Lanthanide tri- and tetrathionates and their complexes with triphenylphosphine oxide

Simon J Coles¹, Sarah J. Fieldhouse², Wim T. Klooster¹, Anthony M.J.Lees² and Andrew W. G.

Platt^{2*}

 UK National Crystallography Service, Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
 School of Law Policing and Forensic Science, Staffordshire University, Leek Road, Stoke-on-Trent, ST4 2DF, UK

doi.org/10.1016/j.poly.2020.114404

Abstract

Lanthanide tri- and tetrathionate containing species have been prepared in solution by the reaction of potassium tri- and tetrathionate with lanthanide perchlorates. Unstable solid materials from these reactions have been examined by infrared spectroscopy and electrospray mass spectrometry (ESI MS). There was evidence of the formation of $S_3O_6^{2-}$ and $S_4O_6^{2-}$ coordination to lanthanide ions, but it was not possible to produce material suitable for single crystal x-ray studies. The reaction of ethanol solutions from $Ln(CIO_4)_3 / K_2S_nO_6$ (n = 3,4) with triphenylphosphine oxide yielded crystalline materials which have been characterised by infrared spectroscopy, electrospray mass spectrometry, elemental analysis and single crystal X-ray diffraction. The trithionate complexes [$Ln(S_3O_6)(Ph_3PO)_4$]CIO₄.3H₂O (Ln = Nd, Tb) have been isolated. The tetrathionate / Ph₃PO reaction gave rise to significant disproportionation giving a small quantity of [Nd(S₄O₆)(Ph₃PO)₄(H₂O)]CIO₄, a different isomer of [Nd(S₃O₆)(Ph₃PO)₄H₂O]CIO₄, neodymium sulfate and elemental sulfur. The crystal structures of the two isomers of [Nd(S₃O₆)(Ph₃PO)₄].5Ph₃PO.3[CIO⁻₄], formed during the attempted preparation of erbium trithionate complexes, is also described.

1. Introduction

Metal complexes involving di-, tri- and tetrathionate ions, $(S_nO_6^{2-}, n = 2, 3, 4)$, are largely limited to their role as anions in cationic complexes. There are a considerable number of compounds

containing dithionate in which the $[S_2O_6]^{2^-}$ ion acts as an uncoordinated counterion. The coordinated ion occurs less frequently, but has been reported as a monodentate ligand with copper(II) [1-4] and zinc(II) [5] in complexes with N-containing macrocycles. Bridging dithionate has also been reported, and is found mainly in the κ^2 -OO' mode [3, 6-9] but also as bridging κ^2 -O² [10], again coordinated to Cu(II). Structures where a higher polythionate ion is coordinated to a metal are limited to bridging S₃O₆²⁻ in [Na(18-C-6)]₂S₃O₆ [11] and [Cu(S₃O₆)(H₂O)₄]_n [12] , bridging S₄O₆²⁻ in Cu(1,10-phen)₂S₄O₆[13], and bidentate S₄O₆²⁻ in Mn(bipy)₂S₄O₆ [14] and in M(4,4' dimethyl-2,2'-bipy)₂S₄O₆ M = Zn, Cd [15].

We have previously reported the preparation and structures of some lanthanide dithionates which gave a polymeric structure for Nd₂(S₂O₆)₃·14H₂O and their triphenylphosphine oxide complexes Nd₂(S₂O₆)₃(Ph₃PO)₄·8H₂O [16] and Pr₂(S₂O₆)₃(Ph₃PO)₆·6H₂O [17]. Other than these dithionates, there are no reports of lanthanide polythionates ($^{-}O_3S(S)_nSO_3^{-}$) or their coordination complexes, and we report here our investigation into these under-represented compounds with the aim of obtaining materials suitable for structural determination.

2. Results and discussion

2.1 Attempted preparation of lanthanide trithionates and tetrathionates

The preparation of lanthanide trithionates and tetrathionates was attempted by metathesis between $Ln(ClO_4)_3$ (Ln = La, Pr, Nd, Tb, Er, Yb) and $K_2S_nO_6$ in aqueous solution followed by precipitation of the potassium salts with ethanol in which the lanthanide polythionate species appeared soluble. On addition of ethanol, the ethanolic solutions retained the characteristic colour of the lanthanide ion (Pr and Nd) while precipitated material was white, indicating that it contained little or no insoluble lanthanide compounds. Attempted crystallisation of these solutions by fractional crystallisation led to the isolation of small quantities of materials which were analysed by infrared spectroscopy. The infrared spectra showed, in addition to peaks due to coordinated water at 3300 and 1630 cm⁻¹ respectively, strong absorptions due to SO₃ or ClO₄⁻ groups between 1110-1080 cm⁻¹, 1010-1005 cm⁻¹, 930 -920 cm⁻¹ and 835 – 830 cm⁻¹ for the trithionates and 1220, 1180, 1050 and

1010 cm⁻¹ for the tetrathionates. These absorption bands are shifted to lower wavenumber in comparison to those observed in Na₂S₃O₆ and K₂S₄O₆ (which have strong bands at 1251, 1213, 1066, 1024 cm⁻¹ and 1255, 1224, 1195, 1037 and 1012 cm⁻¹ respectively), indicating that both $S_3O_6^{2-}$ and $S_4O_6^{2-}$ are coordinated to the lanthanide ion.

Reactions with heavier lanthanides led to the isolation of materials whose infrared spectra indicated that they contained significant amounts of sulfate [18]. We attribute this to the decomposition of both trithionate and tetrathionate in mildly acidic aqueous solution, which is known to produce thiosulfate and sulfate [19].

Electrospray mass spectra were obtained from methanol solutions of the materials obtained from the Pr and Nd reactions. These ESI-MS spectra confirm the presence of both lanthanide ion and polythionate in the isolated materials. Details of the observed ions and their assignments are given in Table S1. The spectra show that $[LnO(H_2O)_n]^+$ and $[LnO(MeOH)_n]^+$ are the most abundant ions in the positive ion mode. This behaviour is typical of the behaviour of lanthanide complexes with weakly coordinating anions under electrospray conditions [20]. There are a series of low abundance ions containing the trithionate and tetrathionate ions corresponding to $[Ln(S_3O_6)(MeOH)_m(H_2O)_n]^+$ (m = 0-2, n = 1-4) and $[Ln(S_4O_6)(H_2O)_2]^+Ln = Nd$. Similarly the negative ion spectra (Table S2) show peaks associated with the trithionate and tetrathionate ions $[S_3O_6(MeOH)_n]^{2-}$ and $[S_4O_6H]^-$ as the most abundant ions in the spectra, with lower abundance ions from $[Ln(S_3O_6)_2(MeOH)_m]^-$, $[Ln(S_3O_6)_2(H_2O)_n]^-$ (Ln = Pr, Nd) and $[Nd(S_4O_6)_2]^-$ and $[ClO_4]^-$. Assignments are based on the calculated m/z values and comparison of theoretical and observed isotope profiles An example is shown in Figure 1 for the $[Nd(S_3O_6)_2]^-$ ion.

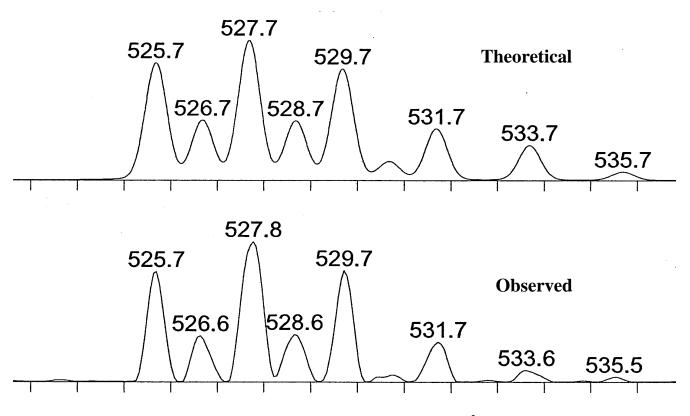


Figure 1 Theoretical and Observed Isotope Profiles for [Nd(S₃O₆)₂]²⁻

Unfortunately, unlike the dithionates previously reported [16], and despite many attempts, it has proved impossible to produce crystalline material suitable for single crystal X-ray studies. From the available evidence (and see also below) it seems that full replacement of perchlorate by the polythionate ions has not occurred and the species produced are tentatively assigned as "[$Ln(S_nO_6)(ClO_4)$].xH₂O".

2.2 Coordination complexes of lanthanide trithionates with triphenylphosphine oxide

In view of the lack of success in preparing stable tri- and tetrathionates we attempted the *in situ* synthesis of coordination complexes in the hope that these might be more stable and give crystalline materials suitable for X-ray diffraction studies. Triphenylphosphine oxide often produces crystalline complexes with organic materials [21] and with lanthanide salts [22]. Thus, complex formation with Ph₃PO seemed a potential route to the synthesis of stable compounds which could be characterised by X-ray crystallography.

Ethanolic solutions of lanthanide trithionate species from the reaction of lanthanide perchlorates and the potassium trithionate, described above, were added to solutions of triphenylphosphine oxide. The bulk materials isolated by fractional crystallisation of the solutions gave elemental analyses which indicated that $[Ln(S_3O_6)(Ph_3PO)_4(H_2O)]ClO_4 \cdot 2H_2O$ could be produced up to Ln = Tb.

The infrared spectra of these materials are consistent with the formation of coordination complexes. The IR spectra show bands due to coordinated water, the P=O stretch at around 1140 cm^{-1} , and a complex series of intense absorptions at around 1290, 1090, 1040 and 660 cm⁻¹ due to S-O and Cl-O stretches. The P=O stretch is significantly lower than observed in free Ph₃PO (1190 cm⁻¹).

The isolated complexes are poorly soluble in most common organic solvents and it has not been possible to obtain NMR spectra in any organic solvent but methanol. The ³¹P NMR spectra of methanolic solutions of the complexes showed a single signal close to that of free Ph₃PO. The absence of significant paramagnetic shifts indicates that in this solvent extensive dissociation occurs on dissolution.

Fractional crystallisation of the original ethanol solution of the Nd complex gave crystals suitable for X-ray diffraction studies. Full descriptions of the data collection and refinement are given in the supplementary information, as are figures of the structures with thermal ellipsoids at 50% probability together with full listings of bond distances and angles. The crystalline material was shown to be aqua trithionato- $\kappa^4 O$, O, O', O' tetrakis-triphenylphosphine oxide neodymium(III) perchlorate. The cation, $[Nd(S_3O_6)(Ph_3PO)_4)(H_2O)]^+$, is 9-coordinate:the neodymium ion is bound to the 4 oxygen atoms from the Ph₃PO ligands, the oxygen atom of the water molecule, and 4 oxygen atoms from the trithionate ion (two from each SO₃ group),.

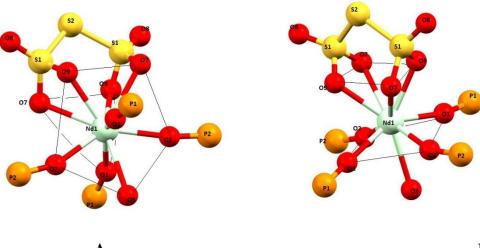

Bond	$Nd(S_3O_6)(Ph_3PO)_4(H_2O)]^+$		$K_2S_3O_6{}^b$	(Na-18C-6) ₂ -	$[Cu(H_2O)_4\mu S_3O_6]_n^d$
				μ- S ₃ O ₆ °	
	<i>K</i> ⁴ - <i>O</i> , <i>O</i> , <i>O</i> ', <i>O</i> '	<i>К</i> ³ - <i>О</i> , <i>О</i> , <i>О</i> ′ ^е			
O ₃ S-S	2.10(2)	2.11(4)	2.083(22)	2.111(8)	2.132(18)

Table 1 Selected bond distances^a (Å) in [Nd(S₃O₆)(Ph₃PO)₄(H₂O)]⁺

S-O(M)	1.50(9)	1.46(2)		1.445(2)	1.452(3)
S=O	1.43(3)	1.40(3)	1.450(6)	1.440(4)	1.450(4)
Nd-O(S)	2.59(11)	2.59(15)			
Nd-O(P)	2.334(18)	2.36(1)			
P=O	1.504(1)	1.504(5)			
Nd-O(H ₂ O)	2.65(13)	2.51(4)			

a. Values in parenthesis are standard deviations which reflect the variation in bond distances rather than uncertainties in the data collection. b. data from ref 23 c. data from ref 14. d. data from ref 15 e. see below

The uncoordinated perchlorate ion is hydrogen bonded to the coordinated water by two oxygen atoms, the O....O distances are 2.856 and 2.783 Å. The bond distances are summarised in Table 1 and compared with those of $K_2S_3O_6$ [23], the κ^3 complex discussed in section 2.3, and two other published trithionato-complexes. The S-SO₃ distances do not differ significantly from the previously published structures, but the S=O bond is slightly shorter in the Nd complex. The S-O(Nd) distance is significantly longer than the S=O length as expected on coordination to the more highly charged lanthanide ion. The geometry of the cation was analysed using the SHAPE programme which locates the idealised structure which best conforms to the observed geometry [22, 23]. In this case two geometries give good descriptions of the structure, a 1,5,3 "muffin", and a capped square antiprism [24]. Both representations of the structure are shown in Figure 2.

Figure 2 The core structures of A. the "muffin" and B. the capped square antiprism views of $[\kappa^4-O, O, O', O'- Nd(S_3O_6)(H_2O)(Ph_3PO)_4]^+$. Hydrogen atoms, phenyl groups and perchlorate ions omitted for clarity.

In the 1,5,3 "muffin" geometry O1 is the 1- atom, the 5-plane is defined by O2,O2,O5,O7 and O9 and the 3-plane by O1, O7 and O9. The angle between the 5- and 3-planes is 14.3° and the deviation of the oxygen atoms in the 5-plane ranges between 0.006 - 0.320 Å. In the square antiprismatic representation the square planes are defined by the O1, O1, O2, O2 from the Ph₃PO and the O7, O7, O9 and O9 atoms from the trithionate. The planes are parallel with the deviation of the oxygen atoms from the mean planes of 0.052 Å and 0.114 Å respectively. The Nd and three sulfur atoms are coplanar with the coordinated oxygen atoms lying on average 1.03 Å above and below this plane, such that the 6-membered ring adopts a chair configuration.

Attempted preparation of the erbium trithionate - triphenylphosphine oxide complex led to a solid whose elemental analysis did not correspond to any simple trithionate complex. The absence of strong S-O stretches at around 1290 cm⁻¹ in the infrared spectrum of the isolated solid indicated that the trithionate ion was not present. Small amounts of crystalline material were obtained which single crystal x-ray diffraction showed to be $[Er(H_2O)_5(Ph_3PO)_2](Ph_3PO)_5'3[ClO_4]$. The structure is shown in Figure 3. The erbium ion is 7-coordinate with a pentagonal bipyramidal geometry made up by 5 water molecules in the equatorial plane and 2 axial Ph₃PO in the first coordination sphere. The remaining 5 Ph₃PO molecules are H-bonded to the coordinated waters. The structure is similar to those of $[Ln(H_2O)_5(Cy_3PO)_2]^2Cy_3PO[X]_3 X = CF_3SO_3$ [25], Cl [26, 27] and Br [26, 28]. The coordinated water molecules lie within 0.06 Å of the mean O8, O9, O10, O11, O12 plane. This is the first time this type of complex has been reported with a relatively smaller and lower basicity triaryl phosphine oxide. The structure is unusual in that 5 Ph₃PO are hydrogen bonded and presumably this is reflection of the lower steric demands of Ph₃PO compared to Cy₃PO.

