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Abstract 

Asphaltenes are the heaviest, most polar, and most surface-active species of crude oils 

which are fairly stable in the oil; however, a small variation in the pressure, composition, 

and temperature can cause asphaltene phase instability and alteration in their solubility 

parameter and can precipitate and aggregate out of the crude oil, leading to expensive 

deposition problems in pipelines, well, valves, and porous media. The overarching aim of 

this body of work is to depict the fundamental structure and behaviour of asphaltenes for 

ultimate application in different operating conditions. In this treatise, asphaltenes are 

studied over a wide range length scale, ranging from the macro to the molecular scale.  

Following a literature review, the dissertation begins by reporting the results of a study on 

the destabilization and deposition of asphaltenes using various experimental techniques. 

Asphaltenes were destabilised owing to addition of a normal alkane (n-alkane) to the crude 

oil, and the influence of amphiphilic molecules on asphaltene stabilisation was also 

illustrated. It is shown that the current techniques that are employed to select the most 

appropriate asphaltene inhibitor based on their efficiency should be revisited to provide a 

better methodology for choosing the most suitable strategy for inhibitor/solvent injection. 

In the study of asphaltene deposition, a new High Pressure-High Temperature Quartz 

Crystal Microbalance (HPHT-QCM) rig was designed and developed to determine the 

rates of asphaltene deposition onto the solid surfaces. Also, a reliable procedure is 

proposed for selection of chemical additives for remediation/prevention strategies to handle 

gas-induced asphaltene deposition problems. The factors that can play a role in controlling 

the effect of chemistries on asphaltenes at various conditions are also investigated in this 

thesis. Furthermore, the differences between the molecular structures of n-alkane and gas 

induced asphaltenes is explored. Based on the results, it was denoted that the gas induced 

asphaltenes are structurally, morphologically, and compositionally different from n-alkane 

precipitated asphaltenes which lead to have different interactions between the asphaltene 

and inhibitor molecules and diverse rankings of chemistries based on the utilised 

evaluation techniques. In this thesis, a new two-dimensional dynamic model was 



 

 

developed and validated to simulate asphaltene precipitation, aggregation, and deposition 

at isothermal and non-isothermal conditions. The effect of the aggregate size on the rate of 

aggregation and deposition was studied through this simulation study, and it was inferred 

that the rate of asphaltene deposition increases as a function of concentration of 

nanoaggregates in the well column. The tendency of smaller aggregates to deposit onto the 

surfaces could be explained because of the increase in the diffusion coefficient of 

asphaltene aggregates. 

For the first time, experimental results of the effect of water with different salinities on gas 

induced asphaltene aggregation and deposition at elevated pressure and temperature 

conditions were attained. The roles of ion type on formation of asphaltene stabilised water 

in oil micro-emulsions, asphaltene deposition, and respective water wettability alteration of 

solid surface at micro scale were also investigated. Finally, the effects of oil composition 

changes owing to different gas injection scenarios and addition of paraffin waxes on 

asphaltene destabilisation and deposition under real field conditions were thoroughly 

illustrated.  
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Chapter 1- Introduction 

Despite the enormous amount of modern research, the process of defining asphaltenes is 

still under debate. Asphaltenes are referred to as functional molecules and the heaviest and 

most polar fraction of crude oil. These polydisperse molecules have a polyaromatic 

hydrocarbon core with aliphatic chains in their structure. They also contain different 

heteroatoms (e.g. N, O, and S) on the periphery which make acidic and basic moieties in 

asphaltenes and contribute to the asphaltene self-association and asphaltene interactions 

with other polar surface active species in oleic phase[1]–[5]. Additionally, asphaltenes 

contain trace amount of metals (e.g. Va, Ni, and Fe) on porphyrin like structures[6]–[8]. 

Asphaltenes are soluble in aromatics (e.g. toluene and xylene) and insoluble in aliphatics 

(e.g. n-heptane, n-pentane)[9]. Asphaltenes are recognised to be precipitated and 

aggregated typically as the fluid pressure is reduced due to reservoir pressure depletion 

towards the bubble point pressure and mixing with other crude streams and addition of gas 

or gas and liquids (e.g. for EOR purposes) which cause asphaltene deposition and restricted 

flow[10]–[12]. Restricted flow through porous media and subsea infrastructure caused by 

asphaltene deposition restricts the oil flow to the surface leading to deferred production[1], 

[13] and this could result in expensive and severe problems for oil companies worldwide. 

Asphaltene related research works have become more intensive in recent years because of 

growth in the production of high asphaltenic heavy oils[12], [14]. The principles and 

mechanisms beyond the asphaltene precipitation, aggregation and deposition phenomena 

and their inhibition processes have not yet been fully understood.  

In the risky multibillion-dollar oil and gas industry, making the correct decision on using 

the most appropriate strategy to handle the asphaltene deposition problem is inevitably 

crucial. Asphaltene flow assurance challenges can be caused by (i) lack of accurate 

technique for determination of asphaltene precipitation and deposition onsets and 

evaluation of chemistries against asphaltene deposition, (ii) using inappropriate asphaltene 

inhibitors, and (iii) lack of a reliable asphaltene deposition simulator for accurate prediction 

of asphaltene deposits amount along the wellbore/pipeline.  
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The main aim of the investigations presented is to unravel the main drivers of asphaltene 

destabilization and aggregation in oil-heptane, oil-gas, and oil-gas-water mixtures and to 

reveal the mechanisms by which asphaltenes deposit on surfaces and the role additives play 

against those drivers. The findings of this research are presented in nine chapters and a 

brief description of the content of each chapter can be found below. 

Chapter 2. The aim of this chapter is to critically review the new developed technologies in 

asphaltene precipitation and deposition areas. An extensive work flow chart with the aim of 

solving asphaltene problems in oil and gas industry was also proposed. Then different 

successful case studies are analysed based on the proposed flow chart. One of our findings 

reveals that most of optical based techniques for asphaltene precipitation onset 

determination might not be reliable and accurate, since they just detect asphaltene 

aggregation onset indeed not the precipitation onset. This may cause asphaltene problems 

remaining unsolved in the industry. 

Chapter 3. Many of previous studies were conducted in conditions where asphaltene 

precipitates are already aggregated, and very few have targeted asphaltene particles before 

or near precipitation state.  In this chapter, an experimental technique called the “Hybrid 

Technique” is validated for detection of asphaltene appearance point and evaluation of 

different amphiphilic asphaltene inhibitors. The effect of ageing time on asphaltene 

precipitation onset has also been removed by a new approach, and in different ageing 

times, the same asphaltene appearance points (AAP) have been obtained. The hybrid 

technique can also detect the possible interactions between asphaltene and inhibitor 

molecules and propose the related mechanisms. In this study, the effect of various non-

commercial inhibitors including phthalic acid, two amphiphiles of nonylphenol (NP), and 

Dodecylbenzene sulfonic acid (DDBSA) and two commercial inhibitors on the behaviour 

of asphaltenes and their interactions with asphaltene nanoaggregates have been 

investigated by using the hybrid technique. 

Chapter 4. In previous chapters it has been inferred that the current techniques which are 

employed to select the most appropriate asphaltene inhibitor based on their efficiency 

should be revisited to provide a better methodology for choosing the most suitable strategy 

for inhibitor/solvent injection at elevated pressure and temperature conditions. This chapter 
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addresses this asphaltene challenge using a Quartz Crystal Microbalance (QCM) based 

technique, with emphasis on selection of chemical additives for remediation/prevention 

strategies to handle gas induced asphaltene deposition problems. The proposed technique 

can work at high pressure conditions, simulating the effect of pressure and dissolved gas on 

asphaltene phase behaviour and deposition tendencies with and without inhibitors. It can 

also assess the deposition rate onto the quartz crystal surface due to asphaltene deposition 

under real reservoir conditions. In this study, the ability of different asphaltene inhibitors to 

shift asphaltene onset points (AOPs) and reduce the amount of deposited asphaltenes in 

dead crude oils is investigated.  

Chapter 5. This chapter presents the first compositional and structural research study on the 

QCM asphaltene deposits under gas injection conditions and compare it to n-C7 

asphaltenes from the same crude oil precipitated in the laboratory. This study combines the 

use of Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance 

(NMR), environmental scanning electron microscopy (ESEM) and energy dispersive X-ray 

(EDX) analysis. Furthermore, deposits collected from chemically treated fluids were also 

studied. The aim of this chapter is to probe the main reasons (at molecular level) of 

different rankings of asphaltene inhibitors which were obtained in Chapter 4 based on the 

operating conditions.  

Chapter 6. Following the effect of crude oil streams mixing on asphaltenes, the objective of 

this chapter is to shed some light on the interaction of asphaltenes and waxes and address 

the condition where an asphaltenic oil is commingled with a wax/paraffin inhibitor 

containing oil during combination of different oil streams. It is a crucial building block for 

development of a suitable and cost-effective strategy for handling of wax/asphaltene 

associated flow assurance problems. In this work, for the first time the quartz crystal 

microbalance (QCM) technique has been used to investigate the effect of waxes and related 

chemicals, which are used to mitigate wax deposition, on asphaltene aggregation and 

deposition phenomena. Asphaltene onset pressure and asphaltene deposition rate have been 

monitored using QCM at elevated pressure and temperature conditions. 

Chapter 7. In order to address the third asphaltene associated flow assurance challenge, 

lack of a reliable asphaltene deposition simulator for accurate prediction of asphaltene 
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deposits amount on the solid surface, in this chapter a new two-dimensional dynamic 

model was developed to simulate asphaltene precipitation, aggregation, and deposition at 

isothermal and non-isothermal conditions. The PC-SAFT equation of state was used to 

model the asphaltene precipitation. Additionally, novel kinetic models were used to 

account for the aggregation and deposition of asphaltene particles. The effect of aggregate 

size on the rate of aggregation and deposition was studied. The results obtained from the 

new model for the rate and the amount of asphaltene deposition were compared with the 

experimental data reported in the literature.  

Chapter 8. In this chapter several experiments have been conducted to discover how the 

phase behaviour of crude oil is influenced by injection of gas, particularly its effect on 

asphaltene precipitation and deposition rate. Tests are conducted on reservoir fluid to 

gather PVT and flow assurance data for injection of N2, CO2, CH4, natural gas, flue gas and 

mixture of N2 (20.05 mole%), CH4 (41.30 mole%) and CO2 (38.65 mole%) (named Mix.A) 

at high pressure and temperature condition. Measurements include asphaltene onset 

pressure (AOP) for various gases and comparisons of asphaltene deposition rate. 

Chapter 9. In this chapter it has been denoted that following asphaltene aggregation 

phenomenon through π-stacking and hydrogen bonding interactions, asphaltene aggregates 

can form a thin layer at the crude oil-brine interface through noncovalent interactions such 

as -O-H···O hydrogen bonds and/or alter the wettability state of the solid surface from 

initially water-wet into mixed-oil wetting. In this study the impacts of water with variety of 

salinities and ion types on formation of water in oil micro-emulsions, asphaltene 

deposition, and induced water wettability transition at micro scale were depicted. 

Chapter 10. The conclusions of the research discussed in Chapters 3 through 9, the 

implication of these findings in the flow assurance research area, and some 

recommendations for the future works are finally presented in this chapter. 
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Chapter 2- Literature Review 

2.1 Introduction  

Flow assurance is a major challenge in offshore and deep-water developments. Hydrate, 

wax, asphaltene and other solid phases could cause serious challenges. Changes in fluid 

conditions (e.g., temperature, pressure and/or composition) during oil production, 

transportation, and processing, can cause precipitation and deposition of organic solids 

inside wellbores, pipelines and porous media.  These could result in expensive and serious 

problems for oil companies worldwide.  

Asphaltenes are the heaviest, most polar and most surface active species of crude oils 

which are insoluble in n-alkanes (e.g. n-hexane, n-heptane) and soluble in light aromatics 

(e.g. toluene, xylene)[1]. Asphaltene molecules contain large polycyclic aromatic 

hydrocarbons with peripheral aliphatic chains which are embedded with a small amount of 

heteroatoms such as sulfur, oxygen and nitrogen[2]. They also consist of trace moieties of 

metals (in ppm) such as iron, nickel, and vanadium which can be appeared in porphyrin or 

non-porphyrin structures[3]. Based on asphaltene concentrations in crude oils, the 

asphaltene molecules are dispersed in the oleic phase with a size range of ~1.5 to ~5 nm in 

width[4]. It is widely believed that the asphaltene nano-aggregates will either flocculate to 

form larger particles[5] which can flow through a channel (e.g. pipeline, porous media) or 

deposit on the surfaces. In many oil reservoirs, asphaltenes are fairly stable in the oil, 

however a small variation in pressure, composition, and temperature can cause asphaltene 

phase instability and alteration in their solubility parameter[6], [7], and they can precipitate 

and aggregate out of the crude oil, leading to expensive deposition problems in pipelines, 

well, valves and porous media. Although various experimental approaches like neutron 

scattering and small angle X-ray scattering, molecular diffusion, size exclusion 

chromatography, Vapour Pressure Osmometry (VPO), mass spectroscopy and fluorescence 

depolarization have generally been employed for quantifying the molecular weight of 

asphaltenes[8], most of the reported values in the literature are the molecular weight of the 

aggregates of asphaltenes not the individual molecules. This is mainly because of intense 

tendency of asphaltene molecules for self-association. Utilizing novel techniques of Time-
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Resolved Fluorescence Depolarization (TRFD)[9], Fluorescence Correlation Spectroscopy 

(FCS) [10] and Laser Desorption Ionization (LDI) Mass Spectroscopy[11] gives much 

more precisely estimation of asphaltene molecular weight (500-1000 Da). In reservoir 

conditions (high pressure), asphaltenes are stable and thought to maintain in equilibrium, 

either as individual molecules or stable nano-aggregates suspended in the oil named 

micelles. Asphaltene aggregates formation in crude oils is a two-step process: phase 

separation and asphaltene aggregation (Figure 2.1). 

 

Figure 2. 1. Two-step process of asphaltene aggregation 

Wax and gas hydrate deposits are more usual than asphaltene deposits especially in 

offshore environments, but unlike wax and gas hydrates, asphaltene related flow assurance 

problems can cause a significant challenge because of the difficulty and expensive 

inhibition and remediation processes which are required for these problems, and besides 

that asphaltenes are not well characterized by the researchers. Asphaltene related 

researches have become more intensive in recent years because of a growth in the 

production of high asphaltenic heavy oils[12] and gas injection based enhanced oil 

recovery (EOR) techniques. However, it is interesting to mention that there are many 

reports that mention light oils which are easy to flow with very low asphaltene content 

have more asphaltene deposition problems than crude oils with high asphaltene contents 

[7]. Hence in order to set a suitable plan for removing asphaltene related flow assurance 

issues, finding the source of these problems and the capability to estimate the 

thermodynamical behaviour and fluid flow characteristics of crude oils including 

asphaltene molecules are so crucial. The principles behind the asphaltene precipitation, 

aggregation and deposition phenomena have not yet been completely figured out. 

Asphaltene deposition through the porous media is a complicated issue. For accurate 

investigations of influences of asphaltene deposition, it is crucial to count on various 

developed models for adsorption and deposition of asphaltenes. Reliable models and 
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simulators of asphaltene deposition are hard to be developed because of the absence of 

knowledge. In fact, no suitable models and simulator are valid for deposition of 

asphaltenes in oil formations during the preliminary crude oil production and different 

EOR processes.  

Adsorption and mechanical entrapment are the main and important discovered asphaltene 

deposition mechanisms. Hence asphaltene precipitation and deposition in the wellbores and 

reservoirs are dynamic processes, and parameters such as oil velocity, pressure, 

temperature, and composition variations effect the trend of these processes. So, the 

efficiency of an asphaltene remediation & prevention in the oil reservoirs relies on many 

factors and requires dynamic asphaltene modelling. 

The objective of this chapter is to provide a comprehensive review of the knowledge and 

experience of new developed techniques for asphaltene studies. This literature review 

carefully concentrates on the history and development of different modelling studies of 

asphaltene precipitation and deposition, asphaltene remediation and inhibition techniques, 

different techniques for asphaltene precipitation and aggregation onset determination and 

measuring the amount of asphaltene deposition all with the explanation of their advantages 

and disadvantages. The fundamentals of different successful case studies are explained 

based on our proposed work flow chart for asphaltene problem solving. The effect of 

different factors: oil composition, temperature, pressure, fluid flow, water salinity and 

reservoir rock wettability on asphaltene aggregation and deposition are reviewed precisely. 

There are many unanswered questions related to asphaltene flow assurance problems: Why 

are some asphaltenes projects being failed? Desirable sampling for investigating asphaltene 

problems, is downhole sample the only way forward? How is modelling approaches ability 

in predicting asphaltene stability zone? How about amount of asphaltene? Are new 

techniques like Asphaltene-Instability-Trend (ASIST) and Asphaltene Deposition Tool 

(ADEPT) reliable? Are optical based techniques for asphaltene precipitation onset 

determination accurate and reliable? This chapter presents appropriate answers for these 

questions which can also be developed and considered in the future studies.  
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2.2 Effects of Different Conditions on Asphaltene Precipitation & Deposition 

2.2.1 Effect of Pressure Changes on Asphaltene Precipitation 

Asphaltene precipitation is occurred through a range above and below the bubble point, 

during the pressure depletion at a constant temperature. In-situ density of crude oil and the 

asphaltene solubility in crude oil decrease due to pressure reduction during the oil 

production from an undersaturated reservoir, and as a result asphaltene may precipitate. 

The maximum quantity of asphaltene precipitation occur at or around the bubble point 

pressure [7]. Coming out of the light gases from the oil solution causes an increase in the 

density and a reduction in amount of asphaltene precipitation accordingly, which occurs at 

below the bubble point (Figure 2.2). 

 

Figure 2. 2. Phase diagram and change in crude oil/asphaltene properties owing to pressure 

variation through an isotherm condition 

2.2.2 Effects of Temperature Changes on Asphaltene Precipitation 

The influence of temperature changes on asphaltene precipitation is more complex than 

pressure variations. First, we briefly explain about the enthalpy changes of the reactions in 

one system. The enthalpy changes can be described as follows in terms of formation or 

breaking of bonds:  

Δ H = (energy gained in bond breaking) – (energy released in bond making) 
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There are different experimental techniques for determination of enthalpy changes in 

asphaltene studies which are: Titration Calorimetry, Differential scanning calorimetry 

(DSC), Enthalpy of Mixing and Microcalorimetry. The heat of mixing of 

Asphaltenes/Crude oils and different solvents has been studied and obtained by many 

researchers. Andersen & Christensen[13] employed calorimetric measurements of heat of 

dilution of asphaltene solutions to depict the presence of an apparent critical micelle 

concentration (CMC) of asphaltenes due to the change in heat signal as a function of 

asphaltene concentration. Zhang et al.[14] utilized enthalpy of mixing, DSC and 

microcalorimetry techniques to figure out that mixing of asphaltenes and aromatics is an 

exothermic process. Mahmoud et al.[15] investigated the heat of mixing of Asphaltenes 

and n-alkanes by using enthalpy of mixing technique. They concluded that this reaction is 

exothermic. Stachowiak et al.[16] changes the system and considered the mixing of crude 

oil and n-alkanes. They used titration calorimetry technique for their study. They concurred 

that this process is exothermic, but for (C6) n-hexane the process is endothermic. Ekulu et 

al.[17] employed the mixing of crude oil and heptol solution for their studies and inferred 

that it is an endothermic process. They used DSC technique with the temperature range of 

300-400K for their investigations. Stachowiak et al.[18] conducted experiments for 

illustration of enthalpy changes of asphaltene precipitation due to pressure depletion, which 

is the main process during the primary oil production. They concluded that this process is 

exothermic.  

Generally considering the definition of the Gibbs energy ΔG = ΔH –TΔS [19] is a simple 

way to find out the influence of temperature changes on asphaltene precipitation. 

Asphaltenes are unstable with ΔG < 0. There are three main conditions: 1- If the reaction is 

exothermic and entropy of reaction is decreased and ΔG > 0, so the asphaltene precipitation 

and aggregation happen by heating of the system. 2- If the reaction is endothermic and 

entropy of reaction is increased and ΔG > 0, so the asphaltene precipitation and 

aggregation happen by cooling of the system. 3- If the reaction is endothermic and entropy 

of reaction is reducing, so ΔG is maintain positive and consequently there is no 

precipitation and aggregation at all.  
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2.2.3 Effect of Composition Changes on Asphaltene Precipitation 

During different oil production scenarios such as artificial gas lifting or gas injection 

processes such as miscible flooding with CO2, N2, and natural gas, can cause oil 

composition changes and then serious asphaltene related problems accordingly. Injected 

gas reduces the density of crude oil which makes a reduction in the asphaltene solubility. 

Oil composition changes, which cause asphaltene precipitation problems, may also be 

raised due to oil-based muds and/or acid contamination due to stimulation processes. A 

further research study would be needed to illustrate the effect of more gas compositions on 

asphaltene precipitation and deposition and the impact of gas impurities on asphaltene 

behaviour for EOR purposes (In chapter 8, we will investigate this topic further).  

2.2.4 Effects of Fluid flow on Asphaltene Precipitation and Deposition  

Sometimes production scheme changes are utilized to control the asphaltene precipitation 

and deposition [20]. Fluid flow through pipeline with high shear rate causes asphaltene 

deposition. So, by decreasing the shear stress the problem can be mitigated. Incompatible 

miscible fluids flow within pipelines and separation of heavy ends in the form of colloids, 

flocs and attachment to the walls of conduits cases serious flow assurance problem. 

Therefore, as a solution for this problem we should remove incompatible materials from 

asphaltenic oil flow and minimize the blending of thin feed stock fluids within asphaltenic 

oils flows. Separation of phases from a miscible phase to oil, gas and heavy organics phase 

is occurred by minimization of pressure reduction into the petroleum production lines and 

systems [20]. Lack of neutralization of electrostatic forces may lead to break up of 

asphaltene steric colloids and release of sticky asphaltene particles which are attached to 

the walls causes pipelines plugged consequently. Hence to remove this barrier 

neutralization of electrostatic forces should be done. Mohammad Tavakkoli et al.[21] 

utilized Quartz Crystal Microbalance (QCM) technique for investigation of effects of 

different flow rates on asphaltene deposition. Various flow rates illustrated that the rate of 

asphaltene deposition is not related to the flow rate at initial time scale. But, for long terms, 

the influence of the flow rate is undeniable. They concluded that at very long times and 

high enough flow rates, the rate of asphaltene deposition is independent of the flow rate. 
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The asphaltene deposition has no dependency upon the flow rate and overlap for all times 

at very high flow rate conditions.  

2.2.5 Effects of Rock Types and Their Wettability States on Asphaltene Deposition 

Based on experimental work by Mousavi Dehghani et al.[22], it was found that rock type 

cause an undeniable influence on the asphaltene deposition on matrix surface. The results 

for two types of limestone and sandstone are presented in Table 2.1.  

 

Table 2. 1. The effect of Rock type and wettability state on asphaltene deposition 

 Water wet State  

Sandstone Rock > limestone Rock 

 Amount of deposited asphaltene  

 

Sandstone Rock 

 

< 

Limestone Rock (Because on 

existence of more water films 

on sandstone rock surface) 

 Asphaltene deposition rate  

Sandstone Rock < Limestone Rock 

 

2.2.6 Effect of Water Salinity on Asphaltene Deposition 

Hematfar et al.[23] investigated the Impact of Asphaltene adsorption on two phase flow in 

porous media. The objectives of this work were studying the effect of brine salinity and 

asphaltene concentration on adsorption of asphaltene on pore surfaces, and also evaluation 

of the effect of asphaltene adsorption on water flooding performance and oil-water relative 

permeability. From their experimental results it can be concluded that when the asphaltene 

adsorption increased, the oil relative permeability and consequently recovery factor 

decreased. On the other hand, when the brine salinity decreased, asphaltene adsorption on 

rock surfaces increased. Therefore, higher brine salinity will give a higher oil recovery and 

lower asphaltene precipitation and lower porosity & permeability reduction accordingly.  
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2.3 Interaction between Asphaltenes and Other Flow Assurance Problems 

One of the most recent research work in this area is the investigation of the influence of 

asphaltene molecules on wax crystallization in crude oils by Kriz and Andersen[24]. They 

figured out that very low concentrations of dispersed asphaltenes make a reaction with the 

paraffin molecules and completely incorporate in the structure of waxes. This causes a 

delay in wax crystallization and dispersed asphaltenes act as polymeric wax inhibitors. 

Besides asphaltene molecules flocculate together and co-precipitate with waxes, which 

leads to form an unorganized asphaltene-paraffin composite rather than a proper wax 

network. They also concluded that this influence strongly relies on the degree of asphaltene 

dispersion or aggregation more than on the asphaltene type or origin. Further studies on 

this interesting topic could help industry to mitigate some flow assurance problems related 

to waxes and asphaltenes (In chapter 6 we will shed light on possible interaction between 

paraffin waxes/respective chemicals and asphaltenes).  

2.4 A Complete Flow Chart for Solving an Asphaltene Problem in Industry 

Here an extensive work flow chart for mitigating an asphaltene flow assurance problem is 

proposed for the industry (Figure 2.3). Each step is explained in detail in following 

sections. Then different successful case studies are analysed based on this proposed flow 

chart.  
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Figure 2. 3. Proposed work flow chart for mitigation of asphaltene related flow assurance 

problems in oil & gas industry 

2.4.1 Sampling  

It should be mentioned that a very important requirement in acquiring a precise assessment 

of asphaltene precipitation and deposition in crude oils is the existence of high modality of 

the reservoir fluid sample. A desirable sample is the one which is being representative of 

reservoir fluid, being maintained at reservoir conditions during the transportation to the 

laboratory and being free of contamination like oil-based muds, acid and etc.  

2.4.1.1 Bottom Hole Sampling 

There are mainly two types of bottom hole sampling: First, collecting the reservoir fluid 

during the drilling phase, and second collecting the fluid from the oil well tubing of a quite 

equipped well. The target for the first type of sampling is surveying the reservoir fluid and 

determining pressure. The aim for the second one is for investigation of the reservoir fluid 
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thermodynamic behavior [25], [26]. One of the greatest advantages of bottom hole 

sampling is having “real” asphaltenes rather than “dead” asphaltenes for the research as 

well as for the inhibitor selection process. also has some disadvantages which are: this 

approach is much costlier than surface sampling, and it should be done at constant 

temperature and pressure condition. 

2.4.1.2 Single Phase Sampling  

Single-phase samples can be obtained by utilizing various approaches at variety period of 

times in the life of the oilfield: 1- Single-phase reservoir sampler (SRS) during drillstem 

testing, 2- The wireline-conveyed MDT Modular Formation Dynamics deployed tester run 

with a single-phase multisample chamber in open hole[27], 3- The Cased Hole Dynamics 

Tester (CHDT) in cased hole. 

2.4.1.3 New Technologies for Sampling, Testing, Monitoring and Warning 

Applications 

Nowadays sampling and testing tools contain an array of instruments that can do downhole 

fluid analysis (DFA). DFA tools can do real time fluid properties measurements at 

reservoir conditions, which allow engineers to analyse before sample collection[28].  

Sampling from separators or extracting live oil near perforations and performing flow 

assurance tests in the laboratory is an expensive monitoring approach in offshore and 

Deepwater fields. Recently intelligent completions were widely used for monitoring and 

warning purposes. This technique utilized sensors which transmit downhole temperature, 

pressure and flow rates in real time and remotely control pumps and valves. This 

technology give the facility of remotely production monitoring and flow assurance barriers 

handling. As an example of this technology, we can mention the use of chemical sensors. 

These chemical sensors are installed at strategic locations in the well completion and along 

a pipeline[29], [30][31]. By employing this technology, real time data for monitoring of 

deposition solids, corrosion rates and fluid rheological properties are obtained, and 

therefore the interventions for sampling or remediation will be performed when it is 

necessary.  
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2.4.2 Experimental Reservoir Fluid & Asphaltene Characterization Studies 

Dead oils, or crude oils which have lost their gaseous fractions are separated into saturates, 

aromatics, resins and asphaltenes relying on their solubility and aromaticity by using 

SARA analysis[32]. It is a simple procedure, but it also has some disadvantages: - The 

SARA analysis outcomes are not comparable with the live oil in real conditions of oil 

reservoirs, - Depending on the type of precipitant used, the SARA results are not repeatable 

for one single oil, - It provides insufficient characterization where live oil properties are 

needed. Many different techniques have been used for asphaltene onsets determination 

such as: Filtration technique, UV-vis spectrophotometry, acoustic resonance, NMR, 

refractive index, light scattering, light reflexion and light transmittance, etc. These 

commercial techniques can only detect asphaltene particles that are at least 0.5 μm in 

diameter, for asphaltene onset determination. In other words, asphaltene precipitation onset 

measurements by these conventional techniques can obtain after asphaltene molecules start 

to aggregate to reach the detection range. In addition, they cannot measure the amount of 

precipitated asphaltenes. Hence, these methods determine asphaltene aggregation onset 

indeed not the asphaltene precipitation onset. Therefore, in this chapter we categorised the 

techniques into two groups of techniques for determination asphaltene precipitation onsets 

and techniques for determination of asphaltene aggregation onset. The first group of 

approaches for determination of asphaltene precipitation onset with all their advantages 

and disadvantages are presented in Table 2.2. The second group of methodologies for 

determination of asphaltene aggregation onset are: Light transmittance[33], light 

scattering[34], refractive index[35], light reflexion[36], microscopy[37], acoustic 

resonance[38] and UV-vis spectrophotometry[39]. Some of their advantages and 

disadvantages are given in Table 2.3.  

Table 2. 2. Introduction of asphaltene precipitation onset determination techniques and 

their advantages and disadvantages 

Techniques Advantages Disadvantages References 

Filtration technique 

 It quantifies the amount of 

precipitated asphaltene 

 The upper and lower 

asphaltene phase boundaries 

 Results depend 

on filter size 

 Need more time 

than measuring 

[40] 
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can be defined 

 The asphaltenes are 

physically extracted from 

the oil, and so may be 

further characterized 

through mass spectrometry, 

molecular-diffusion studies 

or SARA analysis 

 Reliable 

acoustic 

resonance or 

light scattering 

Density technique 
 It is Easy to be extended and 

checked 

 Applicable in 

just restricted 

conditions 

 

[41] 

Viscosity technique 
 The results are obtained 

promptly 

 It has very 

limited working 

conditions 

 It is not 

examined with 

crude oils (Just 

tested in 

Asphaltene 

Solutions) 

 It is extremely 

high time 

dependant 

 

[42] 

 

Electrical 

Conductivity 

technique 

 It is reliable 

 It has the capability of wide 

working conditions 

 
[43] 

 

Heat Transfer 

technique 
 

 Significant 

amount of 

precipitate is 

required to detect 

an alteration 

[44] 
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Table 2. 3. Advantages and disadvantages of techniques for determination of asphaltene 

aggregation onset 

Techniques Advantages Disadvantages References 

Acoustic resonance 

 It is less time 

consuming than the 

gravimetric methods 

 The presence of other 

solids could cause 

similar changes in 

acoustic properties 

 The technique does 

not allow the fluid to 

be mixed, giving rise 

to potentially 

inaccurate onset 

measurements due to 

heterogeneous 

distribution of 

asphaltenes 

 The method does not 

detect the lower 

boundary of the 

asphaltene-

precipitation envelope. 

 

[38] 

Light-scattering 

technique 

 High speed of testing 

 The low volume of 

single-phase reservoir 

fluid required 

 
[34] 

 

High pressure 

microscope technique 

 

 This technique allows 

microscopic 

visualization of the 

appearance of 

asphaltene particles 

as pressure decreases 

 It can be 

implemented by 

particle size analysis 

 It provides only a 

qualitative indication 

of particle size and 

number 

 To quantify these 

parameters, 

proprietary particle-

size analysis (PSA) 

imaging software has 

been used 

[37] 
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imaging software 

 

 

 

2.4.2.1 Application of Quartz Crystal Microbalance (QCM)  

The quartz crystal microbalance is an extremely high sensitive equipment for measuring 

and detecting the adsorption of very small amounts (nanogram range) of solids to the 

surface of piezoelectric quartz crystal by monitoring the alterations in resonance 

frequency[45]. This device is mainly utilized for biological studies. Researchers at Heriot-

Watt University have started the using of QCM in petroleum industry since 1992, covering 

various applications like saturation point and hydrate dissociation point determinations, 

evaluation of anti-depositional paint coatings, choosing the best chemical treatment for 

cleaning solids adhering to the pipeline surfaces and determination of asphaltene onset and 

the effect of variety of inhibitors on asphaltene deposition[45], [46]. QCM technique can 

be utilized to determine the asphaltene stability by n-C7 titration which is used in ASTM 

D7157. The advantage of QCM rather than ASTM D7157 is that there is no need to use an 

optical device in QCM technique.[45] developed a new prototype small volume multi-

tasking QCM rig for their studies. Figure 2.4 show the schematic of this new developed 

apparatus.  

 

Figure 2. 4. Schematic of new developed small volume multi-tasking flow assurance tool 

[45] 
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In this research work, the asphaltene onset pressures in real fluids with and without 

presence of asphaltene inhibitor were obtained by using new developed QCM rig. The 

results proved that the QCM technology can be used for accurate determination of 

asphaltene onsets without using a visual tool and for evaluation of asphaltene inhibitor 

performance at realistic conditions. Figure 2.5 presents the difference between the 

asphaltene onset pressures with and without inhibitor and the amount of asphaltene 

deposition during the gas injection into a real fluid by seeing the reduction in resonance 

frequency (RF).  

 

Figure 2. 5. The determination of asphaltene onset pressure (AOP) in a live oil during the 

gas injection with and without presence of an asphaltene inhibitor [45] 

 

Few researchers have also used quartz crystal microbalance for asphaltene studies. Table 

2.4 presents a summary of published research works of using QCM for asphaltene studies.   

Table 2. 4. Summary of published research studies of using QCM in application of 

asphaltene precipitation and deposition investigations 

Objectives Results Reference 

Investigation of the 

adsorption of asphaltene 

and resins 

 Generally, there is no tendency of 

resin to adhere to the surface. 

 The adsorption of resins reduces with 

[47] 
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on gold surface increasing toluene content in the 

solvent 

 Unlike resins, asphaltenes were 

irreversibly adsorbed in multilayers 

from toluene and 50-50% n-heptane 

in toluene solutions. 

The kinetics and 

thermodynamics of 

asphaltene adsorption from 

toluene-heptane and 

toluene-pentane solutions 

on gold surface was studied 

 

 An initial adsorption process was 

controlled by the diffusion of 

asphaltene from bulk solution to the 

surface 

 It was predicted that asphaltene 

would adsorb preferentially in the 

order of gold > stainless steel > 

aluminium surfaces by using the 

thermodynamic free energy 

predictions 

[48] 

A combined quartz crystal 

microbalance and X-ray 

photoelectron spectroscopy 

was employed to illustrate 

the interactions of 

asphaltene-metal 

 

 The fractional coverage data 

calculated from combined QCM and 

XPS measurements for Cold Lake 

asphaltene on gold surface followed 

Langmuir (type-I) isotherm 

 The free energy of asphaltene 

adsorption estimated from QCM and 

XPS data was compared well with 

each other and was calculated to be 

in the range of −27 kJ/mol to −32 

kJ/mol for assumption of asphaltene 

molecular mass ranging 750-5000 

g/gmol. The thickness of adsorbed 

asphaltene film range from 6–8 nm. 

