Details of 

the devices and their performance in overcoming the DRE limitations for PCa detection 

using elasticity as biomarker will be discussed later. 
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2.4.4    Medical Imaging - Magnetic Resonance  

MRI is a medical imaging technique used in radiology to form pictures of the anatomy 

and the physiological processes of the body in both health and disease. It is frequently 

used for PCa diagnosis, capable of initial detection, treatment planning and follow-up. 

MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to 

generate images of the organs in the body. MRI does not involve X-rays or the use of 

ionizing radiation, which distinguishes it from computerised tomography (CT) and 

positron emission tomography (PET) scans. Moreover, MRI has a limitation in detection 

tumor nodules of < 10mm and in classifying cancerous regions from benign conditions 

such as BPH. Therefore, the diagnostic technique is limited in assessing the cancer 

volume fraction.  

Recently, interested results and improvements in the early detection and characterization 

of prostate cancer, especially of high-grade tumors, has been made with the developing 

of multiparametric MRI (mpMRI) [72], [73]. mpMRI combining the morphological 

assessment, which is obtained by performing a MRI, with diffusion-weighted imaging 

(DWI) [74] and dynamic contrast-enhanced (DCE) perfusion imaging [75]. This novel 

diagnostic method could help in identifying where the cancer is in the prostate and 

reducing the number of men without cancer having a biopsy. The technique showed 

promising for biopsy decision for men referred with high PSA level (Fig. 2-4). However, 

the technique remains challenging both in the acquisition of images and in their 

interpretation. 
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Fig. 2-4. mpMRI for prostate cancer detection.  5a) dynamic contrast enhancement colour map 

which allows the identification of the tumor nodule as it shows higher perfusion of the contrast 

compared with the surrounding. 5b) The T2-weighted  image [76] which allows the classification 

of the tumor nodule from the normal tissue based on the diverse tissue structure morphology. 5c) 

The Diffusion-weighted image which shows the rate of water diffusion in the tissue2. 

 

 

A diagnostic technique generally used by the clinicians for PCa detection is the Magnetic 

Resonance Elastography (MRE). The MRE is a non-invasive technique which can map 

and calculate the shear modulus of the prostatic tissue based on inducing shear waves 

through the prostate and imaging their propagation using MRI. The shear waves are 

produced by a manual exciter which can ‘palpate’ the prostatic tissue [77]. The main idea 

is that whether the tissue is hard or soft will give diagnostic information about the 

presence or status of disease. As mentioned, tumor nodules will often be harder than the 

surrounding tissue. The major limitations are the high Signal-to-noise ratio (SNR) due to 

the MR signal a 1.5 T  (the scanner of the MR system generates a magnetic field which 

is quantified in Tesla (T) [76]) and the shear wave might not have enough amplitude to 

propagate deeper through the prostatic tissue when their values are within the non-

dangerous range [78]–[80].  

                                                           
2 http://sites.bsyse.wsu.edu/pitts/be120/Handouts/animal%20tssue%20descriptions%20and%20mechanical%20proprties.htm 
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2.4.5    Medical Imaging - Ultrasound  

The PCa detection using ultrasound (US) is performed via the transrectal route (TRUS) 

[81]. A small device called an ultrasound probe is used for generating high-frequency 

sound waves. When sound waves bounce off the prostatic tissue, they create "echoes" 

which are picked up by the probe and turned into an image. The stiffer areas in prostate 

due to the presence of cancer cause a decreasing in the property of reflective index which 

leads to the hypoechoic areas visible in a US scan [15], as illustrated in Fig. 2-5. The 

method is not invasive, provides to the clinicians a quantitative diagnosis measuring the 

stiffness of the soft tissue, does not expose the patients to ionizing radiation, is less 

expensive than other techniques such as MRI, mpMRI and MRE. However, the US has 

been found to have low sensitivity and specificity as the cancerous lesions can appear 

isoechoic and hyperechoic [17], [82].  

 

 

Fig. 2-5. Prostatic tissue characterized by the presence of a tumor nodule which is detectable 

using Ultrasound image as it shows a hypoechoic area3. 

 

                                                           
3 https://www.sonoslinks.com/service/prostaterectal-ultrasound 
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Based on US technique, the Sonoelastography can map the stiffness of the prostate based 

on a US image captured before and after the application of a compression [83], [84]. The 

major limitation of the Sonoelastography is the high rate of false positive due to the 

presence of BPH in the prostatic tissue [85]. The manual compression and uncompressing 

of the soft tissue can produce variability and poor reproducible analysis [86]. In addition, 

the colour map obtained performing the Sonoelastography lack of an objective 

assessment [66]. The cancerous and healthy tissues show a high grade of heterogeneity 

intra- and inter-patient which cause an ambiguity in stiffness values observed. The 

clinician might deal with tissues which are healthy and cancerous, however, they may 

show same stiffness values. Another technique based on Elastrography is the Crawling 

Wave Sonoelastography. In this case, the waves are obtained by mechanical vibrations 

from two different sources at two distinct frequencies [87], [88]. This technique allows 

the real-time visualization of the prostate stiffness map, as shown in Fig. 2-6). However, 

the technique is less capable of detecting small tumor nodules and are prone to issues 

such as the influence of the stiffness ratio between the cancerous and healthy regions, the 

false positive due to the BPH, calcifications and image artefacts [89], [90].   
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Fig. 2-6. Prostate with a tumor nodule located in the anterior right base. The Sonoelastography 

shows higher stiffness values in the region where there is the presence of the tumor (a), instead, 

a ‘normal’ stiffness distribution on the left side of the prostate (b) [16].  

 

 

In conclusion, the medical imaging diagnostic techniques present important limitations in 

the PCa identification, in particular, in detecting small tumor nodules, and can also be 

significantly influenced by the stiffness ratio between healthy and cancerous tissues 

which are unknown at the point of diagnosis. They are also prone to such issues as the 

high probability of false positive due to calcification, inflammation and presence of BPH 

nodules into prostate. The artefacts in the stiffness map images due to the noise in the 

input signals and the uncontrolled manual mechanical generation of the waves. More 

importantly, the lack of objectivity in the assessment of the imaging for a quantitative 

diagnosis. These reasons and the expensive nature of the machines leads to a variability 

and poor reproducible analysis of detecting PCa using diagnostic techniques based on 

medical imaging.  

2.4.6    Biopsy  

Biopsy is a procedure which allows the examination of the sample tissue morphologies. 

The procedure has been improved as the tissues were taken using a needle which was 

guided just by the surgeon’s experience in recognize the anatomy of the patients [91]. 
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Nowadays, the procedure is performed using Ultrasound (TRUS) and sextant approach 

to guide the clinicians in the identification of the suspicious areas useful for the tissue 

quality assessment. The samples are examined using histological techniques. The 

procedure is repeated 10-12 times (up to 20) in diverse locations of the prostate [92]. 

However, the successful detection rate for the biopsy procedure is only 20% even with an 

increase of the samples which can lead to an improvement in the accuracy procedure [93]. 

The motivations can be found in the PSA low specificity and in the lack of a diagnostic 

tools which can distinguish between ‘not significant’ and ‘significant’ tumor nodules. 

Furthermore, there are false positive in the biopsy outcomes as the knowledge a priori of 

the locations for the suspicious areas is still challenging even with the Ultrasound image 

[94] (Fig. 2-7). Moreover, the biopsy is an invasive technique which can cause pain and 

discomfort for the patient and the chance of side-effects as rectal bleeding, haematuria 

and acute urinary retention [95]. 

 

 

Fig. 2-7. Illustration of the biopsy procedure possible issues which can cause a false positive and 

provide a mistaken grade for the cancer aggressiveness4.  

 

 

                                                           
4 https://partnersprostate.com/prostate-biops 
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2.4.7 How to stage Prostate Cancer 

The diagnostic techniques for detecting PCa described previously can be exploited by the 

clinicians for assessing the cancer stage.  

There are 2 types of staging for prostate cancer5 : 

• Clinical staging. This is based on the results of DRE, PSA testing, medical 

imaging and Gleason score 

• Pathologic staging. This is based on the histopathological examination of the 

prostatic tissues obtained after removing the entire prostate and some lymph nodes 

using laparoscopy surgery.  

In clinics the TNM system is used for describing the cancer stage. The clinicians could 

provide the details of where the cancer is located, if it has spread and if it affects other 

parts of the body. Using the TNM system, the ‘’T’’ plus a letter or number (0 to 4) is used 

to describe the size and location of the tumor. The ‘’N’’ stands for lymph nodes and the 

‘’M’’ indicates whether the prostate cancer has spread to other parts of the body. 

Specific tumor stage information is listed below 

• T0: there is no evidence of a tumor in the prostate.  

• T1: the tumor cannot be felt during a DRE and is not seen during imaging tests.  

• T2: the tumor is found only in the prostate, not other parts of the body. It is large 

enough to be felt during a DRE  

• T3: the tumor has grown through the prostate 

• T4: the tumor is growing through the prostate and into nearby structures other 

such as, the rectum, the bladder or the pelvic wall.  

                                                           
5  https://www.cancer.net/cancer-types/prostate-cancer/stages-and-grades 

https://www.cancer.net/cancer-types/prostate-cancer/stages-and-grades
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2.5    Mechanical palpation device – elasticity as biomarker 

The elasticity as biomarker, for classifying cancerous tissue from healthy ones, has been 

proved to be a candidate for overcoming the shortcomings in the existing PCa diagnostic 

framework [96].  

In literature, there have been devices developed with the aim of detecting solid tumour in 

soft tissue based on instrumented palpation. Hammer and co-workers [19] developed a 

device, as shown in Fig. 2-8, capable of detecting the appearance of PCa, complementary 

to the existing DRE procedure. The device has been validated using ex-vivo 

measurements. The device is also deployable so that in-vivo assessments can be 

performed. In addition, Robotic devices were developed by Ahn [97] and Li [98] 

However, the dimensions and palpation procedure reduce drastically the in-vivo 

performance of these devices (Figs. 2-9 and 2-10). The devices aimed to maintain the 

advantages of the DRE and overcome its limitations. Therefore, they need to reduce the 

time and cost of the procedure, discomfort for the patient, avoiding any damage to the 

prostate and organs which surrounding it due to deep palpation and find a robust contact 

detection for improving the sensitivity of the procedure. The mechanical palpation for 

diagnosis purpose can be performed for identifying presence of cancer in other biological 

tissues. The localization of tumor nodule(s) in liver and lung can be performed using 

tactile sensors during minimally invasive surgery (MIS) [99]. In minimally invasive 

approaches, small incisions are made on the body and tissue damage is much less than 

that of the invasive method (Fig. 2-11). In the cited papers, the diagnosis is obtained with 

the assessment of elastic and viscoelastic parameters which are subjected to variation 

when the three is presence of cancerous tissues in the organ under investigation. 
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Fig. 2-8. Deployable palpation device which is able to distinguish between cancerous and healthy 

prostatic tissues based on dynamic palpation [19]. 

 

 

Fig. 2-9. Mechanical palpation device which provides a classification between cancerous and 

healthy prostatic tissue based on force feedback values obtained performing a rolling indentation 

[98]. 
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Fig. 2-10. Robot system for prostate cancer detection. The robot performs a sweeping palpation 

in the prostatic tissue and based on the characterization of the tissue mechanical response is able 

to identify the presence of a tumor nodule. The system has a biopsy module which allows the 

taking of a tissue sample along the direction of the detected tumor nodule [97].  

 

 

Fig. 2-11. Tissue palpation procedure during MIS exploiting a wireless probe for identifying 

abnormalities in the soft tissue [99].  

 

2.6    Computational and numerical methods for tumour detection 

The palpation devices can provide a quantitative assessment of the tissue quality [100]. 

However, the accuracy of the palpation procedure can be strongly influenced by the 
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heterogeneity of the cancer and inter-patient variations [20], [101]. Furthermore, the 

characteristics of the indenting/probing procedures can cause variation in the sensitivity 

[102]. Therefore, computational diagnostic frameworks were necessary in order to make 

sense of the data acquired from the instrumented palpation [103], [104]. 

2.6.1    Inverse analysis - mechanical characterization of biological soft tissue 

The palpation device allows the measurement of mechanical behaviour of soft tissue, such 

as elastic response, by probing the tissue sample. In the case of indentation, the 

measurements can be characterised by fitting the force-displacement data with a suitable 

model, such as the Hertz-Sneddon [105]. However, most existing analytical models are 

based on many hypotheses and assumptions including a flat surface of the sample, a 

frictionless contact between the indenter and sample, infinite sample thickness and 

elasticity properties of tissue [21], which may not readily available at the point of analysis 

Therefore, various inverse methods have been developed in order to overcome such 

limitations. In most cases, finite element method is employed and integrated in the inverse 

methods. Such inverse FE approaches are often capable of modelling more realistic 

interaction between indenter and sample, more accurate non-linear mechanical response 

of the soft tissue even for complex geometry and boundary conditions. The strategy of 

such inverse methods is usually to employ an optimisation algorithm and drive a set of 

unknown parameters iteratively so that the modelled scenarios match closely to the 

experimental measurements. The following section will review studies in literature that 

proposed and employed inverse methods for the purpose of tissue characterisation and 

nodule identification.  

Mechanical indentation ex-vivo and inverse analysis were performed to characterize the 

mechanical properties of animal biological tissue as liver, lung and cornea [53], [106], 
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[107]. Martinez and co-workers [108] developed an inverse optimization procedure to 

assess the mechanical properties of human liver ex-vivo. The procedure aimed to 

iteratively minimize an error function formulated by the comparison of two 3D images. 

One was obtained from CT of the liver and it represented the reference, whilst the other 

one was from the results of the FE simulation. The material parameters are obtained when 

their variation led to a ‘matching’ between two models. Moreover, material properties of 

soft tissues change in time and the results obtained from ex-vivo measurements can be 

misleading. Dead organ and muscle tissues typically become stiffer [109]. Therefore, 

attempts at measuring the material properties in-vivo were preferred. Samur [110] and 

Kim [111] developed a robot indenter and force transducer to measure and record the 

mechanical output which were coupled with inverse FE model to characterize the 

mechanical properties of porcine liver and kidney. The inverse FE model expects 

iteratively compared the relaxation response of the soft tissue to an equivalent FE model, 

until the error function was minimized and the material properties were estimated. Kauer 

[112] and Nava [113] used the same mathematical and numerical tools but conducted 

experiments using a hand-held device to collect the experimental data to study the 

mechanical behaviours of human uteri and liver. 

The mechanical response of the tissue can also vary when certain pathological conditions 

appear. Specifically, an inverse method can be formulated to determine the unknown 

material properties of the tumor nodule from the measured response. Mousavi and co-

workers [114] developed a framework that relies on prostate TRUS or MRI image is 

capable of identifying the presence of hardness, a sign of pathological condition, in 

phantom systems which mimic the mechanical behaviours of a prostate. Samani [115], 

[116] developed a diagnostic framework to assess the breast tissue quality. The 

experimental measurements were performed by indenting the tissue samples. In both 
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studies, the mechanical properties are estimated using an inverse procedure based on the 

segmentation of the inclusion. The inverse procedure iteratively minimized an error 

function which is defined by the elastic response of the breast sample obtained by 

indenting the soft tissue and simulating the procedure using an equivalent FE model. The 

stiffness of the cancerous and healthy regions was obtained when the difference in the 

experimental and simulated force values was less than a threshold. Moreover, the 

accuracy of the method depends on the quality of the medical imaging and image 

segmentation methods, especially outlining the tumour boundary. Kim [21] and Ahn 

[117] used a mechanical palpation device to investigate the presence of cancer nodule in 

prostate and in a phantom with similar mechanical properties. The experimental ex-vivo 

measurements are coupled with inverse FE models which guarantee the quantitative 

identification of the cancer nodule in the tissue. The inverse FE model was optimised 

toward the target, in this case, the stiffness of the tumor nodule, following the same 

strategy mentioned earlier, using the comparison between experimental and simulated 

force response when an indentation procedure was performed. However, in the last two 

studies, to evaluate the relative change of the stiffness, the diagnostic framework requires 

geometry and volume of the normal and tumor nodule and their elastic properties, which 

would limit their applicability in clinical applications. An inverse FE method which 

utilised data from rolling indentation probe to evaluate the mechanical properties of 

healthy and diseased tissue has been developed [118], [119]. This method allowed 

estimating ex-vivo the cancer nodule’s depth, however, it is necessary to know a priori 

the force feedback of the healthy tissue, which is almost impossible to obtain since 

pathological condition of the tissue is unknown.  

In conclusion, the inverse FE methods, coupled with mechanical measurements, have the 

potential to predict the presence/absence of tumor nodule in soft tissue and its mechanical 
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parameters.  However, most methods require certain information that is hard to obtain for 

clinical applications, therefore their potential use can be limited.  

 

Fig. 2-12. Flowchart of the inverse analysis procedure for estimating the elastic parameters of 

human liver (top figure) [108] and surface deformation and force response of porcine livers 

(bottom figure) [120].  
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2.6.2    Force feedback - identification of tumor nodule  

Ahn [96] and Jalkane [121] validated the strategy of distinguishing cancerous tissue from 

its healthy background based on the variation of reaction force values after performing a 

static or dynamic indentation. In particular, the presence of cancer leads to an increase in 

the reaction force. In addition, the force feedback has been validated as an index to 

identify the presence of stiffer inclusions embedded into ex-vivo animal tissues as 

porcine, bovine and lamb kidney [122]–[124]. However, the force feedback 

measurements are heavily influenced by the tumor nodule depth, size and the stiffness 

ratio between healthy and cancerous tissue [125]. For example, Ahn [117] measured the 

force feedback values performing a sweeping palpation using a phantom with a stiffer 

inclusion. The outcome confirms the significant influence of the nodule depth in the 

reaction force values.  

Some interesting studies utilised the ‘mechanical imaging’ of soft tissue obtained from 

tactile sensing array, instead of using a rigid probe. These devices are able to produce a 

fine measurement of the pressure distribution of the soft tissue palpated [126], [127]. The 

pressure distribution usually is converted in a colour map for better visualization of the 

suspicious areas for the clinician. Beccani and co-workers [128] developed a palpation 

device to localize tumor nodules based on pressure distribution measurements. They 

validated the device using phantom systems with embedded stiffer inclusions and showed 

how higher pressure was measured at the position of the inclusions and how the pressure 

values decrease when inclusions located deeply into the phantom. Li and co-workers 

[129] have also developed a highly compliant tactile sensing array, and similarly, they 

applied the sensor to measure the pressure distribution in a phantom with a stiffer 

inclusion. The results showed how the accuracy of the predicted suspicious area depends 

on the nodule size and depth as well as the indentation depth applied. The accuracy 
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reduces if the nodule depth increases and/or if the nodule size and indentation depth 

decrease, as shown in Fig. 2-13.  

 

 

Fig. 2-13. Pressure distribution measured using a tactile sensor array and phantom with embedded 

stiffer nodule. The results show an improvement of tissue nodule identification for higher 

indentation displacements and when the nodule has a larger size. However, the detectability 

decreases significantly when the nodule is located deeply in the phantom. The values of the 

pressure were normalized by the authors (colour bar unit: %) [129]. 