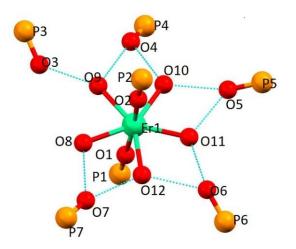
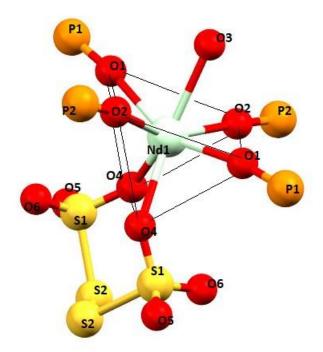


Figure 3 The core structure of the [Er(H₂O)₅(Ph₃PO)₂·(Ph₃PO)₅]³⁺ cation. Blue broken linies represent hydrogen bonds. Hydrogen atoms, phenyl groups and perchlorate ions omitted for clarity


2.3 Coordination complexes of lanthanide tetrathionates with triphenylphosphine oxide

Attempted preparation of triphenylphosphine oxide complexes of tetrathionates by the same method as the trithionates led to mixtures of compounds. The reaction of triphenylphosphine oxide with the ethanolic solutions obtained from the mixing of potassium tetrathionate and neodymium perchlorate was studied in detail. Four different solid products were identified from slow evaporation of the reaction mixture and a sample was mechanically separated into individual components. A small quantity of crystals formed at the air solution interface during slow evaporation of the solution which single crystal X-ray diffraction showed to be aqua tetrathionato- κ^2 -*O*,*O'*-tetrakis-triphenylphosphine oxide neodymium(III) perchlorate, [Nd(S₄O₆)(Ph₃PO)₄(H₂O)]ClO₄. Electrospray mass spectrometry of this complex in methanol

shows that extensive dissociation and ligand redistribution occurs under the experimental

conditions. Details of the ions identified are given in supplementary material in Table S3. Filtration of the reduced solution produced larger quantities of a different crystalline complex, elemental sulfur and a lilac powder. The infrared spectrum of the crystalline material was very similar to that of the trithionate complex reported in section 2.2 and showed only slight differences in the positions of absorption maxima and their relative intensities. (See Figure S1 in the supplementary information). On analysis by single crystal x-ray diffraction this proved to be aqua trithionato- $\kappa^3 O, O, O'$ -tetrakis-triphenylphosphine oxide neodymium(III) perchlorate, $[Nd(S_3O_6)(Ph_3PO)_4(H_2O)]ClO_4$ (discussed below). The presence of elemental sulfur was confirmed by gas chromatography – mass spectrometry of a carbon disulfide solution which had an identical retention time and mass spectrum to that of an authentic sample of sulfur, m/z 256 with an isotope profile matching that of S_8 . The lilac powder had an infrared spectrum which showed the presence of coordinated water but no triphenylphosphine oxide, and no bands in the 1200 cm⁻¹ region which could be associated with tri- or tetrathionate. Instead a series of 4 intense bands at 1101, 996, 934 and 752 cm⁻¹ were observed. The presence of 4 S-O stretches is expected for bridging sulfate and the spectra were similar to those reported for Ln₂(SO₄)₃·8H₂O [31, 32]. The presence of trithionate, elemental sulfur and sulfate indicates that a complex disproportionation reaction or series of reactions is occurring. The decomposition of tetrathionate to trithionate and thiosulfate under a variety of conditions has been reported [19] and the thiosulfate produced in these reactions could further decompose in mildly acidic solution to elemental sulfur and sulfur dioxide, although the latter was not detected in our system.

The cation in $[Nd(S_4O_6)(H_2O)(Ph_3PO)_4]ClO_4$ is 7-coordinate: the central Nd ion is bound to 2 oxygen atoms of the tetrathionate ligand (one from each SO₃ group), 4 oxygen atoms from the Ph₃PO and the oxygen atom of the water molecule. Analysis of the geometry of the cation, as above, gives a bicapped trigonal prism as the best fit to common 7-coordinate structures [33]. The trigonal faces are defined by the O1, O2, and O4 atoms from the two phoshine oxides and the tetrathionate respectively. The angle between the triangular faces is 5.03°. The water oxygen atom, O3, caps the O1,O1,O2,O2 square face. The angle between the square faces ranges between 68.3 to 55.9° with an average of 60° . The core coordination in the complex cation is shown in Figure 4.

Figure 4 The core structure of the capped trigonal prismatic [Nd(S₄O₆)(H₂O)(Ph₃PO)₄]⁺. Hydrogen atoms, phenyl groups and perchlorate ions omitted for clarity.

In a similar manner to the trithionate analogue, the perchlorate ion is hydrogen bonded via two oxygen atoms (O....O 2.868 Å) and this is reflected in a slight lengthening of the Cl-O bonds (1.434 compared to 1.399 Å). The bond distances are summarised in Table 2 and compared with those found in $K_2S_4O_6$ [34] and complexes where the tetrathionate ion acts as a chelate [14, 15]. As observed for the trithionate complex, the S-SO₃ bond distances are little affected by coordination to the neodymium compared to the tetrathionate ion in $K_2S_4O_6$ but are marginally longer than in complexes with divalent metal ions. The bond distances within the coordinated tetrathionate ion are little affected by binding to the metal in the Nd complex and those with Mn [14], Zn and Cd [15]. The exception to this is the S-O(M) length which is significantly longer due to coordination to the trivalent Nd centre.

Table 2 Selected bond distances (Å) and angles(°) in [*k*²-*O*,*O*′ Nd(S₄O₆)(H₂O)(Ph₃PO)₄]⁺ compared with known structures

$[Nd(S_4O_6)(H_2O)(Ph_3PO)_4]^+$	$K_2S_4O_6^{b}$	$Mn(S_4O_6)(bipy)_2^c$	$Zn(S_4O_6)L_2^d$	$Cd(S_4O_6)L_2^d$
----------------------------------	-----------------	------------------------	-------------------	-------------------

O ₃ S-S	2.115(3) ^a	2.117	2.066	2.106	2.101
S-S	2.011(4)	2.017	1.963	2.016	2.017
S-O(M)	1.477(2)	1.446	1.446	1.441	1.430
S=O	1.425(16)	1.446	1.410	1.421	1.411
M-O(S)	2.431(20)	2.89	2.122	2.277	2.120
M-O(P)	2.348(30)				
P=O	1.512(9)				
$M-O(H_2O)$	2.547(16)				
(M)-O-S-S	104.18		107.13	107.26	107.56
M-O-S	133.00		155.45	155.99	149.52
O ₃ S-S-S	104.41		102.77	103.50	103.74
O-M-O	76.75		93.33	93.27	94.03

a. Values in parenthesis are standard deviations which reflect the variation in bond distances rather than uncertainties in the data collection. b. data from ref 33, c. data from ref 14, d. data from ref 15 L = 4.4'-dimethyl-2,2'-bipy

The 7-membered S_4O_2Nd ring adopts a distorted twist chair conformation [35, 36] with the NdO₂ and the two S-atoms approximately planar, and the SO₃ sulfurs about 0.89 Å out of plane. In this the conformation differs from that found in other tetrathionate chelates which do not adopt any of the idealised conformations of the standard cycloheptane ring [35] and instead have a planar arrangement of the MO₂ and the SO₃ sulfur atoms with the remaining S-atoms between 0.67 to 0.88 Å above and below this plane. The differences in the ring conformations are illustrated in Figure 5. In the transition metal complexes the tetrathionate is relatively free from steric interactions with the remaining ligand set and the conformation is presumably that which the unconstrained tetrathionate adopts. There is considerably more steric congestion in the Nd complex as illustrated in Figure 5. There are no strong interactions between the ring and the Ph₃PO ligands. The closest contacts which might be considered as H-bonding interactions are between O(11) and the H(48), H(62) and H(63)-atoms of the aromatic rings with an average O....H distance of 2.714 Å, but these values lie outside the sum of Van der Waals radii for O and H of 2.6 Å.

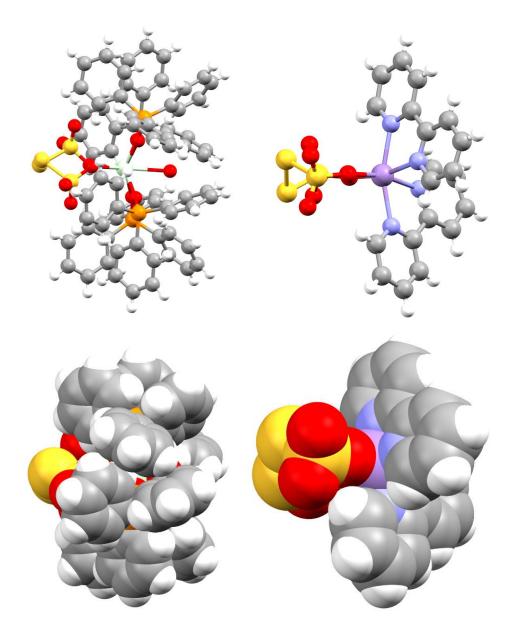


Figure 5 The ring conformation of the tetrathionate in $[Nd(S_4O_6)(Ph_3PO)(H_2O]^+$ (left) and $Mn(S_4O_6)(bipy)_2$ (right, image generated using coordinates from ref 14) in ball and stick (upper) and space filling (lower) representations. Colour coding: sulfur – yellow, oxygen – red, carbon – grey, nitrogen – lilac, manganese – purple, phosphorus – orange, neodymium – pale green, hydrogen - white

The trithionate complex formed from the tetrathionate reaction mixture differs from that produced by the direct trithionate reaction in that both the cations in the unit cell are 8- rather than 9coordinate with the trithionate bonding in a κ^3 -O,O,O' mode. Full details of the data collection and refinement and full listings of bond distances and angles are given in the supplementary information. The bond distances are essentially the same as found for the κ^4 – coordination mode and the data are given in Table 1. The 8-coordinate cation adopts a bicapped trigonal prismatic geometry which is illustrated for one of the molecules in the unit cell in Figure 6. The formation of a different isomer in this reaction illustrates the high sensitivity of the final product to the exact conditions during crystallisation and the relatively small energy difference between coordination modes for lanthanide complexes.

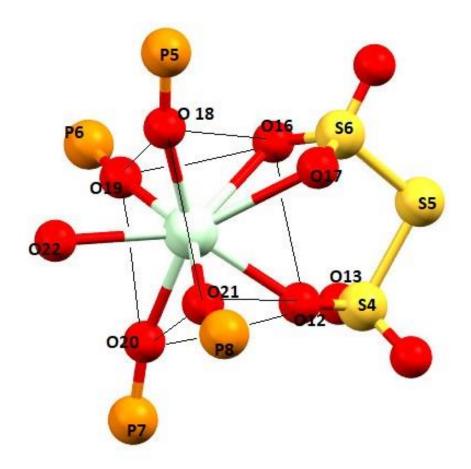


Figure 6 The bicapped trigonal prismatic core geometry of [Nd(S₃O₆)(Ph₃PO)₄(H₂O)][ClO₄]. Hydrogen atoms, phenyl groups and perchlorate ions omitted for clarity.

Conclusion

Lanthanide trithionates and tetrathionates have proved impossible to isolate as pure compounds. Coordination complexes of lanthanide trithionates with triphenylphosphine oxide appear to be stable for the lighter lanthanides. Whilst tetrathionate complexes with Ph₃PO can be isolated in small amounts, the predominant reaction appears to be a disproportionation leading to the isolation of a different isomer of the trithionate complex, sulfate and elemental sulfur.

Experimental

Materials and methods

Lanthanide perchlorates were prepared from the reaction of perchloric acid with a small excess of the lanthanide oxide. Filtration followed by evaporation and drying in vacuo over KOH gave the hydrated perchlorates as crystalline solids.

Triphenylphosphine oxide, and potassium tetrathionate were commercial samples and used as received. Potassium trithionate was prepared by the reaction of sodium thiosulphate with hydrogen peroxide and the potassium salt obtained by metathesis with aqueous solutions of sodium trithionate and potassium acetate [37].

[Nd(S₃O₆)(Ph₃PO)₄ (H₂O)]ClO₄ ·2H₂O A solution of Nd(ClO₄)₃ 0.99 g (2.8 mmol) in 1.5 mL and a slurry of K₂S₃O₆ (0.97 g, 3.6 mmol in 3 mL H₂O) were and stirred at 0°C for 20 minutes. Ethanol (50 mL) was added and stirring continued for a further 30 minutes at 0°C. The solution was filtered into a solution of triphenylphosphine oxide (1.99 g 7.2 mmol in 10 mL ethanol). During the addition the solution became cloudy and on standing a lilac powder together with more crystalline material formed. This was filtered, washed with ethanol and dried at the pump to give 0.86 g (30% based on Ph₃PO).

Analysis for [Nd(S₃O₆)(Ph₃PO)₄]ClO₄·3H₂O required(found) C 53.94(53.69) H 4.15(3.80) Infrared spectrum (ATR) 3364 (br, w), 3061(w), 1591(w), 1486(w), 1436(s), 1288(m), 1143(s), 1119(s), 1087(s), 1042(s), 996(s), 922(w), 752(m), 722(s), 692(s), 655(m)

 $[Tb(S_3O_6)(Ph_3PO)_4(H_2O)]ClO_4 H_2O$ Using the method above $Tb(ClO_4)_3$ (0.89 g, 1.6 mmol in 2 mL water), $K_2S_3O_6$ (1.00 g, 3.7 mmol in 3mL water) and Ph_3PO (2.06 g 7.4 mmol in 25 mL) gave a white powder on slow evaporation of the solution; 0.67 g (22% based on Ph_3PO).

Analysis for [Tb(S₃O₆)(Ph₃PO)₄(H₂O)]ClO₄·2H₂O required(found) C 53.45(53.49) H 4.11(3.77)

Infrared spectrum (ATR) 3350 (br, w), 3057(w), 1591(w), 1486(w), 1435(s), 1292(m), 1144(s), 1120(s), 1088(s), 1042(s), 996(s), 922(m), 750(m), 723(s), 689(s), 653(m)

[NdS4O₆(Ph₃PO)4(H₂O)]ClO₄ The solution from Nd(ClO₄)₃ (0.98 g in 2 mL water) and K₂S₄O₆ (1.66 g, 5.4 mmol in 5.5 mL water) was filtered into a solution of triphenylphosphine oxide (1.84 g 2.8 mmol in 18 mL ethanol) Crystals of [NdS₄O₆(Ph₃PO)₄(H₂O)]ClO₄ suitable for X-ray diffraction (<0.01 g) formed at the liquid / air interface during slow evaporation of the solution. Analysis [NdS₄O₆(Ph₃PO)₄(H₂O)]ClO₄ requires (found) C54.08(53.93) H3.91(3.81) The bulk material, was isolated from the reduced solution by filtration as a lilac powder and mechanically separated into lilac blocks of [Nd(S₃O₆)(Ph₃PO)₄H₂O]ClO₄ ·2H₂O (0.16 g), a microcrystalline lilac solid Nd₂(SO₄)₃·8H₂O (0.02 g), and elemental sulfur.

Infrared spectra were recorded with a resolution of ± 1 cm⁻¹ on a Thermo Nicolet Avatar 370 FT-IR spectrometer operating in ATR mode. The samples were compressed onto the optical window and spectra recorded without further sample pre-treatment.

GC-Mass Spectrometry was carried out on Perkin Elmer Clarus 500 by manual injection of 1 μ L of a CS₂ solution onto a Supelco SLM- 5m fused silica column (30 m x 0.32 mm x 0.25 μ m film thickness) using helium carrier gas (flow rate 1.5 mL min⁻¹). The inlet temperature was 250°C and the oven temperature programme 180°C for 20 mins and increased at 15°C min⁻¹ to 280°C. The mass spectrometer scanned between m/z 50-500.

Electrospray mass spectra were obtained by the EPSRC National Mass Spectrometry Service Centre at Swansea University. The spectra were recorded on a VG Quattro II triple quadrupole mass spectrometer. Samples dissolved in the appropriate solvent (water for lanthanide thoisulfates and polythionates, or CH₂Cl₂ for the triphenylphosphine oxide complexes) were loop injected into a stream of MeOH passing through a steel capillary held at high voltage (+3.5 kV for positive mode and -3.0 kV for negative mode). Nebulisation of the resulting spray was pneumatically assisted by a flow of nitrogen bath gas and heated source (70 °C). Declustering and molecular fragmentation were promoted by increasing the cone voltage from 8 to 50 V.

X-Ray crystallography

Full details of the data collection and refinement, together with ORTEP plots showing the thermal motion at 50% probability level are given in the supplementary information. Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 1957467 for [Er(Ph₃PO)₂(H₂O)₅]⁻⁵(Ph₃PO)⁻³[ClO₄], CCDC 1957468 for [Nd(κ^4 -*O*,*O*,*O'*,*O'*-S₃O₆)(Ph₃PO)₄(H₂O)]⁻³[ClO₄], CCDC 1957469 [Nd(κ^2 -*O*, *O'*-S₄O₆)(Ph₃PO)₄(H₂O)]⁻³[ClO₄], and CCDC 1957470 [Nd(κ^3 -*O*,*O*,*O'*-S₃O₆)(Ph₃PO)₄(H₂O)]⁻³[ClO₄] respectively. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: b44(0)-1223-336033 or e-mail: <u>deposit@ccdc.cam.ac.uk</u>

Acknowledgements

We are grateful to the EPSRC for the use of the National Mass Spectrometry Service at Swansea

University and the National Crystallography Service at Southampton University [38].

