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Abstract
This study investigates the application of Newton method to the problems of collision avoidance and path planning for
robotic manipulators, especially robots with high Degrees of Freedom (DOF). The proposed algorithm applies to the
potential fields method, where the Newton technique is used for performing the optimization. As compared to classical
gradient descent method this implementation is mathematically elegant, enhances the performance of motion generation,
eliminates oscillations, does not require gains tuning, and gives a faster convergence to the solution. In addition, the paper
presents a computationally efficient symbolic formula for calculating the Hessian with respect to joint angles, which is
essential for achieving realtime performance of the algorithm in high DOF configuration spaces. The method is validated
successfully in simulation environment. Results for different methods (Newton, gradient descent and gradient descent
with momentum) are compared in terms of quality of the path generated, oscillations, minimum distance to obstacles and
convergence rate.

Keywords Collision avoidance · Newton · Optimization · Hessian

1 Introduction

Redundancy is a term used for referring to robots that
have more DOF than the necessary to complete a given
task. Extra DOF offer better flexibility and can be used to
achieve multiple objectives besides to the required robot
task [1]. As such, several studies have been dedicated to
the problem of controlling redundant robots [2, 3]. In clut-
tered environments, with obstacles, redundancy plays an
important role, allowing the robot to reach the goal while
avoiding such obstacles. Yet, for achieving real-time path
planning capacity for high DOF manipulators in unstruc-
tured environments, it is required to merge the redundancy
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control frameworks with some notion of attraction/repulsion
vector fields [4, 5]. In such a case, task-level priorities
are achieved through projections on the null space of the
Jacobian [6], or by using more sophisticated projection
criteria [7]. This method for formulating collision avoid-
ance is proved to be computationally efficient. Nevertheless,
in many cases this implementation requires a predefined
trajectory of the end-effector (EEF), where the repul-
sion/attraction vectors are custom engineered with many
parameters to tune. Moreover, this method suffers from
local minima and oscillation problems, which become more
evident for increasing number of obstacles and for higher
DOF robots. For achieving better immunity to local minima
other methods have been proposed, including the circular
fields [8] and the Probabilistic Roadmaps (PRM) [9]. The
circular fields is inspired by electromagnetism phenomena
and has been applied successfully to control 7 DOF redun-
dant manipulators [10]. PRM is a stochastic method which
is composed of two phases. The first phase is called the
learning phase, it is performed for stochastic generation of a
roadmap of the scene. The second phase is called the query
phase. In this phase, paths are queried, and the roadmap
is searched for a feasible path. While PRM is a powerful
method, it suffers two major problems. The first of which
is due to computational cost, where according to the times
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reported in [9] it can be concluded that for high DOF robots
PRM is unsuitable for implementation in control loops with
fast update rates. The second drawback comes from the fact
that the resulting trajectories generated by this planner are
not smooth and require processing before implementation
on the robot [11]. The Dynamic Roadmaps method (DRM)
is introduced in [12]. It is closely related to PRM method
(implementing two phases, one for roadmap construction
and another for query). However, in DRM the roadmap
is updated according to changes in the environment. This
allows using the algorithm for avoiding collisions with non-
static obstacles. This algorithm was implemented in [13] for
performing collision avoidance in human-robot collabora-
tive scenario. In [14], the authors implemented DRM on a 7
DOF robot, in which they identified the main bottlenecks in
DRM as such they achieved a 100 milliseconds update rate.
Based on the variational principles, the authors in [15] pre-
sented an algorithm that generates collision free paths for
redundant manipulators in constrained workspaces. Fuzzy
control [16, 17] is used for controlling non-linear dynam-
ical systems, including robots. Based on fuzzy rules [18],
it is proposed a method for resolving internal joint angles
in redundant manipulators. The method allows the EEF to
follow the desired path, while the internal motion mani-
fold is used to perform other objectives including collision
avoidance with surrounding obstacles.

In this study we investigate the application of Newton
method to the problem of collision avoidance for hyper
redundant robotic manipulators. In such a case, the problem
is reformulated as a second order optimization problem
and the Newton method is utilized for performing the
optimization. This offers various advantages due to the main
features of the Newton method [19], namely:

1. Better numerical stability;
2. Faster convergence rates;
3. Better immunity to numerical oscillations that com-

monly appear in the first order (gradient descent)
methods.