[49] 
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The adsorption and 

desorption 

of asphaltene into low 

saline aqueous solutions 

from a saturated silica 

surface were investigated 

 The basic crude oil had larger 

affinity toward a silica surface than 

the acidic crude oil 

 The water wettability of silica 

surfaces coated with components 

from the basic crude oil increased 

significantly because of high salinity 

aqueous solutions, however slight 

alterations were observed for silica 

surfaces coated with components 

from the acidic crude oil 

 It was concluded that the presence of 

acidic components was 

disadvantageous for low salinity 

desorption of the acidic crude oil, on 

the other hand the presence of basic 

components was more important for 

low salinity desorption of the basic 

crude oil 

 

[50] 

Development and 

validation of new small 

volume multi-tasking flow 

assurance tool 

 Asphaltene stability, asphaltene onset 

pressure (AOP) and asphaltene 

inhibitor screening and evaluation all 

can be done precisely by QCM 

technology 

[45] 

Investigation of the 

Asphaltene deposition in 

different depositing 

environments and various 

conditions 

 The rate constant of adsorption was 

reduced when the temperature 

increased, which correspond to a 

lower amount of mass adsorbed at 

higher temperatures for the initial 

[21] 
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time scale However, for long times, 

the diffusion coefficient was 

increased with the temperature, 

which results in more amount of 

adsorbed mass at higher temperatures 

in the long run 

 Viscosity of the adsorbed layer was 

decreased with an increase in the 

temperature. The viscosity value was 

small because the adsorbed mass 

included asphaltene molecules and 

not bulk asphaltene 

 Viscosity of the n-C7 induced 

asphaltene deposit was higher than 

the viscosity of the n-C5 asphaltene 

deposit because of the heavier nature 

of n-C7 asphaltene compared to n-C5 

asphaltene 

 Polydispersity of asphaltene had a 

significant role in the deposition of 

asphaltene onto a gold surface. n-C7 

induced asphaltene mass adsorbed 

reached equilibrium much sooner 

than n-C5 induced asphaltene, and 

the maximum amount of mass 

adsorbed at equilibrium for n-C5 

asphaltene was much higher than n-

C7 induced asphaltene 

 Illustration of different surface types 

proved that, the asphaltene mass 
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adsorbed during initial time was 

increased when steel was rusted, but, 

in a long run, there was a reduction 

 Different flow rates showed that at 

initial time scale the effect of flow 

rate on the rate of adsorption was 

eligible. But, for long times, the 

influence of the flow rate was 

undeniable 

 The asphaltene adsorption curve 

reached equilibrium sooner at higher 

flow rates, and at very long times and 

high flow rates, the rate of adsorption 

was not affected by flow rate 

 

 

2.4.3 Modelling Studies of Asphaltene Precipitation 

There are variety of approaches for asphaltene precipitation modelling. The asphaltene 

precipitation models are divided into different categories: Solubility models, Solid models, 

Thermodynamic micellization and Colloidal models. Each one with its assumptions, 

advantages and disadvantages is explained in detail in following sub sections.  

2.4.3.1 Solubility Models 

The base of solubility models is the Flory-Huggins theory[51]. Asphaltene stability is 

described in terms of reversible solution equilibrium. According to the Flory-Huggins, the 

chemical equilibrium condition between the asphaltene-rich phase A and solvent-rich 

phase B is μiA= μiB, where μi is the chemical potential of component i. There are various 

solubility models such as Nor-azlan model[52], Cimino model[53], Hirschenberg 

model[37] CPA EoS and PC-SAFT EoS. These models and their assumptions, advantages 

and disadvantages are presented in Table 2.5.  
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Table 2. 5. Summary of different models with their assumptions and advantages and 

disadvantages 

Models Assumptions Advantages Disadvantages 

Hirschenberg 

[37] 

1. Asphaltene precipitation 

is a reversible process 

2. Composition of liquid 

phase is calculated by 

Soave Equation-of-

State with assumption 

of no asphaltene 

precipitation 

3. Asphaltene precipitation 

does not alter the 

vapor-liquid 

equilibrium 

calculations 

 

 The model 

results are 

consistent with 

experiments of 

asphaltene 

precipitation 

 It is easy to 

implement 

 

 The prediction of this 

model is poor to 

reproduce the 

experimental data. 

 

Nor-azlan 

model 

[52] 

The precipitated 

asphaltene does not 

influence the vapour-

liquid equilibrium 

calculation 

 A suitable tool 

for screening 

aims 

 Does not match the 

experimental data 

quantitatively 

Cimino 

model 

[53] 

An asphaltene 

nucleus includes 

both asphaltene class 

components and the 

solvent 

 It represents 

the behaviour 

of asphaltene 

very well 

 It requires several 

experimental data 

to determine the 

model parameters 

 It is not applicable 

when the 

composition of 

fluid changes for 
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example during 

gas injection 

 

Perturbed 

Chain 

Statistical 

Association 

Fluid Theory 

(PC-SAFT) 

Equation-of-

State[54] 

Asphaltene 

precipitation is a 

reversible process 

Asphaltene associates 

to form pre-aggregates 

Asphaltene rich phase 

contains some amount 

of the other crude oil 

components 

 Able to handle 

asymmetric 

mixtures and 

associating 

molecules such 

as asphaltenes 

that most of 

the Equation-

of-States could 

not handle 

 The PC-SAFT 

can represent 

the behaviour 

of asphaltene 

properly 

 

 

 

2.4.3.2 Solid Models 

In these models, oil and gas are modelled with a cubic Equation-of State, while asphaltene 

is treated as a single component existing in the solid phase. Ngheim model[55] considered 

asphaltene as heaviest oil component which consists non-precipitating and precipitating 

components. The precipitating component has a larger interaction coefficient with light 

components in comparison with non-precipitating component. Hence, we have more 

incompatibility of the precipitating component with the lighter components, which causes 

the transfer of the precipitating component into the solid phase.  
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2.4.3.3 Thermodynamic Micellization Model 

This model was developed by Pan and Firoozabadi [56]. There are two main assumptions 

for this model. 1- Asphaltene molecules from a micelle core and the resin molecules adsorb 

on the surface of this core. 2- Gibbs free energy minimization principle is used to 

determine the structure and concentration of the micelle. The only advantage of this model 

is that the calculated size of the asphaltene micelles in crude oils predicted by this model 

matched the experimental data. However, the results for the amount of precipitation have 

not been presented. 

Generally the statistical thermodynamics and colloidal science are used for colloidal 

models[57]. At first these models assume the existence of asphaltenes as solid particles in 

colloidal suspension stabilized in the crude oil by adsorption of resin molecules on their 

surfaces. The vapour-liquid equilibrium is also calculated by utilizing an equation of state 

(EoS) which establishes the composition of the liquid phase from which asphaltene 

aggregation may occur.  

Another approach that is used for asphaltene precipitation modelling, is named association 

equation of state models[58]. The assumptions for this model are: - Asphaltene molecules 

exist mainly as monomers in the bulk crude oil and as aggregates in an associated state in 

the precipitation phase, - Asphaltene association leads to asphaltene precipitation, - The 

asphaltene precipitation process is thermodynamically reversible, - The asphaltene 

precipitation phase is a pseudo-liquid phase. Four main factors of composition, molecular 

weight, molecular size and interaction energy of each component are used as inputs for this 

model in order to obtain suitable result of asphaltene precipitation prediction.  

2.4.3.4 New Techniques: ADEPT and ASIST Models 

2.4.3.4.1 ADEPT  

A new deposition model which has been under progression is the Rice University 

asphaltene deposition tool (ADEPT)[59]. This tool can have two thermodynamic and 

deposition modules. PC-SAFT is used for the thermodynamic module and a mathematical 
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model is employed for deposition module, which represents a mass balance of aggregates 

in a controlled volume.  

Thermodynamic Module has 4 inputs which are live oil composition, density of live 

oil/stock tank oil, bubble pressure at various temperature and asphaltene onset pressures at 

various temperatures. As a result, this module presents asphaltene solubility along the axial 

length of a wellbore and/or pipelines as a function of pressure and temperature. Besides 

that, the phase behaviour of asphaltenes in crude oil is also obtained.  

ADEPT Deposition Module has 3 inputs of asphaltene solubility as a function of pressure, 

temperature and composition, operating variables (e.g. oil flow rate, length & diameter of 

the pipeline), constants which are describing the kinetics of asphaltene precipitation, 

aggregation and deposition. This module gives the oil industry describing of the transport 

of precipitated asphaltenes and also prediction of asphaltene deposition and its magnitude 

through a pipeline and/or a wellbore. Unfortunately, uncertainties are existed about the 

accurate kinetics of asphaltene precipitation and aggregation when utilized to estimate 

kinetics in the real field turbulent flow conditions. It should also be mentioned that the 

most appropriate way for measuring the precipitation and aggregation rates has not yet 

been reported.  

Application of ADEPT in Industry  

The thickness of solid asphaltene deposits at various depths in a well in the Marrat 

reservoir in southern Kuwait was determined by ADEPT. The simulator predictions, while 

not an exact match, were very close to the deposit profile reported in the field[59].  

2.4.3.4.2 Asphaltene Instability Trend Tool (ASIST) 

One model which was found to be used within the industry is the asphaltene instability 

trend (ASIST) tool. Asphaltene instability is a sign of oncoming precipitation and 

deposition[60].  

The onset solubility parameter vs the square root of the partial molar volume of a 

precipitant for a series of n-paraffins and the extrapolation for the onset solubility 

parameter are the inputs of the ASIST. This tool provides the estimation of condition for 

instability in a reservoir, the prediction of asphaltene onset pressures during oil production, 
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the interpretation of refractive index tests performed before and after start-up and the 

characterization of kinetics of asphaltene precipitation as the refractive index tests are 

performed periodically.  

Application of ASIST in Industry 

An example of the ASIST’s application is the Blind Faith platform in the US Gulf of 

Mexico, one of the deepest producing platforms in the world and contains four subsea 

wells producing from two reservoirs, Pink and Peach[61]. It was found that the risk of 

facing asphaltene problem for Pink reservoir fluid is less than the risk of Peach reservoir 

fluid. By utilizing the ASIST in their studies, they proposed the mixing of the Peach and 

Pink fluid together as the best way for handling the problem. They figured out that the 

mixtures with higher Pink fluid content were likely to have more stable asphaltene content 

than mixtures with higher Peach fluid content. Prediction was confirmed after 2 years of 

production and the related flow assurance problem was removed. 

2.4.3.5 Application of de Boer Plot: A Risk Assessment Technique 

The De Boer plot[62] as a risk assessment tool is used to propose the lighter oils and 

farther from the bubble point, have more intensive and serious asphaltene issues. For the 

input of this tool, density at a given pressure and temperature vs the difference between 

reservoir pressure and boiling point pressure is utilized. It is pessimist and assumes that the 

whole reservoir is saturated in asphaltenes[63], and in addition it is not appropriate to make 

operative and really reliable decisions. These are which we can name as its disadvantages. 

In the previous case study (US Gulf of Mexico) this technique showed that asphaltene 

precipitation could be problematic during the primary depletion process in both reservoirs. 

However, Montesi et al.[61] noted that this estimation is doubtable because of its 

assumption of asphaltene saturation at reservoir conditions. 

2.4.4 Asphaltene Inhibition and Remediation Techniques 

There are three main categories for asphaltene remediation and inhibition techniques: 

Mechanical, Chemical and Thermal techniques. In the following sub-sections all the 
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categories are explained in detail, and the inhibition mechanisms behalf of each one are 

also presented. 

Chemical Techniques: They contain addition of dispersants, flocculants, antifoulants, 

coagulants, and polar co-solvents which can be employed to handle asphaltene deposition 

in its different conditions and situations[63]. Dispersants work by surrounding the 

asphaltene molecules forming steric colloids, they act as resin molecules related to 

asphaltene molecules (Figure 2.6).                           

 

Figure 2. 6. Showing of dispersants inhibition principle which acts as resin molecules 

related to the asphaltene molecules 

Ionic Liquids: The popularly utilized ionic compounds for heavy oil and bitumen recovery 

are the ones which consist [PF6]− and [BF4]−; but, these chemical ionic compounds 

generate hydrogen fluoride (HF) gas emissions when they are employed. The applications 

of using these compounds are became limited since they are not inert into different organic 

compounds in heavy crude oils, which might limit. Hence, these ionic compounds should 

be utilized in an inert atmosphere and are not appropriate to be employed under the high 

pressure and high temperature conditions where it is hard to handle the moisture in the oil 

reservoir[64]. The influence of new ionic compound on heavy oil recovery utilizing 

spontaneous imbibition tests was investigated by Joonaki et al.[64]. It was shown that 

when the new ionic compound was mixed with heavy oil recovery, the recovery factor was 

increased from 41% to 74% by using free imbibition tests. It was shown that the new 

created ionic liquid can be utilized to upgrade heavy oil by decreasing the asphaltene 

content, crude oil viscosity, and average molecular weight of heavy oil. It can also be used 

as a dispersant agent and acted as resin molecules in crude oils. Adeniyi S. Ogunlaja et 

al.[65] investigated the effect of different imidazolium based ionic liquids on dispersion of 

asphaltene molecules. They found that a strong interaction between asphaltene molecules 
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and ionic liquids happened through π−π interaction between cation and asphaltenes through 

hydrogen bonding. It was also observed that the order of reactivity of 1-butyl-3-

methylimidazolium chloride was higher than 1-butyl-3-methylimidazolium nitrate and 1-

methyl-1H-imidazolium-2-carboxybenzoate, and the reactivity of 1-butyl-3-

methylimidazolium nitrate is higher than 1-methyl-1H-imidazolium-2-carboxybenzoate 

accordingly.  

Antifoulants are utilized to inhibit the attachment and growth of deposits on the surfaces 

and walls of the oil production pipelines. Tributylin Oxide (TBTO) and Teflon are two 

compound which are used as Antifoulants[66]. As an advantage of using TBTO, we can 

mention that it gradually leaches from the hull eliminating the fouling organisms in the 

surrounding area. But causing health and environmental problems is disadvantage of using 

this compound. Injection of Coagulant is another approach in chemical based treatment 

techniques[67]. Coagulant are mainly polymers, have a role similar to resins which form 

steric colloids and then aggregation of colloids in the form of asphaltene flocs. Polar co-

solvents, such as aromatic hydrocarbons, can re-dissolve the asphaltene deposits and to be 

an effective approach they should have high level of aromaticity.  

Mechanical Techniques: These techniques are mainly divided into three approaches: 

Pigging, Mechanical/Manual Striping and Mechanical Vibration. The treatment principle 

behind the mechanical/manual striping technique is that this technique is done by 

mechanically scraping the oil well tubing (Yarranton, 2000). Also the treatment principle 

beyond the pigging technique is that the soluble or insoluble pigs are injected into the oil 

pipelines, the pigs would remove huge amount of the asphaltene deposit build up as they 

travel through the crude oil pipelines[68], [69]. It should be mentioned that generally there 

are two advantages and three disadvantages related to mechanical treatment techniques. 

For their advantages it could be expected that they are so effective and appropriate for 

cleaning the oil tubing and pipelines. Besides that, the smart pigs may make the facility of 

remote visualization, control, local heating, etc. Low efficiency of the pigging technology 

in removing the heavy organic deposits in the oil reservoirs could be mentioned as their 

disadvantages. In addition, the mechanical removal of asphaltene deposits may be an 
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expensive and also time-consuming treatment technique, and the disposal of the asphaltene 

deposits sometimes leads to cause serious problems.  

Thermal Techniques: There are various treatment techniques based on heating of the 

crude oil for mitigation of asphaltene deposition problems such as steam injection, hot 

water injection, hot gas injection, hot chemical injection, microwave technique, in-situ 

combustion and exothermic chemical reactions. Hot fluids are circulated within the well 

and also injected through the oil formation and areas that are plugged by asphaltenes in 

order to remove the asphaltene deposits[70]. The treatment principle of this method is 

melting of the asphaltene deposits. Most of these thermal techniques are not cost effective 

because of their operational costs, and also some of them, such as microwave technique, 

are mostly applicable in the laboratory scale and not suitable for the real field applications.  

2.4.4.1 New and Under Development Inhibition Techniques 

External Force Field Techniques: These new and novel techniques contain different 

methodologies to produce the external force field for asphaltene deposition removal, which 

are using electrostatic force field, electrodynamic force field, magnetic field, ultrasonic 

technique and microwave technique[71], [72]. Unfortunately, up to now all these 

techniques are usable in laboratory studies and small scales.  

Biological Methods: These treatment techniques work by using bio-process which might 

reduce asphaltenes into lighter molecules. This bio-process is named biodegradation. The 

asphaltene deposits are metabolized as a source of carbon and energy (by the proper 

species of bacteria, fungi, etc) during this biodegradation process[20], [73]. 

Microorganisms need couple of months to years to degrade a significant quantity of 

asphaltenes, and this problem makes the biodegradation as a fairly slow process. Using the 

biodegradation process as an approach for asphaltene deposition remediation has not been 

investigated frequently. If this method would be practical, it could be an important 

mechanism for addressing asphaltene related flow assurance problems.  
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2.4.4.2 Related Case Studies of Inhibition & Remediation techniques 

An oilfield from eastern Venezuela had intense asphaltene flow assurance problems which 

cause the plugging of well production within seven months[74]. Different treatment 

techniques were employed to handle the problem such as physically scraping the wellbore 

and injection of xylene into the tubing. Each treatment process contained the cost of about 

US $50,000 and shutting the oil production for two days. After the applying of the 

treatment techniques the oil production rate was increased dramatically and also the 

frequency of the treatments was decreased to every eight months. Hence as a consequence 

of having more oil production and less frequent treatment an annualized benefit of 60,882 

barrels and return on investment of more than 3,000% were obtained.  

Another case study of using remediation techniques is an oilfield in the Adriatic Sea which 

contains two deep-water subsea wells. It had thick asphaltene deposits along a 3,300 ft 

length of the oil tubing which was started at a depth of 6,500 ft under the seafloor. After 

studying on asphaltene characteristics of the oil sample from this oilfield a continuous 

downhole injection of appropriate asphaltene dispersant was advised. After the treatment 

process the oil production level was increased to 98%-100% of effectiveness. The oil 

production was continued for several years without any pipeline and oil tubing blockage.   

Another case, which is related to the mechanical treatment, is an oilfield in the northern 

Monagas province of eastern Venezuela[74]. Completely plugging of two pipeline sections 

with the length of 30,513 was determined by using fluid flow testing. An inclined injector 

head frame was utilized and authorized for the injection of the Coiled Tubing (CT) into the 

horizontally positioned pipeline. Water-based gel was also pumped to move the dislodged 

solids. As a result, by using the CT instead of other treatment options to remove the 

asphaltene deposits, the profit of saving 1 million USD was obtained and also this 

treatment process allowed the normal operations to be returned faster.  

2.5 Case Studies Analysis Based on Proposed Work Flow Chart  

In this section different case studies are analysed based on the proposed work flow chart in 

Section 4, which indicates the potential use of this flow chart for solving the asphaltene 

flow assurance problems. The presented flow chart contains 6 steps, and the case studies 

are explained step by step based on the presented flow chart.  
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2.5.1 Case. 1, An Oilfield in Gulf of Mexico  

In the Gulf of Mexico, Hydro Gulf of Mexico LLC had potential asphaltene precipitation 

problems in a deepwater development[75].  

1st Step- Sampling: The blending of two different fluids of oil and condensate was 

occurred by two wells which were penetrating the formation at different depths. 

Appropriate samples were collected from these wells for the experimental studies.  

2nd Step- Experimental Studies: First, SARA analysis was employed for determining the 

asphaltene content. It was found that the sample contained 61.7% saturates, 26.0% 

aromatics, 11.4% resins and 0.9% asphaltenes. In addition, the Near Infra-Red (NIR) light-

scattering and High-Pressure Microscopic (HPM) were utilized for Asphaltene Onset 

Pressure (AOP) determination. It is obtained that the asphaltene onset pressures were 7,000 

psi ±100 psi and 10,700 psi with 20% OBM contamination and without contamination 

respectively.  

3th Step- Creation of a Reliable Model: A molecular equation of state (EoS) was 

developed for the evaluation of reservoir fluid at pressure, and temperature and 

composition conditions along the 28,000 ft length of the oil pipeline and also for the 

prediction of conditions at key locations through the first five years of the production.  

4th Step- Adjustment of the Model: By applying the model for the current study it was 

found that decreasing the pressure form its initial value asphaltene precipitation would be 

increased, and also by decreasing the pressure from 16,988 to 10,000 psi 10% of the fluid 

asphaltene content would be precipitated. It was also concluded that by mixing the black 

oil and gas condensate the asphaltene onset pressure (AOP) would be increased, and if the 

pressure would be reduced to 10,000 psi and a quantity of gas condensate would be added 

to the fluid, 60% of the fluid asphaltene content would be precipitated.  

5th Step- Decision Making and Selection of the Most Appropriate Solution: Based on 

modelling and experimental studies in the previous steps the injection of suitable 

asphaltene precipitation inhibitors was recommended. It was also suggested that the oil 

production from the layers should be consecutive, first production from the oil layer, then 

the gas condensate layer without any blending.  
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6th Step- Application in the Real field: The recommended inhibition techniques were 

applied in the real oilfield. At last the project was successful and the oil production from 

this oildfiled was continued without facing any asphaltene problems.  

2.5.2 Case. 2, Oilfield from South Kuwait 

Very serious and undeniable problems for reservoir management and production operations 

of Greater Burgan oilfield of South Kuwait were faced by asphaltene deposition on 

tubulars and pipelines[27]. Toluene was successfully employed at first, but because of 

some restrictions the use of solvents which are more environmentally friendly is 

mandatory.  

1st Step- Sampling: For fluid and asphaltene characterization, four single-phase samples 

were gathered from four wells in the Marrat carbonate reservoir interval. 

2nd Step- Experimental Studies: SARA analysis for the live oil from Well MG-OF4 was 

utilized and the results of 68.3% saturates, 11.2% aromatics, 18.4% resins and 2.1% 

asphaltenes were obtained. This technique was used again for the deasphalted oil (DAO) 

and the results of 59.5% saturates, 25% aromatics, 15.3% resins and 0.2% asphaltenes were 

gained. Hence there is a reduction in asphaltene content of 90% compared with the live oil. 

Gravimetric measurement was also employed for the reservoir fluid from well MG-OF4. 

The pressures of 6,200 psi and 3,235 psi were obtained as asphaltene onset pressure and 

bubble point pressure respectively. For more studies of the asphaltene onset pressures at 

different conditions the acoustic resonance technique was used. It was found that the 

solution with 40% DAO was more effective than one with 40% toluene in decreasing of 

the Asphaltene onset pressure. The solvating power of the deasphalted oil was improved 

more drastically by the addition of 1% asphaltene dispersant.  

3th Step- Creation of a Reliable Model:  A thermodynamic model was developed for the 

asphaltene studies of this case with an assumption of asphaltene as a solid phase in 

equilibrium with the reservoir fluid.  

4th Step- Adjustment of the Model: Simulation results of the fluid behaviour over the range 

of conditions argued that during the oil production, the asphaltene precipitation from the 

Marrat oils was undeniable and significant. It was concluded that for minimizing the 
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asphaltene deposition, a cost-effective solvent injection for batch treatment or periodic 

injection on pipelines was needed.  

5th Step- Decision Making and Selection of the Most Appropriate Solution: As one of the 

most suitable approach to handle the problem the injection of deasphalted oil as an 

asphaltene solvent was proposed. This was suggested because the removal of asphaltenes 

by precipitation is a reversible process for various kind of oils. The deasphalted oil, which 

is made by removing the precipitated asphaltenes, could be able to dissolve the asphaltenes 

much higher than the original live oil.  

6th Step- Application in the Real field: After applying the injection of deasphalted oil, a 

huge amount of asphaltene was dissolved from the borehole wall within 24 hours. It can be 

mentioned that the employed technique is more environmentally friendly than other 

methods and its cost approximately 50% less than utilizing toluene.  

2.6 A Short Explanation about the Enhanced Oil Recovery (EOR) Approaches 

Nowadays it becomes a hot research topic for the petroleum research groups worldwide to 

develop an approach with high efficiency for increasing oil recovery from the existing oil 

reservoirs. The EOR methods generally divided into three different groups: Thermal, 

Chemical and Gas Injection techniques. The first thing that is crucial to do, when the oil 

reservoir pressure is depleted through primary and secondary oil production, is to restore 

the pressure within the reservoir to one appropriate for oil production as a tertiary recovery 

or enhanced oil recovery (EOR) technique[64]. In this regard, the CO2 injection, water 

injection, water alternating gas injection and Carbonated water injection can be ideal EOR 

approaches in many cases. Since the late 70’s, the gas injection (especially CO2 injection) 

is the only approach which has been gained the most attention and success worldwide. The 

trapped oil can also be recovered by employing chemical/surfactant flooding and 

decreasing the capillary forces which prevent the oil from flowing through the porous 

media into the wellbores. Thermal flooding is generally limited to heavy oil fields only. 

Besides additional economic benefit through different EOR processes, environmentally 

safe and employing at least part of the existing infrastructure in injection methodologies 

(CO2/Water/WAG/CWI), some of them might have some disadvantages such as asphaltene 
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precipitation and deposition in heavy oil reservoirs which may cause permeability 

reduction and wettability alterations.  

2.6.1 The Effects of EOR Processes on Asphaltene Deposition in Porous Media 

Although a significant amount of research projects focused on different injection scenarios, 

the interactions between the injected fluid and residual oil and the actual mechanisms by 

which residual oil might move through porous media during the injection and its serious 

effect on asphaltene deposition and pore plugging have not yet been fully understood. A 

summary of selected and most recent published studies on the effect of enhanced oil 

recovery processes on asphaltene deposition is presented in Table 2.6.  

Table 2. 6. Summary of most recent published research works on investigation of enhanced 

oil recovery processes on asphaltene precipitation and deposition 

Objectives of Study 

Experimental 

Techniques and 

Devices 

Results Reference 

Visual study of 

asphaltene 

deposition due to 

CO2 injection and 

pressure depletion 

High Pressure Cell 

& Image 

Processing 

Technique 

Asphaltene depositions at 

different pressures and 

temperatures and CO2 mol% for 

two different crude oils were 

obtained. 

By increasing the mole percent 

of CO2 from 5 to 20%, the area 

of deposited asphaltene was 

increased at pressure range of 

30 to 140 bar. 

By increasing the temperature, 

asphaltene particles tend to 

flocculate and make larger 

particles. 

[76] 

Investigation of the X-ray CT Images In all injection scenarios there [77] 
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effects of 

immiscible CO2 

injection process 

on asphaltene 

deposition and 

permeability 

reduction 

were oil effective permeability 

reductions and the CO2 dry or 

secondary flooding process had 

a much smaller oil effective 

permeability reduction 

compared to tertiary recovery 

Investigation of the 

oil recovery 

mechanisms and 

asphaltene 

precipitation 

problem in 

immiscible and 

miscible CO2 

flooding processes 

IFT Measurements 

and Conventional 

Core flooding 

The linear regression equation 

of the measured equilibrium 

IFT versus equilibrium pressure 

data for the first pressure range 

gave zero equilibrium IFT at 

the equilibrium pressure of Peq 

= 10.6 MPa, as the minimum 

miscibility pressure (MMP) 

The oil recovery factor (RF) 

became higher at a higher 

pressure during the immiscible 

CO2 flooding. Once the 

pressure exceeded the MMP, 

the oil RF increased slightly 

and eventually reached a nearly 

constant maximum value in the 

miscible CO2 flooding 

The measured asphaltene 

content of the produced oil was 

decreased with the pore volume 

(PV) of injected CO2 in each 

coreflood test due to CO2-

induced asphaltene 

[78] 
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precipitation. A higher average 

asphaltene content of the 

produced oil was found under 

the immiscible conditions 

Total oil recovery factor was 

much higher at the higher 

temperature under the miscible 

conditions 

Asphaltene 

precipitation, 

aggregation and 

deposition were for 

the first time 

investigated during 

solvent injection at 

elevated 

temperatures for 

heavy oil recovery 

PVT Cell, Focused 

Ion Beam (FIB) 

and Scanning 

Electron 

Microscope (SEM) 

The influence of various types 

of light hydrocarbons as a 

solvent on asphaltene 

agglomeration was illustrated, 

and it was concluded that the 

thickness of asphaltene 

deposition was increased with 

decreasing carbon number of 

the solvent 

[79] 

 

2.7 Why are some asphaltenes projects being failed? 

Recently many oil companies spent a lot of money on asphaltene precipitation & 

deposition remediation projects. Because of the lack of a clear and consistent process for 

deciding on how & when to employ the appropriate remediation approaches (Mechanical, 

Chemical, Thermal and etc.), some of these projects were not completely successful in 

their objectives.   

The amount of inhibitor, type of inhibitor, soaking time, number of treatment jobs and the 

time period between two treatment jobs affect the outcome of an asphaltene treatment plan. 

Accurate prediction of asphaltene precipitation, aggregation, and deposition in the porous 

media and wellbore significantly decreases high expenses related to the reservoir 

remediation, well intervention approaches, and oilfield production suspension.  
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2.8 Conclusions 

There are some points which can be safely concluded from the sections above which have 

been tried to be addressed in the following chapters: 

1. Up to now, most of the mentioned asphaltene precipitation models in previous 

sections have been examined just on confined sets of experimental data. Many of 

the researchers assert that their models could give appropriate estimations, 

nevertheless none of them could be employed for systematically asphaltene 

precipitation prediction since the modelling results of real field application in 

industry show the limitation of most state-of-art approaches for the prediction of 

asphaltene precipitation and deposition. 

2. Researchers try to generate new reliable models that can incorporate the most 

recent experimental findings (e.g. asphaltene molecular size and structures). This 

important topic can be considered to have more accurate asphaltene deposition 

simulator.   

3. It is proved that the proposed work flow chart for mitigation of the asphaltene 

related flow assurance problems can be used as a general rule for the oil companies 

to remove the asphaltene barriers.  

4. Most of the current experimental techniques for asphaltene precipitation onset 

determination do not have an accurate performance in this regard. Further research 

studies can be conducted in this regard.  

5. Each group of chemical compounds can be used for some crude oils with specific 

characteristics and they have certain roles in inhibition and remediation processes. 

This topic can be demonstrated in more details.  

6. A suitable dynamic modelling of asphaltene precipitation for an accurate prediction 

should consist the effect of pressure, temperature, composition variation, oil 

velocity and the amount of asphaltene aggregates in a grid block. 

7. It can be concluded that water films on reservoir rock surfaces may prevent the 

deposition of asphaltene on the rock surfaces. It needs to be investigated further for 

different water chemistries.  
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8. During the gas injection process which is one of the most important EOR 

approaches, the amount of asphaltene precipitation extremely high relies on the 

amount of gas which is combined with oil. This can be illustrated further.  

9. It is proved that Quartz Crystal Microbalance (QCM) technology can also be used 

as a flow assurance tool besides its use in biological studies. It can be a reliable 

technique for investigation of asphaltene deposition during pressure depletion or 

gas injection processes. 
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Chapter 3- New Insights into Determination of Asphaltene Appearance Point and 

Evaluation of Asphaltene Inhibitors Based on n-Alkane Titration 

 

3.1 Introduction 

As discussed in details within chapter 2, many different techniques have been used for 

asphaltene onset determination such as Filtration technique[1], acoustic resonance[2], [3], 

refractive index method[4], light scattering[5], [6], density and viscosity measurements[7]–

[9], high-pressure microscopy[10], [11], and indirect method[12]. Some of these 

conventionally used techniques can only detect asphaltene particles that are at least 0.5 μm 

in diameter, for asphaltene onset determination[5], [13]–[15]. These methods determine 

asphaltene precipitates aggregation onset which may not be the precipitation onset, and this 

may cause inaccurate results for use in other studies and/or selection of inappropriate 

asphaltene inhibitors. Other techniques like indirect method are not particle size dependent, 

but they need toluene to be added to the system as a diluent before adding to UV-vis 

spectroscopy, and this adds costs and time. In order to handle the asphaltene problems, 

amphiphilic dispersants which consist of polar group (s) have been utilised to reduce the 

size of the asphaltene particles below the precipitation threshold or delay the onset of 

aggregation and deposition by polar head group interactions between asphaltene and 

amphiphiles. The structure of the amphiphilic dispersants typically contain an aliphatic tail 

attached to a benzene ring with one or two functional or head groups (−OH, −SO3H, and 

−O−)[16] which could inhibit the asphaltene nanoaggregates to form the asphaltene 

precipitates mainly through hydrogen bonding, ion-pairing and π-π interactions with 

heteroatoms and aromatic rings in asphaltene molecules.  

Although amphiphilic asphaltene inhibitors could be considered as a part of the solution, 

lack of proven techniques for validation and evaluation of the utilised amphiphiles is the 

other side of the issue. Many of previous studies were conducted in conditions where 

asphaltene precipitates are already aggregated, and very few have targeted asphaltene 

particles before or near precipitation and flocculation states. The Inhibition of asphaltenes 
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in aliphatic solvents employing different oil-soluble amphiphiles containing long-chain 

alkylbenzene, alkyl alcohol, alkylamine, and p-alkylphenol (Cnphol) was investigated by 

Gonzalez et al[17]. Chang and Fogler studied the capabilities of a various alkylbenzene 

derived amphiphiles for stabilisation of asphaltenes in apolar alkane solvents[18]. The 

results from their study reveal that Cnphol and p-alkylbenzene sulfonic acid (Cnbsa) are 

efficient amphiphiles in peptisation of asphaltenes in alkane solvents. Leo´n et al[19] also 

studied the adsorption behaviour of a set of alkylbenzene derived amphiphiles on 

asphaltenes surfaces.  

In order to formulate and generate a new asphaltene inhibitor chemistry, the optimisation 

of functional groups in its structure which interacts with asphaltene surface active groups 

should be considered for different crude oils. One of the main objectives of this study is to 

provide novel insights into both the mechanism of asphaltene precipitation inhibition in 

oil/heptane solutions and the influence of different inhibitors/amphiphiles on the 

stabilisation of asphaltene nanoaggregates. In this regard, an experimental method which is 

named hybrid technique herein, is employed for evaluation of the chemicals. By employing 

this approach, the inhibitors used in this study and all other inhibitors in the literature can 

be evaluated based on their capabilities to delay the precipitation onset.  

This chapter presents capability of the hybrid technique for determination of asphaltene 

precipitation onset and also evaluation of asphaltene inhibitors, which is based on the 

integration of applying artificial gravimetric force and Fourier Transform Infrared (FTIR) 

spectroscopy. The effects of different chemicals including phthalic acid, two amphiphiles 

of nonylphenol (NP), and Dodecylbenzene sulfonic acid (DDBSA) and two commercial 

inhibitors on asphaltene aggregation have also been studied besides proposing their related 

interaction mechanisms which lead to asphaltene aggregation and deposition inhibition. It 

should be mentioned that the amphiphiles and dispersants currently used in this study have 

been chosen based on their surface active and functional groups to investigate the influence 

of these groups on asphaltene nanoaggregates stabilisation in crude oils through different 

asphaltene dispersion mechanisms.  
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3.2 Experimental Section 

3.2.1 Materials 

Experiments were conducted at ambient conditions on one type crude oil which is called 

“AC”. Table 3.1 shows the properties of crude oil AC from the North Sea.  

Table 3. 1. Properties of Crude Oil “AC” utilised in this study 

Petroleum 

Fluid 

f (g.g-1) (n-C7 asphaltene 

content) 
ρo (g.mL-1) MWo (g.mol-1) µo (cP)  

AC 0.0435 0.844 242 15.51  

Two commercial inhibitors AI. 3 and 4, nonylphenol (≥99%) and HPLC-grade 

dodecylbenzene sulfonic acid (DDBSA) (≥95% & ≤2% H2SO4) both as amphiphilic 

inhibitors, phthalic acid (≥99.5%), HPLC-grade anhydrous n-heptane (>99%), anhydrous 

toluene (>99.8%), HPLC grade acetone (≥99.9%) and ethanol (≥99.8%) all from Sigma-

Aldrich were used in this study. Some physical properties of utilised asphaltene inhibitors 

are presented in Table 3.2. 

Table 3. 2. Properties of non-commercial asphaltene inhibitors used in this study 

Inhibitor 
Molecular 

Formula 

Density 

(gr/cm3) 

@ 25 oC 

Molecular 

Weight 

(gr/mol) 

Solubility in 

Water (gr/l) 

@ 25 oC 

Chemical 

Structure 

 

Nonylphenol 

 

C15H24O 

 

0.952 

 

220.35 

 

5.45E-3 

 

 

 

Phthalic acid 

 

 

C8H6O4 

 

 

1.592 

 

 

166.14 

 

 

5.7 
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Dodecylbenzenesulfonic 

acid (DDBSA) 

 

 

C18H30O3S 

 

 

1.06 

 

 

326.49 

 

 

N/A 

 

3.2.2 Hybrid Technique  

Firstly, the crude oil samples were heated up to 70 oC before each set of tests. Then the 

glass centrifuge tubes were filled with solutions comprising various ratios of n-heptane 

(used as an asphaltene precipitant) and test fluid from 15 to 70 Vol % n-heptane. The 

centrifuge tubes were shaken by hand to mix the solution well before being left to age for 

1 hr, 1 day, and 1 week. After ageing, a small amount of crude oil was added to each test 

tube to remove the effect of ageing time on asphaltene precipitation state. Then, the 

prepared solutions were centrifuged by Heraeus Megafuge. In order to obtain appropriate 

gravitational force which can balance both the buoyancy and drag forces on the asphaltene 

particles and settle the asphaltenes in the oil/n-heptane solutions, the Stokes’ Law is used 

which is defined as ve=d2δρg/18µ, where ve is the velocity of the colloidal asphaltene 

particle in gravitational field of g, d is the average asphaltene particle diameter, Δρ is the 

discrete to continuous phase density contrast and µ is the liquid viscosity[20]. Stokes’ Law 

was shown to be suitable for different asphaltene precipitates sizes and these results were 

confirmed with asphaltene particle size determination from ESEM micrographs of the 

asphaltene precipitates as presented in Figure 3.1. It seems that the precipitated asphaltene 

has a porous structure with the size range of 100-700 nm depending on the crude oil used 

which is made by asphaltene nanoaggregates. 