References

1. P.V.Bernhardt, T.E.Dyahnins; Polyhedron, 23, (2004), 869

2. A.Neels, A.Alfonso, D.G.Montero, H.Stoeckli-Evans; Chimia, 57, (2003), 619

3. L.Schmitt, G.Lahat, H.Stoeckli-Evans; Acta Crystallogr. Sect C: Cryst. Struct. Comm. **66**, (2010), m343

4. M.Ishii, Y.D.Daigaku Kiyo; Shiza Kagaku 15, (2001), 1

5. P.V.Bernhardt, T.W.Hambley, G.A.Lawrance; Aust. J. Chem. 43, (1990), 699

6. M.Ishii, Y.D.Daigaku Kiyo; Shiza Kagaku 15, (2001), 7

7. Y.Kim, B.W.Skelton, A.H.White; Acta Crystallogr. Sect. C: Cryst. Struct. Comm. **59**, (2003), m546

8. E.B.Rusanov, V.V.Ponomarov, V.V.Komarchuk, H.Stoeckli-Evans, E.Fernadez-Ibanez, F.Stoeckli, J.Sieler, K.V.Domasevich; Angew. Chem. Int. Ed. **59**, (2003), 2499

9. A.S.Degtyarenko, P.V.Solntsev, H.Krautscheid, E.B.Rusanov, A.N.Chernega, K.V.Domasevitch; New J. Chem. **32**, (2008), 1910

10. S.Turba, O.Walter, S.Schindler, L.P.Nielsen, A.Hazell, C.J.McKenzie, F.Lloret, J.Cano, M.Julve; Inorg. Chem. 47, (2008), 1612

11. E.Lork, R.Mews, A.V.Zibarev; Mendeleev Comm 19, (2009) 147

12. E.Freire, S.Baggio, R.Baggio, M.T.Garland; *ActCrystallogr., Sect.C:Cryst.Struct.Commun.* **54**, (1998), 464

- 13. E.R.T.Tiekinka; Acta Crystallogr.Sect E: Structure Reports Online 65, (2009), i89
- 14. E.Freire, S.Baggio, R.Baggio; A.Mombru; Acta Crystallogr., Sect.C:Cryst.Struct.Commun. 57, (2001), 14
- M.A.Harvey, S.Suarez, F.Doctorovich, R.Baggio; Crystallogr., Sect.C: Cryst.Struct.Commun.
 69, (2013), 745
- 16. J.Fawcett, A.W.G.Platt and D.R.Russell; Inorg. Chim. Acta 274, (1998) 177
- 17.R.S.Hughes, J.Fawcett, A.W.G.Platt and D.R.Russell; Inorg. Chim. Acta 295, (1999), 146

18. K.Nakamoto; Infrared and Raman Spectra of Inorganic and Coordination Compounds 6th Ed

- John Wiley and Sons, New York (2009)
- 19. H.Zhang, M.L.Jeffrey; Inorg. Chem. 49, (2010), 10273
- 20. R.Colton, A.D'Agostino, J.C.Traeger; Mass Spectrom. Rev. 14, (1995), 79
- 21. M.C.Etter, P.W.Baures; J.Amer.Chem.Soc. 110, (1988), 639
- 22. A.W.G.Platt; Coord. Chem. Rev. 340, (2017), 62
- 23. P. C. Christidis, P. J. Rentzeperis; Z. Kristallogr., 173, (1985) 59
- 24. M.Llunell, D.Casanova, J.Cirera, P.Alemany, S.Alvarez; SHAPE Program for the
- Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and
- Associated Tools, Version 2.1, University of Barcelona, Spain, 2013Shape
- 25. S.Alvarez, P.Alemany, D.Casanova, J.Cirera, M.Llunell, D.Avnir; Coord. Chem. Rev. **249**, (2005), 1693
- 26. A. Ruiz-Martinez, D.Casanova, S. Alvarez; Chem. Eur. J. 14, (2008), 1291
- 27. S.J. Coles M. B. Pitak and A. W. G. Platt; Eur. J. Inorg. Chem (2017) 1464
- 28. A.M.J.Lees, A.W.G.Platt; Polyhedron 67, (2014), 368
- 29. Y.-C.Chen, J-L.Lui, L.Ungur, Q.-W.Li, L.-F.Wang, Z.-P.Ni, L.F.Chibotaru, X.-M.Chen, M.-L.Tong; J. Amer. Chem. Soc. **138**, (2016), 2829
- 30. A.Bowden, A.M.J.Lees, A.W.G.Platt; Polyhedron 91, (2015), 110
- 31. Z-Y.Li, C.Zhang, F-Q.Zhang, X-F.Zhang, S-Z.Li, G-X.Cao, B.Zhai; J. Mol. Struct. **1108**, (2016), 516
- 32. Z.Deng, F.Bai, Y.Xing, N.Xing, L.Xu; Open J. Inorg. Chem. 3, (2013), 7

- 33. D.Casanova, P.Alemany, J.M.Bofill, S.Alvarez; Chem. Eur. J. 9, (2003),1281
- 34. P. C. Christidis, P. J. Rentzeperis, A. Kirfel, G. Will; Z. Kristallogr., 188, (1989),
- 35. A. Entrena, J.M.Campos, M.A.Gallo, A.Espinosa; ARKIVOC vi, (2005), 88
- 36. I.K.Boessenkool, J.C.A. Boeyens; J. Cryst. Mol. Struct. 10, (1980), 11
- 37. D.P.Kelly A.P.Wood; Methods in Enzymology 243, (1994), 475
- 38. S.J.Coles, P.A.Gale; Chem. Sci. 3, (2012), 68

Supplementary Information

Table S1 Electrospray mass spectra^a of lanthanide tri- and tetrathionate species; positive ion

mode

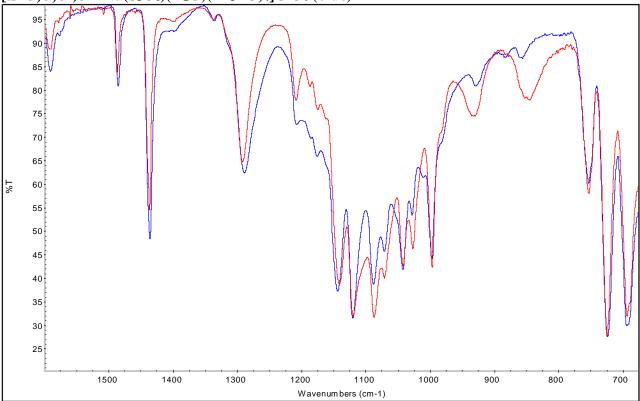
$Ln_2(S_3O_6)_3$						$Ln_2(S_4O_6)_3$			
$[Ln(S_3O_6)(MeOH)_m(H_2O)_n]^+$						$[Ln(S_4O_6)(MeOH)_m(H_2O)_n]^+$			
m = 0						m	= 0		
n	0	1	2	3	4	n	1	2	3
Pr									
Nd			369.8 ^b	387.9	405.8		383.7	401.7	419.8
			(369.8)	(387.9)	(405.8)		(383.8)	(401.8)	(419.8)
m = 1									
Pr		382.8	400.8	418.8	436.9				
		(382.8)	(400.8)	(419.2)	(436.9)				
Nd		384.0	401.9	419.9					
		(383.8)	(401.8)	(419.9)					
m = 2									
Pr	396.8	414.8	432.8						
	(396.8)	(414.9)	(432.9)						
Nd									
$[LnO(H_2O)_n]^+$									
Pr	156.8	174.8							
	(156.9)	(174.9)							
Nd	157.9	175.7	193.7						
	(157.9)	(175.9)	(193.9)						

[LnO(MeOH) _n] ⁺					
Pr	188.8	220.9			
	(188.9)	(221.0)			
Nd	189.7				
	(189.9)				

a. The most intense peak in the isotope profile is quoted.

b. m/z observed (calculated)

Table S2 Electrospray mass spectra^a of of lanthanide tri- and tetrathionate species; negative

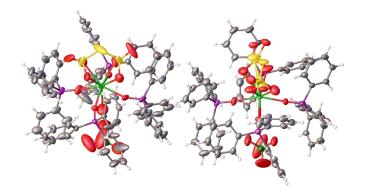

ion mode

$[Ln(S_3O_6)_2(H_2O)_n]^-$	n	0	1				
Pr		524.0 ^b					
		(524.7)					
Nd		527.8	545.7				
		(527.7)	(545.7)				
$[Ln(S_3O_6)_2(MeOH)_n]^-$	n	1	2	3	4	5	
Pr		556.8	588.7	620.6	652.6	684.6	
		(556.7)	(588.7)	(620.8)	(652.9)	(684.8)	
Nd		557.7	589.6				
		(557.7)	(589.7)				
$[S_3O_6(MeOH)_m]^{2-}$		111.9	127.9	143.8	159.8	175.8	
		(112.0)	(128.0)	(143.7)	(160.0)	(176.0)	

a. The most intense peak in the isotope profile quoted for Nd containing ions

b. m/z observed (calculated)

Figure S1 Comparative infrared spectra of $[\kappa^3 - O, O, O' - Nd(S_3O_6)(Ph_3PO)_4(H_2O)]ClO_4$ (red) and $[\kappa^4 - O, O, O', O' - Nd(S_3O_6)(H_2O)(Ph_3PO)_4]ClO_4$ (blue)



	$[Ln(S_4O_6)(Ph_3PO)_n]^+$		[Ln(Ph ₃ PO) _n C	² 1O ₄] ²⁺	$[Ln(Ph_3PO)_nClO_4]^{2+}$	
Ln	Pr	Nd	Pr	Nd	Pr	Nd
1						
2					232.4(232.3)	232.4(233.3)
3	1199.3	1202.4(1202.0)	537.3(537.0)	538.8(538.5)	325.2(325.0)	326.0(326.0)
	(1199.0)					
4			676.3(676.0)	677.7(677.5)	418.0(417.7)	418.9(418.7)
5					510.8(510.3)	511.5(511.3)
6					603.5(603.3)	604.4(604.0)

Table S3 Electrospray mass spectra of [Ln(S4O6)(Ph3PO)4H2O][ClO4]

Crystal structures

Crystal Data and Experimental [Nd(κ^4 -0,0,0',0'-S_3O_6)(Ph₃PO)₄(H₂O)]·3[ClO₄]

Figure 1: Thermal ellipsoids drawn at the 50% probability level.

А suitable Experimental. crystal of ssf1275 (0.150×0.100×0.080 mm³) was selected and mounted on a suitable support on an Daresbury SRS station 9.8 diffractometer. The crystal was kept at a steady T =120(2) K during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2014/7 of ShelXL (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data. $C_{72}H_{60}ClNdO_{15}P_4S_3$, $M_r = 1564.95$, monoclinic, *C*2 (No. 5), a = 19.8173(9) Å, b = 17.2962(8) Å, c = 19.6261(9) Å, $\beta = 90.695(2)^\circ$, $\alpha = \gamma = 90^\circ$, V =6726.6(5) Å³, *T* = 120(2) K, *Z* = 4, *Z'* = 1, $\mu = 1.005$ mm⁻¹, 33755 reflections measured, 18225 unique ($R_{int} = 0.0530$) which were used in all calculations. The final *wR*₂ was 0.1630 (all data) and R_1 was 0.0614 (I > 2(I)).

Formula	$C_{72}H_{60}ClNdO_{15}P_4S_3$
D _{calc.} / g cm ⁻³	1.545
μ/mm^{-1}	1.005
Formula Weight	1564.95
Colour	?
Shape	?
Size/mm ³	0.150×0.100×0.080
T/K	120(2)
Crystal System	monoclinic
Flack Parameter	0.479(13)
Hooft Parameter	0.477(6)
Space Group	<i>C</i> 2
a/Å	19.8173(9)
b/Å	17.2962(8)
c/Å	19.6261(9)
$\alpha/^{\circ}$	90
β/°	90.695(2)
γl°	90
V/Å ³	6726.6(5)
Ζ	4
Z'	1
Wavelength/Å	0.6926
Radiation type	Synchrotron
$\Theta_{min}/^{\circ}$	2.255
$\Theta_{max}/^{\circ}$	29.672
Measured Refl.	33755
Independent Refl.	18225
Reflections with I >	
2(I)	
R _{int}	0.0530
Parameters	892
Restraints	808
Largest Peak	1.895
Deepest Hole	-1.471
GooF	1.042
wR ₂ (all data)	0.1630
wR_2 (all data)	0.1590
R_1 (all data)	0.0654
R ₁	0.0614

Structure Quality Indicators

Reflections:	d min (0.69	⁹²⁶⁾ 0.70 ^{//σ}	12.8 ^{Rint}	5.30% complete	97%
Refinement:	Shift	0.000 Max Peak	1.9 ^{Min Peak}	-1.5 Goof	1.042

A suitable crystal with dimensions $0.150 \times 0.100 \times 0.080 \text{ mm}^3$ was mounted on a suitable support. Data were collected using the Daresbury SRS station 9.8 diffractometer, equipped with a Si(111) monochromator and Bruker SMART APEX2 CCD detector (Bruker, 2004), and operating at T = 120(2) K.

Data were measured using synchrotron radiation at a wavelength of 0.6911 Å. The maximum resolution that was achieved was Θ = 29.672° (0.70 Å).

The diffraction pattern was indexed using SAINT (Bruker, 2004).

Data reduction, scaling and absorption corrections were performed using Bruker SAINT. The final completeness is 98.30 % out to 29.672° in Θ . An empirical absorption correction was performed using SADABS (Bruker, 2004). The absorption coefficient μ of this material is 1.005 mm⁻¹ at this wavelength (λ = 0.6926 Å).

The structure was solved and the space group *C*2 (# 5) determined by the ShelXT (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2014/7 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. The Nd2 S3 bridge is disordered, and treated as disordered. The Nd1 S3 bride also seems disordered, but has not been treated as such.

There are 2 half molecules in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z' is 1.

The Flack parameter was refined to 0.479(13). Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in 0.477(6). Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0, a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers. There is inverse twinning, approximately half-half.

Reflection Statistics

Total reflections (after filtering)	33755	Unique reflections	18225
Completeness	0.886	Mean I/ σ	9.57
hkl _{max} collected	(27, 24, 27)	hkl _{min} collected	(-27, -24, -27)
hkl _{max} used	(27, 24, 27)	hkl _{min} used	(-27, -24, 0)
Lim d _{max} collected	100.0	Lim d _{min} collected	0.35
d _{max} used	8.8	d _{min} used	0.7
Friedel pairs	12302	Friedel pairs merged	0
Inconsistent equivalents	0	Rint	0.053
Rsigma	0.0782	Intensity transformed	0
Omitted reflections	0	Omitted by user (OMIT hkl)	0
Multiplicity	(28151, 2661, 94)	Maximum multiplicity	5
Removed systematic absence	s 0	Filtered off (Shel/OMIT)	0

Length/Å Atom Atom Atom Atom 011 011 S5² Nd1 2.349(5) 012A $S5^2$ Nd1 01 2.349(5) 0131 Nd1 02 013 2.311(5)C1 C2 Nd1 021 2.311(5)C1 Nd1 05 2.743(15)C6 Nd1 071 C2 С3 2.686(10)С3 C4 Nd1 07 2.686(10)C5 091 C4 Nd1 2.499(8) C5 Nd1 09 2.499(8) C6 S3² C7 C8 Nd2 3.237(4) C7 Nd2 S3 C12 3.237(4)C8 C9 Nd2 03 2.330(5)С9 032 C10 Nd2 2.330(5)C10 Nd2 04^{2} 2.362(5)C11 Nd2 04 2.362(5) C11 C12 Nd2 06 C13 C14 2.550(7) C13 C18 Nd2 010 2.654(9) C14 C15 2.654(9)Nd2 010² C15 C16 Nd2 011² 2.550(8) Nd2 011 2.550(8)C16 C17 Cl1 0131 1.363(16)C17 C18 C19 C20 Cl1 013 1.363(16)C19 C24 Cl1 014 1.471(17)C20 C21 Cl1 0141 1.471(17)C21 C22 Cl2 015² 1.423(7)Cl2 C22 C23 015 1.423(7)Cl2 016² 1.364(13) C23 C24 1.364(13) Cl2 016 C25 C26 S5 $S4^2$ C25 C30 2.118(7)S5 C26 C27 S4 1.558(6) C27 C28 S5 010² 1.955(11)C28 C29 S5 011² 1.529(8) C29 C30 S5 012A² 1.473(13)S2 C31 C32 $S1^1$ 2.079(4)C31 C36 S2 S1 2.079(4)S4 $S5^2$ 2.118(7)C32 C33 S4 S42 1.138(11)C33 C34 C34 C35 S1 07 1.578(10)C35 08 C36 S1 1.403(8)C37 C38 09 S1 1.425(8) S3 C37 C42 010 1.439(11)C38 C39 S3 011 1.277(9)C39 C40 S3 012 1.425(12) C40 P1 01 1.507(5) C41 P1 C1 1.805(6) C41 C42 C43 C44 P1 C7 1.785(7)C43 C48 P1 C13 1.795(6)P2 02 1.510(6) C44 C45 P2 C45 C46 C19 1.772(9) P2 C25 C46 C47 1.801(8) P2 C47 C48 C31 1.775(8) C49 C50 P3 03 1.503(5)C49 C54 P3 C37 1.794(6) P3 C50 C51 C43 1.806(7)C51 C52 P3 C49 1.784(8) P4 C52 C53 04 1.504(5)P4 C53 C54 C55 1.793(7)P4 C55 C56 C61 1.793(7)P4 C67 1.804(7)C55 C60 C56 C57