In robotics this translates into generating smoother paths
and faster execution, as reported in [20, 21], where the
modified Newton method is applied for the problem of robot
navigation, where the mobile robot is approximated by a
point in a plane and the potential field is an explicit function
of the configuration variables, in such a case calculating
the Hessian analytically is possible as noted in [22].
While the Newton method has been described in robotics
literature for the problem of mobile robot navigation, this
method has not been investigated yet for the problem of
collision avoidance in robotic manipulators. This comes
from the fact that the resulting potential fields, which
are functions of Cartesian space variables, are implicit

functions of configuration space variables, with high non-
linearity due to the nature of the complex transform function
between the spaces [23], this makes finding a closed-form
solution for the Hessian in joint space a challenging task.
In this study a systematic method for applying Newton
technique for robotic manipulators, at the kinematic level,
is addressed. We present a formula for efficient calculation
of the Hessian matrix, by deducing a relationship between
the Hessian in Cartesian space and the resulting Hessian
in joint space. This allows to speed up the algorithm
and makes it applicable for real-time implementation. In
addition to the aforementioned advantages, the proposed
solution contributes in the following:

1. Bigger optimization steps: In Newton method bigger
optimization steps can be used, resulting in faster
execution rates, as compared with the gradient method;

2. Faster convergence: Newton method offers better
performance in terms of convergence rate than the
gradient descent [24];

3. Elegant formulation: The proposed method is mathe-
matically elegant, eliminates the need for tedious tuning
of control parameters, and can be applied on hyper
redundant manipulators. The method does not require
pre-planned trajectory and keeps the number of control
parameters to a minimum.

The proposed method can be used either for real-
time control of the manipulator to avoid collisions with
obstacles, or it can be used for off-line path planning.
The application of the presented method extends easily
to computer animations and to motion generation for
kinematic chains in virtual environments with obstacles.

2Mathematical Formulation

For achieving a robot motion that drives the EEF towards the
goal, while avoiding collision with obstacles, the potential
fields method by Khatib [25] is considered. In this method
an attraction potential field uatt attracts the EEF towards the
goal. This potential field is expressed in Cartesian space as
a function of EEF position. In addition, repulsion potential
fields repel the robot away from obstacles. As a result the
robot is subjected to a total potential field utotal , given by:

utotal = uatt +
∑

u
rep

(i,j) (1)

Where u
rep

(i,j) is a repulsion potential field that repels link

i from colliding with obstacle j . The potential u
rep

(i,j) is
expressed in Cartesian space as a function of the minimum
distance between link i of the robot and obstacle j . Given
that the control algorithm of the robot is running in a
loop, in each iteration the robot changes its configuration
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slightly to minimize the total potential function, as a result
the robot moves towards the goal while avoiding collisions
with obstacles. Traditionally, the notion of attraction and
repulsion vectors is used for performing the collision
avoidance. This traditional method can be interpreted as
minimizing the potential function using the gradient descent
technique, where the gradients represent the repulsion and
the attraction vectors. In contrast, we propose to use the
Newton method for minimizing the potential function.
Taking the second order approximation of the potential
function yields the following update equation for the joint
angles:

qm+1 = qm − α(H + λI)−1g (2)

Where qk is the resulting vector of the angular positions cal-
culated at time-step k, in real world scenario qm represents
the measurements of joints positions as acquired from the
encoders, α is a scalar representing the minimization step,
H is the Hessian of the potential field with respect to joint
angles, g is the gradient of the potential field with respect to
joint angles, I is the identity matrix, and λ is a damping fac-
tor. By adopting a similar approach to the already developed
techniques in differential inverse kinematics, the damping
factor can be calculated as a function of the minimum sin-
gular value [26], but unlike inverse kinematics methods, in
our method the minimum singular value pertains to the sin-
gular value decomposition of the Hessian matrix H. For fast
execution of the proposed algorithm, the Hessian shall be
calculated analytically, by taking a second order approxi-
mation of the potential function (1), where we proved in
Appendix that for robotic manipulators the Hessian is given
by:

H =
∑

JT
k ∇2ukJk (3)

Where ∇2uk is the Hessian matrix of the potential function
in Cartesian space. Given that uk is expressed in Cartesian
space for attraction and repulsion fields, a closed-form
solution of this matrix can be deduced easily by hand
or by using symbolic math software. Jk is the partial
Jacobian associated with the potential field uk . In case of the
attraction potential uatt , then Jatt is the Jacobian associated
with the EEF. In case of a repulsion potential u

rep

(i,j) due to
the effect of obstacle j on link i, then J(i,j) is the partial
Jacobian associated with control point cp(i,j) , where cp(i,j)

is the point of link i closest to obstacle j . The gradient (as
shown in Appendix) is given by:

g =
∑

JT
k ∇uk (4)