 

 

In conclusion, the evaluation of force feedback values allows an identification of the 

presence of tumor nodule(s). However, the sensitivity of the procedure depends strongly 

by the nodule features as its depth, size and modulus [130]. Similarly, the diverse 

palpation procedures, size of the probe and indention depth also influence the sensitivity 

and effectiveness of the proposed identification methods. 

2.6.3    Identification of tumor nodules  

It is important, clinically, to detect the presence of cancerous nodules, often in a binary 

fashion, which is not a trivial task. Further to that, it is also interesting, inevitably more 

challenging, to detect the dispersion and distribution of the cancerous nodules. At this 

front, little success has been achieved by using instrumented palpation. Sangpradit  et al. 
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attempted to predict the position and depth of the inclusion exploiting a rolling indentation 

and FE simulations [118]. The indentation was performed in phantom and kidney tissues 

where stiffer inclusions were embedded. The position of the nodule was predicted based 

on the peak identified in the reaction force profile. However, the peak force depends by 

the nodule depth and a downtrend is obtained when max reaction forces vs. nodule depths 

are plotted. The analytical fitting of the trend guarantees to predict the nodule depth based 

on the reaction force measurements. Kim [21] developed an analytical solution for the 

nodule depth, size and property ratio using similar methodologies to Sangpradit  et al. 

research. However, the cited papers present a limitation in the prediction. Decoupling the 

effect of nodule size and depth using elasticity and force feedback values is still 

challenging as, for instance, a big and deep nodule can generate same force values than 

smaller nodule located close to the indented surface. Kim [131] developed a sweeping 

palpation device with the aim of measuring the force response of the soft tissue, as 

example prostate. The identification of suspicious regions is determined based on a 

comparison between the modulus estimated and stiffness values measured for a healthy 

prostatic tissue. However, the prostatic tissue even when it is healthy has a high degree 

of heterogeneity. For this reason, the method can be subjected to misdiagnosis.  

The prediction of the nodule depth and size has been attempted to achieved using artificial 

neural network (ANN). Yen and co-workers [132] suggest a neural network which is 

trained using FE simulations. In particular, the prediction is made based on the peak 

features as amplitude, width and base which are obtained performing the indentation 

using a max depth value of 14 mm. Jon-Ha Lee [133] developed a tactile imaging system 

and an artificial neural network to predict nodule depth, size and modulus embedded in 

breast tissue. However, in both cited studies a prior knowledge of the presence of the 

inclusion is needed. Kirk [134] developed an artificial neural network using elastography 
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measurements to segment the boundaries of a stiffer inclusion embedded in a phantom 

system. Moreover, there is no evidence of the accuracy of the diagnostic framework for 

the nodule heterogeneity as its depth. 

The ANN techniques strongly depend on the precision of the training data-set. otherwise 

a poor prediction or an overfitting in the solution could be reached. Therefore, this is a 

clear limiting factor when dealing with patient data. 

In conclusion, the identification and characterization of cancer in soft tissue can be 

obtained performing mechanical palpation and analysing the force feedback response. 

However, the heterogeneity of the normal and cancer tissues leads to a significant 

variability in the mechanical response. Therefore, the development of a predicted model, 

for overcoming the limitations of the diagnostic frameworks mentioned in the literature, 

will be suggested. 

2.7    Bridging the gaps 

The objectives and literature review conducted so far recommend a number of challenges, 

which will be further investigated in the following chapters  

• The mechanical palpation devices showed promising potential for early cancer 

detection as they are non or less invasive, inexpensive and provide quantitative 

outcome. However, the mechanical measurement can be heavily influenced by the 

presence/absence of the tumor nodule(s) and the anatomical variation of the 

patients as the organs which surrounding the prostate, its position, size, geometry 

and stiffness. Therefore, it is necessary to develop a numerical framework, based 

on instrumented palpation, for detecting the presence/absence of the tumor nodule 

with the least amount of anatomical knowledge of the patient, as it may not be 

readily available at the point of measurement. 
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• The detection of the presence/absence of the tumor nodule using force feedback 

values is strongly influenced by the cancer heterogeneity. The nodule size, depth 

and stiffness could cause variations in predictions. Therefore, a sensitivity 

analysis of the computational diagnostic framework as a function of the nodule 

parameters is needed. 

• The diagnosis in clinical practice for patients who suffer by cancer is sorted with 

the assessment of cancer stage and aggressiveness. Therefore, the prediction of 

the tumor nodule, size, depth, dispersion and mechanical properties are crucial for 

improving the prognosis of the patients. A predicted model able to identify the 

presence/absence of the tumor nodule(s) and provides as outcome the position, 

depth, suspicious area of the tumor(s) with a degree of confidence is essential and 

will be developed in this thesis. 

• The mechanical characterization of biological tissue for diagnosis purpose using 

palpation devices is still challenging. The presence of benign conditions as 

inflammation and calcification can cause diverse force feedback values. Likewise, 

the presence of cancer could significantly increase the tissue elasticity and the 

variation may arise from more aggressiveness cancer types. Furthermore, the 

biological tissue shows a high variability between diverse patients. The 

mechanical response and the interaction between the samples and the probe, when 

a probing procedure is applied, lead to a whole new level of complexity. 

Therefore, there is a need of assessing the identification methods using 

experimental data with the aim of quantify the uncertainties, given rise by the 

complications mentioned earlier, in the diagnosis using palpation procedure.  
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In conclusion, there is a need of developing new complementary diagnostic tool with the 

aim of improving the early cancer detection and ultimately the prognosis for the patients 

who suffer by PCa.  More importantly, a diagnostic method able to distinguish 

‘significant’ and ‘not significant’ cancer, avoiding unnecessary biopsies and medical cost, 

would be useful. Therefore, it is crucial to develop novel mechanical palpation devices 

for cancer early detection [135], and more importantly, the data analysis tool associated 

with them. 

The thesis will address the major challenges mentioned above and aims to attempt to 

equip the instrumented palpation devices and their mechanical measurements with novel 

numerical methods and nodule identification algorithms. Vitally, it aims to improve the 

sensitivity and specificity of the palpation diagnostic framework, quantifying its 

limitations and establishing prediction for the tumor nodules such as their size, position, 

depth, dispersion, which ultimately would lead to improved clinical assessment of the 

condition and aggressiveness of PCa. 
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Inverse Finite-Element Framework based on 

mechanical Characterization  

Contents 

 

3.1    Summary ................................................................................................................ 46 

3.2    2D Computational model ....................................................................................... 47 

3.3    Optimization algorithm .......................................................................................... 51 

3.4    Solution of the inverse procedure .......................................................................... 53 

3.5    Sensitivity study on tumour-free model ................................................................. 55 

3.6    Identification of tumor nodule ............................................................................... 58 

3.7    Prostate characterization and tumor identification – a feasibility study ................ 60 

3.8    Concluding remarks ............................................................................................... 64 

 

3.1    Summary 

This chapter aims to establish an FE-based inverse method to characterize the size of a 

soft tissue sample and detect the presence of a cancerous nodule in it, without a priori 

knowledge of the nodule geometry and location. Prostate tissue is used, without loss of 

generality, as an exemplar system. The method is based on knowing the reaction forces 

obtained from mechanically probing a prostate sample and those derived from an 
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equivalent FE model, which is optimized iteratively towards the target solution by 

minimizing an error function between the two sets of reaction forces. By doing so, it is 

possible to estimate not only the volume of the prostate, but, more importantly, the 

embedded tumor nodule can also be identified from its influence on the stress field 

resulting from mechanical probing. The effectiveness of the proposed method is verified 

using a realistic prostate model reconstructed from a magnetic resonance (MR) image.  

3.2    2D Computational model 

The prostate is surrounded by a number of other structures in-vivo, including the bladder, 

and the rectum as well as being embedded in connective tissue, as illustrated by an MR 

image in Fig. 3-1(a). Digital Rectal Examination (DRE) involves accessing the palpable 

surface trans-rectally, which will deform these other structures to accommodate the probe 

before palpation commences.  

Palacio-Torralba and co-workers [20] evaluated the influence of the anatomical details of 

the patients in the outcome of the probing procedure. The patient-specific models showed 

the presence of the rectum, prostate, bladder and pelvic bone. Interesting, those organs 

were embedded in a ‘box’ (homogenous soft material) chosen to be comparable to the 

size of patient’s pelvic cavity. One of the conclusions of the work was that the pelvic bone 

and the relative position of the bladder and prostate affects the force feedback during 

probing procedure and consequently the sensitivity of the method.  

However, a comprise between accuracy in the force feedback and the time consuming of 

the FE simulations needed to be found. Therefore, rigid boundary conditions were applied 

for simulating the constraints of the pelvic bone without including in the model the 

bladder and the ‘box’ for simulating the interaction between the prostate and the 

surrounding soft tissues (Fig. 3-1(b)). As a result, it would be possible performed a 
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sensitivity analysis, which will be discussed later, with the aim of proving the concept of 

numerical diagnostic framework. It should be noted that, the mechanical characterization 

and modelling of the fascia is not a trivial task as it might expect a homogenization 

technique for estimating its apparent stiffness. 

The rectum wall is not considered in the model, as its effect has been proven to be 

negligible when high probing depths are used [114]. Instrumented palpation was modelled 

using a rigid ‘probe’, with prescribed displacement (d) along the anterior-posterior axis 

repeated at a number of points, (p) (Fig. 3-1(b)).  

 

 

 

Fig. 3-1. The schematic of the simplified ‘prostate’ FE model. a) An MR image of the male pelvis, 

illustrating the anatomical features. The posterior surface can be probed through the rectum; b) 

The simplified FE model which represents the prostate tissue and its thickness values (h) at 

probing points. The constraints, which allow zero displacement conditions, were based on the 

anatomical features shown in a). At all probing points (p), a displacement of depth (d) was applied 

along the anterior-posterior axis and the reaction force calculated. Details of the thickness values 

and the width of the prostate model will be given later using appropriate examples. 

 

The point-wise probing was considered to be quasi-static, using a strain rate lower than 

0.01s-1, allowing the prostate tissue to be considered as a (hyper)-elastic material [62]. 

Subjected to such a quasi-static loading the observed stiffness is often referred to long-

term modulus.  
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Moreover, in the literature, there is no clear evidence of which hyperelastic model could 

be exploited to characterize the mechanical behaviour of the prostate. In Chapter 2 section 

2.3.2 has been reported that the biological tissues might show a non-linear behaviour 

under large deformation and hyperelastic models such as Mooney-Rivlin and Ogden 

might capture with higher accuracy the mechanical behaviour of the biological tissues 

compared to neo-Hookean. However, the deformation of the elements in FE simulations 

could be significant due to high strain values. In this case, the elements might become so 

distorted causing instability of the material (the Drucker stability condition is not met). 

As a result, convergence issues for the FE simulations may appear6. Therefore, the neo-

Hookean model, which may lead to improve convergence if the material constants assume 

positive values, has been chosen to characterize the mechanical behaviour of the prostate 

undergoing probing procedure. 

The neo-Hookean hyperelastic model was used for both cancerous and non-cancerous 

tissue, with strain energy function expressed as 

𝑈 = 𝐶1(𝐼1̅ − 3) + 
1

𝐷1
 (𝐽 − 1)2                                          (3-1) 

𝐷1 = 
2

𝐾0
= 

3(1−2𝜈)

𝜇0(1 +𝜈)
          and         𝜇0 = 2𝐶1                                        (3-2) 

where 𝐼1̅  is the first deviatoric strain invariants and 𝐽  the total volume ratio (refer to 

Chapter 2 section 2.3.2). The remaining material parameters, 𝐶1   𝐷1, are related to bulk 

modulus (𝐾0), initial shear modulus (𝜇0) and Poisson’s ratio (𝜈), as shown in Eq. (2). The 

prostate tissue was modeled as nearly incompressible material [136]. The elastic 

properties of prostate tissue were adopted from the work by Hoyt et al. [65], who 

measured the Young’s moduli of the non-cancerous and cancerous tissues from ex-vivo 

                                                           
6 http://dsk.ippt.pan.pl/docs/abaqus/v6.13/books/usb/default.htm?startat=pt05ch22s05abm07.html 
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radical prostatectomy samples as 17 kPa and 42.5 kPa, respectively. The Poisson’s ratio 

of both tissue types is 0.49. As a result, after fitting the neo-Hookean model in Eq. (3-1) 

against the elastic properties mentioned above, the non-cancerous tissue had properties 

of C1 (0.00285 [MPa] ) and D1 (7.067 [-]) and the cancerous tissue of C1 (0.00712 [MPa]) 

and D1 (2.827 [-]). The prostate was modeled as a homogenous material which might be 

justified by the experiments and statistical analysis  performed by Krouskop et al. [64] 

where a non-significant variation of the Young’s moduli between the anterior and 

posterior region of the prostate was identified. Moreover, the force values are influenced 

by the constitutive parameters, in our model C1.and D1. A variation of the 32% was 

identified in the force values once the parameters were multiplied by a factor of 2.5.  

A justification for the choice of modelling the mechanical behaviour of the prostatic tissue 

using neo-Hookean was given previously. However, it could be important assessing the 

influence of diverse hyperelastic models in the force values. Liu et al. [119] provided a 

comparison between the error in fitting the experimental data obtained by compression 

of biological tissues (porcine kidney), using as hyperelastic models Arruda-Boyce, Ogden 

and neo-Hookean. A non-significant variation in the error values was identified between 

the three models for a displacement of 6mm.  

The probe was modeled as a rigid material of diameter 10mm, and its contact with the 

prostate tissue was assumed to be frictionless [106]. A quasi-static displacement along 

the anterior-posterior axis was applied to the probe with depths ranging between 2 and 

8mm. The location of the probing was at 5, 20 and 35mm considering as origin the edge 

of the prostate model. The FE model was meshed with 3-node linear triangular elements. 

The global size of the seed, which specifies the mesh density of the FE model, was 0.25. 

(mesh refinement was conducted to ensure cost-effective convergence of FE simulations) 
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and solved in ABAQUS (Dassault Systemes, Vlizy Villacoublay, France) using implicit 

quasi-static analysis.  

3.3    Optimization algorithm 

For the proposed inverse method, an FE model with ‘initial guess’ of the prostate 

‘thickness’, hi, was established, as illustrated above in Fig. 3-1(b), and an iterative process 

was executed to drive the initial guess to the target (i.e. the true solution), based on the 

difference between the reaction forces obtained from probing the prostate and the FE 

model being iteratively optimized.  

To construct the optimization algorithm for estimating the prostate size, the Levenberg-

Marquardt (LM) method was adopted [137]. It iteratively minimized an error function of 

reaction forces between the current FE model and the ‘target’ model: 

min 𝐹 = ∑ (𝑅𝐹𝑇𝑎𝑟𝑔𝑒𝑡 
(𝑝𝑛)

− 𝑅𝐹𝐹𝐸 
(𝑝𝑛)

)
2𝑛

1
                  (3-3) 

which denotes the difference between the sums of target reaction forces (of ‘true’ 

solution), RFTarget,  and those from the FE model being optimized, RFFE, at all probing 

points (pn). The parameters, i.e. the thicknesses (h), were those to be optimized against 

the first derivatives of the error functions. In the 2D formulation illustrated in Fig. 3-1(b), 

the Jacobian matrix (𝐽) can be numerically calculated by perturbing each variable, hn, 

individually:  

𝐽
(𝑖)

=

[
 
 
 
 
 
𝐹1 (ℎ1 )− 𝐹1 (ℎ1 −∆ℎ1 )

∆ℎ1

⋯
𝐹1 (ℎ𝑛 ) − 𝐹1 (ℎ1 −∆ℎ𝑛 )

∆ℎ𝑛

⋮ ⋱ ⋮

𝐹𝑛 (ℎ1 )− 𝐹𝑛 (ℎ𝑛 −∆ℎ1 )

∆ℎ1
⋯

𝐹𝑛 (ℎ𝑛 )− 𝐹𝑛 (ℎ𝑛 −∆ℎ𝑛 )

∆ℎ𝑛 ]
 
 
 
 
 

                                 (3-4) 
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where i represents the ith iteration, and Fn, hn  and ∆ℎ𝑛 denote the error function, the 

thickness variable and the perturbations in the thickness variable at nth probing point, 

respectively. The maximum change of ∆ℎ was set to be 0.1 mm to ensure stability of the 

algorithm and accuracy of solving the first derivatives for the Jacobian matrix. The 

updated parameters, ℎ𝑖+1 used in the following iteration step (i+1) were obtained from: 

 𝐻
(𝑖)

= 𝐽
(𝑖)𝑇

∗ 𝐽
(𝑖)

;                                                                                                         (3-5) 

𝛿
(𝑖+1)

= (𝐻
(𝑖)

+ 𝜆𝑖 ∗ 𝐼)
−1

∗ (𝐽
(𝑖)𝑇

∗ 𝐹
(𝑖)

);                                                                 (3-6) 

ℎ
(𝑖+1)

= ℎ
(𝑖)

− 𝛿
(𝑖+1)

         (3-7) 

where 𝐻 is the Hessian matrix (i.e. the square matrix of second-order partial derivatives), 

𝐼 the identity matrix, 𝛿 the increment of the variables h, and 𝜆 is the damping factor, 

which was used to ensure the robustness of the optimization algorithm. It is worth noting 

that the proposed optimization algorithm only estimates the size of the prostates at each 

probing point. As a result, the anterior surface of the prostate model is estimated with a 

cubic spline function using the thickness values, hi.  

The damping factor, λ, is the key parameter that controls the efficiency and accuracy of 

the convergence of the LM algorithm [138]. If the error function in Eq. (3) increases 

between two consecutive iterations, the updated parameter hi+1 will not be accepted. As a 

result, the damping factor will increase in order to drive the algorithm towards the 

direction of gradient descent, which may lead to slower but guaranteed convergence to 

mimima. Otherwise, the damping factor is reduced leading to faster convergence. Thus, 

the algorithm is capable of alternating between a slow descent and a fast convergence, 

depending on the evolution of the error function.  
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The initial value of the damping factor, 𝜆, was defined as the maximum value among the 

diagonal elements in the initial Hessian matrix H, as it can be related to the eigenvalues 

[139]. The parameter that dictates if the damping factor is to be increased or reduced is 

the gain ratio, 𝜌, which is defined as the ratio between the actual reduction in the error 

and the predicted reduction in error, based on the chosen increment 𝛿:  

𝜌(𝑖+1) = 
(‖𝐹

(𝑖)
‖

2
− ‖𝐹

(𝑖+1)
‖

2
)

(𝛿
(𝑖+1)𝑇

 ∗ ((𝜆(𝑖)∗𝛿
(𝑖+1)

)− (𝐽
(𝑖)𝑇

∗𝐹
(𝑖)

)))

                                                                (3-8) 

whose absolute value is between 0 and 1, although it can be either positive (indicating a 

need to decrease the damping factor) or negative (to increase the damping factor): 

 𝜆(𝑖+1) = 𝜆(𝑖) ∗ max (
1

3
, (1 − (2 ∗ 𝜌(𝑖+1) − 1)

3
)) , 𝑣(𝑖+1) = 2;  𝑖𝑓 𝜌(𝑖+1) 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒       

 𝜆(𝑖+1) = 𝜆(𝑖) ∗  𝑣(𝑖) , 𝑣(𝑖+1) = 𝑣(𝑖) ∗ 2;  𝑖𝑓 𝜌(𝑖+1) 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒                                (3-9) 

where the variable 𝑣 was used to increase the value of the damping factor, of a multiplier 

of 2, when the gain ratio was negative. 

