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Restricted nonlinear model for high- and
low-drag events in plane channel flow

Frédéric Alizard1,† and Damien Biau2
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43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne, France

2DynFluid Laboratory, Arts et Métiers ParisTech, 151 Boulevard de l’Hôpital, 75013 Paris, France

A restricted nonlinear (RNL) model, obtained by partitioning the state variables into
streamwise-averaged quantities and superimposed perturbations, is used in order to
track the exact coherent state in plane channel flow investigated by Toh & Itano
(J. Fluid Mech., vol. 481, 2003, pp. 67–76). When restricting nonlinearities to
quadratic interaction of the fluctuating part into the streamwise-averaged component,
it is shown that the coherent structure and its dynamics closely match results from
direct numerical simulation (DNS), even if only a single streamwise Fourier mode is
retained. In particular, both solutions exhibit long quiescent phases, spanwise shifts
and bursting events. It is also shown that the dynamical trajectory passes close to
equilibria that exhibit either low- or high-drag states. When statistics are collected
at times where the friction velocity peaks, the mean flow and root-mean-square
profiles show the essential features of wall turbulence obtained by DNS for the same
friction Reynolds number. For low-drag events, the mean flow profiles are related to
a universal asymptotic state called maximum drag reduction (Xi & Graham, Phys.
Rev. Lett., vol. 108, 2012, 028301). Hence, the intermittent nature of self-sustaining
processes in the buffer layer is contained in the dynamics of the RNL model,
organized in two exact coherent states plus an asymptotic turbulent-like attractor. We
also address how closely turbulent dynamics approaches these equilibria by exploiting
a DNS database associated with a larger domain.

Key words: low-dimensional models

1. Introduction
The flow visualization of turbulent boundary layers realized by Kline et al. (1967)

revealed intermittent structures in the layers closest to the wall. The near-wall region
is composed of alternating spanwise streaks of lower- and higher-speed fluid, with
fairly regular spanwise spacing of approximately 100 wall units and amplitudes
amounting to ±50 % of the mean velocity. Streaks are closely related to the existence
of streamwise counter-rotating vortices which alternately transport high-speed fluid
towards the wall and low-speed fluid away from it. Wallace, Eckelmann & Brodkey
(1972) introduced the quadrant classification of the plane of streamwise (u) and
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wall-normal (v) velocity fluctuations. The instantaneous product uv was classified
according to the sign of its components into four categories. They associated an
upstream upwards motion (u < 0, v > 0, Q2 event) with the ejection process and
attributed the opposite combination (u> 0, v < 0, Q4 event) to a sweep-type motion.
The two other types of motion, with positive product uv, were found to account for
the ‘excess’ stress produced by the first two categories, which gives contributions of
opposite sign. These sweep and ejection events result in the transfer of wall-normal
momentum and the production of turbulent kinetic energy. Moreover, the low-speed
streaks do not stay at the wall but migrate outward as they move downstream and
then suddenly burst into intense, small-scale fluctuations. Kim, Kline & Reynolds
(1971) shown that a very high fraction of the total turbulence production occurs
during these relatively short bursting times.

These pioneering works aimed at describing turbulence through coherent structures
have fundamentally changed our understanding of wall turbulence. While statistical
descriptions and models for wall turbulence fail to describe repeating patterns of
organized motion, structural approaches (i.e. devoted to the study of their geometries,
characteristic length, temporal scales and convection velocities) offered a promising
route for exploring their dynamics (Robinson 1991; Jiménez 2018). In particular, since
these coherent motions are seen to be responsible for the maintenance of turbulence
in wall-bounded flows, their study has motivated a number of researches based on
dynamical systems theory in the past couple of decades.

The fact that near-wall structures almost scale in inner units, namely with the
kinematic viscosity and wall shear stress, indicates that they are universal features
of wall-bounded flows. Jiménez & Moin (1991) used the possibilities of numerical
simulations to investigate the origin of streaks. By reducing the streamwise and
spanwise dimensions of the periodic domain, they could identify the dimensions
of a minimal flow unit (MFU) below which turbulence could not be sustained.
In addition, Jiménez & Pinelli (1999) further demonstrated that the dynamics at
the MFU is autonomous, the self-sustaining mechanism being independent of the
peculiar outer flow. In this vein, Hamilton, Kim & Waleffe (1995) developed the
self-sustaining process (SSP) at play in wall-bounded turbulent flows (see Panton
(2001) for a review). The authors established three fundamental elements: (i) rolls
distribute streamwise velocity through the linear non-modal lift-up effect (Landhal
1980) to generate streaks; (ii) fluctuations will in turn become amplified due to the
secondary instability of streaks; and (iii) nonlinear quadratic interactions of instability
waves regenerate rolls. Waleffe (1998, 2003) further confirmed the validity of the
SSP theory by computing three-dimensional invariant states (steady or travelling
waves) in plane Couette and channel flows using a continuation method. Since
then, this theory has been applied with success to describe equilibrium states where
streamwise vortices, streaks and neutral eigenmodes combine to reach a sustained
travelling wave equilibrium (Kawahara, Uhlmann & Veen 2012). For wall-bounded
flow, these equilibria produce a state space representation that shows the role of
coherent states and their unstable manifolds in guiding turbulent dynamics (Gibson,
Halcrow & Cvitanovic 2008). Continuation revealed that these equilibrium states
arise from a saddle-node bifurcation for various wall-bounded flows (Couette and
channel flows, for instance) at some Reynolds number for a given computational box.
Two solutions are found to emerge at the critical Reynolds number: one associated
with a lower-branch solution that is characterized by a low skin friction drag, and
an upper-branch solution that has a high drag. Waleffe (2003) and many others
since then have shown that, while the lower-branch solution is associated with a
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separatrix between the laminar and turbulent attractors (where one unstable direction
is identified), the upper-branch solutions are shown to match reasonably well with
wall turbulence at low Reynolds numbers (in terms of both statistics and coherent
structures). This result gave strong support that states lying on the upper branch
represent saddle points in the phase space of the turbulent attractor. Such invariant
structures are thus referenced as exact coherent states (ECSs) by previous authors.
These analyses were recently extended to high Reynolds numbers using the filtered
Navier–Stokes equations by Cossu and co-workers (see Cossu & Hwang (2017) for
a review).