Where ∇uk is the gradient of potential function uk in
Cartesian space. For achieving better numerical robustness
and by analogy to differential kinematics approaches, the
alternate Jacobian described in [27] can be utilized for
calculating the partial Jacobians. As a result, it can be

concluded that the presented mathematical formulation in
this study forms a systematic way to integrate several
potential fields:

• Attraction potential that attracts the EEF to the goal
position;

• Repulsion potential field that repels the robot away
from obstacles;

• Repulsion potential field that repels the robot away
from self-collision and joint limits.

3 Experimental Tests and Results

To evaluate the performance of the proposed method, real-
time simulations using MATLAB are implemented, where
the attraction potential field uatt is chosen to be a quadratic
function with a minima at the goal position. Consequently,
uatt causes the EEF to move towards the goal:

uatt = 1

2
katt (xef − xg)

T(xef − xg) (5)

Where katt is the attraction constant, xef is the position
of the EEF and xg is the position of the goal point. On
the other hand, the repulsion potential field chosen for the
simulations is identical to the one in [25], where according
to the proximity between obstacle j and link i the repulsion
potential u

rep

(i,j) is given by:

u
rep

(i,j) =
{

0 ρ(i,j) > ρ1
krep

ρ(i,j)−ρ0
− krep

ρ1−ρ0
ρ(i,j) ≤ ρ1

(6)

Where krep is a repulsion constant, ρ(i,j) is the minimum
distance between obstacle j and link i of the robot, ρ1 is
the distance at which the repulsion potential starts acting on
the robot, ρ0 defines the forbidden area around the obstacle
where the robot cannot penetrate. Similar repulsion fields
could be added for joint limits avoidance and for self-
collision avoidance. Under the previous potential functions
a planar hyper redundant manipulator, with 15 DOF, is
navigating through 10 obstacles towards the goal. The goal
is marked by a green circle and obstacles are marked by
red circles, as shown in Fig. 1, where the Newton method is
applied to perform the collision avoidance and the motion
generation. The figure shows a sequence of configurations
taken by the robot during its motion towards the goal. In
the beginning of the simulation, the robot is in the vertical
upright configuration, links are fully stretched. Afterwards
the robot starts bending and reaching towards the goal while
navigating through the obstacles. In the simulation, the
Hessian matrix was calculated efficiently using (3), as such
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Fig. 1 Sequence in time of collision avoidance simulation for hyper
redundant planar manipulator using Newton method

an update time lower than 5 milliseconds was achieved on
dual core laptop without code optimization.

We want to note here that our choice of using a hyper
redundant manipulator for the tests is motivated by the
following:

1. Calculating the Hessian of a hyper redundant manipula-
tor in the conventional way is very difficult. Therefore,
we demonstrated the ability of the proposed algorithm
to calculate the Hessian efficiently and in real-time,
even in high dimensional spaces.

2. The oscillation problem is more evident in high
dimensional spaces. Therefore, we demonstrate the
effectiveness of the proposed algorithm over the
conventional gradient descent to reduce oscillations.

3. The difference in configurations taken by the robot for
the various methods is more visible for hyper redundant
manipulators.

For comparing the proposed implementation of the
Newton method as opposed to the traditional gradient
descent based method, two different tests are performed:

• Test 1: In this test a comparison between Newton
method and gradient descent is carried out. The
comparison criteria is in terms of the quality of the
generated path, and the minimum reach distance between
the last link of the manipulator and the obstacles;

• Test 2: In this test a comparison between three different
methods for performing the optimization is carried out.
Those methods are (1) Newton method, (2) gradient
descent and (3) gradient descent with momentum. The
comparison criteria is in terms of convergence rate.

In both tests the manipulators used are the same, planner, 15
DOF robots, with revolute joints and 0.2 meter link-length.
However, the positions of the goal point and the obstacles
are not the same.