3.4    Solution of the inverse procedure 

The proposed procedure of inverse analysis is illustrated in Fig. 3-2, aimed to minimize 

the difference between the target reaction forces (e.g. from an instrumented palpation 

measurement) and their counterparts from the FE model, based on quasi-static point-wise 

palpation over the posterior surface of the prostate through the rectum.  
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Fig. 3-2. Flowchart of the proposed inverse FE framework. 

 

 

The iterative process is terminated when the convergence criterion is met, where the 

difference between two sets of reaction forces: 

𝜀 = max (
|𝑅𝐹𝑡𝑎𝑟𝑔𝑒𝑡 

(𝑝𝑛)
− 𝑅𝐹𝐹𝐸 

(𝑝𝑛)
| 

𝑅𝐹𝑡𝑎𝑟𝑔𝑒𝑡 
(𝑝𝑛) ),      𝑛 = 1, … , 𝑛 (probing points)                         (3-10) 

is smaller than the convergence threshold, 0.1% .  

The essential premise of the technique is that the presence of tumor nodule will cause 

distortion of the stress field, hence different reaction forces at one or more probe points. 

Since the presence of a tumor nodule is not known at the time of probing, the prostate 

size estimated from the inverse analysis is either. i) the ‘true’ size, if there is no tumor 
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nodule present, or ii) a ‘distorted’ size, if a tumor nodule is present. Therefore, tumor 

nodule identification requires a robust method to distinguish between these two cases.  

Here, it is hypothesized, and later validated, that it is possible to identify the presence of 

the tumor nodule by analyzing the reaction force data using multiple probing depths. This 

hypothesis is based on the likely interplay between the probing depth and the existence 

of a tumor nodule, whereby any stress distortion is likely to be ‘amplified’ by deeper 

probing. Therefore, by increasing the probing depth, one could examine the estimated 

area of the prostate with respect to increasing probing depth and conclude that, if the area 

estimation varies, a tumor nodule is present.   

3.5    Sensitivity study on tumour-free model  

In this section, a sensitivity study is carried out for prostate volume determination against 

a target of a tumour-free gland of idealised (rectangular) shape. Two dimensions of 

sensitivity were tested in the idealised tumour-free model shown in Figure 3-1(b); the 

effects of the initial guess of prostate size and number of probe points, and the effect of 

depth of probing. 

As shown in Fig. 3-2, an initial guess in the size of the prostate h1…hn is required to 

initiate the inverse algorithm, therefore the sensitivity of the algorithm to the initial guess 

needs to be explored. For simplicity, all target values of h are identical at 35mm (i.e. a 

rectangular target) and the size range of the initial guess was chosen to be between 10 and 

60 mm, a little wider than that of adult prostate (20 to 50 mm). Probing to a 5 mm depth, 

at 3, 5 or 7 points (i.e. 15, 6, 4.3 mm horizontal spacing) was carried out on the rectal 

surface of the model. 
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Fig. 3-3(a) shows the relative errors in estimated areas of prostate using the proposed 

inverse FE method, as the initial guess is varied. Convergence is reached (with relative 

errors less than 0.1%) regardless of the initial guess chosen, although the rate of 

convergence is influenced by how far the initial guess is from the true solution, as might 

be expected.  

Fig. 3-3(b) shows the effect of number of probing points, i.e. spatial ‘resolution’. Here, 

convergence is achieved in all three cases, although it is worth noting that the size of the 

Jacobians in Eq. (4) increases with the power of the number of probe points with 

consequences for computational cost.   

 

 

Fig. 3-3. Estimation errors in prostate size for a 35mm target, when the initial guess and the 

number of probing points is varied. The relative error in area is defined as the difference between 

the area of the equivalent prostate model and the target. The area of the equivalent prostate model 

is identified in the last iteration, when the inverse procedure reaches convergence (refer to 

equation 3-10). 

 

 

Fig. 3-4 shows the effect of varying the ‘target’ thickness from 20 mm to 95 mm and the 

probing depth from 1 to 9 mm. Five probing points were used in all cases, with an initial 

thickness of 10 mm. All 56 cases are presented in Fig. 3-4(a), where the vertical bars 
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illustrate the relative error in estimated area of prostate. In general, the larger the ‘target’ 

prostate model is (Fig. 3-4(b)) or the greater the probing depth is (Fig. 3-4(c)), the higher 

the estimation error, although all cases reach convergence, most with under 1% error. 

Thus, the proposed method can estimate the total area of a tumour-free prostate, 

irrespective of the probing depth used. 

 

 

Fig. 3-4. Relative errors in area estimation when the target size and probing depth are varied. 
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3.6    Identification of tumor nodule  

In this paragraph, the proposed methodology will be applied to cases where a tumor 

nodule is present in the model, in order to test the feasibility of nodule identification. Fig. 

3-5(a) shows a schematic of the model, where a tumor nodule of diameter 15mm and with 

Young’s modulus a factor of 2.5 higher than the ‘matrix’ [66] is placed at a depth of 

10.65mm from the top (posterior) surface.  This represents a readily palpable tumour [98] 

so is a reasonable test case for the ability to distinguish the effects of a local increase in 

stiffness from an increase in thickness in the idealized prostate shape. 

Probing was carried out at three points (p1, p2 and p3), using a probing depth of 8mm. It 

should be noted that, the results of the inverse procedure are not affected by the values 

chosen for the initial thickness even for a prostate model which show the presence of a 

cancerous nodule. Therefore, the initial thickness was 10mm for consistency with the 

analysis showed in the previous section. A comparison between the reaction force profiles 

of models with or without the tumor nodule, is shown in Fig. 3-5(b). The values of 

reaction forces are significantly higher when the stiff tumor nodule is present. This is also 

reflected in the stress distributions under probing at location p2, Figs. 3-5(c) and (d). 

Furthermore, the reaction force values in the homogenous case are lower once the probing 

is performed close to the edges of the prostate model. The zero displacement conditions 

influence the reaction force values. For instance, once the probing is performed in p1, the 

effect of the constraint applied on the opposite side of the prostate model could decrease 

significantly. Once the probing is performed in p3, both constraints on the edges influence 

the displacement, therefore, the reaction force is higher in the middle of the force profile. 
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Fig. 3-5. The comparison between simplified prostate models with and without a tumor nodule. 

The size of ‘prostate’ model is 40mm × 40mm. a) Schematic of the model, with or without the 

Mechanical Imaging of Soft Tissues with a Highly Compliant Tactile Sensing tumor nodule; b) 

reaction force profiles; and (c-d) the stress distributions in two models. Colorbar unit: MPa.  

 

 

Using the same models as Fig. 3-5(a) as the ‘target’, the method was applied with a second 

probing depth of 2mm. The results for the four cases, i.e. with and without nodule and 

2mm and 8mm probing depths, are illustrated in Fig. 3-6. When no tumor nodule is 

present in the target, Fig. 3-6(a), the estimated prostate has a much flatter profile at the 

anterior surface than when a nodule is present, Fig. 3-6(b). As hypothesized, increasing 

the probing depth amplifies the effect of the tumor nodule on the stress field, leading to 

an even greater underestimation in prostate area. This is illustrated by the error in area 

estimation illustrated in Fig. 3-6(c). In tumour-free cases, when the probing depth changes 

from 2mm to 8mm, the estimated area of prostate does not change significantly (errors of 
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0.08 % and 0.06 %, respectively). However, when the tumor nodule is present, the error 

in estimated area of prostate increases drastically, and even more so when a deeper 

probing is used. This demonstrates the potential of using the proposed inverse method for 

tumor nodule identification by using a range of probing depths.  

 

 

Fig. 3-6. Comparison of simplified models for probing depths of 8mm and 2mm. Distributions of 

von Mises stress in converged geometries under 8mm probing depth (a- tumor free ; b – with 

tumor nodule). c) Convergence and error for both probing depths with and without tumour nodule. 

Initial guess:10 mm. Colorbar unit: MPa. 

 

3.7    Prostate characterization and tumor identification – a feasibility study 

To demonstrate the feasibility of the proposed framework in a realistic situation, a 

prostate model was reconstructed (using Scan-IP, Simpleware, Mountain View, USA) 

from the MR image shown in Fig. 3-7(a) and the same palpable nodule as used in Section 
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3.5 superimposed onto the model, Fig. 3-7(b). The boundary conditions were applied as 

before, considering the anatomical features surrounding the prostate. Probing was 

performed vertically at three locations on the posterior surface, as indicated in Fig. 3-7(b), 

using probing depths ranging from 4 to 8mm with and without the palpable tumor. This 

arrangement is a reasonable facsimile of actual patients on whom instrumented palpation 

measurements and FE simulations have been made in vivo [20]. 

 

Fig. 3-7. Feasibility study model (a) Segmented MRI pelvic image (b) Model derived from image 

with 15 mm diameter nodule located 10.65 mm below posterior surface (surface to the nodule 

center). The three target values of prostate thicknesses are: h1=51.31mm; h2=52.69mm and 

h3=48.40mm. The initial guess (blue boundary) has a depth of 10.07mm at p2, equivalent to a 

total area of 468.03 mm2. The total prostate model has an area of 2812.21 mm2. 

 

Fig. 3-8 summarises the estimated areas of the MRI-based prostate model for the five 

probing depths, with and without the tumor nodule. In the tumor-free models (in black), 

the estimated areas of prostate are close to the target with little variation between probing 

depths. By contrast, even when the probing depth is low the presence of tumor nodule 

leads to underestimated prostate sizes, worsening as the probing depth increases. It is also 

interesting to note that most of the converged models (even those where a tumour is 

present) reflect the asymmetry of the target (h1>h3). Most importantly, Fig. 3-8 

demonstrates that, when assessing the response of prostate tissue to probing from the 
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posterior side, one can vary the probing depth and use the obtained reaction forces to 

estimate the ‘apparent’ prostate size using the proposed method. If the estimated prostate 

size remains relatively constant with little variation when the probing depth is varied, the 

examined prostate sample can be regarded as homogeneous, meaning that there is no 

palpable lesion. Otherwise, the consistent variation in the estimation of prostate size, due 

to the disturbance in the stress field caused by the appearance of a stiff nodule, could 

serve as a primary indicator of a tumor.  
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Fig. 3-8.  Results of the feasibility study model of prostate, with and without an idealized tumor 

nodule. The red dash lines indicate the boundaries of ‘true’ prostate or tumor nodule. Colorbar 

unit: MPa. 
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3.8    Concluding remarks  

There is a need of robust and effective methods for the quantitative interpretation of data 

from mechanical probing in order to identify inhomogeneities in soft tissue. This work 

has focused on the identification of tumor nodules in the prostate by trans-rectal 

instrumented probing.  

A finite-element based inverse method has been proposed to estimate the size of the 

prostate using reaction force data at a number of probe points on the posterior surface of 

the prostate. A sensitivity analysis showed that the initial guess of the shape and the 

interval between probing points have little influence on the estimated prostate size, 

showing the robustness of the proposed method.  

Importantly, it was hypothesized, and later validated, that the presence of tumor nodule 

that is of higher modulus can be identified by conducting probing at various depths, 

without a priori anatomical knowledge of the prostate such as volume and geometry. This 

was possible because the estimate of prostate size changes significantly as the probing 

depth is varied if a tumour is present, but remains constant when no tumor nodule is 

present.  

The accuracy of the results is not affected by the initial conditions which means that the 

inverse procedure can be applied irrespective of the size, geometry, and boundary 

conditions of the organ under investigation. Increasing the number of indentation points 

would improve the quality of the diagnosis, although it is necessary to explore the 

accuracy and sensitivity of the method to features of the cancer nodule, such as its 

diameter, depth, and mechanical properties 

The computational framework has a limitation in the material properties which were 

assigned for characterizing the mechanical response of the soft tissue. The tissue has been 
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modeled as a homogeneous, isotropic and incompressible material, however, the material 

properties of the biological tissues may be more complex. For instance, the healthy matrix 

has an elastic modulus which can vary due to the presence of benign condition, 

calcification or inflammation of the tissue [64]. More importantly, the stiffness of the 

tumor nodule can evolve depending on their development stages [62]. Furthermore, the 

prostatic tissue often presents certain time-dependent behaviour, due to the presence of 

liquid in the tissue microstructure [39].  

Another limitation is in the choice of the rigid boundary conditions applied to the prostatic 

model. The prostate is encapsulated among connective tissue, muscles and fat. Therefore, 

certain deformation of the prostate is allowed along both axes. During experimental 

measurements the probe might show a deformation and friction, once in contact with the 

indented surface of the prostate. Therefore, the sensitivity of the method may be affected 

by such effects.  

The results shown in this chapter were obtained using a 2D model so that the inverse 

procedure needs to be further validated in a more realistic scenario of using 3D prostate 

models. Moreover, the inverse method was assessed using probing values which were 

obtained from FE simulation. The framework needs an experimental validation using in 

vivo or ex vivo.  Some limitations mentioned above will be addressed in the following 

chapters. In the next chapter a sensitivity analysis for the tumor nodule detectability, using 

the proposed framework will be carried out using realistic prostate models reconstructed 

from MRI data.  
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4.1    Summary 

In Chapter 3 a computational framework was developed to estimate the volume of the 

prostate and to detect the existence of the PCa nodule, based on force profile from 

instrumented probing, without a priori knowledge of the nodule geometry and location. 

The method could provide the area of the prostate if the sample is homogeneous (i.e. 

prostatic tissue without tumor nodule - healthy). Instead, a ‘variance’ in the areas 

estimated for multiple probing depths due to the heterogeneity of the sample (i.e. PCa 

nodule) will be shown, indicating the existence of PCa nodules in the prostate. Moreover, 
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the accuracy of the prediction can be heavily influenced by the nodule parameters such 

as lateral position, depth, size and stiffness ratio.  

In this chapter, the values and combinations of the nodule size, depth and stiffness ratio 

within a clinical range are varied and their influence in the binary classification for the 

presence/absence of tumor nodule, using the measurements of the areas as outcome of the 

inverse FE procedure, is evaluated. Furthermore, the feasibility of the proposed method 

using prostate models reconstructed from MRI images, will be assessed.  

4.2    Sensitivity analysis – random prostate models with values of the nodule 

parameters within a clinical range 

The prostate model, in which a PCa nodule is present, is illustrated here in Fig. 4-1. The 

width and height of the sample were chosen to be 40 mm, representative of the 

physiological size of the prostate.  

The influence of the stiffness ratio was assessed as first. A stiffness of 25.5, 34, 42.5, 51 

and 59.5 kPa was assigned to the circular PCa nodule, and the stiffness of the healthy 

prostate tissue was kept as a constant of 17 kPa. As a result, the stiffness ratio was varied 

between 1.5, 2, 2.5, 3 and 3.5. Those values were decided based on the experimental 

evidence discussed in more details in Chapter 2 section 2.3.3, which suggested how the 

stiffness of the tumour nodules might increase due to later development stages of PCa. 

For all cases, the nodule size and depth were 10 and 1 mm, respectively.  The PCa nodule 

and healthy matrix were modeled as described in Chapter 3 section 3.2. The reaction force 

values were recorded when the probe reached a displacement of 4, 6 and 8 mm from the 

posterior surface along the anterior-posterior axis. The probing procedure was simulated 



68 
 

using boundary conditions, probe size, contact properties and mesh quality as described 

in Chapter 3 Section 3.2. 

 

Fig. 4-1. Prostate sample characterized by the presence of stiff nodule (with depth D and diameter 

d) chosen for obtaining the force values which were in input to the inverse procedure. Therefore, 

the framework can estimate the thickness along the location of the probing points (ℎ1  , ℎ2  , ℎ3 ). 

It should be noted the initial thickness of 10 mm defined in the equivalent FE model for the first 

iteration. 

 

The influence of the number of probing points and the initial conditions was evaluated in 

Chapter 3 section 3.5. The results showed that the accuracy of the areas estimated does 

not vary due to the initial conditions. Therefore, in this study, the areas estimated were 

obtained using an initial thickness for the equivalent FE model of 10 mm. Furthermore, 

the results showed that the inverse procedure can reach convergence with the same 

accuracy for a number of probing points which could be 3, 5 and 7. Moreover, the time-
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consumption of the inverse procedure may increase significantly when a higher number 

of probing points was used. As a result, the number of probing points chosen for the 

following analysis in this chapter was 3 (ℎ1  , ℎ2  , ℎ3 ), representing a good compromise 

between the sensitivity of the probing procedure and computational cost for the 

framework.  

The analysis was further assessed by varying the nodule depth and size of the idealised 

PCa nodules. The nodule depth was defined as the distance between the indented surface 

and the top edge of the nodule (D). The range assigned for the nodule depth was between 

1 to 17.7 mm. It should be noted that, the tumour nodule might occur deeper in the 

prostatic tissue. However, the force profile would not be distorted by the presence of the 

stiff nodule. Therefore, the inverse procedure would provide as outcome a false negative. 

As a result, the area estimated would show similar value than the homogenous case as 

already discussed in the limitations of the diagnostic framework in Chapter 3. For each 

case of the nodule depth, the size of the nodule was varied too, with values of the nodule 

diameter (d) being 2, 5, 7, 10, 12 or 15 mm. Moreover, a stiffness ratio of 1.5, 2.5 and 3.5 

was set up for each combination. In Chapter 3 section 3.6, the geometrical index such as 

the ‘variation’ of the areas estimated using multiple probing depths showed promise for 

predicting the presence of tumor nodule in the prostate sample. Therefore, the probing 

procedure was performed for the 144 cases using 6 diverse values of probing depths (2, 

3, 4, 5, 6 and 8mm). As a result, a total of 864 cases was generated for carrying out the 

sensitivity analysis for the nodule parameters which can influence the capability of the 

diagnostic framework in classifying the presence/absence of tumor nodule using 

palpation procedure. 

In addition, a feasibility study using a prostate model reconstructed from MRI images 

with and without the presence of a tumor nodule was carried out, as illustrated in Fig. 4-
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2. The methods used for simulating the prostate model in FE were kept the same as the 

previously used in Chapter 3. 

 

Fig. 4-2. MRI image of an ex-vivo prostate and the segmentation of the cancerous nodule and 

healthy matrix. 

 

In summary, this chapter, in its first part, will further investigate the interplay between 

the size and depth of the PCa nodule and its stiffness ratio to the healthy tissue, 

particularly their influences on the identification outcome of the proposed methods. At 

the end of this chapter, a feasibility study using models reconstructed from the Magnetic 

Resonance images will be carried out to explore the role of such ‘interplay’ in a clinically- 

relevant scenario.  