Recent studies have supported that wall turbulence exhibits different states in its
dynamics. While strong turbulence activity dominates for long periods of time, weak
turbulence, as evidenced by a drag reduction, occurs for short time intervals. During
recent decades, new numerical tools have been dedicated to the computation of rare
events by selecting trajectories (see Tailleur & Kurchan (2007) and Ragone, Wouters &
Bouchet (2017), among others). Given the complexity of turbulence, direct application
of these methods to Navier–Stokes equations is impracticable; therefore, it appears
necessary to consider some simplified models.

In that respect, Park & Graham (2015) found a new family of travelling wave
solutions that emerge through a saddle-node bifurcation for the case of channel
flow. In particular, the authors have shown that, while statistics carried out on the
upper-branch solution (i.e. associated with the higher friction velocity) strongly match
with turbulent channel flow profiles, the lower-branch solution (i.e. associated with
the lower friction velocity) exhibits a mean flow profile that approaches the Virk
log law (Virk, Mickley & Smith 1970). It is widely accepted that mean velocity
profiles most closely approach this law in the log region of a channel flow with
homogeneous additive polymer; it has only recently been shown that this state
defines a universal limit for Newtonian turbulence, the so-called maximum drag
reduction (MDR) asymptote (see Xi & Bai (2016) for a recent review).

More recently, Kushwaha, Park & Graham (2017) have shown that, for low
Reynolds numbers, turbulence in channel flow exhibits intermittency that is closely
tied to chaotic movement of turbulence trajectories between the lower- and upper-
branch solutions found by Park & Graham (2015). By using a shooting method, Itano
& Toh (2001) and Toh & Itano (2003) have tracked ECSs for a channel flow within
a minimal flow framework. This solution consists of a periodic-like solution localized
on one side of the channel in the wall-normal direction. One cycle of the ECS is
characterized by two different motions. While, for a very long quiescent phase, the
flow state exhibits a single streak, the latter is shifted in the spanwise direction after
each bursting event where the flow structure is dominated by a double-streak motion.
Because previous authors only succeeded to track the solution for one-and-a-half
periods, no definitive statement has been made whether the solution converges on
a heteroclinic cycle or a periodic orbit. Recently, Zammert & Eckhardt (2014) and
Rinaldi, Schlatter & Bagheri (2018) revisited this previous solution. Using the same
shooting method, they were able to track the ECS on several cycles alternating
between burst and long quiet intervals. On the one hand, the latter analysis gave thus
a strong indication that the finite-amplitude solution is attracted to a period orbit. On
the other hand, they show that, for wider domains, the attracting state is localized
in the spanwise direction. Similarly, in the asymptotic suction flat-plate boundary
layer, Kreilos et al. (2013) also found an ECS that exhibits the same dynamical
activity, providing further evidence that such a periodic state is a universal feature of
wall-bounded flow. Hence, it may also be suggested that such periodic solutions can
be representative of turbulent trajectories between low- and high-drag events.
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In order to reduce the complexity of the dynamics, important expectations emerged
from the linear analysis. The only mathematical justification for the linear assumption
of non-infinitesimal fluctuations is provided by the rapid distortion theory (RDT).
This theory goes back to a paper of Taylor (1935), who analysed the damping of
turbulent fluctuations in flow through a contraction in a wind tunnel. If the straining
is sufficiently rapid, then its effect on the turbulence may be treated in a first
approximation by a linearized analysis. The nonlinear interaction of the turbulence
with itself is neglected. The distinction between the terms ‘rapid’ (linear) and ‘slow’
(nonlinear) is derived from the fact that only the rapid part responds immediately
to a change imposed on the mean field, and the slow part will feel the change
through nonlinear interactions. For further details and the various applications, see
the overview by Hunt & Carruthers (1990). By solving the instantaneous linear
equations of the RDT, Lee & Moin (1990) have shown that a high shear rate
produces structures in homogeneous turbulence similar to the streaks observed in
the sublayer of wall-bounded turbulent shear flows. That numerical result has been
experimentally confirmed by Diwan & Morrison (2017).

A heuristic argument for the linear dynamics of fluctuations around a nonlinear
mean flow was proposed by Malkus (1956). He conjectured that the turbulent mean
state is in equilibrium with the turbulent perturbations responsible for the Reynolds
stresses, the perturbations being in the subspace of the neutral modes of the linearized
Navier–Stokes equations. Malkus tested this promising idea with a time-averaged
flow but failed to obtain a neutral mode. Renewed interest followed the new findings
about subcritical transition to turbulence of linearly stable wall flows. Butler & Farrell
(1993) applied an optimization method to compute the most amplified streaks over
an appropriate turbulent eddy turnover time, and the streak spacing was found to be
in good agreement with the expected value, approximately 100 wall units. Similarly,
linear models based on the resolvent analysis technique proposed by Hwang & Cossu
(2010) and McKeon & Sharma (2010) and further explored by Sharma & McKeon
(2013) and Sharma, Moarref & McKeon (2017) have also clearly enlightened the
relevance of the linear mechanism to build a modelling framework for wall-turbulent
coherent motions. Nevertheless, these linear studies failed to describe the SSP and
intermittency or bursts.

All these studies used a time-averaged mean flow, extracted from direct numerical
simulation (DNS), for example, so the mean flow is decoupled from the fluctuations.
In fact, the time averaging is too restrictive and Farrell & Ioannou (1996) argued
that non-stationarity is a fundamental ingredient in turning transient growth into
sustained growth. The growth of short scales forces the temporal oscillation of
long scales, and the non-stationarity of the latter continuously restarts the transient
growth. Equilibrium is more a cycle rather than a permanent balance between energy
production and dissipation.