Table 1 Coordinates of obstacles/goal for Test 1

Object (x, y) coordinates in meters

Goal (0.35,0.2)

Obstacle 1 (0.17,03)

Obstacle 2 (0.2,0.7)

Obstacle 3 (0.15,0.9)

Obstacle 4 (0.37,0.5)

Obstacle 5 (0.6,0.5)

Obstacle 6 (0.5,1.2)

Obstacle 7 (0.35,1)

Obstacle 8 (0.3,1.37)

Obstacle 9 (0.3,1.2)

Obstacle 10 (-0.15,1.1)

3.1 Test 1

In this test the Newton method applied to the problem
of collision avoidance and path planning for high DOF
manipulators is compared with the gradient descent method.
For this purpose the following MATLAB simulation is
proposed. Two identical planar robots with 15 DOF are
navigating towards the same goal point, while avoiding col-
lision with 10 circle-shaped obstacles. The (x,y) coordinates
of the obstacles and the goal point in Test 1 are as shown
in Table 1. In the beginning of the simulation, the two
manipulators are coincident with each other, dashed line in
Fig. 2. The blue manipulator is controlled using the New-
ton method and the red manipulator is controlled using the
gradient descent method. For performing the comparison
the same goal, obstacles, potential fields are used for both
manipulators. The only difference is in the optimization
direction used, where for the red robot the gradient method
is used to calculate the optimization direction, while for the
blue manipulator the Newton method is used to calculate the

Fig. 2 Test 1: comparison between configurations of the two
manipulators after a period of time from the beginning of the
simulation



0 10 20 30 40 50 60 70

Time (seconds)

-2

-1

0

1

2
A

n
g

le
 (

ra
d

)

J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

J11

J12

J13

J14

J15

Fig. 3 Test 1: joint angles (Newton method)
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Fig. 4 Test 1: joint angles (gradient method)

23.2 23.4 23.6 23.8 24

Time (seconds)

1.47

1.475

1.48

1.485

1.49

1.495

A
n
g
le

 (
ra

d
)

J1

Fig. 5 Test 1: first joint angle close up (Newton method)
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Fig. 6 Test 1: first joint angle close up (gradient method)
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Fig. 7 Test 1: minimum distance between last link and obstacles
(Newton method)
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Fig. 8 Test 1: minimum distance between last link and obstacles
(gradient method)



Table 2 Test 1. Minimum reach-distance ρ(15,j) −ρ0 between last link
of the manipulator and obstacles

Method Minimum distance (m)

Gradient descent 0.0356

Newton 0.0540

optimization direction. For both robots the magnitude of the
optimization step α is the same, in other words the update
equation for both robots is:

qm+1 = qm − αs (7)

Where s is the optimization direction. In the case of the
Newton method s is given by:

s = (H + λI)−1g∥∥(H + λI)−1g
∥∥ (8)

Fig. 9 Test 2: time line during simulations of 15 DOF planar manipulator for three different optimization methods

In case of the gradient method:

s = g

‖g‖ (9)

Figure 2 shows the final configurations taken by the two
manipulators. Figures 3 and 4 show joint angles for this
simulation as recorded in the Newton and the gradient
descent methods. After performing the simulation the two
methods are compared in terms of:

1. Quality of the path: The Newton method generated an
oscillation free path. On the other hand, the gradient
method suffered intermittent oscillations. This is
evident by comparing Figs. 5 and 6, where the angular
position of the first joint is plotted during the Newton
and during the gradient tests. It is worth mentioning that
the oscillations, or the zig-zag phenomena as known
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Table 3 Coordinates of obstacles/goal for Test 2

Object (x, y) coordinates in meters

Goal (0.4,1.1)

Obstacle 1 (0.2,0.3)

Obstacle 2 (0.2,0.7)

Obstacle 3 (0.15,0.9)

Obstacle 4 (0.37,0.5)

Obstacle 5 (0.6,0.5)

Obstacle 6 (0.5,1.5)

Obstacle 7 (0.35,1)

Obstacle 8 (-0.1,1.3)

Obstacle 9 (0.1,1.5)

Obstacle 10 (-0.15,1.1)

in the optimization community, happens in the gradient
method when one component of the gradient keeps
flipping direction during the minimization, as such the
minimization point keeps overshooting in the vicinity
of a cleavage on the optimization surface [19], this
phenomena does not appear in the Newton method.

2. Distance between robot and obstacles: In Newton
method the robot keeps longer distance away from
obstacles than in the gradient method where the robot
reaches closer to obstacles, despite the fact that identical
potential fields, geometries, and optimization steps are
used. This is demonstrated in Figs. 7 and 8, where the
distances ρ(15,j) − ρ0 between the last link of the robot
(link 15) and the obstacles, j = 1, 2..10, are plotted
for the Newton method in Fig. 7, and for the gradient
method in Fig. 8. Numerical values of the minimum
distance reached during the simulations are listed in
Table 2.