Length/Å

1.473(13)

1.529(8)

1.76(4)

1.370(9)

1.389(10)

1.397(10)

1.350(12)

1.361(12)

1.388(11)

1.423(12)

1.325(13)

1.389(13)

1.388(19)

1.424(16)

1.398(9)

1.391(9)

1.400(9)

1.389(12)

1.376(11)

1.389(12)

1.435(15)

1.404(14)

1.382(17)

1.413(16)

1.346(15)

1.399(10)

1.397(12)

1.396(11)

1.382(13)

1.419(14)

1.382(12)

1.377(10)

1.394(11)

1.396(14)

1.349(17)

1.392(14)

1.381(13)

1.395(9)

1.402(9)

1.395(9)

1.386(12)

1.418(13)1.367(10)

1.399(11)

1.388(10)

1.381(11)

1.378(12)

1.381(12)

1.392(10)

1.396(11)

1.398(10)

1.395(11)

1.392(12)

1.373(15)

1.377(13)

1.404(11)

1.380(10)

1.376(11)

1.405(9)

1.32(2)

010

 $S5^2$

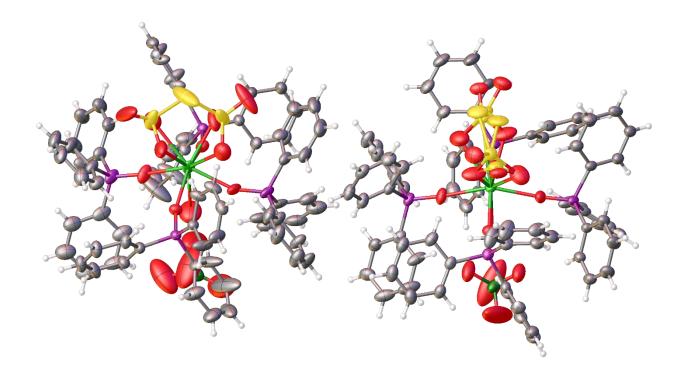
1.955(11)

Atom	Atom	Length/Å
C57	C58	1.383(14)
C58	C59	1.373(13)
C59	C60	1.384(10)
C61	C62	1.419(11)
C61	C66	1.380(10)
C62	C63	1.384(12)
C63	C64	1.375(14)
C64	C65	1.409(14)
C65	C66	1.372(10)

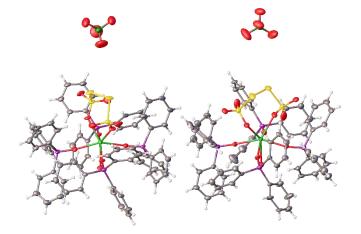
Atom	Atom	Length/Å
C67	C68	1.382(10)
C67	C72	1.423(9)
C68	C69	1.394(10)
C69	C70	1.395(12)
C70	C71	1.371(13)
C71	C72	1.390(10)

¹1-x,+y,-z; ²2-x,+y,1-z

Table2: Bond Angles in °.


Atom	Atom	Atom	Angle/°		Atom
1	Nd1	011	146.7(3)	04	
1	Nd1	05	73.35(13)	04	
1	Nd1	05	73.35(13)	042	
)1	Nd1	071	115.0(2)	04	
01 ¹	Nd1	071	88.5(2)	04	Ν
01 ¹	Nd1	07	115.0(2)	042	N
01	Nd1	07	88.5(2)	042	No
01	Nd1	091	75.2(2)	042	Nc
01	Nd1	09	134.8(2)	042	Nd
D11	Nd1	09 ¹	134.8(2)	04	Nd
)1 ¹	Nd1	09	75.2(2)	04	Nd
2 ¹	Nd1	01 ¹	83.8(2)	06	Nd2
)2	Nd1	01	83.8(2)	06	Nd2
2 ¹	Nd1	01	83.3(2)	06 06	Nd2 Nd2
)2)2 ¹	Nd1	01 ¹ 02	83.3(2)	010 ²	Nd2 Nd2
21 21	Nd1 Nd1		134.1(3)	0102	Nd2
21 2	Nd1 Nd1	05	67.03(15)	010 ²	Nd2
2	Nd1 Nd1	05 07	67.03(15)	010-	Nd2
2 21		07 071	154.1(2)	010 ²	Nd2
	Nd1 Nd1	071 07	154.1(2)	0102	Nd2
$\frac{2^{1}}{2}$	Nd1 Nd1	07 071	69.0(3) 68.9(3)	011 011 ²	Nd2
	Nd1 Nd1	071	68.9(3) 129.7(3)	011 ² 011 ²	Nd2
2 21	Nd1 Nd1	09 09 ¹	129.7(3)	0112	Nd2
2	Nd1 Nd1	09 ¹ 09 ¹	88.5(2)	011 ²	Nd2
<u>2</u> 1	Nd1	09	88.5(2)	011	Nd2
2- 7	Nd1	05	133.8(2)	011 ²	Nd2
71 71	Nd1	05	133.8(2)	011	Nd2
7	Nd1	07^{1}	92.4(4)	011 ²	Nd2
19	Nd1	05	141.74(18)	011	Nd2
9 ¹	Nd1	05	141.74(18)	011 ²	Nd2
91	Nd1	07	65.6(3)	013 ¹	Cl1
91	Nd1	07 ¹	47.6(3)	013 ¹	Cl1
9	Nd1	07	47.6(3)	013	Cl1
)	Nd1	07 ¹	65.6(3)	013	Cl1
91	Nd1	09	76.5(4)	013 ¹	Cl1
32	Nd2	S3	63.86(15)	014	Cl1
32	Nd2	S3	108.40(15)	015 ²	Cl2
32	Nd2	S3 ²	95.26(17)	016 ²	Cl2
	Nd2	S3 ²	108.40(15)	016 ²	Cl2
	Nd2	S3	95.26(17)	016	Cl2
	Nd2	O3 ²	152.2(3)	016	Cl2
}	Nd2	04	85.92(19)	016 ²	Cl2
2	Nd2	04	86.4(2)	S4	S5
32	Nd2	042	85.93(19)	S4	S5
3	Nd2	042	86.4(2)	010 ²	S5
3	Nd2	06	76.11(14)	011 ²	S5
32	Nd2	06	76.11(14)	011 ²	S5
3	Nd2	010	69.4(3)	011 ²	S5
3 ²	Nd2	010	133.6(2)	012A ²	S5
3	Nd2	010 ²	133.6(2)	012A ²	S5
32	Nd2	010 ²	69.4(3)	012A ²	S5
32	Nd2	011 ²	116.1(3)	012A ²	S5
3	Nd2	011	116.1(3)	S1	S2
3	Nd2	011 ²	86.8(3)	S5	S4
32	Nd2	011	86.8(3)	S4 ²	S4
		S3 ²	137.04(14)	S4 ²	S4
4	Naz				
	Nd2 Nd2			07	S1
ł	Nd2 Nd2 Nd2	S3 S3	137.04(14) 74.87(14)	07 08	S1 S1

Atom D8 D9 D9 D10 D11 D11 D11 D12 D12 D12 D1 D1 D1 D1 C7	Atom S1 S1 S3 S3 S3 S3 S3 S3 S3 S3	Atom 09 S2 07 Nd2 Nd2 Nd2	Angle/° 113.5(5) 103.4(3) 88.5(6)	Atom C18 C13	Atom C13 C14	Atom C14	Angle/° 119.1(6)
9 9 10 11 11 11 12 12 1 1 1 1 7	S1 S1 S3 S3 S3 S3 S3 S3	S2 07 Nd2 Nd2	103.4(3)				
) 10 11 11 11 12 12 12 1 1 1 1 1 7	S1 S3 S3 S3 S3 S3 S3	07 Nd2 Nd2		010		C15	120.2(7)
10 11 11 11 12 12 1 1 1 7	S3 S3 S3 S3 S3 S3	Nd2 Nd2	00.5(0)	C16	C15	C14	120.2(7)
11 11 12 12 12 1 1 1 7	S3 S3 S3 S3	Nd2	53.8(4)	C17	C16	C15	119.8(7)
911 911 912 912 91 91 91 7	S3 S3 S3		47.3(4)	C16	C17	C13	120.4(7)
11 12 12 1 1 1 1 7	S3 S3	010	100.3(6)	C13	C17	C10 C17	120.4(7)
12 12 1 1 1 1 7	S3	010		C20	C18 C19	P2	
12 1 1 1 1 7			124.6(7)				120.6(9)
01 01 01 7		Nd2	150.6(5)	C20	C19	C24	118.2(9)
91 91 7	S3	010	117.5(7)	C24	C19	P2	121.2(7)
1 7	P1	C1	110.5(3)	C19	C20	C21	121.1(11)
7	P1	C7	109.6(3)	C22	C21	C20	119.7(10)
	P1	C13	112.4(3)	C21	C22	C23	119.3(11)
	P1	C1	109.2(3)	C24	C23	C22	121.4(13)
7	P1	C13	107.4(3)	C23	C24	C19	120.2(11)
13	P1	C1	107.6(3)	C26	C25	P2	122.2(6)
2	P2	C19	110.8(4)	C30	C25	P2	118.2(6)
2	P2	C25	110.0(4)	C30	C25	C26	119.6(7)
2	P2	C31	112.6(3)	C27	C26	C25	119.6(8)
19	P2	C25	108.7(4)	C28	C27	C26	121.2(8)
19	P2	C31	105.9(4)	C27	C28	C29	119.0(8)
31	P2	C25	108.7(4)	C30	C29	C28	119.9(9)
3	P3	C37	112.7(3)	C29	C30	C25	120.7(8)
3	P3	C43	110.3(3)	C32	C31	P2	123.3(7)
3	P3	C49	111.1(3)	C32	C31	C36	118.0(8)
37	P3	C43	109.1(3)	C36	C31	P2	118.7(6)
37 49	P3	C43 C37		C31	C31	C33	
			106.3(3)				120.6(10)
49	P3	C43	107.1(3)	C34	C33	C32	120.5(9)
4	P4	C55	113.2(3)	C33	C34	C35	120.3(10)
4	P4	C61	110.3(3)	C36	C35	C34	118.9(10)
4	P4	C67	111.1(3)	C35	C36	C31	121.6(9)
55	P4	C61	105.9(3)	C38	C37	РЗ	121.9(5)
55	P4	C67	108.2(3)	C38	C37	C42	120.0(6)
61	P4	C67	107.8(3)	C42	C37	Р3	118.1(5)
1	01	Nd1	163.0(3)	C37	C38	C39	119.3(7)
2	02	Nd1	158.8(4)	C40	C39	C38	121.1(8)
3	03	Nd2	174.0(4)	C39	C40	C41	118.9(7)
4	04	Nd2	166.9(3)	C42	C41	C40	120.3(7)
1	07	Nd1	101.4(4)	C41	C42	C37	120.5(7)
1	09	Nd1	115.9(6)	C44	C43	P3	118.4(5)
5 ²	010	Nd2	103.5(4)	C48	C43	P3	121.9(5)
3	010	Nd2	100.3(5)	C48	C43	C44	119.7(6)
5 ²	010	Nd2	124.8(6)	C45	C44	C43	119.6(7)
3	011	Nd2	111.1(6)	C46	C45	C43 C44	120.8(8)
5 1	011	013 ¹	49.7(10)	C40 C45	C45 C46	C44 C47	120.8(8)
2							
	C1	P1	118.6(5)	C46	C47	C48	120.3(7)
2	C1	C6	118.6(6)	C43	C48	C47	119.8(7)
6	C1	P1	122.7(5)	C50	C49	P3	122.8(5)
1	C2	C3	119.9(7)	C50	C49	C54	118.7(7)
4	C3	C2	121.0(7)	C54	C49	Р3	118.4(6)
3	C4	C5	119.8(7)	C51	C50	C49	121.0(7)
4	C5	C6	120.3(8)	C52	C51	C50	118.5(9)
5	C6	C1	120.3(7)	C53	C52	C51	120.9(9)
8	C7	P1	120.2(6)	C52	C53	C54	120.6(8)
12	C7	P1	120.1(7)	C53	C54	C49	120.2(9)
12	C7	C8	119.4(8)	C56	C55	P4	121.2(6)
9	C8	C7	118.6(10)	C60	C55	P4	119.9(6)
10	C9	C8	120.6(11)	C60	C55	C56	118.8(7)
11	C10	C9	118.5(10)	C57	C56	C55	119.4(9)
10	C10 C11	C12	122.5(13)	C56	C57	C58	121.1(9)
						C57	
7	C12	C11	119.1(12)	C59	C58		119.8(8)
14	C13	P1	118.3(5)	C58	C59	C60	119.7(8)
18	C13	P1	122.2(5)	C55	C60	C59	121.2(7)


Atom	Atom	Atom	Angle/°
C62	C61	P4	122.3(6)
C66	C61	P4	118.1(6)
C66	C61	C62	119.6(7)
C63	C62	C61	119.2(8)
C64	C63	C62	120.9(8)
C63	C64	C65	119.7(8)
C66	C65	C64	119.9(8)
C65	C66	C61	120.8(8)
C68	C67	P4	122.9(5)

AtomAtomAngle/°C68C67C72120.6(6)C72C67P4116.5(5)C67C68C69119.6(7)C68C69C70119.9(8)C71C70C69120.5(7)C70C71C72121.0(7)C71C72C67118.3(7)				
C72C67P4116.5(5)C67C68C69119.6(7)C68C69C70119.9(8)C71C70C69120.5(7)C70C71C72121.0(7)	Atom	Atom	Atom	Angle/°
C67C68C69119.6(7)C68C69C70119.9(8)C71C70C69120.5(7)C70C71C72121.0(7)	C68	C67	C72	120.6(6)
C68C69C70119.9(8)C71C70C69120.5(7)C70C71C72121.0(7)	C72	C67	P4	116.5(5)
C71C70C69120.5(7)C70C71C72121.0(7)	C67	C68	C69	119.6(7)
C70 C71 C72 121.0(7)	C68	C69	C70	119.9(8)
	C71	C70	C69	120.5(7)
C71 C72 C67 118.3(7)	C70	C71	C72	121.0(7)
	C71	C72	C67	118.3(7)

¹1-x,+y,-z; ²2-x,+y,1-z

Crystal Data and Experimental [Nd(κ²-0, 0'- S₄O₆)(Ph₃PO)₄(H₂O)]·3[ClO₄]

Figure 1: Thermal ellipsoids drawn at the 50% probability level.

Experimental. A suitable colourless cut shard-shaped crystal (0.220×0.140×0.090 mm³) was selected and mounted on a MITIGEN holder in perfluoroether oil on a Bruker-Nonius FR591 diffractometer equipped with a rotating anode and graphite monochromator and a Bruker-Nonius 95mm CCD camera on κ -goniostat. The crystal was kept at a steady *T* = 120(2) K during data collection. The structure was solved with the **ShelXT** (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using **Olex2** (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2014/7 of **ShelXL** (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data. $C_{72}H_{60}CINdO_{15}P_4S_4$, $M_r = 1597.01$, monoclinic, *C*2 (No. 5), a = 20.0936(7) Å, b = 17.3394(7) Å, c = 19.6719(7) Å, β = 90.081(3)°, $\alpha = \gamma = 90°$, V =6853.9(4) Å³, T = 120(2) K, Z = 4, Z' = 1, μ (MoK $_{\alpha}$) = 1.080 mm⁻¹, 35506 reflections measured, 15571 unique ($R_{int} =$ 0.0770) which were used in all calculations. The final wR_2 was 0.2016 (all data) and R_1 was 0.0789 (I > 2(I)).

