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Abstract

In this paper we show some estimates for the density of a random
variable on the Wiener space that satisfies a nondegeneracy condition
using the stochastic calculus of variations. The case of a diffusion
process is considered, and an application to the solution of a stochastic
partial differential equation is discussed.
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1 Introduction

In this paper we present some estimates for the probability density of a
random variable on the Wiener space that verifies a nondegeneracy condition.
These estimates are obtained by means of the techniques of the stochastic
calculus of variations. First an explicit formula for the density is established
in Proposition 2.2. This result is similar to Proposition 2.1.1 of [4], but
the hypotheses are slightly more general. From this explicit formula we
deduce the basic estimates in lemmas 2.3 and 2.4. In Section 3 we present
a martingale inequality that is used in Section 4 for the estimation of the
density of a diffusion process. Finally in Section 5 the estimates of densities
are applied to solve a nonlinear stochastic partial differential equation with
an additive white noise.

2 Estimation of densities using Malliavin
Calculus

In this section we will introduce some elements of the stochastic calculus of
variations and its application to the estimation of the density of a Brownian
functional.

Let B = {Bt,t e [0, T]} be a standard Brownian motion defined on the
canonical probability space {Cl,F, P). That is, Q. is the space of continuous
functions on [0, T] which vanish at zero, T is the Borel cr-field on Q, and P
is the Wiener measure. Let H = L2([0, T]).

Let us first introduce the derivative operator D. We denote by C^°(JRn)
the set of all infinitely differentiable functions / : lRn —> IR such that / and
all of its partial derivatives are bounded.

Let S denote the class of random variables of the form

F = - (2.1)

where / belongs to C^°(lRn), and € [0,T]. If F has the form (2.1)
we define its derivative DF as the stochastic process given by

(2,2)
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The operator D is closable from S C Lp{Vl) in IT(Q; L2([0, T])) for each
p > 1. We will denote by HD1,P the closure of the class of smooth random
variables S with respect to the norm

IIFÜÍ, = £(|FT) + E hjíT |D,F\2dt)i\ .

We can define the iteration of the operator D in such a way that for a
smooth random variable F, the derivative Dkxt F is a /c-parameter stochas-
tic process.

Then for every p > 1 and any natural number k we can introduce the
space Dk'v as the completion of the family of smooth random variables S
with respect to the norm:

l|F||£p = E(\F\>) +¿ £(||£Ví’H^([ot|J)). (2.3)
3= 1

Let V be a real separable Hilbert space. We can also introduce the corre-
sponding Sobolev spaces ]Dk'p(V) of V-valued random variables.

We will denote by 6 the adjoint of the operator D as an unbounded
operator from Ll(Q) into L2{[0, T])). That is, the domain of 6, denoted
by Dom ó, is the set of processes u in LL2([0, T])) such that there exists
an integrable random variable 6(u) verifying

E{FS(u)) = E{£ DtFutdt) (2.4)
for any F € S. The operator 6 is an extensión of the Itó stochastic integral,
called Skorohod integral (see [8]), in the sense that the set L2([0.T) x Vi)
of square integrable and adapted processes is included into the domain of 6,
and 6 restricted to L2([0, T\ x Vi) coincides with the Itó integral.

The space D1,P(H) := 1/(0,] L2([0,T})) is included into the domain of
6, for each p > 1, and for any process u € BDl'p{H) there is the following
estímate for the ZAnorm of the Skorohod integral:

E((Jq \us\2ds)*) + E((JQ Jq \D3ut\2dsdt)2)\ . (2.5)
We will make use of the following property of the Skorohod integral.
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Lemma 2.1 Fix p, q > 1 such that ^ ^ = 1. Let F G E)lp, u 6 Domó, be
such that u G Lq(Cl] L2([0,T])) and 6(u) G Lq(Q). Then Fu G Domó,, and

6(Fu) = F6(u) - (DF,u)H. (2.6)

Proof: Let us denote by A the right-hand side of (2.6), which by hypothesis
belongs to L1(fl). Then it suffices to show that for any G G S we have
E(GA) = E((DG, Fu)h)- We can write

E((DG, Fu)h) = E((D(GF),u)h) - E(G(DF, u}„).