3.2 Test 2

Test 2 is performed to asses the convergence rate for
the Newton method against the gradient descent and the
gradient descent with momentum [28] as applied to the
problem of collision avoidance and path planning. The three
methods are applied in simulation environment, Fig. 9. In
all cases the simulation scenes are identical, the coordinates

Table 4 Test 2. Convergence rate for three different optimization
methods as applied to collision avoidance and path planning problems
for robotic manipulators

Method Iterations

Newton 55

Fixed step gradient descent 18073

Gradient descent with momentum 7928

of the obstacles and the goal points are as shown in Table 3.
The distance between the EEF and the goal position is used
as the convergence criteria, when the EEF is closer than 0.02
meter from the goal position, the algorithm is terminated
and the iterations number is reported. In all three methods
the step size α is taken as big as possible, given that the
algorithm does not cause the robot to overshoot through
any of the obstacles. From the tests the Newton method
achieved the best convergence per iteration, followed by the
momentum and lastly the gradient method. The convergence
rates achieved are as shown in Table 4.

4 Conclusion

This study addressed the application of Newton’s method
to the standard artificial potential fields for performing
collision avoidance and path planning in high DOF manip-
ulators. Using mathematical optimization, the collision
avoidance problem is reformulated. The Newton method
is utilized for performing the optimization. An efficient
symbolic formula for calculating the Hessian of robotic
manipulators is also presented. For evaluating the perfor-
mance of the Newton method, a comparison with gradient
based methods is performed in two different tests. In test
1 the Newton method and the gradient method are com-
pared in terms of quality of the path generated, oscillations,
and the minimum distance to obstacles. In test 2 three dif-
ferent methods, (1) Newton, (2) gradient descent, and (3)
gradient descent with momentum are compared in terms
of the convergence rate. According to the presented results
the proposed method achieves better performance. Future
work will be dedicated to applying the proposed technique
for controlling industrial robotic manipulator in human cen-
tered environments to achieve real-time collision avoidance
with dynamic obstacles.
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Appendix: Gradient and Hessian Formulas
Expressed in Joint Space

In this section, the formulas for the first and the second order
derivatives, gradient (4) and Hessian (3), of the potential
field with respect to manipulator’s joint angles are deduced.
Let uk(x) be a potential field, this potential field is described
in Cartesian space. It could be an attraction potential that
attracts the EEF to the goal, or a repulsion potential that
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repels the robot away from obstacles. Then the second order
approximation of the potential field uk(x) near the current
position x0 is given by:

uk(x) ≈ uk(x0) + �xT∇uk + �xT∇2uk�x (10)

Where:

• uk(x) is the approximate value of the potential function
at the Cartesian position x ;

• uk(x0) is the value of the potential function at the
Cartesian position x0 ;

• ∇uk is the gradient of the potential function uk with
respect to x taken at the point x0 ;

• �x = x − x0 ;
• ∇2uk is the Hessian of the potential function uk with

respect to x taken at the point x0 .

In addition, differential kinematics gives the following
relationship between elemental displacements in Cartesian
space and elemental displacements in joint space:

�x = J�q (11)

Where J is the Jacobian associated with the point of the
manipulator x0, and �q = q − q0. By substituting (11) in
(10) and fixing:

uk(x) ≈ uk(x0) + �qTJT∇uk + �qTJT∇2ukJ�q (12)

From the previous equation the gradient and the Hessian
formulas are deduced:

• The gradient is associated with the first order term of
the approximation:

gk = JT∇uk (13)

• The Hessian is associated with the second order term of
the approximation:

Hk = JT∇2ukJ (14)
Finally, in case of a manipulator subjected to several

potential fields simultaneously, the total potential field is the
sum of all of the potentials, and the total gradient g is the
sum of the individual gradients:

g =
∑

gk (15)

The total Hessian is the sum of the individual Hessians:

H =
∑

Hk (16)

References

1. Nakamura, Y.: Advanced robotics: redundancy and optimization.
Addison-Wesley (1990)

2. Sciavicco, L., Siciliano, B., Villani, L.: Lagrange and Newton-
Euler dynamic modeling of a gear-driven robot manipulator with
inclusion of motor inertia effects. Adv. Rob. 10(3), 317–334
(1995)

3. Flacco, F., De Luca, A., Khatib, O.: Control of redundant robots
under hard joint constraints: Saturation in the null space. IEEE
Trans. Rob. 31(3), 637–654 (2015)
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