Formula	C72H60ClNdO15P4S4
<i>D_{calc.}</i> / g cm ⁻³	1.548
μ/mm^{-1}	1.080
Formula Weight	1597.01
Colour	colourless
Shape	cut shard
Size/mm ³	0.220×0.140×0.090
T/K	120(2)
Crystal System	monoclinic
Flack Parameter	0.029(6)
Hooft Parameter	0.064(7)
Space Group	<i>C</i> 2
a/Å	20.0936(7)
b/Å	17.3394(7)
c/Å	19.6719(7)
$\alpha/^{\circ}$	90
β/°	90.081(3)
γ/°	90
γ/° V/ų	6853.9(4)
Ζ	4
Z'	1
Wavelength/Å	0.71073
Radiation type	ΜοΚα
$\Theta_{min}/^{\circ}$	3.104
$\Theta_{max}/^{\circ}$	27.481
Measured Refl.	35506
Independent Refl.	15571
Reflections with I >	12518
2(I)	
Rint	0.0770
Parameters	877
Restraints	781
Largest Peak	5.060
Deepest Hole	-2.450
GooF	1.084
wR2 (all data)	0.2016
wR_2	0.1904
R1 (all data)	0.1011
R_1	0.0789

Structure Quality Indicators

Reflections:	d min (M	^{lo)} 0.77 ^{l/σ}	9.2	Rint 7.	70% ^{comp}	$^{\text{olete}}$ 100%
Refinement:	^{Shift} (0.000 Max Peak	5.1 Min Peak	-2.5 Goof	1.084	^{Flack} .029(6)

A colourless cut shard-shaped crystal with dimensions $0.220 \times 0.140 \times 0.090 \text{ mm}^3$ was mounted on a MITIGEN holder in perfluoroether oil on a Bruker-Nonius FR591 diffractometer equipped with a rotating anode and graphite monochromator and a Bruker-Nonius 95mm CCD camera on κ -goniostat. The crystal was kept at a steady *T* = 120(2) K during data collection.

Data were measured using MoK_{α} radiation. The maximum resolution that was achieved was Θ = 27.481° (0.77 Å).

The diffraction pattern was indexed and the unit cell was refined on 11302 reflections, 90% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using DENZO (Otwinowski, 1997). The final completeness is 99.80 % out to 27.481° in Θ .

An empirical absorption correction was performed using SADABS (Sheldrick, 2003). The absorption coefficient μ of this material is 1.080 mm⁻¹ at this wavelength ($\lambda = 0.711$ Å) and the minimum and maximum transmissions are 0.688 and 1.000.

The structure was solved and the space group *C*2 (# 5) determined by the **ShelXT** (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2014/7 of **ShelXL** (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Some restraints were applied.

There is a 2 half molecules in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z' is 1.

The Flack parameter was refined to 0.029(6). Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in 0.064(7). Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0, a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

Reflection Statistics

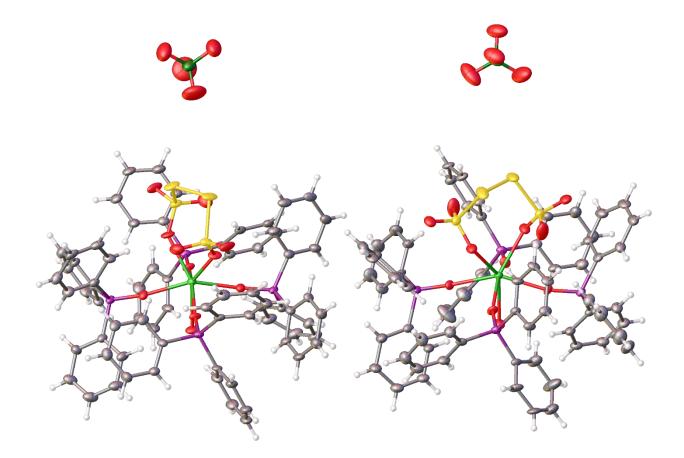
Total reflections (after filtering)	35506	Unique reflec
Completeness	0.992	Mean I/ σ
hkl _{max} collected	(26, 22, 25)	hklmin collecte
hkl _{max} used	(26, 22, 25)	hkl _{min} used
Lim d _{max} collected	7.0	Lim d _{min} colle
d _{max} used	6.56	d_{\min} used
Friedel pairs	11196	Friedel pairs
Inconsistent equivalents	54	Rint
Rsigma	0.1085	Intensity tran
Omitted reflections	0	Omitted by us
Multiplicity	(17172, 6567, 1397, 277, 2)	Maximum mu
Removed systematic absences	0	Filtered off (S

Unique reflections	15571
Mean I/ σ	8.61
hkl _{min} collected	(-26, -22, -25)
hkl _{min} used	(-26, -22, 0)
Lim d _{min} collected	0.77
d _{min} used	0.77
Friedel pairs merged	0
Rint	0.077
Intensity transformed	0
Omitted by user (OMIT hkl)	0
Maximum multiplicity	8
Filtered off (Shel/OMIT)	109

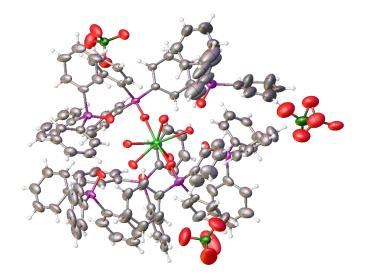
Table 1: Bond Lengths in Å.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Nd1	011	2.379(9)	C17	C16	1.38(2)
Nd1	01	2.379(9)	C2	C1	1.382(19)
Nd1	03	2.535(13)	C34	C35	1.39(2)
Nd1	04	2.413(9)	C26	C25	1.434(19)
Nd1	041	2.413(9)	C26	C27	1.40(2)
Nd1	02	2.308(9)	C30	C25	1.37(2)
Nd1	021	2.308(9)	C30	C29	1.404(19)
P1	01	1.498(9)	C10	C11	1.37(2)
P1	C7	1.801(14)	C11	C12	1.38(2)
P1	C13	1.820(13)	C15	C16	1.40(2)
P1	C1	1.800(14)	C5	C4	1.40(2)
S2	$S2^1$	2.008(8)	C27	C28	1.36(2)
S2	S1	2.123(5)	C28	C29	1.40(2)
P2	C19	1.801(14)	Nd2	09	2.557(14)
P2	02	1.521(9)	Nd2	072	2.366(9)
P2	C31	1.787(14)	Nd2	07	2.365(9)
P2	C25	1.791(14)	Nd2	08 ²	2.339(8)
S1	04	1.479(10)	Nd2	08	2.339(8)
S1	05	1.414(10)	Nd2	010 ²	2.448(10)
S1	06	1.415(12)	Nd2	010	2.448(10)
C19	C24	1.392(19)	S3	S3 ²	2.016(9)
C19	C20	1.399(19)	S3	S4	2.117(5)
C14	C13	1.387(18)	P4	C67	1.801(14)
C14	C15	1.396(19)	P4	08	1.512(9)
C32	C33	1.394(17)	P4	C55	1.799(14)
C32	C31	1.393(18)	P4	C61	1.804(14)
C33	C34	1.38(2)	РЗ	07	1.514(9)
C7	C12	1.400(19)	Р3	C43	1.788(14)
C7	C8	1.38(2)	Р3	C49	1.802(14)
C9	C10	1.40(2)	Р3	C37	1.786(14)
C9	C8	1.39(2)	S4	012	1.422(11)
C3	C2	1.41(2)	S4	010	1.475(11)
C3	C4	1.37(2)	S4	011	1.450(12)
C24	C23	1.39(2)	C50	C49	1.385(19)
C22	C21	1.38(2)	C50	C51	1.398(18)
C22	C23	1.38(2)	C43	C48	1.411(18)
C21	C20	1.40(2)	C43	C44	1.395(18)
C6	C1	1.41(2)	C63	C62	1.385(19)
C6	C5	1.39(2)	C63	C64	1.38(2)
C13	C18	1.387(18)	C67	C72	1.430(19)
C36	C31	1.419(18)	C67	C68	1.34(2)
C36	C35	1.36(2)	C38	C37	1.40(2)
C17	C18	1.38(2)	C38	C39	1.40(2)

AtomLengthC62C611.375(1)C55C601.380(1)C55C561.411(1)C66C611.401(1)C66C651.391(1)	18)
C55 C60 1.380(1 C55 C56 1.411(1 C66 C61 1.401(1	
C55 C56 1.411(1) C66 C61 1.401(1)	
C66 C61 1.401(1	19)
	18)
C66 C65 1.391(1	18)
	19)
C54 C49 1.39(2))
C54 C53 1.40(2))
C60 C59 1.388(1	19)
C42 C41 1.39(2))
C42 C37 1.41(2))
C71 C72 1.39(2))
C71 C70 1.33(2))
C56 C57 1.36(2))
C51 C52 1.36(2))
C47 C48 1.39(2))
C47 C46 1.39(2))
C46 C45 1.39(2))
C41 C40 1.40(2))


Atom	Atom	Length/Å
C70	C69	1.37(3)
C44	C45	1.39(2)
C52	C53	1.41(2)
C40	C39	1.36(2)
C57	C58	1.38(2)
C58	C59	1.40(2)
C64	C65	1.38(2)
C68	C69	1.39(2)
Cl1	014	1.411(15)
Cl1	0141	1.411(15)
Cl1	0131	1.407(18)
Cl1	013	1.407(18)
Cl2	016 ²	1.457(16)
Cl2	016	1.457(16)
Cl2	015 ²	1.392(17)
Cl2	015	1.392(17)

¹-x,+y,1-z; ²1-x,+y,-z


 Table 2: Bond Angles in °.

Atom	Atom	Atom	Angle/°
)1 ¹	Nd1	01	153.8(4)
0.1^{1}	Nd1 Nd1	01	76.9(2)
)1)1	Nd1 Nd1	03	76.9(2)
01^{1}		03	
	Nd1		127.0(3)
)1	Nd1	041	127.0(3)
1	Nd1	04	76.1(3)
1	Nd1	041	76.1(3)
1	Nd1	03	143.0(2)
1 1	Nd1	03	143.0(2)
r	Nd1	041	74.1(5)
1	Nd1	011	83.4(3)
	Nd1	01	83.4(3)
2	Nd1	011	90.7(3)
1	Nd1	01	90.7(3)
21	Nd1	03	77.0(2)
2	Nd1	03	77.0(2)
2	Nd1	04	124.1(3)
21	Nd1	041	124.1(3)
	Nd1	04	78.4(3)
2	Nd1	04 ¹	78.4(3)
1	Nd1	02	154.0(4)
	P1	C7	114.5(6)
1 1	P1	C13	108.7(6)
1	P1	C13	110.5(6)
7	P1 P1	C13	
			108.7(6)
	P1	C7	105.5(6)
	P1	C13	108.8(6)
1	S2	S1	104.2(2)
2	P2	C19	110.0(6)
2	P2	C31	112.8(6)
2	P2	C25	110.2(6)
31	P2	C19	106.5(6)
31	P2	C25	109.6(6)
25	P2	C19	107.5(6)
94	S1	S2	103.9(4)
)5	S1	S2	101.5(5)
)5	S1	04	112.5(7)
5	S1	06	117.0(8)
6	S1	S2	109.3(5)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angl
C11	C12	C7	119.1(14)	C39	C38	C37	119.0
217	C16	C15	120.9(14)	C61	C62	C63	120.3
226	C25	P2	117.3(11)	C60	C55	P4	122.7
230	C25	P2	123.0(11)	C60	C55	C56	118.2
230	C25	C26	119.7(13)	C56	C55	P4	118.9
228	C27	C26	121.9(14)	C65	C66	C61	119.6
220 227	C28	C29	119.9(13)	S4	010	Nd2	133.0
222	C23	C24	120.6(15)	C49	C54	C53	
			120.0(15)				120.5
236	C35	C34	120.2(13)	C55	C60	C59	121.6
28	C29	C30	119.8(14)	C41	C42	C37	120.0
219	C20	C21	120.3(14)	C50	C49	Р3	119.9
7	C8	C9	120.6(13)	C50	C49	C54	119.1(
)7	Nd2	09	74.2(2)	C54	C49	P3	120.9(
)7 ²	Nd2	09	74.2(2)	C70	C71	C72	119.5(
)7	Nd2	072	148.4(4)	C57	C56	C55	120.5(
)7 2	Nd2	010 ²	77.5(3)	C52	C51	C50	120.3
)7	Nd2	010 ²	130.1(3)	C48	C47	C46	120.0(
7 2	Nd2	010	130.1(3)	C47	C48	C43	119.6
)7	Nd2	010	77.5(3)	C47 C47	C46	C45	121.0
		010					
8 ²	Nd2		75.5(2)	C42	C41	C40	119.1(
8	Nd2	09	75.5(2)	C62	C61	P4	118.8(
)8 ²	Nd2	072	85.8(3)	C62	C61	C66	119.6(
) 8 ²	Nd2	07	86.3(3)	C66	C61	P4	121.5(
)8	Nd2	07	85.8(3)	C71	C72	C67	119.5(
)8	Nd2	072	86.3(3)	C71	C70	C69	122.4(
8	Nd2	08 ²	151.0(5)	C45	C44	C43	120.6(
8	Nd2	010	77.2(3)	C38	C37	Р3	123.1(
)8	Nd2	010 ²	128.0(4)	C38	C37	C42	119.8(
)8 ²	Nd2	010 ²	77.2(3)	C42	C37	P3	117.1(
)8 ²	Nd2	010	128.0(4)	C51	C52	C53	120.2(
)10 ²	Nd2	09	141.6(2)	C39	C40	C41	120.2(
010	Nd2	09	141.6(2)	C56	C57	C58	120.9(
010	Nd2	010 ²	76.7(5)	C54	C53	C52	119.1(
53 ²	S3	S4	104.4(3)	C57	C58	C59	120.0(
267	P4	C61	108.4(6)	C65	C64	C63	119.3(
)8	P4	C67	110.3(6)	C40	C39	C38	120.6(
)8	P4	C55	111.5(6)	C67	C68	C69	121.5(
)8	P4	C61	110.6(6)	C60	C59	C58	118.8(
55	P4	C67	106.9(6)	C46	C45	C44	119.0
:55	P4	C61	109.0(6)	0141	Cl1	014	109.1
)7	P3	C43	110.4(6)	013	Cl1	014	111.7(
)7	P3	C49	110.7(6)	013 ¹	Cl1	014	107.3(
)7	P3	C49 C37	113.6(6)	013 ¹	Cl1	$014 \\ 014^{1}$	107.3
43	P3	C49			Cl1	014^{1} 014^{1}	
			109.2(6)	013			107.3(
37	P3	C43	108.7(7)	013	Cl1	013 ¹	110(2)
37	P3	C49	104.1(6)	016	Cl2	016 ²	105.6(
12	S4	S3	100.9(4)	015	Cl2	016	108.1(
12	S4	010	112.2(6)	015 ²	Cl2	016	110.2(
12	S4	011	115.9(7)	015 ²	Cl2	016 ²	108.1(
10	S4	S3	104.1(5)	015	Cl2	016 ²	110.2(
)11	S4	S3	108.9(6)	015	C12	015 ²	114.2
)11	S4	010	113.2(8)	C3	C4	C5	120.5
3	07	Nd2	166.0(6)	C64	C65	C66	120.5
3 49	C50	C51	120.7(14)	C70	C69	C68	118.4
				670	609	600	110.4(
48	C43	P3	118.3(10)	 1 -	_ 21		
244	C43	P3	122.0(11)	¹ -x,+y,1-	z; ² 1-x,+y,-z		
244	C43	C48	119.7(13)				
64	C63	C62	120.7(13)				
72	C67	P4	122.0(11)				
68	C67	P4	119.0(11)				
68	C67	C72	118.5(13)				
00							

Crystal Data and Experimental [Er(Ph₃PO)₂(H₂O)₅]·5(Ph₃PO)·3[ClO₄]

Figure 1: Thermal ellipsoids drawn at the 50% probability level.

Experimental. A suitable colourless block-shaped crystal $(0.120 \times 0.080 \times 0.040 \text{ mm}^3)$ was selected and mounted on a suitable support on the Daresbury SRS station 9.8 diffractometer. The crystal was kept at a steady *T* = 120(2) K during data collection. The structure was solved with the **ShelXT** (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using **Olex2** (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2014/7 of **ShelXL** (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data. $C_{126}H_{105}Cl_{2.5}ErO_{22}P_7$, $M_r = 2443.77$, orthorhombic, *Pbcn* (No. 60), a = 43.152(15) Å, b = 23.773(8) Å, c = 23.799(8) Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 24414(14) Å³, T = 120(2) K, Z = 8, Z' = 1, $\mu = 0.844$ mm⁻¹, 174628 reflections measured, 21554 unique ($R_{int} = 0.0711$) which were used in all calculations. The final wR_2 was 0.1731 (all data) and R_1 was 0.0781 (I > 2(I)).