 

Figure 3. 1. ESEM micrographs of asphaltene precipitates 
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Based on the ESEM micrographs, the asphaltene nanoaggregates with a size of 100 nm and 

above (when the asphaltene precipitation state starts) are separated during the 

centrifugation step of hybrid technique with 4300 RCF and duration of 35 min. Hence only 

stable asphaltene particles smaller than that particular range remained in the supernatant 

solution, making the hybrid technique more sensitive than other conventional methods. 

After this step, one mL of the supernatant fluid was removed by syringe and directly put in 

Fourier transform infrared (FTIR) spectrometer without adding any diluent. Then, the 

transmittance number at specific wavelengths range, which represents the functional 

groups of heteroatoms in asphaltene molecule, was measured by an FTIR-4000 Series 

(JASCO Edition) spectrometer. The values of transmittance versus different volume 

percent of n-heptane in the crude oil/h-heptane solution were plotted. A sudden change in 

transmittance number corresponds to the volume percent of n-heptane at the Asphaltene 

Appearance Point (AAP). In this work, the AAP for each specific technique represents the 

minimum amount of n-heptane that should be added to crude oil to cause asphaltene 

precipitation that is discernible by the utilised technique. Figure 3.2 shows the schematic 

diagram of the procedure of hybrid technique used in this study.  

 

Figure 3. 2. Procedure of Hybrid Technique 

3.2.3 Refractive Index (RI) Measurements  

Refractive index (RI) measurement by refractometer-model J457 made by Rudolph 

research was used for asphaltene precipitation investigations in this study. This technique 

has smart measure™ which improves results with live measurement and sample load well 

monitoring., dual electronic temperature control from 10 ºC to 110 ºC or 10 ºC to 120 ºC, 
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Refractive Index ±0.00002, BRIX ±0.01 accuracy in the range of refractive index 1.26 – 

1.72, BRIX 0 – 100. It was utilised to have a comparative study for asphaltene appearance 

point (AAP) detection between the hybrid technique and RI measurements. Firstly, the 

measuring prism should be retained clean. The instrument should also be calibrated against 

a refractive index standard provided by Rudolph research at 25°C and 589 nm wavelength. 

The temperature control of the liquid being tested, and the cleanliness of the prism has to 

be repeatedly checked. The first step for this method is the titration of crude oil with n-

heptane. Then different mixtures of crude oil/n-heptane were prepared in the test tubes with 

various concentrations of n-heptane ranging from 0 to 100 Vol%. The vigorous shaking of 

the samples inside the test tubes is also needed to inhibit premature asphaltene precipitation 

because of poor mixing. The n-heptane titration was conducted at ambient condition. After 

the titration completion and particular ageing time for 1 hr, the refractive index of each one 

of the samples was determined at 25 oC and 1 atm using mentioned calibrated and 

temperature-controlled instrument. 

3.2.4 Near Infrared (NIR) Spectroscopy and Optical Microscopy 

The mixtures of crude oil and n-heptane were prepared following the same procedure that 

was expressed in section 2.3. Mixtures of different ratios of crude oil and n-heptane were 

prepared ranging from 0 to 70 vol% of n-heptane. The test tubes were rigorously shaken by 

hand and the mixtures were transferred to 7 mL UV-vis-NIR spectrophotometer test tube. 

The prepared samples were left to be undisturbed for the specified 1 hr ageing time. In this 

case the ageing time is the period of time apportioned between crude oil/n-heptane mixture 

preparation and the measurement of the NIR transmittance. Then, the NIR transmittance 

was determined utilising a Hitachi UV–Vis–NIR spectrophotometer Model U-3010. The 

transmittance numbers were determined for wavelengths ranging between 1000 and 1300 

nm. Since the signal is not saturated, it was identified that different wave lengths in this 

range can be employed to detect the asphaltene appearance point. The transmittance 

numbers were then normalized utilising the transmittance of the crude oil as the reference. 

The normalized light intensity/transmittance values were plotted as a function of the 

volume fraction of n-heptane added to the mixture. Asphaltene appearance points were 

measured by the reduction in the normalized light intensity due to asphaltene aggregates 
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formation that disturb the route of light from its source to detector. The first deviation from 

the linear trend indicated the precipitation of asphaltenes. The samples were also observed 

under a state-of-the-art petrographic microscope with a 50× magnification lens for 

determination of asphaltene precipitation.  

3.3 RESULTS AND DISCUSSION 

3.3.1 Asphaltene Appearance Point (AAP) Detection by the Hybrid Technique 

Asphaltene precipitation from crude oil AC was investigated by n-heptane titration with 

different ageing times of 1 hr, 1d ay, and 1 week using the hybrid technique. By 

monitoring the changes in transmittance numbers (%) for supernatant fluids of different 

crude oil/n-heptane mixtures after centrifugation, alterations in stable asphaltene particles 

concentration can be detected. Since the dispersed asphaltene particles scatter the light 

through FTIR spectrometer, the transmittance number was increased in samples which 

were losing asphaltenes and reduced in rest of the samples which were gaining asphaltene 

particles. Figure 3.3 presents the FTIR spectrum of supernatant fluids of samples with 

different concentrations of n-heptane added to the crude oil.  
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Figure 3. 3. FTIR spectra of supernatant fluids in various crude oil/n-heptane mixtures. 

The spectra presented is distributed through different regions which represent each 

functional group in the crude oil. The intensity of the band at 780 cm-1 corresponds to the 

CH2 (ethyl group) which was negligibly small in all spectra. Generally, the absorption 

bands observed between 900 cm−1 and 700 cm−1 are mainly due to different aromatic C-H 

bending deformations. The absorption band around the 870 cm-1 represents the highly 

substituted aromatic structure. As can be observed in Figure 3.3, there is a change in 

intensity of the C=C aromatic stretching vibration at 1614 cm-1 and –CH3 bending 

vibration at 1377 cm-1. A significant variation in absorption at 1461 cm-1 which represents 

–CH2 bending vibration was seen with high intensity. A weak shoulder band at around the 
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1715 cm-1 corresponds to the stretching of carbonyl, carboxylic or derivative groups in the 

solution. The absorption bands in the spectral range of 2955-2850 cm-1 represent the 

stretching vibration of aliphatic –CH3 and –CH2 groups. The absorbance band in the 

spectral range of 3500-3300 cm-1, centred around 3448 cm-1, is assigned to the N-H/O-H 

groups in the pyrrole and carboxylic/phenol active groups of asphaltene molecule. Thus 

3448 cm-1 was for monitoring the change in transmittance number due to alteration in 

asphaltene concentration in the supernatant fluid. 

Figure 3.4 shows the measured transmittance numbers (@ 3448 cm-1) of one mL of 

supernatant fluids of different crude oil/n-heptane mixtures after applying a centrifugal 

force of 4300 RCF for 35 min versus concentration of n-heptane for various ageing times.  

 

Figure 3. 4. AAP detection by hybrid technique for the real crude oil titrated with n-

heptane for different ageing times of 1hr, 1day, and 1week 

As can be seen from Figure 3.4, at early stages of the n-heptane injection dimerization of 

asphaltene molecules happened through π-π stacking interactions between aromatic cores. 

Due to the appearance of H-bonding from FTIR spectra after asphaltene precipitation 

onset, it can be proposed that the main mechanism after dimerization is the aggregation of 

larger asphaltene particles through H-bonding actually when aromatic-aromatic interaction 

becomes more difficult in larger nanoaggregates.  

The last point in the linear trend before a sudden deviation in transmittance number 

corresponds to the Asphaltene Appearance Point (AAP). For the crude oil/n-heptane 
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mixture with 1 hr ageing time, the measured transmittance number from 15 to 25 Vol% of 

n-heptane shows a linear trend, while there is a deviation from the linear trend at around 30 

Vol% which represents the asphaltene appearance point. As can be seen from Figure 3.4, 

the volume percentage of n-heptane that should be added to the crude oil to detect the 

asphaltene appearance point alters based on the ageing times. As the ageing time is 

increased from 1 hr to 1 day, the transmittance number deviates at lower n-heptane 

concentration, and the AAP changes from about 40 to 35 Vol% of n-heptane. The average 

standard deviation (ASD) for the AAP detection by the hybrid technique is 2.07, 2.31 and 

2.75% for 1 hr, 1 day and 1 week ageing times respectively. A similar effect of ageing 

times on asphaltene precipitation have also been reported in the literature[12], [21]. They 

investigated the effect of ageing time on n-heptane induced asphaltene precipitation. It has 

been shown that the necessary time to detect the asphaltene precipitation onset can differ 

from 1 hr to 1 month based on the concentration of normal alkane. The effect of ageing 

time on AAP shifting is not related to the centrifugal force in the hybrid technique since it 

is entirely linked to the thermodynamical equilibrium of asphaltene precipitants in the 

system. Because of an induced compositional gradient, the thermodynamic equilibrium of 

the crude oil/n-heptane system is no longer valid, and the compositional gradient should be 

considered in the determination of asphaltene appearance point accordingly. Therefore, by 

utilising the hybrid technique and adding a small amount of crude oil to the crude oil/n-

heptane mixture after particular ageing time, insignificant asphaltene compositional 

gradient is reached and the mentioned thermodynamic equilibrium is obtained. As a result, 

the asphaltene appearance points converge towards the same value, which is the real AAP 

without the effect of ageing time. Figure 3.5 shows the results after removing this effect on 

AAP detection by the hybrid technique and accumulated asphaltene aggregates at the 

bottom of the test tubes after centrifugation for different stages.  
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Figure 3. 5. AAP detection by hybrid technique for the real crude oil titrated with n-

heptane after removing the effect of ageing time 

At low n-heptane concentrations which cause true molecular asphaltene solutions in crude 

oil (not aggregated asphaltenes), there are no sediments of the precipitated asphaltenes in 

the solution at the bottom of the tube. At high concentrations of n-heptane, the asphaltene 

nanoaggregates are accumulated at the bottom of the test tube for different ageing times. 

Figure 3.5 shows some growth of asphaltene accumulation at 30-40 Vol% n-heptane and a 

significant increase at 55 Vol% n-heptane. As it can be seen the last points in the linear 

trend, which represents the AAP, are the same in the value of about 30.67 Vol% for all the 

1 hr, 1 day and 1 week ageing times, and the ageing time effect has been removed by the 

new proposed procedure. The ASD for this set of tests is 2.86, 1.94 and 3.05% for 1 hr, 1 

day, and 1week ageing times, respectively.  

3.3.2 Hybrid Technique vs. Refractive Index (RI) and Optical Microscopy 

Measurements 

To prove the advantages of the hybrid technique over other techniques, refractive index, 

near infrared and optical microscopy measurements were used to detect the asphaltene 

appearance point in crude oil AC/n-heptane system with 1 hr ageing time at ambient 

condition.  



-59- 

 

The refractive index function versus concentration of n-heptane was plotted. Refractive 

index function (RIfn) is: 

                                      RIfn =                            (3.1) 

Where n is refractive index. Figure 3.6 shows the almost linear relationship between the 

refractive index function and volume percentage of n-heptane from 0 to 40 Vol%.  

 

Figure 3. 6. AAP detection by refractive index measurements with ageing time of 1 hr. 

When the asphaltene particles start to precipitate out from the solution, which can be 

detectable by refractometer, the refractive index function no longer follows the linear 

behaviour and a gradual deviation from the linear relationship is observed as shown in 

Figure 3.6. This difference in the refractive index function can be illustrated by the fact that 

as the asphaltene molecules stick together and precipitate out of the solution, so they no 

longer contribute to the refractive index of the solution. Since the asphaltene precipitates 

are very refractory substances, lower refractive index of the remaining mixture causes the 

gradual deviation of the refractive index function. Buckley[4] suggested that at the 

asphaltene precipitation onset point there is a sharp linear drop in the refractive index 

function. However, Wattana et al.[21] concluded that the asphaltenes precipitation is a 

gradual process, as shown in the curvature of the refractive index function after the initial 

precipitation occurred. If the asphaltenes precipitated together, then a sudden large change 



-60- 

 

in the refractive index could be observed, and the refractive index function behaviour 

would again be linear. 

In this study, the AAP detected by refractive index measurement is 40.4 Vol% of n-

heptane, as shown in Figure 3.6, while the AAP obtained by the hybrid technique is 30.43 

Vol% at the same conditions. The ASD is 0.75% for this set of tests by refractometer. A 

comparison of the hybrid technique and RI measurements illustrates that for the same set of 

mixtures and the same ageing time, the hybrid technique detects the AAP at a lower 

volume percentage of n-heptane than the RI measurement. It means that the hybrid 

technique is more sensitive in detecting asphaltene particles in precipitation state than the 

traditional approaches. This is due to the lower minimum value of the asphaltene particle 

sizes which is detectable with hybrid technique than with RI method.  

 

Figure 3. 7. The micrographs of crude oil diluted with different concentrations of n-

heptane; a) 0 vol% of n-C7, b) 35 vol% of n-C7, c) 39 vol% of n-C7, d) 41 vol% of n-C7, e) 

45 vol% of n-C7, and f) 55 vol% of n-C7 aged for 1 hr for the detection of asphaltene 

appearance point. The white scale bar in pictures is 100 µm. 

Micrographs of various crude oil/n-heptane mixtures have been presented in Figure 3.7. It 

depicts that the detection of asphaltene appearance point happens ~41 vol % of n-heptane 

and the results of RI measurements and direct microscopy technique are in good 

agreement.  
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3.3.3 Evaluation of Asphaltene Inhibitors and Proposed Mechanisms 

The hybrid technique, NIR spectroscopy, and RI measurements have been used in this 

work to evaluate the effectiveness of asphaltene inhibitors on asphaltene precipitation at 

ambient and condition. The blend of crude oil AC and different concentrations of n-

heptane were prepared in the centrifuge test tubes following the same procedure that was 

explained in previous sections. Then the solutions were treated with NP, DDBSA, Phthalic 

acid, two commercial inhibitors AI. 3 and 4 all with dosage of 200 ppm. It is worth noting 

that the mentioned dosage rate is based on crude oil and the chemical has been added to the 

crude oil prior to the addition of n-Heptane. The test tubes were vigorously shaken by hand 

and left undisturbed for one hour as ageing time.  The rest steps of the hybrid technique, 

NIR and IR based methods and the corresponding results analysis are following the same 

procedures as mentioned before in previous sections.  

The inhibitor effectiveness on asphaltene precipitation inhibition was investigated by 

monitoring the asphaltene appearance point changes due to presence of different inhibitors. 

Figure 3.8 presents the AAP shift for all inhibitors using the crude oil AC. The intersection 

point between the two trend lines which were drawn before and after the detection point 

represents the volume percentage of n-heptane at the asphaltene precipitation onset. 
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Figure 3. 8. a) Effect of two commercial inhibitors AI. 3 and 4 with concentration of 200 

ppm on AAP obtained by hybrid technique. Effect of nonylphenol, Dodecylbenzene 

sulfonic acid (DDBSA), and phthalic acid all with concentration of 200 ppm on AAP using 

b) Hybrid technique, and c) NIR spectroscopy. 

As can be observed, based upon AAP, the AI .4 is the best inhibitor and nonylphenol is the 

weakest inhibitor. Results of these tests show that the AI. 4 shifts the AAP from 30.43 to 

49.68 Vol% of n-heptane. Among utilised amphiphilic inhibitors DDBSA, with shifting the 

AAP to 39.84 Vol%, has the best ability to inhibit asphaltene precipitation followed by 

phthalic acid and NP. The commercial inhibitor shows better performance than all non-

commercial inhibitors with shifting the AAP to 42.18 Vol% of n-heptane. The ASD for 

detection of asphaltene appearance point obtained by the hybrid technique is 1.63%, 

1.57%, 2.05%, 2.24% and 2.51% for the AI. 3, AI. 4, DDBSA, Phthalic acid, and NP, 

respectively.  
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Figure 3. 9. Determination of AAP using refractive index measurements for different crude 

oil/inhibitors mixtures, a) blank oil, b) DDBSA, c) AI. 3, and d) AI. 4 all with inhibitor 

concentration of 200 ppm for ageing time of 1hr. 

Figure 3.9 shows the results of AAP monitoring using refractive index measurement 

with/our presence of 200 ppm DDBSA, AI. 3 and 4. The results clearly have a good 

agreement with hybrid and NIR spectroscopy techniques. The ranking of inhibitors at 

given concentration based on their impacts on making a delay in AAP is as follows: AI. 4 > 

AI. 3 > DDBSA. The ASD for detection of asphaltene appearance point attained by RI 

measurement technique is 1.15%, 1.69%, and 1.98% for the DDBSA, AI. 3, and AI. 4, 

respectively.  

Understanding of the mechanisms behind the inhibition of asphaltene precipitation is 

required to find out the reasons behind the mentioned trend. As a general point of view on 

asphaltene precipitation inhibition mechanism, it is believed that there are free inhibitors 
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monomers after adding to the crude oil solutions which can interact with active sites of 

asphaltene molecules (e.g. carboxylic, sulfoxide, pyridine, phenol, thiophene and pyrrole) 

and cause stabilisation and suspension of asphaltene particles in the solution. Previous 

studies claimed that both hydrogen bonding and π–π interactions could be occurring 

between asphaltene and the inhibitor molecules. Based on the investigation of how various 

amphiphiles interact with asphaltene molecules, it has been understood that the 

stabilisation of the asphaltene particles relies on the head groups of amphiphiles. It has also 

been found that the amphiphiles which consist of basic head groups (e.g. –NH2) have the 

weakest adsorption on the asphaltenes surfaces among other utilised compounds[18], [22]–

[24].  

As mentioned before, one of the advantages of the hybrid technique over other techniques 

for evaluation of asphaltene inhibitors is that it allows us to find the possible interactions 

between asphaltene and inhibitors molecules and suggest the proposed mechanism of 

asphaltene precipitation inhibition. The acid-base interaction between asphaltenes and 

DDBSA was characterised using FTIR spectroscopy. Typically, the SO-H stretching band 

from DDBSA molecules causes a remarkable change in transmittance number in its 

wavelength range. Hence, a change of DDBSA's SO-H stretching band in the presence of 

asphaltene nanoaggregates could be because of the breakage of DDBSA's SO-H bond by 

the transition of the proton of its sulfonic acid (SO3H) group to the corresponding 

conjugate basic active groups on asphaltene molecules. The FTIR spectrum related to the 

supernatant solution of crude oil/n-heptane mixture with the presence of different inhibitors 

is presented in Figure 3.10. 
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Figure 3. 10.. FTIR spectra of supernatant fluid of crude oil/n-heptane system in presence 

of different inhibitors- Possible interactions between Asphaltene and one of the 

commercial inhibitor molecules (AI. 4). 

As can be observed the absorbance bands in various spectral ranges represent particular 

types of groups that are present in the system. The wide broad band centered around 3448 

cm-1 indicated the presence of the H-bonding creation between asphaltene/DDBSA 

molecules. The H-bonding between the DDBSA's S=O group and the asphaltene's 

carboxylic, phenol and pyrrole groups could be considered for the appearance of this band.  

The π-electrons exists in the asphaltenes highly electronic conjugated structures, and the 

electrophilic addition interaction between CnBSA and the π-electrons of asphaltenes has 

been proposed[22], [25]. Chang and Fogler[18] proposed two different mechanisms for this 

electrophilic addition. The first mechanism is:  

 

Based on this mechanism, the CnBSA molecules could react with the asphaltenes π-

electrons (as the Lewis base) started by the CnBSA’s SO3-H bond and enclosed with the 
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association of the asphaltenes and the P-dodecylbenzene sulfonate group to create a larger 

complex conjugated structure. The other possible CnBSA/asphaltene interaction 

mechanism is the acid-base exchange interaction of CnBSA with the basic and acidic sides 

of asphaltene molecules which are defined as Basp and Aasp, respectively. This mechanism 

is expressed by: 

 

The reaction products that are CnH2n+1 SO3   Aasp and H-Basp will associate together in 

apolar medium through acid-base interactions.  

This study suggests novel insights into the mechanism of asphaltene precipitation 

inhibition caused by DDBSA molecules. We believe that the DDBSA molecules could 

protonate the heteroatoms in asphaltenes carboxylic, sulfoxide, phenol, pyridine and 

pyrrole active groups, and its long alkyl chain tail causes significant solvation. A very 

strong acid-base interaction is established through ion-pair interaction between the 

protonated asphaltene (AH+) and sulfonate ion (DDBS-). On the other hand, the wide broad 

band centred around 3448 cm-1 indicated the presence of the H-bonding formation between 

asphaltene and DDBSA molecules. The H-bonding between the DDBSA's S=O group and 

the asphaltene's pyridine/pyrrole and phenol/carboxylic groups is formed due to the 

appearance of this band. Therefore, we have two different interactions of ion-pair and H-

bonding between these two molecules which could be occurred simultaneously.                                                                                                                                                                                                                                                                                                                                                                                                                                                   

The decrease in the FTIR transmittance number of asphaltenes in the presence of DDBSA 

and significant performance of DDBSA in asphaltene precipitation inhibition suggest that 

after the addressed reaction above the asphaltenes and DDBSA molecules can associate 

into a bigger electronic complex structure than that of asphaltene/DDBSA themselves. 

Since asphaltenes have a vast range of structures, the proposed complex interaction 

mechanism herein might be valid only when the –N/O-H groups bonded to a protonated 

active group in an asphaltene molecule.  

The phthalic acid is another chemical that is used as an asphaltene inhibitor in this study. 

Since it has two –OH functional groups on its benzoic ring, it can interact with asphaltene 
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nanoaggregates through both active sites. Based on the FTIR and the hybrid technique 

results, it can be seen that the H-bonding between two –OH groups of phthalic acid and –

N/O-H groups (pyridine/phenol in this case) in asphaltenes is its main mechanism of 

asphaltene precipitation inhibition. 

Therefore, phthalic acid can confine the asphaltene nanoaggregates to be clustered. The 

acid-base interaction is occurred between asphaltenes and NP’s amphiphilic molecules 

through H-bonding of NP’s hydroxyl group and pyridine/phenol active sites of the 

asphaltene. The Phenol’s aromatic benzene group can delocalize the electrons bonded 

between the oxygen and hydrogen of the hydroxyl group to make the nonylphenol more 

acidic than the usual alcohol. The NP-asphaltene H-bonding interactions was studied 

through monitoring of the transmittance number of the bonded OH stretching band in the 

range of 3100-3600 cm-1. It can be observed that NP interacts at the periphery of the 

asphaltene nanoaggregates through H-bonding with –N/O-H groups of asphaltenes.  

At high concentrations of NP, it is expected that NP molecules can saturate all the H-

bonding sites of asphaltene nanoaggregates and make them suspend in the solution with the 

barrier created around the asphaltenes through H-bonding.  

The best performance of AI. 4 is because of its high polarity, well designed and condensed 

aromatic structure, which can act like natural resin molecules around the asphaltene 

molecules and make them stable in the crude oil. The intensive absorbance at the broad 

band centred around 3500 cm-1 is due to very strong H-bonding firmly stabilised by π-π 

stacking of AI. 4’s benzoic rings with asphaltene’s aromatic cores. 

3.4 Conclusions 

In this study, the hybrid technique has been developed and examined for the determination 

of asphaltene appearance point and evaluation of asphaltene inhibitors. The effectiveness 

of two commercial inhibitors, phthalic acid and the alkylbenzene-derived amphiphiles 

including nonylphenol (NP) and dodecylbenzene sulfonic acid (DDBSA) as asphaltene 

inhibitors were studied. The effects of the structures of these chemicals on their capabilities 

to hinder the asphaltene precipitation were also investigated and possible mechanisms of 
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asphaltene precipitation inhibition were proposed. On the basis of these investigations, the 

following conclusions can be drawn:  

1. It has been found that the hybrid technique has some key benefits over other 

methods. The hybrid technique is more sensitive and accurate in detection of 

asphaltene appearance point (AAP) compared to RI measurements, optical 

microscopy and NIR spectroscopy. It should be mentioned that the hybrid 

technique can also detect the possible molecular interactions between asphaltene 

and inhibitor molecules. It can be utilised for various crude oils with different 

values of asphaltene contents.  

2. Based on the results obtained from hybrid technique, the inhibition abilities of the 

compounds increase in the order of NP (phenol group) < Phthalic acid (double 

hydroxyl group) < DDBSA (sulfonic acid group) ≤ AI. 3 < AI. 4, which indicates 

that coupled double H-bonding and π-π stacking between asphaltene-inhibitor 

aromatic cores could be the strongest and the most stable interaction for asphaltene 

precipitation inhibition that is the AI. 4’s inhibition mechanism.  

3. Possible mechanisms of asphaltene precipitation inhibition by the phthalic acid and 

DDBSA are proposed. The mechanism proposed by Fogler and Chang[18] for the 

peptisation of asphaltenes in apolar alkane solvents also holds for the inhibition of 

asphaltene precipitation from crude oils by the alkylphenol amphiphiles. The hybrid 

technique verified that asphaltenes can form acid-base interactions with 

nonylphenol through H-bonding. We proposed that the NP can saturate the H-

bonding acceptor/donor sides of asphaltenes in high NP concentrations. The 

decrease of the transmittance number of phthalic acid's O-H stretching band and the 

increase of the stabilisation of the asphaltenes aggregates suggest one of the 

asphaltene-phthalic acid interactions can involve an additional H-bonding to the 

conjugated –N/O-H groups of asphaltenes. The DDBSA molecules can stabilise the 

asphaltene nanoaggregates through a couple ion-pair-H-bonding interaction with 

asphaltenes when the –N/O-H groups bonded to a protonated active group.  

While it is generally realised that asphaltenes are polydisperse fractions of crude oils, this 

research study denotes a framework for future investigations utilising different kinds of 
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inhibitors/dispersants and mixtures of real and/or modelled asphaltene molecules. Further 

feasibility studies on the application of the hybrid technique and newly formulated 

asphaltene inhibitors in the industry can also be considered. A detailed study on the effect 

of pressure and temperature on inhibitor screening is necessary as a future work which is 

presented in the next chapter (Chapter 4) 
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Chapter 4- Comparison of Experimental Techniques at Ambient and High-Pressure 

Conditions for Evaluation of Chemistries against Asphaltene Aggregation and 

Deposition: New Application of HPHT-QCM 

 

4.1 Introduction 

Asphaltene precipitation and deposition caused by temperature variation, pressure 

depletion and oil composition changes can result in formation damage, oil production 

reduction and increased operating costs. Use of chemical additives is probably the most 

effective option for preventing or reducing asphaltene problems. Selection of inhibitors for 

asphaltene deposition is commonly based upon simple tests conducted on stabilised crude 

oil samples at ambient conditions. Some of the significant parameters involved in the 

asphaltene deposition phenomenon are: asphaltene onset pressure (AOP), lower and upper 

asphaltene envelope, reservoir pressure and bubble point pressure[1]–[3]. Gas injection is 

one of the most common EOR approaches which increases ultimate oil recovery in many 

cases because of induced oil viscosity reduction or pushing the oil towards the wellbore[4]. 

One of the most effective agents in this type of EOR method is natural gas which leads to 

increase oil production although the natural gas injection into an oil reservoir could change 

the flow behaviour and the fluids equilibrium properties which cause asphaltene 

precipitation and deposition problems[5], [6]. Despite several decades of R&D projects, 

gas induced asphaltene deposition is still a major flow assurance challenge[7], [8]. There 

are different approaches for asphaltene remediation and inhibition including mechanical 

techniques (Pigging, mechanical/manual Striping, mechanical Vibration[9], [10]), chemical 

treatments (dispersants, antifoulants, coagulants, polar co-solvents[11]–[15]) and thermal 

techniques (steam injection, hot chemical injection, microwave technique, in-situ 

combustion[9]). Between all these techniques, chemical injection is one of the most widely 

used strategies to tackle the asphaltene precipitation and deposition barrier[16], [17]. 

Millions of dollars per year are astimated to be spent each year on installing and servicing 

asphaltene mitigation equipment and chemicals[18]. In this regard, development of a new 

reliable technique for evaluation of asphaltene inhibitors could help cut the costs and 

reduce the frequency of treatments. Using classical asphaltene analysis techniques, the 
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chemical structures of asphaltenes and additives that affect inhibitors performance have 

been elucidated[19]–[24]. Despite these achievements, studying the effect of inhibitors on 

asphaltene precipitation and deposition mechanisms under real field conditions remains 

difficult due to the complex environment in which asphaltenes are destabilised and the lack 

of a reliable technique. Although all the experimental techniques mentioned in Chapter 3 

have provided detailed information about asphaltene formation and interactions with 

inhibitors, they might not be suitable for evaluation of chemicals with respect to asphaltene 

precipitation and deposition under realistic field conditions.  

Therefore, in this chapter a new high-pressure high-temperature method has been 

developed in which chemicals are evaluated based on both precipitation and deposition 

inhibition in order to study their function at relevant conditions. In this study, a technique 

based on QCM is presented to rank three asphaltene inhibitors based on their efficiency in 

shifting asphaltene onset point and reducing deposition rate at high pressure. This 

technique is faster, more reliable and accurate compared to the available tests such as the 

Asphaltene Inhibitor Screening Test (AIST) and UV-vis-NIR spectrophotometry. 

Furthermore, we are able to evaluate the effect of inhibitors on the asphaltene deposition 

rate onto the crystal surface that is obtained by resonance frequency monitoring after 

precipitation onset point, using dead-oil samples at high pressure-high temperature QCM 

(HPHT-QCM). The experimental results reveal that the asphaltene inhibitors are able to 

shift the onset of asphaltene precipitation/aggregation and could reduce the rate of 

asphaltene deposition, and also the ranking of chemicals could be different from ambient to 

HPHT condition. In this research work, the influence of chemical additives dosage, ageing 

time and temperature on the asphaltene precipitation and aggregation phenomena are also 

investigated.  

4.2 Experimental Section 

4.2.1 Materials 

Experiments were conducted at both ambient and high pressure-high temperature (HPHT) 

conditions on crude oil “P” from the North Sea. Table 4.1 shows the properties of crude oil 

“P”.  
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Table 4. 1. Properties of Crude Oil “P” Used in This Study 

Petroleum Fluid f (g.g-1) ρo (g.mL-1) MWo (g.mol-1) µo (cP)  

B 0.0397 0.836 181 13.44  

 

The commercial asphaltene inhibitors 6, 10 and 12 were utilised to treat the crude oil 

samples. These chemicals were selected based on their significant applications and 

contributions in mitigating asphaltene challenges in industry, which were received from 

operators. HPLC-grade anhydrous n-heptane (>99%), anhydrous toluene (>99.8%), HPLC 

grade acetone (≥99.9%) and ethanol (≥99.8%) were purchased from Sigma-Aldrich and 

used as received. 

4.2.2 Asphaltene Inhibitor Screening Test (AIST) 

Various dosage of inhibitor 6, 10 and 12 were injected to crude oil “P”. In this regard, 100, 

300 and 600 ppm of each inhibitor were provided and analysed. Concentrated solution of 

each inhibitor in crude oil (2000 ppm), were diluted with n-heptane and inserted in a 

beaker, then were mixed by magnetic stirrer at 1000 rpm for two hours to obtain a 

homogeneous solution. 10 mL of n-heptane plus 300 μL of the treated crude oil sample 

was placed in graduated centrifuge tubes to be centrifuged using a Heraeus Megafuge. The 

centrifuge tubes were left for a time interval (which is called ageing time hereafter) after 

which, the quantity of asphaltene aggregates at the bottom of each tube was measured in 

mL. A blank crude oil with no chemical additive was used as reference.  

The applied aging times are 1 hr, 6 hr and 24 hr.  The term “clear” is being utilised 

whenever no asphaltene aggregates were seen at the bottom of the tube and the term 

“trace” is used for the condition when the quantity of deposit is not high enough to be 

measured[25], [26]. Comparing the quantity of sediment measured in mL for various 

injected inhibitors and dosages with reference to the untreated oil, which was the 

combination of crude oil and n-heptane without any chemical, is done to investigate the 

efficiency of inhibitors by utilising the AIST.  
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4.2.3 Detection of asphaltene appearance point using UV-vis-NIR 

Spectrophotometer 

The mixtures of crude oil and precipitant, with and without inhibitor, were provided 

following the same approach which was described in Section 4.2.2. Mixtures with various 

proportions of treated or untreated crude oil and n-heptane varying from 0 to 85 vol% of n-

heptane were provided. The test tubes were rigorously shaken manually to obtain a 

homogeneous solution which was then sealed to be preserved from atmosphere. To retain a 

uniform temperature the test tubes were held in a Stuart Scientific oven which was set at a 

particular temperature (25 °C and 60 °C were used in these tests). The test tubes were 

undisturbed for a particular ageing time. The ageing time is the duration between sample 

preparation and the determination of the NIR light transmittance number. In next step, the 

NIR transmittance was determined by Hitachi UV–Vis–NIR spectrophotometer Model U-

3010. The transmittance numbers were recorded for 1100 and 1300 nm wavelengths. From 

this measurement it can be concluded that whenever the signal is not saturated, several 

wavelengths can be utilised to determine the onset point of precipitation. For wavelengths 

less than 1100 nm, evaluation cannot be done as the signal is saturated. The mass ratio of 

oil and precipitant exist in every mixture was evaluated and by presuming an ideal mixing 

and knowing the density of the contents, their volumes were calculated. The light 

transmittance numbers of each sample were modified by subtracting the n-heptane 

transmittance and after that the influence of dilution was mathematically omitted [26], [27]. 

By utilising the transmittance of the crude oil as reference, normalized amount of the 

corrected transmittance was calculated. These normalized values are often plotted as a 

function of the volume fraction of n-heptane or crude oil. Another method for illustrating 

similar results is to use light intensity instead of absorbance, which is more common for 

presenting results in direct spectroscopy. The normalized light intensity can also be plotted 

as a function of the volume fraction of crude oil and/or n-heptane. The obtained normalized 

light intensity was reduced as asphaltene aggregates barricade light rays through the cell, 

therefore this reduction trend indicates asphaltene aggregation happening, the first 

deflection from the linear line revealed the precipitation of asphaltenes which called 

asphaltene appearance point (AAP) hereafter. AAP represents the minimum amount of n-
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heptane added to crude oil to cause asphaltene precipitation that is discernible for the 

utilized technique. 

The morphology and architecture of the asphaltene precipitates with and without chemical 

additives were investigated by Environmental Scanning Electron Microscopy (ESEM) in 

order to investigate the effect of inhibitors on asphaltene precipitates size and their 

morphology. 

4.2.4 Quartz Crystal Microbalance (QCM) 

This technique measures the resonance frequency for a quartz crystal surface inserted into 

crude oil with and without chemical additive to determine the asphaltene onset point 

(AOP) at a specific temperature, pressure and composition. Since the asphaltene 

precipitation is measured independently of deposition using the QCM technique, the effect 

of inhibitor on asphaltene precipitation and deposition phenomena was independently 

studied. The crude oil “P” was treated with inhibitors 6, 10 and 12 at various chemical 

dosages ranging from 119 to 1785 ppm. The blank oil without any inhibitor was considered 

as reference. Then the treated/blank crude oil samples were loaded into the QCM cell and 

stabilized at the temperature and pressure of interest. Then, the test fluid is pressurised by 

injecting natural gas at a constant rate of pressure increase. The composition of injected 

natural gas is presented in Table 4.2.  

Table 4. 2. Natural gas composition 

Component Mole% 

N2 1.84 

C1 89.94 

CO2 0.91 

C2 5.32 

C3 1.45 

iC4 0.20 

nC4 0.21 

iC5 0.07 

(nC5) + C6
+ 0.06 

 

The QCM technique can provide a robust, reliable method for evaluation of asphaltene 

inhibitors and deposition risks which has some advantages over other conventional 
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techniques including; applying more realistic pressure and temperature conditions, small 

size of the sample, assessment of real time deposition rate, using live oil samples (in 

addition to dead/stabilised samples). It could be more automated and much cheaper 

compared to other utilised techniques in industry. 

4.3 RESULTS AND DISCUSSION 

Three commercial asphaltene inhibitors have been utilised to investigate their effect on 

asphaltene appearance point, aggregation and deposition phenomena using three different 

techniques: ‘‘AIST”, “UV-vis-NIR spectrophotometry” and ‘‘HPHT-QCM”, which have 

been described in Section 4.2. Natural gas injection was used to induce the asphaltene 

precipitation at HPHT conditions, which gives the driving force for asphaltene 

precipitation, instead of the n-heptane titration that is employed in the ambient tests. The 

results of all these experiments will be presented and discussed in following subsections. 