We have to prove that

E((D(GF),u)„) = E(GFS(u)). (2.7)

This is true by definition of 6(u) if FG G S. In order to show (2.7) when
F G JDl p it suffices to take a sequence of smooth random variables Fn which
converge to F in E>l p. QED

For any random variable F G E)1,1 and any process u G Ll(Q] L2([0, T]))
we will write

DUF = í DtFutdt.
Jo

Let F G Dl,x be such that HDFHh > 0 a.s. Then we know that F
possesses an absolutely continuous distribution (see [2, 6]). On the other
hand, we can show the following explicit expression for the density of F,
under some additional assumptions:

Proposition 2.2 Let F be a random variable in the space E)11. Let u be a

process in Ll(Q] L2([0,T])) such that DUF ^ 0 a.s., and jyy belongs to the
domain of the operator 6. Then the law of F has a continuous and bounded
density given by

p{x) = E (l{F>x}6 (^—^y (2.8)
Proof: Let tp be a nonnegative smooth function with compact support, and
set ip(y) = fpO0'i})(z)dz, y G M. We know that p{F) belongs to 2D1,1, and
making the scalar product of its derivative with u yields

(D(v(F)),u)h=*(F)D„F.
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Henee, we obtain

W(F)).£((íJ(„(F)).^f)J.
Now, let Fn be a sequence of smooth random variables that converges to F
in D1'1. Using the definition of the operator 6 we have

£ ib)J=“p* b)H)
='TE(^siib))=b(F)S(b))-

Thus,

(2.9)

By an approximation argument Eq. (2.9) holds for ip(y) = 1 [a,&](y). As a
consequenee, we apply Fubini’s theorem to get

P(a<F<6) = £((£lWiW*)«(^))
which implies the desired result. QED

Proposition 2.2 leads to the foilowing estímate for the density p(x) of a
random variable F:

( u \

kduf)P(x) )■ (2.10)

As a consequenee,

J p{x)2dx < E |:*(■&))■ (2.11)

From Lemma 2.1 and Proposition 2.2 we deduce the foilowing result:

Lemma 2.3 Let F be a random, variable in the space ID1,1. Let u be a process
in Domó verifying the foilowing properties, for some ^ + i = 1:
(i) u belongs to Lq(Q] L2([0,T])).
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(ii) 6(u) belongs to Lq(Q).

(iii) (DUF) 1 belongs to iD1,p.
Then F has a density such that

p(x) < E Du

Proof: From Lemma 2.1 we llave
u

DUF
8(u)

- Du
1

DUF -“\DUF,
Then we apply Proposition 2.2. QED

The assumptions of the previous lemma can be modified as follows.
Lemma 2.4 Let F be a random variable in the space ID1,1. Let u be a process
m Dom<5 verifying the following properties, for some ^ ^ = 1:
(i) u belongs to Lq(Q\ L2([0,T]).

(ii) 6(u) belongs to Lq(Q).

(iii) (DUF) 1 belongs to 1/(0,), and
:= (D„F)-!(||D2F|U8í,||u||» + ||0u||í,®*||0F|U) e V(Sl).

(2.12)
Then F has a density such that

p(x) < E
6(v)
DUF

(2.13)

+E ((AIF)-2(||D2F||„«„M|2, + IIZHUifIMWIBFlI»)) .

Remarks:

1.- Under the assumptions of Lemma 2.4 we can also write down the following
expression for the density of F:

P(x)=e(1(f>i}|^
+E ^(DUF)~2 (^{D2F, u <g> u)h®h + j[QT]2 utDtusDsFdsdt
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2.- When u = DF the estímate (2.13) leads to

p(x) < E
6(DF)
\\DF\\%

+ 2B(||DF||^[|D2F|| h®h) (2.14)3.- Suppose that F = HsdWs, where H is an adapted process that verifies:

(i) For each s e [0,1], Hs € ID2'2, E Jq H2ds < oc and

A := sup E{\DaHt\p) + sup E(( [' \D2r<sHt\2dt)p/2) < oo,
s.te(o.i] r,se(o,i] Jo

for some p > 3.

(ii) 0 < p < \HS\ for all s € [0,1]

Taking u = DF the estímate (2.14) leads to

p{x) < cP(\F\ > \x\)1/q,
where q > and the constant c dpends on A, p, and p (see [5]).4.- Notice that if u is an adapted process and DtF = uteNt (this is true if F
is the valué at time t oí a diffusion process), then

< sup
DUF o<t<r ¡q u2dt

Therefore, in order to obtain estimates for the expectation of the above
expression we need to estímate the norm p of where Mt is a Brownian
martingale.