An attractive variation is the division of the flow into infinitely long streaks and
vortices and the corresponding fluctuation. The streaks are nonlinear and driven by
vortices which are generated by nonlinear Reynolds stresses created by small scales.
These scales evolve within the non-uniform flow field of the streak, but all nonlinear
interactions among themselves are neglected. That restricted nonlinear (RNL) model
is two-dimensional in the cross-flow plane with three velocity components; it permits
a reduction of the numerical cost and a simplification of the dynamics. Despite its
simplicity, that reduction is able to reproduce the essential features of transitional and
turbulent flows.

Biau & Bottaro (2009) used the RNL system associated with an optimization
method to follow an optimal path to transition in a linearly stable duct flow. The
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model was able to reach a sustained turbulence. A parametric study on the single
streamwise wavelength of the fluctuation shows a cut-off of approximately 300 wall
units, below which no transition can be observed, which corresponds to the minimal
flow unit obtained with DNS. Moreover, the optimal solution from the RNL system
is close to the nonlinear solution sited on the laminar–turbulent separatrix, sometimes
called the edge state.

Farrell & Ioannou (2012) used the RNL system with a stochastic forcing (see also
the overview in Farrell, Gayme & Ioannou (2017)). Their results confirmed that this
RNL system supports a realistic SSP. At small forcing amplitudes, the only stable
equilibrium of the model system is laminar, but, as the forcing increases, there is
first a bifurcation from laminar state to steady streaks and rolls, and later another
one to an unsteady ‘bursting’ state. Bretheim, Meneveau & Gayme (2015) have
shown that simulations using the RNL system with appropriately chosen streamwise
modes, namely the band-limited RNL model, exhibit the main characteristics of wall
turbulence, similar coherent motions and statistics even if only a few streamwise
Fourier wavenumbers are retained. In particular, mean velocity profiles obtained with
such a band-limited RNL model follow the standard logarithmic law. An RNL model
was also introduced by Willis & Kerswell (2009) for localized turbulence in pipe
flow. For this purpose, the mean flow is axisymmetric with one Fourier mode in
azimuth which is able to reproduce the observed behaviour such as localized ‘puff’
structures and ‘slug’ turbulence.

While previous studies have proven fruitful in gaining a better understanding of
RNL systems applied to sustained turbulence, the scope of this paper is to extend
these approaches by capturing invariant solutions that aim to describe the closed
path along turbulent saddle points and intermittency within an RNL framework. For
that purpose, the present study is devoted to investigate the exact coherent periodic
state initially found by Toh & Itano (2003) using DNS with RNL simulations where
only a single Fourier mode in the streamwise direction is retained. In particular,
we will investigate whether or not this minimal representation of flow dynamics is
able to capture the essential features of the cycle, such as bursting events, spanwise
shifts, long quiescent phases or high- and low-drag events. For that purpose, both
flow structures and statistics will be investigated. The paper will be organized as
follows. After having presented governing equations and numerical methods in § 2,
the tracked solution computed using an RNL system is discussed in the light of
previous studies and statistics provided by DNS database in § 3. In particular, the
connection between bursting events and near-wall turbulence will be investigated. The
influence of spanwise width, Reynolds number and streamwise wavenumber onto the
edge-tracked solution will be discussed in § 4. Finally, § 5 will be devoted to draw
some conclusions and prospects.

2. Method
2.1. Governing equations

We consider the pressure-driven incompressible flow of a Newtonian fluid in a plane
channel maintained at constant mass flux. The usual set of Cartesian coordinates
(x, y, z) and velocity components u = (u, v, w) are adopted in the streamwise,
wall-normal and spanwise directions, respectively. The half-channel height h is chosen
as the characteristic length scale, and velocities are scaled with the laminar centreline
velocity Uc for the given mass flux. The corresponding Reynolds number is defined
as Re = Uch/ν, with ν the kinematic viscosity. In the following, the selected value
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is Re= Uch/ν = 3000, as used in Itano & Toh (2001) and Toh & Itano (2003), and
corresponds to a value Reb = 2000 based on the bulk velocity.

The non-dimensional Navier–Stokes equations are then given by

∂u
∂t
+ u · ∇u=−G(t)ex −∇p+

1
Re
∇

2u,

∇ · u= 0,

 (2.1)

where ex = (1, 0, 0). The uniform pressure gradient, G(t), that drives the flow is
adjusted dynamically to maintain a constant mass flux. No-slip boundary conditions
are applied on the two walls y = ±1 and periodic boundary conditions are adopted
in the homogeneous streamwise and spanwise directions. Hereafter, we denote uτ the
friction velocity and quantities in inner scaling are referenced with the + superscript.
The friction Reynolds number is denoted Reτ = uτh/ν.

In the present work, the quasi-linear restriction of the dynamics to roll–streak
interactions, namely the so-called RNL system (Farrell et al. 2016), is used to study
finite-amplitude solutions of plane channel flow. In this context, the velocity u is
decomposed into mean and perturbation components:

u=U+ u′. (2.2)

The mean velocity is U(y, z, t)=〈u〉 with 〈 〉 the averaging operator in the streamwise
direction. An overbar over any quantities will denote averaging along the spanwise
direction. The pressure is similarly split into p(x, y, z, t) = G(t)x + P(y, z, t) +
p′(x, y, z, t).