4.3.1 Asphaltene Inhibitor Screening Test (AIST) 

Crude oil “P” was treated with inhibitors 6, 10 and 12 at 100, 300 and 600 ppm as 

described in Section 4.2.2. The results are presented in Figure 4.1 and the volume of 

asphaltene sediments in the bottom of tubes obtained with/without inhibitors in various 

ageing times is presented in Table 4.3. With respect to the capability of inhibitors on 

dispersing the asphaltene aggregates in the mixtures the AIST ranks the inhibitors 

performance, which also decrease the particles velocity in Brownian motion and, as a 

result, the amount of deposited asphaltenes[25], [26]. The more effective is the asphaltene 

inhibitor the less deposition will be seen.  
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Figure 4. 1. AIST results for crude oil “P” treated with inhibitors 6, 10 and 12 at 100, 300 

and 600 ppm for different ageing times of 0 hr, 1 hr, 6 hr and 24 hr. 
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Table 4. 3. AIST results for crude oil “P” treated with inhibitors 6, 10 and 12 at 100, 300 

and 600 ppm for various ageing times 

Sample 
AI 

Conc. 

(ppm) 

0 hr 

(mL) 1 hr (mL) 6 hr (mL) 24 hr 

(mL) 

Crude oil “P” 0 Clear 0.3 0.4 0.5 

With AI. 6 100 Clear 0.1 0.2 0.3 

 
300 Clear Trace 0.1 0.2 

 
600 Clear Trace 0.1 0.1 

With AI. 10 100 Clear Clear Clear Trace 

 
300 Clear Clear Clear Clear 

 
600 Clear Clear Clear Clear 

With AI. 12 100 Clear Clear Trace 0.3 

 
300 Clear Clear Trace 0.2 

 
600 Clear Clear Trace 0.2 

 

No asphaltene deposit was observed in sample with inhibitor 10 at 600 ppm after 24 h. 

Deposits appeared in the reference crude oil (oil without any additive) after 1 h and we had 

higher amount of asphaltene aggregates as time passed as reported in Table 4.3. However, 

for samples with all concentrations of asphaltene inhibitor 10 and 12, there is no asphaltene 

sediment after 1 hr. By conducting UV-vis-NI spectrophotometer tests it was shown that 

the amount of asphaltene precipitates decreases with higher concentration of inhibitors as 

shows in Section 4.3.2. Hence the ranking of asphaltene inhibitors based on dispersion of 

asphaltene aggregates obtained from AIST is as follows: AI. 10 > AI. 12 > AI. 6. In AIST 

technique, to get a transparent test solution in which asphaltene sediments on the bottom of 

centrifuge tubes can be detectable, AIST needs a high amount of n-heptane (>97 vol%). 

Therefore, due to inability of AIST in evaluation of inhibitors at the heptane concentration 
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in which the highest amount of asphaltene precipitates and/or the largest asphaltene 

aggregates form, this method cannot be thoroughly reliable. In addition, this highly dilute 

solution is not a suitable representative of the real field conditions at which asphaltenes 

precipitate, aggregate and deposit. Hence we employ UV-vis-NI spectrophotometer 

technique to evaluate asphaltene inhibitors at ambient conditions which could give us more 

information about inhibitor efficiency. 

4.3.2 Evaluation of Asphaltene Inhibitors Using UV-vis-NIR Spectrophotometer 

Figure 4.2 shows the results of asphaltene appearance point determination for the crude oil 

“P” with and without inhibitors 6, 10 and 12 at 100, 300 and 600 ppm at 25 oC and 24 hr 

ageing time. The crude oil without inhibitor was considered as reference. All plots in 

Figure 4.2 can be divided to two main trends: the first trend is approximately a horizontal 

line for low amount of n-heptane (precipitant) and high-volume percentage of crude oil. In 

this part all systems show the same trend. Next, the second trend which has high amount of 

n-heptane and low volume of crude oil where the light intensity numbers deflect from the 

horizontal line. The intersection points between these two trend lines at which this 

deflection happens illustrates the volume fraction of n-heptane needed for determination of 

asphaltene appearance point (AAP).  

In the second trend line after determination of asphaltene appearance point, Figure 4.2 

presents a progressive light intensity decline for the reference fluid. The light intensity 

reduction reveals an increment in the quantity and size of asphaltene aggregates. For test 

samples with inhibitors, the light intensity reduced more gently than the reference sample 

results in slower precipitation and aggregation process rates under the influence of 

inhibitors. Next, as the heptane concentration reached 60 vol.%, the treated mixture 

illustrated a second inflexion point at 60 vol.% where the light intensity raised again 

toward the horizontal base trend line that shows a stable solution with fewer and smaller 

asphaltene aggregates due to presence of inhibitors.  
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Figure 4. 2. Results of the UV-vis-NIR spectrophotometer technique for the crude oil “P” 

with, (a) inhibitor 10, (b) inhibitor 12, and (c) inhibitor 6 at 100, 300 and 600 ppm, after 

mixing with n-heptane and ageing time of 24 hr at 25 oC. 

As precipitant increased in the solutions it can influence the asphaltene precipitation 

mechanism in two ways: first it dilutes asphaltene concentration and in consequence 

decreases the light intensity, even at below 30 vol.% of n-heptane where there is no 

precipitation in the solution, second it decelerates the rate of precipitation and aggregation 

process. If inhibitors exist in the test solution the rate of precipitation and aggregation will 

slow down more which results in higher light intensity compared to the blank crude oil “P” 

after 24 hr ageing time.  

The inhibitor efficiency on asphaltene precipitation and aggregation inhibition was 

determined by monitoring the asphaltene appearance point and normalised light intensity 
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changes due to presence of different inhibitors at various dosages. Regarding to financial 

aspects low dosage inhibitors are more favourable. Figure 4.2 (a) shows that inhibitor 10 

has a profound effect in shifting AAP from ~30.1 to ~38.4 vol% n-heptane at dosage of 

100 ppm. While inhibitor 12 could not change the AAP significantly at this concentration 

(Figure 4.2b). Figure 4.2c illustrates that inhibitor 6 had limited effects at concentrations of 

100 and 300 ppm, although at higher inhibitor dosage shifted the AAP from ~32.4 to ~41.6 

vol% of n-heptane. As mentioned before in Section 4.3.1, no notable deposition was seen 

for inhibitor 10 at 300 and 600 ppm after 24 hr ageing time although from direct 

spectroscopy we observed the occurrence of asphaltene precipitation and aggregation for 

these systems. The reason of this observation is related to the slow rate of aggregation 

phenomenon for treated solution with inhibitor 10 at 300 and 600 ppm after 24 hr ageing 

time compared to the result obtained from the blank crude oil “P”. Unlike inhibitor 6, 

Figures 4.2a and b present decline trend for asphaltene aggregation and thus higher light 

transmittance numbers due to dosage increment for inhibitor 10 and 12. They also 

decreased asphaltene aggregation to a drastically low level at 600 ppm. As can be seen 

from Figure 4.2, all asphaltene appearance points were shifted for the treated crude oil “P” 

with inhibitors 6, 10 and 12 at 600 ppm. The inhibitor 10 has better performance compared 

to inhibitors 6 and 12 at concentration of 100 ppm, thus it can be concluded that at 

concentration of 100 ppm inhibitor 10 might be the best option. Applying chemical 

additives at high concentrations in oilfields is not economically favourable and desirable 

solution. Determination of asphaltene appearance points for crude oil “P” which was 

blended with 100, 300 and 600 ppm of inhibitors after 24 hr ageing time is presented in 

Table 4.4. 

Table 4. 4. Detection of asphaltene appearance point of crude oil “P” with 100, 300 and 

600 ppm dosage of different asphaltene inhibitors, after mixing with n-heptane and aging 

for 24 hr at 25 oC. 

Test Solution Detection of asphaltene appearance point (n-heptane Vol %) 

 100 ppm 300 ppm 600 ppm 

Blank Crude Oil “P” 30.5 ± 1.2 30.5 ± 1.2 30.5 ± 1.2 
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With inhibitor 6 31.8 ± 2.4 32.4 ± 1.7 41.6 ± 1.5 

With inhibitor 10 36.4 ± 1.9 43.3 ± 2.0 45.7 ± 2.1 

With inhibitor 12 33.2 ± 1.8 41.1 ± 1.4 42.5 ± 2.2 

 

The control is crude oil P without adding any additives and is utilized as reference for 

discovering the effect of each inhibitor. A shift in asphaltene appearance point from its 

number in reference fluid (~30.5 vol% n-heptane) to higher values, stated the influence of 

utilised asphaltene inhibitor. We believe that there is one main mechanism which explains 

the change in asphaltene appearance point due to presence of inhibitors. This mechanism is 

that the inhibitors molecules have interaction with asphaltenes and decrease the asphaltene 

particle size (before aggregation phenomenon) and also delay the precipitation and 

aggregation steps, or change the hydrophobicity of asphaltene nanoaggregates by 

occupying their active sites. In order to investigate this further, the effect of inhibitor on 

asphaltene precipitates size and its morphology were investigated by ESEM micrographs. 

Figure 4.3 shows the effect of Inhibitor 6 on asphaltene particle size.  
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Figure 4. 3. Effect of asphaltene inhibitor on asphaltene particle size obtained by ESEM 

micrographs: a) with AI. 6, b) without inhibitor. All pictures are analysed using ImageJ. 

This figure also presents schematic diagram of possible inhibitors interaction with 

asphaltenes which curbs the asphaltene-asphaltene nanoaggregate interactions to form 

larger particles. (             ): asphaltene monomer, (                ): asphaltene aggregates, (   ): 

heteroatoms, (      ): inhibitor.  

The micrographs are all analysed using ImageJ and presented in Figure 4.3. Figure 4.3 

presents the size distribution of asphaltene precipitates with and without inhibitor. The 

employed inhibitor reduced the asphaltene particle size. For the samples with inhibitor 

(Figure 4.3.a), the sizes range from 100 to 800 nm averaging around 376 nm. The 

measurements without inhibitor have larger asphaltene particle sizes averaging around 584 

nm, which is the size of the asphaltene aggregates that can be detected by commercial 

techniques used for determination of asphaltene precipitation onset. The ranking of 
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asphaltene inhibitors based on AAP changes obtained from UV-vis-NI spectrophotometer 

technique is as follows: AI. 10 > AI. 12 > AI. 6 which is in consistent with AIST results in 

the same conditions. To investigate the influence of temperature on performance of 

inhibitors, several tests were performed with similar concentrations of inhibitors 6 and 12 

at 25 °C and 60 °C and ageing time of 24 hr. 

Since some oil properties like density, viscosity and asphaltene solubility depend on 

temperature. The solubility of asphaltenes in oil usually increases with increasing 

temperature[28]. In addition, asphaltene contents which precipitate out of the solution at 

high or low temperatures can be dissimilar with each other since asphaltene is a 

polydisperse molecule. The influence of temperature on asphaltene behaviour should be 

considered since each fraction of asphaltene has its own properties like diffusion rate and 

density. Asphaltene nanoaggregates might precipitate in higher temperatures as they get 

more unstable. 

The results for influence of temperature on mixture of oil and n-heptane with and without 

inhibitors are presented in Figure 4.4. From Figure 4.4 it seems that the solution without 

inhibitor has more stable asphaltene nanoaggregates at 60 °C compared to the solution at 

25 °C. It is obvious from the test results that the rate of aggregation and precipitation 

phenomena decreased as the temperature increased. Behaviour of the crude oil at higher 

temperatures shows that it performs as a more effective solvent for the asphaltene 

nanoaggregates and the solution requires more n-heptane to detect the asphaltene 

appearance point. The results for inhibitors 6 and 12 at concentration of 600 ppm at 

temperatures of 25 °C and 60 °C after 24 hr ageing time are illustrated in Figure 4.4a and 

b, respectively. As can be seen from Figure 4.4, it is clear that at 600 ppm, inhibitor 12 has 

the same performance at both 25 °C and 60 °C. So, the increase in temperature has no 

effect on the inhibitor efficiency.  
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Figure 4. 4. Effect of temperature on performance asphaltene inhibitors for crude oil “P”, 

a) crude oil “P” with and without inhibitors 6 and 12 at 600 ppm at 25 oC, b) Crude oil “P” 

with and without inhibitors 6 and 12 at 600 ppm at 60 oC, after blending with n-heptane for 

24 hr ageing time. 

Similar procedure was employed for inhibitor 6 at concentration of 600 ppm, 25 °C and 

60 °C for ageing time of 24 hr. The efficiency of inhibitor 6 in shifting AAP is slightly 

lower than inhibitor 12 at same conditions. However, inhibitor 6 at 60 °C is more effective 

on asphaltene aggregates dispersion and AAP changes compared to inhibitor 12 and its 

performance at 25 °C. The ranking of asphaltene inhibitors 6 and 12 based on AAP 

changes monitoring at higher temperature is: AI. 6 > AI. 12. Therefore, the efficiency and 

ranking of inhibitors might change at higher temperature. So, we decided to evaluate the 

inhibitors not only at high temperature but also at high pressure in presence of gas, which 

is closer to real field conditions, in order to obtain the updated ranking of inhibitor based 

on operation condition. 

4.3.3 Evaluation of Asphaltene Inhibitors Using HPHT-QCM 

A QCM has been utilised in this study to evaluate the effectiveness of asphaltene inhibitors 

on asphaltene precipitation and deposition rate at high pressure-high temperature (HPHT) 

condition (up to 6000 psia and 60 oC) in presence of gas. The QCM resonance frequency 

(RF) was measured for one day during continuous natural gas injection to investigate the 

effect of inhibitors on asphaltene onset point, gas oil ratio (GOR) and deposition rate at 
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various inhibitors concentrations. The RF is inversely proportional to the mass of quartz 

crystal surface. If the mass of the QCM surface alters because of the asphaltenes adhered 

onto the solid surface then a reduction in RF will be observed. The Sauerbrey equation [29] 

explains how the alteration in RF can be related to the change in mass which is as follows: 

                                                                                   (4.1) 

Where Δf is frequency change (Hz), fu is frequency of oscillation of unloaded crystal (in 

air), ρl is the density of the liquid in contact with the electrode, 𝜂l is the viscosity of the 

liquid,  is density of quartz, and  is shear modulus of quartz for AT-cut crystal. In an 

ideal condition, the asphaltene deposits with amount of 1 nanogram will give 1 Hz 

reduction in RF. The initial asphaltene test with no inhibitor was performed on crude oil 

“P” at 60 oC and various pressures because of continuous natural gas injection. The effects 

of asphaltene inhibitors on asphaltene onset point (AOP) and gas oil ratio which is required 

to detect the asphaltene precipitation onsets are presented in Figure 4.5. 
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Figure 4. 5. Results of the HPHT-QCM technique for the crude oil “P” with, (a) inhibitor 

10, (b) inhibitor 12, and (c) inhibitor 6 at various concentrations, after injecting natural gas 

at 60 oC. 

The RF increases due to the reduction in density and viscosity of the test fluid as pressure 

increases with injection of gas. The RF declines when asphaltene precipitate out of the 

solution on the QCM surface. The pressure at which the RF begins to decline represents the 

asphaltene onset point that is 1195 psi at GOR of 193.04 cf/bbl for blank crude oil “P” 

without any inhibitor. The AOP/GOR is 1753 psia/290.08 cf/bbl for AI.12, 1790 

psi/296.50 cf/bbl for AI. 6 and 1268 psia/205.67cf/bbl for AI.10 with concentrations of 660 

and 714 ppm, respectively. Figure 4.6 presents the AOP and GOR obtained by HPHT-

QCM versus various concentrations of inhibitors.  
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Figure 4. 6. AOP/GOR versus concentration of three inhibitors 6, 10 and 12. 

As can be seen inhibitor 6 has better performance compared to the other two inhibitors on 

AOP shifting and the GOR at which AOP occurs. Inhibitor 10 has a negative effect on 

asphaltene precipitation at low concentration and has some limited effects at higher 

concentrations. The results regarding the effect of employed asphaltene inhibitors on 

deposition rate after the AOP are shown in Figure 4.7, which is RF reduction versus time 

for crude oil “P” with and without inhibitors at different concentrations. The obtained 

results show that all utilised inhibitors have a positive impact on reducing the asphaltene 

deposition rate onto the QCM surface after exceeding the AOP. As can be seen, there is a 

dramatic difference in the plotted curves between the blank oil “P” without any inhibitor 

and the same oil with 119 and 180 ppm of inhibitor 6, 10 and 12, respectively.  
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Figure 4. 7. Results of the effect of asphaltene inhibitors on deposition rate at various 

concentrations, a) AI. 12, b) AI. 10 and c) AI. 6. 

The AI. 6 has better efficiency in reducing the deposition rate from -690.3 Hz/hr to -203.6 

Hz/hr compared to inhibitors 10 and 12 at the same concentration which decreases the 

deposition rate from -256.7 Hz/hr to -201.2 Hz/hr and from -199.7 Hz/hr to -155.7 Hz/hr, 

respectively. A sudden change in RF is observed during the first 4 hrs of the test without 

inhibitor compared to the test with inhibitors. A significant reduction in the rate of 

asphaltene deposition could be seen in the tests with inhibitor after beginning of deposition 

phenomenon. The inhibitors might cover the asphaltene’s aromatic cores through π-π 

interactions between inhibitors aromatic rings and asphaltene’s aromatic cores which 

intercept the stacking of asphaltenes molecules into nanoaggregates which causes its better 

efficiency in AOP shifting and deposition rate reduction. The inhibitors usually can also 

form H-bonding with active sites of asphaltene nanoaggregates (e.g. carboxylic, sulfoxide 

groups), the asphaltene aggregates are not able to move toward each other due to the 
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created steric repulsion between the aliphatic tails of inhibitors that curb the asphaltenes 

growth into larger aggregates. The ranking of asphaltene inhibitors based on AOP/GOR 

changes and deposition rate reduction using HPHT-QCM technique is as follows: AI. 6 > 

AI. 12 > AI. 10. Therefore, the ranking of inhibitor obtained at ambient condition (AIST 

and UV-vis-NIR spectrophotometry) is totally different compared to ranking of inhibitors 

achieved at HPHT condition in presence of gas. Table 4.5 presents the ranking of utilised 

asphaltene inhibitors obtained from different techniques.  

Table 4. 5. Ranking of asphaltene inhibitors obtained from different techniques 

Ranking AIST 
Detection of AAP @ 1 atm and 25 oC 

(UV-vis-NIR Spectrophotometer) 

HPHT-QCM 

(25 oC) 

1 AI. 10 AI. 10 AI. 6 

2 AI. 12 AI. 12 AI. 12 

3 AI. 6 AI. 6 AI. 10 

Based on our study which will be presented in chapter 5, we found that chemical structure 

of gas induced asphaltenes is different from structure of n-alkane induced asphaltenes. This 

could result in having different ranking of inhibitors based on operation conditions. For 

avoiding EOR induced asphaltene problems, evaluation of chemicals using techniques at 

ambient condition may not be representative of real performance and efficiency of 

chemistries which would be found in the field.  

4.4 Conclusions 

In order to identify appropriate asphaltene inhibitors to avoid or mitigate deferred oil 

production caused by asphaltene deposition, it is crucial to evaluate the inhibitors by using 

accurate and reliable techniques which could represent the real or close to real field 

condition. Based on the obtained results in this research study the commercial asphaltene 

inhibitors interact with the asphaltene nanoaggregates in the oleic phase to change the 

asphaltene appearance point which is detected by employed techniques and also decrease 

the rate of asphaltene aggregation phenomenon accordingly. The HPHT-QCM experiments 

results presented in this study provide experimental data that do not agree with asphaltene 

inhibitor evaluation techniques at ambient conditions. The ranking of inhibitors based on 
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their performance could be significantly affected by pressure and presence of gas at which 

the tests are performed. On the other hand, the experiments conducted at 25 oC and 60 oC 

and ambient pressure reveal that the ranking of inhibitors used in this study is different for 

each temperature condition. This could be as the result of the effect of temperature on the 

ability of the chemistries to interact with asphaltenes and make them stable in the solution. 

Therefore, a reliable technique is needed to truly evaluate inhibitor chemistries and their 

effects on deposition rate based on inhibitor-asphaltene molecules interactions which could 

be actually differed from n-C7 to CO2 injection at high temperature. The HPHT-QCM 

technique can investigate the effect of inhibitors on the apparent asphaltene deposition rate 

which is an important indicator of performance. All studied inhibitors could reduce the 

deposition rate. Additionally, the QCM is ideal for measuring ashaltenes at realistic P/T 

conditions as they have a high adhesion tendency and it is this property which causes the 

most problems downhole i.e pipeline restrictions and costly remediation procedures.  
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Chapter 5- Exploration of the Difference in Molecular Structure of n-C7 and CO2 

Induced Asphaltenes 

 

5.1 Introduction 

Asphaltene–asphaltene interactions play a critical role in flow assurance problems. 

Supramolecular assemblies of asphaltene molecules through cooperative and noncovalent 

binding such as Brønsted acid−base interactions between carboxylic acids and pyridine 

groups, hydrogen bonding, metal coordination complexes because of presence of nickel 

and vanadium, van der Waals interactions between naphthenic, cylcoalkyl and alkyl groups 

to form hydrophobic pockets, and dipole interactions and π−π stacking between the parallel 

polycondensed aromatic sheets are the dominant drivers of asphaltene precipitation and 

aggregation phenomena [1]–[3]. The lengths of asphaltenes alkyl chains affect their 

stability in crude oil, since longer alkyl chains cause a reduction in precipitation and 

aggregation rate [4]. Thus, a better knowledge of asphaltene molecular architectures is 

imperative for researchers and operators to develop improved technologies for addressing 

asphaltene deposition problems and designing new class of inhibitors/dispersants.  

Recent developments in the key analytical techniques, i.e. X-ray diffractometry (XRD) [5], 

[6], NMR spectroscopy [7], [8] and electron microscopy [9], have continuously pushed the 

limits for studying challenging carbonaceous and high molecular weight assemblies such 

as asphaltenes. X-ray crystallography remains the primary tool for determination of 

interlayer spacing, crystallite size, and crystallite diameter of asphaltenes and major 

accomplishments have been reported in recent years [5], [6]. Particularly remarkable 

advances have been achieved in understanding asphaltene morphologies using scanning 

electron microscopy (SEM) and high resolution transmission electron microscopy 

techniques (HRTEM) [9]. The last decade has also witnessed major achievements by NMR 

[7], [8], [10], [11] and FTIR [12] spectroscopy. These techniques have been used to 

determine the structure and composition of petroleum fractions including asphaltenes. Two 

recent reviews, one on analytical techniques for the characterization of hydrocarbon 

mixtures by Herod et al.[13] and a second the application of various state of the art 
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analytical methods for petroleum analysis in oil & gas industry by Ryan P. Rodgers et 

al.[14] cover most of the important works up to 2012.  

In previous chapter, a high pressure-high temperature quartz crystal microbalance (HPHT-

QCM) rig has been utilised to illustrate asphaltene deposition under real field conditions. 

HPHT-QCM is a facility which is able to simulate the oil production conditions and form 

asphaltene deposits under different PT conditions. HPHT-QCM can also simulate gas 

injection conditions. In this regard, identification of compositional and structural variations 

between HPHT-QCM and n-C7 asphaltenes is significant since a new molecular level 

information of asphaltenes has become crucial to increase the ability to make the right 

decisions to tackle asphaltene challenges in the field. In this chapter, we present the first 

characterization study on the HPHT-QCM asphaltene deposits under gas injection 

conditions and examine compositional, structural and morphological changes with n-C7 

asphaltenes from the same parent crude oil achieved in the laboratory; utilising NMR 

spectroscopy, FTIR and ESEM/EDX analysis. We elucidate that the n-C7 induced 

asphaltenes displayed greater aromaticity and a higher degree of condensation than CO2 

asphaltenes extracted from the parent crude oil. Our results also reveal that HPHT-QCM 

asphaltenes are richer in oxygen containing polar species compared to the parent crude oil. 

The obtained results are consistent with field asphaltene deposits and asphaltenes induced 

due to depressurization[15] emulsion rag layer[16], [17], and steam assisted gravity 

drainage (SAGD) asphaltene deposits[18].  

5.2 Experimental Section 

5.2.1 Chemicals 

The n-heptane (n-C7) (>99%), anhydrous toluene (Tol) (>99.8%), and ethanol (≥99.8%) 

were purchased from Sigma-Aldrich and used in this study as received for experiments and 

washing purposes. The natural gas composition which was used for HPHT-QCM test is as 

follows (Mole%): N2 (1.84%), C1 (89.94%), CO2 (0.91%), C2 (5.32%), C3 (1.45%), iC4 

(0.20%), nC4 (0.21%), iC5 (0.07%), (nC5) + C6
+ (0.06%).  
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5.2.2 n-C7 Induced Asphaltenes and HPHT-QCM Deposits 

Asphaltenes and a parent heavy crude oil (API = 12) were used in this study. Table A1.1 in 

Appendix 1 presents the SARA analysis of the crude oil used in this work. Asphaltenes 

were extracted by utilising the ASTM standard method D6560-12 with slight changes[19], 

[20]. As a brief description, 400 mL of n-C7 was mixed with 10 gr of crude oil in an 

ultrasonic bath. The crude oil + n-C7 solution was then heated at 90 °C under reflux for 1 

hr. The solution was then allowed to rest overnight. Precipitated asphaltenes were collected 

by filtration using Whatman grade 42 filter paper and placed in a Soxhlet apparatus with n-

C7 to remove non-asphaltenic fractions until no colour was observed in the washing solvent 

after ∼72 hr. The deposited asphaltenes were dissolved in hot toluene (∼98 °C), which was 

finally withdrawn to generate solid asphaltenes for analytical experiments. The HPHT-

QCM tests can be conducted under different ranges of crude oil composition at various 

operating conditions. 

The set-up comprises high pressure cells, water jacket, temperature-controlled circulator, a 

magnetic mixer system as an agitator, quizix pump, high-pressure vessels, valves and lines, 

pressure and temperature sensors, and various gauges and indicators. The pressure can be 

increased up to 6000 psi, and the test fluid can be heated up to 150 °C. The mixing cell, as 

the crude oil container in the experimental system, had a volume of 120 mL. The principal 

of the measurement is based on monitoring of the variations in the Resonant Frequency 

(RF) for a QCM inserted into the crude oil due to changes in mass of the QCM surface. For 

the gas injection HPHT-QCM experiments, first half of the 120 mL cell was filled with 

crude oil and then the QCM carefully immersed inside the oil. Temperature of the system 

was set at 60 °C for conducting the tests. The crude oil was charged by stepped injection of 

natural gas and CO2 into the mixing cell at a constant pressure rate (~1.1 psi/min) from 

~600 psi. The gas at room temperature was injected into the system and timed to reach 

equilibrium. The magnetic stirrer was also started, rotating at 500 rpm to mix the injected 

gas and crude oil. The onset pressure of asphaltene precipitation was noted, as was the 

deposition rate onto the QCM surface. After deposition test, the CO2 induced asphaltene 

deposits from the QCM surface was extracted and dried for characterisation. Deposits onto 

the QCM set up after CO2 injection and its schematic figure are presented in Figure 5.1.  
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Figure 5.1. Picture and schematic illustration of asphaltene deposits onto the gold crystal 

surface of QCM after CO2 injection. 

More details about the QCM setup and the principal behind its measurements have been 

presented by Edris Joonaki et al [21]. 

5.2.3 ESEM/EDX Analysis 

ESEM micrographs/EDX map have been used innovatively in petroleum industry such as 

identification of chemical wettability treatments[22], [23]. In this research work, the study 

of morphology and elemental analysis of asphaltenes were performed by SEM- EDX.  An 

FEI Quanta 650 FEG SEM, with a backscattered electron (BSE) imaging detector, 

equipped with an Oxford Instruments X-MaxN 150 mm energy dispersive x-ray (EDX) 

detector, was used for the present study.  For both imaging and elemental analysis, the 

microscope was operated in low-vacuum mode (0.83 Torr) at 20 kV, spot size of 4.5, dwell 

of 10 µs and a working distance of 10 mm.  

5.2.4 Characterisation by FTIR Spectroscopy 

The FTIR spectra were recorded using FTIR-4000 Series (JASCO Edition) spectrometer 

including a Peltier stabilized DLaTGS detector and a high output ceramic source coupled 
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with an attenuated total reflectance (ATR) mode with high throughput monolithic diamond 

and ZnSe. The spectral domain is 650–4000 cm-1 with a resolution of 0.7 cm-1.  

5.2.5 1H and 13C NMR Experiments 

The proton 1H and carbon 13C NMR spectroscopy analyses were performed using a Bruker 

AVI400 spectrometer operating at 400.1 MHz and 100.6 MHz for proton and carbon, 

respectively. Toluene-d8 (99.96 atom% D) was used as received from Sigma-Aldrich as 

solvent for NMR tests. The proton data were acquired using a 3.96 s acquisition time, a 

8278 Hz sweep width and a relaxation time of 1.0s. The carbon spectra were collected with 

a 1.30 s acquisition time, a 25125 Hz sweep width, and a relaxation time of 2.0 s. The 

carbon spectra resulted from 1024 scans. Chemical shifts (δ) presented here are reported 

relative to tetramethyl silane (TMS) used as internal standard. 

5.2.5.1 NMR Analysis procedure 

The approaches proposed by Speight[24], [25] and Gillet[26] were employed in this study 

to analyse the band area and interpret both the 1H and 13C NMR spectra which were used to 

determine the percentage of each type of proton and carbon. The structural parameters of 

the asphaltenes i.e. n, average number of carbons per chain, number of aliphatic chain by 

aromatic hexagon, aromatic size ratio Cp/Car (Cp and Car are aromatic peripheral and 

aromatic carbon atoms, respectively), and aromaticity were obtained using NMR spectra 

analysis.   

5.3 Results and Discussion 

5.3.1 HPHT-QCM Results  

The QCM resonant frequency (RF) was monitored during the natural gas and CO2 injection 

to determine the asphaltene precipitation onset point (AOP) and respective gas oil ratio 

(GOR). The AOP and related GOR can be changed depending on the type of injected gas 

which is mixed with crude oil inside the QCM cell. The obtained results for AOP 

determination and the effect of injected CO2 and natural gas on asphaltene deposition rate 

onto the QCM surface are presented in Figure 5.2.  
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As can be seen in Figure 5.2a, the asphaltene onset point was detected at ~1009 psia and 

~156 scf/bbl GOR and ~1964 psia and ~324 scf/bbl GOR due to injection of CO2 and 

natural gas, respectively, at 60 oC and 500 rpm in-situ mixing. Therefore, the AOP/GOR is 

lower for the utilised crude oil with injected CO2 compared to natural gas.  

 

Figure 5. 1. HPHT-QCM results at 60 oC for a) measurement of AOP and respective GOR 

and b) determination of asphaltene deposition rate, due to natural gas and CO2 injection. 

The results regarding RF reduction versus time for two tests with different injected gases 

are plotted in Figure 5.2b, which represents the influence of gas type on asphaltene 

deposition rate after the AOP. The results reveal that the CO2 worsened the deposition rate 

after detection of AOP. The deposition rates for different injected gases are -95.5 Hz/hr for 

natural gas and -136.2 Hz/hr for CO2. The CO2 solubility in the resins could increase with 

an increase in pressure and decrease with an increase in temperature. The solubility of CO2 

in some resins is lower compared to some other resins which is mainly owing to smaller 

accessible free volume as a result of higher molecular weight of those particular resins.  

5.3.2 Characterisation of CO2 and n-C7 Asphaltenes  

The elementary analysis data for both n-C7 and CO2 induced asphaltenes is presented in 

Table 5.1.  

Table 5. 1. Chemical Composition of Asphaltenes (w/w%) 

Asphaltenes C H S O NH/NC
* 
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n-C7 83.19 6.63 7.12 3.06 0.96 

CO2 85.17 7.19 2.85 4.55 1.01 

* H/C is the atomic ratio of hydrogen and carbon. 

The value of the atomic ratio NH/NC=1.01 for CO2-asphaltenes indicates a lower 

aromaticity compared to 0.96 obtained with n-C7 asphaltenes from the same parent crude 

oil used in this study.  Moreover, the significant differences were found with the oxygen 

and sulphur contents being 3.06 wt% (O) and 7.12 wt% (S) for n-C7 asphaltene and 4.55 

wt% (O) and 2.85 wt% (S) for CO2-asphaltene. The high polarity of the CO2-asphaltene 

reveals that some of its oxygen contents are contributed in structure of acids and/or ketone 

fractions. 

5.3.2.1 ESEM/EDX analysis 

Figures 5.3 and 5.4 present the ESEM/EDX analysis results of the two different 

asphaltenes (n-C7 and CO2-asphaltenes respectively). The ESEM micrographs were 

analysed by ImageJ software. Figure 5.3a shows smooth surfaces with irregular shape of 

asphaltenes on them and also indicates the presence of agglomerate asphaltene particles. It 

should be noted that these agglomerate particles could be formed due to higher aromaticity 

of n-C7 asphaltene. Asphaltene particles in Figure 5.3a have two different sizes: small sized 

particles with an average length of ~3.3 µm, and large sized particles of ~11.2 µm.  
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Figure 5. 2. ESEM/EDX elemental mapping of n-C7-asphaltenes by ESEM: (a) micrograph 

of asphaltene, (b) elemental analysis, (c) S k mapping, (d) C k mapping, (e) O k mapping 

As can be seen in Figure 5.4a, CO2-asphaltenes have a porous structure with cavities 

having two different size categories: one category is a small sized group (~3.7 µm) and the 

second one is big sized group (~10.4 µm). The porous structure of CO2-asphaltene could be 

formed during separation of adsorbed resins moiety from asphaltene surfaces. The 

asphaltenes tend to adsorb resin microparticles, which would be removed from asphaltene 

surface after washing with solvents, causing the occurrence of cavities. Cavities in n-C7 

asphaltenes are not as evident as in the aforementioned asphaltenes induced by CO2 

injection.  
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Figure 5. 3. ESEM/EDX elemental mapping of CO2-asphaltenes by ESEM: (a) micrograph 

of asphaltene, (b) elemental analysis, (c) S k mapping, (d) C k mapping, (e) O k mapping 

This alteration in morphology of studied asphaltenes is mainly because of i) the 

temperature at which the asphaltene was precipitated out of the solution, ii) type of 

precipitants which are n-C7 and CO2 in this work, and consequent reaction intensity, and 

iii) the rate of asphaltene precipitation and aggregation phenomena. Qualitative analysis of 

the composition and elemental mapping of the n-C7 and CO2-asphaltenes are presented in 

Figure 5.3 (b, c, d, e) and Figure 5.4 (b, c, d, e), respectively. For the two asphaltene types, 

carbon (C), sulphur (S), and oxygen (O) are the constructor elements (as given in Table 

5.1) and evenly distributed throughout the samples. The oxygen content in CO2-

asphaltenes was increased from 3.06 to 4.55 wt% respect to n-C7 asphaltenes. The 

interactions between CO2 and asphaltene nanoaggregates during gas injection process 

could result in higher quantity of oxygen in CO2 induced asphaltenes. In the case of n-C7 

asphaltenes, the sulphur content was increased compared to CO2-asphaltenes. More ESEM 

micrographs of n-C7 and CO2-asphaltenes with different magnifications are presented in 

the Appendix 1 (Figures A1.1 and A1.2).  
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5.3.2.2. FTIR Spectroscopy 

The full FTIR spectra of two n-C7 and CO2 asphaltene samples are shown in Figure 5.5a. 

The corresponding major spectral bands are similar to typical asphaltene spectra reported 

in the literature[27], [28]. In the full spectra, Figure 5.5a, there is a distinct difference 

between the n-C7 and CO2 asphaltenes in the range of 700-3700 cm-1. The corresponding 

major vibrational assignments are given in Table A1.2 (Appendix 1).  

The related structures are also given in Figure 5.5b. These major bands are seen in all 

spectra except that three adjacent hydrogens at 760 cm-1 poses to be incorporated into the 

4H peak at 745 cm-1 for n-C7 asphaltene. The clear peaks at ~1030 cm-1 indicates the 

contribution of S=O and C−S bonds in two asphaltene structures. As can be seen in Figure 

5.5b, there is a peak related to alkyl chains with more than four carbons at 700−720 cm-1 

for both asphaltenes. This reveals that asphaltenes have low content of long alkyl chains 

attached to their structures. As seen in Figure 5.5c, the C=C aromatic stretching peaks at 

~1600 cm-1 and ~1650 cm-1 are observed for n-C7 asphaltene and CO2-asphaltene, 

respectively. The peak of C=O in carboxylic acids appears for CO2-asphaltene at 1760 cm-

1, which cannot be seen for n-C7 asphaltene. The X−H stretch region, where X is N, O, and 

S, between 3150 and 3700 cm-1 is presented in Figure 5.5d. 