Formula	C126H105Cl2.5ErO22P7
$D_{calc.}$ / g cm ⁻³	1.330
μ/mm^{-1}	0.844
Formula Weight	2443.77
Colour	colourless
Shape	block
Size/mm ³	0.120×0.080×0.040
T/K	120(2)
Crystal System	orthorhombic
Space Group	Pbcn
a/Å	43.152(15)
b/Å	23.773(8)
c/Å	23.799(8)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	90
	90
γ/° V/ų	24414(14)
Z	8
Z'	1
Wavelength/Å	0.6911
Radiation type	?
$\Theta_{min}/^{\circ}$	2.181
$\Theta_{max}/^{\circ}$	24.291
Measured Refl.	174628
Independent Refl.	21554
Reflections with I >	18416
2(I)	
Rint	0.0711
Parameters	1447
Restraints	1273
Largest Peak	1.460
Deepest Hole	-2.420
GooF	1.200
wR2 (all data)	0.1731
wR_2	0.1675
<i>R</i> ¹ (all data)	0.0894
R_1	0.0781

Structure Quality Indicators

Reflections:	d min (0.69	⁹¹¹⁾ 0.84 ^{I/σ}	25.9 Rint	7.11%	complete	100%
Refinement:	Shift	0.003 Max Peak	1.5 ^{Min Peak}	-2.4	GooF	1.200

A colourless block-shaped crystal with dimensions $0.120 \times 0.080 \times 0.040 \text{ mm}^3$ was mounted on a suitable support. Data were collected using the Daresbury SRS station 9.8 diffractometer, equipped with a Si(111) monochromator and Bruker SMART APEX2 CCD detector (Bruker, 2004), and operating at *T* = 120(2) K.

Data were measured using synchrotron radiation at a wavelength of 0.6911 Å. The maximum resolution that was achieved was Θ = 24.291° (0.84 Å).

The diffraction pattern was indexed using SAINT (Bruker, 2004) and the unit cell was refined on 977 reflections, 5% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using Bruker SAINT. The final completeness is 99.80 % out to 24.291° in Θ . An empirical absorption correction was performed using SADABS (Bruker, 2004). The absorption coefficient μ of this material is 0.844 mm⁻¹ at this wavelength (λ = 0.6911 Å) and the minimum and maximum transmissions are 1.000 and 0.860.

The structure was solved and the space group *Pbcn* (# 60) determined by the **ShelXT** (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2014/7 of **ShelXL** (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. There are some small cavities available for solvents. No solvents were identified, possibly some water molecules, so the structure was SQUEEZEd.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 8 and Z' is 1.

Reflection Statistics

Total reflections (after filtering)	181102	Unique reflections	21554
Completeness	0.999	Mean I/ σ	17.04
hkl _{max} collected	(51, 28, 28)	hkl _{min} collected	(-51, -28, -28)
hkl _{max} used	(51, 28, 28)	hkl _{min} used	(0, 0, 0)
Lim d _{max} collected	10.0	Lim d _{min} collected	0.83
d _{max} used	9.16	d _{min} used	0.84
Friedel pairs	71278	Friedel pairs merged	1
Inconsistent equivalents	0	R _{int}	0.0711
R _{sigma}	0.0386	Intensity transformed	0
Omitted reflections	0	Omitted by user (OMIT hkl)	0
Multiplicity	(133767, 22292, 917)	Maximum multiplicity	12
Removed systematic absences	s 6474	Filtered off (Shel/OMIT)	0

Table 1: Bond Lengths in Å.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Er1	01	2.170(5)	P1	C1	1.784(10)
Er1	02	2.188(5)	P1	C7	1.796(8)
Er1	08	2.344(5)	P1	C13	1.788(8)
Er1	09	2.337(5)	P2	02	1.502(5)
Er1	010	2.320(5)	P2	C19	1.802(7)
Er1	011	2.312(5)	P2	C25	1.782(8)
Er1	012	2.374(4)	P2	C31	1.798(7)
P1	01	1.511(5)	C1	C2	1.383(13)

Atom	Atom	Length/Å	Atom	Ato
1	C6	1.398(12)	C43	C48
2	C3	1.363(14)	C44	C45
3	C4	1.408(15)	C45	C46
4	C5	1.390(17)	C46	C47
25	C6	1.363(16)	C47	C48
27	C8	1.397(12)	C49	C50
27	C12	1.376(11)	C49	C54
28	C9	1.384(12)	C50	C51
29	C10	1.399(13)	C51	C52
C10	C11	1.372(14)	C52	C53
11	C12	1.360(12)	C53	C54
C13	C12 C14	1.369(12)	P4	04
C13	C14 C18	1.393(13)	P4	C55
			P4	C61
C14	C15	1.402(14)		
215	C16	1.396(15)	P4	C67
216	C17	1.365(14)	C55	C56
217	C18	1.384(12)	C55	C60
19	C20	1.393(10)	C56	C57
19	C24	1.398(10)	C57	C58
20	C21	1.390(10)	C58	C59
21	C22	1.369(11)	C59	C60
22	C23	1.392(11)	C61	C62
23	C24	1.392(10)	C61	C66
25	C26	1.389(10)	C62	C63
25	C30	1.386(10)	C63	C64
26	C27	1.372(11)	C64	C65
27	C28	1.378(11)	C65	C66
28	C29	1.385(11)	C67	C68
29	C30	1.389(11)	C67	C72
31	C32	1.383(9)	C68	C69
31	C36	1.384(10)	C69	C70
32	C33	1.384(10)	C70	C71
33	C34	1.365(11)	C71	C72
33 34	C34 C35	1.364(11)	P5	05
			P5	
35	C36	1.396(11)		C73
211	013	1.437(6)	P5	C79
l1	014	1.412(7)	P5	C85
11	015	1.412(7)	C73	C74
11	016	1.416(8)	C73	C78
12	0171	1.368(9)	C74	C75
12	017	1.369(9)	C75	C76
212	018	1.329(10)	C76	C77
12	0181	1.329(10)	C77	C78
3	019	1.370(9)	C79	C80
3	020	1.484(10)	C79	C84
13	021	1.467(11)	C80	C81
13	022	1.381(15)	C81	C82
13A	019	1.573(12)	C82	C83
13A	020	1.417(12)	C83	C84
3A	021	1.233(12)	C85	C86
3A	022A	1.409(17)	C85	C90
3	0221	1.500(5)	C86	C87
3	C37	1.796(8)	C80 C87	C88
	C37 C43	1 2	C87	C89
3		1.783(8)		
3	C49	1.807(7)	C89	C90
37	C38	1.379(11)	P6	06
37	C42	1.405(11)	P6	C91
38	C39	1.394(12)	P6	C97
39	C40	1.391(13)	P6	C10
40	C41	1.354(13)	C91	C92
41	C42	1.382(11)	C91	C96
41 43	C42 C44	1.370(11)	C92	C93

Length/Å 1.418(11) 1.399(12) 1.401(13) 1.362(13) 1.368(13) 1.402(12) 1.370(12) 1.412(11) 1.352(15) 1.369(15) 1.425(12) 1.498(5) 1.805(9) 1.802(10) 1.816(8) 1.413(13) 1.378(13) 1.393(15) 1.351(17) 1.370(16) 1.404(13) 1.382(11)1.397(12) 1.383(14) 1.361(14) 1.369(13) 1.383(14) 1.391(14) 1.373(13) 1.406(13) 1.371(15) 1.348(16) 1.410(13) 1.496(5) 1.795(8) 1.790(8) 1.790(8) 1.394(11) 1.368(12)1.386(13) 1.358(16) 1.331(16) 1.407(12) 1.389(11) 1.384(10)1.384(12) 1.385(11) 1.383(11) 1.402(11) 1.381(11) 1.366(11)1.390(12) 1.374(13) 1.367(13) 1.405(12) 1.508(6) 1.778(9) 1.798(9) 1.778(9) 1.393(13) 1.397(11) 1.377(13)

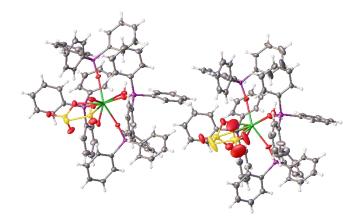
Atom	Atom	Length/Å
C93	C94	1.373(13)
C94	C95	1.378(14)
C95	C96	1.396(12)
C97	C98	1.396(13)
C97	C102	1.408(14)
C98	C99	1.399(14)
C99	C100	1.370(17)
C100	C101	1.369(16)
C101	C102	1.398(13)
C103	C104	1.390(12)
C103	C108	1.385(12)
C104	C105	1.378(14)
C105	C106	1.378(14)
C106	C107	1.353(14)
C107	C108	1.420(13)
P7	07	1.495(6)
P7	C109	1.782(10)
P7	C115	1.766(12)
P7	C121	1.803(13)
C109	C110	1.359(13)

Å
)
)
)
)
)
)
)
)
)

¹1-x,+y,1/2-z


Table 3: Bond Angles in °.

Atom	Atom	Atom	Anglo /°	Atom	Atom	Atom
Atom 01		Atom	Angle/°	Atom C2	Atom C1	Atom C6
	Er1	02	172.5(2)	C2 C6	C1	C6 P1
01	Er1	08	87.0(2)			
01	Er1	09	89.61(19)	C3	C2	C1
01	Er1	010	96.3(2)	C2	C3	C4
01	Er1	011	92.2(2)	C5	C4	C3
01	Er1	012	86.30(19)	C6	C5	C4
02	Er1	08	86.08(18)	C5	C6	C1
)2	Er1	09	91.74(18)	C8	C7	P1
02	Er1	010	91.14(19)	C12	C7	P1
02	Er1	011	91.53(19)	C12	C7	C8
02	Er1	012	88.72(17)	C9	C8	C7
08	Er1	012	71.74(17)	C8	C9	C10
09	Er1	08	77.07(18)	C11	C10	С9
09	Er1	012	148.71(17)	C12	C11	C10
010	Er1	08	147.70(18)	C11	C12	C7
010	Er1	09	70.84(18)	C14	C13	P1
010	Er1	012	140.45(17)	C14	C13	C18
011	Er1	08	143.06(18)	C18	C13	P1
)11	Er1	09	139.86(18)	C13	C14	C15
)11	Er1	010	69.10(17)	C16	C15	C14
11	Er1	012	71.36(17)	C17	C16	C15
1	P1	C1	111.1(4)	C16	C17	C18
)1	P1	C7	110.1(4)	C17	C18	C13
)1	P1	C13	109.5(3)	C20	C19	P2
C1	P1	C7	108.0(4)	C20	C19	C24
21	P1	C13	108.3(4)	C24	C19	P2
C13	P1	C7	109.8(4)	C21	C20	C19
02	P2	C19	110.0(3)	C22	C21	C20
02	P2	C25	110.7(3)	C21	C22	C23
02	P2	C31	109.2(3)	C24	C23	C22
C25	P2	C19	108.6(3)	C23	C24	C19
C25	P2	C31	110.6(3)	C26	C25	P2
C31	P2	C19	107.8(3)	C30	C25	P2
P1	01	Er1	177.0(4)	C30	C25	C26
P2	02	Er1	176.2(3)	C27	C26	C25
C2	02 C1	P1		C26	C27	C28
.2	CI	P1	120.1(7)	C26	C27	C28


Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
227	C28	C29	119.1(8)	C51	C52	C53	122.4(9)
28	C29	C30	120.7(8)	C52	C53	C54	118.2(10)
25	C30	C29	119.6(7)	C49	C54	C53	119.9(10)
32	C31	P2	121.9(5)	04	P4	C55	111.8(4)
32	C31	C36	120.6(7)	04	P4	C61	110.6(4)
36	C31	P2	117.4(5)	04	P4	C67	112.7(3)
31	C32	C33	119.3(7)	C55	P4	C67	106.1(4)
34	C33	C32	120.2(7)	C61	P4	C55	108.0(4)
35	C34	C33	120.9(8)	C61	P4	C67	107.4(4)
234	C35	C36	120.1(8)	C56	C55	P4	117.0(8)
231	C36	C35	118.9(7)	C60	C55	P4	122.5(7)
)14	Cl1	013	111.0(4)	C60	C55	C56	120.5(9)
)14	Cl1	015	110.7(5)	C57	C56	C55	117.7(11)
)14	Cl1	016	110.1(5)	C58	C57	C56	120.8(12)
)15	Cl1	013	108.9(4)	C57	C58	C59	122.5(11)
)15	Cl1	016	104.8(5)	C58	C59	C60	118.1(12)
)16	Cl1	013	111.2(5)	C55	C60	C59	120.3(10)
10^{10}	Cl2	013	115.5(10)	C62	C61	P4	120.3(10)
117^{1}	Cl2	017		C62	C61	P4 C66	
			105.5(7)				119.7(10)
)18	Cl2	017	109.0(8)	C66	C61	P4	118.8(6)
)18	Cl2	017 ¹	105.5(7)	C61	C62	C63	119.8(9)
)18 ¹	Cl2	017 ¹	109.0(8)	C64	C63	C62	120.1(9)
)18	Cl2	0181	112.7(16)	C63	C64	C65	121.1(11)
)19	Cl3	020	108.2(7)	C64	C65	C66	119.9(10)
019	Cl3	021	107.6(7)	C65	C66	C61	119.5(8)
019	Cl3	022	112.8(8)	C68	C67	P4	115.8(7)
)21	Cl3	020	105.3(8)	C72	C67	P4	122.7(8)
)22	Cl3	020	110.8(7)	C72	C67	C68	121.5(9)
)22	Cl3	021	111.8(7)	C67	C68	C69	118.3(10)
020	Cl3A	019	101.2(9)	C70	C69	C68	119.7(12)
)21	Cl3A	019	108.8(9)	C71	C70	C69	121.5(10)
)21	Cl3A	020	124.5(10)	C70	C71	C72	120.3(11)
)21	Cl3A	022A	121.8(16)	C67	C72	C71	118.5(11)
)22A	Cl3A	019	89.8(13)	05	P5	C73	111.8(4)
)22A	Cl3A	020	103.5(14)	05	P5	C79	110.4(3)
)3	Р3	C37	110.3(4)	05	P5	C85	111.4(3)
)3	Р3	C43	113.7(3)	C79	P5	C73	107.8(4)
)3	Р3	C49	109.4(3)	C79	P5	C85	109.0(4)
37	Р3	C49	107.3(3)	C85	P5	C73	106.4(4)
43	P3	C37	109.5(4)	C74	C73	P5	119.6(7)
43	P3	C49	106.4(4)	C78	C73	P5	122.0(7)
38	C37	P3	119.0(6)	C78	C73	C74	118.4(8)
38	C37	C42	119.8(8)	C75	C74	C73	120.4(10)
42	C37	P3	121.3(6)	C76	C75	C74	120.5(11)
37	C38	C39	120.4(8)	C77	C76	C75	119.5(11)
.37 C40	C39	C38	119.3(9)	C76	C77	C78	122.0(12)
41	C40	C39	120.0(9)	C73	C78	C77	119.2(10)
241 240	C40 C41	C42	120.0(9)	C80	C79	P5	119.2(10)
.40 .41	C41 C42	C42 C37	118.6(8)	C80	C79 C79	P5 P5	122.1(6)
41 44	C42 C43	P3	1 1	C84	C79 C79	C80	
			125.2(6)				119.2(7)
44	C43	C48	118.5(8)	C81	C80	C79	120.8(8)
48	C43	P3	116.2(6)	C80	C81	C82	119.7(8)
43	C44	C45	120.7(8)	C83	C82	C81	120.4(8)
44	C45	C46	119.2(9)	C82	C83	C84	119.5(8)
47	C46	C45	120.7(9)	C79	C84	C83	120.4(7)
46	C47	C48	120.0(9)	C86	C85	P5	123.8(6)
247	C48	C43	121.1(8)	C90	C85	P5	117.1(6)
50	C49	P3	121.2(6)	C90	C85	C86	119.1(8)
54	C49	P3	117.7(7)	C85	C86	C87	118.7(9)
54	C49	C50	121.1(8)	C88	C87	C86	121.8(8)
249	C50	C51	117.8(9)	C89	C88	C87	120.0(9)
52	C51	C50	120.6(10)	C88	C89	C90	118.0(9)