The fluctuation can be decomposed into a Fourier expansion. Hereafter, we will
consider a minimal RNL system where only a single streamwise component is
retained. The fluctuations are thus expressed as

u′ = ûeiαx
+ û∗e−iαx, (2.3)

with α the streamwise wavenumber. As a consequence, the nonlinear terms in
the fluctuation equation u′ · ∇u′ − 〈u′ · ∇u′〉 only contain first harmonics, namely
modes with wavenumbers ±2α; hence they are neglected with the single-mode
restriction. The RNL model is thus derived from the Navier–Stokes equations through
a Galerkin truncation procedure similar to that used to derive the Lorenz model of
Rayleigh–Bénard convection. Attention must be paid to this severe truncation; indeed
Curry et al. (1984) found that the chaos observed in the Lorenz system is in fact
a product of inadequate spatial resolution. The RNL model is minimal in the sense
that it assumes a separation of scales that does not exist in reality, so the model does
not really represent multiscale turbulence. Another issue concerns the dependence of
the nonlinear mean flow with respect to the streamwise length of the computational
domain. On the other hand, the model is deterministic and rigorously derived from
the Navier–Stokes equations.

As stated by Waleffe & Kim (1997) and Biau & Bottaro (2009), the model may
be further simplified by considering that u′ is of order O(ε). The roll vortices V and
W are of order O(ε2) and the streak component of the streamwise mean flow U is
of order O(ε2Re) as a consequence of the lift-up mechanism (Schmid & Henningson
2001). This approximation is consistent with the results given by Wang, Gibson &
Waleffe (2007), who have shown that the travelling wave solution, associated with the
lower branch, scales with Reynolds number Re such that streaks are of order one but
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rolls are O(Re−1), the fundamental fluctuating mode scales with O(Re−1) while the
harmonics are o(Re−1). Hence, at the order O(Re−1), the dynamics of ECS lying on
the lower branch is consistent with the RNL system. More recently, Hall & Sherwin
(2010) and Blackburn, Hall & Sherwin (2013) have developed a similar analysis to
compute three-dimensional rolls–perturbation interaction equilibria of laminar plane
Couette flow for high-Reynolds-number flow cases.

Nonetheless, the issue of capturing travelling wave characteristics of the upper
branch and more complex solutions such as periodic states suffer from a lack of
rigorous justification. However, for low Reynolds numbers, Pausch et al. (2018) have
recently shown that travelling wave states associated with the upper-branch solution
for both plane channel flows and Couette flows are still well approximated using
assumptions that hold for lower-branch solutions.

The equations governing the mean, streamwise-averaged flow read

Vy +Wz = 0,
Ut + VUy +WUz =−G(t)+ Re−1(Uyy +Uzz)− ∂y(v̂

∗û+ v̂û∗)− ∂z(ŵ∗û+ ŵû∗),
Vt =−Py + Re−1(Vyy + Vzz)− ∂y(2v̂v̂∗)− ∂z(ŵ∗v̂ + ŵv̂∗),

Wt =−Pz + Re−1(Wyy +Wzz)− ∂y(v̂
∗ŵ+ v̂ŵ∗)− ∂z(2ŵ∗w),


(2.4)

associated with homogeneous boundary conditions U = V =W = 0 on the walls. The
streamwise pressure gradient G(t) is adjusted to fix the mass flow rate. The Navier–
Stokes equations, linearized around the streaky flow, are

iαû+ v̂y + ŵz = 0,
ût + iαUû+ v̂Uy + ŵUz =−iαp̂+ Re−1(−α2û+ ûyy + ûzz),

v̂t + iαUv̂ =−p̂y + Re−1(−α2v̂ + v̂yy + v̂zz),

ŵt + iαUŵ=−p̂z + Re−1(−α2ŵ+ ŵyy + ŵzz),

 (2.5)

together with û= v̂ = ŵ= 0 on the walls.
In the present configuration, the system (2.4) and (2.5) is capable of yielding a self-

sustained state based on linear growth of u′, generation of streamwise vortices due
to the fluctuation Reynolds stress forcing, production of streaks by lift-up effect and
regeneration of U.

2.2. Exact coherent state trajectory
There is typically a parameter in front of the stresses that feed back into the
streaks and vortices, equivalent to the amplitude of the fluctuations, that has to
be adjusted to prevent secular terms. To constrain a phase-space trajectory to stay
on the edge surface, a shooting method as first described by Itano & Toh (2001)
and Toh & Itano (2003) is used by considering the coupled system of equations
(2.4) and (2.5). To obtain a finite-amplitude solution, Toh & Itano (2003) suggest
the introduction of a similar decomposition to the one associated with the RNL
system: a quasi-two-dimensional state and three-dimensional fluctuation. By using
DNS, the latter authors search for a solution lying on the edge by adjusting the
shooting parameter at an initial time. The procedure is then repeated for adjacent
time intervals. This shooting method is well suited to track a dynamical trajectory
that exhibits heteroclinic connections (Duguet, Willis & Kerswell 2008; Schneider
et al. 2008). It further indicates the ability of this approach to deal with the periodic
solution found by Toh & Itano (2003). When considering an RNL system, the
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shooting method is straightforward. Let us introduce a shooting parameter fi such that

ui =Ui + fiu′i, (2.6)
where the subscript i denotes the time interval. The fitting parameter fi is adjusted
such that the amplitude of the fluctuation u′ is kept finite in the time interval i.
Unlike previous studies based on DNS, both the mean flow and fluctuation are
already provided by the RNL system. The inherent difficulty to track the edge for
a long time interval due to double-precision limitation is overcome by computing a
distinct shooting parameter for each time substep. Hereafter, using a bisection method,
fi is refined up to 14 significant digits in double precision for a given dimensionless
time interval ti + δt, where ti is fixed at ≈350 and δt≈ 2ti.