4.3    Inverse FE framework – Influence of stiffness ratio in the areas estimated 

Fig. 4-3 shows the results of the inverse procedure for input in force obtained by probing 

a prostate sample with a nodule characterized by diverse values of stiffness (Fig. 4-3 (A)).  
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Fig. 4-3 shows how the relative error in predicted area increased when a higher stiffness 

ratio between PCa and healthy tissue was used. The reason can be reflected in the force 

profiles, which were used as inputs to the inverse procedure. The force values increase 

for a stiffer nodule (Fig. 4.3 (C)). As a result, the areas estimated for the equivalent FE 

model became smaller (Fig. 4-3 (B)), as already discussed in Chapter 3. Interestingly, 

when the stiffness ratio of 1 is used, i.e. there is no PCa nodule at present, the predicted 

prostate areas remained constant regardless of the indentation depth used.  In conclusion, 

the stiffness ratio can greatly influence the capability of the proposed framework in 

classifying the PCa nodules. For a higher stiffness ratio, the error in area prediction 

increased, indicating that the capability of the framework in detecting PCa nodules may 

improve.  
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Fig. 4-3. A) Prostate sample which shows a stiff nodule with size of 10 mm and depth of 1 mm 

which underwent probing procedure. B) Results of the inverse procedure for the prostate sample 

characterized by a nodule with diverse stiffness values. C) Results of the probing procedure for 

five values of stiffness ratio and an indentation depth of 8mm. D) Results of the probing procedure 

for three values of probing depth (4, 6 and 8 mm) and a stiffness ratio of 2.5. 

 

4.4    Inverse FE framework – Role of the interplay between the nodule depth and 

size  

The previous results indicated a strong influence of the stiffness ratio in the estimated 

areas, however in only one prostate model whose PCa nodule has only one set of depth 

and size. Here, the roles of the depth and size of PCa nodules are further explored, as 
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shown in Fig. 4-4.  where diverse combinations of PCa size and depth (6 values for the 

nodule size and 8 for the nodule depth) and a stiffness ratio of 2.5 were used.  

The results showed that the error in estimated area increased for nodules with a larger 

size but the error decreased when the nodules located deeply into the prostate sample (Fig. 

4-4 (B-C)).  

Therefore, the proposed framework showed higher sensitivity in detecting tumor nodules 

which were closer to the indented surface and/or show a large size. For those cases, the 

error in area could reach as high as 20% (Fig. 4-4 (A)). In contrast, the nodules, with 

small size and/or located deeply into the prostate sample, were still challenging to detect 

as their influence in the force profile was neglectable. As a result, the outcome for those 

cases was similar to a homogeneous prostate (i.e. with no PCa nodule), so that the error 

in estimated area tends to zero. In conclusion, the interplay between the nodule size and 

depth can significantly influence, as one would expect, the outcome of the inverse 

analysis and the classification of PCa nodules.  
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Fig. 4-4. Results of the inverse procedure for a prostate sample characterized by diverse 

combinations of nodule size and depth (48 combinations). The stiffness of the nodule was 42.5 

kPa and the force values were obtained using a probing depth of 8 mm. 

 

4.5    Quantification of the limits in detecting the tumor nodule by the inverse FE 

framework 

Following the studies above, it would be of interest to find out the limits in the capability 

of the proposed methods in detecting the presence of a PCa nodule, in terms of its size, 

depth and the stiffness ratio. Here, a total number of 48 combinations of the nodule size 

and depth was used, along with 6 probing depths and 3 stiffness ratios, leading to a dataset 

of 864 cases being studied here.  
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Fig. 4-5 shows the results of all 864 cases, which were divided into 3 groups based on 

their stiffness ratio. It should be noted here that, in the 3D plots, one data point represented 

6 cases with varying probing depth and the value of that data point was in fact the mean 

value among the 6 error values in area estimation. From the figure, the framework showed 

an increased capability in detecting nodules which were located closer to the indented 

surface and/or with a larger area. For those cases where the nodule was located deeply 

and/or with a small PCa nodule, the ‘error’ in area prediction becomes zero, meaning that 

the proposed methods believed the examined prostate model to be a homogeneous one 

without the presence of PCa nodules.   

Fig. 4-5 (D-F) shows the same results discussed previously, albeit using a 2D fitted 

‘contour’ representation, i.e. a top view of the figures to the left. Once again, the stiffness 

ratio between the PCa nodule and the healthy prostate tissue is proved to be critical – the 

higher the stiffness ratio, the better the detectability becomes (as illustrated by the 

increasing area in non-blue colours). What this means is that, when a PCa nodule has a 

higher stiffness, which may be correlated to later development stages of PCa, smaller and 

deeper PCa nodules may be detected, leading to an improved sensitivity of the proposed 

method. It should be noted that, the sensitivity in some cases decreases with the increase 

of the tumour size. The LM algorithm used to minimize the error function does not 

guarantee convergence to a global minimum (smallest value of the error function on its 

entire domain), instead, the method might find a local minimum [137]. This might justify 

the results in Fig. 4-5 wherein some cases the error in area decreases for larger nodule, 

which is in contrast with the conclusion achieved in the previous chapter.  
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In conclusion, the ’error’ in estimated area could be used as an index for classifying 

prostate models with PCa nodules. However, the accuracy in such classification may be 

influenced by the interplay between the nodule parameters such as size, depth and 

stiffness ratio. The analysis showed that those PCa nodules located deeply and/or with a 

small size are challenging to detect. Moreover, the classification showed good accuracy 

for nodules which are characterized with a diameter greater than 8 mm and a depth smaller 

than 12 mm, in a scenario where the stiffness ratio is equal to or greater than 2.5.  
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Fig. 4-5. Quantification for the limits of the diagnostic framework in detecting the presence of a 

tumor nodule in the prostate models. The 3D bar plots (on the left) show the results of the inverse 

procedure defined as the error in area for 48 combinations of the nodule depth and size with a 

stiffness ratio of 1.5 (A), 2.5 (B) and 3.5 (C). The 2D contour plots (on the right) show the ‘top 

view’ of the results which are illustrated on the left. 
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4.6    A feasibility study using MRI-reconstructed prostate model 

Two FE models reconstructed from MR images were used here, namely Cases B and C, 

whilst Case A has already been used in Chapter 3. In both cases there was one PCa nodule 

at present (Fig. 4-6). Similar modelling strategies to those in Chapter 3 were used. Three 

probing points were used, 15 mm in between. The force values were recorded at probing 

depths of 4, 5, 6, 7 and 8 mm. The stiffness ratio chose for those examples was 3.5. The 

high stiffness ratio was chosen for increasing the distortion in the force feedback by the 

presence of the stiff nodule. As a result, it was possible assessing the sensitivity of the 

diagnostic framework for detecting a cancerous nodule which shows realistic geometry, 

depth and position in the prostatic tissue. 

 

Fig 4-6. Prostate models reconstructed from MR images – Case B and C.  

 

 

The images were characterized by the presence of a tumor nodule which was located in 

the posterior surface and right edge of the prostate. The size of the tumor nodule for case 

B was 368 𝑚𝑚2 with an equivalent diameter of 10.8 mm and a depth of 4 mm. The 

location of the PCa nodule for the case C was similar, however, the nodule had a size of 
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237 𝑚𝑚2 with an equivalent diameter of 8.7 mm and a depth of 7 mm. The size of the 

entire prostatic slice was 2455 𝑚𝑚2, however, it was embedded in a ‘box’ for simulating 

the interaction between the prostate and tissues which surrounding it during an in-vivo 

DRE procedure [140]. The size of the ‘box’ was 3500 𝑚𝑚2 , therefore a tumor area 

fraction for the case B was 10.5% and 6.8% for the case C. In addition to these two 

models, a case studied in Chapter 3, i.e. case A, where the PCa nodule was absent in the 

prostate, was also used here as a comparative study.  

Fig. 4-7 shows the results of the errors in estimated area for the 3 cases, plotted against 

the number of iterations during convergence of the inverse procedure. Once again, the 

error was significantly higher for the cases where the prostate model contains a PCa 

nodule (i.e. in case B and C), compared with the healthy case (i.e. in Case A), leading to 

an under-estimation in areas in cases B and C. 
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Fig 4-7. Results of the inverse analysis for the prostate models A-C. The values of the stress 

distribution are in MPa. 

 

 

Fig. 4-8, similar to what has been presented in chapter 3, demonstrates the identification 

process of the PCa nodule.  The area estimated for case A was similar, within a small 

margin of error (0.48%), to the true area of the prostate. More importantly, the values 

remained constant when the probing depth was increased, as already discussed in Chapter 

3. However, the estimated areas of the cases B and C were significantly different 

compared to the ‘true value’ (24.1% for case B and 17.6% for case C) and the estimated 

areas also varied when the probing depth increased. However, such variation was as 

significant as what one would expect (in comparison to Fig. 3-8).  This can be attributed 

to the fact that in Cases B/C the PCa nodule is located rather deeply, leading to a reduced 
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sensitivity of the predictive method, in comparison to the idealised PCa nodule which 

located much closer to the posterior surface in Fig. 3-8. 

 

 

Fig. 4-8. Results of the inverse procedure for all three prostate models. 
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4.7    Concluding remarks 

In this chapter, a further sensitivity analysis of the proposed method to nodule parameters, 

such as size, depth and the stiffness ratio of the PCa nodule. was carried out. The results 

showed that PCa nodules which are located deeply into the prostate and/or with a small 

size are challenging to detect. Moreover, the analysis allowed the quantification of the 

limits in detectability of the proposed framework, dependent upon the interplay between 

the size and depth of the PCa nodule, and more importantly, to the stiffness ratio between 

the PCa and healthy tissue.  At the end of this chapter, a feasibility study involving three 

FE models reconstructed from MR images proved the capability of the proposed 

framework in detecting PCa nodules in a more clinically-relevant scenario.  

However, the current framework is only capable of making estimations on the basis of 

prostate model, not on individual PCa nodules.  Therefore, it is not possible to estimate 

the parameters of individual PCa nodules such as their depth, size and ‘dispersion’, which 

are important clinical parameters for assessing the stage and aggressiveness of cancer. 

Therefore, in the next chapter, a predictive model based on a probabilistic approach will 

be proposed for characterising individual PCa nodules in the prostate based on point-wise 

instrumented probing procedure.  
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5.1    Summary  

In chapter 3 and 4, a methodology for binary classification of the prostatic tissues with 

and without the presence of tumor nodule has been presented. The method has the 

advantage of achieving a classification without a priori knowledge of the patients such as 

the anatomical details and the pathological condition. However, the method is not able to 

provide the estimation of the nodule parameters such as position, depth, size, essential for 

clinical diagnosis [141].  
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Therefore, in this chapter, a novel predictive model which aims to decrease the 

‘uncertainty’ in the soft tissue classification and provide the estimation of the tumor 

nodule parameters has been developed.  The method is based on a probabilistic approach 

with the aim of decoupling the effect of the nodule size and depth in the probing 

measurements. Notably, the prediction of the nodule parameters is not deterministic, and 

the outcome is described by the probability distributions for the size and depth values of 

the PCa nodule.  

The method is hypothesized and later validated using simplified FE prostatic models. A 

sensitivity analysis is proposed to evaluate the capability of the predictive model using 

diverse combinations of nodule size and depth. Statistical analysis is carried out for 

assessing the capability of the proposed method in estimating the nodule position, depth 

and size. Finally, the complications such as consideration of nodule ‘dispersion’ are also 

discussed.  

5.2    The simplified prostate model and FE modelling of instrumented probing 

The human prostate is surrounded by bladder and rectum in the pelvic cavity, and its 

posterior surface can be probed through the rectum wall. In this study, prostate is 

modelled in a simplified way for methodology development. Fig. 5-1 illustrates the 

simplified prostate model which is represented by a ‘square box’ of 50 × 50mm. The 

upper side is the posterior surface, where the probing is carried out. The model is 

constrained on anterior surface, as shown, to reproduce the experimental conditions. 
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Fig. 5-1. Schematic of a simplified 2D prostate model with a single cancerous nodule embedded, 

later modelled with Finite Element. 

 

For the sensitivity analysis using the simplified prostate model, the point-wise probing 

data will be simulated using the FE method. The instrumented probing from the posterior 

surface was carried out using a rigid semi-spherical probe, which has a diameter of 2mm. 

This size is chosen to ensure a sufficient spatial ‘resolution’ of probing along the posterior 

surface of the prostate. A probing depth of 8mm along the posterior-anterior axis was 

used at a number of probing points, 2mm apart. The contact with the soft tissue was 

assumed to be frictionless [106] and the point-wise probing was considered to be quasi-

static, using a strain rate lower than 0.01s-1, allowing the soft tissue to be considered as a 

hyperelastic material without its viscous component [142]. To allow for the high local 

strain that may occur in FE simulations, a neo-Hookean hyperelastic model was used for 

both cancerous and non-cancerous tissue. The strain energy function of the model is 

expressed as 
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𝑈 = 𝐶1(𝐼1̅ − 3) + 
1

𝐷1
 (𝐽 − 1)2                                                                                    (5-1) 

𝐷1 = 
2

𝐾0
= 

3 (1−2𝑣)

𝜇0 (1+𝑉)
     𝑎𝑛𝑑     𝜇0 = 2𝐶1                                                                      (5-2) 

where 𝐼1̅  is the first deviatoric strain invariants and 𝐽  the total volume ratio (refer to 

Chapter 2 section 2.3.2). The remaining material parameters, 𝐶1   𝐷1, are related to bulk 

modulus (𝐾0), initial shear modulus (𝜇0) and Poisson’s ratio (𝜈), as shown in Eq. (5-2). 

The prostate tissue was modeled as aa nearly incompressible material [136]. The elastic 

properties of prostate tissue were adopted from the work by Hoyt et al. [65], who 

measured the Young’s moduli of the non-cancerous and cancerous tissues from ex vivo 

radical prostatectomy samples as 17kPa and 42.5kPa, respectively. The Poisson’s ratio of 

both tissue types is considered to be 0.49 [143]. As a result, after fitting the neo-Hookean 

model in Eq. (5-1) against the elastic properties mentioned above, the non-cancerous 

tissue had properties of C1 (0.00285 [MPa]) and D1 (7.067 [-]) and the cancerous tissue 

of C1 (0.00712 [MPa]) and D1 (2.827 [-]). The FE models (both simplified and those 

reconstructed from the histological sections) were meshed with four-node bilinear plane 

stress quadrilateral elements (mesh refinement was conducted to ensure cost-effective 

convergence of FE simulations) and solved in ABAQUS (Dassault Systemes, Vlizy 

Villacoublay, France). The reaction force exerted on the rigid probe by the examined 

prostate model at the given depth is then recorded at each probing point and its profile 

over all probing points is further investigated. 

5.3    A probabilistic approach for identification of cancerous nodules  

When the prostate is examined by point-wise probing as mentioned above, the reaction 

force is recorded at each point at a predefined indentation depth, forming a force profile 

along the posterior surface of the prostate. Such a force profile, as illustrated in Fig. 5-2, 



87 
 

has rather unique characteristics of local peaks, heavily influenced by the inhomogeneity 

in the prostate (i.e. the presence of a stiff cancerous nodule) [118]. Furthermore, a peak 

in the force profile is sensitive to the size and depth of the cancerous nodule and it 

becomes ‘sharper’, i.e. taller and narrower, when the nodule is located near the posterior 

surface and/or is larger.  Therefore, the sharpness of the peak, represented by the ratio 

between its height and width, i.e. H/W, is a unique characteristic of the peak, related to 

the size and depth of the cancerous nodules, which give rise to inhomogeneity in the 

prostate and consequently a peak in the force profile. However, both size and depth of the 

cancerous nodule could influence the peak force in the measured profile in a similar way 

– a larger and deeper nodule may lead to a similar force profile to the one caused by a 

smaller but shallower nodule. Such non-uniqueness means it may not be possible to give 

a definitive prediction based on the force profile from quasi-static probing, and a 

probabilistic approach is needed to decouple the effects of the size and depth of the 

cancerous nodule from the peak. 
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Fig. 5-2. An example of force profile. A) Two peaks can be identified, each having unique height 

and width characteristics; and B) the corresponding prostate model, in which the red areas denote 

the cancerous nodules and the black outlines indicate the predicted nodules.  

 

 

As discussed above, an infinite number of combinations of nodule size and depth exist 

that may lead to the same force profile, due to the coupling effect between these two 

factors. The method proposed here, therefore, aims to estimate the possible ranges of the 

size and depth of the tumor nodule, due to the stochastic nature, rather than making a 

definitive prediction. To achieve this, a probabilistic approach is adopted, where the peak 

profile is ‘searched’ among a pool of a large number of random models, in which the size 

(between 2mm and 24mm in diameter) and depth (between 2mm and 30mm) of single 

cancerous nodules are randomly chosen. Such ranges are chosen in accordance to the 

common characteristics of cancerous nodules in prostate. As a result, a total number of 

2500 of random models are generated, each having a unique tumor nodule and a peak in 
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the force profile, which is then characterised by its height, H, and width, W. The stiffness 

ratio in the random models was 2.5. However, the analysis in Chapter 4 showed that the 

stiffness ratio influences the peak in the reaction force profile and consequently the ratio 

H/W. Nevertheless, the identification of patterns for the system prostate-nodule using the 

combinations of the 3 parameters would be challenge and time-consuming. 

The random models were generated using the following steps: firstly, random values, 

within the prostate domain, were assigned as coordinates of the nodule centre. Secondly, 

a random value, within the range of the nodule size values, was assigned as the diameter 

of the cancerous nodule. However, the choice of the centre might restrict the range of the 

values for the nodule diameter as its boundaries were constrained of being within the 

prostate domain. The MATLAB function rand7 was used to choose the random values 

for the coordinates of the nodule centre and the nodule diameter.  

Fig. 5-4 shows a clear trend of positive correlation between the ‘sharpness’ of the peak, 

i.e. H/W, and the ‘degree of influence’ in the peak profile caused by the cancerous nodule, 

i.e. d/D.  A positive correlation between the two sets of parameters can be observed, 

meaning that the larger and shallower the nodule is, the sharper the peak becomes. More 

interestingly, the span of the random models in the plot, which is a measure of the 

‘uncertainty’ in the correlation between these two sets of parameters, increases 

significantly when the peak in the force profile become ‘sharper’. For flatter peaks, i.e. 

data points with smaller H/W values along the x-axis, almost all cancerous nodules are 

located deeply in the prostate (i.e. greater value of D), regardless of their sizes. Therefore, 

all data points for flat peaks are distributed very closely with little dispersion in the plot. 

However, when the peak becomes more predominant, i.e. an increasing H/W value, either 

                                                           
7 https://uk.mathworks.com/help/matlab/ref/rand.html 
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small nodules with a very shallow depth, or larger nodules with a small depth could lead 

to sharp peaks, leading to higher dispersion of the data points along the y axis.  