A broad envelope is observed for CO2-asphaltene which indicates presence of hydrogen 

bonding dominated by O−H. The CH3/CH2 stretch region from 2600 to 3200 cm-1 is shown 

in Figure 5.5e. With zooming in on this region, it can be found that some Caro−CH3 at 

~2730 cm-1 is attached to condensed aromatic structure of n-C7 asphaltene. 
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Figure 5. 4. a) Full FTIR spectra of n-C7 and CO2-asphaltenes. b) Zoomed in plot of the aromatic 

C−H region. Sulfoxide can be observed for both asphaltenes. Presence of C−S and long alkyl 

chains are intense for n-C7 and CO2-asphaltene, respectively. c) Comparison of spectra of two 

studied asphaltenes in the range of 1500-1800 cm-1. It is found that the n-C7 asphaltene is 

dominated thoroughly by aromatic C=C stretch vibrations at ~1600 cm-1. (R-COOH) functional 

group can be detected in CO2 induced asphaltene. d) The spectra of free and hydrogen bonded O−H 

group. The CO2-asphaltenes shows a distinct content of O−H at ~3440 cm-1 which cannot be 

observed as an accountable moiety in the n-C7 asphaltene. e) The C−H stretch region for CH2/CH3 

in alkyl features. The C−H vibrations in methyl groups attached to aromatic cores is seen in n-C7 

asphaltene structure. 
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Apart from the mentioned distinct differences, there are small differences related to 

branching of alkyl chains, such as in peak positions at ~1380 cm-1, as well as in the merged 

peak for the CH3/CH2 deformation at ~1460 cm-1. These data reveal that the CO2-

asphaltene obtained from HPHT-QCM test has less condensed aromatic structure (not very 

significant) and contain a higher concentration of oxygen contained functional groups 

attached to its aliphatic chains compared to studied n-C7 asphaltenes. 

5.3.2.3. 1H and 13C NMR Analysis 

In this study, 1H and 13C NMR spectra are used to show the complex structure of n-C7 and 

CO2- asphaltenes. The 1H NMR spectral peak shifts can recognise various types of 

hydrogens in the asphaltene molecules[8], [11]. The assignments of hydrogens, which are 

named as Har, Hα, Hβ, and Hγ, in respective parts per million ranges and integral intensities 

are given in Table A1.3 (Appendix 1). The 1H NMR spectra of n-C7 and CO2-asphaltenes 

are shown in figures 5.6a and b, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 5. Representative proton 400.1 MHz NMR spectrum of a) n-C7 asphaltene, b) 

CO2-asphaltene 
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The peaks related to hydrogens on β-position (CH/CH2) to aromatic rings and hydrogens of 

naphthenic −CH/CH2 are observed at 2.00−1.40 ppm (integral region iii), β-CH3 and β+-

CH3 paraffinic hydrogens appeared at 1.40−1.00 ppm (integral region ii), and γ- CH3 

hydrogens to aromatic rings appeared at 0.95-0.30 (integral region i). In Figure 5.6, the 

integral regions iv and v have been assigned to α-CH3 and α-CH/CH2 hydrogens at 2.90-

2.00 and 4.50-2.90 ppm, respectively. The strong peaks at 9.00-6.50 ppm are attributed to 

aromatic hydrogens (integral region vi). 

Figure 5.7 shows 13C NMR spectra of studied n-C7 and CO2 asphaltenes. The spectra 

obtained from 13C NMR experiments is divided into two main regions. The first one in the 

range 0-70 ppm is assigned to the aliphatic carbons while the second ranging from 90 to 

180 ppm assigns to the aromatic carbon resonance. The assignments of 13C chemical shifts 

in asphaltenes NMR spectra and related integral intensities are presented in Table A1.4 

(Appendix 1).  
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Figure 5. 6. Representative carbon 100.6 MHz NMR spectrum for a) n-C7 asphaltene, b) 

aliphatic domain of CO2-asphaltene, and c) aromatic domain of CO2-asphaltene. 

An integration of 1H and 13C NMR spectra at different chemical shifts ranges enable us to 

determine some average structural parameters, such as fa the aromaticity factor, n the 

average number of carbons per alkyl side chain, As the percentage of peripheral aromatic 

carbon substitution, Φ shape factor of aromatic sheet and r the number of substituent rings 

based on procedures described by Speight[24] and others[25], [26]. 

The obtained results presented in Table 5.2 reveal that the n-C7 and CO2 asphaltene 

molecules have aromaticity factor of 0.62 and 0.54, respectively, which is described as the 

ratio of aromatic carbons (Car) to sum of aliphatic and aromatic carbons (Car + Cal). The 

average number of carbon atoms in alkyl side chains are 3.8 carbons for n-C7 asphaltenes 

and 4.1 carbons for CO2 induced ones. The values of As (~33.6 and ~36.4 %) and of Φ 

(0.49 and 0.55) for n-C7 and CO2 asphaltenes show presence of high ratio condensation of 

aromatic rings in their molecular structures. Therefore, the n-C7 asphaltenes are determined 
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to be relatively more aromatic compared to CO2 induced asphaltenes which are obtained 

from HPHT-QCM tests.  

Table 5. 2. Average molecular parameters of n-C7 and CO2-asphaltene molecules derived 

from the integrated 1H and 13C NMR analysis 

Parameter n-C7 asphaltene CO2-asphaltene 

Car 26.1 23.5 

Cal 16.2 19.2 

Cp 12.8 12.9 

fa 0.62 0.54 

Φ 0.49 0.55 

n 3.8 4.1 

Csub 4.3 4.7 

Cus 8.5 8.2 

As 33.6 36.4 

r 0.22 0.16 

Rna 0.96 0.77 

Cna 3.36 2.69 

Har (%) 21.1 19.9 

Hα (%) 20.9 19.5 
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Hβ (%) 38.3 46.6 

Hγ (%) 19.8 14.1 

Car, number of aromatic carbons; Cal, number of aliphatic carbons; Cp, number of peripheral 

aromatic carbons; fa, aromaticity factor; Φ (Cp/ Car), shape factor of aromatic sheet n, average 

number of carbons per alkyl side chain; Csub, number of substituted aromatic carbons; Cus, number 

of unsubstituted aromatic carbons; As, percent of substitution of peripheral aromatic carbons; r, 

number of substituent rings; Rna, total number of naphthenic rings per molecule; Cna, total number 

of naphthenic carbons per molecule.  

Cp/Car value is related to the total number of rings and the condensation degree of aromatic 

systems. The aromatic structures for different Cp/Car ratios presented in Figure 5.8 are ones 

proposed by Ruiz-Morales[29] for asphaltene molecules which were obtained using 

fluorescence and quantum determinations. As can be seen in Figure 5.8, the reduced Cp/Car 

value shows the presence of larger aromatic core; i.e. it is more condensed.  

The obtained values of Cp/Car = 0.49 and 0.55 for n-C7 and CO2-asphaltenes reveal that the 

numbers of aromatic rings are 7–9 and 6–7 per sheet for n-C7 and CO2-asphaltenes, 

respectively, in case of one fragment molecule. By utilising fluorescence tests [30], [31] 

and quantum calculation [29], Ruiz-Morales [29] indicated that some aromatic cores could 

not possibly be included in asphaltene molecular structures. It was also inferred that there 

are 5–10 benzoic rings in each aromatic core region in asphaltene molecules. Based on 

these investigations, we are able to suggest the most probable aromatic structures for both 

n-C7 and CO2-asphaltenes which are presented in figures 5.9 and 5.10, respectively.  
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Figure 5. 7. The determined Cp/Car ratio as a function of total number of aromatic rings in 

n-C7 and CO2-asphaltenes molecular structures. 
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The circular structures, coronene 7 fused aromatic rings, and benzo-perylene/anthanthrene 

6 aromatic rings might be the best structural candidates of the aromatic core regions for n-

C7 and CO2-asphaltenes. On the other hand, based on FTIR and EDX analysis results, on 

average there are 1 and 2 sulphur atoms in aromatic structures of n-C7 and CO2-asphaltene 

molecules, respectively.  

 

 

 

 

 

Figure 5. 8. Proposed aromatic structures for studied n-C7 asphaltenes based on integrated 
1H and 13C NMR results. 
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Figure 5. 9. Proposed aromatic structures for studied CO2-asphaltenes based on integrated 
1H and 13C NMR results. 

Both of two studied asphaltenes have sulfoxide functional group in their fused ring regions. 

All average molecular parameters, aromaticity factors, addressed functional groups and 

proposed aromatic structures of studied asphaltenes obtained from utilised analytical 

techniques are in agreement and in the same order with ones determined from solid state 

cross polarization, variable cross polarization in the literature[32]–[35].  

5.4 Conclusions 

In this chapter, we explore the differences between the molecular structures of n-C7 and 

CO2-asphaltenes obtained under HPHT-QCM conditions. Based on the results, it has been 

observed that the HPHT-QCM asphaltene deposits are structurally, morphologically and 

compositionally different from n-C7 precipitated asphaltenes. Two morphologies were 

observed by ESEM micrographs: (1) porous structures with cavities (CO2-asphaltenes), 

and (2) smooth surfaces with variously sized asphaltene particles on them (n-C7 

asphaltenes). The recognised differences in morphology are because of the type of 

precipitant, n-C7 and CO2, and test conditions utilised for asphaltene separation, which 

results in precipitation/aggregation kinetics changes and removal of resins from the 

asphaltenes. It was also observed that the CO2-asphaltenes are richer in oxygen containing 

moieties which play a critical role in asphaltene-inhibitor and asphaltene-solid surface 

interactions during the deposition process. The studied n-C7 asphaltene has a relatively 

larger aromatic core which results in larger stacking compared to CO2 induced asphaltene 

from HPHT-QCM test. On the other hand, the π−π stacking between aromatic cores and 
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hydrogen bonding between functional groups are the main drivers of asphaltene 

precipitation and aggregation phenomena and also the inhibition interactions between 

asphaltene and inhibitor/dispersant molecules. Therefore, this work shows that the 

differences in composition and molecular structure of various asphaltenes obtained under 

HPHT and ambient conditions would need specific types of chemistries which can 

appropriately contribute to the deposition tendency of that particular asphaltene at specified 

operating condition. Some inhibitors are more effective with the least aromatic structure of 

asphaltene in terms of kinetics, whereas they can be more effective with more aromatic 

asphaltenes in terms of thermodynamic equilibrium. On the other hand, some chemicals 

have the highest efficiency in terms of asphaltene instability onset point with the lowest 

metal contents and the highest average number of carbons per alkyl side chain in 

asphaltenes molecular structures. 

We infer that a reliable technique is required for oilfield chemical industry to truly evaluate 

inhibitor chemistries and their effects on deposition rate based on respective interactions 

which could be actually differed from n-C7 to CO2 injection.  
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Chapter 6- Effects of Waxes and Respective Chemistries on Asphaltene Aggregation 

and Deposition Phenomena: Experimental and Modelling Studies 

 

6.1 Introduction  

Organic solid deposition is a serious challenge in oil industry from production to oil 

transportation and storage operations[1]. The paraffin wax can affect rheological properties 

and asphaltene phase behaviour in oleic phase through using wax components in asphalt 

industry (asphalt binder) and blending of different crude oils, or oil with light or heavy 

paraffinic compounds[2], [3]. From a chemical composition viewpoint, although the high 

molecular weight normal paraffins are the major moieties in wax deposits, long iso and 

cycloalkanes and high molecular weight polyaromates named asphaltenes are got existed 

as well[4]. On the other hand the asphaltenes, which are extracted from the oil tank 

deposits, encompass a large amount of waxes[5].  

Paraffin wax is one of the main components of crude oil, that is well known as straight, 

ring formed, and/or branched alkanes with high carbon atom numbers, e.g. more than 

18[6], [7]. Wax can cause serious challenges such as adhering to the pipeline surfaces and 

restricting flow.  Additionally, it can lead to increasing viscosity, reducing flow, and finally 

increment of operation costs.  The major concern is the formation/appearance of wax at the 

highest temperature at which the crystallization of wax can be occurred that is called wax 

appearance temperature (WAT)[8]. There are different experimental techniques that are 

utilised to determine the WAT such as light scattering (Near infra-red (NIR) and 

Ultraviolet (UV) spectroscopy), cross polarization microscopy (CPM), differential 

scanning calorimetry (DSC), viscosity measurement using rheometer, and Quartz Crustal 

Microbalance (QCM)[9]–[12]. Pour point is defined by ASTM D97 as the lowest 

temperature, considerably lower than WAT, at which a liquid loses its flow characteristics 

due to an increase in the amount of precipitated wax[13]. Various chemistries can be 

employed as wax inhibitors, such as ethylene vinyl acetate copolymers, vinyl acetate olefin 

copolymers, alkylesters, polyalkylacrylates, alkyl phenols and alpha olefin copolymers, to 
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address related flow assurance issues through pour point depression and/or wax 

precipitates despersancy[14], [15].  

The role of asphaltenes during the wax crystallization has not yet been well understood. 

The influence of asphaltenes has been explained contradictorily. Some researchers noted 

no significant interactions between wax and asphaltenes but asphaltenes may result in 

smaller interspersed wax crystals[16], [17], and others claimed that asphaltenes worsening 

the paraffin wax associated flow assurance problems[4], [18]. On the other hand, the data 

of asphaltene solubility in various light n-paraffins solvents, which was obtained from 

optical microscopy[19], light scattering[20], refractive index[21], and UV-vis 

spectrophotometry[22], has been widely available in the literature. Some asphaltenes 

properties like molecular mass distribution, density and solubility parameters are fitted and 

adjusted using aforementioned experimental data of asphaltene precipitation yield 

curves[23], [24]. Fitted curves can be utilised to estimate the asphaltene phase behaviour in 

other chemical compositions (changing precipitant agents) or different pressure and 

temperature conditions[25], [26]. Although the effect of different light n-paraffin solvents 

on the asphaltene phase behaviour has been greatly investigated, the potential effects of 

heavy paraffins and respective chemistries on asphaltene precipitation and deposition have 

not yet been unveiled. The aim of this study is to shed some light on the effect of waxes 

and related chemicals on asphaltene solubility and stability in crude oil. Firstly, the 

performance of various wax inhibitors in pour point reduction and WAT changes was 

evaluated using a rheometer for viscosity measurement. Then a long chain paraffin, as the 

main constituent of paraffinic crudes, and wax inhibitors were separately blended with 

crude oil at various concentrations, and their effects on the precipitation and deposition of 

asphaltenes of the treated oils were studied using our in-house QCM. A modelling 

investigation was also conducted for mechanistic understanding of observations from 

experiments. Asphaltenes precipitation from intact crude oil and paraffin wax added oils 

was thermodynamically modelled using perturbed chain statistical associating fluid theory 

(PC-SAFT) equation of state and a good agreement between experimental and modelling 

results was achieved. 
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6.2 Experimental Section 

6.2.1 Materials 

Experiments were conducted with an additive free crude oil from North Sea. Table 6.1 

presents the properties of crude oil at 1 atm and 20 °C.   

Table 6. 1. Properties of crude oil used in this study at 1 atm and 20 ℃ 

f (g g−1) 

(n-C7 induced 

asphaltene) 

ρo (g mL−1) MWo (g mol−1) μo (cP) 

0.0315 0.824 177 12.2 

 

Four different wax inhibitors, which were commercially sourced and are denoted as INH.3, 

INH.4, INH.6, and INH.9 were utilised to treat the crude oil sample and investigate their 

effects on WAT, pour point, and asphaltene precipitation and deposition phenomena. Table 

6.2 shows the composition and application of each inhibitor in oilfield chemical industry.  

Table 6. 2. The composition suggested optimum dosage by supplier and application of each 

wax inhibitor 

Wax Inhibitor Chemistry Characteristics 
Proposed 

optimum dosage 

(ppm) 

INH-3 
Naphtalene,  1,2,4, 

Trimethylbenzene 
Paraffin inhibitor 400 

INH-4 
Ethylene Vinyl 

Acetate polymer in 

aromatic solvent 

Pour point 

depressant 

400 

INH-6 

Mixture of 

surfactants and high 

molecular weight 

copolymers in 

aromatic solvent 

Paraffin and 

asphaltene inhibitor 

350 

INH-9 
propriety mixture of 

detergents and 

surfactants 

Wax inhibitor 400 
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These chemistries were chosen based on their applications and contributions in mitigating 

wax challenges in industry and used as received from suppliers. For each chemical, the 

suppliers suggested dosage rate as the effective optimum concentration (as mentioned in 

Table 6.2) has been employed in this study. A commercial paraffin wax with melting 

temperature range of 54-56 oC supplied by Meade-King Robinson & Co Ltd was used in 

the recombination procedure, which is addition of a certain amount of wax to the crude oil, 

without any additional purification. Based on the distribution of representative paraffin 

waxes from generic paraffinic oils, the paraffin carbon number was chosen. For crude oil 

modification with paraffin waxes or chemicals, ~140 g of oil and the calculated mass of 

each paraffin wax/chemical were heated up to 60°C. Then, the paraffin was gently 

appended to the crude oil sample and homogenized for at least 1 hr, to eschew local 

concentration of the paraffin waxes or respective chemicals. The n-heptane (n-C7; >99%), 

anhydrous toluene (Tol; >99.8%), and ethanol (≥99.8%) were acquired from Sigma-

Aldrich and utilised in this study as received for washing purposes. For asphaltene 

deposition tests, the natural gas composition, which was injected to QCM cell for 

precipitating asphaltenes, was given in chapter 5.   

6.2.2 Determination Rheological Properties, WAT and Wax Pour Point  

Determination rheological properties of studied crude oil were conducted with temperature 

sweeps utilising a stress controlled rotational-type rheometer acquired from Anton Paar Ltd 

(Physica MCR 301). Almost all the measurements presented were carried out with the aid 

of 25mm diameter and 1° angle cone and plate geometry (Cones CP50-1). It comprises two 

circular plates with a space in between at which the reservoir fluid is placed. The bottom 

plate is fixed in rotational terms while the top is fitted to a shaft, floated on a sophisticated 

air bearing to keep friction to a very low level. It is then fitted to a sensitive electric motor 

to control the torque of the system while rotating/oscillating according to pre-set 

experimental parameters. The gap between the lower and upper test plates is set to be 

0.1mm length to reach optimum measurement precision. The main reason to select this 

geometry was because of its capability to make uniform shear rate on the thorough 

measuring surface area. Hence, it could generate a homogeneous flow and eliminated 

particle migration alongside the measuring system. The sample size required to fill the 



-122- 

 

geometry was 22cc which would lead to reach thermal equilibrium easily due to having 

small amount of sample. The base plate temperature was accurately controlled within 

0.1°C in the range of -40 °C to +200 °C with a Peltier system. An external temperature-

regulated bath (Grant, GP200) was also connected to the rheometer, set at 20 °C to cover 

the routine testing regime range of -30 °C to 60 °C of the measuring system. After 

performing primary experiments, it was illustrated that shear rate of 10s-1 would give us 

reproducible curves for the tested fluid. The capability of the Anton Paar, Physica MCR 

301 rheometer using oscillatory mode at atmospheric conditions, enables us to determine 

the pour point with different applied stresses. Preliminary measurements proved that a 

frequency of 1.59 Hz with an amplitude of 25 µNm results in getting data close to the pour 

point obtained from ASTM procedure, at least for the studied oil sample. The rheometer 

software recorded all necessary oscillation data including deflection angle, loss modulus 

and storage modulus which were utilised to determine the pour point in a temperature 

sweep. The starting temperature and cooling rate for both WAT and pour point 

determination experiments are 50 oC and 1 oC/min, respectively. The destination 

temperature and shear rate for all WAT experiments are 5 oC and 10 s-1, respectively. The 

accuracy of using rheometer for pour point measurement was found to be ±0.2 °C which is 

thoroughly acceptable in comparison with the ASTM D-97 method[27], [28].  

6.2.3 QCM Tests 

The deposition experiments should be conducted at natural gas contents above the 

asphaltene precipitation onset pressure. Herein the asphaltene onset pressure of 

precipitation was defined as the lowest natural gas content at which asphaltene 

precipitation/inclination in change in resonance frequency of QCM is first observed after a 

stepwise pressure increase process. High pressure-high temperature QCM (HPHT-QCM) 

technique was employed to determine the onsets and monitor the comparative deposition 

rate. The QCM technology has been used at Heriot‐Watt Institute of Petroleum 

Engineering for over twenty years. Initial studies showed potential uses in some 

measurements relevant to the oil industry including wax, hydrates, asphaltenes, saturation 

pressure and scale. Further details are given in a paper by Burgass et al[12] and Joonaki et 

al[29], [30]. The principal of the measurement is to monitor changes in the Resonance 
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Frequency (RF), and electrical properties at RF, for a QCM surface submersed in the test 

fluid as a result of variations in the mass of the QCM or changes in the viscosity and 

density of the fluids brought about by changes in temperature and/or pressure. In this study, 

the capability of the QCM has been used for investigation of the effect of additional 

paraffin wax and respective inhibitors on asphaltene onset pressure (AOP) and deposition 

rate of tested crude oil under real field representative conditions (HPHT along with applied 

shear stress). The natural gas with a composition as presented in section 2.1, was injected 

at a constant rate of ~1.1 psi/min from 600 psi. The gas at room temperature was injected 

into the QCM cell at 60 °C and timed to reach equilibrium. The magnetic stirrer was also 

switched on, rotating at 500 rpm to mix the injected gas and crude oil and apply the shear 

stress.  

6.2.4 PC-SAFT Equation of State 

The PC-SAFT EoS is formulated as one of the most reliable tools to predict the phase 

behaviour of complex fluids[31]–[33]. Dispersive interactions are defined in this model by 

extension of the perturbation theory of Baker and Henderson[34]. In this EoS molecules 

are considered as chains composed of spherical segments, dividing the total intermolecular 

forces into reference and perturbation terms. To model bulk properties of the hydrocarbon 

mixtures and phase equilibria three parameters that are the segment number in the chain 

(m), the spherical segment diameter (σ), and the dispersion interaction energy between the 

segments (ε/k) are required for each non-associating and nonpolar components. These 

parameters are derived by simultaneously fitting the PC-SAFT EoS to thermo-physical 

experiments as function of the average molecular weight of the component. For associating 

compounds, however, two additional parameters are required, the association energy (εAB) 

and the association volume (κAB). Within the PC-SAFT EoS, an improved square well 

potential for the segment of a chain is been used, describing the residual Helmholtz free 

energy. In this work we used our in-house thermodynamic software to predict the 

asphaltene phase behaviour which is based on the framework of the PC-SAFT proposed by 

Gross and Sadowski[35]. Here, the residual Helmholtz free energy is split into two terms, 

the hard-chain reference fluid and the dispersion contribution.  

 
hc dispa a a    (6.1) 
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The compressibility factor is expressed through the following equation 
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The pressure in units of Pa = N/m2 can be calculated through the following relation 
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According to Equations (6.1) and (6.3), it is 

 1 hc dispZ Z Z     (6.4) 

 

The fugacity coefficient and the chemical potentials for different components are expressed 

through Equations (6.5) and (6.6), respectively 
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Further detailed information about the thermodynamic phase behaviour modelling using 

PC-SAFT EoS can be found elsewhere [32].   

6.3 Results and Discussion 

6.3.1 Performance of Different Wax Inhibitors: WAT and Pour Point 

Determination 

Four commercial wax inhibitors have been employed to investigate their effect on WAT, 

pour point, asphaltene precipitation and deposition phenomena using two different 

techniques: “Rheometer”, and ‘‘HPHT-QCM”, which have been explained in previous 

section. The efficiency of an additive was evaluated based on the reduction of non-
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Newtonian viscosity when it was added to the system. In all cases, the viscosity obtained at 

the lowest temperature is the “maximum viscosity’’ which was aimed for the evaluation of 

the inhibitor performance. Figure 6.1 illustrates the viscosity changes (cP) with 

temperature reduction (oC) for the blank crude oil and with various inhibitors at specified 

concentrations which were proposed as optimum ones by suppliers. 

 

Figure 6. 1. The viscosity changes due to temperature reduction for the blank crude oil and 

in presence of various inhibitors at specified concentrations. 

As the cooling process started well above the wax appearance temperature, the viscosity 

gradually increased. This behaviour continued following the Arrhenius temperature 

dependence of Newtonian fluids until wax started to precipitate out from the crude oil. 

Equation 6.7 below explains a linear Arrhenius relationship for Newtonian range [36]: 

                                                                                                                (6.7) 

Where µ is the Newtonian dynamic viscosity, Ea is activation energy of viscous flow in 

joules, R is universal gas constant, T is the temperature, and A is Pre-exponential factor 

largely dependent on the entropy of activation of flow. A sudden deviation in viscosity was 

then observed owing to formation of wax crystals. The point at which non-Arrhenius 

behaviour began, is considered as the WAT. As the temperature decreased further below 
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the WAT, wax crystals grew which leads the oil sample to become more non-Newtonian, 

and therefore the viscosity increased at a higher rate. The viscosity variations in the 

mixtures of oil + wax inhibitors, were noticeable. It was also observed that the viscosity in 

non-Newtonian region decreased in presence of all inhibitors particularly the polymeric 

ones. Table 6.3 presents a summary of the results and the test conditions using the 

rheometer with atmospheric geometry.  

Table 6. 3. The experiment conditions and results of rheometer tests with atmospheric 

geometry and shear rate of 10 s-1, using blank crude oil and blended with various wax 

inhibitors 

Fluid 
WAT 

(°C) 

Minimum 

Viscosity (cP) 

Maximum 

Viscosity (cP) 

Maximum viscosity 

reduction compared to 

blank (%) 

 

Blank Oil 29.1 2.4 56.2 0.0 

INH-9, 400ppm 29.2 2.7 51.9 7.7 

INH-4, 400ppm 24.2 2.4 17.5 68.9 

INH-3, 400ppm 21.2 2.4 16.2 71.2 

INH-6, 350ppm 22.5 2.3 12.3 78.1 

 

Typically, wax inhibitors performance can be categorised in three classes: 1- high viscosity 

reduction, 2- moderate reduction, and 3- no significant change or slightly increasing. As can be 

seen from Figure 6.1 and Table 6.3, inhibitors INH-3, 4 and 6 are placed in Class1, and INH-9 is 

put in Class3. As an overall ranking, INH-3 and 6 were found to be better viscosity modifiers 

compared to the other tested inhibitors.  

The efficiency of wax inhibitors can also be evaluated based on their capability to reduce 

the pour point. The pour point reduction may lead to higher production rates and lower 

production costs for the operators consequently. The experiment conditions and pour point 

results from rheometer on oscillation mode using different wax inhibitors at optimum 

concentration are shown in Table 6.4.  
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Table 6. 4. The test conditions and results of rheometer experiments on oscillation mode 

with Angular frequency= 10 rad/s, Frequency= 1.6 Hz, and Amplitude Torque=25 µNm, 

using blank crude oil and dosed with different wax inhibitors 

Fluid Destination T (°C) Pour point (°C) 

Blank Oil -20.0 -5.3 

INH-9, 400ppm -20.0 -8.9 

INH-3, 400ppm -25.0 -22.5 

INH-6, 350ppm -25.0 -23.6 

INH-4, 400ppm -25.0 -25.0 

 

The liquid-like behaviour of the reservoir fluid is identified by the loss modulus (viscous response) 

while the solid-like behaviour is identified by the storage modulus (elastic response). When the 

wax-oil mixture was at a temperature above the pour point, loss modulus was at a higher value 

compared to the storage modulus. When temperature decreased, both moduli values increased till 

the test fluid reached to the pour point. At pour point, storage modulus is equal to the loss modulus. 

Storage modulus increased if the mixture was subjected to a further cooling. Figure 6.2 also 

presents the effect of wax inhibitors on pour point reduction for the treated oil sample.  

 

Figure 6. 2. The effect of wax inhibitors on pour point reduction for the modified crude oil 

sample. 
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All the chemicals decreased the pour point with almost keeping the same efficiency as they 

had for viscosity reduction. The INH-4 and 6 could reduce the pour point as better 

depressants from -5.29 oC to -25 oC and -23.6 oC, respectively. 

6.3.2 Effect of Wax and Related Inhibitors on Asphaltene Instability  

The asphaltene aggregation and deposition experiments should be conducted at and above 

the natural gas contents of precipitation onset. Herein, the asphaltene onset point (AOP) is 

defined as the pressure with lowest gas-oil ratio at which asphaltene precipitation is 

occurred. A HPHT-QCM has been utilised in this study to investigate the effectiveness of 

paraffin wax and different wax inhibitors on the asphaltene precipitation and deposition 

rate at elevated pressure and temperature condition in the presence of natural gas. The 

change in resonant frequency (RF) was monitored during the natural gas injection to 

determine the asphaltene precipitation onset point and respective gas mole percentage (gas-

oil ratio, GOR) which is mixed with crude oil within the QCM cell. The obtained results 

for AOP determination and the effect of various wax inhibitors on asphaltene aggregation 

and deposition rate onto the QCM surface are given in Figure 6.3. The change in RF 

increases as a result of a decrease in viscosity of density of the fluid due to gas injection 

and declines when asphaltenes start precipitating out of the crude oil.  
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Figure 6. 3. Results of the HPHT-QCM experiments for the examined crude oil with wax 

inhibitors: a) INH-3, b) INH-4, c) INH-6, and d) INH-9 at different concentrations. 

The pressure at which the RF starts to reduce represents the AOP that is ~844 psi at ~15.21 mol% 

injected gas for blank crude oil without any wax inhibitor. The AOP/GOR is ~1561 psia/26.11 

mol% for INH-6, ~1082 psia/19.35 mol% for INH-4, ~1047 psia/18.71 mol% for INH-3, and ~847 

psia/15.11 mol% for INH-9 with concentrations of 366, 422, 398, and 416 ppm, respectively, all 

close to the optimum concentrations which have been used for WAT and pour point depression 

tests.  

Figure 6.4 shows the AOP and GOR obtained by HPHT-QCM versus different 

concentrations of wax inhibitors. The black dash line curve in Figure 6.4 is the respective 

injection natural gas (GOR, mol %) for each AOP. Therefore, the representative AOP and 

GOR for each inhibitor at given dosage rate can be identified. As can be observed, INH-6 

has better performance in comparison with three other wax inhibitors on changing AOP 

and respective GOR (mol%). INH-9 actually aggravated asphaltene precipitation at 

concentrations of 189 and 416 ppm and became neutral at higher concentrations started 

from 623 ppm.  
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Figure 6. 4. AOP/GOR versus concentration of four wax inhibitors; INH-3, 4, 6, and 9. 

The effect of each wax inhibitor with different concentration on the comparative deposition 

rate, which is RF reduction versus time, after the AOP are presented in Figure 6.5. The 

achieved results clearly show that all employed wax inhibitors except INH-9 have a 

positive effect on the asphaltene rate reduction onto the QCM surface after exceeding the 

AOP. As can be seen, INH-9 at concentrations of 189 and 416 ppm increases the 

deposition rate from -316.4 Hz/hr to -369.1 Hz/hr and -327.8 Hz/hr, respectively. 

As can be observed, there is a drastic change in deposition rate curves between the blank 

oil and with 366, 398, and 422 ppm of inhibitors 6, 3, and 4, respectively. INH-6 has much 

better performance in decreasing the asphaltene deposition rate from -316.4.3 to -55.3 

Hz/hr compared to wax inhibitors 3 and 4 at the optimum concentration, which reduces the 

deposition rate down to -192.1 Hz/hr and -219.6 Hz/h, respectively. A dramatic alteration 

in RF can be seen during the first 2 hrs of the experiment without inhibitor compared to the 



-131- 

 

test with wax inhibitors. The ranking of wax inhibitors based on AOP/GOR alterations and 

deposition rate reduction obtained using HPHT-QCM method is as follows: INH-6 > INH-

4 > INH-3 > INH-9.  

 

Figure 6. 5. Results of the effect of different wax inhibitors: a) INH-3, b) INH-4, c) INH-6, 

d) INH-9 on the asphaltene deposition rate at various concentrations. 

INH-3 contains Naphtalene, 1,2,4, Trimethylbenzene which can interact with asphaltene 

nanoaggregates through π stacking interaction with asphaltenes aromatic cores. However, it 

cannot curb further interactions between nanoaggregates since it does not have any strong 

surface-active functional group to interact with asphaltene molecules through hydrogen 

bonding, acid-base or van der Waals interactions.  

On the other hand, INH-6 and 9 have polymeric structures in aromatic solvents (e.g. 

Ethylene Vinyl Acetate (EVA) polymer), and in addition to π−π interactions they also can 

disturb self-association interactions of asphaltene through creating steric repulsion between 

the aliphatic tails of polymers and asphaltene nanoaggregates that cause significant effect 

on AOP shifting and decreasing the deposition rate. The effect of wax at different dosage 
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rates on asphaltene precipitation and deposition was tested using HPHT-QCM at 60 oC. 

The AOP and QCM based deposition rate were considered as representative performance 

criteria for capability of waxes to act as inhibitor or promoter.  Figure 6.6a shows an 

increase in AOP/GOR with the addition of paraffin wax. Hence, the addition of whole 

waxes appears to improve the solubility of asphaltene nanoaggregates in crude oil and 

stability of asphaltenes increases with increasing wax concentration used in this study.  

 

Figure 6. 6. The effect of addition of wax at various concentrations to the crude oil on a) 

AOP/GOR, b) representative asphaltene deposition rate. 

Figure 6.6b indicates that the addition of whole waxes could decrease the asphaltene 

deposition rate on the QCM surface for all samples tested. As can be observed, 5wt% 

addition of wax to the crude oil can result in the deposition rate reduction from -316.4 

Hz/hr to -60.3 Hz/hr. Asphaltene precipitation is therefore affected by an ensemble of 

waxes with long aliphatic chains. It is proposed that waxes with various aliphatic chains 

might form synergies when acting on asphaltene precipitation and aggregation. Large 

aliphatic chain containing waxes interact with asphaltene and inflict steric interferences 

during asphaltene nucleation. This could cause formation of more contorted asphaltene 

aggregates with less tendency to interact and do self-association phenomenon.  

6.3.3 Thermodynamic Modelling  

The PC-SAFT EoS was employed to predict the asphaltene phase behaviour when the 

various wax contents were added to the system. The influence of paraffin wax on 

asphaltene stability zones in the crude oil at different system compositions (i.e. different 
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gas/oil ratios) is illustrated in Figure 6.7a-b. The relative errors (REs) between 

experimental and modelling results are also provided in Figure 6.7c. It can be seen that for 

all modified crudes with different wax contents the model predictions are in good 

agreement with the experimental results. In general, the relative error was in reasonable 

range of less than 6% for all the experiments. However, for modified crudes with lower 

wax contents more satisfactory predictions have been achieved (RE = 1.52%). A distinct 

deviation was occurred once the model underestimates the AOP changes and does not well 

match with the asphaltene precipitation onset in the higher paraffin wax region (RE = 

5.67%). A probable elucidation to variations between the model prediction and QCM 

experimental data at high wax content might be ascribed to the generalisations in the crude 

oil fraction properties utilised, in addition to the uncertainties in the asphaltene structure 

and onset point determination in high paraffin wax modified crude oil samples.  

 

 



-134- 

 

 

Figure 6. 7. PC-SAFT modelling results of the effect of wax addition to the crude oil on 

asphaltene stability at various concentrations of 1.5wt%, 3wt%, 5wt%, and 7wt%: a) 

modelling results, b) zoomed-in plot of modelling results with experimental data, c) 

relative error of PC-SAFT predictions compared to experimental data. 

A comparison between the graphs for lower wax contents with those of higher wax 

contents in Figures 6.7a-b reveal that the model results present the same trend as 

experimental results in shifting the asphaltene onset point and increasing respective gas-oil 

ratio: AOP/GOR increases with increase of paraffin wax content. This could be explained 

by the presence of heavier hydrocarbons in the crude oil and significantly higher solubility 

of asphaltene in hydrocarbons with higher carbon number than those with lower ones, 

widening the asphaltene stability range.  

Another hypothesis for the positive effect of wax in reducing asphaltene deposition could 

be that, upon increasing the molar percentage of heavy fraction of the oil, liquid 
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hydrocarbon phase split into different phases, liquid number 1 (lighter hydrocarbons as the 

main fraction) and liquid number two (heavy hydrocarbons as the main fraction), 

consequently, significant fraction of asphaltene was dissolved in liquid#2, which in turn, 

reduces the asphaltene fraction in liquid#1, causing the changes in asphaltene onset points 

and deposition rates. Further research studies on this hypothesis through attaining more 

experimental data and/or molecular dynamic simulations will result the confirmation of the 

proposed mechanisms and propositions throughout this work.  