2.3. Numerical methods
The numerical method is based on a spectral approximation of the velocity fields using
Fourier expansions in both the streamwise and spanwise directions and Chebyshev
polynomials in the wall-normal direction. The divergence-free condition is achieved by
using the Uzawa method (Peyret 2002). The discrete system attached to (2.4) and (2.5)
is solved at each time step using a semi-implicit second-order extrapolation/backward
differentiation scheme as described by Peyret (2002). In particular, convective
terms are treated explicitly while an implicit scheme is used for viscous terms.
For dealiasing, the 3/2 rule is adopted for Fourier expansions. The numerical method
is further detailed in Alizard (2015) and a validation of the code is carried out in
Alizard (2017). For the RNL model, the domain sizes are first identical to those used
by Toh & Itano (2003): π, 2 and 0.4π with 1 × 80 × 32 grid points. This gives a
streamwise wavenumber α = 2. For the DNS, a similar spectral method is used; and
the domain sizes are six times larger, 6π, 2 and 2.4π with 256 × 151 × 256 grid
points, respectively, in streamwise, wall-normal and spanwise directions. The grid
spacings in the streamwise and spanwise directions are respectively 1x+ = 9.8 and
1z+ = 3.9 in wall units.

3. Results
3.1. Direct numerical simulation

As a preliminary result, figure 1 shows the probability distribution (density) function
(p.d.f.) of the wall shear stress fluctuations τ normalized with its mean value 2× 10−3.
The viscous scaling provides a good collapse, except for the tails (Örlü & Schlatter
2011). The p.d.f. is well described by a log-normal distribution, as first shown by
Alfredsson, Örlü & Schlatter (2011), given by

f (τ )=
1

σ
√

2π
e−(ln τ−µ)

2/(2σ 2), (3.1)

with µ = −0.0278 and σ = 0.3447, respectively, the mean and root-mean-square
(r.m.s.) values of ln τ . Log-normal variability is basically based on a variety of forces
acting independently with multiplicative effects which are encountered in many fields
of physics (Limpert, Stahel & Abbt 2001). Log-normal distributions have also been
found to describe various phenomena in near-wall turbulence, e.g. the average inner
normalized streak spacing (Smith & Metzler 1983), and the time interval between
burst events (Rao, Narasimha & Narayanan 1971).

The p.d.f. of the wall shear stress (figure 1) shows the existence of high- and
low-drag events; interestingly, the probability to observe a sublaminar drag is
approximately 0.17 %.
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FIGURE 1. Probability distribution function of the streamwise wall shear stress normalized
with the mean value. The p.d.f. is compared to a log-normal distribution (dashed line). The
laminar value is indicated with the vertical dotted line.

3.2. Periodic solution of minimal restricted nonlinear model
In this section, the periodic solution studied by Toh & Itano (2003) and Zammert
& Eckhardt (2014) is revisited using the minimal RNL system. The same initial
conditions as given by Toh & Itano (2003) are used for the system (2.4) and (2.5):

U=
(

1− y2,−
∂Ψ

∂z
,
∂Ψ

∂y

)
, u′ =

(
0, 0,−

∂Φ

∂y

)
, (3.1a,b)

where Ψ (y, z)=F(y) sin(2πz/Lz), Φ(x, y)=F(y) sin(2πx/Lx) and F(y)=A(exp(cm(−y−
1)) − 1)2(exp(cp(y − 1)) − 1)2, with A = 1 × 10−10, cm = 1 and cp = −6. It consists
of a pair of streamwise vortices located near the lower wall superimposed onto the
Poiseuille flow solution. For a sufficiently high perturbation amplitude, a secondary
instability occurs.

To describe the solution lying on the edge, we introduce the kinetic energy norm
of the fluctuation:

E=
∫ 1

−1

∫ Lz/2

−Lz/2
û · û∗ dy dz. (3.2)

To characterize the number of streaks associated with the solution, we also define
the kinetic energy norms for the fluctuation restricted to the fundamental and its
first harmonic spanwise Fourier mode as E1 and E2. In figure 2(a), E(t) is shown.
After a transient behaviour, the shooting parameter fi is found to oscillate between
0.992 and 0.998. The fact that fi is close to one suggests that the solution obtained
by connecting each time substep approximates reasonably well the exact solution.
The trajectory resulting from the shooting method exhibits a convergence towards a
simple state. The latter is characterized by long quiescent intervals separated by quick
bursting events that repeat periodically, as shown in figure 2(a). Figure 2(b) displays
the time evolution of E1 and E2. The figure shows that, while the flow is dominated
by one pattern along the spanwise direction during quiet phases, the bursting event is
characterized by competition between the fundamental and its first harmonic spanwise
Fourier mode.
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In figure 3, the wall shear stress distribution normalized with the turbulent value is
shown in the plane (t, z) for a time interval that includes several bursts. The figure
shows that the burst is accompanied by a strong increase of wall skin friction where
the latter reaches a level close to the turbulent one. It is also interesting to note that,
while the wall shear stress has a slightly higher level than its laminar counterpart
(i.e. ≈0.35) during the major part of the quiescent phase, it also exhibits sublaminar
drag events. This suggests that the minimal representation of this periodic solution is
connected to close passes along the turbulent attractor which shares similarities with
statistics shown in figure 1. The results are also consistent with Toh & Itano (2003),
Zammert & Eckhardt (2014) and Rinaldi et al. (2018).

3.3. Equilibrium states and bursts
To further characterize the solution provided by the RNL restriction, we examine the
evolution of the kinetic energy input rate I and the dissipation ε of the system

dE
dt
= I − ε, (3.3)

with
I =−

∫
D

dp
dx

u · ex dD and ε =
1

Re

∫
D
∇u : ∇u dD. (3.4a,b)
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In figure 4(a,b), the energy input–dissipation rate trajectory and the corresponding
time evolution of the wall shear stress for U (i.e. spanwise-averaged U) are shown
for the minimal RNL solution. Three characteristic points, referenced as P1, P2 and
P3, are also depicted in figure 4(a,b). While the solution spends a relatively long
time near P1 and P2, it orbits only briefly along P3 where the dissipation and τ+

are maximum. One may note that P1, P2 and P3 exhibit almost an equilibrium
state where the production is balanced by the dissipation. The periodic solution
trajectory obtained using the minimal RNL system bears a close resemblance to the
one described by Toh & Itano (2003), in both amplitudes and excursions to saddle
points. Nevertheless, while Toh & Itano (2003) pointed out that the phase portrait
exhibits an almost equilibrium state for P/Plam ≈ 1.25, at which the authors argue
that the solution corresponds to the two-streaks mode, here we found that the latter
case coincides with the solution that orbits close to the maximum of dissipation
(i.e. when the wall shear stress peaks). For instance, a visual representation of the
mean flow U in the cross-section plane (y, z) is provided in figure 5(c) for P3. The
figure shows that, for this specific point, the streamwise-averaged flow consists of a
pair of low-speed streaks generated by quasi-streamwise vortices.