Nevertheless, the trend in Fig. 5-4 illustrates that the sharpness of the peak in force profile 

can be correlated to the size-to-depth ratio of the tumor nodule, albeit having a certain 

degree of ‘uncertainty’. Therefore, it is hypothesized here that, for a peak with a given 

sharpness value (on the x-axis in Fig. 5-4), the size-to-depth ratio of its tumor nodule 

would fall into the range (along the y-axis) depicted by the random models. To implement 

this, one needs to divide the dataset of the random models in Fig. 5-4 into sub-groups 

according to the ‘sharpness’ of the peak, as shown by the vertical dashed lines. A total 

number of 2500 of random models (hereafter referred to as ‘the training dataset’), are 

divided into 6 groups according to the ‘sharpness’ value (i.e. H/W) of their peaks, namely, 

5-10 (465 cases), 10-20 (325cases), 20-30 (177 cases), 30-40 (128 cases), 40-50 (126 

cases), higher than 50 (104 cases).  

Importantly, Fig. 5-4 did not include 1175 cases where the H/W is less than 5. We 

proposed this value as a ‘threshold’ for the nodule identification process, below which 

the peak is believed to be unidentifiable. This is illustrated in Fig. 5-3 where the reaction 

force profile is obtained by probing a soft tissue model without a tumor nodule. The 

homogeneity of the soft tissue caused a rather flat force profile with a H/W as low as 3. 

Considering the experimental measurements could be affected by certain degrees of noise, 

the threshold was set to be 5.  
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Fig. 5-3. Example of reaction force profile obtained by probing the soft tissue model which does 

not show the presence of a stiff nodule. The flat profile is characterized by a small height and 

large width.  
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Fig. 5-4. Correlation between the peak sharpness (H/W) and the nodule radius/depth (d/D), of all 

random models (excluding those with unidentifiable peaks with H/W<5). Using the peak 

sharpness, H/W, the entire dataset is divided into 6 groups, each having characteristic probability 

distribution of their nodule size and depth. All these characteristic probability distributions will 

be employed to predict the tumor nodule existence, using the methodology included in the 

appendix A.  

 

As shown, each data group contains enough numbers of representative random models, 

from which the probability-based prediction can be made. Each group, divided by 

different degrees of sharpness in their peak profile, also has characteristic distributions in 

the size and the depth of their tumor nodule, as illustrated by the histograms in Fig. 5-4.  

Certain variations of the probability distributions in both the size and depth of the 

cancerous nodule with respect to the increasing peak sharpness (H/W) can be observed. 
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Most importantly, the nodule depth is found to be significantly influenced by the peak 

sharpness. When the peak sharpness becomes greater, the probability distribution of the 

nodule depth becomes more concentrated towards smaller values, i.e. shallower nodules.  

This shows the peak identified in the force profile is highly sensitive to the nodule depth, 

but much less so to the nodule size. This can also be observed in Fig. 5-5, where nodules 

of all 2500 cases that have been generated by the random algorithm are plotted with their 

depth (d) against size (D). All cases are stratified according to their ‘zones’ of peak 

sharpness, and the greater the sharpness, the less ‘uncertainty’ their depth distributions 

present.  

 

Fig. 5-5. The relationship between the nodule depth and size, where the sharpness of force peak 

in each division is plotted with different colours. 
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Due to the characteristic probability distributions of the nodule size and depth with respect 

to their peak sharpness, it is proposed here that, based on the sharpness of an identified 

peak in the force profile, one can make prediction of the presence of the cancerous nodule 

in the prostate ‘domain’ on a probability basis, and the methods will be detailed in 

Appendix A.  

5.4    Probabilistic Approach - Sensitivity analysis with simplified prostate models 

To demonstrate the probabilistic approach in tumor nodule identification, simplified 

prostate models, as illustrated in Fig. 5-1, are used here first. All the force profiles of 

instrumented probing are derived from the simplified prostate models using FE approach, 

as detailed in the methodology. Here, two representative cases are presented, both having 

nodules of similar diameter (D1=22.8mm; D2=20.6mm) but with different depths 

(d1=1.5mm; d2=13mm). In both cases, the peak in the force profile is identified and 

characterized by its height and width, as shown in Figs. 5-6 (A) and (D). The ratio 

between its height, H, and width, W, i.e. the sharpness of the peak, is used to predict the 

probability distribution of the nodule existence using the proposed methods, where the 

nodule is represented by the solid red circle and the predicted probability is illustrated 

along both axes. It should be noted that, the probability distributions are not the PDFs 

showed in Fig. 5-3, however, the results of the prediction described in Appendix A. Each 

value of the probability indicates the likelihood of that point being cancerous. It can be 

seen that, since the nodule is located more deeply in the second case, its peak value is 

much lower and force profile is less sharp (H/W=12, in comparison with the H/W=56.2 

in the first case). This has also led to two distinct predicted probability for two cases, as 

shown in Figs. 5-6 (C-F). Interestingly, for a shallow nodule in case 1, the predicted 

probability map has a large area that has probability close to ‘1’ near the centre of the 
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nodule. Although the prediction also correctly captured the nodule location for case 2, it 

has a much smaller area with probability close to ‘1’, indicating a lower degree of 

certainty in such prediction. This, again, reflects on the effects of the nodule depth on the 

‘uncertainty’ as aforementioned in Fig. 5-4.  
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Fig. 5-6. Two examples of simplified prostate models, including the force profile and the 

predictions in 3D and 2D with illustrated probabilities (which are not the PDFs showed in Fig. 5-

3). A-D) Force profile and peak identification for a prostate model which shows a cancerous 

nodule near the indented surface (A) and deeper in the prostate domain (D). B-E) Probabilities of 

the nodule existence along the posterior-anterior and left-right axes of the prostate model. C-F) 

2D prediction of the nodule identified on the plan depth and position of the prostate model. 
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Although the results presented above demonstrated that the proposed method is capable 

of predicting the probability of nodule existence along two main axes of the prostate, it 

would be useful to have a ‘binary’ prediction of the nodule region, for which a threshold 

in the probability needs to be chosen. Such a threshold can be interpreted in Figs. 5-6 (B-

E) as a ‘horizontal plane’ cutting through the ‘bell-shaped’ probability plot, and the area 

with probability greater (i.e. higher) than the plane would be the predicted nodule region.  

The effect of the chosen probability threshold on the predicted tumor area is demonstrated 

in Fig. 5-7, where the same examples as in Fig. 5-6 are used.  In both examples, the 

probability threshold is found to be critical to the predicted tumor area in a binary fashion, 

and a greater threshold would lead to a smaller nodule predicted. Choosing the optimal 

value for the probability threshold is not a trivial task – choosing a smaller value would 

lead to a larger nodule predicted, more likely to cover the ‘true’ tumor nodule, however, 

this could also lead to over-prediction; in contrary, choosing a greater value would have 

an opposite effect.  
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Fig. 5-7. The ‘binary’ tumor areas predicted from choosing a threshold in the probability of tumor 

existence. The same two examples as in Fig. 5-6 are used here again, with four different 

probability thresholds applied. The black and red outlines represent the predicted and the PCa 

nodule, respectively.  
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5.5    Probabilistic Approach - Statistical analysis of prediction 

To examine the performance of the proposed method, sub-groups consisting of 400 

models were randomly chosen (using the MATLAB function rand), for 4 times, from the 

original 2500 random prostate models. All randomly chosen models then went through 

the proposed method and the predicted tumor nodules were checked with the ‘true’ 

nodules in those prostate models. Results (which will be discussed in Section 5.6) showed 

that 4 randomly chosen sub-groups have consistent behaviour, in line with the entire 

dataset as illustrated in Fig. 5-4. Furthermore, to assess the effectiveness of the proposed 

method, three indices are used here, as 

Index1 = 𝐸𝑑(𝐶𝑝, 𝐶𝑇𝑁 ) / (𝐷/2)                                                                                     (5-3) 

Index2 = 𝐴𝑇𝑝 / 𝑇𝑁𝐴𝑟𝑒𝑎                                                                                                   (5-4) 

Index3 = 
𝑃𝑁𝐴𝑟𝑒𝑎 −  𝐴𝑇𝑝

𝑃𝑁𝐴𝑟𝑒𝑎 
                                                                                                    (5-5) 

where 𝐸𝑑 is the distance between 𝐶𝑝,, the centre of the predicted nodule, and 𝐶𝑇𝑁 , the 

centre of the PCa nodule. D denotes the diameter of the PCa nodule. 𝐴𝑇𝑝  denotes the 

overlap area between 𝑃𝑁𝐴𝑟𝑒𝑎 , the area of predicted nodule, and 𝑇𝑁𝐴𝑟𝑒𝑎, the area of PCa 

nodule. As a result, Index1 represents the accuracy of the predicted centre of the tumor 

nodule. The lower the Index1 is, the more accurate the predicted location is. Index2, on 

the other hand, represents the ‘true positive’, i.e. the correctly identified nodule area, in 

relation to the total nodule area, whilst Index3 represents the ‘false positive’, i.e. the 

incorrectly identified healthy area, in relation to the total predicted area. Index1 is 

independent of the chosen probability threshold, since the centre of the predicted nodule 

is not affected by it. However, both Index2 and Index3 could be affected by the probability 

threshold therefore their sensitivity will be analysed here.  
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Fig. 5-8. Illustration of the predicted model performance in the tumor nodule parameters 

estimation such as position, depth and size.   

 

Statistical analysis of results for one randomly chosen sub-group (400 models) is 

presented here in Fig. 5-9. Firstly, for the Index1 (Fig. 5-9 (A)), the majority of predicted 

nodules has their centres within the true tumor nodule (Index1<1). More interestingly, its 

accuracy depends highly on the size of the nodule. For almost all tumor nodules in a 

diameter greater than 10mm, the predicted centre is correctly located within the tumor 

nodule, whilst for smaller nodules the accuracy of the prediction centre is considerably 

worse. It is also worth noting that there are a few outliers with Index1 greater than 4, due 

to the small nodules (<5mm in diameter) present in those cases. Secondly, for the Index2 

(Fig. 5-9 (B)), the probability threshold is shown to have significant impact, since a 

greater threshold would result in a smaller predicted tumor area, leading to worsened ‘true 

positive’. Finally, similar behaviour can be seen for the Index3 (Fig. 5-9 (C)), however 

leading to an improved ‘false positive’. Therefore, one needs to choose the probability 

threshold carefully in order to balance between the ‘true positive’ and ‘false positive’. For 

all the following results, a probability threshold of 0.5 will be adopted. 
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Fig. 5-9. Statistical analysis of one randomly chosen sub-group (400 models) using three different 

indices. Box indicates 25/75 percentiles and whiskers 10/90 percentiles. 

 

5.6    Probabilistic Approach - Complications and Detectability limits 

There are several complications that need to be discussed here. Firstly, the force profile 

may contain more than one peak along the left-right axis, indicating the existence of more 

than one detectable cancerous nodule in prostate. Two representative examples are shown 

in Figs. 5-10 (B-D), one where the force profile contains two identifiable peaks given rise 

by two separate nodules (Fig. 5-10 (C)), and the other one where the force profile only 

contains one single peak but given rise by two adjacent nodules (Fig. 5-10 (A)). It is 

evident that when two nodules are located far away from each other along the left-right 

axis, two separate nodules can be predicted given rise by two distinct peaks. However, 

when two nodules are too close to each other, only one peak can be identified in the force 

profile, leading to prediction of a single tumor nodule. Secondly, cancerous nodules may 

also have spatial dispersion along the anterior-posterior axis (i.e. along the vertical 

direction in Fig. 5-1), hence the influence of nodules located deeply in the force profile 

may be ‘shielded’ by those shallow ones. Such effect is illustrated in Figs. 5-10 (E-F), 

where one smaller nodule is located on top of the other larger one. In this case, although 

the horizontal location is correctly predicted because of a single peak, the prediction is in 

fact affected by both nodules and the shallower nodule could somewhat shield the deeper 
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one, resulting in under-prediction over the deeper nodule. Nevertheless, the proposed 

method is still capable of predicting the nodules in all three examples, with a good level 

of accuracy as indicated by the probability map.  

 

 

 

 

Fig. 5-10. Three representative examples, demonstrating the effects of the nodule dispersion along 

the left-right and anterior-posterior axes on the predicted results, respectively. The top of the 

figure shows the force profiles and peak(s) identification for a case of two adjacent cancerous 

nodules (A), a second case where the nodules are located far away from each other along the left-

right axis (C) and a case where one smaller nodule is located on top of the other larger one (E). 

The bottom of the figure shows the prediction of the nodule(s) existence into the prostate domain 

for the three cases.  

 

 

Among all 2500 cases studied here, some cancerous nodules were not detected using the 

proposed methods, due to the force profile with a sharpness less than 5 not accepted as a 

peak. Due to the ‘coupling effects’ between the size and depth of a cancerous nodule on 

the force peak that it may cause, the detected and non-detected cases, for 4 subgroups, are 

plotted in Fig. 5-11 against these two nodule parameters. Interestingly, while both 

parameters show certain influences on the detectability of the cancerous nodule, there is 
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clear distinction between detected and non-detected cases. The nodules which show a 

radius higher than 8mm are detectable. However, if the nodules are located near the 

surface, there are highly chances of detection even for small nodules. More importantly, 

it is evident that all nodules located more deeply than 20mm from the probed posterior 

surface are not detectable regardless their sizes. The uncertainty in the classification 

increase in the zone where the nodules show radius less than 8 mm and depth between 

7.5 and17.5mm. It is evident an overlapping for the detected not-detected cases which is 

caused by the interplay between the nodule size and depth in the reaction force values 

obtained by probing the soft tissue. 
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Fig. 5-11. Combinations of nodule size and depth (for 4 subgroups of the dataset) which cause a 

peak in the reaction force profile with ratio H/W less than 5 (not detection of the inclusion) and 

ratio higher than 5 which is the detection threshold for classifying prostatic tissue slices and then 

be able to apply the predictive model to characterize the PCa nodule parameters. 

 

5.7    Concluding remarks 

In this chapter, a novel predictive model based on a probabilistic approach was developed. 

The predictive model provides a classification between soft tissues with and without the 

inclusion of stiff nodules and the estimation of the nodule parameters such as their 

position, depth and size. The predictive model was first presented using simplified FE 
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prostate models. To demonstrate the capability of the method in nodule identification two 

examples were presented. A prostate model with a nodule near the posterior surface and 

another case where the nodule had a similar size but was located more deeply. Therefore, 

the peaks showed diverse characteristics and sharpness values. The results showed how 

the predictions correctly captured the nodule location for both cases. However, the depth 

of the PCa nodule clearly demonstrated an important role in influencing the predictions 

from the proposed methods.  

A probability threshold was proposed for the binary identification of the cancerous 

regions in the prostate domain. The results for a threshold of 0.1 showed a good level of 

accuracy in the tumor area identification, however, the method may overestimate the 

nodule size. In contrast, for a threshold of 0.7, the accuracy in the tumor nodule 

identification decreases and the prediction of non-cancerous area improves. Therefore, 

the threshold can be seen to have a ‘two-way effect’, and it is possible to find a value for 

it in order to yield optimal clinical outcome.  

The threshold might be optimized by exploiting the magnitude H. A higher magnitude is 

a sign of a cancerous nodule located in the posterior surface with a larger size. Therefore, 

further studies are needed to find out a robust correlation between the size of the 

cancerous nodules and the magnitude H. Ideally, for a higher H/W and H the threshold 

should decrease with the purpose of increasing the area of the predicted nodule.  

The threshold could be chosen based on the prediction of the nodule depth. If the 

prediction suggested the presence of a cancerous nodule located within 12mm from the 

posterior surface, the probabilities of a nodule with a size lower than 5mm are low as 

shown in Fig. 5-11. Therefore, in this case, the threshold should be chosen towards 

smaller values to increase the area of the predicted nodule. 
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The optimal threshold might be determined by combining the results of the predictive 

model with medical imaging such as MRI and Ultrasound. For instance, a region of 

interest can be identified using the medical imaging and based on that identify the 

threshold of the prediction which minimizes the uncertainties in the cancerous nodule 

detection as a combination of the outcomes obtained by both diagnostic techniques [144]. 

In the final section, two cases of method complications were investigated, including one 

case where two PCs nodules area ‘overlapping’ along the left-right axis and another one 

where one nodule is ‘on top of’ the other one. Results demonstrated a certain level of 

errors in the predictions and this will be further investigated in the following chapter using 

realistic models reconstructed from histological images. Furthermore, the method showed 

a limitation in identifying tumor nodules which are located deeply into the prostate 

domain. The detectability is heavily influenced by the nodule depth, particularly for those 

with a small radius between 2 and 8 mm. Moreover, the results showed that a nodule with 

a depth higher than 20 mm from the posterior surface is undetectable. 

In conclusion, the proposed predictive model showed promising potential in identifying 

the existence of tumor nodules in prostate, based on the instrumented probing data 

obtained from FE simulations using simplified prostate models, and more importantly, 

was capable of predicting, on a probability basis, the location, size and depth of PCa 

nodules. There are certain limitations, particularly for those PCa nodules that are small, 

located far from the posterior (probing) surface and have a high degree of dispersion. 

Therefore, in the next chapter, the predictive model will be assessed using a large dataset 

of models reconstructed from histological images for further study.  



107 
 

Chapter 6 
Validation of Predictive Methods – Stage 1: Models 

Reconstructed from Histological Images and FE-

Simulated Instrumented Probing  
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6.1    Summary 

In chapter 5 the predictive model was developed and assessed using simplified prostate 

models and PCa nodules. To further assess the effectiveness of this model, in this chapter, 

a dataset of models reconstructed from the histological image will be used. The reaction 
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force profile will be obtained from simulating the palpation procedure using FE method. 

The capability of the proposed methodology will be assessed at the patient, tissue and 

nodule levels, respectively. Furthermore, the detectability limitation as a function of the 

nodule depth and size will be estimated. Finally, statistical analysis regarding the 

accuracy in predicting the PCa nodule position, depth and suspicious area will be 

presented. 

6.2    The prostate models - histology and simplifications 

Based on the histology images, FE models were reconstructed, based on the outlines of 

the prostate and tumor nodules. The mechanical probing was carried out on the upper side 

of the model, which is the posterior surface of the prostate (Fig. 6-1). For the boundary 

conditions, the work produced by Mousavi et al. [140] has been taken as reference. 

Mousavi et al. suggested a prostate model reconstructed using elastography images. The 

prostate model was surrounded by a homogenous soft tissue which was constrained due 

to the presence of the pubic bone. The thickness of the surrounding tissue was 1.5 times 

greater than the prostate so that the force values were not influenced by the rigid 

constraints as the stress decreases rapidly with the distance from the probing points. 

Therefore, the prostatic slices were embedded in a ‘box’ of fascia (Fig. 6-1). Moreover, 

the fascia tissue was extended of 15 mm in both directions of the model in order to mimic 

the mechanical ‘interaction’ with the tissues surrounding the prostate in-vivo. The model 

is constrained on the left and right edges and at the anterior surface, as illustrated in Fig. 

6-1.  The constraints allow zero displacement conditions.  



109 
 

 

Fig. 6-1. Schematic of the histology-based model. 