Atom	Atom	Atom	Angle/°
C85	C90	C89	122.4(8)
06	P6	C91	109.7(4)
06	P6	C97	113.0(4)
06	P6	C103	109.2(4)
C91	P6	C97	106.0(4)
C91	P6	C103	111.1(4)
C103	P6	C97	107.9(5)
C92	C91	P6	120.0(6)
C92	C91	C96	117.6(8)
C96	C91	P6	122.4(7)
C93	C92	C91	121.9(9)
C94	C93	C92	120.0(10)
C93	C94	C95	119.7(9)
C94	C95	C96	120.6(9)
C95	C96	C91	120.2(9)
C98	C97	P6	118.6(8)
C98	C97	C102	121.0(9)
C102	C97	P6	120.3(7)
C97	C98	C99	118.3(12)
C100	C99	C98	121.3(12)
C101	C100	C99	119.9(11)
C100	C101	C102	121.7(13)
C101	C102	C97	117.7(11)
C104	C103	P6	124.4(7)
C108	C103	P6	117.3(7)
C108	C103	C104	118.1(9)
C105	C104	C103	120.9(10)
C104	C105	C106	121.0(10)
C107	C106	C105	119.5(10)
C106	C107	C108	120.3(9)
C103	C108	C107	120.2(9)
07	P7	C109	111.4(4)
07	P7	C115	114.0(4)
07	P7	C121	110.4(6)
C109	P7	C121	107.2(5)
C115	P7	C109	108.5(6)
C115	P7	C121	105.0(7)
C110	C109	P7	117.4(8)
C110	C109	C114	119.6(10)
C114	C109	P7	123.1(9)
C109	C110	C111	119.6(10)
C112	C111	C110	120.9(11)
C111	C112	C113	120.8(12)
C112	C113	C114	118.5(14)
C109	C114	C113	120.5(13)
C116	C115	P7	118.9(12)
C120	C115	P7	120.2(14)
C120	C115	C116	120.0(14)
C115	C116 C117	C117	118.0(19)
C116 C119	C117 C118	C118 C117	110.8(19) 129.3(17)
C119 C120	C118 C119	C117	
C120 C119	C119 C120	C118 C115	112(2) 128(2)
C119 C122	C120 C121	P7	128(2) 119.3(14)
C122 C126	C121 C121	P7 P7	119.3(14) 119.3(9)
C126	C121 C121	C122	121.3(9)
C126 C123	C121 C122	C122 C121	121.3(14)
C123 C124	C122 C123	C121 C122	122(2)
C124 C123	C123 C124	C122 C125	124.2(18)
C125 C126	C124 C125	C123	124.2(18)
C120 C121	C125 C126	C124 C125	121.2(14)
	0120	0140	121.2(17)

¹1-x,+y,1/2-z

Crystal Data and Experimental [Nd(k³-0,0,0'- S₃O₆)(Ph₃PO)₄(H₂O)]·3[ClO₄]

Figure 1: Thermal ellipsoids drawn at the 50% probability level.

Experimental. A suitable colourless block-shaped crystal $(0.300 \times 0.250 \times 0.200 \text{ mm}^3)$ was selected and mounted on a MITIGEN holder in perfluoroether oil on a Rigaku FRE+ diffractometer equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000HE detector. The crystal was kept at a steady *T* = 100(2) K during data collection. The structure was solved with the **ShelXT** (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using **Olex2** (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2014/7 of **ShelXL** (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data. $C_{72}H_{62}NdO_{11}P_4S_3$, $M_r = 1467.51$, tetragonal, *P*4₃ (No. 78), a = 19.8658(2) Å, b = 19.8658(2) Å, c = 34.7894(6) Å, $\alpha = \beta = \gamma = 90^{\circ}$, $V = 13729.6(4) Å^3$, T =100(2) K, *Z* = 8, *Z'* = 2, μ (MoK $_{\alpha}$) = 1.000 mm⁻¹, 145177 reflections measured, 31470 unique ($R_{int} = 0.0395$) which were used in all calculations. The final wR_2 was 0.1438 (all data) and R_1 was 0.0550 (I > 2(I)).

Formula	$C_{72}H_{62}NdO_{11}P_4S_3$
$D_{calc.}$ / g cm ⁻³	1.420
μ/mm^{-1}	1.000
Formula Weight	1467.51
Colour	colourless
Shape	block
Size/mm ³	0.300×0.250×0.200
T/K	100(2)
, Crystal System	tetragonal
Flack Parameter	0.338(12)
Hooft Parameter	0.362(2)
Space Group	P43
a/Å	19.8658(2)
b/Å	19.8658(2)
c/Å	34.7894(6)
$\alpha/^{\circ}$	90
β/°	90
$\gamma/^{\circ}$	90
γ/° V/ų	13729.6(4)
Z	8
Ζ'	2
Wavelength/Å	0.71075
Radiation type	ΜοΚα
$\Theta_{min}/^{\circ}$	1.556
$\Theta_{max}/^{\circ}$	27.483
Measured Refl.	145177
Independent Refl.	31470
Reflections with I >	28997
2(I)	
Rint	0.0395
Parameters	1632
Restraints	1375
Largest Peak	3.812
Deepest Hole	-1.784
GooF	1.038
<i>wR</i> ₂ (all data)	0.1438
wR_2	0.1414
R1 (all data)	0.0590
R_1	0.0550

Structure Quality Indicators

Reflections:	d min (Mo)	0.77 ^{I/σ}	31.6 Rint	3.95%	complete 100% (IUCr)	100%
Refinement:	Shift	-0.002 Max Peak	3.8 Min Peak	-1.8	GooF	1.038

A colourless block-shaped crystal with dimensions $0.300 \times 0.250 \times 0.200 \text{ mm}^3$ was mounted on a MITIGEN holder in perfluoroether oil. Data were collected using a Rigaku FRE+ diffractometer equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000HE detector, and equipped with an Oxford Cryosystems low-temperature device operating at *T* = 100(2) K.

Data were measured using ω scans of 0.5 ° per frame for 0.5 s using MoK_{α} radiation. The total number of runs and images was based on the strategy calculation from the program **CrysAlisPro** (Rigaku, V1.171.40.39a, 2019). The maximum resolution that was achieved was Θ = 27.483° (0.77 Å).

The diffraction pattern was indexed and the unit cell was refined using **CrysAlisPro** (Rigaku, V1.171.40.39a, 2019) on 49914 reflections, 34% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using **CrysAlisPro** (Rigaku, V1.171.40.39a, 2019). The final completeness is 99.90 % out to 27.483° in Θ .

A multi-scan absorption correction was performed using CrysAlisPro 1.171.40.39a (Rigaku Oxford Diffraction, 2019) using spherical harmonics as implemented in SCALE3 ABSPACK. The absorption coefficient μ of this material is 1.000 mm⁻¹ at this wavelength (λ = 0.71075 Å) and the minimum and maximum transmissions are 0.815 and 1.000.

The structure was solved and the space group $P4_3$ (# 78) determined by the **ShelXT** (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2014/7 of **ShelXL** (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically, apart from the two Nd atoms, which were refined isotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. There are some cavities available for solvents (532 and 600 Å³). No solvents were identified and the structure was SQUEEZEd.

_refine_special_details: Refined as a 2-component inversion twin.

The value of Z' is 2. This means that there are two independent molecules in the asymmetric unit.

The Flack parameter was refined to 0.338(12). Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in 0.362(2). Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0, a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

Reflection Statistics

Total reflections (after filtering)	145281	Unique reflections	31470
Completeness	0.999	Mean I/ σ	19.46
hkl _{max} collected	(24, 25, 45)	hkl_{min} collected	(-25, -19, -45)
hkl _{max} used	(18, 25, 45)	hkl _{min} used	(-17, 0, -45)
Lim d _{max} collected	100.0	$Lim d_{min}$ collected	0.36
d _{max} used	13.09	d _{min} used	0.77
Friedel pairs	20730	Friedel pairs merged	0
Inconsistent equivalents	83	R _{int}	0.0395
R _{sigma}	0.0316	Intensity transformed	0
Omitted reflections	0	Omitted by user (OMIT hkl)	11
Multiplicity	(38200, 32603, 9231, 2152, 651, 194, 165)	Maximum multiplicity	17
Removed systematic absences	s 93	Filtered off (Shel/OMIT)	0

Nd1 Nd1 Nd1 Nd1 Nd1 Nd1 Nd1 Nd1 Nd1 S1 S1 S1 S3 S3 S3 S3 S3 P1 P1 P1 P1 P2 P2 P2 P2 P2 P3 P3 P3 P3 P3 P4 P4	S1 01 02 06 07 08 09 010 011 S2 01 02 03 S3 04 05 06 07 C1 C7	$\begin{array}{c} 3.2607(18)\\ 2.534(5)\\ 2.840(7)\\ 2.499(5)\\ 2.360(5)\\ 2.353(5)\\ 2.353(5)\\ 2.365(5)\\ 2.371(5)\\ 2.478(6)\\ 2.102(3)\\ 1.475(5)\\ 1.452(6)\\ 1.414(6)\\ 2.144(3)\\ 1.411(6)\\ 1.440(6)\\ 1.442(5)\\ \end{array}$	C27 C28 C29 C31 C31 C32 C33 C34 C35 C37 C37 C37 C38 C39 C40 C41	C28 C29 C30 C32 C36 C33 C34 C35 C36 C38 C42 C39 C40 C41	$\begin{array}{c} 1.393(10)\\ 1.368(11)\\ 1.379(11)\\ 1.401(10)\\ 1.381(10)\\ 1.380(11)\\ 1.401(12)\\ 1.390(11)\\ 1.393(10)\\ 1.394(11)\\ 1.385(10)\\ 1.387(10)\\ 1.363(13)\\ \end{array}$
Nd1 Nd1 Nd1 Nd1 Nd1 Nd1 S1 S1 S1 S3 S3 S3 S3 P1 P1 P1 P2 P2 P2 P2 P2 P2 P3 P3 P3 P3 P4	02 06 07 08 09 010 011 S2 01 02 03 S3 04 05 06 07 C1	$\begin{array}{c} 2.840(7)\\ 2.499(5)\\ 2.360(5)\\ 2.353(5)\\ 2.365(5)\\ 2.371(5)\\ 2.478(6)\\ 2.102(3)\\ 1.475(5)\\ 1.452(6)\\ 1.414(6)\\ 2.144(3)\\ 1.411(6)\\ 1.440(6)\\ \end{array}$	C29 C31 C32 C33 C34 C35 C37 C37 C38 C39 C40	C30 C32 C36 C33 C34 C35 C36 C38 C42 C39 C40	$\begin{array}{c} 1.379(11)\\ 1.401(10)\\ 1.381(10)\\ 1.380(11)\\ 1.401(12)\\ 1.390(11)\\ 1.393(10)\\ 1.394(11)\\ 1.385(10)\\ 1.387(10)\\ \end{array}$
	06 07 08 09 010 011 S2 01 02 03 S3 04 05 06 07 C1	$\begin{array}{c} 2.499(5)\\ 2.360(5)\\ 2.353(5)\\ 2.365(5)\\ 2.371(5)\\ 2.478(6)\\ 2.102(3)\\ 1.475(5)\\ 1.452(6)\\ 1.414(6)\\ 2.144(3)\\ 1.411(6)\\ 1.440(6) \end{array}$	C31 C32 C33 C34 C35 C37 C37 C38 C39 C40	C32 C36 C33 C34 C35 C36 C38 C42 C39 C40	$\begin{array}{c} 1.401(10)\\ 1.381(10)\\ 1.380(11)\\ 1.401(12)\\ 1.390(11)\\ 1.393(10)\\ 1.394(11)\\ 1.385(10)\\ 1.387(10) \end{array}$
1 1 1 1	07 08 09 010 011 S2 01 02 03 S3 04 05 06 07 C1	$\begin{array}{c} 2.360(5)\\ 2.353(5)\\ 2.365(5)\\ 2.371(5)\\ 2.478(6)\\ 2.102(3)\\ 1.475(5)\\ 1.452(6)\\ 1.414(6)\\ 2.144(3)\\ 1.411(6)\\ 1.440(6) \end{array}$	C31 C32 C33 C34 C35 C37 C37 C37 C38 C39 C40	C36 C33 C34 C35 C36 C38 C42 C39 C40	1.381(10) 1.380(11) 1.401(12) 1.390(11) 1.393(10) 1.394(11) 1.385(10) 1.387(10)
	08 09 010 011 S2 01 02 03 S3 04 05 06 07 C1	$\begin{array}{c} 2.353(5)\\ 2.365(5)\\ 2.371(5)\\ 2.478(6)\\ 2.102(3)\\ 1.475(5)\\ 1.452(6)\\ 1.414(6)\\ 2.144(3)\\ 1.411(6)\\ 1.440(6) \end{array}$	C32 C33 C34 C35 C37 C37 C38 C39 C40	C33 C34 C35 C36 C38 C42 C39 C40	1.380(11) 1.401(12) 1.390(11) 1.393(10) 1.394(11) 1.385(10) 1.387(10)
<pre>d1 d1 d1 d1 d1 l l l l l l l l l l l l l</pre>	09 010 011 S2 01 02 03 S3 04 05 06 07 C1	$\begin{array}{c} 2.365(5)\\ 2.371(5)\\ 2.478(6)\\ 2.102(3)\\ 1.475(5)\\ 1.452(6)\\ 1.414(6)\\ 2.144(3)\\ 1.411(6)\\ 1.440(6) \end{array}$	C33 C34 C35 C37 C37 C38 C39 C40	C34 C35 C36 C38 C42 C39 C40	1.401(12) 1.390(11) 1.393(10) 1.394(11) 1.385(10) 1.387(10)
1	010 011 S2 01 02 03 S3 04 05 06 07 C1	$\begin{array}{c} 2.371(5)\\ 2.478(6)\\ 2.102(3)\\ 1.475(5)\\ 1.452(6)\\ 1.414(6)\\ 2.144(3)\\ 1.411(6)\\ 1.440(6) \end{array}$	C34 C35 C37 C37 C38 C39 C40	C35 C36 C38 C42 C39 C40	1.390(11) 1.393(10) 1.394(11) 1.385(10) 1.387(10)
11	011 S2 01 02 03 S3 04 05 06 07 C1	2.478(6) $2.102(3)$ $1.475(5)$ $1.452(6)$ $1.414(6)$ $2.144(3)$ $1.411(6)$ $1.440(6)$	C35 C37 C37 C38 C39 C40	C36 C38 C42 C39 C40	1.393(10) 1.394(11) 1.385(10) 1.387(10)
	S2 01 02 03 S3 04 05 06 07 C1	$2.102(3) \\ 1.475(5) \\ 1.452(6) \\ 1.414(6) \\ 2.144(3) \\ 1.411(6) \\ 1.440(6)$	C37 C37 C38 C39 C40	C38 C42 C39 C40	1.394(11) 1.385(10) 1.387(10)
	01 02 03 S3 04 05 06 07 C1	1.475(5) $1.452(6)$ $1.414(6)$ $2.144(3)$ $1.411(6)$ $1.440(6)$	C37 C38 C39 C40	C42 C39 C40	1.385(10) 1.387(10)
	02 03 S3 04 05 06 07 C1	$1.452(6) \\ 1.414(6) \\ 2.144(3) \\ 1.411(6) \\ 1.440(6)$	C38 C39 C40	C39 C40	1.387(10)
	03 S3 04 05 06 07 C1	1.414(6) 2.144(3) 1.411(6) 1.440(6)	C39 C40	C40	1.387(10) 1.363(13)
	S3 04 05 06 07 C1	2.144(3) 1.411(6) 1.440(6)	C40		1.363(13)
3 3 4 4	04 05 06 07 C1	1.411(6) 1.440(6)		C41	-1000(10)
3 3 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4	05 06 07 C1	1.440(6)	C41		1.367(13)
3 1 1 2 2 2 2 2 2 3 3 3 3 3 4	06 07 C1			C42	1.391(10)
L L 2 2 2 3 3 3 3 4	07 C1	1.442(5)	C43	C44	1.386(10)
1 1 2 2 2 2 2 3 3 3 3 3 4	C1	<u>-···-(</u> -)	C43	C48	1.416(10)
		1.498(5)	C44	C45	1.396(11)
	C7	1.797(7)	C45	C46	1.391(12)
	C7	1.786(7)	C46	C47	1.411(12)
	C13	1.797(8)	C47	C48	1.377(11)
2 2 3 3 3 3 3 4	08	1.502(5)	C49	C50	1.406(10)
2 3 3 3 3 4	C19	1.791(7)	C49	C54	1.370(9)
3 3 3 3 4	C25	1.814(7)	C50	C51	1.388(10)
	C31	1.789(7)	C51	C52	1.379(11)
	09	1.502(5)	C52	C53	1.396(11)
	C37	1.795(7)	C53	C54	1.396(10)
	C43	1.789(8)	C55	C56	1.399(9)
	C49	1.798(7)	C55	C60	1.402(9)
	010	1.498(5)	C56	C57	1.384(10)
	C55	1.794(7)	C57	C58	1.385(11)
	C61	1.797(7)	C58	C59	1.385(11)
	C67	1.803(7)	C59	C60	1.386(10)
	C2	1.385(11)	C61	C62	1.396(10)
	C6	1.391(10)	C61	C66	1.388(10)
	C3	1.392(11)	C62	C63	1.385(10)
3	C4	1.376(12)	C63	C64	1.380(11)
r	C5	1.343(13)	C64	C65	1.372(11)
5	C6	1.407(10)	C65	C66	1.397(10)
7	C8	1.369(10)	C67	C68	1.397(9)
	C12	1.410(10)	C67	C72	1.375(10)
3	С9	1.391(10)	C68	C69	1.387(9)
9	C10	1.396(11)	C69	C70	1.390(11)
0	C11	1.379(11)	C70	C71	1.368(11)
1	C12	1.372(11)	C71	C72	1.405(10)
3	C14	1.409(10)	Nd2	S6	3.243(2)
3	C18	1.386(10)	Nd2	012	2.431(7)
4	C15	1.397(11)	Nd2	016	2.538(6)
5	C16	1.390(12)	Nd2	017	2.692(7)
6	C17	1.373(11)	Nd2	018	2.358(5)
7	C18	1.393(11)	Nd2	019	2.332(5)
9	C20	1.395(10)	Nd2	020	2.368(5)
19	C24	1.406(10)	Nd2	021	2.360(5)
20	C21	1.383(9)	Nd2	022	2.542(6)
21	C22	1.410(13)	S4	S5	2.151(4)
22	C23	1.379(12)	S4	012	1.415(8)
	C24	1.388(10)	S4	013	1.382(11)
	C26	1.384(9)	S4	014	1.373(12)
	C30	1.386(10)	S5	S6	2.076(4)
					_