As shown in figure 5(a,b), although the streak/vortex pattern does not really change
for P1 and P2 (i.e. both are mainly associated with a single low-speed streak flanked
by a pair of streamwise vortices), it appears that the wall-normal position of the eddies
slightly changes. In particular, the vortex centres are seen to be displaced away from
the lower wall for the P1 case in comparison to the P2 case. This has the consequence
that the low-speed streak is displaced away from the wall and then the friction exerted
along the lower wall is reduced. For comparison, the vortex/streak pattern shown in
figure 5(c), where the dissipation rate peaks, is pushed towards the lower wall.
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figure 4).

3.4. Two exact coherent states?
In the phase plane, P1 and P2 exhibit characteristics of equilibrium states driven by a
self-sustained mechanism (Waleffe & Kim 1997). A linear temporal stability analysis
is carried out for streamwise-averaged flows U that orbit close to P1 and P2, assuming
a steady solution (the code is detailed in Alizard (2015)). In figure 6, we show the
spectra for P1 and P2 flow cases in the (c, σ ) plane, where c is the phase velocity and
σ is the temporal amplification rate. The figure shows that the spectra exhibit a quasi-
neutral mode for c ≈ 0.72 and c ≈ 0.83 for P2 and P1, respectively. We investigate
now the regeneration of rolls/streaks by the nonlinear self-interaction of that neutral
instability mode and the lift-up effect for both solutions. The spanwise components of
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the neutral modes are shown in figures 7(a) and 7(b), for P1 and P2, respectively. Both
modes exhibit a characteristic sinuous pattern with the energy mainly concentrated
near the critical layer, similarly to the lower-branch states found by Wang et al. (2007)
and Hall & Sherwin (2010) in Couette flow. Rolls are given by

Vy +Wz = 0,
Re−1(Vyy + Vzz)=−Py − ∂y(2v̂v̂∗)− ∂z(ŵ∗v̂ + ŵv̂∗),

Re−1(Wyy +Wzz)=−Pz − ∂y(v̂
∗ŵ+ v̂ŵ∗)− ∂z(2ŵ∗w).

 (3.5)

For the streak component, we solve iteratively the following equations:

Re−1(Uc
yy +Uc

zz)=Gn
− VUn

y −WUn
z − ∂y(v̂

∗û+ v̂û∗)− ∂z(ŵ∗û+ ŵû∗),
Un+1
= γUc

+ (1− γ )Un,

}
(3.6)

with γ a relaxation parameter (0 6 γ 6 1) and G a pressure gradient coefficient
that is adjusted to fix the mass flow rate. The amplitude of the Reynolds stress
part is provided by the RNL simulation for either P1 or P2 events. The numerical
implementation of the system (3.5) and (3.6) requires only minor modifications of
the RNL solver.

The solutions obtained by solving (3.5) and (3.6) are illustrated in figure 7(c,d).
Interestingly, the forcing terms in (3.5) create streamwise vortices that exhibit strong
similarities with rolls provided by the unsteady RNL system shown in figure 4(a,b).
In addition, under the action of the lift-up effect, the streaky motion derived from the
system (3.6) closely resembles the time-dependent solution for both P1 and P2 events.
Hence, near P1 and P2, the finite-amplitude solution orbits near quasi-equilibrium
states where the roll, low-speed streak and streak instability mode have the right
pattern and amplitude to almost stay in a mutually self-sustained travelling wave state
(Waleffe 2003). Finally, one may point out that the point P1 is not identified by Toh
& Itano (2003). However, this discrepancy may well be due to the relatively limited
time integration carried out by the previous authors.

With the aim to connect turbulent coherent structures near the wall with close passes
along the orbit P3, statistics obtained by averaging the instantaneous flow (i.e. U+ u′)
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equilibrium state.

with respect to the spanwise and the streamwise directions are evaluated at P3. For
comparison purposes, the state P1 is also considered. In figure 8, we show U in inner
units for P1 and P3 events. The standard law of the wall, compounding U+ = y with
U+ = 1/κ ln y+ + C, where κ = 0.41 and C = 5.2, and the mean velocity associated
with an asymptotic state called MDR, the so-called Virk log law, U+ = 11.7 ln y+ −
17.0 (Virk et al. 1970; Xi & Graham 2012), are also represented. Figure 8 also shows
the p.d.f. obtained from a DNS database, plotted on a logarithmic scale, for locally
averaged velocity profiles carried out at each wall-normal position.

In figure 9, the streamwise r.m.s. velocity profiles as a function of the wall distance
are shown in inner units.
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Figures 8 and 9 show that the periodic solution displays distinct phases in its
dynamics. During the bursting (P3 event), its trajectory exhibits active turbulence
on rare occasions where the friction velocity peaks. In this case, the mean flow
profile exhibits a small intermediate region (considering the low value of the friction
Reynolds number) where it approaches a logarithmic law with a constant close to the
von Kármán value. In addition, at this specific time, the friction Reynolds number
Reτ ≈ 112, which is close to the value provided by the full DNS (≈133). During P1
events (i.e. where friction velocity reaches a minimum), the mean flow profile seems
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to tend to the Virk log-law profile. Nonetheless, although it seems clear from figure 1
that turbulent trajectories experience low-drag events, as shown in figure 8 it appears
difficult to compare these states as close excursions through the vicinity of the P1
(low-drag) solution.