6.4 Conclusions 

The effects of different wax inhibitors on WAT and pour point depression were evaluated 

first. Then the crude oil compositional modifications by addition of examined wax 

inhibitors and various paraffin wax contents in crudes and their influences on the 

asphaltene stability were investigated by monitoring of asphaltene precipitation onset point 

changes and deposition behaviour asphaltene nanoaggregates. The results indicate that it 

may be possible to find an optimum dosage at which the wax inhibitor can reduce both wax 

and asphaltene deposition problems. A wax inhibitor which is highly efficient in viscosity 

reduction might not be an appropriate chemical solution in addressing organic deposition 

challenge. Some wax inhibitors can hinder asphaltene aggregation and deposition and some 

of them aggravate those phenomena. The HPHT-QCM results showed that, as predicted 

using the thermodynamic model, wax content can reduce the asphaltene deposition rate and 

shifting AOP. This occurs might be owing to higher solubility of asphaltenes in 

hydrocarbons with higher carbon number compared to those with lower ones. Asphaltene 

phase behaviour in the paraffinic modified oils was also modelled using PC-SAFT EoS. 

The predictions were compared with the experimental results. It was observed that the 

relative error was in rational range (less than 6%) for all the tests. However, for modified 

crudes with lower paraffin wax concentrations more satisfactory predictions have been 

attained.  
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Chapter 7-A New 2-D Particle Scale Model to Simulate Asphaltene Deposition in 

Wellbores and Pipelines 

 

7.1 Introduction 

It is extremely important to identify the flow of precipitated and aggregated asphaltene 

particles and determine their disposition for deposition. However, because of the 

complexity of the asphaltenes molecular structure and lack of proper knowledge of the 

asphaltene aggregates deposition process, modelling studies of this undesirable phenomena 

are scarce. Recent advances in asphaltenes science enable us to have a new look at how a 

reliable asphaltene deposition model can sufficiently predict asphaltene deposition 

tendencies onto the surfaces and cause a significant positive effect on fluid flow assurance 

in pipelines and porous media[1].  

Here, a few articles and some of the obtained results from previous asphaltene deposition 

model studies will be briefly described. The first was authored by Escobedo and 

Mansoori[2] who developed an asphaltene deposition model based on models for aerosol 

(microscopic liquid or solid particles dispersed on air currents) deposition. The model was 

developed by accounting for both diffusive and convective mechanisms for transport of 

asphaltene particle to the pipe wall[3]. Jamialahmadi, et al.[4] developed a mechanistic 

asphaltene deposition model based on three parameters of oil velocity, bulk and surface 

temperature, and concentration of flocculated asphaltenes. They conducted flow loop 

experiments to determine the rate of asphaltene deposition by measurement of the thermal 

resistivity of asphaltene deposit. They proposed an Arrhenius type equation for adhesion 

force between flocculated asphaltenes and the metal surface, ignoring the effect of particle 

size distribution of precipitated asphaltenes. The model developed by  Jamialahmadi was 

then utilized by Soulgani et al.[5] for predicting asphaltene deposition in an oil reservoir. 

They matched the experimental asphaltene deposition rate with a correlation based on the 

aforementioned Arrhenius exponential term with an assumption of chemical reaction 

mechanism controlled the asphaltene deposition onto the tubing surface. There is no 

validation for the proposed deposition mechanism. Ramirez-Jaramillo et al.[6] proposed 
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the application of a molecular diffusion model to describe the transportation of asphaltene 

aggregates to the wall. They claimed that the net rate of asphaltene deposition is the 

difference between the rate of deposition and removal of asphaltene. These researchers 

employed Fick’s law for molecular diffusion accounting for the rate of deposition and  

Kern and Seaton[7] model for expressing the removal of asphaltene deposition. They also 

considered that the asphaltene aggregates concentration gradient was due to the wall 

temperature gradient. This modelling methodology inspired from a well-developed 

hypothesis for wax deposition by Burger et al[8] which is unfortunately not in agreement 

with laboratory data obtained by Greaves et al.[9]. Their experimental data on asphaltene 

deposition using a Couette device revealed that the wall temperature gradient did not cause 

a significant effect on the asphaltene deposition rate. Eskin, et al.[10] developed an 

asphaltene deposition model based on particle flux mass transfer expressions in turbulent 

flows. They assumed a population balance model for asphaltene particle size distribution 

over pipe cross section and Brownian diffusion for transport of aggregated asphaltenes to 

the wall surface. The model had three tuning parameters which were obtained by 

conducting laboratory tests with a Couette device, while thermodynamics of asphaltene 

precipitation from bulk solution was not addressed. The asphaltene deposition model of 

Vargas, et al.[11] consists of several sub-models explaining the asphaltene precipitation, 

aggregation, transport, and deposition onto the wall surface. The pseudo-first-order 

reactions were utilized to model the asphaltene aggregation and deposition steps. The 

particle transport was defined by the convection-diffusion equation. The diffusivity of 

asphaltene aggregates in fluid flow through a pipe was considered to be fixed and 

approximately equal to the determined diffusivity of asphaltene particles in toluene. The 

model included different tuning parameters that had to be identified based on experimental 

data. Hashmi, et al.[12] introduced a new asphaltene deposition model with proposing that 

asphaltene deposition onto the metal surface is governed by a diffusion driven mechanism. 

Asphaltene deposition and clogging were assessed by injecting precipitating petroleum 

fluid mixtures into a capillary tube. The agreement was found between model predictions 

and experimental data. However, the model was only developed for laminar flow, and 

further investigation is required to verify the model in the more real condition of fluid flow 

along a pipe or wellbore. Vilas Boas Favero, et al.[13] proposed new device to investigate 
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asphaltene deposition phenomenon. The apparatus was made of a packed bed of stainless 

steel beads over which a solution of crude oil-alkane is flown and the asphaltene deposit 

well monitored. The experimental results prove the use of the advection-diffusion equation 

to model asphaltene deposition. They matched the obtained asphaltene deposition profile 

along the packed bed with theoretical behaviour predicted by the diffusion-limited 

correlations for mass-transfer deposition. 

A review of the existing literature reveals that there is a lack of comprehensive deposition 

simulator which fully considers all effective parameters. These parameters such as 

thermodynamics of asphaltene precipitation, aggregation of precipitated nano-scale 

particles and finally the transport of particles to the surface and deposition of particles.  

In this chapter, a novel framework was developed to predict the deposition profile of 

asphaltenes along the flow of a multiphase fluid from the wellbore to the wellhead. In this 

model, the PC-SAFT equation of state was used to study the stability of oil/asphaltene 

mixtures. A new classification for the asphaltene particle size of precipitated asphaltenes 

was also presented to describe the Newton’s second law related. The Smoluchowsky[14] 

aggregation kinetic model was used to account for the self-association of asphaltenes. A 

modified sub-model was also developed for asphaltene deposition term. Advection -

Diffusion (ADE) equation in cylindrical coordinate was used to track the transport of 

asphaltene particles in both axial and radial directions. A numerical scheme was applied to 

solve all governing PDEs simultaneously. The results obtained from the new model was 

compared and validated against experimental data of asphaltene deposition in the capillary 

tube to show the robustness of the model.  

7.2 Model Development 

7.2.1 Thermodynamic Modelling  

The PC-SAFT EoS has been one of the most reliable equations of state which was 

proposed for non-associating fluids by applying the perturbation theory of Barker and 

Henderson[15] for dispersive interactions within PC-SAFT model. A simple approximate 

solution for a given molecular model is typically described by using perturbation theories. 

Originally, the PC-SAFT assumed the hard sphere fluid as a reference fluid and was 
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developed for spherical molecules. In this methodology, the total intermolecular forces are 

divided into reference and perturbation term. The hard chain fluid with high attractive 

intermolecular forces is assumed as the reference fluid in the model. This model needs 

three parameters of each non-associating and non-polar components which are the segment 

number in the molecule (m), the segment diameter ( ) , and the interaction energy between 

each molecular segment ε/k to model both phase equilibria and bulk properties of the 

hydrocarbon mixtures. These parameters are related to the average molecular weight of the 

component and are determined commonly by simultaneously fitting the PC-SAFT EoS to 

the measured saturated liquid density, speed of sound, heat capacity, and vapor-pressure 

data of the components. A modified squared-well potential for the segment of a chain is 

assumed within the PC-SAFT EoS which describes the residual Helmholtz free energy of a 

mixture of non-associating fluids. In the framework of the PC-SAFT proposed by Gross 

and Sadowski[16], the residual Helmholtz free energy is separated into hard-chain 

reference fluid and the dispersion contribution. The respective equations have been 

presented in Chapter 6.  

In order to perform the stability analysis and flash calculations, the fugacity coefficients are 

needed. The stability/flash calculation is then utilized for modelling of PVT experiments to 

get thermodynamic results from the equation of state. This was schematically represented 

in Figure 7.1. Different asphaltene compositions in mixtures were tested using the stability 

analysis based on the Tangent Plane Distance concept[17] to study the thermodynamics of 

asphaltene particles in the oil phase corresponding to the global minimum of the Gibbs 

energy of the mixture. It should be stated that if the asphaltene phase was stable in the oil, 

the result of stability analysis would be used as the initial guess composition to conduct the 

flash calculation. More details on the stability analysis applied here can be found 

elsewhere.[18]–[20] 
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Figure 7. 1. Flow chart of the flash algorithm used to study the stability of asphaltene- oil 

mixtures. 

Figure 7.1 shows the details of thermodynamic calculations of the oil-asphaltene system 

studied in this work. As explained, for each non-associating species the PC-SAFT equation 

of state requires three parameters. In order to characterize the oil, these three parameters 

should be determined for each pseudo-component. The parameters were found based on 

the SARA (saturates, aromatics, resins, and asphaltenes) analysis of the oil, density of 

stock tank oil, bubble point and live oil composition of the mixture. Correlations for the 

three PC-SAFT parameters were previously reported as a function of the molecular weight 

for paraffins, benzene derivatives, and aromatics. These results were directly used to fit 

parameters for each component, except for the asphaltene component. The PC-SAFT 

parameters for asphaltene were fit by matching the measurements of asphaltene onset point 

with model predictions[21]. 
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7.2.2 Viscosity 

A viscosity model based on the correlation developed by Jossi et al. [22] was used to 

determine the viscosity of the flowing oil containing suspended asphaltene particles. 

Lohrenz et al. [23]extended the correlation developed by Jossi for computation of the 

viscosity of hydrocarbons referring as Lohrenz-Bray-Clark or LBC correlation in the oil 

and gas industry.  The LBC correlation is a fourth-degree polynomial equation in terms of 

the reduced density as follows: 

                                    
1/4

* 4 2 3 4

1 2 3 4 5( ) 10 r r r ra a a a a                                       (7.1) 

where * , , and r  are the viscosity of the dilute gas, the viscosity reducing parameter the 

reduced density respectively. Constants a1 to a5  were reported by Jossi et al[22]. In this 

work, the Lohrenz et al. [23] mixing rules were used for hydrocarbons. Also, the 

Brinkman[24] viscosity model was used to calculate the viscosity of a fluid containing a 

dilute suspension of asphaltene particles given by :  

                                                       
2.5(1 )








                                                          (7.2) 

where   refers to the volume fraction of the asphaltene particles. 

7.2.3 Kinetics of Asphaltene Precipitation 

Once the asphaltene nano-aggregates become unstable in the oil phase, they start 

precipitating out of the solution at a specific rate. The rate depends on the difference 

between the actual concentration of asphaltene in the bulk of oil phase and the equilibrium 

concentration at the system temperature and pressure. This time-dependent process can be 

explained by following first-order reaction equation: 

                                                                ( )per p eqR k C C                                                                (7.3) 

where the C is the actual concentration of asphaltene in the oil phase and Ceq is the 

asphaltene concentration at equilibrium condition. The factor pk was considered to be 
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constant in most previously published work on the development of asphaltene deposition 

model, however, in this work an Arrhenius equation type was proposed for 
pk as follows:  

 
( )

0
p eqC C

pk k e
 

     (7.10) 

Thus, the final equation for the rate of precipitation of unstable asphaltene particles takes 

the following form: 

 
( )

0 ( )p eqC C

per eqR k e C C
 

   (7.11) 

7.2.4 Aggregation of Precipitated Asphaltenes 

After precipitation of the asphaltene particles from the bulk of oil phase, the nano-

aggregates tend to stick to each other and form larger aggregates due to asphaltene natural 

self-associating characteristic. The change in the concentration of particles with size k can 

be modelled using the Smoluchowski[25], [26] equation as follows:  

 
1

2

k
ij i j k ik i

i j k i k

dC
K C C C K C

dt   

     (7.6) 

where Ck is the concentration of particles with size k, in number of particles per cubic 

meters and Kij is the collision kernel between i and j particles. For the collision of particles 

with approximately equal size during the diffusion-limited regime, the collision kernel, Kij, 

can be estimated according to the following equation[25], [26]:  

 
8

3

B
ij

k T
K 


   (7.7) 

where T is the temperature in Kelvin, KB is the Boltzmann constant in m2 .kg/s2. K, µ is the 

viscosity in Pa.s, and   is the collision efficiency.  

As experimentally shown, while asphaltene particles smaller than 0.01 µm were considered 

as nano-aggregates suspended in the oil phase, asphaltene particles larger than 0.01 µm can 

be precipitated when asphaltenes become unstable in the liquid phase [11].  
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7.2.5 Kinetics of Asphaltene Deposition 

The precipitated asphaltenes start getting aggregated and the asphaltene aggregates smaller 

than 10 µm move towards the tubing wall due to the diffusional forces. In this work, a new 

equation was proposed to model the asphaltene deposition expressed as:  

 

 n

d dR k C     (7.8) 

where the Rd is the rate of as asphaltene deposition, C is the actual concentration of 

asphaltene, µ is the viscosity of the oil and the kd and n are two adjustable parameters.  

7.2.6 Modelling the Mass and Heat Transfer Process 

In this study, the cylindrical coordinates were used to simulate the distribution of 

asphaltene aggregates along an oil well column. A two-dimensional axial-radial flow mass 

transfer equation was used for the simulation purposes. This type of coordinates was able 

to track the transport of asphaltenes in both radial and axial directions by considering 

asphaltene deposition, kinetics of asphaltene precipitation, molecular and eddy diffusion 

and also the kinetics of deposition rate on the surface. The Advection-Diffusion equation in 

the cylindrical coordinate is[27]:  

2 2

2 2 2
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C C C C C C C
V V D r R
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         

         
  (7.9) 

where R is the rate of production and consumption of precipitated asphaltenes which can 

be obtained from Eq. (7.3), and woD is the asphaltene diffusivity coefficient in the oil phase. 

In the present work, the Stokes-Einstein equation with additional tuning parameter for 

asphaltene particles has been used to calculate diffusivity coefficient[28]. This value is 

given by:  
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B
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k
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D f

r
   (7.10) 
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where 
kr  is the radius of particle size k and

df  is the diffusivity tuning parameter. 

Compared to advection, transport caused by diffusion in z-direction is very small. 

Accordingly, diffusion in this direction is neglected. Considering that the precipitated 

particles only diffuse in the radial direction and assuming the symmetricity in the z 

direction, the equation above can be rewritten as:  
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     
  (7.11) 

where the relation for R was replaced with that in Eq. (7.3). The Finite Difference Method 

(FDM) was used to solve the above partial differential equation (PDE) subject to the 

following boundary conditions: 

Concentration of Asphaltene at initial time along the wellbore is known and constant:  

                                                              0 at ( 0, , )C t z r C                                     (7.12) 

Concentration of Asphaltene in the fluid while entering to the wellbore is constant: 

  at ( , 0, ) rC t z r C   (7.13) 

Asphaltene concentration change during production at r=0 is zero:  

  at ( , , 0) 0
C

t z r
r


 


 (7.14) 

Deposition occurs at r = rw according to deposition kinetics:  

 @ ( , , ) n

w d d

C
t z r r k C

r


  


  (7.15) 

Cd is the concentration of those asphaltene aggregates which can deposit on the surface. 

Equation 7.15 is the key part for modelling the deposit layer formation, where rw reduces 

after deposition occurs,  

Similarly, for the heat transfer in the cylindrical geometry described in this work, the 

following equation can be used as[29]:  

2 2

2 2 2

1 1
( )T hr z

T T T T T T T
r R

t r z r r r r r Z

v
v v

  
 

         
         

         
  (7.16) 
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where, 
T  is the thermal diffusivity. The heat generation due to change in the asphaltene 

phase behavior was reported negligible in the literature[30]. In addition, assuming 

symmetricity along the z axis, Eq. (7.16) can be simplified as:  
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  (7.17) 

Likewise, the mass transfer boundary conditions, the following conditions can be utilized 

to solve the PDE’s: 

Fluid temperature is equal to the reservoir temperature while entering the wellbore: 

  at ( , 0, ) resT t z r T    (7.18) 

Fluid Temperature is equal to the well head temperature while getting out of the wellbore: 

    at ( , , ) WHT t z L r T                                               

Temperature gradient at centre of the wellbore is zero: 

 at ( , , 0) 0
T

t z r
r


 


  (7.20) 

Temperature gradient at r=rw is equal to convective heat transfer from surrounding 

material:  

 at ( , , ) ( )c
w w o

ho

hT
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
  


  (7.21) 

where, ch  is convective heat transfer coefficient of casing material. It should be mentioned 

that while the asphaltene layer covers the metal surface, the heat transfer can be affected by 

the deposition layer and Eq. (7.21) would change to: 
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(7.19) 
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7.2.7 Size Classification of Precipitated Asphaltene Particles  

As discussed in Section 2.3, it was assumed that asphaltene nano-aggregates start 

precipitating out of the liquid phase at the size greater than 0.01 µm. After formation of 

asphaltene precipitates, the aggregation due to diffusional force between the particles starts 

which make the distribution asphaltene particles size. In order to solve the aforementioned 

heat and mass transfer PDEs, it is required to characterize and classify this distribution to 

solve the equations. In this regard, the asphaltene particles were classified in 12 groups 

presented in Table 7.1.  

Table 7. 1. Classification of asphaltene based on sizes of the aggregates 

i (Group) 1 2 3 4 5 6 7 8 9 10 11 12 

Size (µm) 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.28 2.56 5.12 10.24 20.48=< 

Using the Smoluchowski[14] equation and considering the generation and consumption of 

asphaltene particle size, the rate of change in concentration of each asphaltene aggregate 

size can be modelled as: 

For i = 1; 2( ) ( )i i
p eq i p eq

C CC
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t t C
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                                  (7.23) 

For i=1, the term of particle generation due to smaller asphaltene aggregates is zero. 

For i=2:11; 2 2
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For i=12; 2
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                                             (7.25) 

In contrary to particle size i=1, the term KC2   is zero for i=12 since there is no larger 

asphaltene aggregate than the aggregates in the aggregate group with i=12 in our 

classification. 

And for C in the Eq. (7.9), we have;  
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It should be noted that it was assumed that asphaltene particles just aggregate in a step-by-

step process. It means that the aggregates with size number i further flocculate to reach the 

aggregate size i+1 or may break and become the aggregate with size i-1.   

The asphaltene nano-aggregates are stable and soluble in crude oil at reservoir conditions. 

However, as shown in Figure 7.2, when the crude oil moves up from the reservoir to the 

well head along the wellbore, the pressure, temperature, and viscosity of the oil change. 

Due to alterations in these conditions, the asphaltene nano-aggregates which are dissolved 

in the solution, become unstable and separate out of the crude oil.  

 

Figure 7. 2. Schematic of precipitation, aggregation, and deposition of asphaltene during 

the production from the reservoir to well head. 

This step of generation of primary aggregates is called asphaltene precipitation (Group 1). 

Then, some of the precipitated asphaltene particles are moved along the well bore with the 

oil flow and some of them might be deposited onto the surface. These primary asphaltene 

aggregates can also interact with each other and form larger particles through the 

aggregation process (Group 2-11). Again, some of these secondary asphaltene aggregates 
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may deposit and some of them continue aggregation process and make bigger aggregates 

(Group 12) which are carried along with the oil flow and cannot deposit onto the walls.  

7.2.8 Change in Pressure and Fluid Velocity along the Flow 

As the fluid flows along the tubing, its pressure changes resulting from friction, gravity and 

also velocity variation. In this study, the Darcy-Weisbach [31] equation was utilized to 

predict the pressure loss during flow in the pipeline as expressed below:  
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where the friction factors in the pressure loss due to friction in both laminar and turbulent 

flow can be calculated as:   

For laminar flow                           
Re

16
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For turbulent flow 
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where   is the relative roughness. The velocity distribution of the fluid flow inside the 

pipeline for laminar flow can be related the pressure difference across the pipe and with 

incorporating the Poiseuille equation inside the tube, the following equation can be 

obtained [32]: 
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where wr  is the capillary/wellbore radius, which will be reduced after asphaltene 

deposition. For turbulent flow, the modified law of the wall can efficiently predict the 

radial velocity profile [33] and can be expressed as follows: 
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where zV  and w  refer to dimensionless velocity and shear stress at the wall, respectively, 

and calculated by:  
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where r  is the dimensionless distance and is given by: 

w wr r
r

v





 
                                                                           (7.34) 

where v is the kinematic viscosity. The most important basic processes occurring in an 

asphaltene deposition simulation for a defined well were schematically illustrated in Figure 

7.3.  
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Figure 7. 3. Typical simulation loop; each step begins with thermodynamic calculation 

part, continues with mass and heat transfer calculations, geometry section, data recording 

and ends with time update 

It should be noted that Figure 7.3 gives a simplified picture as in practice many more 

detailed processes came into play. The simulation loop was sustained by a combination of 

three main parts, i.e., thermodynamic packages, dynamic packages, and data analysis as 

expounded in Figure 7.1. In addition, as can be seen from Figure 7.3, the geometry of the 

flow area changes once the amount of asphaltene deposition changes with time. This will, 

in turn, change fluid flow dynamics in the wellbore, causing change in the amount of 

precipitated asphaltene along the wellbore during the production time. The numerical 

method for solving Equations 7.11 and 7.17 was provided in the Appendix 2.  
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7.3 Results and Discussion  

7.3.1 Example of an Asphaltene deposition Simulation 

The following parameters set and used to model the asphaltene deposition in a well 

column. The sample well data and all other parameters required for modelling were listed 

in Table 7.2. 

Table 7. 2. Parameters used in the modeling of asphaltene deposition. 

Parameter Value 

Well Depth 4572 m 

Production String Diameter 3.492 cm 

Earth Temperature Gradient 0.0271 K/m 

resP  35.594 MPa 

WHP  10.466 MPa 

resT  427.594 K 

WHT  307.95 K 

ch  50 W/m2.K 

T  9.8 × 10-7 m2/s 

df  1.81 × 102 

  0.68 

0k  3.14 × 10-2 s-1 

p
  8.19 × 102 cm3/gr 

dk  6.18 × 10-4 s-1 



-156- 

 

Asphaltene content of the deposits 45% 

 

As mentioned before in the structure of the new asphaltene deposition model, the 

thermodynamic characterization of the crude oil was one of the very first steps in order to 

achieve an accurate and reliable thermodynamic model at various temperature and 

pressure. The results of the thermodynamic model were used then as input data for the 

asphaltene deposition model developed in this study. The crude oil composition was 

obtained from elsewhere[21]. The crude oil thermodynamic properties such as saturation 

pressure and asphaltene onset pressures for various temperatures and the dead oil SARA 

analysis data were obtained from Panuganti, et al.[21]. A detailed explanation of the 

characterization procedure and the PC-SAFT parameters used in this work are available in 

the literature (Ting et al. and Gonzalez et al.[34], [35]). The oil density was reported to be 

about 36-40oAPI. The oil characterization was conducted to match the given density range, 

and the PC-SAFT prediction result was 38oAPI. The effect of temperature on the saturation 

pressure of the crude oil is shown in Figure 7.4.  

 

Figure 7. 4. Asphaltene phase behaviour at different pressure and temperature for the crude 

oil investigated in this study 
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The black solid diamond data points in Figure 7.4 are the experimentally determined 

bubble points pressure data from Panuganti, et al.[21]. The black dash dot line in Figure 

7.4 is the PC-SAFT prediction of the bubble pressure for various temperatures, and as can 

be observed the PC-SAFT predictions match very well with the experimental 

measurements. The triangle data points with represent the experimentally determined 

asphaltene upper onset pressure for different temperatures. The black solid line represents 

the PC-SAFT predictions. It should be noted that the PC-SAFT predictions match the 

experimental data very well when the reported onset values compared to the simulation 

results. The wellbore operating conditions are shown from reservoir to the wellhead by the 

long dash line. The black round dot line represents the PC-SAFT prediction of the lower 

asphaltene precipitation onset pressure curve. The region between the upper asphaltene 

onset pressure and the lower onset pressure curves makes the asphaltene precipitation 

region. The crude oil is stable in terms of asphaltene precipitation above this region. As the 

crude oil flows upward along the wellbore, the pressure and temperature decreased, as 

observed from long dash line, and the crude oil goes into the asphaltene precipitation 

region, where the asphaltene particles start coming out of the solution (Point A). This 

phenomenon continuously takes place until the bubble line, after which the light 

components of the crude oil begin separating out of the solution. Because of the removal of 

these light components from the crude oil, which are themselves appropriate precipitating 

agents for asphaltene particles, the crude oil becomes a more suitable solvent for 

asphaltenes, and therefore the asphaltene particles again become stable in crude oil below 

the lower asphaltene onset pressure curve. The obtained pressure and temperature data 

were matched to the well bore depth, and this information was utilized to determine the 

thermodynamic stability of asphaltenes in crude oil along the well bore depth. This was a 

significant input data for the modelling of asphaltene deposition.  

Temperature and pressure information is crucial for modelling and is fundamentally related 

to asphaltene deposition, forward predictions, and reservoir and borehole stability analysis. 

Figure 7.5 shows temperature and pressure profiles along the well bore. Temperature and 

pressure effects were basically identified as a major cause of changes in asphaltene 

precipitation and deposition. Figure 7.5 presents a typical temperature profile for the 
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borehole wall which is different from the formation temperature. This difference depends 

on the heat transfer properties of casing material in presence of asphaltene deposition. A 

pressure-depth profile in a well drilled in a field under production is also presented in 

Figure 7.5.  

 

Figure 7. 5. Well temperature and pressure profiles along the true vertical depth in two 

asphaltene stable and asphaltene unstable regions. 

The pressures in and out of asphaltene stability zone, have been affected by vertical flow 

through the reservoir and also asphaltene precipitation and deposition. The measured 

gradients reflect the pressure drop created by the vertical flow.  

Higher asphaltene content in crude oil causes additional problems related to oil 

transportation and processing because of an increase in oil viscosity due to the presence of 

more asphaltenes. Our modelling results on oil viscosity and true vertical depth in well 

bore affecting the crude oil viscosity are plotted in Figure 7.6. 

The viscosity of the crude oil increases due to the presence of precipitated asphaltene 

aggregates. This increase became significant at and after the asphaltene flocculation onset 
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and therefore could be utilized to determine the asphaltene precipitation onset points. Oil 

compositional grading due to asphaltene precipitation along the well bore was an 

undeniable phenomenon and with asphaltene compositional changes, the crude oil 

viscosity varied considerably with true vertical depth.  

 

Figure 7. 6. Viscosity variation with the true vertical depth in two asphaltene stable and 

asphaltene unstable regions. 

The asphaltene deposition could be reliably predicted, characterized as a highly oil viscous 

zone with high asphaltene content, by using modelling study of the crude oil viscosity 

changes with depth because of asphaltene compositional grading.  

Utilizing appropriate kinetic parameters presented in Table 7.2 and also by employing the 

thermodynamic model explained in the previous sections, the asphaltene deposition model 

was developed. Figure 7.7 shows the variation of asphaltene deposition thickness in 

different true vertical depths (TVD) at various time periods. As seen from this figure, the 

time dependent deposition thickness increases over time in the studied well column.  After 

nine months, a larger segment of the well column will be exposed to the asphaltene 

deposition. Also, it can be observed that at the depth of nearly 1600 meters the asphaltene 



-160- 

 

in the system started depositing, where the pressure of the system fell below the upper 

asphaltene onset pressure, and the thickness reached a maximum amount at the depth of 

nearly 800 meters. The reduction in the distance between the graphs with respect to time, 

as given in Figure 7.7, indicate that the asphaltene deposition rate decreases over time.  

 

Figure 7. 7. Asphaltene deposit layer thickness distribution along the depth of the well bore 

for different production times. 

This could be plausibly justified by the fact that upon depositing more asphaltene on tubing 

wall at constant bottom hole and wellhead pressures, a reduction in the flow area and 

consequently a reduction in the flow rate (Equation 7.27) can happen which, in turn, can 

lead to a less asphaltene flow causing a decrease in the asphaltene deposition rate. In 

addition, change in the wellbore radius and flow rate of the fluid can change the pressure-

temperature conditions of the fluid altering the thermodynamic properties of the fluid along 

the wellbore. This effect can be clearly observed from Figure 7.8 which will be discussed.  

Figure 7.8 shows the amount of destabilized and suspended asphaltene particles in the bulk 

of flow throughout the well column at various time periods. As can be seen from this 

figure, the asphaltene particles dissolved in the oil phase could start getting destabilized at 

the depth of nearly 1600 meters. The concentration changes displayed two distinct 
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transitions (d1, d2) as a function of well depth for this system which was the result of 

variation in the amount of stable asphaltene at different P, T conditions following kinetic 

equations. This transition was observed during all production times at various depths with 

different slopes, but the initial concentration change (d0-d1) was more equally pronounced 

at all times which was reasonable according to the low amount of asphaltene deposition 

near upper onset line.  

 

Figure 7. 8. Asphaltene concentration change along the depth of the well bore for different 

production times. 

After the depth of around 1400(d1), at the outset, the destabilization of asphaltene was fast 

and steep which was due to fast change in temperature and pressure of the flow. It is worth 

noting that the results given in Figure 7.8 were consistent with those reported as Figure 7.4 

for the temperature and pressure profiles of the vertical flow from the reservoir to the 

wellhead.  Starting from depth around 800(d2) meters, the trend of destabilized asphaltene 

slowed down which showed a possible increase in the deposition of asphaltene already 

destabilized but suspended in the bulk of flow. Additionally, more deposition could result 

in less difference in concentration from equilibrium state could also explain the lower 

destabilization rate. The situation was exacerbated over the production life and it showed 
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that the system was more susceptible to asphaltene deposition at the wellhead and near the 

wellhead region. Also, decrease in the amount of the precipitated asphaltene over time 

could be explained by the change in the pressure-temperature conditions of the wellbore 

reducing the asphaltene phase fraction at equilibrium state. What’s more, the previously 

discussed reduction in the asphaltene deposition rate can be explained by the reduction in 

the precipitated asphaltene amount after 9 months reducing the deposition rate according to 

Equation 7.15. 

Figures 7.9 and 7.10 show the weight percent of destabilized and suspended asphaltene 

particles precipitated out of the bulk of flow in each group with different particle size as 

described in Table 7.1 at the initial flow rate and after nine months of production 

respectively.  

 

Figure 7. 9. Asphaltene particles size classification along the depth of the well bore at the 

initial flow of the production. 
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As it can be seen from Figures 7.9a and 7.10a, the percentage of nano-aggregates (Group 

1) decreases along the well column. In fact, these particles significantly tended to get 

aggregated and formed larger aggregates. Some of the nano-aggregates can also deposit on 

the well column wall. Larger aggregates started increasing at the depth of nearly 1600 

meters and reached a plateau at approximately 800 meters depth of the well column (see 

particle size distribution at this depth at Figure 7.9c and 7.10c).  In particular, it was 

possible to recognize three main regimes for Groups 2-11 along the wellbore, i.e., an initial 

rapid increase of mass percent followed by a slow decrease which eventually evolved into 

a final plateau. Largest aggregates, formed as Group 12, could not deposit on the well 

column wall while smaller aggregates had higher potential to get deposited on the 

production tubing wall. In general, the same trend, as observed in the initial flow rate, can 

be seen after 9 months of production. However, it should be mentioned that, as expected, 

after nine months, the aggregate sizes decreased along the well column. It is also worth 

noting that the minimum amount of Group1 along the wellbore after 9 months is 

substantially higher than that for the initial time, whereas, for the Group12, graphs showed 

the opposite pattern.  
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Figure 7. 10. Asphaltene particles size classification along the depth of the well bore after 9 

months of production. 

The possible reason for this behaviour is that owing to lower precipitated asphaltene 

concentration after 9 months (Figure 7.8), the asphaltene aggregation rate reduces 

according to Equation 7.6, which will keep the fraction of Group 1 at higher state and that 

of Group 12 at lower one. 

Figure 7.11 shows the variation and distribution of asphaltene particles with different sizes 

along the well column at various time periods in depositing (Group 1-11) and overall 

(Group 1-12) forms. As seen, more deposition could occur with the asphaltene particles 

with smaller sizes. This can be justified by the fact that the smaller aggregates have larger 

diffusion coefficients and, therefore, move towards the pipeline wall more quickly and 

could get deposited on the surface. 
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Figure 7. 11. Average asphaltene particles size distribution along the depth of the well bore 

for different production times. 

It can be observed that the graphs for depositing particles reached a plateau after an initial 

increase, indicating the equality between precipitation and consumption of these particles 

both at deposition and forming Group12. Here, the beginning of the plateau depth was 

reasonably the same as those reported in Figures 7.9 and 7.10. Since average particle size 

depends on both number of particles and particles size, these results indicated that Group 

12 had a major role in increasing overall particle size above the depth of 1200 (Figures 

7.9b-d and 7.10b-d). Finally, it can be seen that the average size at the initial time was 

higher compared to that after 9 months. These results highlight the previously deduced 

effect of the aggregation rate change corresponding to the amount of precipitated 

asphaltenes. 

7.3.2 Capillary Tube Experiments 

The developed model for the prediction of asphaltene deposition rate on a steel surface was 

validated with the experimental data reported in the literature[36], [37]. The asphaltene 

deposition test, performed at the New Mexico Institute of Mining and Technology, was 
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used to assess the prediction capability of the new model. All the parameters including the 

saturates, aromatics, resins and asphaltene data, crude oil density, diameter, length of the 

capillary tube and the flow rate of crude oil and pentadecane solution were reported [36], 

[37]. The asphaltene deposition profile along the capillary length of the pipe was obtained 

and presented as Figure 7.12a. The deposition flux profile revealed that the amount of 

asphaltene deposition was maximum at the beginning of the capillary tube as a result of the 

maximum concentration driving force at these areas. The asphaltene deposition was 

reduced along the axial length of the capillary tube as the amount of asphaltene aggregates 

in the flowing crude oil/precipitant solution decreased. The comparison of the results from 

the developed model with the experimental data found in the experiments of Wang and 

Buckly[36] and Kurup et al.[37] is shown in Figure 7.12a.  

 

Figure 7. 12. The comparison of the results obtained from the model with the asphaltene 

deposition experimental data in a capillary tube for a) Test#1 and b) Test#2. 

It should be stated that the kinetic parameters were determined by matching the data for the 

peak of the asphaltene deposition flux obtained by simulations with the experimental data. 

In this set of experiments, the temperature of the system was kept constant and the pressure 

change was not noticeable along the axial length of the tube. As can be seen, the results 

obtained from the new model were thoroughly consistent with the experimental results. 

Another capillary tube deposition experiment was conducted with different operating 

conditions using the same crude oil/pentadecane solution as explained for the previous test. 
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The aim of the second test was to investigate the effect of a change in operating conditions 

on the asphaltene deposition flux in the capillary test tube. The tube used in this set of 

experiments had a larger diameter, and the experiment was performed at a higher flow rate 

of the oil/precipitant solution. The asphaltene deposition flux profile along the capillary 

length of the pipe was presented in Figure 7.12b (solid black data points). It can be 

observed that for larger diameter capillary tube and higher flow rate, a relatively higher 

magnitude of asphaltene deposition can be seen as compared to the deposition flux in a 

thinner tube and at lower flow rates (Figure 7.12a). A larger diameter tube and higher flow 

rate resulted in a higher amount of asphaltene mass flux into the pipe, allowing more 

asphaltene particles to be unstable and precipitated out of the solution and ready to be 

deposited onto the pipe surface, and therefore made an increase in the asphaltene 

deposition accordingly. The results of the new model were compared with this set of 

experimental data. Since the same oil/precipitant solution was used in the second set and 

the temperature and the other conditions were all remained constant, hence, the same 

kinetic parameters were used for the asphaltene prediction as explained in the case of the 

first comparison. Once again, it can be seen from this comparison that the new model can 

accurately predict the experimental data.  