 

 

The instrumented probing was performed using FE method at 25 points on the posterior 

surface and the reaction force was recorded at the indentation depth of 9mm. The distance 

of 2mm between the probing points allows generating a reaction force profile. The 

material properties for the cancerous nodule and healthy matrix and the quality of the 

mesh were the same to those described in Chapter 5 section 5.2 so that the reproducibility 

of the analysis was guaranteed. The Fascia was modeled as a hyperelastic, homogeneous 

and nearly incompressible material. The Young’s modulus was assumed of being 15 kPa 

and the neo-Hookean model was used for fitting against the elastic properties of the 

material [20]. 

6.3    Predictive model – peak characterization in the histology 

The histological dataset investigated here includes 106 images which were obtained from 

30 patients. For each prostate, three or four prostatic slices were cut along the anterior-
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posterior plane and sent for histological examination. Some slices were classified as 

healthy ones, i.e. without the presence of PCa nodules. For the PCa area fraction among 

all histological slices, its interquartile range is among 8% and 28%, with a mean value of 

15% (Fig. 6-2(A)). Most of the PCa nodules are located around the posterior surface of 

the prostate. The 75% of the nodules are located within 15 mm from the indented surface 

(Fig. 6-2(B)). 

 

 

Fig. 6-2. Data of PCa area fraction and distance of the PCa nodule from the posterior surface. A) 

Box plot for the PCa area fraction which shows an interquartile range among 8 and 28%, a median 

of 15% and the upper and lower whiskers of 3 and 42%. B) Box plot for the PCa nodule depth 

which shows an interquartile range among 3 and 15 mm, a median of 6 mm and the upper and 

lower whiskers of 22 and 2mm. 

 

 

Using the same predictive methods as presented in the previous chapter, the identification 

of a PCa nodule started when a peak was identified in the reaction force profile with a 

sharpness ratio, H/W, greater than 5. Fig 6-3 shows ‘Example 1’, where a PCa nodule is 

identified from the histology. As a result, the sharpness value, H/W, was higher than the 

detection threshold (5) and the predictive model correctly classified it as condition 

positive (i.e. presence of PCa nodule). On the other hand, ‘Example 2’ shows another 

prostatic slice which is healthy (i.e. with no tumor nodule).  As a result, the sharpness 
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value of the peak was lower than the detection threshold, leading to a correct prediction 

of healthy prostatic slice. 

 

 

Fig. 6-3. Results of the probing procedure performed in two histology-based models. The Height 

(H) and Width (W) of the peak were estimated using the MATLAB function peak8. 

  

 

                                                           
8 https://uk.mathworks.com/help/signal/ref/findpeaks.html 
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6.4    Prostatic tissue classification – sensitivity and specificity  

Following the strategy described in the previous section, the complete data-set of the 

histological images was evaluated with the purpose of quantifying the capability of the 

predictive model in identifying the presence/absence of cancerous nodule in the prostatic 

slices and estimating the sensitivity and specificity of the method. Tab. 6-1 shows the 

results of the predictive model for binary classification, at two different levels, namely 

histology slices and PCa nodules. The histological examination suggested that 86 

prostatic slices showed PCa nodules (i.e. condition positive) and 20 slices were classified 

as healthy, with no tumor (i.e. condition positive). The proposed methods yielded a 

sensitivity of 91% and specificity of 100%, although only a low number (n=20) of 

condition negative samples were considered in this study. However, the predictive model 

was incapable of detecting the presence of PCa nodules in 8 slices.  Therefore, those slices 

were classified as false negative. It should be noted that all slices with negative condition 

(healthy) were correctly classified. For all these cases, the force profiles were rather flat 

and their sharpness was less than the threshold (5) as described in Fig. 6-3 Example 2. On 

the other hand, 45% of the PCa nodules (95 out of 213) were correctly identified. Among 

55% of PCa nodules that are not identified, in a majority of those cases (80%) the PCa 

nodules appeared in the same slice where at least one other peak in the reaction force 

profile was identified. In other words, although these nodules were missed from the 

identification process, the slices they are in were still correctly identified.  
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Table 6-1. Statistical analysis of the histology-based prediction, on two classification levels, i.e. 

histology slices and PCa nodules. 

Total histology slices: 106  

Condition Positive – PCa in histology:  

86 (81%) 

Condition Negative – no PCa in 

histology: 20 (19%) 

True Positive 

 

78 

False Negative 

 

8 

False Positive 

 

0 

True Negative 

 

20 

Sensitivity 91% 

 

Specificity 100% 

  

 

Total PCa nodules: 213 

Condition Positive – PCa: 213 

True Positive 

 

95 (45%) 

False Negative 

 

118 (55%) 

/ At least one other 

PCa nodule 

detected in same 

slice 

 

94 (80%) 

No other PCa 

nodules detected in 

same slice  

 

 

24 (20%) 

 

6.5    Size and depth of tumor nodule – limitations in PCa detection  

The results of the predictive model discussed in the previous section and showed in Tab 

6-1 were strongly influenced by the parameters of PCa nodules such as depth, size and 

geometry. 

Fig. 6-4 shows the detectability limits of the PCa nodule with respect to its size and depth 

(i.e. distance from the posterior surface). It should be noted that the sensitivity increased 

significantly in detecting nodules with an area larger than 100 mm2 and a depth smaller 

than 9 mm (Figs. 6-4(A-B) first column). However, decoupling the effect of the nodule 

size and depth is still challenging. For the group characterized by the not-detected PCa 

nodules, the statistical analysis showed that the nodules with size within 10 and 80 mm2 
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and distance from the posterior surface with an interquartile range of 10 and 22 mm were 

classified as false negative (Figs. 6-4(A-B) second column). The third column of the 

figure shows the statistic of the group characterized by the detected PCa nodules. In this 

case, the PCa nodules which show an area within 30 and 200 mm2 and a depth between 

0.98 and 9 mm were correctly identified. 

 

 

Fig. 6-4. A statistical analysis which shows the results of the predictive model in identifying the 

presence of PCa nodules and the ranges of the nodule size (A) and depth (B) which define the 

sensitivity of the method. A) Box plot for the PCa nodule area which shows for the Data-set of 

the not-detected nodules an interquartile range among 12 and 40 𝑚𝑚2, a median of 20 𝑚𝑚2 and 

the upper and lower whiskers of 70 and 10 𝑚𝑚2. For the Data-set of the detected nodules an 

interquartile range among 30 and 180 𝑚𝑚2 , a median of 70 𝑚𝑚2  and the upper and lower 

whiskers of 350 and 12 𝑚𝑚2. For the complete Data-set an interquartile range among 25 and 110 

𝑚𝑚2, a median of 40 𝑚𝑚2 and the upper and lower whiskers of 230 and 20 𝑚𝑚2. B) Box plot 

for the PCa nodule depth which shows for the Data-set of not-detected nodules an interquartile 

range among 9 and 21 mm, a median of 14 mm and the upper and lower whiskers of 24 and 4 

mm. For the Data-of the detected nodules an interquartile range among 1.5 and 3 mm, a median 

of 2 mm and the upper and lower whiskers of 9 and 2 mm. For the complete Data-set an 

interquartile range among 3 and 15 mm, a median of 6 mm and the upper and lower whiskers of 

22 and 2 mm. 
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In addition to the statistical analysis presented above, Fig. 6-5 demonstrates the limits for 

the PCa nodule identification as a ‘function’ of the nodule depth and size. The majority 

of PCa nodules with area higher than 125 mm2 were detected. However, the nodules that 

are located near the indented surface were detected even for cases with a small area. 

Moreover, the PCa nodules with a depth higher than 9 mm were not-detectable. It is worth 

noting that, the interplay between nodule depth and size and the ‘uncertainty’ introduced 

by the tumor nodule geometry may cause an overlap between the data of the detected and 

non-detected PCa nodules. 
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Fig. 6-5. Results of the predictive model in identifying the presence/absence of tumor nodules as 

a function of the nodule depth and size. 
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6.6    Summary of results for patients  

Table 6-2 summarises the results of the prediction according to patient number. There is 

a total number of 19 patients who were included in the following analysis, excluding the 

‘other patients’ in the last row where the histological slices cannot be identified to match 

the patient number. In total, 72 histological slices were examined. As mentioned above, 

the patients were already diagnosed with PCa and the histological examinations identified 

the outlines of the prostate and PCa nodules, making it possible to reconstruct FE models 

as shown in Fig. 6-1.  The number and geometry of PCa nodules in those slices could 

vary significantly -There were slices which showed only one single PCa nodule with a 

large area and others where the ‘degree of dispersion’ of the PCa nodules was higher.  

Nevertheless, the results showed a good level of accuracy in predicting the PCa nodules. 

The predictive model was capable of identifying 80% of tumor nodules which were 

located near the posterior surface of the prostates. However, the nodules located near the 

anterior surface were undetectable. As a result, the numbers of slices classified as ‘true 

positive’, ‘true negative’ and ‘false negative’ were 48, 20 and 4, respectively. It should 

be noted that no false positive, i.e. prediction of tumor nodule when the slice is in fact 

healthy, exists in the predicted results. In the analysis, the patients were classified as 

‘positive’ if at least one PCa nodule was detected from one of the slices. As a result, only 

one patient (P11) was classified as false negative and all 3 PCa nodules were located near 

the anterior surface, undetected.  
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Table 6-2. Results of the prediction which classify patients with and without the presence of 

cancer. 

 Number of 

prostatic slices 

Tumor nodule in 

the posterior 

surface 

Tumor nodule in 

the anterior 

surface 

Patient 4 3 (TP=1, TN=2) 1 (detected) 0 

Patient 5 4 (TN=4) 4 (detected) 1 (not detected) 

Patient 6 5 (TN=5) 14 (6 detected,  

8 not detected) 

20 (not detected) 

Patient 7 4 (TP=3, TN=1) 3 (detected) 6 (not detected) 

Patient 11 3 (FN=3) 0 3 (not detected) 

Patient 13 4 (TP=3, TN=1) 4 (detected) 0 

Patient 14 5 (TP=5) 5 (detected) 2 (not detected) 

Patient 15 3 (TP=1, TN=2) 1 (detected) 1 (not detected) 

Patient 16 4 (TP=4) 9 (6 detected,  

3 not detected) 

7 (not detected) 

Patient 17 3 (TP=3) 5 (3 detected,  

2 not detected) 

2 (not detected) 

Patient 18 5 (TP=4, TN=1) 10 (9 detected,  

1 not detected) 

2 (not detected) 

Patient 19 4 (TP=2, TN=2) 2 (detected) 0 

Patient 20 4 (TP=2, TN=2) 3 (detected) 0 

Patient 21 4 (TP=4) 8 (6 detected,  

2 not detected) 

1 (not detected) 

Patient 22 4 (TP=4) 6 (5 detected,  

1 not detected) 

1 (not detected) 

Patient 23 4 (TP=3, FN=1) 4 (3 detected,  

1 not detected) 

1 (not detected) 

Patient 24 5 (TP=5) 5 (detected) 3 (not detected) 

Patient 25 4 (TP=4) 6 (5 detected,  

1 not detected) 

1 (not detected) 

Other Patients 34 (TP=30, FN=4) 42 (24 detected, 

18 not detected 

30 (not detected) 
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In summary, the predictive model is capable of classifying prostates based on FE-

simulated results using models reconstructed from histological slices. Once again, PCa 

nodules located near the anterior part of the prostate were challenging to detect using the 

proposed method. The method can identify the majority of PCa nodules located near the 

posterior surface and/or with a large volume.  

6.7    Prediction of PCa nodule parameters 

Fig. 6-6 shows the results of the prediction for two exemplar models. The reaction force 

profile shows a total number of three peaks as a direct consequence of the presence of the 

PCa nodules. Since all three peaks have sharpness values, H/W, greater than 5, they are 

identified as PCa nodules. The probability distribution functions were chosen, 

accordingly to their H/W value, following the method described in Chapter 5 section 5.3. 

Using the probability-based method as presented in Appendix A, the probability 

distribution of the PCa nodule is projected onto the domain of prostate models, where the 

nodule is represented by the solid red circle as classified by the pathologist and the 

predicted probability is illustrated using the colorbar along left-right and anterior-

posterior axes. Each value of the probability at a given point indicates the likelihood of 

that point being cancerous.  
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Fig. 6-6. Two examples of histology-based models, including the force profile and the predictions 

in 2D with illustrated probabilities. A) Force profile and peaks identification for a histology-based 

model which shows a cancerous nodule near the indented surface (on the left of the prostate 

model) and a second cancerous nodule located deeper (on the right of the prostate model). C) 

Force profile and peak identification for a histology-based model which shows a cancerous nodule 

near the indented surface (on the left of the prostate model) and two cancerous nodules with a 

smaller size located in the anterior part of the prostate model. B-D) 2D prediction of the nodule(s) 

identified on the plan depth and position of the histological slices. 

 

 

Example 3, in Fig. 6-6 (A-B), shows PCa nodules located on the left and right edges of 

the prostatic slice. The nodules have similar sizes (115 and 124 mm2), however, the 

distance between the posterior surface and the edge of the PCa nodule located on the left 

is 0.1 mm, compared to 7 mm for the large nodule on the right. As mentioned previously, 

the depth of the PCa nodule could greatly influence the peak sharpness. As a result, the 

ratio H/W was found to be significantly greater for the case where the PCa nodule is 
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located closer to the posterior surface. However, the predictive model estimated the 

nodule position, depth and suspicious area with a good level of accuracy for both cases. 

The sharpness ratio caused by the nodule (left hand side) in example 3 is 64, leading to a 

predicted probability map with a large area that has a probability close to ‘1’. Instead, the 

peak on the right-hand side in example 3 is less prominent (H/W=15.2) and peak force is 

also lower. Therefore, the probability map has a much smaller area that has a probability 

close to ‘1’, indicating that the nodule has a smaller influence in the force peak with less 

certainty in the prediction.  

On the other hand, example 4 in Fig. 6-6 has a PCa nodule with a depth of 5.4 mm and 

an area of 105 mm2. The difference between the example 3 and 4 is the presence of two 

PCa nodules located near the anterior surface of the prostatic tissue in example 4 (depths 

of 28.8 and 25.5 mm and areas of 28.7 and 13.7 mm2, respectively). As a result, the 

method was incapable of detecting the presence of the two small nodules, and this again 

echoed the findings of limitations in detection capability as presented in Chapter 5 Section 

5.6.  

6.8    Accuracy of predictions 

Fig. 6-7 shows the statistical analysis for the prediction accuracy of all histology-based 

models considered. To assess the accuracy, two indicators, namely Index1 and Index2, 

which were defined in Chapter 5 section 5.5, were evaluated. Index1 is defined as the 

centre-to-centre distance and Index2 represents the ‘true positive’, i.e. the correctly 

identified nodule area, in relation to the total nodule area (refer to Figure 5-8). For Index1, 

the centre of the PCa nodule is calculated using the centre of mass, due to its irregular 

shape. It can be seen that a high level of accuracy was achieved, where the majority of 

predictions has a centre-to-centre distance less than 8mm (Fig. 6-7 (A)). For Index2, its 
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interquartile range is among 0.4 and 0.7, with a mean value of 0.5 (Fig. 6-7 (B)). It should 

be noted that the probability threshold here was chosen to be 0.5, following the analysis 

performed in Chapter 5 section 5.3. 

 

Fig. 6-7. Statistical analysis of the accuracy in predicting the position, depth and suspicious area 

of the cancerous nodules using two different indices. A) Box plot for the Index1 which shows an 

interquartile range among 3.5 and 6.5 mm, a median of 5 mm and the upper and lower whiskers 

of 2 and 8 mm. Box plot for the Index2 which shows an interquartile range among 0.3 and 0.7%, 

a median of 0.5% and the upper and lower whiskers of 0.2 and 0.8%. 

 

 

6.9    Complications 

Fig. 6-8 shows three examples of histological images where the choice of the models 

aimed to describe the limitations of the prediction. Example 5 shows a nodule which is 

small in area (size of 28.4 mm2 and depth of 1.8 mm) and other two which are adjacent 

along the left-right axis (size of 22.3 and 16.72 mm2, depth of 4 and 2.9 mm). As 

mentioned in Chapter 5 section 5.6, the predictive model may have a poor accuracy in 

identifying tumor nodule with these features. Therefore, the accuracy in predicting the 

PCa nodule position, depth and suspicious area was significantly lower as shown in Fig. 

6-8(B). 
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Fig. 6-8(C) shows a PCa nodule located near the posterior surface but with a widespread 

along the left-right axis of the prostate (size of 214.1 mm2 and depth of 0.75 mm). 

Therefore, the reaction force profile does not show a very ‘sharp’ peak (H/W=19.9), 

leading to a nodule located deeply in the prostate. The geometry justified the losing in 

predicting accurately the tumor nodule features as visible in Fig, 6-8(D). 

Fig. 6-8(E) shows a PCa nodule with an extremely large volume (size of 351.6 mm2 and 

depth of 0.7 mm). As seen in Fig. 6-8(F) the prediction of the cancerous area e was 

significantly underestimated. 

Interesting, the variation of the magnitude H in three cases. Patient 21 shows for the peak1 

a magnitude H of 2770 mN which is caused by the cancerous nodule with size 28.4 mm2. 

However, Patient 17 and Patient 14 shows a higher magnitude H (3300 and 3800 mN, 

respectively) which is caused by a cancerous nodule with size of 214.1 mm2 and 351.6 

mm2, respectively. It should be noted that the cancerous nodules in the three cases are 

located near the indented surface. Therefore, it might be possible to find a correlation 

between the size of the cancerous nodule and the magnitude H, which might improve the 

accuracy of the predictive model in distinguishing nodules with diverse sizes. 
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Fig. 6-8. Three representative examples, demonstrating the limitation of the predictive model in 

estimating the cancerous nodule features such as position, depth, and size. The top of the figure 

shows the force profiles and peak(s) identification for a histological-based model with a small 

cancerous nodule (on the left of the slice) and other two which are adjacent along the left-right 

axis (A), a second model where the cancerous nodule widespread along the left-right axis (C) and 

a model where the cancerous nodule shows an extremely large volume compared with the other 

two cases (E). The bottom of the figure shows the prediction of the nodule(s) existence into the 

histological slice domain for the three cases. 

  

6.10    Concluding remarks  

The chapter further examined the capability of the predictive model in identifying and 

quantifying PCa nodules based on simulated palpation force profile. A total of 106 

histological slices were used to reconstruct prostate models and the proposed probability-

based predictive methods were applied to estimate the probability distributions of the 

existence of PCa nodules. The results showed a good level of sensitivity (91%) and a high 

level of specificity (100%, potentially due to the nature of the dataset). It has been shown 

that, once again, despite of a high proportion of correct predictions among all PCa 

nodules, the majority of undetected nodules were those located far away from the 

posterior surface. Moreover, the statistical analysis showed the ‘certainty’ in nodule 
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identification could increase significantly when the tumor nodules have a size over 125 

mm2 and located within a depth of 9 mm from the posterior surface.  