While urms exhibits one peak for P1 (figure 9a), a second peak near the wall
appears for P3 events at a wall-normal position y+ ≈ 15 (figure 9b). One may note
that the latter peak closely matches the one corresponding to the innermost layer
distribution found in DNS. In addition, near the wall, a close match is observed
between the minimal RNL system and full DNS. It is also interesting to remark
that the contribution of the fluctuating part is negligible for P1 and P3 for r.m.s. By
recalling that the contribution of the streamwise component due to U is associated
with the streak, it further indicates the strong correlation between the near-wall
peak of the streamwise velocity fluctuations observed in experiments and DNS with
streaks. Hence, the periodic edge found by Toh & Itano (2003) and computed here
using a minimal RNL model also exhibits strong similarities with the travelling wave
solutions given recently by Park & Graham (2015). The latter authors found ECSs
where travelling waves arising from a saddle-node bifurcation induce either a mean
velocity profile that resemble the Virk log law (the lower-branch solution) or turbulent
mean flow profile (the upper-branch solution). However, a clear connection between
this bifurcation and the periodic edge is still missing. Finally, we may remark that
the streak spacing during the burst is ≈70 in inner units, which is lower than the
near-wall streak spacing observed usually in DNS (≈80–120). This may explain why
the roll/streak inner-layer dynamics observed here appears only during a short time.

4. Discussion
Previously, the Reynolds number, streamwise and spanwise lengths match values

given by Toh & Itano (2003). In the present section, the structural sensitivity of the
solution with respect to these three parameters is discussed.

4.1. Effect of the Reynolds number
The increase of the Reynolds number will increase the distance, in phase space,
between the turbulent attractor P3 and the travelling wave solutions P1 and P2. As a
consequence, the period of the trajectory on the edge is expected to strongly increase
with the Reynolds number. Moreover, the solution P3, which captures the key statistics
of turbulent shear, is inconsistent with the RNL model for large Reynolds numbers.
On the other hand, the two travelling wave solutions (P1 and P2) are lower-branch
coherent states. As shown by Wang et al. (2007), for large Reynolds number, their
asymptotic structure consists of O(1) streaks, O(Re−1) streamwise rolls and a weak
streamwise wave that develops on the critical layer, and higher harmonics become
negligible. Thus, for these equilibrium states, the RNL model is expected to be
consistent with higher values of the Reynolds number.

For large Reynolds numbers, a feasible solution is to extend the RNL equations
with the turbulent model. Recently, Rawat, Cossu & Rincon (2014, 2016) and Hwang,
Willis & Cossu (2016) have computed invariant solutions using an overdamped
large-eddy simulation (LES) at Reτ > 103 that closely matches with very-large- and
large-scale coherent structures observed in turbulent channel flows. In particular, by
increasing artificially the Smagorinsky constant to account for the dissipation of
surrounding small-scale motions, they were able to isolate a self-sustained exact
coherent state in the outer region. Bretheim, Meneveau & Gayme (2018) extended
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Lx=π: (a) time evolution of kinetic energy of the fluctuation; and (b) spanwise and time
evolution of the wall shear stress, normalized with the turbulent value.

the RNL model to high Reynolds numbers by using an RNL-LES framework where
appropriate streamwise wavenumbers are identified: the ‘band-limited RNL-LES’.
The authors showed that such a simulation reproduces successfully some of the
most important statistical properties (i.e. the mean velocity and second-order moment
profiles). Hence, the use of an RNL system where an additional term modelling
dissipative effects of surrounding small scales is included constitutes a promising
route to push forward the present analysis to high-Reynolds-number wall-bounded
turbulent flows. In this context, invariant states at various scales (i.e. different distances
from the wall) could be investigated using this RNL model to identify the dynamical
trajectory embedded in the chaotic turbulent attractor.

4.2. Effect of the spanwise length
While edge states (i.e. structures that guide the transition towards a turbulent state)
have been widely studied in minimal periodic domains (i.e. MFU), the resulting
constrained dynamics may prevent a direct connection with experimental observations
of an incipient turbulent spot generated by localized initial perturbation. In this context,
some authors (Schneider, Marinc & Eckhardt 2010; Khapko et al. 2013; Eckhardt
2014) have recently computed spanwise and/or spanwise–streamwise localized edge
states in sufficiently extended computational domains for Couette and asymptotic
suction boundary layer (ASBL) flows.

In this section, we investigate the evolution of the periodic solution obtained at
the MFU when doubling both the spanwise extent and number of spanwise Fourier
modes. For that purpose, we construct a spanwise localized solution by windowing the
periodic solution obtained at the MFU (Gibson & Brand 2014). In figure 10(a,b), we
report RNL results given by the edge-tracking algorithm for Lz = 0.8π. Figure 10(b)
shows that the solution is mostly localized in the spanwise direction, in contrast with
the previous case (Lz = 0.4π) for which the domain is almost entirely filled. Similar
behaviour was recently observed by Xi & Bai (2016) using DNS. In particular, we
observe the alternation of calm phases and bursting events before being shifted in the
spanwise direction. However, the solution is not periodic any more, and low-speed
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streaks are shifted towards either the right or the left direction, similarly to what
is observed for the ASBL case (Khapko et al. 2013). In addition, the skin friction
reaches a higher peak than its minimal box counterpart (see figure 3). Nevertheless,
we cannot draw definite conclusions on a chaotic behaviour or if a periodic state exists
because the transient regime appears to be extremely long for such a case.

4.3. Effect of the streamwise length
The streamwise length Lx = π, or L+x = 410, is close to a minimal streamwise unit.
Under this restriction, large-scale motions are exactly two-dimensional, infinitely long
structures, prevented from evolving spatially in the flow direction, but can evolve
in the cross-stream plane; hence, the dynamics is thus basically temporal rather
than spatio-temporal. DNS of channel flow with a minimal streamwise flow unit were
performed by Toh & Itano (2005) for relatively low Reynolds numbers (Reτ =137 and
349), and extended by Abe, Antonia & Toh (2018) up to Reτ = 1020. Large-scale
structures observed in large computational domains are shown to exist, even in a
minimal streamwise flow unit. Moreover, the authors observed a co-supporting cycle
where large-scale structures are generated by the collective behaviour of near-wall
structures, and the generation of the latter is in turn enhanced by the large-scale
structures.