3 Martingale inequalities
The following theorem provides an estímate for the p-norm of a martingale
divided by its quadratic variation, where 1 < p < oo. This norm is bounded
by a universal constant times the g-norm of the inverse of the square root of
the quadratic variation. A related estímate can be found in Exercise 4.18 of
[7]-
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Theorem 3.1 Let {Mt, t > 0} be a continuous martingale nuil at 0. Then
for each \ <p<q = p + e, there exists a universal constant C := C(p,q)
such that

<C||(M}-% (3.1)
P

Proof: We have

Mt
(M)t

E
Mt
(M)t

pxp lP[\Mt\ > x(M)t]dx.

Notice that

P[\Mt\ > x{M)t] < P[Mt > x(M)t] + P[-Mt > x(M)¿

So, it suffices to estímate the term

roo

/ x^PlMt > x(M)t]dx.Jo

We can assume (by a truncation argument) that M is bounded. Then

(Ax-0)(M)tlP[Mt > x(M)t] < p[e™t-»{M)t > e
< E[eXMt~6{M)te~{Xx'9){M)t]
< (<E[eXaMt~6a('M'>t])1^0‘(E[e~^Xx~e^M'>t])1^

where | ¿ = 1. Choose A,a,P,9 such that = 9a, that is, 9 =
With these choices we have

P[Mt > x(M)t] < (E[e-0<

Optimizing over A yields A = - and we get

P[Mt > x(M)t] < (E[e-^{M)t])1/p = (Ele-V-V&Wtfli/P.
Henee, for each s > 0, 6 > 1:

Mt
(M)t

< 2 J™pxp-\E[e-{í}-l)^{M)t])l/0dx
8



roe 2

< 2sp + 2J pxp-l{E[e-{0-1)¡r{M)t})l/0dx
= 2ep + 2pJ x~s(E[x
< 2sp + 2p x~sdx

(Í+P-l)/3o-(/3-D%-M'XfWdx

x E sap[x(s+p~1)0e~(0~1)^(M>t]
i€ÍR

1/0

Let

Then

$(x~) = x{6+p-l)0e-{0-l)\{M)t ^

$'(a?) = [/?(¿ +p- i^+p-1^-1 - x0l*+p-V+\p - l)(M)t]
The function $ attains its máximum at

10 - f{í0-i1){M);1/2-
Henee,

*(*.) = (^f^'
As a consequence,

(M>,

< ofP |..>i;i-<c-a^ ^(¿ +P-1)'
= 2£P + £1-55,

6+p-1
2

<m),
(«+P-1M1 \ 1/0

D

where

= 2p jipi //9(6+p- 1)'
í-1 l 0-1

.

g-hp—1
2

<m>;
(g+p-Dg i//?
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Now we optimize over e. Set A(e) = 2ep + e1 SB. Then
A'(e) = 2pep~l + (1 - 8)e'éB,

and the unique solution of A'(s) = 0 is given by

6- l\p+6-1
£o

2P
B p+í-i

and
i-¿

/ 8 — 1 \ P+é~l p (8 — 1 \ P+í_1 1-6 ,

A{eo) = 2 f ^ + f _— 1 £FhPt+1
2p 2p

v i j8 — l\ (8 — l\ p+¿_1Bp+s~i I 2 | —z— I +
2P 2V

2p \ p+¿
8-1

x(e

p/2 '¿_1\5+Í=T fS-l'
in^r' * 2p

(6+p-l}fl

{M)7 2

2e -p/2 ^(g+p- 1)^

W+p-T)

P/2
1 +

<5-1 <M)
(6+p-l)3

2
t

0(6+p-1)

Therefore,

(M)«
< (x +^ n(M>r1/2ii(s+p-lw.

Take ¡5 = 2 — 4 and put (<5 — 1 +p)P — p+ s. Then e = (/?— l)(p+l), Henee,
we can introduce the constant

_2^>°p-‘ “ V?
and we get

(M),

p + 1)^1 + pd+J
< cp,«ii(M)r1/2¡u«.