In conclusion, the predictive model showed promising sensitivity and specificity as well 

as the accuracy in prediction in terms of the size and depth of PCa nodules. All the probing 

force profiles used in this chapter, as aforementioned, were from FE simulations. In the 

next chapter, as a final stage, the predictive model will be validated using instrumented 

probing data acquired from ex vivo experimental measurements.  
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7.1    Summary  

In Chapters 5 and 6, the predictive method for detecting and characterizing PCa nodules 

has been presented. The method requires the reaction force profile from probing the 

prostate using instrumented palpation. Therefore, the predictive model can work with a 

deployable medical device [19], with the aim of providing quantitative and objective 

identification of PCa nodules. The method has been tested using simplified prostate 

models in Chapter 5 and histology-based models (with simulated FE results) in Chapter 

6.  The results for binary classification of PCa nodules, based on sensitivity and specificity 
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outcomes, were promising. Furthermore, the estimation of the PCa nodule parameters 

such as position, depth and size has also shown a high degree of accuracy.  

In this chapter, the capability of the predictive model will be assessed, at a final stage, 

using the experimental measurements obtained by instrumented probing of ex-vivo 

prostates. Data analysis similar to what has been carried out in Chapters 5-6 will be 

repeated here.  

7.2    Instrumented probing and histological study 

The palpation device exploited for probing the ex vivo prostate, as shown in Fig. 7-1, was 

designed to work with a Force-Resistor Sensor (FSR) of 10mm in diameter [19]. The 

device was placed onto a loading stage with three-dimensional motion control. The data 

from the sensor were acquired using a data-acquisition (DAC) hardware system and 

process digitally exploiting a LabVIEW interface. When a contact between the posterior 

surface of the prostate and the probe was identified, a vertical displacement of 8mm was 

applied along the Z-direction and the force feedback data was acquired at that depth.  

The ex-vivo probing procedure was performed along the posterior surface of the prostate, 

shortly after radical prostatectomy using laparoscopy surgery, at an array of probing 

points, as illustrated in Figs. 7-1 (C-D). A minimum of 6mm distance was left between 

two probing points to avoid overlapping between two consecutive measurements. After 

the measurement, surgical clips were used in each row for permitting the histological 

examinations of the columns where the mechanical measurements were performed. A 

planar section of the prostatic tissue marked with the surgical clips was collected and sent 

for the histological examinations. The prostatic slices were stained using standard H&E 

technique, followed by patho-histological study, where the outlines of the cancerous 

tissues were determined by a consultant pathologist. As a result, a total number of 9 
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prostates were included in this study, each having 36-42 number of probing points with 

the histological examination. 

 

 

 

Fig. 7-1. The experimental and sectioning methods. A) The instrumented probing stage, allowing 

the movement of the probe and performing the probing at a certain depth of the whole prostate, 

which is located on a rigid testing platform with its posterior surface facing upwards; B) The 

prostate marked with the threads and clips, permitting the histological exams of the columns 

where the probing was performed; C) the probing sites and the numbering matrix used to divide 

the posterior surface in columns; and D) the histological slice ‘under’ a series of probing points 

along the left-right axis 

 

 

7.3    Experimental Validation – a clinical feasibility study 

All probing data from experimental measurements on 9 patients were collected, as 

illustrated in Fig. 7-2 (A). All probing forces at the depth of 8mm ranged between 0 to 

3.2N. For the tissue columns directly underneath each probing point obtained from the 
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histology images, their pathological conditions are also shown in Fig. 7-2 (B). It should 

be noted here that the tissue column is believed to be ‘cancerous’ if PCa is identified in it 

from histology, regardless of the tumor’s size and depth. As data suggests, using the 

values of probing forces themselves, we are unable to effectively distinguish the 

cancerous ‘columns’ from the non-cancerous ones. This, once again, highlights the 

complexity of nodule identification and the necessity of employing methods other than 

relying on the probing force at a single point.  

 

  

Fig. 7-2. Experimental data of probing forces classified by their (A) patient number and (B) the 

pathological conditions of the ‘tissue column’ directly underneath the probing points (B).  

 

 

All point-wise probing data were then reformatted, for each patient, into force profiles 

along the left-right axis, following the procedures previously described in Fig. 7-1. The 

cubic spline method was used for fitting the probing data along the left-right axis. As a 

result, a total number of 33 force profiles with their corresponding histological slices 

underneath the probing points from 9 patients was analysed using the proposed methods 

to predict the probability distributions of tumor nodules along both axes in the prostate, 

and two representative examples are illustrated below. The H&E stained histology slice 
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E of Patient 24 showed two PCa nodules, outlined in red. Both were identified by the 

proposed methods based on the experimental force profile in Fig. 7-3 (A), and the 

predicted distributions of the ‘PCa existence’ were also plotted along both anterior-

posterior and left-right axes. Interestingly, although two peaks identified from the force 

profile have rather different peak values, they have similar peak sharpness (peak 1 has a 

peak sharpness of 17.70 and peak 2 11.97) that falls into the same division (10<D/W<20, 

as illustrated in Fig. 7-3 (B)), leading to the same probability prediction. For the slice C 

of Patient 21, the histology indicated two PCa nodules, very close to each other. The 

probing force profile, in contrast, showed two identified peaks (sharpness of peak 1 is 

96.78 and peak 2 11.01). The extremely sharp peak 1 resulted in a predicted nodule very 

close to the posterior surface and may be caused by both nodules. Peak 2, however, 

resulted in a predicted nodule that was not recognised as PCa by histology, making such 

prediction a ‘false positive’.  
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Fig. 7-3.  Slice E of Patient 24 and slice C of Patient 21 are illustrated here, as two examples of 

PCa nodule identification. Histology slices, reconstructed outlines of prostate and PCa nodules 

and the predictions were stacked for visualization purpose. A probability threshold of 0.5 was 

used to obtain the predicted PCa nodules (in black). 

 

Fig. 7-4 shows the results of the prediction for the 33 force profiles from the 9 patients. 

As discussed, the prediction was based on the peak characterization. The prediction 

threshold allowed the binary classification of the prostatic slices. More importantly, the 

values of the ratio H/W showed a significant ‘dispersion’. Therefore, the predictive model 

was capable of classifying between PCa nodules which showed diverse important clinical 

parameters such as position, depth and size. As a result, the ratio H/W values fell into a 

diverse division and the probability distribution of the ‘PCa existence’ was obtained 

(Appendix C). It should be noted the improvement in the diagnosis using the predictive 

model against the approach of evaluating the single force values (Fig. 7-2). The results of 
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the reaction force values showed statistical distribution which does not guarantee a 

reliable identification and characterization of PCa as well as the novel methodology.  

 

 

Fig. 7-4. Results of the prediction based on the peak characterization which were obtained by 

probing the posterior surface of the ex-vivo prostates. 

 

7.4    Experimental data – Prediction  

Here we further assess the effectiveness of the proposed methods in identifying the tumor 

nodules, at three different levels, namely histology slices, PCa nodules and patient level 

for binary classification tests. Firstly, the classification test for the histological slices 

(n=33), as shown in Table 7-1, demonstrated the capability of the proposed methods, 

yielding a sensitivity of 96% and specificity of 67%, although a low number (n=6) of 

condition negative sample should be noted. On the other hand, for classification at the 

level of PCa nodules (n=53), 57% PCa nodules were correctly identified, and among 
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those which were not identified, the majority of nodules were classified through the 

identification of at least one other PCa nodules in the same slice.   

 

Table 7-1. Statistical analysis of the prediction, on two classification levels, i.e. histology slices 

and PCa nodules. 

Total histology slices: 33 

Condition Positive – PCa in histology: 27 

(82%) 

Condition Negative – no PCa in 

histology: 6 (18%) 

True Positive 

 

26 

False Negative 

 

1 

False Positive 

 

2 

True Negative 

 

4 

Sensitivity 96% 

 

Specificity 67% 

 

Total PCa nodules: 53 

Condition Positive – PCa: 53 

True Positive 

 

30 (57%) 

False Negative 

 

23 (43%) 

/ At least one other 

PCa nodule 

detected in same 

slice 

 

21 (91%) 

No other PCa 

nodules detected 

in same slice  

 

 

2 (9%) 

 

 

 

In addition to the statistical analysis presented above, the classification outcome was also 

found to be affected by the depth and size of the PCa nodules. Most of the PCa nodules 

located within 10mm (i.e. the depth of d as illustrated in Fig. 5-2 of the Chapter 5 section 

5.3) were correctly identified, as shown in Fig. 7-4 (A) and, in contrast, almost all non-

detected PCs nodules are smaller than 125mm2, i.e. equivalent to a diameter of 12.5mm. 

This result is consistent to the findings illustrated in Figs. 6-4 and 6-5 in the previous 

chapter. When the area and depth of all nodules are plotted against each other, in Fig. 7-
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4 (C), the limitations in detecting PCa nodules can be observed clearly. PCa nodules 

which show an area higher than 125mm2 are detectable. However, PCa nodules which are 

located deeply into the prostatic tissue, with a depth higher than 9mm, are non-detected. 

Moreover, the figure shows a region of overlap between the detected and not-detected 

PCa nodules due to the interplay between the nodule size and depth which influence the 

reaction force measurements. These detection limits are, once again, in line with the 

findings illustrated in Fig. 6-5 in the previous chapter.  
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Fig. 7-5. Statistical distribution of the tumors volume fraction identified in the histological slices 

and their distance from the posterior surface. 

 

 

Table 7-2 shows the results of the prediction at the patient level. The patients were 

classified as Condition Positive (presence of cancer) if the predictive model identified the 

presence of a peak with ratio H/W higher than 5. It should be noted that the study did not 

include patients without PCa. As mentioned, the method was incapable of detecting PCa 
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nodules which appeared in the anterior surface of the prostate. The outcome was 

confirmed by the data which are illustrated in the last column of the table. 

 

Table 7-2. Results of the prediction in classifying presence of PCa at the patient level. 

 Number of 

prostatic slices 

Tumor nodule in 

the posterior 

surface 

Tumor nodule in 

the anterior 

surface 

Patient 15 3 (TP=1, FP=1, 

TN=1) 

1 (detected) 1 (not detected) 

Patient 17 3 (TP=3) 5 (3 detected,  

2 not detected) 

1 (not detected) 

Patient 18 4 (TP=4) 10 (3 detected,  

7 not detected) 

2 (not detected) 

Patient 19 4 (TP=2, TN=2) 2 (detected) 0 

Patient 20 4 (TP=2, TN=1, 

FP=1) 

3 (2 detected, 

1 not detected) 

0 

Patient 21 2 (TP=2) 5 (3 detected,  

2 not detected) 

0 

Patient 22 4 (TP=3, FN=1) 7 (6 detected,  

1 not detected) 

0 

Patient 23 4 (TP =4) 4 (detected) 4 (not detected) 

Patient 24 5 (TP=5) 7 (6 detected, 

1 not detected) 

1 (not detected) 
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7.5    Concluding remarks  

In this chapter, the proposed predictive model was further assessed for the identification 

and characterization of PCa nodules based on mechanical palpation performed on ex vivo 

prostates. The measurements were obtained by probing a whole ex-vivo prostate along 

the posterior surface using a certain point pattern. The number of patients involved in the 

clinical study was 9, who were diagnosed with PCa and underwent total prostatectomy. 

The device recorded the reaction force from the probe at the certain probing depth and 

the histology slices directly under the probing points were also analyzed by a pathological 

consultant. The experimental measurements showed statistical distributions between the 

group of healthy and cancer ‘columns’ with respect to their measured for0ces, and this 

showed that using the force alone cannot guarantee a reliable classification for the 

presence of PCa nodules in the prostate.   

Following the proposed predictive methods in Chapter 6, the capability of the method 

was assessed in predicting the PCa nodules at three levels, namely, histology slices, PCa 

nodules and the patient level. Interesting, the experimental force profiles show values and 

peak shapes which are in agreement with the force feedback obtained by simulating the 

probing procedure. Therefore, the assumption of the stiffness ratio of 2.5 (and 2D FE 

prostate model) might not affect significantly the sensitivity of the predictive model. The 

method showed a correct prediction even for nodules which are small in size, with an 

equivalent radius of 6mm. However, the detection of PCa nodules located in the anterior 

surface of the prostate proved to be challenging. The method was shown to be incapable 

of detecting PCa nodules located deeper than 10mm. It should be noted that the results of 

the prediction are in agreement with the conclusions using the histology-base models, for 

nodules larger than 125mm2
 and with a depth of less than 10mm. The false positive may 

be caused by the not optimal contact between the sensor and the indented surface. The 



138 
 

problem is more evident when the measurements are performed on the edge of the 

prostatic tissues. However, the detection threshold is set for avoiding this type of ‘noise’ 

in the experimental measurements as mentioned in chapter 5 Section 5.3. The number of 

detected PCa nodules was approximately 60%. For each of them, the predictive model 

provided the probability of the nodule ‘existence’ which allowed the estimation of the 

nodule position, depth and size, which are important clinical parameters for PCa 

diagnosis.  

To summarize, the method provides a quantitative and objective classification of the PCa 

nodules, however, there are a number of limitations. One limitation of the study is in the 

number of patients, which could be improved into the range of sub-hundreds for 

improving the effectiveness of the assessment. In addition, all patients chosen for this 

study were already diagnosed with PCa. A further analysis is needed to include more 

patients, and more importantly, a patient group that is more representative of the total 

population, i.e. the inclusion of patients without PCa. Therefore, it would be possible 

estimating the maximum H/W value for a healthy sample instead of assuming an 

empirical value for the detection threshold of the predictive model. 

The mechanical palpation in the clinical study was performed ex-vivo which means that 

the prostate was placed on top of a flat and rigid surface. As a result, the probing depth 

can be chosen and well-controlled. However, during the in-vivo procedure the probing 

depth could be extremely difficult to control and verify, often relying on the experience 

and interpretation of the practitioners. Furthermore, the anatomy of the patients can 

further complicate the in-vivo measurements, and the number of available probing points 

could be limited and the probing depth could vary significantly between patients. 

Furthermore, the reliability in the contact between the sensor and the prostatic tissue can 

vary, which may subsequently influence the performance of the predictive model. Finally, 
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the accuracy of the predictive method can also be affected by artefacts in the force 

measurements which could be caused by the blood perfusion, muscles tension and 

pulsation, all of which were not considered in the current framework. Nevertheless, the 

results showed a sensitivity of 96% and a specificity of 67%,  promising as a starting 

point for future in vivo study 

The current screening protocol often uses a combination of DRE and PSA outcomes. The 

clinicians are guided by those outcomes for identifying cancerous nodules in the prostate 

and deciding if the patient needs further examinations such as biopsy. In some cases, the 

clinician can decide if an MRI scan is necessary prior to biopsy, and the use of MRI is 

currently getting more common in most clinical practices. In this context, the results 

shown by the predictive model coupled with the palpation data presented a certain degree 

of improvement for PCa identification. From previous clinical studies, the DRE and MRI 

showed a sensitivity of 38% and 33.3% and a specificity of 66% and 82%, respectively  

[98]. Therefore, the clinical studies suggested the need for developing a diagnostic 

method which is able of detecting small and/or deeply PCa nodules with the aim of 

improving the diagnosis of PCa, at an earliest possible stage. The proposed method has 

shown a sensitivity and a specificity of 96% and 67% and could be useful to complement 

the existing DRE and MRI procedures. However, the detection of small nodules is still 

challenging, as shown in the results above, since the force profile has a low sensitivity to 

the nodules with small diameter (<5mm).  Furthermore, the prediction is negatively 

affected by the ‘false positive’ which may be caused by the presence of benign condition 

(e.g. BPH) in the prostatic tissue, which is not considered in the current predictive 

framework.  

In conclusion, the results of the novel diagnostic method overcome the accuracy for PCa 

detection in comparison with DRE and MRI techniques even maintaining the same 
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specificity. However, the method is based on instrumented palpation which implies a not 

invasive, safe and inexpensive procedure. As a further novelty, the predictive model 

provides an important clinical parameter for staging cancer and improve the prognosis of 

the patient. Therefore, the method does not replace the TRUS biopsy, however, it might 

be included in the screening protocol in conjunction with the PSA test for helping the 

clinicians in detecting and characterizing PCa and classify patients who need a biopsy. 
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Chapter 8 
Looking back and working forward 
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8.1    Looking back 

The multidisciplinary efforts involving engineering, biological and medical sciences 

allowed the development of novel methodologies and technologies for the ultimate goal 

of improving the effectiveness of current clinical diagnosis of prostate cancer. More 

specifically, in this thesis, the goal was to make sense of the tissue characterisation data 

(e.g. in the format of point probing) and make use of such data for tumor nodule 

characterisation and identification.  Currently there are few methods available for such a 

challenging task, due to the complexity and a high number of unknowns in many aspects 

of the problem. This thesis attempted to achieve such a research objective, by employing 

mathematical and numerical concepts, involving such methods like soft tissue modelling, 

inverse optimisation methods and finite element analysis. A number of methods, verified 

in either practical or clinical contexts, were proposed for different purposes, all 

contributing to the grand picture of ‘prostate cancer diagnosis based on instrumented 

palpation’.   
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The contribution, concluding remarks and potential impact of the thesis are summarized 

as follows: 

Chapter 3: Identification of Tumor Nodules in Soft Tissue – An Inverse Finite-

Element Framework based on Mechanical Characterization 

✓ A computational framework for identifying the presence/absence of tumor nodule 

based on mechanical palpation without a priori knowledge of the patient 

anatomical details, the position or size of the tumor nodule. 

The advantage of this diagnostic framework is the capability of identifying the presence 

of tumor nodule based on measurements of the reaction force values obtained from tissue 

probing using only a small number of probing points. Therefore, it is possible for the 

practitioners to obtain key information such as the presence of a stiff nodule using a less-

invasive and inexpensive approach such as instrumented palpation. The framework, as it 

currently stands, does not require, but can be complementary to, medical imaging 

techniques. Therefore, the impact of such a framework could be a potential assisted 

computational tool for early screening of prostate cancer and patient stratification.  

Chapter 4: Sensitivity Analysis of Inverse FE Framework 

✓ A benchmark for cancer nodule detection using mechanical probing as a function 

of the tumor nodule size, depth and stiffness  

The diagnostic framework, proposed in Chapter 3, showed significant influences of the 

features of tumor nodules such as their size and depth and results showed limitation in 

detecting nodules either located deeply in the prostate (from the posterior surface) or of a 

small size. Therefore, the sensitivity of the proposed methods to those variables needs to 

be investigated. The outcomes allowed defining a benchmark for classifying the 

presence/absence of the tumor nodule as a function of its parameters such as the size and 
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depth. Therefore, the parametric study presented in this chapter was able to quantify the 

‘uncertainties’ in the nodule identification process. The study presented in this chapter 

could serve the purpose of understanding systematically the capability of the proposed 

nodule identification methods and their limitations with the aim of developing new 

strategies for improving the sensitivity of the tissue probing procedure. 

Chapter 5: Probability-based Predictive Methods for PCa Nodule Identification  

✓ A computational framework for identifying and estimating the position, depth and 

suspicious area of tumor nodule(s) in prostate based on a probability method. 

The proposed framework was capable of providing a probability-based prediction for, as 

well as a binary outcome of, the existence of tumor area in prostate, based on the 

characterisation of the peak in the force profile obtained from point-by-point probing.  