The extension of the present results, based on an RNL model, to very large
streamwise domains is not just a numerical challenge; it mainly raises the issue
of the decomposition between a (streamwise-averaged) base flow and fluctuations
(travelling wave).

Nonetheless, the effect of small variation of streamwise length has been investigated.
In figure 11, we report a minimal RNL simulation for the same Reynolds number and
spanwise extent but with a slightly smaller length in the streamwise direction: Lx =

0.9π. After a long transient regime, the solution reaches a periodic state where a pair
of bursting events are separated by very long quiescent intervals (≈6000). Figure 11
shows that the solution exhibits similar behaviour to that observed previously, for
Lx =π. In particular, for bursting events, the flow pattern also exhibits a competition
between the fundamental and its first harmonic spanwise Fourier mode, i.e. E1 and
E2 (not shown here for the sake of conciseness). However, such an event appears to
happen within a periodic process that has strongly extended in time. The latter remark
is also consistent with the minimal box for self-sustained turbulence, which was close
to the one used by Toh & Itano (2003).

5. Conclusion
In this paper, we show that the nonlinear periodic solution computed by Toh &

Itano (2003) and Zammert & Eckhardt (2014) and more recently by Rinaldi et al.
(2018) using DNS can be tracked with a restricted nonlinear (RNL) system where
only a single streamwise Fourier mode is retained for the fluctuation. In particular,
similar characteristics are found for both simulations such as long quiet states, shifted
states along the spanwise direction and bursting events where flow patterns exhibit
either a single streak or two streaks that compete with each other. Interestingly, the
mean flow and r.m.s. profiles provided by the RNL system exhibit strong similarities
with wall-bounded turbulent statistics obtained both in experiments and in DNS
for data extracted when the mean friction velocity (i.e. averaged in streamwise and
spanwise directions) peaks. The friction Reynolds number computed by collecting data
at the burst almost matches the one derived from a DNS database. The present results
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are then consistent with those of Bretheim et al. (2015) and Farrell et al. (2016),
who have found that a realistic turbulence state can be maintained with an RNL
system with low streamwise Fourier components for the fluctuation. Furthermore,
the contributions of the streamwise-averaged quantities and streamwise-varying
fluctuations about that mean onto the r.m.s. extracted at the maximum drag indicate
that its peak is mainly due to the mean flow variables. This further supports that
near-wall streaks are ‘active’ scales in the sense that they are mainly responsible
for the turbulent energy production and momentum transfer in comparison with the
fluctuating part. Interestingly, the present analysis also shows that the trajectory of
the periodic solution initially found by Toh & Itano (2003) exhibits close excursions
near an asymptotic state with MDR. Hence, the solution seems to be closely tied to
intermittent behaviour found in near-wall turbulence for low-Reynolds-number flows
where chaotic movement of turbulence is seen to spend some time around high- and
low-drag events. In particular, our study shows that the periodic solution seems to be
intimately connected to the lower- and upper-branch states found by Park & Graham
(2015) in plane channel flows. However, the link between this periodic solution and
the upper- and/or lower-branch solutions of Park & Graham (2015) remains unclear.
It needs to be pointed out that, in comparison to the work of Park & Graham
(2015), no symmetry conditions are imposed here, in neither time nor space, which
allows the solution to travel around different fixed points. Nevertheless, the results
obtained using the RNL system agree with the edge-tracked solution recently found
by Xi & Bai (2016) using the full Navier–Stokes equations for a similar flow case
(i.e. trajectories closely approaching an MDR state are also found).

In addition, while it seems clear from statistics provided by the DNS database that
some turbulent trajectories pass through low-drag events, the present results seem also
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to indicate a connection in the phase space between the turbulent attractor, associated
high-drag events, and travelling wave equilibrium states, associated with low drag.
A projection of the dynamical trajectory onto a more appropriate two-dimensional
plane seems to be necessary to draw a definite conclusion.

Our analysis also gives a strong indication that more complex nonlinear finite-
amplitude solutions than travelling wave solution may be well approximated by a
minimal RNL system. In that respect, it extends the recent study carried out by
Pausch et al. (2018), focusing on travelling wave states associated with upper-branch
solutions in both Couette and plane channel flow. From this discussion, it appears that
investigations of invariant solutions using the RNL system can provide an efficient
tool to select appropriate streamwise wavenumbers for RNL simulation aiming to
reproduce turbulence in wall-bounded flows. It also further confirms the important
role of the mean flow in shaping invariant states for wall-bounded flows. This is
consistent with other models relying on mean flow analysis, such as the resolvent
operator technique (Sharma & McKeon 2013). In particular, Sharma et al. (2016) have
recently shown that exact invariant solutions lying on the edge for channel geometries
are well approximated using a projection onto a limited number of resolvent modes.

In the present study, it is observed that a long transient time is necessary to reach
an invariant state. Hence, the use of an RNL system may be useful to provide an
initial condition for tracking a periodic edge having long quiescent phases with DNS.

Finally, to better characterize similarities between observations at the MFU and
states lying on extended domains, a spanwise localized state has been investigated
by doubling the width of the computational box and windowing the periodic solution
obtained at the MFU. We show that the solution bears a strong resemblance to the
one obtained in a minimal box (i.e. alternation of calm phases and bursting events,
spanwise shifted pattern) with the exception of periodicity. In this case, the edge
dynamics is erratic. In a future work, the spanwise extent should be further increased
to prevent any influence of periodicity. The RNL system may thus provide an efficient
model to characterize complex spanwise localized states that may constitute nuclei
for the transition of turbulence.
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