7.4 Conclusions 

A new dynamic and two-dimensional particle scale model was developed in this work to 

simulate the asphaltene deposition in a synthetic oil well. The model could explain the 

effect of asphaltene particle size in the aggregation and deposition of asphaltene on the 

well tubing wall. It was shown that the asphaltene aggregates tended to interact with each 

other due to the Brownian motion and formed larger particles and, therefore, this fact was 

taken into account in the asphaltene deposition model by considering the variation of 

asphaltene particle size during the oil flow along the flowline. It was also concluded that 

smaller aggregates had higher tendency to deposit on the tubing wall due to the large radial 

diffusivity of the particles. The results showed that the amount of asphaltene deposition 

along with the rate of asphaltene deposition strongly depended on the production time and 

it was concluded that both the amount and the rate of asphaltene deposition reduced over 

time. The results obtained from the new model were compared with those reported in the 
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literature and good agreement between the results was observed. In the modeling of the 

crude oil phase behavior, an accurate and reliable equation of state was employed in order 

to characterize the phase behavior of oil/asphaltene/gas systems. It should be stated that all 

thermodynamic parameters, used in the model, were directly emanated from the published 

literature. The capability in predicting the experimental results associated with the 

numerical features including the computation time could be considered as the clearest 

advantages of the new model developed in this work. 
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Chapter 8-Effect of Different Gas Injection Scenarios on Asphaltene Precipitation 

and Deposition Using Quartz Crystal Microbalance 

 

8.1 Introduction  

Asphaltene precipitation and deposition is a common issue with which operators are faced 

in oilfields worldwide while miscible gas is injected to reservoirs for enhanced oil recovery 

(EOR) purposes. Gas injection is an effective tool for EOR and can increase oil recovery in 

many cases due to a reduction in oil viscosity or pushing the oil towards the well, whether 

it is miscible or not. Two of the most effective agents in this type of EOR technique are 

carbon dioxide and natural gas which are observed to increase oil production although CO2 

or natural gas injection into an oil reservoir usually alters the flow behaviour and the fluids 

equilibrium properties which can result asphaltene precipitation and deposition [1-4]. N2 

has also been used for gas injection in deep, high pressure light oil reservoirs since it can 

function as an inert and non-corrosive gas. N2 gas flooding can achieve miscible conditions 

for such reservoirs. The applications of immiscible N2 gas injection can be mentioned as 

reservoir pressure preservation, cycling of condensate reservoirs and as a drive gas for 

immiscible slugs [5-8]. As the composition of reservoir fluid is changed due to gas 

injection process, the asphaltene nanoaggregates might precipitate out of the crude oil and 

deposition occurrs onto solid surfaces [3-7]. Asphaltene deposition can plug the formation, 

wellbores, and production facilities, isolate oil from the flowing section of the reservoir, 

significantly alter the wettability properties of the reservoir, and therefore may cause a 

reduction in the efficiency of the EOR processes. Therefore, a comprehensive investigation 

on asphaltenes should be conducted as a section of gas-injection studies. Researchers often 

use n-C7 at ambient conditions for laboratory tests, whilst asphaltene precipitation happens 

in the field as a result of changes in pressure, temperature and composition. One of the key 

parameters for identifying asphaltene precipitating process is the asphaltene onset pressure 

(AOP). A common and widespread approach which has been utilised in the literature for 

determination of AOP is solid detection system (SDS) based on near-infrared (NIR) light-

scattering method [9-13]. The ordinary procedures for detecting AOP are commonly 
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performed by using a mixture of reservoir fluid sample and injection gas, and different gas-

combination volumes are usually examined [1, 2, 14]. The advantage of employing 

different experimental parameters of gas-combination volume is better understanding of 

asphaltene risks in a gas injection process. This kind of study however can demonstrate 

only a static asphaltene behaviour for a specific type of gas, and it may cause incorrect 

evaluation of asphaltene risks. Limited experimental data can be found in literature, 

focusing on the potential influence of gas flooding on asphaltene induced flow assurance 

problems. 

One of the main objectives of this study is to provide novel insights into the effect of 

different gases on asphaltene instability in crude oil under real conditions. This report 

presents a novel technique, high pressure high temperature quartz crystal microbalance 

(HPHT-QCM), for determination of asphaltene onset pressure and asphaltene deposition 

rate in presence of various gases. The effect of four widely used injection gases for EOR 

purposes; nitrogen (N2), carbon dioxide (CO2), methane (CH4) and natural gas on 

asphaltenes were investigated using HPHT-QCM. The effects of two different mixtures of 

gases which are named Mix.A and flue gas on asphaltene precipitation and deposition rate 

have also been investigated in order to determine the influence of gas impurities on 

asphaltene phase behaviour.  

8.2 Experimental Sections 

8.2.1 Materials 

The crude oil under this study was a light separated oil with an API° 33.7. Table 8.1 shows 

its chemical compositions and PVT properties at both atmospheric and reservoir 

conditions.   

Table 8. 1. Oil Composition at atmospheric and reservoir conditions and respective 

Thermodynamic Data* 

Component 
Atmospheric 

Liquid 

Reservoir 

Fluid 

(Symbol) (Mole %) (Mole %) 
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N2 0.000 0.707 

CO2 0.000 0.349 

H2S 0.000 0.000 

C1 0.085 48.920 

C2 0.172 5.376 

C3 0.830 5.348 

i-C4 0.433 1.097 

n-C4 1.753 2.828 

i-C5 1.418 1.172 

n-C5 2.757 1.672 

i-C6 2.591 1.149 

n-C6 2.637 1.059 

Mc-C5 1.317 0.515 

Benzene 0.220 0.076 

c-C6 0.845 0.314 

C7 5.202 1.876 

Mc-C6 1.782 0.634 

Toluene 0.733 0.254 

i-C8 0.097 0.044 

C8 6.499 2.259 

Ethyl Benzene 0.546 0.189 

m&p-Xylene 0.792 0.274 

o-Xylene 0.944 0.325 

C9 5.241 1.811 

C10 7.170 2.474 

C11 5.501 1.896 

C12 4.481 1.544 

C13 4.271 1.472 

C14 3.717 1.281 

C15 3.305 1.139 
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C16 2.849 0.982 

C17 2.442 0.842 

C18 2.334 0.804 

C19 2.148 0.740 

C20 1.895 0.653 

C21 1.597 0.550 

C22 1.398 0.482 

C23 1.306 0.450 

C24 1.198 0.413 

C25 1.077 0.371 

C26 0.948 0.327 

C27 0.918 0.316 

C28 0.878 0.303 

C29 0.824 0.284 

C30+ 12.849 4.428 

 

* API Gravity: 33.7°API @ 60°F (Water Free), Vapor Gravity: 0.817 (Air = 1.00), MW: 228.92 

g.mol-1, wt% of C7+ fractions content: 80.486, wt% of C10+ fractions content: 70.646, wt% 

of C20+ fractions content: 45.120, wt% of C30+ fractions content: 30.688.  

In this work, dead crude oil was mixed with different gases, N2, CO2 and CH4, Mix. A, 

natural and flue gases to investigate the effect of these gases on asphaltene instability in 

crude oil. The composition of Mix. A, natural and flue gas are shown in Tables 8.2, 8.3 and 

8.4, respectively.  

Table 8. 2. Injected Mix. A gas composition 

Component Mole% 

N2 20.05 

C1 41.30 

CO2 38.65 
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Table 8. 3.  Injected natural gas composition 

Component Mole% 

N2 1.84 

C1 89.94 

CO2 0.91 

C2 5.32 

C3 1.45 

iC4 0.20 

nC4 0.21 

iC5 0.07 

(nC5) + C6
+ 0.06 

 

Table 8. 4. Injected flue gas composition 

Component Mole% 

N2 84.51 

CO2 15.49 

 

8.2.2 High Pressure-High Temperature Quartz Crystal Microbalance (HPHT-

QCM) 

One of our main goals for this study was the design and development of a HPHT-QCM 

system for investigation of asphaltene instability in crude oil in presence of various gases. 

The system is required to work under different ranges of reservoir pressure and 

temperatures and also crude oil composition. Figure 8.1 presents both the picture and 

schematic diagram of the HPHT-QCM system. It consists of the high-pressure cells, water 

jacket, temperature controlled circulator, a magnetic mixer system as an agitator, quizix 

pump, high-pressure vessels, valves and lines, pressure and temperature sensors, and 

different gauges and indicators. The maximum working pressure of this set up is 6000 psi, 

and the system can be heated up to 150 °C. The mixing cell had a volume of 120 mL. The 

HPHT-QCM system has the capability to conduct tests under wide ranges of pressure, 

temperature, and composition. The principal of the measurement is to monitor changes in 

the Resonant Frequency (RF), and electrical properties at RF, for a QCM submersed in the 

test fluid (as a result of variations in the mass of the QCM or changes in the viscosity and 

density of the fluids brought about by changes in temperature and/or pressure). In this 
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work, the capability of the QCM has been tested for monitoring asphaltene onset pressure 

(AOP) changes in real fluids in presence of different gases. Before the measurement, first 

the crude oil was heated for 2hrs at 60 oC and then vigorously shaken to dissolve any solid 

materials such as wax and asphaltenes in the oil and maintain them in liquid phase. Then 

70 mL of crude oil was inserted into the high-pressure mixing cell and QCM immersed 

inside the oil. The solution was mixed at constant rate of 500 rpm during all gas injection 

processes. Temperature was set at 60 °C for conducting the experiments. Gas was then 

injected to give a starting pressure at which the system was stable with no asphaltene 

deposition occurring.  The pressure was then increased step-wise. Each step was 10 psi for 

9 mins. During the injection process, the resonance frequency was measured through the 

reservoir fluid every 15 sec. 
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Figure 8. 1. Picture and schematic diagram of HPHT-QCM set up 

8.3 Results and Discussion 

The QCM resonant frequency (RF) was monitored during the gas injection process to 

detect the asphaltene onset pressure. The RF is inversely proportional to the mass of QCM 

crystal surface. The RF is very sensitive to mass change meaning that levels down to 

hundreds of nanograms of asphaltene can be Hz. The initial asphaltene test was conducted 

on at 60 oC with continuous natural gas injection. The obtained result for onset pressure 

(AOP) is presented in Figure 8.2 which shows ΔRF (HZ) versus pressure.  
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Figure 8. 2. Results of the HPHT-QCM method for the crude oil mixed with natural gas at 

60 oC 

Based on the data presented in Figure 8.2, the asphaltene onset pressure was detected 

~1780 psia due to injection of natural gas at 60 oC and 500 rpm mixing for 24 h. The 

experimental data obtained by the HPHT-QCM technique are quite repeatable. Figure 8.3 

shows three different data sets obtained by the QCM for the crude oil used in this study 

mixed with natural gas for 24 h. Figure 8.3 shows that both the trend of data and the 

detection of asphaltene onset pressure are similar in the three tests. For all of the 

experimental data obtained in this study, each single experiment has been repeated at least 

2 times.  
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Figure 8. 3. Results of 3 repetitions for the crude oil mixed with natural gas at 60 oC 

The AOP is dependent upon the type of injected gas which is mixed with crude oil inside 

the QCM cell. The AOP are much lower for the crude oil with injected CO2 compared to 

other injected gases. The effects of added gases on reducing asphaltene stability in the 

crude oil used in this work are found in the following order: CO2 > Natural gas > CH4 > 

Mix. A > N2 & Flue gas. The effect of gas type on the AOP shifting for four injected 

fluids, CO2, CH4, Mix. A and Natural gas is presented in Figure 8.4.  
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Figure 8. 4. The effect of injected gas type on asphaltene onset pressure obtained by 

HPHT-QCM technique 

In all cases, a new sample from the same crude oil was used. The small variation in the 

temperature of the system did not have any strong effect on the obtained results. The 

AOPs/GOR were detected by HPHT-QCM at around 1040 psia/17.9 mol%, 1651 psia/26.1 

mol%, 2082 psia/32.2 mol%, and 2360 psia/34.9 mol% for the injected CO2, natural gas, 

CH4, and Mix. A gases, respectively. For the other two injected gases N2 and flue gas, no 

asphaltene precipitation was observed up to 6000 psia at the same temperature and 

agitating conditions. The results of these tests and experimental conditions are shown in 

Table 8.5. 

Table 8. 5. Experimental conditions and asphaltene phase behaviour for different gas 

injection scenarios 

Gas type Step 
Pressure 

(psia) 

Temperature 

(oC) 

Mixing time 

@ 500 rpm (h) 
Phase(s)* 

Asphaltene 

behaviour status 

Natural Gas       

 1 1120 60 24 L+G no precipitation 

 25 1360 60 24 L+G no precipitation 

 43 1540 60 24 L+G no precipitation 

 67 1780 60 24 L+G+S precipitation 
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 79 1900 60 24 L+G+S deposition 

 109 2200 60 24 L+G+S deposition 

CO2       

 1 520 60 24 L+G no precipitation 

 25 760 60 24 L+G no precipitation 

 41 920 60 24 L+G no precipitation 

 53 1040 60 24 L+G+S precipitation 

 61 1120 60 24 L+G+S deposition 

 69 1200 60 24 L+G+S deposition 

Mix. A       

 1 1140 60 24 L+G no precipitation 

 67 1800 60 24 L+G no precipitation 

 123 2360 60 24 L+G+S precipitation 

 145 2580 60 24 L+G+S deposition 

 149 2620 60 24 L+G+S deposition 

 155 2680 60 24 L+G+S deposition 

N2       

 1 1200 60 72 L+G no precipitation 

 75 1940 60 72 L+G no precipitation 

 117 2360 60 72 L+G no precipitation 

 249 3680 60 72 L+G no precipitation 

 365 4860 60 72 L+G no precipitation 

 455 5740 60 72 L+G no precipitation 

CH4       

 1 1080 60 24 L+G no precipitation 

 15 1220 60 24 L+G no precipitation 

 57 1640 60 24 L+G no precipitation 

 79 1860 60 24 L+G no precipitation 

 103 2100 60 24 L+G+S precipitation 

 141 2480 60 24 L+G+S deposition 

Flue Gas       

 1 1200 60 72 L+G no precipitation 

 69 1880 60 72 L+G no precipitation 

 127 2460 60 72 L+G no precipitation 

 253 3720 60 72 L+G no precipitation 
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 379 4980 60 72 L+G no precipitation 

 455 5740 60 72 L+G no precipitation 

* L: liquid, G: gas, S: solid (asphaltene aggregates) 

All data sets obtained from HPHT-QCM indicate an increase in the amount of the 

asphaltene deposits adhering onto the QCM surface with increasing pressure. Additionally, 

at higher pressures, the tendency toward asphaltene precipitation phenomena is stronger 

than at lower pressures. The gas influence on the asphaltene precipitation can be explained 

in terms of the solubility behaviour and the associated polarizability. For non-polar 

components mixtures, the mixture solubility parameter is a function of density and the 

electronic polarizabilities of the mixture components. If a high amount of low-molecular 

weight species is dissolved into the oil phase, the solubility parameter is reduced and 

asphaltene precipitation might occur. The presence of components in crude oil with lower 

polarizabilities reduces the oil’s solubility parameter and increases the probability of 

asphaltene precipitation. Natural gas, CH4, CO2 and Mix. A show low polarizability values 

that make them strong asphaltene precipitants for the crude oil. Participation of 

components which are high in polarizability keeps asphaltenes stable in the solution. As an 

example, toluene, benzene, xylene and high molecular weight aromatic molecules are well-

known asphaltene solvents with high polarizability. Composition variations due to gas 

injection which increase density might increase asphaltene solubility, and composition 

changes due to pressure depletion that reduce the density might have the opposite influence 

on asphaltene stability in solution. Because both density and component polarizability 

influence the solubility parameter of the solution, contradictory effects could be seen. 

The results regarding RF reduction versus time for six tests with various injected gases are 

plotted in Figure 8.5 which represents the effect of gas type on deposition rate after the 

AOP.  
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Figure 8. 5. Plot showing changes in RF vs. time represents asphaltene deposition rate 

affected by different injected gas types. 

The results indicate that all gases, except N2 and flue gas, increase the asphaltene 

deposition rate after exceeding the AOP. This phenomenon is attributed to the change in 

the adsorption behaviour of the asphaltene aggregates onto the QCM gold surface, from 

different gas molecular structure which can interrupt the asphaltene’s functional groups-

gold surface interactions. As can be seen, there is a significant difference in the plotted 

curves between the crude oil with CO2 gas injection and the same oil mixing with Mix. A. 

Mix. A which contains 28.65 mole% CO2 has a significant performance in reducing the 

deposition rate from -1424 Hz/hr to -177 Hz/hr compared to the pure CO2 injection. The 

effects of injected gas type on increasing asphaltene deposition rate onto the QCM surface 

after AOP for the crude oil utilised in this research study are found in the following order: 

CO2 (-1424.6 HZ/hr) > Natural gas (-609.2 HZ/hr) > CH4 (-351.9 HZ/hr) > Mix. A (-177.1 

HZ/hr) > N2 & Flue gas which is the same order as for asphaltene instability in crude oil.  

These tests were carried out using HPHT-QCM technology in the absence of a porous 

medium (real reservoir core plug) with no fluid flow. However, heavy asphaltene 

deposition is occurs in the well tubings of reservoirs during both natural pressure depletion 

and different EOR gas injection operations. These facts show extremely high importance of 

the asphaltene precipitation of during the oil flow in the reservoir or in the well’s tubing 
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and the respective streaming potential and their interactions with the surface-active sites of 

the asphaltene aggregates. A careful study of this should be conducted in the future in order 

to quantify the effect of various fluid flow conditions and the characteristics of asphaltene 

precipitation, aggregation and deposition phenomena for different gas injection scenarios 

in core plugs. 

8.4 Conclusions 

In this paper, a novel experimental technique called HPHT-QCM technique has been 

proposed to detect asphaltene onset pressure for real oil samples in presence of gas and 

monitor the effect of different gas injection scenarios on asphaltene precipitation and 

deposition phenomena. The injection of Natural gas, CH4, Mix. A and CO2 promotes 

asphaltene precipitation and deposition in live oil fluids. The effects of injected gases on 

increasing both asphaltene precipitation and deposition rate in the crude oil used in this 

study are found in the following order: CO2 > Natural gas > CH4 > Mix. A > N2 & Flue 

gas. The presence of light components with lower polarizabilities decreases the oil’s 

solubility parameter and increases the probability of asphaltene precipitation and 

deposition accordingly.  
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Chapter 9- Water versus Asphaltenes; Liquid–Liquid and Solid–Liquid Molecular 

Interactions Unravel the Mechanisms behind an Improved Oil Recovery 

Methodology 

 

9.1 Introduction 

Understanding of possible molecular interactions at liquid-liquid and solid-liquid interfaces 

can shed lights onto the nature’s design and authorise fine manipulation aptitude in 

biological, manufacturing, microfluidic and oil recovery applications. Of particular interest 

is the capability to control the aggregation of organic and biological macromolecules, 

which typically poses significant challenges for oil industry and human life, respectively.  

The liquid−liquid and solid−liquid interfaces play critical roles in many physical, chemical 

and biological processes, from phase transfer catalysis to liquid chromatography, 

lubrication, colloidal stabilisation , liquid-liquid extraction to pharmaceutical drug delivery, 

remediation of environmental contamination and enhanced oil recovery (EOR)[1]–[6]. 

Particularly, the water-oil and oil-solid interfaces are becoming increasingly illustrated 

within the scientific community.  

Growth in oil and energy demand and aging reservoirs are few sakes why companies have 

been looking at various techniques to increase oil recovery rates which are referred to 

enhanced oil recovery methods including gas injection, water flooding, and water 

alternating gas (WAG) injection scenarios[7], [8]. It was explored that the oil production 

efficiency could also be increased by decreasing the salinity of the flooded water, i.e. 

without using costly and possibly detrimental chemistries, which is named low salinity 

water flooding (LSWF)[9]–[12]. Still, the microscopic drivers of the oil recovery 

enhancement owing to LSWF are under intense debate. Competitive wetting of oil and 

water on solid surfaces and respective wettability transitions are advocated as keys to 

increase recovery during water injection process. A solid is often referred to as thoroughly 

water-wet (hydrophilic), oil-wet (lipophilic), or mixed wet. A number of researchers have 

also investigated crude oil−water interfacial rheology regarding the stability of water-in-oil 

(W/O) microemulsions as one of the mechanisms of water flooding induced recovery 
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increment[13], [14]. These researchers inferred that the elasticity of the liquid−liquid 

interface to stability of microemulsions is owing to formation of interfacial thin layers from 

surface active species in the oil respect to the ion concentrations in the aqueous phase.  

These surface-active polar species, which play important roles in wettability alterations and 

formation of W/O microemulsions, are asphaltenes in crude oil. During water/gas injection 

scenarios, asphaltene may accumulate at the liquid−liquid and solid−liquid interfaces and 

form microemulsions (due to interfacial tension reduction) and alter the wettability of solid 

surfaces, respectively. Yet, the mechanisms of these two phenomena through asphaltene 

polar compounds is not completely understood because of the complexity of asphaltenes 

molecular structures and their behaviour under realistic conditions.  

Polycyclic aromatic hydrocarbons (PAHs), which are organic compounds constructed by 

carbon aromatic rings and hydrogen, are ubiquitous in society[15]. PAHs are regularly 

utilised in a wide range of scientific and technological fields such as fundamental 

chemistry, the chemical and petrochemical industry, amidst a multitude of others[16]–[18]. 

Asphaltenes are PAHs which have mighty sheet-like structures of interlocked heterocyclic 

aromatic rings and contain both polar and nonpolar species. Additionally, they constituted 

by 11 ± 4% heteroatoms like O atoms (exist in carboxylic acid, hydroxyl, carbonyl groups, 

phenol, etc.), S atoms (in sulfoxide, thiophene), and N atoms (in pyrrole, pyridine) along 

with trace amount of coordinated heavy metals such as V, Ni, Fe. The surface active 

functional groups like carboxylic acids (−COOH) in asphaltenes are well-known to be 

adsorbed at the oil−water and oil−solid interfaces and can construct organized thin film 

sections[19]–[21]. Asphaltenes tend to precipitate out of the solution (2-10 nm), aggregate 

(>10 nm), and deposit onto the solid surfaces during the production/transportation of crude 

oil owing to the alterations in equilibrium conditions, e.g., composition, temperature, and 

pressure. Crude oil is co-produced with water during the water flooding processes which 

contains dissolved salts of sodium, potassium, calcium, and magnesium, particularly in the 

case of LSWF. In this regard, systematic investigation of asphaltene-brine interactions is of 

interest to build fundamental understanding of the role of brine in asphaltene deposition. 

Such indispensable investigations are still in their infancy. In the past decade, a limited 

number of controversial research studies have been undertaken to understand the effect of 
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water emulsions on asphaltene precipitation and deposition. From a review of available 

literature[22]–[25], it appears that opinion differs significantly as to which experimental 

methods should be utilised to determine the asphaltene stability and deposition tendency, 

which conditions should be applied and how data should be interpreted. Several workers 

have claimed that the presence of emulsified water had no remarkable influence on the 

asphaltene precipitation[22], [25], while others concluded that water increases the 

solubility of the asphaltenes in the system and delays the asphaltene aggregation and 

deposition phenomena[23], [24]. All the aforementioned research studies have been 

conducted with the use of deionized water in the absence of any salts. They also used n-

alkanes as precipitants which could not emulate the real field conditions. This makes the 

outcome of the investigation not appropriately precise, since our own recent work proved 

that asphaltene molecular structure can be varied based on the operating conditions which 

is a key to asphaltene behaviour at liquid-liquid and solid-liquid interfaces[26]. There are 

no reports of the effect of brine with varying ionic strengths on asphaltene aggregation and 

deposition phenomena at elevated pressure and temperature systems. No authentic model 

material has been developed that can imitate asphaltene behaviour, and this commands the 

use of genuine samples in any scientific illustration. Herein, we utilised real oil sample and 

asphaltenes obtained from that parent sample during the experiments. Understanding the 

behaviour of asphaltenes at interfaces lies on the interactions between asphaltene 

nanoaggregates/brine in original crude oil. Therefore, it is vital to meticulously investigate 

these interactions under different salinity conditions which has remained a gap in the 

literature. The aim of the present work is to study the interactions between water and 

asphaltene molecules in presence of different ions using newly measured high-pressure 

high temperature quartz crystal microbalance (HPHT-QCM) data along with various 

analytical techniques with particular focus on low salinity water/gas injection for increment 

of oil production. This work documents an extensive set of HPHT-QCM experiments to 

inquire the impact of brine with variety of ionic strength on asphaltene aggregate size, 

deposition and micro scale wettability transition of QCM surface. Furthermore, our study 

sheds light on the mechanisms underpinning LSWF and elucidates how large a role water 

molecules act at fluid-solid interfaces.  
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9.2 Materials and Methods 

We utilised a petroleum fluid, that we call BR, and determined its asphaltene content as 

well as its molecular weight, density and viscosity. The QCM experiments were conducted 

using AT-cut (optimized for 90 °C) 5 MHz quartz crystal coated with gold purchased from 

Testbourne Ltd.  The diameter of the crystal is 25.4 mm, while the front electrode diameter 

is 12.7 mm, the crystal thickness is 333 µm, and the crystal surface roughness is 50 Å. The 

sensors were cleaned using anhydrous heptane and toluene (>99%) from Sigma-Aldrich 

(used as received) followed by rinsing with deionised water and blow-drying with nitrogen 

to remove all surface-active impurities. To be more realistic for mechanistic studies we 

precipitated asphaltenes by adding natural gas in our QCM test set-up. The utilised natural 

gas composition is as follows (Mole %): N2 (1.84%), C1 (89.94%), CO2 (0.91%), C2 

(5.32%), C3 (1.45%), iC4 (0.20%), nC4 (0.21%), iC5 (0.07%), (nC5) + C6
+ (0.06%). After 

the deposition test, the gas induced asphaltene deposit from the QCM surface was extracted 

and dried for characterisation. The detailed procedure has been presented in our previous 

articles[26], [27]. The asphaltene content of BR is determined by adding HPLC-grade 

anhydrous n-heptane (>99%, Sigma Aldrich) and define X (mL.g-1) as the n-heptane ratio, 

showing the volume of n-heptane added to 1gr of petroleum fluid. After mixing of 4gr 

crude oil with 160 mL n-heptane, X=40 mL.g-1, for 10min in a sonicator bath and allowed 

to be equilibrated for 24hr before separation of asphaltene fraction, the solution was 

filtered through a 0.2mm pore-size cellulose nitrate whatman filter followed by washing 

with excess n-heptane until shiny black asphaltenes were appeared. The filtrate is then 

collected, dried and weighed to give the n-heptane asphaltene content as presented in Table 

9.1. The density of the crude oil BR, ρo, is measured using a densitometer (Anton Paar). 

The density of the asphaltene, ρa, is determined by preparation of a solution of 0.05 g 

asphaltene in 20 mL toluene and measuring the density of the solution. The viscosity 

measurements are conducted using a stress controlled rotational-type rheometer (Anton 

Paar, Physica MCR 301) with the aid of 25mm diameter and 1° angle cone-plate geometry 

(Cones CP50-1). The water content results in ppm, are measured by a coulometer (Karl 

Fischer 331 coulometer). Deionized (DI) water was produced using an ELGA DV 25 

Integral Water Purification System. For all the brine phases, we utilised freshly DI water in 

which different combinations of the following salts were dissolved: NaCl, KCl, CaCl2, and 
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MgCl2, which were purchased from Sigma-Aldrich and used as received (Analytical grade, 

purity >99.5%). Single and multi-salts solutions are within the range of 100 mM to 1 M 

ionic strengths to mimic low salinity water and sea water which are injected into the 

reservoirs for secondary/tertiary oil recovery. The ionic strength, defined as 

                                                                                          (9.1)      

Where ci, zi, and n are the concentration, the valence of the ith ionic species, and the 

number of different species, respectively. All the solutions were adjusted to pH 6 with 

HCl/NaHCO3 and NaOH (purchased from Sigma Aldrich). The amount of acid or base 

augmented was meagre respect to the ionic strength of the solutions. The crude oil BR was 

placed on top of the salt solutions thick film to increase the oil/brine contact surface area 

followed by inverting andante to facilitate molecular interactions at oleic-aqueous interface 

and obtain suitable mixing but to avoid emulsification. Some water remained at the bottom 

of the vials and oils were intently separated for the pursuant tests. An FEI Quanta 650 FEG 

SEM, with a backscattered electron (BSE) imaging detector, equipped with an Oxford 

Instruments X-MaxN150 mm energy dispersive X-ray (EDX) detector, was used in this 

work. For both imaging and elemental analysis, the microscope was operated in low-

vacuum mode (0.83 Torr) at 20 kV, spot size of 4.5, dwell of 10μs, and a working distance 

of 10 mm. The FTIR spectra were recorded using an FTIR-4000 Series (JASCO Edition) 

spectrometer including a Peltier stabilized DLaTGS detector and a high output ceramic 

source coupled with an attenuated total reflectance (ATR) mode with high through put 

monolithic diamond and ZnSe. The spectral domain is 650−4000 cm−1with a resolution of 

0.7 cm−1. The proton 1H and carbon 13C NMR spectroscopic analyses were conducted 

using a Bruker AVI400 spectrometer operating at 400.1 and 100.6MHz for proton and 

carbon, respectively. Toluene-d8 (99.96atom % D) was utilised as received from Sigma-

Aldrich as a solvent for the NMR experiments. The proton data were obtained employing a 

3.96s acquisition time, 8278 Hz sweep width, and 1.0s relaxation time. The carbon spectra 

were achieved with a 1.30 s acquisition time, a 25 125 Hz sweep width, and 2.0s relaxation 

time. The carbon spectra resulted from 1024 scans. Herein the given chemical shifts (δ) are 

reported respect to tetramethylsilane (TMS) utilised as internal standard. All stable 

microemulsions and asphaltene aggregates were imaged using state of art petrographic 
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microscope using a 50× objective with 0.25μm resolution, and asphaltene aggregate sizes 

were counted by ImageJ to analyse the number of aggregates of various sizes per area of 

1500 μm2.  

9.3 Results and Discussion 

9.3.1 Characterisation of asphaltene and the parent oil 

Material properties of the crude oil BR including its density ρo, its viscosity µo, asphaltene 

content f, asphaltene density ρa, and water content (ppm) are provided in Table 9.1. The 

elementary analysis data for the asphaltene fraction in w/w % are shown in Table 9.2.  

Table 9. 1. Material properties of the petroleum fluid, BR: oil density ρo, viscosity µo, 

asphaltene content f, asphaltene density ρa, water content (ppm) 

Petroleum Fluid ρo (g.mL−1) µo (cP) f (g.g−1) ρa (g.mL−1) water content 

(ppm) 

BR 0.828 12.15 0.0312 1.05 ± 0.07 845 

 

Table 9. 2. Elemental contents of the asphaltenes isolated from petroleum fluid BR (w/w%) 

Asphaltenes C H S O NH/NC
* 

BR 84.38 7.79 2.96 4.87 1.03 

* H/C is the atomic ratio of hydrogen and carbon. 

Figures 9.1e−h show the ESEM/EDX analysis results of the asphaltenes. Figure 9.1e shows 

agglomeration of irregular shape asphaltene particles (with an average length of ~3.7μm) 

owing to high aromaticity in presence of smooth surface asphaltenes (large-sized particles 

of ∼12.4μm). Qualitative analysis of the asphaltene composition and its elemental 

mappings are given in Figure 9.1f−h. Both S and O are the constructor heteroatoms and 

evenly distributed throughout the asphaltene deposits. 
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Figure 9. 1. Characterisation of asphaltene isolated from crude oil BR, (a) representative 
13C 100.6 MHz NMR spectra, (b) representative 1H 400.1 MHz NMR spectra, (c) FTIR 

spectra of asphaltene with representative structures assigned to related spectra range, (d) 

Determined Cp/Car ratio as a function of total number of aromatic rings in studied 

asphaltene molecular structure, (e) ESEM micrograph of asphaltene with white scale bar of 

20 µm, EDX elemental mapping of (f) C k mapping, (g) S k mapping, and (h) O k 

mapping, (i) hypothetical asphaltene molecular structure derived based on the attained 

advanced spectroscopy data. No effort was accomplished to fit the structure to the 

molecular weight, solubility, or further physical circumscriptions. 

 

FTIR spectra of the asphaltene moiety was measured and indicated in Figure 9.1c. Three 

characteristic peaks at 1670, 1417, and 1372 cm−1 were caused by the C=C stretching, the 

stretching vibration of aromatic rings, and CH3/CH2 deformation in the asphaltene. The 

characteristic peaks at 3490, 1760, and 1027-130 cm−1 were attributed to three oxygen and 

sulfur-containing groups on the asphaltenes of –O–H, –C=O of carboxylic acid, –S=O/–C–

S and –C–O of sulfoxide and secondary alcohols/ethers, respectively. Three adjacent 

hydrogens at 760 cm−1 seemed to be agglutinated into the 4H peak at 745 cm−1.  There is a 

small peak ascribed to the long alkyl chains at 700−720 cm−1, which denotes that the 

asphaltene molecule has trace amount of alkyl chains attached to its structure. The presence 

of a Caro−CH3 attached to the condensed asphaltene aromatic structure can be observed at 

∼2730 cm−1. The related bonding in the asphaltene molecular structure are also depicted in 

Figure 9.1c. The liaising major vibrational assignments are presented in Table A1.2 
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(Appendix A1). For further detailed structural characterisation, 13C and 1H NMR spectra 

are utilised and presented in Figures 9.1a and 1b, respectively. The chemical shifts δ (in 

ppm) for 1H NMR corresponding to the characteristic signal intensities are 0.30−0.95 (γ-

CH3 hydrogens to aromatic rings), 1.00−1.40 (β-CH3, β+-CH3 paraffinic hydrogens), 

1.40−2.00 (β-position CH/CH2 to aromatic rings, naphthenic −CH/CH2), 2.00−2.90 and 

2.90−4.50 (α-CH3, α-CH/CH2), 6.50−9.00 (aromatic hydrogens). The related chemical 

shifts for 13C NMR corresponding to the characteristic signal intensities are 0−70 ppm 

(aliphatic carbon, Cal), and 90−180 ppm (aromatic carbon, Car). The assignments of 1H and 

13C chemical shifts in asphaltene NMR spectra discussed above are listed in Table A1.3 

and A.4, respectively. An integration of 1H and 13C NMR spectra at various chemical shifts 

can succour us to determine some average structural parameters like the shape factor of 

asphaltene aromatic sheet, Φ (Cp/Car), which is the ratio of number of peripheral aromatic 

carbons Cp to aromatic carbons based on the procedures demonstrated by Joonaki et al.[26] 

and others[28], [29]. Figure 9.1d shows the aromatic structures for various Cp/Car ratios 

which are acquired using fluorescence and quantum determinations[30]. The Φ value is 

related to the total number of rings and the condensation degree of asphaltene aromatic 

cores. Herein, the achieved value of Φ = 0.59 reveals that the possible number of aromatic 

rings is 6 per sheet for one fragment asphaltene molecule. Based on all analytical findings, 

we can signify the most probable asphaltene molecular structure which is observed in 

Figure 9.1i.  

9.3.2 Formation of water in oil micro-emulsions: the roles of asphaltenic compounds 

at water/oil interface, ionic strength, and ion valency 

The IR Spectroscopy analysis is very significant to identify the hydrogen bonding networks 

in water, water-asphaltene and hydrated cations in brine solutions. This type of analysis 

will enable us to identify the hydrogen bonds between the –COOH/–C–S/–S=O groups of 

the asphaltene and the water molecules, and also to grab the alterations of O–H stretch 

vibration that are known for their sensitivity to the strength of the hydrogen bond network. 

To recognise the influences of ionic strength and ion valency on hydrogen bonding 

between the water and asphaltene molecules at water-oil interface, we obtained the IR 

vibrational spectrum for the crude oil BR in contact with various brine solutions which are 
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shown in Figure 9.2a.  From the IR spectra, we denote that there is roughly one realm of 

3200 and 3750 cm−1 (broad envelope, dominated hydroxyl –O–H···O bonding) which 

undergoes pronounced changes in their intensities owing to alterations in ionic strength of 

water from DI to HS brine and monovalent [Na+] to divalent [Ca2+] cations leading to 

multiplicity variations of h-bonding species. The intensity of the characteristic peak at 

∼3495 cm−1 for four brines is clearly increasing owing to reducing the salinity and ion 

valency which result in accumulation of asphaltene nanoaggregates at water-oil interface 

and construction of stronger H-bonding network between carboxylic acid functional group 

of asphaltenes and water molecules. The lack of significant changes in intensity of 

aromatic C=C in presence of water droplets can explicitly impeach the recent assertions of 

potent asphaltene adsorption at the interface owing to the π-electron interactions between 

the vast PAHs and the water molecules[31]. The –COOH and/or –OH containing moieties 

like asphaltene molecules have attitude to be adsorbed at the interface and decrease the 

interfacial tension strikingly. However, the density of delicate formed film relies on their 

innate size and shape, moreover, on their amphiphilicity. Therefore, the interface can 

spontaneously bend to incorporate more asphaltene molecules. An asphaltenic-laden water-

oil interface might spontaneously bend toward either the brine or the oleic phase, and this 

signifies the rivalry between the interaction district of the polar aromatic group and the 

aliphatic chains. In the existing occasion, the asphaltene molecules comprise various 

surface-active functional groups and short hydrophobic tails (Figure 9.1i) which lead to 

formation of W/O micro-emulsions.  
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Figure 9. 2. Formation of spontaneous asphaltene stabilised water in oil micro-emulsions 

and its effect on the fluid viscosity. (a) FTIR spectra of blank petroleum fluid and after 

contact with DI water, 1M HS and 0.1M LS brines, and CaCl2 and NaCl brines with ionic 

strength of 0.1M. (b) Water in oil (W/O) micro-emulsions contents for blank oil and after 

contact with DI water and various brines with different ionic strengths and respective 

viscosity data. Microscopic images of the W/O micro-emulsions for (c) blank crude oil BR, 

(d) large 1M HS brine droplets, (e) smaller 0.1M LS brine droplets compared to HS brine, 

and (f) tiny DI water droplets. The white scale bar in microscopic images is 100 µm. 