QED

1 —ó
p+6— 1
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4 Estimation of densities for diffusion pro-
cesses

Let B = {Bt,t e [0,T]} be a standard Brownian motion defined on the
canonical probability space P), as in Section 1. Consider the diffusion
process X = {Xt, t € [0, T}} solution of the following stochastic differential
equation:

Xt = x0+[ cr(s,Xs)dBs+ í b(s,Xs)ds, ¿€[0,P].Jo Jo

We will introduce the following hypothesis on the coefficients a and b:

(H) and b(s, x) are of class C2 with respect to x, and

k(0,x)| < K, \b(0,x)\<K,
|cr'(s, x)| < K, \b'(s,x)\<K,

for some constant K > 0, and a"(s,x) and b"(s,x) have polynomial growth
in x, uniformly in t.

In the sequel we will denote by C a generic constant which may depend
on p > 1, T > 0 and the coefficients a and b.

Theorem 4.1 Let a(s,x) and b(s,x) functions satisfying hypothesis (H).
Suppose that

E () Jo < °°>
for some p > 1 and for all t 6 (0, T], Then for all t € (0,T], the random
variable Xt possesses a continuous density pt(x) such that

P,(x)<C\\(f‘a(s,X,)2ds)-Hp, (4.1)
for some constant C > 0.

Proof: Fix t € (0, T]. Under hypothesis (H) we know that Xt e E)2,p for
all p> 2, and, if s < t we have

DsXt = <r(s, Xs) + J* a'(r, Xr)DsXrdBr + J* bf{r, Xr)DsXrdr.
11



Henee.

DsXt = <j(s, Xs) exp a'(r, Xr)dBr + ^ (6' - ^(<r,)2){r, X^dr^j .

Using the notation

XIsx = exp^ cr'(r, Xr)dBr + j* (b' - ^(c/)2)(r, Xr)drj ,
we can write

DsXt = o(s, XS)MS¿,
for all s <t. For s2 < Si < í we have

D2Slt32Xt = v'{s\, XSl)DS2XSlMSlx + ^(sij XSi)M3i¿
x (J* a"(r,Xr)DS2XrdBr + J\b" - </<r")(r, Xr)DS2XTdr^j

— o (si, )(j(s2,XS2')MSlxMS2'Sl
+a(s1,XSl)a{s2, XS2)MSl¿
x (jT a"((r, Xr)MS2,rdBr + J\b" - aV")(r, Xr)M32,rdrJ .

We will apply Lemma 2.4 to the random variable Xt and to the process
us = a(s, Xs)1[0,í](s). Clearly us belongs to the domain of 6, and

6(a(s,X,)l[o,t](s)) = í cr(s,Xs)dBs.
J0

As a consequence, the process u satisfies the assumptions (i) and (ii) of
Lemma 2.4 for all q > 1. On the other hand, Du(Xt) = J,’q a(s,X3)2MS:tds.
Consider the random variables

Rt= í a{s,Xs)2ds,
Jo

and

St = ( sup ] ( sup Mqx
\se[o,t] ’ ) \se[o,t]

Notice that supsej0< St, and E(S™) < oo for all m > 2. Then, we
have the following estimate

IA.TOI-1 < (Rt)-lSt.
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Henee. (Du(Xí))-1 belongs to LP' (0) for any 1 < p' < p. In order to show
that the random variable $u given by (2.12) belongs to L/'(Q) for any 1 <
p' < p we will make use of the following estimates:

\D2Xt\\am < {Stf^RtWo'U
+2(St)2Rt sup f a"{r, Xr)M0trdBr + í (b" - a'a")(r,Xr)Moj

0<s<t Jo Jo
dr

\Hl = Rt,
< 11^" ||oo

\\dx,\\h < \J~RtSi
Thus.

+2(St)4 sup
o<s<t jT a"{r, Xr)MQ,rdBT + j\b" - <r'o"){r, Xr)M0,rdr

+!k'l!cc(s,í)4 :=

and belongs to LP' (0) for any 1 < p' < p because (Rt)~2 is in LP{Vt), and
d'u has moments of all orders.

By Theorem 3.1 we have

E 6(u) )'E( fo cr(s, Xs)dBs
DuXt )- [ f*<r(s,Xa)*ds

<cm,)-i\\p.