Table 1: Bond Lengths in Å

Atom	Atom	Length/Å	Atom	Atom
S6	016	1.453(6)	C99	C100
S6	017	1.484(7)	C100	C101
Р5	018	1.500(5)	C101	C102
Р5	C73	1.786(7)	C103	C104
Р5	C79	1.793(7)	C103	C108
P5	C85	1.803(7)	C104	C105
P6	019	1.514(5)	C105	C106
P6	C91	1.795(8)	C106	C107
P6	C97	1.790(7)	C107	C108
P6	C103	1.797(8)	C109	C110
P7	020	1.502(5)	C109	C114
P7	C109	1.809(8)	C110	C111
P7	C115	1.779(7)	C111	C112
P7	C121	1.784(7)	C112	C113
P8	021	1.495(5)	C113	C114
P8	C127	1.800(7)	C115	C116
P8	C133	1.797(7)	C115	C120
P8	C135	1.795(8)	C115	C120
C73	C74	1.405(11)	C110 C117	C118
C73	C78	1.394(10)	C118	C110
C74	C75	1.391(11)	C118 C119	C119
C74 C75	C76		C119 C121	C120
		1.373(13)		C122 C126
C76	C77	1.387(12)	C121	
C77	C78	1.387(11)	C122	C123
C79	C80	1.381(10)	C123	C124
C79	C84	1.385(10)	C124	C125
C80	C81	1.394(11)	C125	C126
C81	C82	1.354(12)	C127	C128
C82	C83	1.389(11)	C127	C132
C83	C84	1.386(11)	C128	C129
C85	C86	1.397(9)	C129	C130
C85	C90	1.379(10)	C130	C131
C86	C87	1.401(10)	C131	C132
C87	C88	1.406(10)	C133	C134
C88	C89	1.402(11)	C133	C138
C89	C90	1.395(10)	C134	C135
C91	C92	1.387(10)	C135	C136
C91	C96	1.400(11)	C136	C137
C92	C93	1.393(10)	C137	C138
C93	C94	1.372(12)	C139	C140
C94	C95	1.380(12)	C139	C144
C95	C96	1.390(11)	C140	C141
C97	C98	1.373(10)	C141	C142
C97	C102	1.381(12)	C142	C143
C98	C99	1.384(11)	C143	C144

Length/Å 1.382(16) 1.377(18) 1.351(15) 1.399(10) 1.389(11) 1.398(11) 1.385(12) 1.359(13) 1.383(12) 1.399(10) 1.389(9) 1.376(11) 1.412(12) 1.383(11) 1.391(10) 1.399(10) 1.417(9) 1.392(10) 1.395(11) 1.398(11) 1.369(10) 1.383(10)1.387(10)1.378(12) 1.376(13) 1.375(13) 1.385(11) 1.406(10) 1.388(9) 1.380(10) 1.391(11) 1.387(12) 1.394(10) 1.383(10)1.409(10) 1.377(11) 1.399(12) 1.401(13) 1.378(12) 1.400(10) 1.377(11) 1.387(11) 1.364(13) 1.386(13) 1.366(12)

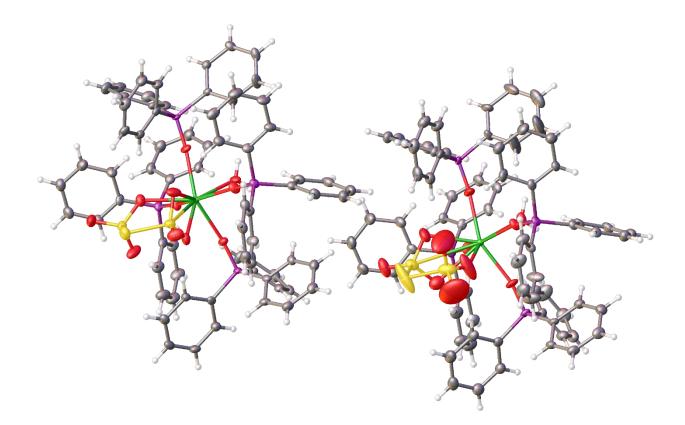

Atom	Atom	Atom	Angle/°
01	Nd1	S1	25.80(12)
01	Nd1	02	51.56(16)
02	Nd1	S1	26.41(11)
06	Nd1	S1	64.23(12)
06	Nd1	01	76.15(17)
06	Nd1	02	64.69(17)
07	Nd1	S1	130.54(13)
07	Nd1	01	121.23(17)
07	Nd1	02	138.25(17)
07	Nd1	06	73.64(17)
07	Nd1	09	150.86(19)
07	Nd1	010	81.10(17)
07	Nd1	011	76.09(17)
08	Nd1	S1	108.73(13)
08	Nd1	01	134.52(17)
08	Nd1	02	83.22(17)
08	Nd1	06	80.41(18)
08	Nd1	07	87.61(18)
08	Nd1	09	87.64(18)
08	Nd1	010	149.31(18)
08	Nd1	011	74.69(16)
09	Nd1	S1	78.00(13)
09	Nd1	01	81.32(17)
09	Nd1	02	69.44(18)
09	Nd1	06	133.57(17)
09	Nd1	010	88.55(18)
09	Nd1	011	74.92(17)
010	Nd1	S1	100.19(12)
010	Nd1	01	74.68(17)
010	Nd1	02	123.50(17)
010	Nd1	06	122.62(17)
010	Nd1	011	74.92(16)
011	Nd1	S1	152.56(12)
011	Nd1	01	141.54(16)
011	Nd1	02	138.53(16)
011	Nd1	06	141.26(17)
S2	S1	Nd1	106.60(9)
01	S1	Nd1	48.4(2)
01	S1	S2	106.1(2)
02	S1	Nd1	60.4(3)
02	S1	S2	106.9(3)
02	S1	01	107.0(4)
03	S1	Nd1	149.0(3)
03	S1	S2	103.5(3)
03	S1	01	115.5(3)
03	S1	02	116.9(4)
S1	S2	S3	100.04(12)
04	S3	S2	103.0(3)
04	S3	05	115.8(4)
04	S3	06	114.9(3)
05	S3	S2	106.1(3)
05	S3	06	112.0(4)
06	S3	S2	103.3(2)
07	P1 D1	C1	109.7(3)
07 07	P1 D1	C7 C13	114.2(3)
07 C1	P1 D1	C13 C13	109.9(3)
C7	P1 P1	C13 C1	109.0(3)
C7 C7	P1 P1	C13	108.6(3) 105.2(4)
08	P1 P2	C13 C19	105.2(4)
00	Γ Δ	617	113.0[3]

Table 2: Bond Angles in °.

Atom	Atom	Atom	Angle/°
08	P2	C25	111.6(3)
08	P2	C31	110.2(3)
C19	P2	C25	106.4(3)
C31	P2	C19	108.1(3)
C31	P2	C25	107.3(3)
09	P3	C37	110.6(3)
09	P3	C43	109.9(3)
09	P3	C49	112.8(3)
C37	P3	C49	108.0(3)
C43	P3	C37	109.3(3)
C43	P3	C49	106.1(3)
010	P4	C55	112.0(3)
010	P4	C61	111.8(3)
010	P4	C67	111.3(3)
C55	P4	C61	109.0(3)
C55	P4	C67	106.9(3)
C61	P4	C67	105.6(3)
S1	01	Nd1	105.8(3)
S1	02	Nd1	93.2(3)
S3	02	Nd1	127.4(3)
53 P1			
P1 P2	07	Nd1	167.6(3)
	08	Nd1	169.9(3)
P3	09	Nd1	166.9(3)
P4	010	Nd1	170.3(3)
C2	C1	P1	118.3(6)
C2	C1	C6	120.2(7)
C6	C1	P1	121.3(6)
C1	C2	C3	119.0(7)
C4	C3	C2	120.9(8)
C5	C4	C3	120.2(8)
C4	C5	C6	121.0(8)
C1	C6	C5	118.8(7)
C8	C7	P1	123.6(6)
C8	C7	C12	118.8(7)
C12	C7	P1	117.6(5)
C7	C8	С9	121.5(7)
C8	С9	C10	119.0(7)
C11	C10	C9	119.8(7)
C12	C11	C10	120.8(7)
C11	C12	C7	120.0(7)
C14	C12	P1	121.3(6)
C14 C18	C13	P1	119.6(6)
C18	C13	C14	119.1(7)
C15	C14	C13	120.1(7)
C15	C14 C15	C13	
			119.5(8)
C17	C16	C15	120.7(8)
C16	C17	C18	120.2(7)
C13	C18	C17	120.4(7)
C20	C19	P2	121.9(5)
C20	C19	C24	120.1(6)
C24	C19	P2	118.0(5)
C21	C20	C19	120.2(8)
C20	C21	C22	119.4(8)
C23	C22	C21	120.5(7)
C22	C23	C24	120.3(8)
C23	C24	C19	119.5(7)
C26	C25	P2	121.8(5)
C26	C25	C30	119.5(7)
C30	C25	P2	118.7(5)
C27	C26	C25	119.6(6)
C26	C27	C23	120.3(7)
C29	C28	C27	120.0(7)
, <u> </u>	020	027	120.0(7)

Atom	Atom	Atom	Angle/°
C28	C29	C30	119.8(7)
C29	C30	C25	120.9(7)
C32	C31	P2	121.3(6)
C36	C31	P2	118.1(5)
C36	C31	C32	120.6(7)
C33	C32	C31	120.1(7)
C32	C33	C34	118.9(7)
C35	C34	C33	121.2(7)
C34	C35	C36	119.2(7)
C31	C36	C35	119.9(7)
C38	C37	P3	118.1(6)
C42	C37	P3	122.3(6)
C42	C37	C38	119.5(7)
C39	C38	C37	119.5(7)
C40	C39	C38	120.5(8)
C39	C40	C41	120.6(8)
C40	C41	C42	120.1(8)
C37	C42	C41	119.8(8)
C44	C43	P3	119.0(6)
C44	C43	C48	119.6(7)
C48	C43	P3	121.3(6)
C43	C44	C45	120.6(7)
C46	C45	C44	119.8(7)
C45	C46	C47	119.7(7)
C48	C47	C46	120.4(8)
C47	C48	C43	119.8(7)
C50	C49	P3	116.7(5)
C54	C49	P3	122.9(6)
C54	C49	C50	120.3(7)
C51	C50	C49	119.4(7)
C52	C51	C50	119.8(7)
C51	C52	C53	121.1(7)
C54	C53	C52	118.7(7)
C49	C54	C53	120.6(7)
C56	C55	P4	118.2(5)
C56	C55	C60	120.0(6)
C60	C55	P4	121.8(5)
C57	C56	C55	119.5(7)
C56	C57	C58	120.6(7)
C59	C58	C57	119.9(7)
C58	C59	C60	120.7(7)
C59	C60	C55	119.3(7)
C62	C61	P4	121.8(5)
C66	C61	P4	118.7(5)
C66	C61	C62	119.5(6)
C63	C62	C61	120.5(7)
C64 C65	C63	C62	119.3(7)
C65 C64	C64 C65	C63 C66	121.0(7) 120.0(7)
C64 C61	C65 C66	C65	
C61 C68	C66 C67	C65 P4	119.6(7) 121.7(5)
C72	C67	P4 P4	119.1(5)
C72	C67	C68	119.1(3)
C72 C69	C67 C68	C68 C67	120.4(7)
C69	C69	C70	119.3(7)
C08	C70	C69	121.2(7)
C70	C70 C71	C72	119.0(7)
C67	C72	C72	120.9(7)
012	Nd2	S6	64.98(17)
012	Nd2	016	74.9(3)
012	Nd2	010	67.3(2)
012	Nd2	022	144.4(2)
			(-)

	A I a a	A I a a	A
Atom	Atom	Atom	Angle/°
016	Nd2	S6	25.58(15)
016	Nd2	017	52.0(2)
016	Nd2	022	137.4(2)
017	Nd2	S6	26.97(15)
018	Nd2	S6	79.72(14)
018	Nd2	012	136.8(2)
018	Nd2	016	84.0(2)
018	Nd2	017	70.0(2)
018	Nd2	020	146.80(19)
018	Nd2	021	88.75(18)
018	Nd2	022	72.71(17)
019	Nd2	S6	96.39(14)
019	Nd2	012	117.6(3)
019	Nd2	016	71.2(2)
019	Nd2	017	120.2(2)
019	Nd2	018	89.1(2)
019	Nd2	020	81.40(19)
019	Nd2	021	152.5(2)
019	Nd2	022	73.3(2)
020	Nd2	S6	132.76(13)
020	Nd2	012	74.4(2)
020	Nd2	012	121.9(2)
020	Nd2	010	141.46(19)
020	Nd2	022	74.09(17)
020	Nd2 Nd2	S6	110.15(14)
021	Nd2 Nd2	012	81.4(3)
021	Nd2 Nd2	012	135.7(2)
021	Nd2 Nd2	010	84.5(2)
021			
	Nd2	020	85.51(18)
021	Nd2	022	80.0(2)
022	Nd2	S6	150.50(11)
022	Nd2	017	139.7(2)
012	S4	S5	107.3(3)
013	S4	S5	102.5(5)
013	S4	012	108.9(8)
014	S4	S5	110.2(8)
014	S4	012	112.3(8)
014	S4	013	114.8(10)
S6	S5	S4	101.89(16)
S5	S6	Nd2	108.56(12)
015	S6	Nd2	147.3(3)
015	S6	S5	103.9(3)
015	S6	016	116.9(4)
015	S6	017	117.4(4)
016	S6	Nd2	49.0(3)
016	S6	S5	108.3(3)
016	S6	017	102.8(4)
017	S6	Nd2	55.4(3)
017	S6	S5	107.0(3)
018	P5	C73	109.6(3)
018	P5	C79	113.0(3)
018	P5	C85	110.8(3)
C73	P5	C79	108.1(3)
C73	P5	C85	109.0(3)
C79	P5	C85	106.2(3)
019	P6	C91	111.3(3)
019	P6	C97	110.9(4)
019	P6	C103	111.0(3)
C91	P6	C103	110.3(3)

Citations

CrysAlisPro Software System, Rigaku Oxford Diffraction, (2019).

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, (2009), **42**, 339-341.

Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C27, 3-8.

Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, *Acta Cryst.*, (2015), **A71**, 3-8.