As can be seen from Figure 9.2b, we found that the formation of spontaneous water in oil 

micro-emulsions and asphaltene nanoclusters at water-oil interface is a potent function of 

ionic strength of brine solutions. Reducing the salinity of the aqueous phase and utilisation 

of monovalent ions instead of divalent ones would result in delaying the coalescence 

phenomenon and augmenting the emulsions stability accordingly. The microscopic images 

reported in Figures 9.2c-f illustrate that the spontaneous emulsification phenomenon was 

enhanced as the concentration of salts and divalent ions decreased and presence of these 

water micro-droplets in oil might affect the asphaltene aggregation and deposition drivers 

which will be discussed later herein. We daresay that the variations in droplet size and 

concentration of water droplets for the LS and HS brine, solutions with ionic strength of 

0.1M [NaCl, KCl] and 0.1M [CaCl2, MgCl2] are pertinent to the arrangement of asphaltene 
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molecules at the water-oil interface[32] and the ensuing interface interactions (Figures 

9.2b-f). We denote that Mg2+, Ca2+ with higher valence than K+, Na+ had less stable brine 

micro-emulsions. It is postulated that the presence of salts may promote the asphaltenic 

species desorption from the water-oil interface and reduce the hydration of the polar 

functional groups. In the case of DI water, the droplets stayed discrete, while increasing the 

ionic strength and valency would tend to brine droplet weight and sizes increment leading 

to prevail repulsive interactions and attain early onset of coalescence. The charge inversion 

may play a critical role on the adsorption behaviour of the asphaltenes at the fluid-fluid 

interface. In Figure 9.2b, we show the viscosity of crude oil in contact with DI water and 

brine with different ionic strengths. Bulk rheology measurements ascertain that BR oil to 

be a Newtonian fluid with viscosity of μ=12.15 mPa·s at the shear rate of between 10 s−1. 

Up to 3160 ppm HS brine concentration, the viscosity decreases ~6% in comparison with 

the sample without water augmentation. Above 4000 ppm, with reducing the salinity and 

valence of the cations the viscosity increased ~21% and 22% for KCl brine with ionic 

strength of 0.1M and DI water, respectively. The initial decrease in the viscosity could be 

declarative of the presence of smaller asphaltene aggregates[33] owing to addition of HS 

brine compared to blank BR oil. Then the viscosity increment might be depicted as the 

structural alterations caused by the abundance of water molecules.  

9.3.3 The effect of water with/out various ionic strengths on asphaltene aggregation 

We determine the size of asphaltene aggregates using petrographic micrographs in order to 

demonstrate the influence of brine solutions with various ionic strengths. Figures 9.3a-d 

indicate microscopic imaging results for blank BR, DI water, LS, and HS brines. No 

significant discrepancy can be observed in the average size of asphaltene aggregates when 

comparing the images from the influence of ionic strength. The average size of the 

aggregates augmented with salinity of brine. We also determined the quantity of asphaltene 

aggregates and their size distribution at each image with/out brine solutions by ImageJ and 

depict them in Figures 9.3e-h. For the sample without presence of any aqueous phase in the 

system, albeit the size range is between 1 and 12 μm the average size of aggregates is ~5 

μm and the asphaltene aggregates are chiefly concentrated ~4 μm (Figures 9.3a and e). In 
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the presence of DI water, the size range is from 1 to 9 μm with an average of ~3 μm 

(Figures 9.3b and f).  

 

Figure 9. 3. Images of asphaltene aggregates for (a) blank oil, and in presence of (b) DI 

water, (c) 0.1M LS brine, (d) 1M HS brine. Here the white scale bar in micrographs is 10 

µm. The particle size distribution of asphaltene aggregates for (e) blank oil BR, and with 

(f) DI water, (g) LS brine, and (h) HS brine. The particle sizes are counted with ImageJ. 

 

As can be observed from Figures 9.3c and g, after addition of LS brine although the size 

distribution of asphaltene aggregates was different (with larger aggregates), the average 

aggregates size was ~3 μm the same as DI water. We also conducted the measurements in 

presence of HS brine and perceived some larger aggregates compared to LS and DI water 

with the average aggregates size of ~4 μm as shown in Figures 9.3d and h. The literature 

illustrated the impact of water on the asphaltene particles size in solvents, particularly in 

toluene[34], [35]. The presented micrographs, for the first time, attain new data on the 

influence of brines with various ionic strengths on the size of asphaltene aggregates. 

Asphaltenes can form a networking soft structure at liquid-liquid interface. This 

deformable structure could not be packed and tight owing to the steric hindrance between 

asphaltene aggregates. The electrostatic interactions at the fluid-fluid interface can 

elucidate the impact of low salinity brine on the viscoelasticity and asphaltene structure of 

the interface. Therefore, the electrical double-layer expansion[36], [37] might be the 

symptom for vast content of crude oil surface active species (e.g. asphaltenes, resins) at the 
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liquid−Liquid interface. A diffuse ionic stratum can be constructed due to adsorption of the 

ions to the electrically negatively charged water-oil interface which can spotlight all the 

interactions with the bulk solution. The Debye length, κ−1, which the stoutness of the 

effectual layer is pertinent to, defined as:  

                                                                                                            (9.2) 

Where kB is the Boltzmann constant, T is the temperature, ϵr the dielectric constant of brine, 

ϵ0 the permittivity of free space, NA the Avogadro number, e the electron charge, and I the 

ionic strength (eq. 9.1). The κ−1 is reversely related to the brine ionic strength. The polar 

surface active moieties like asphaltenes adsorb onto the water-oil interface without ions 

owing to their polar functional groups formed hydrogen bonding network at the interface 

(as depicted in Figure 9.2a) which can cause prevention of competing self-assembly 

contacts and aggregates growth. The diffuse stratum is flattened at low ionic strength 

leading to the potent screening and the asphaltenes are adsorbed and organized at the fluid-

fluid interface by electrostatic interactions. The κ−1 is tenuous at high ionic strength; the 

opposing ions decrease the charge screening and also disturb the hydrogen bonding 

structure at periphery of –COOH/–OH containing groups at the oil-water interface which 

results in reduction of asphaltene-water interactions at the interface and facilitation of 

multiple asphaltene intermolecular π-stacking/H-bonding interactions and particle size 

increment accordingly.    

9.3.4 The role of brine solutions with different salinities on asphaltene deposition 

and respective micro-scale wettability transition of solid surface  

Herein we provide the results from extensive sets of HPHT-QCM measurements to 

illustrate the influence of water with/out different ion concentrations on asphaltene 

deposition. To the best of our knowledge, there is no report of such data in the literature. 

The schematic of the HPHT-QCM setup is given in Chapter 8. The mass alteration of the 

QCM owing to the interactions respect to its surface can lead to resonance frequency (RF) 

changes.  For liquids, the change in RF is also related to the viscosity and density of the 

surrounding medium, according to the following equation[38], [39]: 
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                                                                                  (9.3)  

Where Δf is the frequency change (Hz), f0 is the frequency of oscillation of unloaded 

crystal, ρl is the density of the liquid in contact with the electrode, µl is the viscosity of the 

liquid, is density of quartz ( = 2.648 g.cm-3), and  is shear modulus of quartz for AT-

cut crystal ( = 2.947 x 1011 g.cm-1.s-2). When the QCM is in contact with the crude oil, 

the vibration amplitude and also the acceleration decay exponentially from the crystal 

surface into the crude oil as shown in Figure 9.4. It is mathematically illustrated by the 

equation below[40]: 

                                                                                              (9.4) 

Where  is the penetration depth which is equal to  defined as the effective 

thickness of the crude oil that is driven to move by the vibrating crystal with a 

displacement decaying exponentially, and  is maximum vibration amplitude at the centre 

of the crystal.  

 

Figure 9. 4. Amplitude and acceleration decay at the quartz crystal-oil interface 

Lower the vibration amplitude and acceleration are obtained owing to larger distance (y) 

from the QCM-oil interface. A certain small volume of crude oil placed at distance δ from 

the QCM-oil interface will generate a frequency alteration n times smaller than that 

generated by the same volume of crude oil placed in direct contact with the quartz crystal 

surface. The significant fact is that by measuring small changes in RF, tiny amount of 
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asphaltene deposits in nano-gram range can be detected. Under the real field situation, the 

asphaltene deposition challenge happens due to gas injection scenarios or depressurisation 

process. We conducted the tests with injection of gas and oil in various gas/oil ratios 

(GORs) in presence of water micro-emulsions for imitating the WAG-EOR conditions and 

measured the asphaltene onset point (AOP) and deposition rate onto the QCM surface. In 

Figure 9.5a, the diagram indicates ΔRF versus pressure for natural gas and BR oil at 

different GORs in presence of DI water with/out various salt concentrations and ion 

valences to monitor the AOP changes. The pressure at which the RF starts declining 

signifies the AOP[26], [27] which is ~954 psi at GOR of ~15.6 mol% for the blank BR 

crude oil. As can be seen in Figure 9.5a, a distinct AOP shift is detected in presence of HS 

brine for which the AOP/GOR is ~1221 psia/21.8 mol%. The AOP/GOR is ~1360 psia/ 

23.9 mol% for 0.1M MgCl2, ~1706 psia/27.7 mol% for 0.1M CaCl2, ~1820 psia/28.9 

mol% for LS brine, ~1914 psia/30.1 mol% for 0.1M NaCl, ~1990 psia/31.2 mol% for 0.1M 

KCl, and ~2554 psia/36.4 mol% for DI water. Figure 9.5b depicts the results of the impact 

of brine solutions with different ionic strengths on the asphaltene deposition rate after the 

AOP which is RF decline versus time (ΔRF.Δt-1, deposition rate representative[26], [27]) 

for BR oil with/out brine micro-emulsions at different salts concentrations. There is a 

drastic discrepancy in the plotted curves between the blank BR oil without any water 

micro-emulsion and with presence of DI water, HS and LS brines. DI water reduced the 

deposition rate from −708.7 to −99.8 Hz/hr. HS and LS brines decreased the rate of 

asphaltene deposition down to −286.5 Hz/hr and −229.6 Hz/hr, respectively.  
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Figure 9. 5. The effect of water with/out various ionic strengths and ion types on (a) AOP 

shifting and related GOR changes, and (b) asphaltene deposition rate onto the QCM 

surface. ESEM micrographs of micro-droplets of water on gold plate of QCM surface in 

presence of (c) DI water, (d) 0.1M LS brine, (e) no water, plain surface, and (f) 1M HS 

brine illustrating water contact angle variability owing to ionic strength changes. The white 

scale bar depicted in images is 20 µm. (g) the average contact angle values of water micro-

droplets on the surface with/out presence of brines with different salinities and ion types 

and respective elemental analysis of trapped brine sandwiched between asphaltene deposits 

and the QCM surface. 

The influence of water/brines in preventing and/or delaying the asphaltene precipitation 

and deposition phenomena is perceived for the BR oil; we elucidate that the influence is 

not particular for specific ionic strength and ion valency. Based on the attained results, 

plainly the delay in asphaltene precipitation and deposition rate decrement are potently 

relied on the concentration of salts in brine solutions. Lower ionic strengths and ion 

valency resulted in higher effect on preferable AOP shifting and deposition rate reduction. 

It is worth noting that a distinguished fluctuation is noted at high concentration of water in 

oil micro-emulsions (DI water) possibly owing to structural alterations caused by water 

molecules in asphaltene nanoaggregates. There are two conceivable elucidations for this 
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dramatic influence of water/brines on QCM asphaltene experiments. The first hypothesis is 

that the water molecules interact with asphaltene molecules, curb further intermolecular 

interactions and reduce the size of asphaltene aggregates which has been demonstrated in 

previous section. The second possible driver is that the water/brines construct a thin film 

layer at periphery of the QCM surface and prevent asphaltenes from depositing. In order to 

elucidate if the second driver is dominant, we monitored the micro-wettability alterations 

of gold surface of the QCM due to ion valency/concentration changes. Figures 9.5c-g 

present the images of water droplets onto the solid surface in presence of various ions and 

corresponding contact angle values. In order to analyse the competitive wetting of organic 

species and water on the QCM surface, we measured the contact angle of water micro-

droplets. The microscopic contact angles of water are depicted in mainly side view 

micrographs (Figures 9.5c-f). We measured different contact angles under each condition 

in various regions of the solid surface to accurately determine the influence of brine 

salinity and ion valency on the wettability transition of the surface. Then average values of 

these local contact angles at micro-scale were determined which denoted as θav and 

represent the general wettability of the solid surface. To the best of our knowledge, this is 

the first report of such a data in the literature. Figures 9.5c-g illustrate the impacts of the 

concentrations of the combined mono and divalent cations on the micro-droplets contact 

angle changes. If the DI water serves as a reference with θav of ≈15o, the θav increased with 

increasing salinity of the water. The θav in presence of LS brine showed an increment from 

15o to ≈34o. The only remarkable district was noticed between LS and HS brines that is 

≈28o, from 34o to ≈62o. The representative extracted water micro-droplet dimensions in 

average for LS and HS brines are 15.8 μm (height) × 51.6 μm (width) and 20.4 μm (height) 

× 46.7 μm (width), respectively. We also demonstrated the effects of the valence of the 

cations in the brine solutions on the contact angle transitions. Increasing the concentration 

of [K+] from 0 to 0.1M was resulting in θav increment from 15o to ≈19o. Due to replacement 

of [K+] with [Na+] at same concentration, the θav increased up to ≈25o which reveals the 

importance of cation type in addition to ionic strength. However, when [Ca2+] is added 

instead of [Na+], the θav raised to ≈44°, and 33 mM [Mg2+] leads to a θav of 51°. This 

evidently underlines how significant the roles of ion type and valency are in wettability 
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alteration phenomenon. To unravel the mechanisms behind this observation, we require to 

consider the interactions between the cations and the charged QCM surface. 

Figure 9.5g indicates the elemental analysis of the asphaltene deposits onto the surface and 

related concentrations (w/w %) of [O], [Na+], [K+], [Ca2+], and [Mg+2] to reveal the effects 

of water with/out various salts on the deposition rate reduction and micro-wettability 

changes. The [O] content increased with reducing the salinity of the brine and substitution 

of divalent cations with monovalent ones. It elucidates that more water molecules trapped 

in asphaltene deposits on the solid surface in presence of monovalent cations containing 

water and lower ionic strength brine. The concentrations of divalent cations are more than 

monovalent cations due to their sizes and hydration states leading to high strength ion-

surface interactions and more potently cation adsorption onto the gold surface. The bare 

ion radii and hydrated ion radii for different cations utilised in this study have been 

presented in Table A3.1 (Appendix 3). The activity coefficients for the cations in the 

chloride solutions are determined using the Debye-Huckel equation[41]:  

                                                                                    (9.5) 

where A and B are the temperature dependant coefficients, I is ionic strength (eq. 9.1) and 

ai and bi are individual cation activity coefficient parameters which are given in Table 

A3.1. The size of the divalent cations and respective number of water molecules 

surrounding the cations are greater compared to the monovalent cations. The hydration 

happens readily for metal cations at the QCM-fluid interfaces. Water molecules can befit a 

substantial portion of coordination for the metal cations. The binding energy, Ebw, of the 

water molecules to the divalent cations in vacuum is defined as[42]:  

                                            (9.6) 

This expression illustrates that the more negative the binding energy, the more potently the 

water molecules append to the cation. The free energy of hydration and the binding energy 

for first hydration shell (6 water molecules) are -1821 and -1395 kJ.mol-1 for [Mg2+], while 

they are -1500 and -1063 kJ.mol-1 for [Ca2+] cation[43]. Based on the obtained results 

(Figure 9.5g), it can be inferred that the divalent cations adsorbed more strongly onto the 
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surface owing to their higher concentrations in deposits and ruptured the ordered structure 

of water molecules and their H-bonding network at the solid-liquid interface that lead to 

direct molecular contact of asphaltenes and providing of free surface active sites accessible 

to readily interact with asphaltene nanoaggregates. This proposition is consistent with the 

higher concentrations of trapped divalent cations compared to monovalent cations. On the 

other hand, the hydration number of metal cations reduced with decrease in ion valency, 

and in presence of monovalent cations, more water molecules from the hydrated cations are 

released which increases the amount of free water molecules into the oil-water interface 

and oleic phase that results in further mobility of the cations. The contact angle for three 

phases (QCM surface-oil-water) system can be deduced from the Young’s equation[44]:  

                                                                                                 (9.7) 

and,  

                 

where , , and  are interfacial tensions between oil and water, oil-solid, and water-

solid surfaces, respectively. The  is the 

alteration of the discrepancy in adsorption energy for the asphaltene molecule, relative to 

water molecule. It can elucidate how the surface tendency for asphaltene molecules 

compared to its tendency for water molecules in presence of mono/di valent cations. If 

 is negative the preference of 

asphaltene to be adsorbed onto the solid surface is higher than water molecules in presence 

of specific cation. Herein, for the studied case of solid-liquid-vapour phase using ESEM 

micrographs, the Eq. 9.7 can be expressed in terms of work of adhesion: 

                                                                                                      (9.8) 

where = + ̶  , and S, L, and V stand for solid, liquid, and vapour phases. The 

Eq. 9.8 can be rewritten in terms of binding energy per unit area as follows: 

                                                                                                     (9.9) 
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where A is surface area, and is the binding energy of the asphaltene molecules to 

the QCM surface and can be defined as:  

                                                                          (9.10) 

where  is the total energy of the adsorbed asphaltene molecule on the gold 

surface of the QCM,  is the total energy of the gold surface alone and  is the 

total energy of the asphaltene molecule in a vacuum. Taking into account  and 

, previously discussed preference of 

cations for adsorption, and achieved contact angles presented in Figure 9.5g could explain 

why monovalent cations are more effectual in suppressing the asphaltene adsorption on the 

gold surface and reducing the corresponding contact angles of water micro-droplets. 

Through similar drivers, Ca2+ and K+ are more efficient in inhibiting the adsorption of 

asphaltene nanoaggregates onto the QCM surface compared to Mg2+ and Na+, respectively. 

Generally, the binding affinity of alkali and earth alkaline cations in our thin film systems 

both at solid-liquid and liquid-liquid interfaces is presumably to be a plural influence 

pertinent to the ion valency, the hydration of the surfaces and ions and the interacting 

surfaces charges. Our results concur with some reports in the literature on the effect of 

cations on adsorption of proteins[45] and stearic acid[46] onto the mica surface.  
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Figure 9. 6. Model representation of the molecular scale phenomena that elucidate the effect of 

ionic strength on asphaltene aggregation, deposition, formation and stability of W/O micro-

emulsions, asphaltene interactions at water-oil interface and microscopic wettability transition for 

(a) high ionic strength, and (b) low ionic strength brines with respective Debye length (κ−1). Ions 

can alter the electrostatic potential (ψ). Micro-brine droplets and thin water film sandwiched 

between oil-asphaltene deposits and the QCM solid surface, owing to cations (mainly multivalent 

ones) induced rupture of protective water films the asphaltene aggregates are allowed to adhere and 

trapped patches of brine are left on the surface. The ions water shielding and anions (in (a) & (b)) 

are not depicted for the sake of lucidity. 

Figure 9.6 illustrates all the proposed derived mechanisms of asphaltene deposition in 

presence of brines with variety of ionic strengths, formation of water in oil micro-

emulsions, and micro-wettability transitions all observed in this study. We caution that our 

results require further investigations down to molecular scales and have set the stage for 

density functional theory (DFT) calculations and molecular dynamic simulations with 

consideration of all the equations (5)-(10) to build a better understanding of the proposed 

mechanisms which is currently under investigation from the current authors.  

This is the first study to illustrate the effect of water in oil micro-emulsions in presence of 

different ionic strengths and dissolved chloride salts of a variety of alkali and earth alkaline 

cations on asphaltene aggregation and deposition phenomena under realistic conditions. It 

also opens a door to a better understanding of the key low salinity EOR drivers. 

Additionally, the results demonstrate the first experimental evidence backed by analytical 

results on the role of ion valency on micro-wettability transition in presence of asphaltenes.  
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Although the thickness of the Debye layer κ−1 (eq. 9.2) increases with decreasing the ionic 

strength, it stays in a domain where the prevailing forces are controlled by stunted range of 

interactions that are not thoroughly captured by Derjaguin−Landau−Verwey−Overbeek 

(DLVO)[47] theory. Without requirement to invocate any model, our present study clearly 

implies that the ion type in addition to ion concentration has drastic influences on 

wettability and asphaltene interactions at liquid-liquid and solid-liquid interfaces.    

Our results have potential applications in other systems as well. Mechanisms involving 

interface interactions are of significant relevance for the understanding and control of 

biological systems. We have acquired no debates against the mechanisms being expandable 

to the biological macromolecules interactions. The conformation of tiny and mighty 

organic species, proteins as biological macromolecules, as well as the specificity of 

molecular recognition are governed by the identical types of intermolecular forces 

including attractive and repulsive forces as asphaltenes. Therefore, it could be conceivable 

to elucidate the three-dimensional (3D) structures of these species and their recognition 

specificities based on the mutual principles. The hydrogen bonds play a pivotal role in 

every field of biochemistry[48], [49]. The reiterated occurrence of interactions between 

aliphatic chains, π-stacking and H-bonding in biological macromolecules such as 

proteins[50], [51] alludes a functional role for them in describing the structures stability, in 

vast molecular recognition events as well as the folding drivers of macromolecules. This 

denotes that the same interactions as asphaltenes are presumably to happen on the cell 

surface. In summary, our treatise outlines testable mechanisms for protein adsorption, 

protein-protein and protein-water interactions, and protein aggregation inhibition through 

progress of nanomedicine design. Further work on this topic through quantum mechanical 

simulations will address confirmation of hypothesis and propositions throughout this study 

with hitherto unaccessed molecular level resolution.  
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Chapter 10- Conclusions and Recommendations 

 

The main concern of this thesis was to propose and develop new practical solutions in 

surface chemistry and computational sciences such as new experimental techniques for 

evaluation of different additives, new asphaltene deposition simulator, and new screening 

techniques for monitoring of asphaltene-surface active moieties molecular interactions in 

the context of mitigating asphaltene associated flow assurance barriers. This chapter 

summarizes the contributions of this thesis, its key findings and recommendations for the 

future research directions.  

10.1 Major Contributions  

The research conducted throughout this study mainly investigated the application of quartz 

crystal microbalance under realistic conditions for reliable evaluation of various 

chemistries, identifying the effects of different gas injection scenarios on asphaltene 

destabilisation, and understanding of possible drivers of asphaltene aggregation and 

deposition phenomena. In this context, the major contributions of current work can be 

summarized as:  

i. Design and development of a hybrid technique for determination of asphaltene onset 

points and evaluation of inhibitors at ambient conditions. 

ii. Determination of asphaltene onset pressure (AOP) and evaluation of asphaltene/wax 

inhibitors with appropriate carrier solvents using high pressure-high temperature quartz 

crystal microbalance as a novel technique. 

iii. Development of new two-dimensional dynamic asphaltene deposition simulator for 

prediction of precipitation and deposition along the wellbore. 

iv. Understanding of the drivers of asphaltene aggregation and deposition and testing the 

chemistries against those mechanisms. 

v. Studying the effect of waxes and respective chemistries on asphaltene aggregation and 

deposition phenomena. 
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vi. Investigation of possible interactions of asphaltene nanoaggregates at solid/liquid and 

oil/water interfaces using state of the art imaging facilities and analytical techniques. 

vii. Exploration of the difference in molecular structure of n-C7 and CO2 induced 

asphaltenes using FTIR, NMR, ESEM/EDX analysis and QCM.  

viii. Investigation of the effect of different gases and water with different 

salinities/presence of various ion types on asphaltene aggregation and deposition.  

10.2 Key Findings 

Based on the work conducted in this project, the following points can be considered as 

conclusions of the research: 

In this treatise, the hybrid technique has been developed and examined for the 

determination of asphaltene appearance point and evaluation of asphaltene inhibitors. The 

effectiveness of two commercial inhibitors, phthalic acid and the alkylbenzene-derived 

amphiphiles including nonylphenol and dodecylbenzene sulfonic acid as asphaltene 

inhibitors were studied. The effects of the structures of these chemicals on their capabilities 

to hinder the asphaltene precipitation were also investigated and possible mechanisms of 

asphaltene precipitation inhibition were proposed. Our findings reveal that the H-bonding 

with –N/O-H groups of asphaltenes is the main mechanism of asphaltene precipitation 

inhibition caused by n-nonylphenol and Phthalic acid at the periphery of asphaltene 

nanoaggregates. It has been found that the DDBSA amphiphilic molecules can curb the 

asphaltene particles growth to form flocs through both ion-pair and H-bonding interactions.  

In chapter 4 a comparison between the results of the QCM technique at elevated pressure 

and temperature condition and dead crude oil testing at ambient condition is presented. The 

results of this chapter indicate that the change in temperature, pressure and presence of gas 

could alter the ranking of chemistries for mitigating asphaltene challenges. Through 

chapter 5, we were seeking for find a reason for having different rankings of chemicals 

based on their deposition inhibition performance between QCM and other utilised 

techniques. It has been depicted that the HPHT-QCM asphaltene deposits from parent 

crude oil are richer in oxygen species, such as the Ox and R ̶ OH polar groups, relative to 
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the n-C7 asphaltenes. The results of chapter 5 provide High-Pressure information that leads 

to better understanding of asphaltene precipitation and deposition phenomena and could be 

taken into account when designing prevention strategies to avoid asphaltene problems 

throughout the oil production process. 

The chapter 6 explains the role of waxes during the asphaltene aggregation and deposition 

phenomena. This study confirms that changes in the chemistry of the wax inhibitors could 

result in significant differences in pour point reduction and viscosity profiles in crude oil. 

These structural changes along with dosage rate also led to differences in the effect of wax 

inhibitors on handling or aggravating asphaltene deposition. The chapter 6 results showed 

that waxes can reduce the asphaltene deposition rate and shift the AOP.  

A newly developed dynamic and two-dimensional particle scale model was presented in 

chapter 7 to simulate the asphaltene deposition in a synthetic oil well. It was concluded that 

the rate of asphaltene deposition increases while the concentration of nano-aggregates 

increases in the well column. The tendency of smaller aggregates to deposit on the surface 

could be explained due to the increase in the diffusion coefficient of asphaltene aggregates. 

It was also shown that the results of the new simulation were in good agreement with the 

experimental data.  

The experimental results in chapter 8 reveal that injection of CO2, CH4, Mix. A and natural 

gases can lead asphaltenes to become unstable in crude oil and tend to precipitate out of the 

solution and deposit onto the QCM surface. It has also been depicted that the asphaltene 

precipitation condition is strongly dependent upon gas composition. A comparison between 

the six gases showed that, when added in the same pressure condition, CO2 was the 

strongest precipitant followed by natural gas, CH4 and Mix. A. In initial tests at pressures 

up to the maximum of the equipment no onset was been observed in presence of pure N2 

and a flue gas which is really promising for the EOR purposes.  

The first study to investigate the impacts of water in oil micro-emulsions in presence of 

different ionic strengths and dissolved chloride salts of a variety of alkali and earth alkaline 

cations on asphaltene aggregation and deposition phenomena under realistic conditions was 

presented in chapter 9. The results depict that owing to the substitution of divalent cations 



-217- 

 

with monovalent ones, asphaltene deposition is repelled and the solid surface becomes 

more hydrophilic, proposing a generalizable strategy to control wettability and an 

elucidation for the profitability of so-called low salinity water flooding, an enhanced oil 

recovery methodology. For biological application, this treatise provides insights into the 

potential roles of ions and hydrogen bonds in the protein deposition in tissues and self-

assembly interactions and efficiency of drugs against protein aggregation drivers. 

10.3 Recommendations and Prospects 

Considering the discussions through the different chapters of this dissertation, the 

following ideas can be considered as research topics for future work: 

1. It is believed asphaltene related problems could change with the age/pressure of the 

reservoir. Current industrial practice is to use an oil sample from the initial 

sampling campaign and evaluate the asphaltene risks for the whole life of the 

reservoir within the reservoir and production conduit. However, with the reservoir 

depletion significant amounts of gas could leave the oil at reservoir conditions. This 

could result in a different condition with respect to asphaltene deposition in the 

system (i.e., reservoir, downhole and pipeline). It is proposed to investigate the 

effect of depletion on the asphaltene risk with and without chemical additives.  

It is proposed to simulate the effect of reservoir depletion on the reservoir fluids 

samples, as suggested below:  

a) For each fluid sample obtained at each pressure-step (in Differential Liberation 

test) simulate wellbore and pipeline conditions.  

b) Analyse and evaluate potential asphaltene problem for the resulting oil, including 

effect of shear rate.  

c) Find a suitable solution/chemical to avoid asphaltene problem in the original 

sample.  

d) Investigate the effectiveness of the mitigation option found for the original oil 

for subsequent oil samples.  
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e) Measure the viscosity of oil resulting from each pressure step. Check the 

reliability of the originally tuned viscosity model in predicting the viscosity of the 

oil obtained at each pressure step under reservoir, wellbore and pipeline conditions.  

Finally, later in the life of a reservoir lift gas may be used to help with low reservoir 

pressure. It is proposed to extend the investigation to the effect of lift gas on the 

asphaltene problems as well as mechanical effects. 

2. Due to a reduction in the reservoir pressure production rates are lower, resulting in 

a lower shear stress in the pipeline which could change the nature of asphaltene 

problem. It is proposed to conduct a comprehensive study of rheological properties 

of oil resulting from reservoir depletion with and without addition of 

inhibitors/carrier solvents. 

3. Modelling is an integrated and important part of all of the above activities. It is 

proposed to build on recent achievements in asphaltene modelling presented in 

chapter 7 and develop computational fluid dynamics (CFD) as a new module 

addition to it in order to predict the occurrence and calculate the magnitude and 

profile of asphaltene deposition in the wellbore particularly for turbulent flow 

conditions. 

4. Later in the life of a reservoir production rate declines resulting in lower fluid 

velocity and shear rates. These factors, combined with reduced GOR and increased 

fluid viscosity could contribute to asphaltene problems, as the asphaltene 

aggregates may settle in the pipeline and/or the shear stress from fluid flow may not 

be high enough to reduce/eliminate asphaltene induced blockage in the 

pipeline/wellbore. It is proposed to conduct a comprehensive study on the 

rheological properties of oil as a function of pressure (i.e., oils resulting from 

aforementioned DL tests), temperature and shear rates at conditions above and 

below AOP. The objective is to evaluate the associated risks and factors affecting 

asphaltene deposition with the aim of minimising such risks. The data generated in 

this suggested work could be used for further development of asphaltene deposition 

model as mentioned above.  
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5. We caution that our results in chapter 9 require further investigations down to 

molecular scales and have set the stage for density functional theory (DFT) 

calculations and molecular dynamic simulations with consideration of all the 

equations (9.5) - (9.10) to build a better understanding of the proposed mechanisms 

and also address confirmation of hypothesis and propositions throughout this study 

with hitherto unaccessed molecular level resolution. 
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Appendix 1 

 

 

Figure A1. 1 More ESEM micrographs of n-C7-asphaltenes with different magnifications 

 

 

 

Figure A1. 2 More ESEM micrographs of CO2-asphaltenes with different magnifications 
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Table A1. 1 SARA analysis of the crude oil used in chapter 5 

Property Value 

Saturates (wt %) 44.2 

Aromatics (wt %) 36.1 

Resin (wt %) 11.7 

n-C7 asphaltenes (wt %) 8 

  

Table A1. 2Infrared spectral range assignments of the main bands observed in n-C7 and 

CO2 asphaltenes characterised in this study 

Absorption bands (cm-1) Functional groups 

3700–3200 Stretching vibration of the O−H bonds (the 

bands are broadened due to hydrogen 

bonding) 

3000–2800 Stretching vibration of the C−H bonds in 

CH3/CH2 

2730 Caro−CH3 

1800–1660 Stretching of the carbonyl groups C=O bonds 

(COOH) 

1590–1620 Stretching of the C=C bonds of aromatic 
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moieties 

1370–1460 C–H deformation in CH3/CH2 

~1030 S=O, C−S 

865 Caro−H(1) (v) 

805 

760 

745 

715 

Caro−H(2) (iv) 

Caro−H(3) (iii) 

 

Caro−H(3) (ii) 

 

− (CH2)n− [n≥4] 

 

 

Table A1. 3 Proton chemical shift correlation chart for studied asphaltenes 

Chemical shift ranges 

(ppm) 

 

Integral intensity Type of proton assignment 

9.00 − 6.50 vi Har aromatic hydrogens 

4.50 − 2.90 v Hα(methylene/methyne) α-CH, α-CH2 

2.90 − 2.00 iv Hα (methyl protons) α-CH3 

2.00 − 1.40 iii Hβ (naphthenic protons) β-CH2, CH/CH2 

naphthenic 
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1.40 – 1.00 ii Hβ , Hβ
+ β-CH3, β+-CH2 , 

paraffinic CH2 

 

0.95 – 0.30 i Hγ methyl hydrogen in γ 

position attached to 

aromatic ring; methyl 

hydrogen in alkane 

 

 

Table A1. 4 Carbon chemical shift correlation chart for studied asphaltenes 

Chemical shift ranges 

(ppm) 

 

Integral intensity Type of carbon assignment 

160.0 – 137.0 V Car-alk alkyl-substituted aromatic 

carbon except CH3 

 

137.0 – 129.0 IV Car-CH3, Car-n methyl-substituted 

aromatic carbons, carbon 

at junction of an aromatic 

and naphthenic rings 

 

136.0 – 123.0 III Caa, Caaa carbon at junction of two 

and three aromatic 

rings 

 

130.0 – 118.0 II Car-H aromatic protonated 

carbons 

 

45.00 – 5.00 I Cal, Cn Saturated carbons, 

naphthenic carbons 
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Appendix 2 

Numerical Method 

In this research study, the finite centered difference method is used to discretize and also 

build the matrix for solving the Eqs. (7.11), (7.23), (7.24) and (7.25) simultaneously. 

Replacing the central finite-divided-difference formula for each term of Eq. (7.11), the 

following relation is achieved for steady state condition: 

 i, j i, j 1 i, j 1 i 1, j i 1, jC A C B C D C E C F 0          (A2.1) 

Where the relations for A, B, D, E and F can be found in Table A2.1. 

Table A2. 1 Definition of parameters used in equation 3 

Term A B D E F a 

 
2 2

a 2a 2a
1

r r r z
  

  
 2

a 2a
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r r r
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 
 

2

a

r


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a

z



 

2

a
1

z
 


 

wo m

z

z(D )  




 

 

Then, the matrix of unknowns is made as follows: 

 

 

0,0

0,1

0, 1

1,0

1, 1

1, 1

1 0 0

0 1

0

0

0 0 0 1





 
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   (A2.2) 
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Where the CBH stands for concentration at the depth of bottom hole and CWH represents the 

concentration at the wellhead.   

The implicit method is used to solve Eq. (7.11) at steady state condition. After solving at 

the stable condition, the explicit method is utilized to find the concentration (C) at unstable 

condition as follows: 

 

, ,

2

2

)

0

, , 1 , ,

1, , , ,

1, 1, , , , 1, , 1, , ,
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1, , , , 1, ,
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eqi j t

z
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i j t i j t
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i j t i j t i j t

C C
k e
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 
 (A2.3)  

The same method is employed to solve the PDEs and also respective matrix to find the 

temperature at each grid.
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Appendix 3 

 

TAble A3. 1 Bare ion radii, hydrated ion radii, ion size parameter å, and the individual ion 

activity coefficient parameters in eq. 4 for various cations used in this study 

Ion 
Bare Ion Radii 

(nm) 

Hydrated Ion 

Radii (nm) 
å/(10-10 m) [1] 

 

a (10-10 m)[2] 

 

b [2] 

K+ 0.149 0.331 3.0 3.5 0.015 

Na+ 0.117 0.358 4.0-4.5 4.0 0.075 

Ca2+ 0.100 0.412 6 5.0 0.165 

Mg2+ 0.072 0.428 8 5.5 0.20 
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