Since a deterministic solution cannot be guaranteed due to the nature of the inverse 

problem, a probability-based method was proposed based on randomly-generated models, 

representative of the prostate-tumor system.  The proposed method was tested using a 

subset of the random models in order to understand its sensitivity to a range of parameters 

that are related to the model and the tumor nodules. Illustrative results indicated that the 

method was capable of predicting not only the existence but more importantly the size 

and depth of the tumor nodules, with a good level of accuracy.  

Chapter 6: Validation of Predictive Methods – Stage 1: Models Reconstructed from 

Histological Images and FE-Simulated Instrumented Probing  

✓ A further study based on the methods proposed in Chapter 5, by using a large 

dataset of in silico measurements based on models reconstructed from patient 

histological data.  
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Further from the results presented in Chapter 5, an in-silico dataset of probing 

measurements based on prostate models reconstructed from patient histological images 

was obtained using Finite Element.  The analysis has been performed for evaluating the 

capability of the predictive model in classifying healthy/cancer at three scales: the tumor 

nodules, the prostatic slices and the patients. Furthermore, the accuracy in predicting the 

location and suspicious area of the tumor nodules was evaluated. This study suggested 

the potential of the proposed methods for applying to make sense of the patient probing 

data, which will be examined in the next chapter.   

Chapter 7: Validation of Predictive Methods – Stage 2: Measurements on Ex-vivo 

Prostate  

✓ A further study based on the methods proposed in Chapter 5, by using a large 

dataset of experimental measurements on ex vivo prostates and their 

corresponding histological studies.  

The proposed predictive method was further validated using experimental data obtained 

by performing mechanical probing in ex-vivo prostates. The characterization of the peaks 

identified in the reaction force profiles could lead to classification of the presence/absence 

of the tumor nodules and quantifications of their position, depth and suspicious area in 

the prostate. The validation was performed based on a comparison between the predictive 

model outcomes and the corresponding histological images of the prostatic tissues 

directly under the probing points. The results have shown that the predictive framework 

is able to identify and characterize the tumor nodule(s) in prostate with a level of good 

confidence, however the prediction can be influenced by the following sources of 

uncertainties: 
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• Cancer heterogeneity – tumor nodule(s) position, depth, size, material and 

‘dispersion’ 

• Inter-patient variations – size and geometry and of the prostatic tissues 

• Intrinsic ‘noise’ in the experimental mechanical measurements 

The advantages of the deployable palpation device coupled with the predictive model are 

that the method is not invasive, inexpensive, safe and easy to perform. Therefore, the 

method may be a complementary diagnostic tool for PCa. However, the aggressiveness 

of the cancer is still a challenging task. As future work, it will be interested to develop a 

multiscale model with the aim of couple the Gleason Score with the stiffness values which 

can be estimated by the probing procedure and inverse analysis. 

In conclusion, the predictive model may increase the quality of the PCa identification and 

it can be translated into clinical practice for improving the early cancer detection. 

Furthermore, the clinicians may have a complementary tool for distinguishing in patients 

who need a biopsy and heavy treatments without a priori knowledge of the patient. 

Therefore, the method can decrease the cost for the healthcare.  

As a whole, this thesis presented a number of computational frameworks with predictive 

capabilities that could lead to improved effectiveness of early screening for prostate 

cancer. The proposed methods are complementary to the instrumented palpation strategy 

that is currently being developed by a number of medical centres and research groups 

around the world and are certainly compatible to other recent developments in early 

diagnosis of PCa using methods such as advanced medical imaging [145].  
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8.2    Working forward 

The methodologies, results and conclusions presented in the thesis, as they currently 

stand, have certain limitations, which need further investigations for accelerating its 

translation into clinical practice. 

Heterogeneity in cancer and healthy tissue  

The assumption of homogeneity of the material properties for healthy and cancerous 

tissues adopted in Chapter 3, 4, 5 and 6 presents one of the crucial limitations which might 

cause a source of error in the results. The material properties can vary between regions of 

the same prostate (intra-patient) and between patients (inter-patient). More importantly, 

the stiffness ratio between the healthy tissue and cancer can vary based on the 

aggressiveness grade of cancer. However, in the literature there is a lack of mechanical 

characterization of the prostatic tissues. Therefore, a future investigation on this topic will 

be crucial. For instance, a new protocol should be developed for recording the force vs. 

displacement curves during the probing procedure performed in the posterior surface of 

the ex-vivo prostates. Ideally, the data should be recorded in each probing point until 

reaching the maximum displacement with the aim to evaluate the prostate mechanically. 

The diagnostic frameworks developed in chapter 3 and 5 have as a final goal of being a 

complementary tool for decreasing the number of unnecessary biopsies. Despite this, the 

task is still challenging. Therefore, the outcomes obtained with the computational 

frameworks can be ‘merged’ with outcomes of other methodologies, proposed for 

diagnosis purpose. There are experimental evidences which show how the perfusion, 

diffusivity and vascularization of the soft tissue vary due to the presence of cancer [146]–

[148]. Therefore, the analysis of the variation of these parameters for healthy and 

cancerous tissues can improve the diagnosis. The analysis can be performed using 
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multiscale modelling and histological images. However, for a higher scale analysis, MRI 

and CT images need to be exploited.  

The developing of multiscale modelling for studying parameters as diffusivity at diverse 

scales can be used for treatment purpose. For instance, A model for drug delivery can be 

developed. Likewise, an optimization method for a patient specific treatment for cancer 

in soft tissue can be suggested for avoiding damage in the healthy tissues, which surround 

the cancer, and an optimal dose of the drug for decreasing the pain and weakness of the 

patients [149].  

Material modelling of prostatic tissue  

Most biological tissues, including prostate, are time-dependent material. The viscoelastic 

parameters change in presence of pathological conditions [39], [64] and they can in fact 

also be used as an index for distinguish between presence/absence of cancer. Therefore, 

it is worthwhile to investigate the role of the time-dependent properties of prostate tissue 

on the nodule identification outcome, although the probing measurement in this thesis 

was quasi-static, which to some extent could mitigate this issue. 

Deformation of the probe and its scaling 

The assumptions suggested in Chapter 3, 4, 5 and 6 for modelling the material properties 

and the contact between the probe and the biological tissue surface can be one of the 

limitations of the diagnostic frameworks. In reality the probe may not be a rigid material. 

Furthermore, the contact between probe and tissue may not be completely frictionless. 

The sensitivity of the procedure depends also on the size of the indenter. As shown in 

Chapter 5 a small indenter can increase the horizontal ‘resolution’ of the identification 

process that may lead to improved diagnosis, however it is unclear how small the indenter 

needs to be for optimal outcome (bearing in mind that an indenter that is too small may 
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lead to noise issue in measured data). The role of probing direction is also an important 

factor. In this thesis, the probing direction always followed the anterior-posterior axis, 

however this may not be possible particularly when this method is deployed for in vivo 

measurements.  

Validity and potential changing for the assumptions of the boundary conditions 

In Chapter 6, the predictive model was assessed using the reaction force profile obtained 

by simulating the probing procedure using histological based-models. In those cases, the 

prostatic slices were embedded into a ‘box’ (homogenous soft material) for simulating 

the interactions between the prostate and surrounding tissues (fat, connective tissue and 

muscles). However, the force profiles and the peak shapes were consistent with the 

simulated force feedback, outcome of the random models using for generating the training 

data-set as described in Chapter 5. As a result, the accuracy of the prediction for the 

nodule(s) existence shown a not significant influence by the diverse boundary conditions 

applied in the histological based- and random models. 

In Chapter 7, the predictive model was assessed using experimental force profiles. The 

range of the force values and the peak shapes agreed with the simulated force feedback. 

The sensitivity and specificity of the predictive model were comparable or even higher 

than the diagnostic techniques such as DRE and MRI. Therefore, the assumptions of the 

boundary conditions applied in the prostate models for generating the training data-set 

might influence the force profiles such as the error between the simulated and 

experimental force feedback is reduced. 

However, modelling the interactions between the prostate and surrounding tissues during 

in-vivo probing procedure is not a trivial task. Nevertheless, a comprise between the 

accuracy of the force feedback and the time-consuming of the FE simulations need to be 
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found. Therefore, for improving the accuracy of the predictive model more complex 

boundary conditions could be considered. The rigid boundary conditions and the using of 

the ‘box’ could be overcome by ‘elastic boundary conditions’ which can be implemented 

using the Robin scheme. This method allows modelling the surrounding tissue to a 

sequence of elastic springs with a rigidity α representative of the Young’s modulus of the 

tissue [150].  

Patient data-set 

Although the patient data presented in this thesis consisted of 9 patients, rare among 

biomechanical study of prostate tissue, a larger dataset involving more patients would be 

useful. In particular, because of the nature of the clinical study from which the 

experimental measurements were obtained, most patients have an advanced stage of PCa, 

meaning that the cancerous nodule may have a higher elastic modulus and the size of the 

tumor nodules is often quite large. For patients with PCa at earlier stages, the predictive 

outcome could become worse. However, the results presented in Chapter 7 are still 

encouraging, since the sensitivity and specificity of the proposed method are higher than 

the current DRE and MRI procedures in clinical examination.   
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 Appendix A.1.    Identification Steps of PCa Nodules in 

Prostate Model (Chapters 5-7)  

This appendix is designed to demonstrate the process of identifying the PCa nodules in 

prostate models based on the force profile from point-wise probing, using a probability 

approach. The whole identification process includes a number of steps, which are 

demonstrated as follows: 

Step 0: Identify the peak in the force profile – the sharpness value, H/W, needs to be 

greater than 5;  

 

Step 1: Identify the location of the peak of force profile along the left-right axis – it is 

considered to be the location of the identified PCa nodule; 

 

 

Fig. A.1-1. Step 1 – Identification of PCa nodule location along the left-right axis. 
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Step 2: Once the location of the PCa nodule is identified, the probability of the nodule 

existence is calculated, firstly, along the anterior-posterior axis, using the identified 

location at the posterior surface as the ‘origin’. It should be noted that the probability 

along the anterior-posterior direction depends on both the PDFs of the nodule depth and 

size (see Appendix A.2.1). 

 

 

Fig. A.1-2. Step 2 – constructing the probability of PCa existence along the Y axis, using O as 

the origin. 

 

Step 3: Along the anterior-posterior axis, the centre of the PCa nodule is identified using 

the median value of the probability distribution along the Y-axis. 
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Fig. A.1-3. Step 3 – identification of the centre of depth of the PCa nodule. 

 

Step 4: At the depth of the identified tumor centre, the probability of the nodule existence 

along the left-right axis is calculated, in a symmetrical fashion, using the O’ as the origin. 

Note the probability along the left-right axis only depends on the PDF of the nodule size. 

(see Appendix A.2.2). 

 

 

 

Fig. A.1-4. Step 4 – constructing the probability of PCa existence along the left-right axis, using 

O’ as the origin, in a symmetrical fashion. 
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Step 5: if binary prediction, i.e. the outline of the PCa nodule, is needed, a probability 

threshold, as illustrated as a ‘virtual plane’ below, is adopted and the area along two major 

axes with probability values greater than the chosen threshold is believed to be the area 

of PCa nodule (i.e. the black circle projected onto the bottom plane). 

 

 

Fig. A.1-5. Step 5 – if necessary, binary identification of PCa nodule can be carried out using a 

probability threshold. |How to optimize the value of the probability threshold has been discussed 

in more details in Chapter 5 section 5.4. In this example the probability threshold was 0.5.   
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Appendix A.2.    Framework to predict the probability of PCa 

existence along both the left-right and anterior-posterior axes 

This section describes how the probabilities of the PCa nodule existence along both the 

left-right and anterior-posterior axes are derived. The probability is defined to be the 

likelihood of a given point in the prostate domain being a part of the PCa nodule. The 

following derivation follows a 1D simplification, using the coordinate systems defined in 

Appendix A.1, for both axes, respectively. 

A.2.1. Probability along the anterior-posterior axis (Step 2 in Appendix A.1) 

 

Fig. A.2-1. Schematic of the equivalent 1D problem for finding the probability along the Y-axis. 

 

Finding the probability of the PCa nodule existence along the Y-axis, with the origin at 

the identified location on the posterior surface, becomes, effectively, a one-dimensional 

problem (Fig. B-1).  
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To maintain consistency and clarity through the explanation of the steps for solving the 

one-dimensional problem, the probability notation is adopted. 

• Capital letters are used to denote random variables 

• Realizations of a random variable are written in corresponding lower-case letters 

• 𝑓𝑋 (𝑥) - probability density function of (PDF) X 

• 𝑓𝑋,𝑌 (𝑥, 𝑦) – join probability density function of X and Y 

• 𝑓𝑋|𝑌 (𝑥|𝑦) – conditional probability density function of X given Y 

• 𝐹𝑋 (𝑥) – cumulative density function (CDF) of X 

Let define the nodule depth (d) and size (D) as two independent random variables X and 

Y, respectively, which can take non-negative real numbers. The question is now, what is 

the probability of a given location along the Y-axis of being cancerous? Mathematically, 

the solution could be the probability of any given non-negative real number a (constant) 

being no less than X and no greater than 𝑋 + 𝑌 or 𝑍. 

𝑋 ≤ 𝒂 ≤ 𝑋 + 𝑌 = 𝑍                                                                                                (A.2-1) 

Physically, this means the location of any given point falling in the red region along the 

Y-axis.  
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Let us draw the probability solution of this joint event 

 

Fig. A.2-2. Probability solution of the joint event. The space from the vertical line (i.e. 𝑋 = 𝒂) 

represents the probability of the event 𝑋 ≤ 𝒂 . The space from the horizontal line (𝑍 = 𝒂) 

represents the probability of the event 𝑎 ≤ 𝑍. The space in grey represents the probability of the 

joint event defined in equation A.2-1. 

 

 

Therefore, the probability solution of the joint event, highlighted in grey in Fig. B-2, can 

be derived as 

Pr(𝑋 ≤ 𝒂 ≤ 𝑍) = Pr(𝑋 ≤ 𝒂) − Pr (𝑋 ≤ 𝒂 𝑎𝑛𝑑 𝑍 ≤ 𝒂)                                        (A.2-2) 

It should be noted that, the PDFs for the nodule depth, 𝑓𝑋(𝑥), and size, 𝑓𝑌(𝑦), were 

calculated in Fig. 5-4. Therefore, the first term of equation A.2-3 is 

Pr(𝑋 ≤ 𝒂) =  𝐹𝑋(𝑥) =  ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑎

0
                                                                        (A.2-3) 

Moreover, we need to calculate the joint probability between X and Z, the second term of 

the equation A.2-3. The joint probability function between two continuous random 

variables is equal to 

 𝑓𝑋,𝑍 (𝑥, 𝑧) =  𝑓𝑍|𝑋 (𝑧|𝑥)𝑓𝑋(𝑥) =  𝑓𝑋|𝑍 (𝑥|𝑧)𝑓𝑍(𝑧)                                                   (A.2-4) 
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where  𝑓𝑍|𝑋 (𝑧|𝑥) and 𝑓𝑋|𝑍 (𝑥|𝑧) are the conditional distributions of Z given X = x and X 

given Z = z, respectively, and 𝑓𝑋(𝑥) and 𝑓𝑍(𝑧) are the marginal distribution for X and Z, 

respectively. 

However, it is later proved [see Proof 1 below] that the joint probability of Pr (𝑋 ≤

𝒂 𝑎𝑛𝑑 𝑍 ≤ 𝒂) takes, coincidentally due to the formulation of the 𝑍, exactly the same 

form as Pr (𝑍 ≤ 𝒂). Therefore,  

Pr(𝑋 ≤ 𝒂 ≤ 𝑍) = Pr(𝑋 ≤ 𝒂) − Pr(𝑍 ≤ 𝒂) = ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑎

0
− ∫ 𝑓𝑍(𝑧)𝑑𝑧

𝑎

0
           (A.2-5) 

For this, we will need the PDF of Z, 𝑓𝑍(𝑧), which can be derived by the rule of the 

convolution among the PDFs of the nodule depth and size (already calculated in Fig. 5-

4). The general formula for the distribution of the sum 𝑍 = 𝑋 + 𝑌 of two independent 

random variables with density functions 𝑓𝑋(𝑥) and 𝑓𝑌(𝑦) is 

𝑓𝑍(𝑧) = ∫ 𝑓𝑋  (𝑧 − 𝑦) 𝑓𝑌(𝑦)𝑑𝑦
+∞

−∞
                                                                             (A.2-6) 

[Proof 1] 

The joint probability, which is the Pr (𝑋 ≤ 𝒂 𝑎𝑛𝑑 𝑍 ≤ 𝒂) as put earlier, is equal to the 

conditional distribution of X ≤ 𝒂 given 𝑍 ≤ 𝒂 multiplied by marginal dthe istribution of 

𝑍 ≤ 𝒂. Note that the marginal CDF of Z is equal to  

Pr(𝑍 ≤ 𝒂) =  𝐹𝑍(𝑧) = ∫ 𝑓𝑍(𝑧)𝑑𝑧
𝑎

0
                                                                          (A.2-7) 

On the other hand, the conditional distribution of 𝑋 ≤ 𝒂 given 𝑍 ≤ 𝒂, in other words, the 

probability of 𝑋 ≤ 𝒂 when 𝑋 + 𝑌 ≤ 𝒂, is always 1. This is because, when 𝑋 + 𝑌 ≤ 𝒂, X 

must be no greater than a, if Y must take non-negative value. Therefore, the joint 

probability between X and Z takes the same form/value as that of Z. 
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A.2.2. Probability along the left-right axis (Step 4 in Appendix A.1) 

 

 

Fig. A.2-3. Step 4 – deriving the probability along the left-right axis. 

 

 

It is evident that the probability along the left-right axis (X- and X’-axes as shown in Fig. 

B-3) is only dependent on the random variable Y, i.e. the diameter of the PCa nodule. 

Based on that, what is the probability of a given location along the X- or X’-axes of being 

cancerous? Mathematically, the solution could be the probability of any given non-

negative real number b (constant) being no greater than Y/2 (i.e. radius of PCa nodule).  

𝒃 ≤ 𝑌/2                                                                                                    (A.2-8) 

Physically, this means the location of any given point falling in the red region along the 

X- and X’-axes. 

The PDF of the nodule size shown in Fig..4-5, 𝑓𝑌(𝑦), allows deriving the probability of 

the cancerous nodule existence along the left-right axis as  

Pr (𝒃 ≤
𝑌

2
) = 1 - 𝐹𝑌(𝑦) =  ∫ 𝑓𝑌(𝑦)𝑑𝑦

+∞

𝑏
                                                                 (A.2-9) 
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Appendix B 

 

 

 

Fig. B-1. Results of prediction for Patient 15 slice F and Patient 17 slice J. 
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Fig. B-2. Results of prediction for Patient 18 slice D and Patient 19 slice E. 
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Fig. B-3. Results of the prediction for Patient 20 slice E and Patient 22 slice E. 
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Fig. B-4. Results of the prediction for Patient 22 slice F and Patient 23 slice D. 
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