Again by Holder’s inequality we obtain

£(*„)< c||W*ilP,
amd, therefore,

p,(l)<C||(R,)-i|L
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QED
Let us suppose that a : IR —> IR is a twice continuously differentiable

function such that a' is bounded, and <j(x) > 0 for all x > 0, and cr(0) = 0.
Fix x > 0. Let Xt be the solution of the stoehastic differential equation

Xt = x + f cr(Xs)dBs + í b(s, Xs)ds, t G [0, T\. (4.2)Jo Jo

Consider the stopping time

r = inf{s > 0 : a(X3) = ^cr(x)}.
Let p > 1. Then we have

E a(Xs)2ds = E 1L{r>í} Jo
ds

_£
2

< 'a(x)' -p r* +
'a(x)' E(l{r<t}T

We have the following estimates

E ) = l í y2~lP{T < hdy.¿ y

On the other hand,

(4.3)
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for some constant C > 0. Henee, if p < q we obtain from (4.3)

E (l{r<t}T 2) <Ca(x) qt £2i. (4.4)

Therefore

E

Finally, taking q = p{ 1 + e) we get

Pt(»)<C’(ff(x) ‘t »+<r(x) 2 't»). (4.5)

When the drift is nonnegative we can obtain an estímate which is better
than (4.5):

Proposition 4.2 Let us suppose that a : TR —> M is a twice continuously
differentiable function such that <j(0) = 0, a(x) > 0 and cr'(x) > 0 if x > 0
and a' is bounded. Let b : [0, T] x M —»IR be a function satisfying hypothesis
(Hl) and such that b(s,x) > 0. Then, the density pt(y) of the solution Xt of
Eq. (4.2) satisfies

(4.6)

for all x > 0, t € (0,7'].

Proof: Applying Itó’s formula leads to

+

Henee,

where

Ns= /V(Xr)dBr-J ¡\a'{Xr))2dr + \ í\a"c){Xr)dr.Jo ¿Jo ¿ Jo
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Then, using the estimate (4.1) we obtain

<r(x)pt{y) < C

< C

c

a(Xsy
o V a{x)

ds

sup e Ns ( í fl+ / ——-b(r,Xr)a'(XT)dr\ ds
o<s<t \J0 \ Jo cr(x) /

<
St

QED

5 Nonlinear stochastic partial differential
equation with additive white noise

In this section we will apply the estimates for the density of a diffusion pro-
cess obtained in the previous section to solve parabolic stochastic equations
perturbed by an additive white noise. Consider the second order differential
operator given by

Lf = ^cr(z)2/" + b(x)f,
where a and b are twice continuously differentiable functions with bounded
first derivative, and such that a(x) > 0 and cr'(x) > 0 for all x > 0, cr(0) = 0,
and b(x) > 0. Let W = {W(A),A G B([0, oo) x IR), \A\ < oo} be a white
noise on the parameter space [0, oo) x IR with intensity equals to the Lebesgue
measure. We are interested in the following stochastic partial differential
equation

dv d2W
m=Lv+dwi + 9{v{t'x))' (5'!)

where t > 0, x > 0, and with an initial condition u(0, x) = uo(x). We assume
that tío € Cb{{0, oo)). Equation (5.1) is formal, and, as usual, we will replace
it by the following evolution equation

rt rooft rt roo
>{t,x)= Pt{x,y)u0{y)dy+ / pt_s(x,y)W(ds,dy)Jo Jo Jo

noo Pt-S(x,y)g(v(s,y))dsdy, (5.2)

16



where pt(x,y) is the fundamental solution of

dp
dt

= Lp.

Let us first consider the case g = 0 and u0 = 0. Then the solution to
Equation (5.2) will be a zero mean Gaussian process given by

noo Pt~s(x, y)W{ds, dy). (5.3)

Proposition 5.1 The randomfieldu = {u(t,x),t > 0,x > 0} given by (5.3)
is a solution to Equation (5.1) in the sense of distributions, and moreover,

E(\u(t,x)|2) < Ca(x)~1. (5.4)

Proof: We will only show the estimate (5.4). Using the estimate (4.6) we
obtain

noo rtPt-s(x, y)2dsdy < / (suppt_s(x,y))dsJo y>0

[* C = Cy/t
~ Jo a(x)y/s S a(x) ’

QED

Proposition 5.2 The random field u = {u(t, x), t > 0, x > 0} given by (5.3)
possesses a versión which is continuous in [0, oo) x (0, oo), and satisfies for
each T > 0 and | < 7 < 1,

lim sup a(x)'r\u(t, x)| = 0.
*10 o<t<T

Proof: Fix | < 7 < 1 and define

ü(t,x) = a(x)~íu(t,x), x>0,t>0,
ü(t, 0) = 0.

17



We are going to show that ü(t,x) has a continuous versión in [0. oo)2 by
means of the Kolmogorov’s continuity criterion. Suppose that t > s and
x > y. Applying the estímate (5.4) we deduce:

E(\a{x)yü(t,x) - a(yyu(s,y)|2) < C{E(\a(xyü(t,x) - cr(y)7ü(í, y)|2)
+E{\a(yy(ü(t, x) - ü(s, x))|2) + E(\a(yy(ü(s, x) - ü(s, y))|2)}

< cl~^—{a{xy - a{yy)2 + a{yyy í í pt-e{x, zfdzdOJs JO

noo IPt-e(x, Z) - ps-e(x, z)\2dzd0

+a(t/)27 jí |p»-e{x, z) - ps-e(y, z)\2dzd0^
= C {.Ai 4- A2 + A3 -t- A4}.

Clearly
Al < C\x - J/I27"1.

For the term A2 using the estímate (4.6) we obtain

A2<a(y)2'r í ~—^===de < C\t - sfi.Js a{x)\/t — 9

E

-E

The estimation of the terms A3 and A4 is more involved. Define usr =
cr(AV)l[oiS](r), where Xr is the solution to Eq. (4.2). We can write

roo

/ \pt-o(x,z) -ps-e(x,z)\2dzJo
= E [pt_e(x, xt-e) ~ Pt-e(x, Xs.e) ~ Ps-e{x, Xt-e) + P»-b{x, Xs_e)]

- l{xt_e>xs_e}) 6 [DXut_eXt_e)
(l{xa_9>xt_9} - l{xs_9>x,_9}) 6 [DXu,_,xa-6

where {Xf} denotes an independent copy of {Xtz}. Thus it suffices to estí¬
mate a term of the form

,t-e

ij = ['Jo E 1 {Xt-e<Xt-e<Xa-e}

~<7^2~tJQE {Ix Pt-e{x,z)dz

w

DXut-eXt-o,
de

II*
u
t-0

DXut-»Xt-$
bd$,

18



with ~ + | = 1- As a consequence,

*^ jC (vfej)''+Z(b«x-‘-*-»>+>):’"
< C|s - í|¿,

if Q 1

27-r

The estimation of the term A4 can be done similarly as follows:
fS f°°
/ / \pa_e(x, z) - pa-9(y, z)\2dzd$Jo Jo

= f E (p,(x,X¡) - P»(x, X$) -M», x;) + pe(y,X¡)) de,Jo

where {Xf} denotes the solution to Eq. (4.2) with starting point x. Henee,
we can write

where {Xz} denotes an independent copy of {X?}. Thus, it suffices to study
a term of the form

with ¿ | = 1- As a consequence,

< C\x-y\°,

if« = 2^i- QED
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Suppose now that g : IR —► IR is a Lipschitz and bounded function. Define
z(t.x) = v(t,x) — u(t,x) where u is the solution to Eq. (5.3). Then v solves
Eq. (5.1) if and only if 2 is a solution of the pathwise equation

rt rt roe

z(t.x)= pt(x,y)uo(y)dy+ / pt-s{x,y)g(u(s,y) + z(s,y))dsdy. (5.5)Jo Jo Jo

Fix | < 7 < 1. Let us denote by C~f the class of continuous functions
ip : [0, T] x (0, 00) —► IR such that

lim sup a{x)1\p{t,x)\ = 0.
370 o<t<T

Let C° the class of functions in C7 such that <¿?(0, x) = 0. Using standard
arguments, and the Lipschtiz and boundedness properties of g, one can show
that for any function ¡p e C°, there is a unique bounded function T contin¬
uous in [0, T] x (0,00) such that

By Proposition 5.2 the stochastic process u(t, x) has its trajectories in C° a.s.
Consequently, Eq. (5.1) has a unique solution with trajectories continuous
in [0, T] x (0,00) given by v = Tu.
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